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Abstract Differential evolution (DE) is an efficient populational meta-heuristic
optimization algorithm that has been applied to many difficult real-world problems.
Due to the relative simplicity of its operations and real-encoded data structures,
it is very suitable for a parallel implementation on multicore systems and on the
GPUs that nowadays reach peak performance of hundreds and thousands of giga
FLOPS (floating-point operations per second). In this chapter, we present a simple
yet highly parallel implementation of differential evolution on the GPU using the
CUDA (Compute Unified Device Architecture) architecture and demonstrate its
performance on selected test problems.

1 Introduction

Differential evolution (DE) is a popular meta-heuristic optimization algorithm
belonging to the wide family of evolutionary algorithms (EAs). As with many other
evolutionary algorithms, it aims to solve the optimization problems by a simulated
evolution of a population of candidate solutions. The population of candidates
evolved by the algorithm performs a massively parallel search through the problem
domain towards globally optimal solutions. The candidate solutions can be seen as
individual points on the fitness landscape of the solved problem that are iteratively
and in many directions at once moved towards promising regions on the fitness
landscape. The implicit parallelism of the algorithm makes it even more interesting
for an implementation on a truly parallel platform.
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In this chapter, we present a fine-grained implementation of DE designed
specifically for super parallel SIMD (single-instruction multiple-data) devices such
as the GPUs. The SIMD hardware found in the modern day GPUs supports
parallel execution of hundreds of threads at the same time and the software drivers
and runtime libraries allow efficient scheduling of tens of thousands of threads.
General-purpose computing on graphics processing units (GPGPU) can use either
commodity hardware such as the GPUs used primarily for computer graphics
and entertainment or GPU coprocessors designed to perform massively parallel
computations in the first place.

This chapter is organized in the following way: in Sect. 2, the basic principles of
differential evolution and some of its applications are presented. Section 3 gives a
brief overview of GPU computing, the CUDA platform, and recent implementations
of differential evolution on GPUs. Many-threaded differential evolution is presented
in Sect. 4, and its performance on selected test problems, first reported in [16]
and [17], is described in Sect. 5.

2 Differential Evolution

Differential evolution (DE) is a versatile and easy to use stochastic evolutionary
optimization algorithm [29]. It is a population-based optimizer that evolves a
population of real-encoded vectors representing the solutions to given problems. DE
was introduced by Storn and Price in 1995 [38,39], and it quickly became a popular
alternative to the more traditional types of evolutionary algorithms. It evolves a
population of candidate solutions by iterative modification of candidate solutions by
the application of differential mutation and crossover [29]. In each iteration, the so-
called trial vectors are created from the current population by differential mutation
and further modified by various types of crossover operator. At the end, the trial
vectors compete with existing candidate solutions for survival in the population.

2.1 The DE Algorithm

DE starts with an initial population of N real-valued vectors. The vectors are
initialized with real values either randomly or so that they are evenly spread
over the problem space. The latter initialization leads to better results of the
optimization [29].

During the optimization, DE generates new vectors that are scaled perturbations
of existing population vectors. The algorithm perturbs selected base vectors with the
scaled difference of two (or more) other population vectors in order to produce the
trial vectors. The trial vectors compete with members of the current population with
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the same index called the target vectors. If a trial vector represents a better solution
than the corresponding target vector, it takes its place in the population [29].

There are two most significant parameters of DE [29]. The scaling factor F 2
Œ0; 1� controls the rate at which the population evolves and the crossover probability
C 2 Œ0; 1� determines the ratio of bits that are transferred to the trial vector from its
opponent. The size of the population and the choice of operators are other important
parameters of the optimization process.

The basic operations of classic DE can be summarized using the following
formulas [29]: the random initialization of the i th vector with N parameters is
defined by

xi Œj � D rand.bL
j ; bU

j /; j 2 f0; : : : ; N � 1g (1)

where bL
j is the lower bound of the j th parameter, bU

j is the upper bound of the j th
parameter and rand.a; b/ is a function generating a random number from the range
Œa; b�. A simple form of differential mutation is given by

vt
i D vr1 C F.vr2 � vr3/ (2)

where F is the scaling factor and v1
r , v2

r , and v3
r are three random vectors from the

population. The vector vr1 is the base vector, vr2 and vr3 are the difference vectors,
and the i th vector in the population is the target vector. It is required that i ¤ r1 ¤
r2 ¤ r3. The differential mutation in 2D (i.e., for N D 2) is illustrated in Fig. 1. The
uniform crossover that combines the target vector with the trial vector is given by

l D rand.0; N � 1/ (3)

vt
i Œm� D

(
vt

i Œm� if .rand.0; 1/ < C / or m D l

xi Œm�
(4)

for each m 2 f1; : : : ; N g. The uniform crossover replaces with probability 1�C the
parameters in vt

i by the parameters from the target vector xi . The outline of classic
DE according to [10] is summarized in Algorithm 1. However, the monograph on
DE by Price, Storn, and Lampinen [29] lists a different version of the basic DE.
They first form a whole new population of trial vectors P t and subsequently merge
P and P t . It means that the newly created trial vectors do not enter the population of
candidate solutions P immediately and therefore cannot participate in the creation
of next trial vectors until the whole population was processed.

There are also many other modifications to the classic DE. Mostly, they differ
in the implementation of particular DE steps such as the initialization strategy, the
vector selection, the type of differential mutation, the recombination operator, and
control parameter selection and usage [10, 29].
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Fig. 1 Differential mutation

1 Initialize the population P consisting of M vectors using (1);
2 Evaluate an objective function ranking the vectors in the population;
3 while Termination criteria not satisfied do
4 for i 2 f1; : : : ; M g do
5 Differential mutation: Create trial vector vt

i according to (2);

6 Validate the range of coordinates of vt
i . Optionally adjust coordinates of vt

i so,
that vt

i is valid solution to given problem;

7 Perform uniform crossover. Select randomly one parameter l in vt
i and modify

the trial vector using (3);

8 Evaluate the trial vector. If the trial vector vt
i represent a better solution than

population vector vi , replace vi in P by vt
i ;

9 end
10 end

Algorithm 1: A summary of classic differential evolution

The initialization strategy affects the way vectors in the initial population are
placed in the problem space. In general, a better initial coverage of the problem
space represents a better starting point for the optimization process because
the vectors can explore various regions of the fitness landscape from the very
beginning [29].

The selection strategy defines how are the target vector, the base vector, and
the difference vectors selected. Moreover, it has an effect on the time each vector
survives in the population, which can be given either by the age of the vector
or by the fitness of the vector. Popular base vector selection strategies are the
random selection and methods based on stochastic universal sampling [3, 29].
The random selection without restrictions allows the same vector to be used as a
base vector more than once in each generation. The methods based on stochastic
universal sampling ensure that all vectors are used as base vectors exactly once in
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each generation. The selection methods based on the stochastic universal sampling
generate a permutation of vector indexes that defines which base vector will be
coupled with which target vector [29]. An alternative base vector selection strategy
is called the biased base vector selection. The biased base vector selection uses the
information about the fitness value of each vector when selecting base vectors. The
biased base vector selection strategies include the best-so-far base vector selection
(the best vector in the population is always selected as base vector) and target-to-best
base vector selection (the base vector is an arithmetic recombination of the target
vector and the best-so-far vector) [29]. The biased base vector selection schemes
introduce a more intensive selection pressure which can, as in other evolutionary
techniques, result in faster convergence but it can also lead to a loss of diversity in
the population.

The differential mutation is the key driver of DE. It creates a trial vector as a
recombination of base vector and scaled difference of selected difference vectors.
The scaling factor F , which modifies vector differences, can be a firmly set constant,
a random variable selected according to some probability distribution, or defined
by some other function as, e.g., in self-adaptive DE variants. A variable scaling
factor increases the number of vector differentials that can be generated given
the population P [29]. In general, a smaller scaling factor causes smaller steps in
the fitness landscape traversal while a greater scaling factor causes larger steps. The
former leads to longer time for the algorithm to converge, and the latter can cause
the algorithm to miss the optima [29].

The recombination (crossover) operator plays a special role in DE. It achieves
a similar goal as the mutation operator in other evolutionary algorithms, i.e., it
controls the introduction of new material to the population using a mechanism
similar to the n-point crossover in traditional EAs. The crossover probability C 2
Œ0; 1� defines the probability that a parameter will be inherited from the trial vector.
Similarly, C � 1 is the probability that the parameter will be taken from the target
vector. Crossover probability has also a direct influence on the diversity of the
population [10]. An increased diversity initiated by larger C means a more intensive
exploration and faster convergence of the algorithm at the cost of the robustness of
the algorithm [29]. Common DE crossover operators include exponential crossover
and the uniform crossover. Some other crossover operators are, e.g., arithmetic
crossover and either-or-crossover [10, 29].

2.2 DE Variants and Applications

Particular DE variants are often referred to using a simple naming scheme [10, 29]
that uses the pattern DE/x/y/z. In the pattern, x describes the base vector selection
type, y represents the number of differentials, and z is the type of crossover operator.
For example, classic DE is often called DE/rand/1/bin, which means that it uses
random base vector selection, a single vector differential, and uniform (binominal)
crossover. Some other variants of DE described in the literature are [10]:
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1. DE/best/1/*, which always select the so far best vector as the base vector and its
differential mutation can be described by

vt
i D vbest C F.vr2 � vr3/ (5)

This DE variant can use any type of the crossover operator.
2. DE/*/nv/* that uses arbitrary base vector selection strategy, nv differential

vectors, and type of the crossover operator. Its differential mutation can be
described by

vt
i D vr1 C F

nvX
kD1

.vk
r2 � vk

r3/ (6)

where vk
r2 � vk

r3 is the kth vector differential.
3. DE/rand-to-best/nv/* combines random base vector selection with the best base

vector selection strategy:

vt
i D �vbest C .1 � �/vr1 C F

nvX
kD1

.vk
r2 � vk

r3/ (7)

It uses the parameter � 2 Œ0; 1� to control the exploitation of the mutation. The
larger � the larger the exploitation. The parameter � can be also adaptive.

4. DE/current-to-best/1Cnv/* uses at least two difference vectors. The first differ-
ential participating in the mutation is computed between the best vector and the
base vector and all the other differentials are computed using randomly selected
vectors:

vt
i D vr1 C F.vbest � vr1/ C F

nvX
kD1

.vk
r2 � vk

r3/ (8)

DE is a very successful algorithm with a number of applications. DE was used,
among others, for merit analysis, for non-imaging optical design, for the opti-
mization of industrial compressor supply systems, for multi-sensor fusion, for the
determination of earthquake hypocenters, for 3D medical image registration, for
the design of erasure codes, for digital filters, for the analysis of X-ray reflectivity
data, to solve the inverse fractal problem, and for the compensation of RF-driven
plasmas [29]. It was also used for evolutionary clustering [8] and to optimize
the deployment of sensor nodes [34]. Despite its continuous nature, the DE was
used also to solve combinatorial optimization problems. The applications of DE
in this domain included turbo code interleaver optimization [19], scheduling of
independent tasks in heterogeneous computing environments [15, 20], search for
optimal solutions to the linear ordering problem [37], and many others.
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DE is a successful evolutionary algorithm designed for continuous parameter
optimization driven by the idea of scaled vector differentials. That makes it an
interesting alternative to the widespread genetic algorithms that are designed to
work primarily with discrete encoding of the candidate solutions. As well as
genetic algorithms, it represents a highly parallel population-based stochastic search
meta-heuristic. In contrast to GA, differential evolution uses the real encoding of
candidate solutions and different operations to evolve the population. It results in
different search strategies and different directions found by DE when crawling a
fitness landscape of the problem domain.

3 GPU Computing

Modern graphics hardware has gained an important role in the area of parallel
computing. GPUs have been used to power gaming and 3D graphics applications,
but recently they have been used to accelerate general computations as well. The
new area of general-purpose computing on graphics processing units (GPGPU) has
been flourishing since then. The data parallel architecture of GPUs is suitable for
vector and matrix algebra operations, which leads to the wide use of GPUs in the
area of scientific computing with applications in information retrieval, data mining,
image processing, data compression, etc.

To simplify the development of GPGPU programs, various vendors have intro-
duced languages, libraries, and tools to create parallel code rapidly. The GPU
platform and API developed by nVidia is called CUDA (Compute Unified Device
Architecture). It is based on the CUDA-C language, which is an extension to C that
allows development of GPU routines called kernels. Each kernel defines instructions
that are executed on the GPU by many threads at the same time following the SIMD
model. The threads can be organized into so-called thread groups that can benefit
from GPU features such as fast shared memory, atomic data manipulation, and
synchronization. The CUDA runtime takes care of the scheduling and execution
of the thread groups on available hardware. The set of thread groups requested
to execute a kernel is called in CUDA terminology a grid. A kernel program can
use several types of memory: fast local and shared memory, large but slow global
memory, and fast read-only constant memory and texture memory. The structure
of CUDA program execution and the relation of threads and thread groups to
device memory is illustrated in Fig. 2. GPU programming has established a new
platform for evolutionary computation [9]. The majority of evolutionary algorithms,
including genetic algorithms (GA) [28], genetic programming (GP) [21, 33], and
DE [40, 42, 43], have been implemented on GPUs. Most of the contemporary
implementations of evolutionary algorithms on GPUs map each candidate solution
in the population to a single GPU thread. However, recent work in the area of
evolutionary computation on GPUs has introduced further parallelization of GA by,
e.g., many-threaded implementation of the crossover operator and local search [12].
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Fig. 2 CUDA-C program structure and memory hierarchy [26]
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3.1 Differential Evolution on the GPU

Due to the simplicity of its operations and real encoding of the candidate solutions,
DE is suitable for parallel implementation on the GPUs. In DE, each candidate
solution is represented by a vector of real numbers (parameters), and the population
as a whole can be seen as a real-valued matrix. Moreover, both the mutation operator
and the crossover operator can be implemented easily as straightforward vector
operations.

The first implementation of DE on the CUDA platform was introduced in the
early 2010 by de Veronese and Krohling [40]. Their DE was implemented using the
CUDA-C language, and it achieved speedup between 19 and 34 times comparing
to the CPU implementation on a set of benchmarking functions. The generation of
random numbers was implemented using the Mersenne Twister from the CUDA
SDK, and the selection of random trial vectors for mutation was done on the CPU.

Zhu [42], and Zhu and Li [43] implemented DE on CUDA as part of a differential
evolution-pattern search algorithm for bound-constrained optimization problems
and as part of a differential evolutionary Markov chain Monte Carlo method
(DE-MCMC), respectively. In both cases, the performance of the algorithms was
demonstrated on a set of continuous benchmarking functions.

The common property of the above DE implementations is the mapping of a
single GPU thread to one candidate solution and the usage of the Mersenne Twister
from the CUDA SDK for random number generation on the GPU. Moreover, some
parts of the random number generation process were [42] offloaded to the CPU. In
this work, we use a new implementation of DE on the CUDA platform using many
threads to process each candidate solution and utilizing the GPU to generate random
numbers needed for the optimization.

4 Many-Threaded Differential Evolution on the GPU

The goal of the implementation of DE on the CUDA platform was achieving high
parallelism while retaining the simplicity of the algorithm. The implementation
consists of a set of CUDA-C kernels for generation of initial population, generation
of batches of random numbers for the decision making, DE processing including
generation of trial vectors, mutation and crossover, verification of the generated
vectors, and the merger of parent and offspring populations. Besides these kernels
implementing DE, an implementation of the fitness function evaluation was done
in a separate kernel. The overview of the presented DE implementation is shown in
Fig. 3. The kernels were implemented using the following principles:

1. Each candidate solution is processed by a thread block (thread group). The
number of thread groups is in nVidia CUDA 4.0 limited to .216 � 1/3 and in
earlier versions to .216 � 1/2. Hence, the maximum population size is in this case
the same.
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Fig. 3 The flowchart of the DE implementation on CUDA

2. Each vector parameter is processed by a thread. The limit of threads per block
depends in CUDA on the hardware compute capability, and it is 512 for compute
capability 1.x and 1024 for compute capability 2.x [26]. This limit enforces the
maximum vector length. This is enough for the application area considered in
this paper. The mapping of CUDA threads and thread blocks to the DE vectors is
illustrated in Fig. 4.

3. Each kernel call aims to process the whole population in a single step, e.g., it asks
the CUDA runtime to launch M blocks with N threads in parallel. The CUDA
runtime executes the kernel with respect to available resources.

Such an implementation brings several advantages. First, all the generic DE
operations can be considered done in parallel, and, thus, their complexity reduces
from M � N (population size multiplied by vector length) to c (constant, duration
of the operation plus CUDA overhead). Second, this DE operates in a highly
parallel way also on the logical level. A population of offspring chromosomes of
the same size as the parent population is created in a single step and later merged
with the parent population. Third, the evaluation of vectors is accelerated by the
implementation of the fitness function on GPU.
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Fig. 4 The mapping of CUDA threads and thread blocks on DE population

5 The Performance of the Many-Threaded DE on the GPU

The performance of many-threaded DE was evaluated on several test problems.
To perform the experiments, the DE/rand/1/bin type of DE was implemented for
both, the CUDA platform and sequential execution on the CPU. When not stated
otherwise, the presented experiments were performed on a server with two dual
core AMD Opteron processors at 2.6 GHz and an nVidia Tesla C2050 with 448
cores at 1.15 GHz.

In contrast to the majority of DE applications, the many-threaded DE on the GPU
was used to solve combinatorial optimization problems. However, to provide at least
indirect comparison with previous DE implementations on CUDA, the optimization
of the test function f2 was performed.

5.1 Function Optimization

The previous GPU based DE implementations were most often tested using a set
of continuous benchmarking functions. To provide at least a rough comparison of
our approach to another DE variant, we have implemented a DE searching for the
minimum of the test function f2 from [40]:

f2.x/ D
nX

i�1

�
x2

i � 10 cos.2�xi / C 10
�

(9)
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Table 1 Comparison of the many-threaded DE with CUDA-C imple-
mentation from [40]

DE from [40] Proposed DE

f2 Variables Value Time Value Time

100/128 278.18 0.64 232.8668 0.6604656
100/128 98.53 27.47 32.98331 27.00045
256 N/A N/A 91.10914 27.00054
512 N/A N/A 295.6335 27.00055

We note that the comparison is indirect and rather illustrative since the two
algorithms were executed for the same test function but with different dimensions,
on different hardware, and with different settings.

The purpose of this comparison is to show whether the proposed many-threaded
DE can find similar, better, or worse solutions of a previously used benchmark
function. From Table 1, it can be seen that many-threaded DE has found in a
very similar time frame a solution to f2 with better (i.e., lower) fitness value.
Many-threaded DE was executed on a more powerful GPU than DE in [40],
but it had to solve a function with 1.28 times larger dimension. In 0.64 s, it
delivered approximately 1.19 times better (in terms of fitness value) solution, and
in 27 s it had found an approximately three times better solution than the previous
implementation.

This leads us to the conclusion that the proposed DE is able to find a good
minimum of a continuous functions and it appears to be competitive compared with
previous CUDA-C implementations.

5.2 Linear Ordering Problem

The linear ordering problem (LOP) is a well-known NP-hard combinatorial opti-
mization problem. It has been intensively studied and there are plenty of exact,
heuristic, and meta-heuristic algorithms for LOP. With its large collection of
well-described testing data sets, the LOP represents an interesting testbed for meta-
heuristic algorithms for combinatorial optimization [22, 23].

The LOP can be formulated as a graph problem [22]. For a complete directed
graph Dn D .Vn; An/ with weighted arcs cij, compute a spanning acyclic tourna-
ment T in An such that

P
.i;j /2T cij is as large as possible. The LOP can also be

defined as a search for an optimal column and row reordering of a weight matrix C

[6, 22, 35, 36]. Consider a matrix C n�n, permutation ˘ , and a cost function f :

f .˘/ D
nX

iD1

nX
j DiC1

c˘.i/˘.j / (10)
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The LOP is a search for permutation ˘ so that f .˘/ is maximized, i.e., the
permutation restructures the matrix C so that the sum of its elements above the main
diagonal is maximized. The LOP is an NP-hard problem with a number of applica-
tions in scheduling (scheduling with constraints), graph theory, economy, sociology
(paired comparison ranking), tournaments, and archaeology among others.

In economics, LOP algorithms are deployed to triangularize input-output matri-
ces. The resulting permutation provides useful information on the stability of the
investigated economy. In archaeology, LOP algorithms are used to process the
Harris Matrix, a matrix describing most probable chronological ordering of samples
found in different archaeological sites [36]. Other applications of LOP include the
equivalent graph problem, the related graph problem, the aggregation of individual
preferences, ranking in sports tournaments, and the minimization of crossing [22].

A variant of the LOP is the linear ordering problem with cumulative costs
(LOPCC) that has applications in the optimization of the universal mobile
telecommunication standard (UMTS) in mobile phone telecommunication systems
[4, 22, 30].

5.2.1 LOP Data Sets

There are several test libraries used for benchmarking LOP algorithms. They
are well preprocessed and thoroughly described, and the optimal (or so-far best)
solutions are available. The majority of the investigated algorithms were tested
against the LOLIB library. The original LOLIB library contains 49 instances
of input-output matrices describing European economies in the 1970s. Optimal
solutions of the LOLIB matrices are available. Although the LOLIB contains real-
world data, it is considered rather simple and easy to solve [31]. Mitchell and
Bochers [24] have published an artificial LOP data library and a LOP instance
generator. The data (MBLB) and code are available from Rensselaer Polytechnic
Institute.1

Schiavinotto and Stützle [35, 36] have shown that the LOLIB and MBLB
instances are significantly different, having diverse high-level characteristics of the
matrix entries such as sparsity or skewness. The search space analysis revealed that
MBLB instances typically have higher correlation length and also a generally larger
fitness-distance correlation than LOLIB instances. It suggests that MBLB instances
should be easier to solve than LOLIB instances of the same dimension. Moreover, a
new set of large artificial LOP instances (based on LOLIB) called XLOLIB was
created and published. Another set of LOP instances is known as the Stanford
GraphBase (SGB). The SGB is composed of larger input-output matrices describing
the US economies.

1http://www.rpi.edu/�mitchj/generators/linord/.

http://www.rpi.edu/~mitchj/generators/linord/


134 P. Krömer et al.

Many LOP libraries are hosted by the Optsicom project.2 The Optsicom archive
contains LOLIB, SGB, MBLB, XLOLIB, and other LOP instances. One important
feature of the Optsicom LOP archive is that its LOP matrices are normalized [22],
i.e., they were preprocessed so that:

• All matrix entries are integral.
• cii D 0 for all i D f1; 2; : : : ; ng.
• minfcij; cjig D 0 for all 1 � i < j � n.

5.2.2 LOP Algorithms

There are several exact and heuristic algorithms for the linear ordering problem. The
exact algorithms are strongly limited by the fact that LOP is a NP-hard problem (i.e.,
there are no exact algorithms that could solve LOP in polynomial time). Among the
exact algorithms, branch & bound approach based on LP relaxation of the LOP
for the lower bound, a branch & cut algorithm, and interior point/cutting plane
algorithm attracted attention [36]. Exact algorithms are able to solve rather small
general instances of the LOP and bigger instances (with the dimension of few
hundred rows and columns) of certain classes of LOP [36].

A number of heuristic algorithms, including the greedy algorithms, local search,
elite tabu search, scattered search, and iterated local search, were used to solve
the LOP instances [13, 22, 36]. In this work, we use the LOP as a testbed for the
performance evaluation of a many-threaded DE implementation powered by the
GPU.

The LOP candidate solutions were for the purpose of the DE represented using
the random keys encoding [2]. With this encoding, the candidate solution consists
of an array of real numbers. The change in the order of elements of the array
after sorting corresponds to a permutation. Due to its simplicity, the random keys
encoding is a natural choice for differential evolution of permutations.

Computational experiments were performed on a server described in the begin-
ning of this section. For comparison, the LOP was also computed on a laptop
with Intel Core i5 at 2.3 GHz. Although the CPUs used in the experiments were
multicore, the LOP evaluation was single-threaded. The comparison of fitness
computation times for different population sizes is illustrated in Fig. 5 (note the
log scale). In the benchmark, a population of candidate solutions of a LOP instance
with the dimension 50 was evaluated on the GPU and on two CPUs.

We can see that the Core i5 is always 3.3–4.2 times faster than the Opteron. The
Tesla C2050 is equally fast as the Opteron when evaluating 16 LOP candidates and
1.4–9.7 times faster for larger LOP candidate populations. The Core i5 is faster than
GPU for population sizes 16, 32, and 64. The GPU performs similarly as Core i5
when evaluating 128 LOP candidates and 1.4–2.4 times faster for larger populations.

2http://heur.uv.es/optsicom/LOLIB/.

http://heur.uv.es/optsicom/LOLIB/
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Fig. 5 The speed of LOP evaluation on the CPUs and on the GPU

5.2.3 Search for LOLIB Solutions on the GPU

The LOLIB solutions obtained by the DE on CUDA and by a sequential DE
implementation are shown in Table 2. The table contains best and average error after
5 s and 10 s computed from 10 independent optimization runs for each LOP matrix.
We can see that the largest average error after 5 s is 0:232 for matrix t69r11xx, which
is better than the best LOP solution found by the DE in [37]. The average error for
all LOLIB matrices was 0:043 after 5 s and 0:031 after 10 s.

We have compared the progress of DE for LOP on the GPU and on the CPU. A
typical example of the optimization is shown in Fig. 6. Apparently, DE on the GPU
delivers optimal or nearly optimal results very quickly compared to the CPU.

Interestingly, the results of the optimization after 10 s were sometimes worse than
the results of optimization after 5 s (the results were obtained in separate program
runs). It suggests that DE on CUDA quickly converges to a suboptimal solution but
sometimes fails to find global optimum. On the other hand, the algorithm has found
global optimum in all test runs for 15 out of 49 LOP matrices, which is a good result
for a pure meta-heuristic.

5.2.4 Search for N-LOLIB Solutions

DE on CUDA was also used to find solutions to the normalized LOLIB (N-LOLIB)
library. The results of DE for LOP implemented on the GPU are shown in Table 3.
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Fig. 6 Example of DE for LOLIB matrix be75eec on CPU and GPU

The average error for all N-LOLIB matrices was 0:034 after 5 s and 0:037 after 10 s.
Moreover, the DE has found the optimal solution for 18 out of 50 LOP instances.

When we compare these results to N-LOLIB results obtained recently by several
meta-heuristic methods in [22], we can see that the differential evolution performs
better than pure genetic algorithms with average error 0:38 and optimal results found
for 9 matrices. On the other hand, other meta-heuristics, including tabu search,
memetic algorithms, and simulated annealing, performed better. However, we have
to note that the DE used in this work is a pure meta-heuristic and uses no domain
knowledge or local search to improve the solutions.

5.3 Independent Task Scheduling

In grid and distributed computing, the mixed-machine heterogeneous computing
(HC) environments utilize a distributed suite of different machines to perform
different computationally intensive applications that have diverse requirements
[1, 5]. Task scheduling, i.e., mapping of a set of tasks to a set of resources, is
required to exploit the different capabilities of a set of heterogeneous resources.
It is known that an optimal mapping of computational tasks to available machines
in a HC suite is an NP-complete problem [11], and, as such, it is a subject to
various heuristic [5, 14, 25] and meta-heuristic [7, 27, 32, 41] algorithms, including
differential evolution [18].
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A HC environment is a composite of computing resources (PCs, clusters, or
supercomputers). Let T D fT1; T2; : : : ; Tng denote the set of tasks that is in a
specific time interval submitted to a resource management system (RMS). Assume
the tasks are independent of each other with no inter-task data dependencies
and preemption is not allowed (the tasks cannot change the resource they have
been assigned to). Also assume at the time of receiving these tasks by RMS,
m machines M D fM1; M2; : : : ; Mmg are within the HC environment. For our
purpose, scheduling is done on the machine level, and it is assumed that each
machine uses first-come, first-served (FCFS) method for performing the received
tasks. We assume that each machine in the HC environment can estimate how much
time is required to perform each task. In [5], the expected time to compute (ETC)
the matrix was used to estimate the required time for executing a task in a machine.
An ETC matrix is an n � m matrix in which n is the number of tasks and m is the
number of machines. One row of the ETC matrix contains the estimated execution
time for a given task on each machine. Similarly, one column of the ETC matrix
consists of the estimated execution time of a given machine for each task. Thus,
for an arbitrary task Tj and an arbitrary machine Mi , ŒET C �j;i is the estimated
execution time of Tj on Mi . In the ETC model we take the usual assumption that
we know the computing capacity of each resource, an estimation or prediction of
the computational needs of each job, and the load of prior work of each resource.

The two objectives to optimize during the task mapping are makespan and
flowtime. Optimum makespan (meta-task execution time) and flowtime of a set of
jobs can be defined as:

makespan D min
S2Sched

f max
j 2Jobs

Fj g (11)

flowtime D min
S2Sched

f
X

j 2Jobs

Fj g (12)

where Sched is the set of all possible schedules, Jobs stands for the set of all jobs to
be scheduled, and Fj represents the time in which job j finalizes. Assume that Cij

.j D 1; 2; : : : ; n; i D 1; 2; : : : ; m/ is the completion time for performing the j -th
task in the i -th machine and Wi .i D 1; 2; : : : ; m/ is the previous workload of Mi ,
then

P
j 2S.i/ Cij C Wi is the time required for Mi to complete the tasks included in

it (S.i/ is the set of jobs scheduled for execution on Mi in schedule S ). According
to the aforementioned definition, makespan and flowtime can be evaluated using:

makespan D max
i2f1;2;:::;mg

f
X

j 2S.i/

Cij C Wi g (13)

flowtime D
mX

iD1

X
j 2S.i/

Cij (14)

Minimizing makespan aims to execute the whole meta-task as fast as possible while
minimizing flowtime aims to utilize the computing environment efficiently.
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A schedule of n independent tasks executed on m machines can be naturally
expressed as a string of n integers S D .s1; s2; : : : ; sn/ that are subject to si 2
1; : : : ; m. The value at the i position in S represents the machine on which the
i -th job is scheduled in schedule S . Since differential evolution uses for problem
encoding real vectors, real coordinates must be used instead of discrete machine
numbers. The real-encoded DE vector is translated to schedule representation by
simple truncation of its coordinates (e.g., 3:6 ! 3, 1:2 ! 1). Assume schedule
S from the set of all possible schedules Sched. For the purpose of differential
evolution, we define a fitness function fit.S/ W Sched ! R that evaluates each
schedule:

fit.S/ D � � makespan.S/ C .1 � �/ � flowtime.S/

m
(15)

The function fit.S/ is a sum of two objectives, the makespan of schedule S

and flowtime of schedule S divided by the number of machines m to keep both
objectives in approximately the same magnitude. The influence of makespan and
flowtime in fit.S/ is parametrized by the variable �. The same schedule evaluation
was used also in [7].

5.3.1 Search for Optimal Independent Task Schedules

We have implemented DE for scheduling of independent tasks on the CUDA
platform to evaluate the performance and quality of the proposed solution. The GPU
implementation was compared to a simple CPU implementation (high-level object-
oriented CCC code) and optimized CPU implementation (low-level C code to
achieve maximum performance). The optimized CPU implementation was created
to provide a fair comparison of performance oriented implementations on the
GPU and on the CPU. Optimized CPU and GPU implementations of the DE for
scheduling optimization were identical with the exception of the CUDA-C language
constructions.

First, the time needed to compute the fitness for the population of DE vectors
was measured for all three DE implementations. The comparison of the fitness
computation times ON for different population sizes is illustrated in Fig. 7 (note
the log scale of both axes).

The GPU implementation was 25.2–216.5 times faster than the CPU implemen-
tation and 2.2–12.5 times faster than the optimized CPU implementation of the same
algorithm. This, along with the speedup achieved by the parallel implementation
of the DE operations, contributes to the overall performance of the algorithm.
To compare the GPU based and the CPU based DE implementations for the
independent task scheduling, we have used the benchmark proposed in [5]. The
benchmark contains several ETC matrices for 512 jobs and 16 machines. The
matrices are labeled according to the following properties [5]:
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Fig. 7 Comparison of schedule evaluation time on CPU and GPU

• Task heterogeneity—Vtask represents the amount of variance among the execution
times of tasks for a given machine.

• Machine heterogeneity—Vmachine represents the variation among the execution
times for a given task across all the machines.

• Consistency—an ETC matrix is said to be consistent whenever a machine Mj

executes any task Ti faster than machine Mk; in this case, machine Mj executes
all tasks faster than machine Mk .

• Inconsistency—machine Mj may be faster than machine Mk for some tasks and
slower for others.

Each ETC matrix is named using the pattern TxMyCz, where x describes task
heterogeneity (high or low), y describes machine heterogeneity (high or low), and
z describes the type of consistency (inconsistent, consistent, or semi-consistent).

We have investigated the speed and quality of the results obtained by the
proposed DE implementation and compared it to the results obtained by CPU
implementations. Average fitness values of the best schedules found by different
DE variants after 30 s are listed in Table 4. The best results for each ETC matrix are
shown in bold. We can see that the GPU implementation delivered the best results
for population sizes 1024 and 512. However, the most successful population size
was 64. Apparently, such a population size seems to be suitable for the investigated
scheduling problem with given dimensions (i.e., number of jobs and number of
machines). When executing differential evolution with population size 64, the
optimized CPU implementation delivered the best results for the consistent ETC



142 P. Krömer et al.
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Fig. 8 Fitness improvement of different DE implementations for ThM*C* matrices. (a) ThMhCc,
(b) ThMhCi, (c) ThMhCs, (d) ThMlCc, (e) ThMlCi, (f) ThMlCs

matrices, i.e., ThMhCc, ThMlCc, TlMhCc, and TlMlCc. In all other cases, the best
result was found by the GPU powered differential evolution.

The progress of DE with the most successful population size 64 for different ETC
matrices is shown in Figs. 8 and 9. The figures clearly illustrate the big difference
between DE on the CPU and the GPU. DE executed on the GPU achieves the
most significant fitness improvement during the first few seconds (roughly 5 s),
while the CPU implementations require much more time to deliver solutions with
similar quality, if they manage to do it at all. Needless to say, the optimized CPU
implementation always found better solutions than the simple CPU optimization
because it managed to process more candidate vectors in the same time frame.
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Fig. 9 Fitness improvement of different DE implementations for TlM*C* matrices. (a) TlMhCc,
(b) TlMhCi, (c) TlMhCs, (d) TlMlCc, (e) TlMlCi, (f) TlMlCs

6 Conclusions

This chapter described the design and implementation of a fine-grained DE on the
GPUs. The basic steps of the algorithm were implemented with respect to the super
parallel SIMD architecture of the GPUs allowing efficient parallel execution of
hundreds of threads. The fine-grained many-threaded DE design was chosen in order
to maximize the utilization of the resources provided by the GPUs.
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The performance of the solution was demonstrated on a series of computational
experiments. The experimental evaluation involved continuous function optimiza-
tion to provide a rough comparison with a previous DE design for the GPU and
two popular combinatorial optimization problems with real-world applications.
The many-threaded DE implemented on the CUDA platform has shown good
performance and good results in all test cases.
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14. Izakian, H., Abraham, A., Snásel, V.: Comparison of heuristics for scheduling independent
tasks on heterogeneous distributed environments. In: Computational Sciences and Optimiza-
tion, 2009. International Joint Conference on, vol. 1, pp. 8–12 (2009)
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