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Abstract The NCBI GEO GSE3494 breast cancer dataset contains hundreds of
Affymetrix HG-U133A and HG-U133B GeneChip biopsies each with a million
variables. Multiple genetic programming (GP) runs on a graphics processing unit
(GPU) hardware, each with a population of five million programs both winnows
(selects) useful variables from the chaff and evolves small (three inputs) data mod-
els. The SPMD CUDA interpreter exploits the GPU’s single instruction multiple
data (SIMD) mode of parallel computing, even though the GP populations contain
different programs. A 448 node nVidia Fermi C2050 Tesla graphics card delivers
8.5 giga GPops per second. In addition to describing our implementation, we survey
current GPGPU work in bioinformatics and genetic programming.

1 Introduction

Since they offer cheap high-performance computing there is great interest in using
mass market graphics hardware (GPUs) for scientific applications. For example
the Chinese Tianhe-1A 2.566 petaflop supercomputer contains 7,168 nVidia Tesla
M2050 general purpose GPUs. However a lot of scientific and engineering can
be done with more modest computers, and we will concentrate on affordable
personal computers or indeed laptop computers with one or more graphics cards
or their Tesla compute-only equivalents. More than 100 million GPUs have
been sold [24]. This availability and their price/performance ratio have led to
the increasing use of essentially consumer gaming or entertainment hardware
for research and engineering purposes. The field is often called general purpose
computing on GPU (GPGPU) [84]. Until recently the doubling of the number of

W.B. Langdon (�)
Department of Computer Science, University College, London, UK
e-mail: w.langdon@cs.ucl.ac.uk

S. Tsutsui and P. Collet (eds.), Massively Parallel Evolutionary Computation
on GPGPUs, Natural Computing Series, DOI 10.1007/978-3-642-37959-8 15,
© Springer-Verlag Berlin Heidelberg 2013

311

mailto:w.langdon@cs.ucl.ac.uk


312 W.B. Langdon

0

1000

2000

3000

4000

5000

6000

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

P
ea

k 
si

ng
le

 p
re

ci
si

on
 G

F
lo

p/
se

co
nd

Tesla 8-series

Tesla 10-series 
Tesla 20-series 

GTX 580

GTX 590 (twin core)

GTX 680

GTX 690 (twin core)

Nehalem 3GHz
Westmere 3GHz 

Sandy Bridge 

nVidia GPU
X86 CPU

Fig. 1 Comparison of increase in speed of graphics cards (C GPU) and CPU (� x86) (data
supplied by nVidia). Similar trends hold for double precision and integer performance

transistors in computer chips every 18 months (“Moore’s Law”) was a fact of
life [79] and similar exponential rises occurred in processing speed and disk and
memory storage capacity. The compound effect of Moore’s Law has led to literally
millionfold increases in hardware performance during careers in the software
industry. Naysayers have frequently pointed out the impossibility of exponential
growth continuing indefinitely; however, today it looks like they are right in at least
one important aspect, and we have reached the end of Moore’s Law as it has been
applied to processor speed. In commercial terms, the industry remains dominated
by descendants of Intel’s 8086 silicon chips, yet for half a dozen years we have seen
no major increase in CPU clock speed since the 3 GHz Pentium (see lower plot in
Fig. 1). If clock speeds had continued to double every 1.5 years, we would have
25 GHz Pentiums on our desks and in our laptops. This has not happened. It looks
like it will never happen.

In its original sense the manufacturers of silicon chips continue to obey Moore’s
Law, and the number of transistors per chip has continued to increase. Recently
Izydorczyk and Izydorczyk [37] suggested Moore’s Law will continue to hold for
at least the next 22 years. However they appear to accept today’s limit of about
3.5 GHz on processor clocks.

The additional transistors packed ever more densely onto chips have been used
to create still bigger memory, particularly on-chip cache memory, more exotic
instruction sets (e.g. vector, parallel and special purpose instructions), and especially
to build multiple CPU cores on the same chip. Dual and quad cores are now
commonplace. Eight- and even sixteen-core Pentium computers are now on the
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horizon. It looks like we are really seeing the parallel future which has been forecast
even before the transputer [1].

Since our initial results on the breast cancer survival prediction dataset, GPU
development has continued apace. For example, both AMD and nVidia have GPUs
which claim to deliver more than a teraflop at a cost of a few hundred dollars.

The next section will describe scientific and engineering computing on GPUs.
Some successful applications of GPUs to bioinformatics will be described in Sect. 3.
In Sect. 4 we will summarise our original RapidMind work [57] in which genetic
programming [55] is used to data mine a small number of indicative mRNA gene
transcript signals from breast cancer tissue samples taken during surgery, each with
more than a million variables, to predict long-term survival. In [57] we described the
medical problem and the way genetic programming [53] and a GPU simultaneously
picked three of the million mRNA measurements available and found a simple non-
linear combination of them which predicts long-term outcomes at least as well
as DLDA, SVM and KNN using 700 measurements [78]. Before concentrating
on using genetic programming [3, 40, 59, 86] in parallel on a GPU, Sect. 5 briefly
describes the major hardware components of GPUs and programming them. Then
Sect. 6 describes the new GP and CUDA code. We refer the interested reader
to [57] for details of the data source and how they were obtained, checked and
normalised. The experiments are repeated using the new CUDA kernel. (The results
are summarised in Sect. 7.) The new system avoids many restrictions imposed by
RapidMind and uses modern Tesla hardware (C2050) to deliver a more than tenfold
speedup (Sect. 8). Finally in Sect. 9 we consider how successfully our previous
predictions about GPGPU have panned out and make new ones. We conclude
(Sect. 10) that GPGPU will be one of the parallel techniques of the future, but note
that it is still held back by development tools.

2 Using Games Hardware GPUs for Science

Owens et al. [83, 84] surveyed scientific and engineering applications running on
mass market graphics cards. Today’s GPUs can greatly exceed the floating point
performance of their host CPU; see Fig. 1. This speed comes at a price.

GPUs provide a restricted type of parallel processing, often referred to as single
instruction multiple data (SIMD) or more precisely single program multiple data
(SPMD). Each of the many processors simultaneously runs the same program on
different data items (see Fig. 2). Being tailored for fast real-time production of
interactive graphics, principally for the computer gaming market, GPUs are tailored
to deal with rendering of pixels and processing of fragments of three-dimensional
scenes very quickly. Each is allocated a processor and the GPU program is expected
to transform it into another data item. The data items need not be of the same
type. For example the input might be a triangle in three dimensions, including
its orientation, and the output could be a colour expressed as four floating point
numbers (RGB and alpha).
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Fig. 2 An example of SIMD
parallel processing. The
stream processors (SP)
simultaneously run the same
program on different data and
produce different answers. In
this example the program has
two inputs. One describes a
triangle (position, colour,
nature of its surface: matt,
how shiny). The second input
refers to a common light
source and so all stream
processors use the same
value. Each stream processor
calculates the apparent colour
of its individual triangle.
Notice, here, each output is
independent of all the others
and so they can all be
calculated in parallel

Typical GPUs are optimised so that programs can read data from multiple data
sources (e.g. background scenes, placement of lights, reflectivity of surfaces) but
generate one output. This parallel writing of data greatly simplifies and speeds the
operation of the GPU. Even so, both reading and writing from memory are still
bottlenecks. This is true for the GPU’s own memory but doubly so when data are
transferred to/from the host PC and the GPUs.

The manufacturers continue to publish figures claiming enormous peak floating
point performance. In practice such figures are not attainable. A more useful statistic
is often how much faster an application runs after it has been converted to run on
a GPU. However, like FLOPS, the number of GP operations per second (GPops)
allows easier comparison of different GP implementations.

Many scientific applications and in particular bioinformatics applications are
inherently suitable for parallel computing. In many cases data can be divided
into almost independent chunks which can be acted upon almost independently.
There are many different types of parallel computation which might be suitable for
bioinformatics. Applications where a GPU might be suitable are characterised by:

• Maximum dataset size � 109.
• Maximum dataset data rate � 109 bytes/s.
• Up to 1011 floating point operations per second (FLOPs).
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• Applications which are dominated by small computationally heavy cores, i.e. a
large number of computations per data item (known as arithmetic intensity).

• Core has simple data flow. Possibly a large fan-in and simple data stream output.

Naturally as GPUs continue to become more powerful these figures continue to
change.

3 GPUs in Bioinformatics and Computational Intelligence

As might be expected, GPUs have been suggested for medical image processing
applications for several years now. However we concentrate here on molecular
bioinformatics. We anticipate that after a few key algorithms are successfully ported
to GPUs, within a few years bioinformatics will adopt GPUs for many of its routine
applications. As might be expected, early results were mixed.

Charalambous et al. successfully used a relatively low-powered GPU to demon-
strate inference of evolutionary inheritance trees (by porting RAxML onto an
nVidia FX 5700) [9]. However a more conventional MPI cluster was subse-
quently used [98]. Recently a CUDA version of the alternative MrBayes tool was
published [112].

Sequence comparison is the life blood of bioinformatics. Liu et al. ran the
key Smith–Waterman algorithm on a high-end GPU [68]. They demonstrated
a reduction by a factor of up to 16 in the lookup times for most proteins.
Smith–Waterman has also been ported to the Sony PlayStation 3 [106] and the
GeForce 8800 (CUDA) [76]. Trapnell and Schatz also used CUDA to port another
sequence searching tool (MUMmer) to another G80 GPU and obtained speedups of
up to 13� when matching short DNA strands against much longer sequences [99].
More recently Vouzis and Sahinidis [101] ported NCBI’s Blast protein sequence
alignment tool to CUDA, but report only modest speedups perhaps because of the
large data volumes and their insistence on exactly emulating the original serial
code. By breaking queries into GPU-sized fragments, they were able to run short
sequences (e.g. 50 DNA bases) against the complete human chromosome. Success-
ful ports and CUDA implementations of sequence tasks include GBOOST [111]
(40-fold), SOAP3 [67] (7.5–20� faster) and MrBayes [112] (19�, more with a
second GPU).

Liu et al. used GPUs to model biomolecular pathways [66] (26–33�), and
Zhou et al. report speedups of 12�, 47� and 367� for Gillespie, LSODA and
Euler–Maruyama using their CUDA-sim Python package [113]. Kannan and Ganji
[39] also report 10–47-fold speedup when porting AutoDock (a biomolecular drug
discovery tool). Gobron et al. used OpenGL on a high-end GPU to drive a cellular
automata simulation of the human eye and achieved real-time processing of webcam
input [25]. GPUs have also been used in medical engineering, e.g. a GeForce
8800 provided a 15–20-fold speedup, improving the haptic response of a real-time
interactive surgery simulation tool [69]. Dowsey et al. wrote 2D gel electrophoresis
image registration code in Cg (“C for graphics”) so that it could be offloaded onto
an nVidia GPU [14].
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The better GPU applications may claim speedups of a factor of ten or more;
however, the distributed protein folding system folding@home obtains 60 times as
much free computation per donated GPU as it does per donated CPU [84, p. 983].
The same authors also claim an almost 3,600-fold speed up on a biomolecule
dynamics simulation, albeit at the cost of using four FX 5600 GPUs [84, p. 995].

Computational intelligence applications of GPUs have included artificial neural
networks (e.g. multilayer perceptrons [71, 91], self-organising networks [88] and
spiking neural networks [110]), fuzzy logic [34], genetic algorithms [22, 72, 80, 85,
95, 97, 107] and genetic programming [4, 6–8, 10, 13, 15–19, 27–33, 35, 36, 43, 45–
47,49,56,57,62–65,70,73–75,77,87,90,92–94,96,100,102–104,108]. Most GPGPU
applications have only required a single graphics card; however, Fan et al. have
shown large GPU clusters are also feasible [20]. In 2008 the first computational
intelligence on GPU special session (CIGPU-2008) was held in Hong Kong [105].
This has become an annual event. As Owens [83] makes clear, games hardware has
now broken out of the bedroom into scientific and engineering computing.

4 Gene Expression in Breast Cancer

We have previously [57] used genetic programming to data mine gene expression
measurements provided by Miller et al. [78]. We will mostly be concerned with
updating the original RapidMind code to CUDA and its improved performance.
However we start by recapping the data-mining problem. Miller et al. describe the
collection and analysis of cancerous tissue from most of the women with breast
tumours in the three years 1987–1989 in Uppsala in Sweden. Miller’s primary
goal was to investigate p53, a gene known to be involved in the regulation of
other genes and implicated in cancers. In particular they studied the implications of
mutations of p53 in breast cancer. The p53 genes of 251 women were sequenced
so that it was known whether they were mutant or not. Affymetrix GeneChips
(HG-U133A and HG-U133B) were used to measure mRNA concentrations in each
biopsy. Various other data were recorded, in particular whether the cancer was fatal
or not.

Each of the two types of GeneChips used contained more than half a million
DNA probes arranged in a 712 � 712 square (12.8 mm)2 array. (Current designs
now exceed five million DNA probes on the same half inch square array.)

4.1 Uppsala Breast Cancer Affymetrix GeneChip Datasets

As part of our large survey of GeneChip flaws [60], we had already downloaded all
the HG-U133A and HG-U133B datasets in GEO [5] (6,685 and 1,815, respectively)
and calculated a robust average for each probe. These averages across all these
human tissues were used to normalise the 251 pairs of HG-U133A and HG-U133B
GeneChips and flag locations of spatial flaws [57]. R code to quantile normalise and



Large-Scale Bioinformatics Data Mining with Parallel Genetic Programming . . . 317

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

-6 -4 -2 0 2 4 6

F
ra

ct
io

n

Data Value (0.01 bins)

HG-U133A
HG-U133B

Fig. 3 Uppsala breast cancer distribution of log deviation from average value

detect spatial flaws is available via http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-
code/R. The value presented to GP is the probe’s normalised value minus its average
value from GEO. This gives an approximately normal distribution centred at zero.
See Fig. 3.

The GeneChip data created by [78] were obtained from NCBI’s GEO (dataset
GSE3494). Other data, e.g. patients’ age, survival time, whether breast cancer
caused death and tumour size, were also downloaded. Whilst [78] used the whole
dataset, with more than a million inputs, we were keen to avoid over-fitting;
therefore, the data were split into independent training and verification datasets.
See [57].

5 Summary of GPU Hardware and Programming

5.1 Main Hardware Components of GPUs

Figure 4 shows the major components of a C2050 Tesla card. It is typical of current
top-end GPUs. The card is connected to the host personal computer via the PC’s
PCI express bus. The effective speed of the PC–GPU connection varies both with
the GPU and with the motherboard into which they both fit. How to get data into
and out of the GPU via the PCI bus is one of the major design decisions in any GPU
application. Although PCIe bus speeds have risen in recent years, it appears to have
peaked. Recent top-end systems have relied on a hierarchy of PCI interconnects
which allow simultaneous parallel transfers along their various parts.

Typical GPUs have space for several hundred megabytes or even a few gigabytes
of data. The trend is still very much to increase the speed and size of onboard
memory. Again, deciding which application data are stored onboard the GPU

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/R
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Fig. 4 Links from GPU chip to host computer via PCIe bus and to memory on the GPU board.
Fermi C2050 (ECC memory checks turned on)

(and when) is an important design decision. The GPU chip is connected by a very
high-speed bus to its own high-speed onboard RAM memory.

There are some two-GPU systems. Typically, although there are two chips and
two sets of RAM on the same board, they are programmed as if they were two
separate GPUs in the same PC.

It is typical for a single GPU chip to contain more than one multiprocessor; see
Fig. 5. These have their own connections to the onboard RAM and act more or
less independently in parallel. The number of multiprocessors varies considerably
between low-end and older models and high-end GPUs. The C2050 has 14
multiprocessors. There are already GPUs with 16 multiprocessors, and the trend
is for the maximum number of multiprocessors to increase whilst retaining low-end
GPUs with a single multiprocessor.

The multiprocessors contain banks of stream processors (SPs). These are where
the essential SIMD nature of GPU computing arises. All the stream processors are
locked together. They do the same calculation at the same time (albeit on different
data). Thus, a C2050 multiprocessor can take 32 data items, do 32 calculations and
generate 32 answers in parallel. However when a program contains an if or branch
instruction, the 32 data items may cause the 32 stream processors to go in different
directions. This they cannot do. Instead one branch direction is chosen, and stream
processors going in that direction are free to continue calculating. The rest are held.
At some time, the freely running stream processors are held long enough for the
others to run. It may be quite some time later when all the stream processors return
to a common instruction at the same time and all begin running at full speed in
synchrony. In the meantime (when the stream processors’ paths have diverged) the
multiprocessor has been operating correctly but at reduced power. We shall use this
property. It is important to remember that GPUs offer cheap computation, so it is
okay to waste some of it.

The number of stream processors varies between GPUs. nVidia multiprocessors
contain multiples of eight. As with multiprocessors themselves, both the range and
maximum number of stream processors have increased and are likely to continue
increasing. However the multiprocessor clock speed has not increased and may even
have fallen back a little. Typical clocks speeds are now 1.1–1.5 GHz and dramatic
change is not likely.
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Fig. 5 nVidia GPU
multiprocessor with 32
stream processors (SP). The
C2050 contains 14 such
multiprocessors, giving 448
SPs in total. Each stream
processor obeys the same
instruction at the same time.
However each has its own
registers and access to shared
and constant memory. The L1
caches coalesce multiple
separate accesses to off-chip
memory into a single access
of 128 bytes each. In default
operation each L1 cache
occupies 16 Kbytes (giving
128 cache lines); however, the
48 Kbyte shared memory can
be reduced to 16 Kbytes to
expand the L1 cache to
48 Kbytes

The newer Fermi designs now include both per-multiprocessor (L1) read–write
data caches and L2 read–write cache shared between the multiprocessors, whereas
older designs relied either on the application designing its own caches or read-only
caches provided as part of graphics “texture” memory. The L2 cache also allows
some limited communication between multiprocessors via atomic operations. For
some time nVidia resisted the application developers’ calls for caches, but now
implemented in the Fermi architecture, they seem to be a great success. Future GPUs
may see more and/or bigger caches.
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"constant" Read Only 64k (2k cache, thread contention)

off-chip memory

cache 16k/48k

Fig. 6 nVidia CUDA mega threading (Fermi, compute level 2.0). Each thread in a warp (32
threads) executes the same instruction. When a program branches, some threads advance and others
are held. This is known as thread divergence (Sect. 5.1). Later the other branches are run to catch
up. Only the 32,768 registers (small squares) per block can be accessed at full processor speed. If
threads in a warp are blocked waiting for off-chip memory (i.e. local, global or texture memory),
another warp of threads can be started. The examples assume the requested data are not in a cache.
Shared memory and cache can be traded, either 16 Kbytes or 48 Kbytes. Constant memory appears
as up to 64 Kbytes via a series of small on-chip caches [2]

5.2 Memory Latency: Efficiently Programming with Threads

A significant point in Figs. 4 and 5 which we have not discussed is why caches are
important. The fact that dominates GPU programming (even with caches) is that it
can take hundreds of times longer to fetch data from the GPU’s off-chip memory
than to calculate with it. Once data are in its registers, cache or shared memory, the
multiprocessor can calculate with it blisteringly fast, but an unfortunate application
can perform badly simply by having the stream processors wait for data most of the
time. Figure 6 is a schematic which shows the GPU hardware interleaving threads
of execution (horizontal arrows) so that as threads are blocked (e.g. waiting for off-
chip data to arrive) others are automatically released to run. If there are enough
threads, the multiprocessor may still be busy when the data arrives, so keeping it
fully loaded and enabling the application to efficiently use the GPU. However the
number of active threads is limited.

Earlier nVidia GPUs limited the maximum number of threads to 512. The Fermi
architecture has recently doubled this to 1,024. However there is another limit. Each
execution thread will need some registers. Unlike a preemptive scheduler on the host
computer, when a thread stops, there is nowhere to save these registers when a new
thread is scheduled. Thus even when a thread is blocked (e.g. waiting for data to
arrive) it cannot release its registers. This enables extremely rapid context switching
between threads but means all the multiprocessor’s registers have to be shared by its
active threads. (A C2050 multiprocessor has 32,768 registers, 1,024 for each stream
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nVidia GPUs. Top three plots refer to CUDA implementations and lowest one to RapidMind
code. Code available via http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/random-numbers/
cuda park-miller.tar.gz

processor.) Although the CUDA nvcc compiler is very careful in how it allocates
registers, it is possible, in complicated applications, for the number of active threads
to be limited by the number of registers each thread requires before reaching the
1,024 limit.

Although GPU and application dependent, Fig. 7 shows that typically a GPU
starts to approach its maximum performance when there are more than about 18
threads per stream processor.

6 GeneChip Data Mining Using Genetic Programming
on a GPU

6.1 A CUDA Single Instruction Multiple Data Interpreter
for GP

Section 3 has listed the previous experiments evolving programs with a GPU.
Mostly these have represented the programs either as trees or as networks (Cartesian
GP) [29] and used the GPU for fitness evaluation. Harding [29] compiled his
networks into GPU programs before transferring the compiled code onto the GPU.

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/random-numbers/cuda_park-miller.tar.gz
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However it turns out to be quite expensive to compile CUDA programs, and
so it only makes sense when the program (in our case a GP individual) is to
be run many times. (Harding showed the compiled approach can be improved
by distributing the compilation across a local area network of workstations and
obtained impressive results when each GP program was run more than 100 million
times [32].) Since we will be running each GP individual program on each training
case (cancer patient) but we have at most only a few hundred training cases
(actually only 91), it makes sense to avoid the compilation overhead and accept
that interpreting the program may be slower than running compiled code, but
interpreting will be faster overall. Therefore, we keep the traditional tree-based GP
and use an interpreter running on the GPU.

The host part of the program is a more-or-less traditional GP but with fitness
evaluation transferred to the GPU. However it represents evolving genetic program-
ming individuals as trees which are linearised into reverse Polish expressions [53] so
that the GPU can interpret them straightforwardly in a single pass without recursive
calls. The three mutation operations and crossover act directly on the reverse Polish
expressions. This enables them to be passed directly to the GPU without the need to
change format between the host and the GPU. Next we shall recap how to interpret
multiple programs simultaneously on an SIMD computer [42] before going into
the details of the CUDA implementation (Sects. 6.2–6.10). Section 6.11 describes
how we use hundreds of GP runs to progressively refine the GeneChip data, how
the largest ever GP populations are created and evolve under fitness selection,
mutation and crossover. It also describes the non-panmictic fine-grained distributed
population and short evolution times used to maintain diversity. All these operations
take place on the host PC and are implemented in C source code.

Essentially the interpreter trick is to recognise that in the SIMD model (Sect. 5.1),
the “single instruction” belongs to the interpreter and the “multiple data” are the
multiple GP trees. The single interpreter is used by millions of programs. It is quite
small and needs to be compiled only once. It is loaded onto every stream processor
within the GPU. Thus, every clock tick, the GPU can interpret a part of up to 448
different GP trees. The guts of a standard interpreter is traditionally an n-way switch
where each case statement executes a different GP opcode; however, Fig. 8 gives an
alternative view in which the interpreter works on all possible opcodes and each
GP program uses just those that it contains. The CUDA implementation is given in
Figs. 9–11.

6.2 CUDA Interpreter for GP

The CUDA code is given in Fig. 9. Potentially it could be improved further: (1) Each
program must end in a NOP so the for loop test PC < LEN-1 could be removed;
(2) The array-indexing operation Pop[PC] could be replaced by using the pointer
Pop directly and incrementing it by 4 bytes on each iteration of the loop, which
would allow the variable PC to be removed.
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No

Push onto individuals stacks

IF Addition

Pop+Pop, Push result

IF Subtraction

Pop−Pop, Push result

IF Multiply

Pop * Pop, Push result

IF Division

Pop/Pop, Push result

All programs finished? Yes

Result is on top of each stack

IF Leaf

Fig. 8 The original idea for the SIMD interpreter was that it should loop continuously through
the whole genetic programming terminal, and function sets with GP individuals select which
operations they want as they go past and apply them to their own data and their own stacks.
However this can be refined by noting that individual multiprocessors act independently. If all
32 stream processors (SPs) in a warp run the same GP program, they will be synchronised and the
SIMD interpreter behaves more like a conventional interpreter acting in parallel 32 times. There is
some loss in efficiency if they act on multiple GP individuals and lose synchronisation, since this
may cause thread divergence (Sect. 5.1); however, the GPU still performs well

6.3 CUDA Interpreter Stack for GP

The interpreter evaluates each GP tree as a reverse Polish notation expression by
pushing and popping intermediate values onto a stack (see Fig. 8). Each expression
needs its own stack. Each GPU thread works on its own expression and so needs its
own stack.

Since there is no communication between threads, with read–write caches, it
might be possible to place the interpreter’s stacks in per-thread “local” memory.
There is only a little shared memory, whereas there is lots of local memory, but if a
cache line holding the stack were displaced, performance would be hit hard.

To avoid the possibility of any stack being moved to off-chip memory, we chose
to put them in shared memory. (See code fragment in Fig. 10.) Many GP systems
restrict tree depth and function arity. For example, our GP genetic operations ensure
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int SP = 0;
for(unsigned int PC = 0; PC < LEN-1; PC++) {

const optype OPCODE = Pop[PC];
if(OPCODE==OPNOP) break;
float d;
if(OPCODE<= lastconst) {
d = constants[OPCODE];

} else if(OPCODE<= lastleaf) {
d = d Train0[(OPCODE-firstinput)*nexamples];

} else {
const float sp1 = stack(--SP);
const float sp2 = stack(--SP);
switch(OPCODE) {
case OPADD: d = sp2+sp1; break;
case OPSUB: d = sp2-sp1; break;
case OPMUL: d = sp2*sp1; break;
case OPDIV: d = sp2/sp1; break;
}

}
push(d);

}

_

Fig. 9 GPU Reverse Polish Notation SIMD interpreter. The interpreter is invoked by every thread
in the block (1,001) in parallel and cycles through each of the programs’ instructions leaving the
answer generated by each on the programs’ stacks. (Fitness calculation in Figs. 13–15.) Notice
division is not protected [40]. Pop is a pointer to the start of the RPN program which is being
evaluated on this stream processor. d Train0 points to the data for the current cancer victim (see
Sect. 6.6)

extern __shared__ float shared_array[];
const int pStackMax = (MaxArity-1)*(pMaxDepth-1)+1;
#define stack(sp) shared_array[(sp)*blockDim.x+threadIdx.x]
#define push(x) {stack(SP) = x; SP++;}

Fig. 10 CUDA implementation of stack required by SIMD interpreter (given in Fig. 9). The stack
is placed in shared memory to ensure it remains on-chip. CUDA allows indexed access to shared
memory and so implementing a stack is much simpler than it was with RapidMind (version 2.0)
and using deeper stacks is also straightforward. Indexing by threadIdx.x ensures each thread
accesses adjacent words of shared memory so there are no bank conflicts

tree depth does not exceed eight (pMaxDepth) and Koza [40] enforces a depth limit
of 17. If unusually deep trees were needed or the function set contained functions
with more than just two inputs (our data-mining trees use binary functions), more
memory would be required. In this case the limited shared memory could start to
restrict the number of threads that the interpreter can use.

Examining the PTX assembler produced by the nvcc compiler suggests that
although accessing shared memory should be almost as fast as the threads’ own
registers, a surprisingly large number of PTX instructions are needed to implement
push and pop. However it is not clear why and also the mapping between PTX
assembler and final machine code is far from straightforward. Even though efficient
stack operations are vital, this makes further optimisation of the stack tricky.
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float* const constants = &shared_array[pStackMax*blockDim.x];
for(unsigned int i=threadIdx.x; i<=lastconst; i += blockDim.x){
constants[i] = float(-5.0) + float(i) * float(0.01);

}
__syncthreads();

Fig. 11 Setting up GP constants in shared memory. The 1,001 constants are stored immediately
above the interpreter’s stack (Figs. 10 and 12). The calculation is spread across all the available
threads. syncthreads() prevents any thread moving on to interpret any program until
all the constants have been initialised. As the calculation happens before any global data is
read, syncthreads() causes little overhead. Usually adjacent threads interpret the same
GP individual so they will simultaneously read the same constant. This does not cause a bank
conflict. Since there are multiple banks of shared memory, only occasionally will a delay occur
as a bank conflict arises from threads in the same warp interpreting two different programs
simultaneously

6.4 Constants

In this application the GP system needs 1,001 constants (with values between
�5.0 and C5.0, every 0.01). To simplify the interpreter, the old RapidMind system
precalculated these and loaded them as part of the training data. However pushing
constants onto the stack is one of the most common operations, and so to avoid
reading them from global data (as has to be done with the training data), originally
the new CUDA interpreter calculated them as required. This overhead was reduced
by precalculating them once per multiprocessor and saving them in shared memory
(see Figs. 11 and 12). This only occupies 4,004 bytes of shared memory, but the
speedup was modest.

It would also be possible to store them in constant memory, so avoiding
calculating them on the GPU at all, but where two different programs cause the
interpreter to simultaneously read different constants, there is a surprising overhead
[50, 61].

6.5 Thread Layout

As we described under the heading of “The Computational Cube” in [47], one
of the virtues of the SIMD GP interpreter is that it gives different ways to access
the huge amount of parallelism inherent in having a population of individuals and
multiple training cases on which they need to be evaluated. As we showed in Fig. 7,
the efficient use of GPUs requires many active threads. While it will vary between
applications, Fig. 7 suggests even something as simple as generating random values
will need at least 8,000 threads to fully load a C2050. With this in mind we designed
the thread layout to use as many of the 1,024 threads per multiprocessor block as
possible. However we decided to combine the fitness calculation with the interpreter
into one CUDA kernel so all the threads interpreting one program must be in the
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11 programs
16 x int

Reduce
91 to 1 

Stack 8x1001
floats

read training
91 x 0..8
floats/program

Training data
91 x 1013888
floats

Constants

11 int
fitness

+4.99,+5.00
−5.00,−4.99,  ...

Fig. 12 On each of the 14 C2050 Tesla multiprocessors, 11 GP programs of between 1 and 15
instructions (11 middle arrows) are interpreted in parallel, each processing data for 91 of the
breast cancer gene expression datasets. This uses 11 � 91 D 1;001 of the 1,024 available threads
(97.8 %). Each interpreter thread has its own stack in shared memory (slab between the two sets of
arrows). Apart from warp divergence the 1,001 threads act independently until fitness calculation.
After comparing each program’s output with the actual class, the CUDA kernel uses seven reduce
operations to sum the number of training cases which the program got right and convert these to a
fitness value which is written to global memory (11 arrows on right)

same block, and they are forced to synchronise when fitness is calculated. Also we
decided to use one thread per GP program per test case. With 91 training cases, this
means each block simultaneously interprets 11 programs using 1,001 threads (98 %
of the 1,024 maximum). See Fig. 12. This gives a maximum of 14,014 active threads
per C2050.

The interpreter threads are tightly packed, which means ignoring the 32 thread
warp boundaries [93]. Thus 10 of our 32 warps will be interpreting two GP programs
at once and so will suffer from divergence. For 91 training examples, we could have
packed the thread into three warps (using 95 % of the available threads), allowing
ten programs per block and up to 12,740 active threads per C2050. However, tightly
packing the programs into warps has the advantage that the number of training cases
can be readily changed without detailed consideration of its impact. For example,
the system worked well (without modification) with 41 training cases.
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Other approaches are also possible. For example, all 91 fitness cases for one
program could be interpreted by warps in the same block. This would simplify the
across-thread summations needed to calculate the program’s final fitness value and
remove the need to use syncthreads() in the fitness reduction (Sect. 6.8).
Alternatively we could have used one thread per program, so avoiding the need
for any data transfers between threads. This also avoids any idle threads. However
as well as problems of the threads diverging (Sect. 5.1), having a large number
of separate programs independently requesting uncorrelated data items would
overwhelm the data caches.

A potential good compromise would be to allocate each program a whole warp
(avoiding thread divergence), enabling it to read and use training data a cache line
at a time. Having read and processed it, typically the program would not re-read it.
With 91 training cases, each interpreter thread would have to process the program
between two and three times. (This also uses 95 % of the available threads.)

As the computational cube approach makes clear, other compromises are possi-
ble. While their efficiency will vary according to circumstances, many are viable.

6.6 Training Data

Each training example has data from both HG-U133A and HG-U133B, i.e. 2 �
7122 D 1;013;888 floats. The training data are not modified. (This is usual in
machine learning applications.) They are stored in the GPU (left-hand side of
Fig. 12) at the start of the run and then only read. This transfer happens only once so
there would only be a marginal advantage in using non-paged (“pinned”) memory
on the host to speed up the transfer. Once loaded onto the GPU, the host does not
use it again. Placing the data in normal host memory allows the operating system to
page them out to re-use the RAM they were occupying if need be.

When the training data are read in, they are effectively transposed so that all the
data for the same GeneChip probe are placed consecutively. This enables probe data
to be read into a few cache lines in a small number of operations (three or four
depending upon alignment).

6.7 Thread Divergence

Although all our reverse Polish (RPN) flatten trees will start with pushing a data
item, in a usual GP population, the second, third, fourth and so on instruction will
tend to be different. As the code in Fig. 9 shows, if a warp of threads interprets two
different GP individuals, their paths through the interpreter code will be different
and only a small part (the top and bottom of the main loop) will be common. Since
this is impossible, we get “divergence” (Sect. 5.1). This means one set of threads
proceed, with the others headed to different code, held up. Sometime later the first
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const unsigned int correct = (pos ˆ (stack(0) <= 0)) & 1;
volatile unsigned int *sdata = (unsigned int*) shared_array;
sdata[threadIdx.x] = correct;

Fig. 13 Final part of runprog() (Fig. 9). The value calculated by GP (on the top of the stack,
Fig. 10) is compared with the class of training examples pos, converted into a Boolean (was it
correct or not) and then saved in shared memory, overwriting part of the stack (which is no
longer needed)

set of threads is held up and the second set allowed to run. At some later point all
the threads in the warp resynchronise. Obviously this is slower than the usual case
where the whole warp is interpreting the same GP program. From the computational
point of view, we would expect such a warp to take a bit less than twice as long as a
single program warp.

Potentially more important is reading data. Two different programs (even though
adjacent in the GP population) will typically access different data. In the first set
of runs there is a huge volume of training data and reading different parts of it will
probably mean they are not in the L1 cache; hence, the threads will have to wait until
it can be read into the GPU chip. Hopefully there will be other threads elsewhere
on the same multiprocessor ready to run, but even so delays caused by reading data
may be more important than thread divergence.

Unfortunately it is difficult to tune the code to get the best from the GPU, and it
could need re-tuning for other datasets and problems [50]. Nonetheless, while this
may not be the absolute optimum code, we feel it is a good compromise.

6.8 Fitness Calculation

There are three stages to fitness calculation (arrows right-hand side of Fig. 12):

1. Each thread compares the sign of the value calculated by the GP individual with
that desired. For the 21 positive cases it should be positive. For the 70 negative
cases it should not be positive. The value (0 or 1) is saved in shared memory; see
Fig. 13.

2. The 91 correct or not values are summed using a reduction technique to give
the number of true negatives (TN) and number of true positives (TP) the GP
individual scored. See Fig. 14.

3. A single thread is used to convert (TN) and (TP) into a single fitness value which
is stored in the GP individual’s output (see Fig. 15) for later transfer to the host.

Each thread always works on the same training case for each of the �34,000 GP
programs it interprets each generation. Therefore, pos1 (Fig. 13), like d Train0

1pos is 1 for positive training cases and 0 for negative cases.
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__device__
void reduce_sum(const unsigned int start, const unsigned int n){
//Ok to overlay on Stack as used syncthreads to ensure all done
volatile unsigned int *sdata = (unsigned int*) shared_array;
const unsigned int tid = threadIdx.x;
const unsigned int top = start+n;

// do reduction in shared mem
//__syncthreads() needed as operate across warp boundaries
if(tid>=start && tid<top) sdata[tid] += fsdata(tid+128,top);
__syncthreads();
if(tid>=start && tid<top) sdata[tid] += fsdata(tid+64,top);
__syncthreads();
if(tid>=start && tid<top) sdata[tid] += fsdata(tid+32,top);
__syncthreads();
if(tid>=start && tid<top) sdata[tid] += fsdata(tid+16,top);
__syncthreads();
if(tid>=start && tid<top) sdata[tid] += fsdata(tid +8,top);
__syncthreads();
if(tid>=start && tid<top) sdata[tid] += fsdata(tid +4,top);
__syncthreads();
if(tid>=start && tid<top) sdata[tid] += fsdata(tid +2,top);
__syncthreads();
if(tid>=start && tid<top) sdata[tid] += fsdata(tid +1,top);
__syncthreads();
}

Fig. 14 Reduction code to add n items in log2.n/ steps. It calculates the sum of both
correct (Fig. 13) negative and positive training examples simultaneously. device function
fsdata() ensures the reduction code does not include data from threads running other programs
or indeed different classes for the same thread. Totals are left in shared memory index start. It
will cope with up to 256 negative and 256 positive training cases. Clever use of templates and/or
conditional compilation could eliminate operations which are not needed with fewer training cases.
Atomic or barrier synchronisation might be an alternative to syncthreads()

reduce_sum(start1,n);
__syncthreads();
if(threadIdx.x==start) {

volatile unsigned int *sdata = (unsigned int*) shared_array;
const unsigned int TN = sdata[start];
const unsigned int TP = sdata[start+nneg];
const int penalty = (TP==0||TN==0)? 0 : 2*npos*nneg;
*d_Output = 1 + penalty + TP*nneg + TN*npos;

}

Fig. 15 sumfit() uses reduce sum() (Fig. 14) to give the number of correct negative
(TN) and positive (TP) training examples. One thread per program calculates AUROC fitness
without division (and keeping integer values) but keeping the same relative weighting of TN, TP
and the penalty (Table 1). To aid debugging 1 is added to ensure fitness is never zero. Finally the
thread writes fitness to global memory (d Output)
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(Fig. 9), and the boundaries of the negative and positive cases (given by start1
and n in Fig. 15) are calculated once when the thread starts and then are reused.

6.9 Fermi L1 Caches

GP individuals are stored as 16 unsigned int (LEND 16). Thus when the first
thread interprets the first instruction, it will actually cause the whole individual
(Pop) to be loaded from off-chip global memory into L1 cache and remain in
cache on the multiprocessor until the interpreter finishes with it. Actually since
each program occupies only half a cache line, the first instruction can also trigger
the loading of Pop for the adjacent program. (A C2050 cache line covers 128
contiguous bytes). Since all the threads in a block work on 11 contiguous programs
(Fig. 12), they should fit into six cache lines. Eventually all of Pop will have to be
read, but this is done efficiently, and it does not have to be read more than once
by that individual. Notice we also avoid explicitly caching the population in shared
memory [93].

As mentioned in Sect. 6.6, the training data are organised to be adjacent to each
other, so if one part of a training case is loaded into the multiprocessor L1 cache,
then 31 data items in the corresponding training cases are also loaded into the cache
at the same time. It appears that with 91 training cases three cache lines per data
item are needed. (Perhaps four, depending upon how the cache handles alignment.)
Thus in the initial runs where there are thousands or indeed millions of data items,
the L1 cache cannot hope to avoid reloading. However all the training data required
to interpret each GP individual will be read efficiently into the multiprocessor and it
will only be read once by that individual.

In the final run, in which we interpret many millions of GP programs, they read
only eight training cases. Since the L1 cache occupies 16 Kbytes, these 728 values
of training data will fit into it and so should remain cached. (Pop still occupies
80 Mbytes and so now becomes the major data item.) The interpreter in the final run
achieves only about 200 million more GPops/s than it does on the large training data
runs. This hints that the kernel data I/O is working well and it is operating near the
Fermi’s computational limit.

6.10 CUDA Gives Improvements

Whereas RapidMind 2.0 imposed a 222 bit addressing limit (i.e. no more than
�4 million items per array) and no more than 16 arrays per GPU, CUDA imposes no
such limits. Instead all the GPU’s memory is directly addressable. Thus originally
the population of five million GP programs had to be split into 20 parts and the
training data split into eight or more arrays. Therefore 256,000 GP programs were
passed to the GPU (a GTX 8800) which, on average, took slightly less than a second
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to interpret them and return their fitness values. This had to be done with each of the
20 parts of the population. Now the whole population is passed to the Tesla C2050
in one go, interpreted and five million fitness values returned to the host, in under a
second.

Originally the multiple program outputs (required by splitting the training data
into four separate arrays) were summed and combined into a single fitness value
per GP individual by three additional GPU programs, making a total of seven
GPU programs. Now with the simplification allowed by bigger address ranges, the
complete GP interpreter and fitness calculation is done by a single CUDA kernel.

6.11 GP for Large-Scale Data Mining

We previously described using genetic programming to data mine GeneChip data
[55]. Our intention was to automatically evolve a simple (possibly non-linear)
classifier which uses a few simple inputs to predict the future about 10 years ahead.
To ensure the solutions are simple (and for speed), the GP trees are limited to
15 nodes. (Whilst this is obviously small, it is not unreasonable. For example,
Yu et al. successfully evolved classifiers limited to only eight nodes [109].) Since
many GPUs offer more than a gigabyte of onboard RAM, both the population size
and length of individuals could be increased. Indeed since GPUs can now directly
access the host computer’s RAM, larger populations might be accommodated in
large-RAM 64 bit servers without explicit direct transfer to the Tesla. Undoubtedly
there will be performance implications, but assuming reasonable locality, so the
data caches now available are not overwhelmed, this might be quite a successful
approach. However we have not tried this as yet and instead have kept the explicit
data transfer. Typically this takes 55 ms (PCIe bandwidth 5.7 Gbytes/s). Explicit
transfer of the five million fitness values in the other direction back to the host
server takes 3 ms (PCIe bandwidth 5.9 Gbytes/s). Both transfers are to/from non-
paged (“pinned”) host memory. These large data transfers make the best use of
the PCIe bus. If they were replaced by the GPU directly accessing the host (“zero
copy” transfers), presumably they would be replaced by data transfers limited to
the width of the GPU cache, which might be less efficient. However they would
seamlessly allow the GPU to overlap data transfers and computation, whilst we
have not attempted such asynchronous use of the GPU.

Previously [55] we demonstrated GP on datasets with more than 7,000 inputs
(created by pre-processed raw data). Now we have more than a million individual
probe values (and the compute power to use them). Therefore we asked GP to
evolve combinations of the probe values rather than use Affymetrix or other human-
designed combinations of them. In our approach the first step is to use GP as its own
feature selector.

Essentially the idea is to use Price’s theorem [89]. Price showed that the number
of fit genes in the population will increase each generation and the number of
unfit genes will decrease. We run GP 100 times. We ignore the performance of the
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Fig. 16 Screen shot of a 512�400 GP population, i.e. 204,800 programs (from runs approximating
� [53]) evolving under selection, crossover and subtree mutation after 100 generations. Colour
indicates fitness (left) and syntax (right). Below are two histograms (log scale) showing distribution
of population by fitness and genotypic distance from the first optimal solution. (Colour scales below
each histogram.) Local convergence and the production of species is visible (especially right). See
http://www.cs.ucl.ac.uk/staff/W.Langdon/pi2 movie.html and Google videos for animation and
more explanation

best-of-run individual and instead look at the genes it contains. Thus the first pass
starts with a million inputs, and we select in the region of 10,000 for the second
pass and so on until we get down to a reasonable number. Finally GP is run with a
much-enriched terminal set containing only inputs which have showed themselves
to be highly fit in previous GP runs. See Sect. 7.

The question of how big to make the GP population can be solved by considering
the coupon collector problem [21, p. 284]. On average n.log.n/ C 0:37/ random
trials are needed to collect all of n coupons. Since we are using GP to filter inputs, we
insist that the initial random population contains at least one copy of each input. That
is, we treat each input as a coupon (so n D 1;013;888) and ask how many randomly
chosen inputs must we have in the initial random population to be reasonably
confident that we have them all. The answer is 14 million. The spread in the
distribution of answers to the coupon collector problem is of the order of square root
of n. Therefore if we overshoot by a few thousands, we are sure to get all the inputs
(GP tree leafs) into the initial population. Since a program of 15 nodes has eight
leafs and half of these are constants, we need at least (1/4)(14 million) D 3.6 million
random trees. An initial population of five million ensures this.

At the end of the first pass, we want on the order of 100,000 inputs to chose from.
This means we need about 25,000 good programs (each with about four inputs). We
do not want to run our GP 25,000 times. The compromise is to use overlapping
fine-grained demes [41] to delay convergence of the population; see Fig. 16. The
GP population is laid out on a rectangular 2560 � 2048 grid (see Fig. 17). This is

http://www.cs.ucl.ac.uk/staff/W.Langdon/pi2_movie.html
http://video.google.co.uk/videoplay?docid=7513698947919634338
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Each parent is best of
four chosen from 441

Fig. 17 Left: The GP population of five million programs is arranged on a 2560 � 2048 grid,
which does not wrap around at the edges. At the end of the run the best individual in each 256�256

tile is recorded. Right: (note different scale) parents are drawn by 4-tournament selection from
within a 21 � 21 region centred on their offspring

Table 1 GP parameters for data mining Uppsala breast tumour biopsies

Function set ADD SUB MUL DIV operating on floats
Terminal set 7122 Affymetrix HG-U133A and 7122 HG-U133B probe mRNA concentrations.

1,001 constants �5, �4:99, �4:98, . . . , 4.98, 4.99, 5

Fitness Area under ROC curve (AUROC) D
�

1
2

TP
No. pos C 1

2
TN

No. neg

�

Less 1.0 penalty if either all the positive cases or all the negative cases are wrong
(TP D 0 or TN D 0) [54]

Selection Tournament size 4 in overlapping fine-grained 21 � 21 demes [41], non-elitist,
population size 2560 � 2048

Initial pop Ramped half-and-half 1:3 (50 % of terminals are constants)
Parameters 50 % subtree crossover. 50 % mutation (point 22.5 %, constants 22.5 %,

subtree 5 %). Max tree size 15, no tree depth limit
Termination Ten generations

divided into 80 256 � 256 squares. At the end of the run, the genetic composition of
the best individual in each square is recorded. Note that to prevent the best of one
square invading the next, parents are selected to be within ten grid points of their
offspring. Thus genes can travel at most 100 grid points in ten generations. The GP
parameters are summarised in Table 1.

7 Experimental Results

The new CUDA system is much faster, but, as expected, the results are similar.
GP was run 100 times with all inputs taken from the 91 training examples using
the parameters given in Table 1. After ten generations the best program in each of
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Fig. 18 Distribution of usage of Affymetrix probes in 8,000 best generation-10 GP programs.
Both distributions are almost straight lines (note log scales, cf. Zipf’s law [114]) and closely agree
with earlier runs [57]

the 80 256 � 256 squares was recorded. The distribution of inputs used by these
100 � 80 programs is given in Fig. 18. Most probes were not used by any of the
8,000 programs, 24,892 were used by only one, 2,029 by two and so on.

The 28,305 probes which appeared in any of the 8,000 best generation-ten
programs were used in a second pass. In the second pass GP was also run 100
times. (The GP parameters were kept the same.)

Eight probes which appeared in more than 200 of the best 8,000 programs of the
second pass were the inputs to a final GP run. (The GP parameters were again kept
the same.) See also upper trace in Fig. 18 and Table 2.

As Fig. 19 shows, GP finds many good matches to the 91 training examples,
most of the 80 score above 90 % and several score more than 92 %. Ever mindful
of overfitting [12], in the original RapidMind runs as a solution we chose one with
the fewest inputs (three). GP found a non-linear combination of two PM probes and
one MM probe from near the middle of HG-U133A; see Fig. 20 and Table 2. The
evolved predictor is the sum of two non-linear combinations of two human genes;
see Fig. 21). Both sub-expressions have some predictive ability. The three probes
chosen by GP are each highly correlated with all PM probes in their probeset [58]
and so can be taken as a true indication of the corresponding gene’s activity. The
gene names used in Fig. 20 were given by the manufacturer Netaffx’s www pages.
Possibly terms like decorin/C17orf81 are simply using division as a convenient
way to compare two probe values. Indeed the sign indicates whether two values
are both above or both below average. (Division appears in all 80 of the best
generation-ten programs, slightly more often than C and � but much more often
than multiplication: =80, C72, �71, �27.)
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Table 2 Eight Affymetrix probes used the most in 8,000 best generation-10 second pass Rapid-
Mind GP programs which were used in the final RapidMind run [57]. See Fig. 18. The second
column gives rank in these experiments

Used X,Y chip Affy id NetAffx gene title

1 2 579 350,514 A 200903 s at.mm8 S-adenosylhomocysteine hydrolase
2 10 493 325,511 A 219260 s at.pm7 C17orf81. chromosome 17 open

reading frame 81
3 6 363 254,667 A 201893 x at.pm2 Decorin
4 1 291 392,213 A 219778 at.pm4 Zinc finger protein, multitype 2
5 4 286 366,310 B 230984 s at.mm10 230984 s at was annotated using

the accession-mapped
cluster-based pipeline to a
UniGene identifier using 17
transcript(s). This assignment is
strictly based on mapping
accession IDs from the original
UniGene design cluster to the
latest UniGene design cluster

6 3 265 324,484 A 216593 s at.mm9 Phosphatidylinositol glycan anchor
biosynthesis, class C

7 19 263 542,192 B 233989 at.mm4 EST from clone 35214, full insert.
UniGene ID Build 201 (01 Mar
2007) Hs.594768 NCBI

8 41 245 269,553 B 223818 s at.pm2 Remodelling and spacing factor 1

The chosen solution compares well with that produced by Miller et al. [78],
which used more than 704 data items compared to GP’s three. We also showed
in [57] that the RapidMind interpreted 535 million GP operations per second
(535 MGPop/s). This corresponded to a 7.59� speedup compared to an Intel
2.40 GHz CPU.

8 Genetic Programming Interpreter Speed on Tesla
C2050 GPU

On average across the 201 GP runs the C2050 processed 8.5 billion GP primitives
per second. This is fairly consistent, even on the last run, where there are only
eight inputs (effectively 3 Kbytes of global training data). The server has two C2050
Teslas, so the 100 runs of each phase can be split into two and 50 run on each one.
On the four-core server, there is little interaction between them, and so the combined
speed of fitness evaluation using two C2050s is 17 billion GPop/s.

The GPU interpreter’s performance of 8.5 gigaGPOP/s (line marked o in Table 3)
is very good. It is by far the fastest for a floating point GP data-mining application,
being surpassed only by our Boolean multiplexor benchmarks [46], graphics
applications [32] and a special bench mark [64]. The number of successful appli-
cations has expanded in recent years. Where GP operations rates (rather than just
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Fig. 19 Spread of performance on training data v. program size. 80 best generation-10 programs
in final CUDA GP run with eight inputs. Size is given in top graph by the number of different inputs
and by the number of GP instructions in the bottom graph. Noise added to spread data horizontally.
Whilst most of these high fitness predictors are of the maximum size (15) most use only three or
four of the eight available inputs

speedup ratios) were given, the result is included in Table 3. Interpreter performance
is expected to vary somewhat with the size of the terminal and function sets
(columns 2–4) [38]. The performance of compiled GPs on GPUs can vary widely,
e.g. with program size (column 6) and number of training examples (column 8).
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Fig. 20 GP-evolved three-input classifier. The figure uses gene names. We could also use
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Fig. 21 The GP classifier (Fig. 20) is the weighted addition of two input classifiers (left and right)

Table 3 gives the maximum speeds; see the individual references for details of which
factors affect speed.

Run time in most genetic programming systems is dominated by the time to
calculate fitness; now this is done by the GPU, the remaining operations (still done
on the host) become more important. Our host code is almost identical to the original
RapidMind experiments and has not been optimised. As fitness evaluation speeds
up, it may become necessary to parallelise these other parts of the evolutionary
process.

The earliest evolutionary computation GPGPU [22] implemented both genetic
operations and fitness evaluation on the GPU. More recently Pospichal et al. [87]
ported both genetic operations and fitness of grammatical evolution onto a GTX 480
with CUDA.

9 The Future of General Purpose GPU Computing

It is gratifying to note that some of our earlier predictions [57] have already come
about. For example, we see more and more on-chip transistors being used to
introduce on-chip caches and more on-chip memory. We also see routine support
for double precision, removal of the 22 bit limit on data sizes, direct access to host
PC RAM, routine support for 64 bit addressing and direct transfer of data between
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GPU in the same host computer. The concept of GPGPU has broaden out and is
directly supported by nVidia’s Tesla range (of non-graphics card GPUs). GPGPU
continues to grow.

Like the x86 processor range, modern GPU chips are accumulating functionality
with the manufacturers showing great reluctance to remove transistors designed to
support older graphics applications such as anti-aliasing. This hardware is unlikely
to be useful for scientific computing and so represents an overhead.

Published GPGPU computation has been dominated by nVidia. Initial publi-
cations were by people programming scientific applications using graphics tools
(e.g. Cg). There was then a move to nVidia’s CUDA. In the last couple of years there
has been a little interest in OpenCL applications on nVidia cards. OpenCL offers
the possibility of porting applications between different graphics hardware. Indeed
recently some new GPGPU applications [26] have been coded to use OpenCL on
ATI cards.

It is clear that GPU programming is aimed squarely at the high-level language
programmer. Even the CUDA assembler language PTX is remote from the machine
code that the GPU actually runs. Both PTX and high-level language sources must
be compiled before the GPU can use them. The compilation tools are aimed at one
programmer working on one (or a few) program at a time and aim to produce the
very best machine code for the GPU and do not worry about how long it will take
to compile. This is fundamentally not suitable for populations of programs. We
have worked around this problem. Harding [32] (and now more recently others)
ran the CUDA compiler multiple times in parallel. Lewis showed evolving PTX
can reduce the compilation overhead by more than 20 % [64]. We have taken the
approach of not compiling the GP programs but instead interpreting them. Whilst
this allows a single GPU to run millions of programs simultaneously, an interpreter
will always be slower than machine code. Nordin [81] was the first to recognise this
and built GP systems that both genetically manipulated and ran first SUN machine
code and later Intel x86 code. Indeed his x86 system is now the basis of a successful
commercial GP system [23]. Whilst GPU machine code is not straightforward [64],
we anticipate soon someone will bite the bullet and remove the compiler/interpreter
bottleneck by implementing a GP system which evolves GPU machine code directly.

Despite improving tools, both debugging (see [48] and the chapter “Understand-
ing NVIDIA GPGPU Hardware”) and performance tuning [50] remain difficult.
There is still a risk that if GPUs remain difficult to use, they will remain limited to
specialised niches. To quote John Owens, “It’s the software, stupid” [82].

10 Conclusions

Previously [57] we took a large GeneChip breast cancer biopsy dataset with more
than a million inputs and demonstrated genetic programming running in parallel
on an nVidia GeForce 8800 GTS and showed a 7.6� speedup compared to a
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single-core PC. The compute-intensive fitness evaluation has now been recoded in
CUDA and run on modern hardware, the C2050 Tesla. With the new kernel a single
nVidia C2050 delivers about 8.5 billion GP operations per second, i.e. 16 times
faster than the old code with an 8800 GTS, even though in simple terms of peak
floating point (single-precision) performance, the C2050 is just 2.5 times faster.

Two C2050s can deliver 17 GPop/s. This includes interaction times between host
and GPU, but not selection, crossover and mutation, which are still done by the
original CCC code on the host.

In some ways a genetic programming interpreter is an ideal GPU application. The
cross product of the GP population and training case sizes is already huge. If we also
include running multiple GP runs in parallel, in these experiments we have 48 billion
almost independent calculations which could be done in parallel. Sometimes highly
parallel applications can give disappointing results on GPUs because there is little
computation per data item and so more time is spent moving data than computing
with it. We estimate very roughly 30 machine instructions are needed to interpret
each GP primitive. This gives an “arithmetic intensity” (i.e. the ratio of calculations
per data item) of about 20, which puts the GP interpreter in the upper part of the
typical range of arithmetic intensities of 4–64 FLOP/TDE for successful parallel
applications [11, p. 206].

Sections 2 and 3 showed that general-purpose computation on graphics process-
ing units is becoming established, and there are an expanding range of GPGPU
applications, particularly in bioinformatics. Today GPGPU is dominated by nVidia’s
GPUs and CUDA. It may be OpenCL will soon open the way, not to portable
GPGPU applications but to more use of ATI and Intel GPU hardware. Undoubtedly
the 3GHz ceiling on CPU clocks will mean that the future of computing is parallel
and GPGPU will be one of the popular approaches whereby desktop and other
applications will exploit parallel hardware.

CCC Source Code

CUDA code can be downloaded via anonymous ftp from ftp.cs.ucl.ac.uk or
via http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/gpu gp cuda.tar.gz. The
large dataset GSE3494 can also be downloaded from the UCL ftp site ftp.cs.ucl.
ac.uk/genetic/gp-code/GSE3494/.
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