
Automatic Parallelization of EC on GPGPUs
and Clusters of GPGPU Machines with EASEA
and EASEA-CLOUD

Pierre Collet, Frédéric Krüger, and Ogier Maitre

Abstract GPGPU cards are very difficult to program efficiently. This chapter
explains how the EASEA and EASEA-CLOUD platforms can implement different
evolution engines efficiently in a massively parallel way that can also serve as a
starting point for more complex projects.

1 Introduction

Many papers show how GPGPU cards can be used to implement very fast massively
parallel evolutionary algorithms. However, because these cards are quite complex to
program, it is often very difficult to reproduce published results, because it is nearly
impossible for authors to describe exactly how they implemented their algorithm.
There are simply too many parameters and subtleties to consider.

Because hardware is involved in the performance of algorithms implemented
on GPGPUs, details such as how individuals are implemented in memory may
result in very different performance. For instance, coalescent memory calls are much
faster than random memory accesses when several cores of a multiprocessor make
memory calls. Supposing one tries to solve a problem coded with four floating-point
values a; b; c; d . Storing the population as an array of individuals will result (in C)
in the following memory layout:

a0; b0; c0; d0;
„ ƒ‚ …

i0

a1; b1; c1; d1;
„ ƒ‚ …

i1

a2; b2; c2; d2;
„ ƒ‚ …

i2

a3; b3; c3; d3;
„ ƒ‚ …

i3
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Now, supposing four SIMD cores running the same code, try to access the
first parameter a of each individual they need to evaluate. The data that will be
simultaneously read by the four cores will be the values of the variables a0; a1; a2; a3

which are not contiguous in memory.
However, if one had interleaved the different parameters of the population (as

would have been the case if the array of individuals had been stored à la FORTRAN,
for instance), the memory layout would have been the following:

a0; a1; a2; a3; : : : b0; b1; b2; b3; : : : c0; c1; c2; c3; : : : d0; d1; d2; d3; : : :

With this memory layout, the same four cores running the exact same code as
before will end up with a much smaller execution time, because a much faster
coalescent memory call will be performed.

Because of the difficulty to implement efficient GPGPU code and the difficulty
to reproduce obtained results, in Strasbourg we have designed a massively parallel
evolutionary platform that can automatically parallelize evolutionary algorithms in a
standard predefined way. Whenever our team designs and publishes a new GPGPU
algorithm, we take the effort to include the algorithm into the platform, therefore
allowing anyone to benefit from this generic implementation to either:

• Implement a massively parallel evolutionary algorithm to solve a problem, using
one of the available paradigms, or

• Implement a basic massively parallel evolutionary algorithm that is implement-
ing one of the available paradigms, and use the produced source code as a starting
point for a specific development.

This chapter rapidly describes the EASEA language and platform [18] for the
reader who would like to benefit from the computing power of GPGPU cards
without going through the hassle of directly programming the graphics card.

2 Scope of the EASEA Parallelization Platform

Evolutionary algorithms are quite diverse: by 1965, about ten independent begin-
nings in Australia, United States and Europe have been traced in David Fogel’s
excellent fossil record [12] on evolutionary computing. However, the main evolu-
tionary trends that survived are:

• Evolutionary Programming, by Lawrence Fogel and later David Fogel on the US
west coast [11, 13]

• Evolutionary Strategies, by Rechenberg and Schwefel, best described in [4, 21,
22]

• Genetic Algorithms, by Holland, later popularized by Goldberg on the US East
Coast (Michigan) [14, 15]

• Genetic Programming, by Cramer [9] and later developed by John Koza [17, 20]
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All these algorithms share a common evolutionary loop that was united into the
EASEA language, back in 2000 [8], and its Graphic User Interface GUIDE [7]
presented in 2003 that is currently being redesigned as part of the French EASEA-
CLOUD project.

The first versions of EASEA (until v0.7) produced CCC (or Java) source
code for sequential CPUs. Since 2009, EASEA v1.0 can produce massively parallel
code for NVIDIA GPGPU cards. Since 2011, v1.1 can implement an island model
over several computers connected over the Internet.

Further, the EASEA platform extends into the EASEA-CLOUD platform to run
over computing eco-systems, made of heterogeneous resources that can combine
the power of CPU or GPU individual computers or Beowulf clusters, or grids, or
clouds of computers using an island model to solve the same problem. The web
sites for EASEA and EASEA-CLOUD are respectively http://easea.unistra.fr and
http://easea-cloud.unistra.fr. Both platforms can be found under Sourceforge (http://
www.sourceforge.net).

3 Standard CPU Algorithm

An EASEA (EAsy Specification of Evolutionary Algorithms) compiler was
designed to build a complete evolutionary algorithm around four problem-specific
functions and a representation of a potential solution all integrated into a .ez
source file. Throughout this section, an example will be used that implements an
evolutionary algorithm whose aim is to find the minimum of a 100-dimensional
Weierstrass benchmark function.

Structure of an Individual

Defining the structure of an individual is done in a section devoted to the declaration
of user classes that all .ez source files must contain. Declarations use a C-like
syntax, allowing one to compose a genome out of integers, floats, doubles, and
booleans but also pointers:

\User classes :
GenomeClass {

float x[100];
}

\end

GenomeClass is the reserved name for the class that describes individuals.
More than one class can be defined, but at least one must be named GenomeClass.

Initialization Function

This function tells how to initialize a new individual. It is a simple loop that assigns
a random value to all 100 variables of the genome, within X MIN and X MAX,
which are macro-definitions declared by the user in a user declaration section.

\GenomeClass::initialiser :
for(int i=0; i<100; i++ ) Genome.x[i] = random(X_MIN,X_MAX);

\end

http://easea.unistra.fr
http://easea-cloud.unistra.fr
http://www.sourceforge.net
http://www.sourceforge.net
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Genome is the reserved name for the individual to be initialized. random is a
function of the EASEA library that calls an appropriate random number generator
depending on the version of EASEA (typically a Mersenne Twister).

Evaluation Function

A Weierstrass function is used for this example. It is mathematically defined as:

Wb;h.x/ D P1
kD1 b�kh sin.bkx/ with b > 1 and 0 < h < 1

In this example, we try to minimize the absolute value of this function, hence
the evaluation code below for each of the 100 dimensions of the genome. Note that
the function is an infinite sum of sines. For practical reasons, only 125 sums are
performed.

\GenomeClass::evaluator :
float Res=0, Sum, b=2, h=0.5;

for (int i=0; i<100; i++) {
Sum=0;
for (int k=0; k<125; k++)
Sum+=pow(b,-(float)k*h)*sin(pow(b,(float)k)*Genome.x[i]);

Res += (Sum < 0 ? -Sum : Sum);
}
return (Res);

\end

The evaluation function must return a floating point value that represents the
fitness of the individual (note that if one wants to use a roulette-wheel selector
as defined in [15], the returned fitness value must be >D 0 and the goal of the
evolutionary algorithm must be to maximize the fitness function, which is not the
case here).

Crossover Function

In this example, a very basic barycentric crossover is presented :

\GenomeClass::crossover :
for (int i=0; i<100; i++) {

float alpha = random(0.,1.); // barycentric crossover
child.x[i] = alpha*parent1.x[i] + (1.-alpha)*parent2.x[i];

}
\end

By default, the crossover function already knows about three individuals:
parent1, parent2, and child, which are members of the GenomeClass
that was defined by the user. By default, child is instantiated with a deep copy of
parent1.
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Mutation Function

The very simple mutation function below simply adds a random value in Œ�:1; :1�
and makes sure that x remains within bounds.

\GenomeClass::mutator : // Must return the number of mutations
int nNbMut=0;
for (int i=0; i<100; i++)

if (tossCoin(.01)){
nNbMut++;
Genome.x[i]+=random(-.01,.01);
if (Genome.x[i] <= X_MIN) Genome.x[i]=X_MIN;
if (Genome.x[i] >= X_MAX) Genome.x[i]=X_MAX;

}
return nNbMut;

\end

In this version, the mutation function walks through all dimensions and mutates
each gene with a probability .01, meaning that the probability that the individual
will be mutated is 1, because there are 100 dimensions to this problem. The number
of mutations must be returned because in some versions of EASEA, this is used for
statistics.

Set of Parameters

The task of the EASEA compiler is then to wrap a complete evolutionary algorithm
around these problem-specific functions and individual structure definition that can
virtually implement any standard or nonstandard evolution engine thanks to a large
enough set of parameters and a library of functions.

The typical set of parameters is:

• Number of generations: the number of generations for the run to complete.
• Time limit: the number of seconds before the run is stopped (0 to cancel this

functionality).
• Population size: the number of individuals in the population.
• Offspring size: the number of children to be created per generation.
• Mutation probability: the probability to call the mutation function once a child

has been created.
• Crossover probability: the probability to call the crossover function to create

a child (if the crossover function is not called, the child is a clone of the first
parent).

• Evaluator goal: to specify whether the evolutionary engine should minimize or
maximize the fitness of the individuals.

• Selection operator: to be chosen among (Deterministic, Random, Tournament,
Roulette). “Roulette” can only be specified if the evaluator goal is “maximize”,
and Tournament needs a parameter to specify selection pressure. An n-ary
tournament will be implemented for integer values of n greater than 2, and a
stochastic tournament will be implemented for real values between .5 and 1.0.
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(In a stochastic tournament, the best of two individuals is returned with a
probability between 0.5 (random selection) and 1.0 (binary tournament).)

• Surviving parents: number of parents to participate in the selection of the
individuals that will constitute the next generation.

• Surviving offspring: number of children to participate in the selection of the
individuals that will constitute the next generation.

• Reduce parents operator: how the surviving parents are selected.
• Reduce offspring operator: how the surviving children are selected.
• Final reduce operator: how the next generation is selected among the surviving

parents and offspring.
• Elitism: strong (meaning that the elite is selected among the parents) or weak

(meaning that the elite is selected among the surviving parents C surviving
offspring).

• Elite: Elite size (number of best individuals to make it to the next generation).

This rather complete set of parameters allows one to specify virtually any
evolution engine, from a generational GA (offspring size equal to population size,
0 surviving parents, 100 % surviving offspring, deterministic selectors) to a steady
state GA (offspring size equal to 1, weak elitism) to an evolutionary strategy comma
(offspring size greater than population size, 0-surviving parents) or an evolutionary
strategy plus (surviving parents C surviving offspring > population size).

Note that strong elitism is used with generational algorithms (generational GA
or ES-comma) where the elite is chosen among the parents, while non-generational
algorithms such as ES-plus can choose their elite among the offspring or parents
(weak elitism).

Then, when the easea compiler is invoked on an .ez file containing the
above-mentioned functions and parameters, a man-made template that contains a
complete evolutionary algorithm is specialized with the provided user functions and
parameters.

The result is a human-readable indented and commented CCC source file that
implements a complete algorithm that evolves solutions to the problem that was
specified in the evaluation function, using genetic operators specified by the user.

4 Partial and Full Parallelization on One Machine

Evolutionary algorithms are intrinsically parallel, so in theory, all the different steps
are fully parallelizable, meaning that Amdahl’s law [3] should not hinder speedup
(cf. chapter “Why GPGPUs for Evolutionary Computation?”).

However, this is only true for a non-elitist generational GA, where the offspring
population replaces the parent population: if one wants to implement an elitist
generational GA, then at some point, it will be necessary to find out who was the
best parent, to copy it into the next generation.
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Unfortunately, finding which individual is the best is not intrinsically parallel,
because all different cores must then communicate at some point. This implies
some synchronization between the cores as well as exchanging information that
will degrade speedup.

Worse: if one wants to implement an evolutionary strategy plus (ESC) with
a population of 10,240 parents C 10,240 offspring on a 1,024-core GPGPU, it
will be necessary to select 10,240 individuals out of 20,480 individuals to create
the next generation. Supposing each of the 1,024 cores was asked to select
10 good individuals out of the 20,480-individual temporary population made of
parents C offspring to constitute the next generation of 10,240 individuals, it is
extremely probable that some good individuals will be chosen many times. This
means that the new generation of 10,240 individuals will contain many clones which
will lead to premature convergence.

One solution is to implement an intrinsically parallel selector without replace-
ment, as was done with the DISPAR tournament [19], but this selector is not
absolutely identical to a tournament selection, which means that the massively
parallel algorithm will not be strictly equivalent to its sequential counterpart.

Another solution is to only parallelize the evaluation function, which makes sense
if its computation is intensive enough to dwarf the time devoted to execute the
evolution engine. Using this solution means that both the sequential and parallel
algorithms will be strictly identical.

Below is a test done on the Weierstrass function shown above, on a PC with
an Intel Core I7 990X running at 3.46 GHz for an advertised computing power of
107 GFlops with an NVIDIA GTX680 with 1,536 cores running at 1 GHz for an
advertised computing power of 3.09 TFlops.

For the test below, the exact code above was inserted into an .ez file as well as
the parameters below that implement a generational GA.

\Default run parameters :
Number of generations : 10000
Time limit: 0 // in seconds, 0 to deselect
Population size : 16384
Offspring size : 16384
Mutation probability : 1
Crossover probability : 1
Evaluator goal : minimize
Selection operator: tournament 7
Surviving parents: 0
Surviving offspring: 100%
Reduce parents operator: deterministic
Reduce offspring operator: deterministic
Final reduce operator: tournament 2

Elitism: Strong
Elite: 0
...

\end
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Compiling the file (under LINUX) with EASEA for CPU (default mode) is done
with the following lines:

$ easea weierstrass.ez
$ make
...
$

Then, execution gives:

$ ./weierstrass --nbGen=10
...
Population initialisation (Generation 0)...
GEN TIME EVAL BEST AVG STDDEV WORST
0 85.83 16384 1.11e+02 1.25e+02 3.50e+00 1.39e+02
1 171.44 32768 1.01e+02 1.16e+02 3.35e+00 1.30e+02
2 256.83 49152 9.72e+01 1.09e+02 3.26e+00 1.22e+02
3 342.04 65536 8.81e+01 1.03e+02 3.25e+00 1.16e+02
4 427.01 81920 8.32e+01 9.53e+01 3.15e+00 1.07e+02
5 511.76 98304 7.53e+01 8.73e+01 2.95e+00 9.83e+01
6 596.32 114688 6.77e+01 7.95e+01 2.78e+00 9.17e+01
7 680.66 131072 5.98e+01 7.18e+01 2.57e+00 8.24e+01
8 764.81 147456 5.42e+01 6.46e+01 2.38e+00 7.31e+01
9 848.77 163840 4.72e+01 5.78e+01 2.15e+00 6.58e+01
Current generation 10 Generational limit : 10
Stopping criterion reached

Note that the command line parameter --nbGen=10 overrides the default
parameter that was in the .ez file that was saying:

Number of generations : 10000

One can see that each generation that evaluates 16,384 individuals takes around
85 s to compute, meaning that one evaluation takes less than 5:24 � 10�3 s, because
in each generation the time taken by the evolution engine is also included.

After 10 generations and 163,840 evaluations (remember that the algorithm
presented above is generational), the value found for the best individual is 47.2.

Now, using the very same weierstrass.ez source file, EASEA can wrap
around its contents a complete algorithm that performs a massively parallel eval-
uation on the NVIDIA GPGPU card, if its compiler is invoked with the -cuda
command line option. Execution time is then different:

$ easea weierstrass.ez -cuda
$ make
...
$ ./weierstrass --timeLimit=849
...
Population initialisation (Generation 0)...
card (0) GeForce GTX 680, 16384 individuals: t=1024 b: 16
GEN TIME EVAL BEST AVG STDDEV WORST
0 0.16 16384 1.09e+02 1.25e+02 3.49e+00 1.39e+02
1 0.41 32768 1.04e+02 1.16e+02 3.32e+00 1.28e+02
2 0.66 49152 9.68e+01 1.10e+02 3.24e+00 1.23e+02
3 0.90 65536 9.02e+01 1.03e+02 3.23e+00 1.15e+02
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4 1.14 81920 8.38e+01 9.55e+01 3.13e+00 1.07e+02
5 1.38 98304 7.60e+01 8.75e+01 2.97e+00 1.01e+02
6 1.62 114688 6.92e+01 7.97e+01 2.75e+00 9.12e+01
7 1.86 131072 6.23e+01 7.20e+01 2.56e+00 8.20e+01
8 2.11 147456 5.59e+01 6.48e+01 2.36e+00 7.45e+01
9 2.35 163840 4.90e+01 5.80e+01 2.14e+00 6.59e+01
...

On this quite fast evaluation function (less than .005 s on a CPU), it now only
takes 2.35 s to perform the same ten generations, meaning that the obtained speedup
is around 360�.

Results are different because the algorithm is stochastic: random choices are
made when selecting parents, so results are different between executions.

Compiling with the -cuda option means that the EASEA platform compiled
the evaluation function with the nvcc NVIDIA C Compiler. Then, whenever an
evaluation phase occurs, the complete population is collected in one chunk of
memory, then transferred in one go onto the GPGPU card and evaluated in parallel
on the cores of the card.

All this was done thanks to the -cuda command line option of the EASEA
compiler. The fact that the weierstrass.ez file is identical guarantees that the
parallel algorithm is identical to the sequential one.

Because the CPU version evolved the ten generations in 848.77 s, we ran the
evolutionary algorithm for 849 s (--timeLimit=849 parameter on the command
line) to find out what result would have been found in the same amount of time as
the sequential CPU algorithm:

3621 845.99 59342848 6.19e-01 8.58e-01 2.38e-01 2.47e+00
3622 846.22 59359232 6.19e-01 8.58e-01 2.35e-01 2.56e+00
3623 846.46 59375616 6.18e-01 8.61e-01 2.44e-01 2.56e+00
3624 846.69 59392000 6.18e-01 8.59e-01 2.40e-01 2.23e+00
3625 846.92 59408384 6.17e-01 8.56e-01 2.37e-01 2.19e+00
3626 847.15 59424768 6.16e-01 8.58e-01 2.38e-01 2.32e+00
3627 847.39 59441152 6.16e-01 8.56e-01 2.36e-01 2.22e+00
3628 847.62 59457536 6.16e-01 8.59e-01 2.39e-01 2.42e+00
3629 847.85 59473920 6.16e-01 8.55e-01 2.36e-01 2.09e+00
3630 848.90 59490304 6.16e-01 8.53e-01 2.38e-01 2.16e+00
Time Over
Time Limit was 849 seconds

Because evolutionary computing relies on evaluations to evolve new solutions
through genetic operators, Fig. 1 shows that having access to more computing power
will allow better solutions to be found in the same amount of time.

One can see that 3,630 generations were evolved thanks to the GPGPU paral-
lelization while only 10 generations were obtained for the sequential algorithm on
one of the cores of the CPU. This confirms the 360� speedup that was computed
on the difference of execution time between CPU and GPGPU versions, meaning
that 10 s on the GPU is equivalent to 1 h execution on the CPU.

Obtaining a value of .616 would therefore have taken 85 h (3.5 days) on the CPU,
and 1 day computation on the GPU is equivalent to 1 year (360 days) on the CPU!
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Fig. 1 The EASEA platform provides a graphic display that shows (among other information) the
fitness of the best individual, the average of the population and the standard deviation. The top and
bottom figures show the obtained results for the same algorithm on CPU and GPGPU, run for the
same amount of time (849 s)

The speedup offered by a GPGPU card may allow one to tackle problems that
are currently beyond the reach of a sequential algorithm.

Because the parallelization is performed on the evaluation function only (and
supposing that parallelization was absolutely perfect over an infinite number of
cores), it is important to stress that the obtained speedup depends on how computer
intensive is the evaluation function and that for a particular problem, the maximum
speedup can only be obtained with population sizes about an order of magnitude
greater than the number of cores of the used GPGPU card.
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On this example, obtaining a 360� speedup means that the sequential part of the
algorithm is 1/360th of the complete algorithm, suggesting that the parallel part of
the algorithm represented 99.9972 % of the complete algorithm.

If the EASEA automatic evaluation parallelization is tested on a function that
represents less than 99.9972 % (i.e. is shorter to evaluate than .005 s on the CPU),
Amdahl’s law will apply and the speedup will not be as good as 360�. This is the
price to pay for using a strictly identical algorithm to the sequential one.

On a much simpler function, for instance, the obtained speedup can be <1
because of the overhead induced by transferring the evaluation onto the GPGPU
card. For instance, the speedup obtained on the following Rosenbrock function:

R.x/ D
dim
X

iD1

Œ.1 � xi /
2 C 100.xxC1 � x2

i /2� (1)

shown in Fig. 2 top can be as low as 0.65� on an NVIDIA GTX480 card vs. one
core of an Intel Core i7 950 CPU running at 3.07 GHz, for 80 dimensions and 10,000
individuals.

In this case, in order to fully exploit the GPGPU card, it is necessary to use
a fully parallel implementation on a GPU, using either a parallel simulation of
a tournament for the reduction phase (DISPAR tournament [19] in Fig. 2 bottom
left) or a generational algorithm (in Fig. 2 bottom right) on which accelerations
up to 250� can be obtained even on this very lightweight evaluation function, on
a GTX480 card vs. one core of a good CPU (Intel Core I7 950) of the same
generation.

In order to better understand what happens when parallelizing EAs on GPGPU
cards, Fig. 3 shows the time distribution between the different phases.

The top line (ezCPU) shows (from left to right):

1. The initialization phase (nearly invisible)
2. The evaluation phase
3. The parents selection phase (tournament in this case)
4. The variation phase (creation of children using crossover and mutation) and
5. The reduction phase (reducing the parents C children population to create the

next generation)

on the same Weierstrass function with parameters tuned so that the disproportion
between the evaluation phase and all the other phases is not too accented.

The line below (ezGPU) shows what happens when the same program is com-
piled by EASEA using the -cuda option. The evaluation phase nearly disappears
as the evaluation of the 4,800 individuals is parallelized over the 480 cores of the
NVIDIA GTX480. What remains is the sequential part of the algorithm, showing
Amdahl’s law at work.

The only way to obtain a good speedup in this configuration is to parallelize all
the phases of the algorithm, which results in the two lines below (gpuDispar and
gpuGen), in which the distribution of the different phases is indiscernible.
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Fig. 2 The top figure shows the obtained speedup with a standard EASEA parallelization on the
lightweight Rosenbrock function on an NVIDIA GTX480 card for 10–80 dimensions. The bottom
left figure is obtained with a fully parallel EA using a DISPAR tournament and the bottom right
figure with a generational fully parallel GA

In order to see something, Fig. 4 shows the same lines as a percentage of the total
time. As above, the first (ezCPU) serves as a reference before parallelization. The
second line shows the much smaller proportion of the evaluation phase.

The third and fourth lines show completely parallelized algorithms, so if all
phases are equally parallelized, the proportions should be similar to those of the
first line.

On the third line, the DISPAR tournament used to reduce the population takes
a bit more time than the standard tournament, and the initialization phase now
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Fig. 3 Time distribution on a GTX480 NVidia card and i7 950 CPU for Weierstrass function with
4,800 individuals, 10 iterations and 50 generations (in seconds), over an average of 20 runs

Fig. 4 Same as Fig. 3, but as a percentage of execution time

appears. On the fourth line, the generational replacement uses no time, and the
proportions are similar to those of the CPU algorithm. An average was taken over
20 runs because on such small execution times for the parallel version, even small
variations will change proportions.

Full parallelization of an evolutionary algorithm using a DISPAR or generational
reduction phase will soon be available under EASEA.

5 Island Parallelization and Emergent Behaviour

As was said in the chapter “Why GPGPUs for Evolutionary Computation?”, driving
through a desert sea of sand dunes can be very tricky, as it is very easy for a
vehicle to get stranded in soft sand. In terms of search algorithms, one can say
that an evolutionary algorithm can get stranded in a multimodal search space if its
population has prematurely converged to a local optimum.

Unfortunately, the task of search algorithms is even more difficult than that of
crossing a desert of soft sand dunes because their task is to explore the pits to
find the deepest ones. While doing so, the chances that algorithms get stranded
(read “premature convergence”) are much larger than if they could drive around the
ditches.

However, desert drivers found that a complex system was much more efficient to
cross the desert. Complex systems can be seen as a group of autonomous entities in
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Fig. 5 4WD vehicles implementing an emergent complex system to cross the desert

interaction that implement an emergent behaviour. In Aristotle’s terms, the whole is
more than the sum of the parts.

Rather than attempting to cross the desert alone, 4WD drivers use several
vehicles (cf. Fig. 5). If there were no interaction between the vehicles, the result
would be the same as if they used the same vehicle n times: each vehicle would
eventually get stranded with the same probability as the other vehicles.

What turns this group of vehicles into a complex system with emergent behaviour
is that they carry tow cables and winches that allow them to interact. Indeed, if a
vehicle is stranded into a pit, another one can throw it a cable and pull it out of the
pit with its winch. The vehicle is not stranded anymore and the group can resume
their progression across the desert.

In this case, the emergent behaviour is that where n vehicles will get stranded as
easily as one vehicle, n vehicles with tow cables and winches will be able to cross
the desert. The whole is more than the sum of the parts.

Evolutionary algorithms already exploit a similar behaviour because they are
population-based algorithms. Where one could use n independent simulated anneal-
ing algorithms, evolutionary algorithms are more efficient because they use n

individuals in interaction (through crossover) to help themselves out of local optima
and preserve diversity.

However, even with a large population, algorithms will eventually get stranded as
their population will converge into a sweet spot. One can then implement a higher-
level kind of parallelism, by getting several evolutionary algorithms to cooperate
on the same search space, thereby implementing a multi-level complex system: an
island-model evolutionary algorithm [1].

If several independent population-based algorithms (let us call them islands)
explore the same search space, they can act like several vehicles exploring an erg
and help one another out of local optima in order to find even better areas.

If they get stranded (cf. Fig. 6 left), rather than using a tow cable, an EA island
can send its best individual to another island (cf. Fig. 6 right). The individual is not
physically sent to the location where the other island resides. The individual is made
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Fig. 6 On this Rastrigin function, two islands have converged towards local optima (left). Then, an
individual is sent from the left island to the right island. Note that the individual does not physically
move: it stays where it is but it is now part of the population of the right island

Fig. 7 If the migrant is better than the local individuals of the right island, a barycentric crossover
(such as BLX-˛ with ˛ D :5) will distribute offspring across the line. The island, which had
prematurely converged, will be pulled out of its local optimum by the immigrant

part of the population of the other island, but it stays topologically where it was in
the search space.

If the incoming individual (immigrant) is worse than the individuals in the
stranded island, it will get discarded and will not be part of the next generation.
If however, it fares well among the population of the island where it was sent or if it
is better than the best individuals of the island, this immigrant will implement a tow
cable between the two islands:

• It will survive across the generations.
• Other individuals will want to mate with it to create new offspring.

If a barycentric-type crossover is used (a BLX-˛ [10] with ˛ D :5 as in Fig. 7
for instance), some created offspring will keep appearing on a line joining the two
islands until a better solution than the one implemented by the migrant is found.

If n stranded islands share the same search space and exchange individuals,
children will spawn over n.n � 1/=2 lines, therefore improving the chances to find
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better places in the search space, as individuals situated on the lines may also want
to create children.

However, individuals should not be exchanged among islands too often, or the
multi-island algorithm will become panmictic (with a global population) across the
different islands. Ideally, local exploitation should take place in between migrations
so that new good spots are well explored before the island is pulled out of its new
local optimum by another good migrant.

Typically, search algorithms must stay on the ideal EvE (Exploration vs.
Exploitation) compromise. In evolutionary algorithms, this is done by fighting
against premature convergence while allowing the algorithm to explore enough local
optima.

In an island model, one can implement fast-converging islands (something easy
to do because evolutionary algorithms can be made quite convergent if strong
selection pressure operators are chosen) that will be periodically pulled out of their
local optima by good incoming immigrants.

Needing islands to find the bottom of local optima before they are pulled
out of them means that infrequent communication is actually an advantage over
frequent communication! This is a very important point, as communication is
usually what prevents parallel machines from yielding linear speedup with the
number of machines: usually, 10 machines will not go 10� faster than one machine
because of the needed synchronization and communication time between machines.
Super-fast communication networks between machines are one of the primary
costs of supercomputers! Being able to get computers to cooperate over a loosely
coupled asynchronous low-bandwidth network means that it is possible to create
supercomputers out of standard machines that are cooperating together over the
Internet, for instance.

In an island-model parallelization scheme, communication (migration) will
actually benefit from taking place asynchronously and in a loosely coupled manner!

A lot of research has already been done on island models. Theoretical studies on
the number and the size of populations have been done by Whitley et al. [24]. Other
studies show the influence of different island-model parameters such as migration
rate and connectivity [6]. Alba and Troya studied asynchronism [2]; Branke et al.
studied the influence of heterogeneous networks on island models [5].

Some research has been done on parallelizing evolutionary computation using an
island model on a GPGPU card, but this research was limited to a single machine
equipped with a GPGPU card that hosted all the islands [23].

Some results obtained with the EASEA island model have been quoted in
the Supporting Online Material of a Science paper [16] whose results were
obtained with the help of the work described in the chapter “Using Large-
Scale Parallel Systems for Complex Crystallographic Problems in Materials
Science”.
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5.1 EASEA Island Model

The default island model implemented by the EASEA language is very basic but
very versatile at the same time. It allows the algorithm to periodically send (and
receive) one or several individuals to (from) one of several IP addresses and ports
listed in a file.

The configuration of the EASEA island model relies on two main parameters of
the .ez file:

• The name of the file containing the IP addresses and ports (ip.txt by default)
• The migration probability

Here is a basic ip.txt file where four islands are implemented on the same
local machine and four other islands on a distant machine:

$ cat ip.txt
127.0.0.1:2929
127.0.0.1:2930
127.0.0.1:2931
127.0.0.1:2932
130.79.92.66:2929
130.79.92.66:2930
130.79.92.66:2931
130.79.92.66:2932
$

This allows one to implement several islands on a single machine (for multi-core
machines, with different ports on a single IP number) or on different machines (with
different IP numbers).

All the islands can use an identical (or a different) ip.txt file as when an
individual is sent the island makes sure it does not send the individual to itself.

Individuals are sent between islands using a connectionless UDP/IP protocol
(this can be seen as individuals sent by mail between the different islands). No
connexion means that the process can be asynchronous and therefore quite robust:
an island can stop working (due to a hardware problem for instance) and then start
again later on. It will receive good individuals from other machines that did not
crash and will rapidly find good spots again without disturbing the other islands.

New islands can join the search at any moment.
Sent individuals may get lost, but then the whole EC island paradigm is

stochastic, so losing an individual once in a while can be considered as being part
of the algorithm.

No time is lost in island synchronization or acknowledgement that a sent
individual has effectively been received.

As EASEA can produce code for machines running with or without GPU,
running under Linux, Windows or Mac Os X, the EASEA island model can run
on any number of heterogeneous machines connected via the Internet worldwide to
work on solving the same problem, provided each IP address is present in the IP file
of each island and provided they exchange individuals sharing the same structure.
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With the EASEA-CLOUD project, this will be extended to Grid and Cloud
computing, for a full massively parallel evolutionary computation eco-system.

Algorithms may be different depending on machines provided that they can share
the same individuals: slower machines can run exploratory algorithms, while faster
ones can concentrate on exploitation of good spots.

5.2 Implementation

Before the evolution begins on an island, the file containing the IPCport addresses of
the other islands is parsed, creating a list of clients. The IPCport address of an island
can appear several times. Because one IPCport number is picked at random among
the number of IPCport entries, replicating an identical IPCport number ten times
will give it ten times more chances to be selected than the other islands, therefore
allowing one to implement weighted edges between islands.

Then, communication need not be symmetric, as an island can know the IPCport
number of another one, but the second may not have the IPCport number of the first.
In a heterogeneous environment (machines with GPUs and machines without GPUs,
for instance), this will allow one to implement unidirectional flows of individuals
between slow exploratory machines that find good spots and fast exploitation
machines that concentrate on finding local minima. However, the fast machines
may not send back individuals to the slow machines so as to prevent premature
convergence in the cluster of slow machines.

Then, at every generation, a migration function is called with a probability p

set by the user. A destination island is chosen randomly among the list of clients.
Once a destination is chosen, n individuals are selected among the population using
a user-defined selector. The selected individuals are then serialized and sent to the
destination island.

On every island, at the beginning of the run, a thread is launched that is in charge
of receiving incoming individuals. Upon arrival of a newcomer, a user-defined
selector decides who in the population will be replaced. The integration process
for newcomers is performed at every new generation.

The described implementation of an island model is very simple, robust and
versatile, as it allows one to easily design complex topologies. For instance, it would
be really easy to create a ring topology by just giving each island the address of
the following island. One could also create a square or hexagonal toroidal grid
or virtually any other topology. Then by changing the migration probability, the
communication rate can easily be increased or decreased: for instance, the centre
island in a star-shaped topology may need more frequent communications with
other islands, or one could imagine modifying the migration rate depending on some
strategy (increase or decrease migration with the number of generations).
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population sizes give better speedups

6 Experiments

In this section, the EASEA GPU island model is tested with an old cluster (a
classroom) of 20 Intel Xeon 5500 Core i7 PCs, each containing a 240-core NVIDIA
GTX275 GPU card, for a total computing power of around 20 TFlops.

6.1 Quantitative GPU vs. CPU Speedup

First of all, before the island model is tested, it must be recalled that evaluation
can be parallelized on each machine’s GPU card, so Fig. 8 presents the obtained
speedup by comparing the standard sequential implementation of the Weierstrass
problem by the EASEA compiler on one core of an Intel Xeon 5500 2.57 GHz Core
i7 CPU with 8 GB Ram vs. the same code compiled with the -cuda command
line parameter, using an NVIDIA GTX275 card of the same generation with 240
cores.

Different population sizes were used ranging from 8 to 81,920, showing that the
obtained speedup reaches a plateau at around 160� for a population size larger than
8,192, while a still-reasonable speedup can be obtained with 4,096 individuals only.



54 P. Collet et al.

Fig. 9 Weierstrass function for Hölder coefficients 0.9, 0.5 and 0.35 from left to right

6.2 Qualitative Speedup for the Island Model

As a benchmark function, we used the same Weierstrass function, whose irregularity
can be tuned thanks to its Hölder coefficient h.

Because we are interested in results in this section, we needed to tune the
difficulty of the benchmark in order to show the qualitative speedup that can be
obtained using an island model.

Usually, a Hölder coefficient of 0.5 is used but it turned out that this value created
a too-simple function for the 20 TFlop cluster, so irregularity was increased by using
a 0.35 Hölder coefficient (irregularity increases as h decreases) and 120 iterations
(cf. Fig. 9).

Then two dimensions only was too small a search space for a 20 TFlops cluster,
so a 1,000-dimensional problem was used to create a tough enough problem on
which conclusions could be drawn.

Knowing that quantitative computing power is exactly linear with the number of
machines, it is interesting to have a look at the obtained quantitative speedup. How
much faster will it be to find the same result on 5, 10 or 20 machines than on one
single machine ?

Looking at Fig. 8, it was decided that 4,096 was the best compromise between
population size and obtained GPU speedup.

In order to only examine the influence of the island model, all experiments are
done using not only identical parameters but also constant population size because
population size will play a role in exploration and premature convergence. Indeed,
if premature convergence is what an island model is intended to prevent, it would
be unfair to compare:

• A single population of 4,096 individuals on one machine for 2,000 generations,
to

• 20 populations of 4,096 individuals on 20 machines for 100 generations,

because evolving 81,920 individuals for 100 generations would not converge as fast
as 4,096 individuals over 2,000 generations.

So in order to keep things fair, the setup is the following: one population of
81,920 individuals on one machine will be compared to:
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• 5 populations of 16,384 individuals on 5 machines
• 10 populations of 8,192 individuals on 10 machines
• 20 populations of 4,096 individuals on 20 machines

The topology used for the experiments is a very straightforward fully connected
network (each island uses the same IP file containing the IP numbers of all
participating machines, and no machine can send an individual to itself).

Figure 10 top shows four curves. The black curve presents the evolution of
the average fitness of the best individual of 20 runs for 14 h on the Weierstrass
benchmark using a population of 81,920 individuals. The average best value found
over 20 runs was 414.

Then, the three other curves show the average fitness of the best individuals of 20
runs on the same benchmark with 5 machines and 16,384 individuals per machine,
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10 machines and 8,192 individuals per machine and finally, 20 machines and 4,096
individuals per machine until the value 414 is reached.

What is interesting to see is that the black curve for one machine shows a marked
knee at around fitness 520. The huge 81,920-individual panmictic population
quickly gets to this value, after which things get really difficult. This knee very
probably shows that the whole population has converged to a local optimum. What
happens next is probably only due to a random search implemented by the mutation
function (Schwefel adaptive mutation in this algorithm), hence the very slow slope.

On the contrary, no marked knee is seen for the multi-island implementation (cf.
Fig. 10 bottom that show the same curves, but over the first 700 seconds only so that
the multi-island curves are more visible).

Search becomes more difficult, but no real knee is to be seen, and certainly not
around value 500 even though the global population is exactly the same size.

As expected, 20 machines obtain results faster than one machine only, but this
figure does not allow one to visualize the obtained speedup well.

In order to better see what is going on, Fig. 11 shows how long it takes
each configuration to reach predefined values such as 1,100, 1,000, 900, . . . , by
horizontally slicing Fig. 10 and looking at how much faster five machines reach
these values than one machine and the same for 10 and 20 machines.

It can then be said that Fig. 11 shows qualitative speedup curves, i.e. how
much faster a particular island configuration finds the same value compared to one
panmictic population of the same size on a single machine.

Figure 11 can then be read the following way: it was about six times faster
for a five-island configuration (one island per machine) to obtain a fitness of
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1114, compared to one machine only, meaning that a slightly super-linear speedup
is obtained for five machines. Indeed, five machines have exactly five times the
computing power of one machine, so a perfectly linear speedup should have shown
an exact 5� speedup.

After value 1114, five islands on five machines show a relatively constant
speedup of 5� until value 520 is reached, after which qualitative speedup increases
up to more than 20 for value 414 (these are all average values over 20 runs).

The speedup factor for a 10-machine cluster is quite similar: after a good start,
speedup stabilizes at around 10� up to value 520 after which speedup rises to around
45�.

With 20 machines, speedup starts with a super-linear speedup of around 50�
before going down to nearly 15� and rising again at around value 520, to slightly
above 80�.

What probably happens here is that speedup is roughly linear with the number
of machines until value 520, after which single machines with one panmictic
population of 81,920 individuals get stranded in a sand dune pit. At this point, multi-
island models show their advantage as they help each other out of local optima and
continue their progression.

Because the speedup keeps rising after value 520, we call it a supra-linear
speedup because it rises steeply.

Twenty machines get down to values around 300 in around 10 min, whereas it
could take days or months for one machine to get there using random search only.

Interestingly enough, one sees an inflection on the five-machine configuration
around value 450, probably because the five islands are getting stranded too, which
is not the case for the 10- and 20-island configurations.

Finally, one can see that beyond value 500 (i.e. after single islands tend to get
stuck in local optima), the speedup between multi-island configurations remains
roughly the same: for value 414, the speedup of a five-machine cluster is slightly
above 20�, while it is roughly 45� for 10 machines and above 80� for 20 machines,
which is quite satisfying. The reader must be reminded that these curves are
for GPU-islands for which Fig. 8 shows that they are already 160� faster than
a sequential execution of the same code on a CPU. Therefore, during the linear
speedup phase, the speedup of the 20 GPU cluster vs. one single machine is of
�160 � 20 D 3;200, reaching �160 � 80 D 12;800 when single machines
get stranded. On this problem, a one-day run on this cluster would therefore be
equivalent to at least 35 years on a single island but probably much more as value
414 was obtained in less than 3 min only, and the speedup slope is quite steep.

This island-model speedup helped on the real-world problem of zeolite structure
determination described in the chapter “Using Large-Scale Parallel Systems for
Complex Crystallographic Problems in Materials Science”, where 11 years of
calculation were reduced to 3 days on the cluster of 20 machines described above
(not taking supra-linear acceleration into account).
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7 Conclusion

The EASEA platform is an easy way to test massive parallelization of evolu-
tionary algorithms over one or several GPGPU cards and possibly over several
homogeneous or heterogeneous computers equipped (or not) with such cards. The
EASEA-CLOUD project will extend this to Grid computing and to the Cloud,
so that, in the end, it is possible to use a supercomputer such as TITAN or a
computational ecosystem to solve a single large problem.

EASEA is open source and is accessible through its web page: http://easea.
unistra.fr.

It produces human-readable code, meaning that the EASEA platform can be used
as a primer, to start on a massively parallel implementation (implement a basic
program that implements your problem and then modify the CCC code to exactly
suit your needs) or to code a complete project from A to Z.

EZ source files are portable, meaning that you can try them for yourself and
exchange files on collaborative projects. This is why EASEA was included in the
tutorial part of this book and why several chapters are based on it.
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