
Data Mining Using Parallel Multi-objective
Evolutionary Algorithms on Graphics
Processing Units

Man Leung Wong and Geng Cui

Abstract An important and challenging data mining application in marketing is
to learn models for predicting potential customers who contribute large profits
to a company under resource constraints. In this chapter, we first formulate this
learning problem as a constrained optimization problem and then convert it to an
unconstrained multi-objective optimization problem (MOP), which can be handled
by some multi-objective evolutionary algorithms (MOEAs). However, MOEAs may
execute for a long time for the MOP, because several evaluations must be performed.
A promising approach to overcome this limitation is to parallelize these algorithms.
Thus we propose a parallel MOEA on consumer-level graphics processing units
(GPU) to tackle the MOP. We perform experiments on a real-life direct marketing
problem to compare the proposed method with the parallel hybrid genetic algorithm,
the DMAX approach, and a sequential MOEA. It is observed that the proposed
method is much more effective and efficient than the other approaches.

1 Introduction

How to improve marketing productivity or the return on marketing investment
under resource constraints is one of the most challenging issues facing mar-
keting professionals and researchers. The issue seems to be more pressing in
hard economic times and given the increasing emphasis on customer relation-
ship management—containing cost and channeling precious marketing resources

M.L. Wong (�)
Department of Computing and Decision Sciences, Lingnan University, Tuen Mun, Hong Kong
e-mail: mlwong@ln.edu.hk

G. Cui
Department of Marketing and International Business, Lingnan University, Tuen Mun, Hong Kong
e-mail: gcui@ln.edu.hk

S. Tsutsui and P. Collet (eds.), Massively Parallel Evolutionary Computation
on GPGPUs, Natural Computing Series, DOI 10.1007/978-3-642-37959-8 14,
© Springer-Verlag Berlin Heidelberg 2013

287

mailto:mlwong@ln.edu.hk
mailto:gcui@ln.edu.hk

288 M.L. Wong and G. Cui

to the high-value customers who contribute greater profit to a company. Such
situations include (1) upgrading customers—how to provide sizable incentives to the
customers who are the most likely to upgrade and contribute greater profit over the
long run? (2) modeling customer churn or retention—how to identify and prevent
the most valuable customers from switching to a competitor? and (3) predicting
loan default—how to predict the small minority who default on their large loans or
credit card bills? This problem is particularly acute in direct marketing operations
that typically have a fixed budget to target, from the vast list of customers in
a company’s database, those customers who are the most likely to respond to a
marketing campaign and purchase greater amounts.

Most marketing activities, as espoused by marketing scholars and practitioners,
are targeted marketing in nature—to reach customers who are the most responsive
to marketing activities. Until recently, statistical methods such as regression and
discriminant analysis have dominated the modeling of consumer responses to
marketing activities. These methods, however, suffer from two shortcomings. First,
methods based on OLS regression (i.e., mean regression) survey the entire popu-
lation and focus on the average customer in estimating parameters. Segmentation
methods, such as discriminant analyses, are not informative of their marketing
responses. Thus, these methods by design are not entirely compatible with the
objectives of targeted marketing. Second, researchers have so far focused on
modeling either consumer responses or purchase quantity. Few models jointly
consider consumers’ responses and the revenue/profit that they generate.

These problems are particularly acute in modeling consumer responses to
direct marketing and result in suboptimal performance of marketing campaigns.
Conventional methods generate the predicted purchase probabilities for the entire
population and do not focus on the top portion of the population, e.g., the top
20 % most attractive customers. This constraint is crucial as most firms have a
limited marketing budget and can only target the most attractive customers. Thus,
improving the accuracy of predicting purchase and potential sales or profit for these
customers is crucial for augmenting the performance of targeted marketing. This is
an urgent research problem given the increasing emphasis on customer relationship
management and differentiating customers based on their profitability. Predicting
loan default, customer churning, and service intervention represent other situations
where resources are limited, budget constraints need to be considered, and targeted
efforts are required.

To improve the accuracy of customer selection for targeted marketing, we
formulate this problem as a constrained optimization problem. Recently, several
researchers suggested using multi-objective evolutionary algorithms (MOEAs) to
solve constrained optimization problems [24, 26].

However, MOEAs may execute for a long time for some difficult problems,
because several objective value evaluations must be performed on huge datasets
containing information about customers. Moreover, the non-dominance-checking
and the non-dominated-selection procedures are also time-consuming. A promising
approach to overcome this limitation is to parallelize these algorithms. In this
chapter, we propose implementing a parallel MOEA for constrained optimization

Data Mining Using Parallel Multi-objective Evolutionary Algorithms 289

within the CUDA (Compute Unified Device Architecture) environment on an nVidia
graphics processing unit (GPU). We perform experiments on a real-life direct
marketing problem to compare our parallel MOEA with a parallel hybrid genetic
algorithm (HGA) [29], the DMAX approach [1], and a sequential MOEA. It is
observed that the parallel MOEA is much more effective and efficient than the
other approaches. Since consumer-level GPUs are available in omnipresent personal
computers and these computers are easy to use and manage, more people will
be able to use our parallel MOEA to handle different real-life targeted marketing
problems.

In the rest of the chapter, we first give an overview of constrained optimization for
direct marketing, MOEAs, and GPU. In Sect. 3, our parallel MOEA for constrained
optimization on GPU is discussed. The experiments and the results are reported in
Sect. 4. In Sect. 5, conclusions and possible future research are discussed.

2 Overview

2.1 Constrained Optimization for Direct Marketing

Recent emphasis on customer relationship management require marketers to focus
on the high-profit customers as in the 20/80 principle: 20 % of the customers account
for 80 % profit of a firm. Thus, another purpose of direct marketing models is to
predict the amount of purchase or profit from the buyers. However, the distribution
of customer sales and profit data is also highly skewed with a very long tail,
indicating a concentration of profit among a small group of customers [20]. In
empirical studies of profit forecasting, the skewed distribution of profit data also
creates problem for researchers. Given the limited and often a fixed marketing
budget, the profit maximization approach to customer selection, which include only
those customers with an expected marginal profit, is often not realistic [2]. Thus, the
ultimate goal of target customer selection is to identify those customers who are the
most likely to respond as well as contribute a larger amount of revenue or profit.
Overall, unbalanced class distribution and skewed profit data, i.e., the small number
of buyers and that of high-profit customers remain significant challenges in direct
marketing forecasting [6]. Even a small percentage of improvement in the predictive
accuracy in terms of customer purchase probability and profit can mean tremendous
cost-savings and augment profit for direct marketers.

To date, only a few researchers have considered treating direct marketing
forecasting as a problem of constrained optimization. Bhattacharyya [1] applied a
genetic algorithm (GA) to a linear model that maximizes profitability at a given
depth of file using the frontier analysis method. The DMAX model was built for a
10 %-of-file mailing. The decile analysis indicates the model has good performance
as well as a very good representation of the data as evidenced by the total profit at
the top decile. However, a closer look at the decile analysis reveals the model may

290 M.L. Wong and G. Cui

not be as good as initially believed. The total profit shows unstable performance
through the deciles, i.e., profit values do not decrease steadily through the deciles.
This unstable performance, which is characterized by major “jumps” in several
deciles, indicates the model is inadequately representing the data distribution and
may not be reliable for decision support. The probable cause for this “lack-of-fit” is
the violation of the assumption of normal distribution in the dependent variable.

Optimization of the classifier does not necessarily lead to maximization of return
on investment (ROI), since maximization of the true-positive rate is often different
from the maximization of sales or profit, which determines the ROI under a fixed
budget constraint. To solve this problem, Yan and Baldasare [30] proposed an
algorithm that uses gradient descent and the sigmoid function to maximize the
monetary value under the budget constraint in an attempt to maximize the ROI.
By comparison with several classification, regression, and ranking algorithms, they
find that their algorithm may result in substantial improvement of the ROI.

2.2 Multi-objective Evolutionary Algorithms

We focus on, without loss of generality, minimization multi-objective problems
in this chapter. However, either by using the duality principle [7] or by simple
modifications to the domination definitions, these definitions and algorithms can
be used to handle maximization or combined minimization and maximization
problems.

For a multi-objective function � from X.� <N / to a finite set Y.� <m; m � 2/,
a decision vector x� D Œx�.1/; x�.2/; � � � ; x�.N /�T is Pareto optimal if and only
if for any other decision vector x 2 X , their objective vectors y� D � .x�/ D
Œy�.1/; y�.2/; � � � ; y�.m/�T and y D � .x/ holds either

y�.i/ � y.i/ for any objective i .1 � i � m/

or there exist two different objectives i; j such that

�
y�.i/ < y.i/

� ^ �
y.j /� > y.j /

�
:

Thus, for a Pareto optimal decision vector x�, there exists no decision vector x which
would decrease some objective values without causing a simultaneous increase in
at least one other objective. These Pareto optimal decision vectors are good trade-
offs for the multi-objective optimization problem (MOP). For finding these vectors,
dominance in the objective space plays an important role. An objective vector
y1 D � .x1/ D Œy1.1/; y1.2/; � � � ; y1.m/�T dominates another objective vector
y2 D � .x2/ if and only if the former is partially less than the latter in each
objective, i.e.,

�
y1.i/ � y2.i/; 8i 2 f1; � � � ; mg
y1.j / < y2.j /; 9j 2 f1; � � � ; mg: (1)

Data Mining Using Parallel Multi-objective Evolutionary Algorithms 291

It is denoted as y1 � y2. For notational convenience, y1 is defined to be
incomparable with y2 if :.y1 � y2 _ y2 � y1 _ y1 D y2/. It is denoted as y1 � y2.
We also denote : .y1 � y2/ as y1 ˜ y2. That means (y1 D y2 _ y2 � y1 _ y1 � y2).

Given the set of objective vectors Y , its Pareto front Y � contains all vectors y� 2
Y that are not dominated by any other vector y 2 Y . That is, Y � D fy� 2 Y jÀy 2
Y; y � y�g. We call its subset a Pareto optimal set. Each y� 2 Y � is Pareto optimal
or non-dominated. A Pareto optimal solution reaches a good trade-off among these
conflicting objectives: one objective cannot be improved without worsening any
other objective.

In the general case, it is impossible to find an analytic expression of the Pareto
front. The normal procedure to find the Pareto front is to compute the objective
values of decision vectors sufficiently enough and then determine the Pareto optimal
vectors to form the Pareto front [4]. However, for many MOPs, the Pareto front Y �
is of substantial size, and the determination of Y � is computationally prohibitive.
Thus, the whole Pareto front Y � is usually difficult to get and maintain. Furthermore,
it is questionable to regard the whole Pareto front as an ideal answer [9, 19].
The value of presenting such a large set of solutions to a decision maker is also
doubtful in the context of decision support. Usually, a set of representative Pareto
optimal solutions are expected. Finally, in a solution set of bounded size, preference
information could be used to steer the process to certain parts of the search space.
Therefore, all practical implementations of MOEAs have maintained a bounded
archive of best (non-dominated) solutions found so far [17].

A number of elitist MOEAs have been developed to address diversity of the
archived solutions. The diversity exploitation mechanisms include mating restric-
tion, fitness sharing (NPGA [13]), clustering (SPEA [35], SPEA2 [34]), nearest
neighbor distance or crowding distance (NSGA-II [8]), crowding count (PAES [16],
PESA-II [5], DMOEA [32]), or some preselection operators [7]. Most of them are
quite successful, but they cannot ensure convergence to Pareto optimal sets.

2.3 Graphics Processing Units

The demand from the multimedia and games industries for accelerating
3D rendering has driven several graphics hardware companies devoted to the
development of high-performance parallel graphics accelerator. This resulted in the
birth of GPU, which handles the rendering requests using 3D graphics application
programming interface (API). The whole pipeline consists of the transformation,
texturing, illumination, and rasterization to the framebuffer. The need for cinematic
rendering from the games industry further raised the need for programmability
of the rendering process. Starting from the recent generation of GPUs launched
in 2001 (including nVidia GeforceFX series and ATI Radeon 9800 and above),
developers can write their own C-like programs, which are called shaders, on GPU
by using a shading language. Due to the wide availability, programmability, and
high-performance of these consumer-level GPUs, they are also cost-effective for
many general purpose computations.

292 M.L. Wong and G. Cui

The shading languages are high-level programming languages and closely
resemble to C. Most mathematical functions available in C are supported by
the shading languages. Moreover, high-precision floating-point computation is
supported on some GPUs. Hence, GPU can be utilized for speeding up the
time-consuming computation in evolutionary algorithms (EAs). Since the shad-
ing languages were originally designed for applications in computer graphics,
researchers should have knowledge about computer graphics, in order to use the
languages effectively to develop different EAs.

Recently, the CUDA technology is developed [21]. It allows researchers to imple-
ment their GPU-based applications more easily. In CUDA, multiple threads can
execute the same kernel program in parallel. Threads can access data from multiple
memory spaces including the local, shared, global, constant, and texture memory.
Because of the Single Instruction Multiple Thread (SIMT) architecture of GPU,
certain limitations are imposed. Data-dependent for loop is not efficient because
each thread may perform different number of iterations. Moreover, if-then-else
construct is also inefficient, as the GPU will execute both true and false statements
in order to comply with the SIMT design.

A number of GPU-based evolutionary programming (EP) [10,28], GAs [29], and
genetic programming (GP) [3, 12, 18, 27] have been proposed by researchers.

3 Parallel MOEA for Constrained Optimization
on Graphics Processing Units

We propose a learning algorithm to handle the constrained optimization and cost-
sensitive problems. Let E D fe1; e2; � � � ; eKg be the set of K potential customers
and c.ei /, 1 � i � K , be the amount of money spent by the customer ei . Assume
that r % of the customers will be solicited. If we can learn a regression function
to predict their expected profits or induce a ranking function to arrange the cases
in descending order according to their expected profits, we can solicit the first
dK 	 r %e cases to achieve the goal of maximizing the total expected profits of
the solicited cases. However, Yan and Baldasare [30] pointed out that this approach
tackles an unnecessarily difficult problem and often results in poor performance.

On the other hand, we can learn a scoring function f that divides the K cases
into two classes: U and L. The sizes of U and L should be jU j and jLj, respectively.
Consider a case ei in U ; its f .ei / must be greater than the scoring values of all cases
in L. Moreover, the total of the expected profits of all cases ei in U is maximized.
In other words, we can formulate the learning problem as the following constrained
optimization problem:

Find a scoring function f that

max

8
<

:

X

ei 2U

c.ei /

9
=

;
; U D

8
<

:
ei 2 Ej 6 9ej 2 LŒf .ei / � f .ej /�

9
=

;
(2)

Data Mining Using Parallel Multi-objective Evolutionary Algorithms 293

subject to
� jU j D dK 	 r %e

jLj D K
 dK 	 r %e:
(3)

Since the orderings of all cases in U and all cases in L are insignificant to
our objective, it would be easier to learn the scoring function that achieves an
optimal partial ranking (ordering) of cases. Although the problem of learning the
scoring function is easier, the procedure of finding U and L is still time-consuming
because it is necessary to find the (100
 r) percentile of E . Thus, we simplify the
above constrained optimization problem to the following constrained optimization
problem:

Find a scoring function f and a threshold � that

max

8
<

:

X

ei 2U

c.ei /

9
=

;
; U D

8
<

:
ei 2 Ejf .ei / > �

9
=

;
(4)

subject to

jU j D dK 	 r %e: (5)

We can convert the constrained optimization problem to an unconstrained MOP
with two objectives [26],

maxf
X

ei 2U

c.ei /g; U D fei 2 Ejf .ei / > �g; (6)

minfmaximum.0; jU j
 dK 	 r %e/g: (7)

By limiting f to be a linear function, a MOEA can be used to find the parameters
of the scoring function f and the value of � . We apply a parallel MOEA on GPU
that finds a set of non-dominated solutions for a multi-objective function � that
takes a vector x containing the parameters of the scoring function f as well as the
value of � and returns an objective vector y, where x D Œx.1/; x.2/; � � � ; x.N /�T ,
y D Œy.1/; y.2/; � � � ; y.m/�T , N is 1 plus the number of the parameters of f , and
m is the number of objectives. The algorithm is given in Fig. 1.

In the algorithm given in Fig. 1, xi is a vector of variables evolving and �i controls
the vigorousness of mutation of xi. Firstly, an initial population is generated and the
objective values of the individuals in the initial population are calculated by using
the multi-objective function � .

Next, the rankings and the crowding distances of the individuals are found.
All non-dominated individuals will be assigned a ranking of 0. The crowding
distance of a non-dominated individual is the size of the largest cuboid enclosing it
without including any other non-dominated individuals. In order to find the rankings

294 M.L. Wong and G. Cui

Fig. 1 The MOEA algorithm

Data Mining Using Parallel Multi-objective Evolutionary Algorithms 295

Fig. 2 The dominance-checking algorithm

and the crowding distances of other individuals, the non-dominated individuals are
assumed to be removed from the population and thus another set of non-dominated
individuals can be obtained. The rankings of these individuals should be larger than
those of the previous non-dominated individuals. The crowding distances of the
individuals can also be found. Similarly, the same approach can be applied to find
the rankings and the crowding distances of all other individuals. The procedures
dominance checking and non-dominated selection are used to find these values.
Their algorithms are given in Figs. 2 and 3, respectively.

Then, �=2 pairs of parents will be selected from the population. Two offspring
will be generated for each pair of parents by using crossover and mutation. In
other words, there will be � offspring. The objective vectors of all offspring will
be obtained, and the parent population will be combined with the � offspring
to generate a selection pool. Thus there are 2� individuals in the selection pool.
The rankings and the crowding distances of all individuals in the selection pool
can be obtained by using the dominance-checking and non-dominated-selection
procedures. � Individuals will be selected from the selection pool, and they will
form the next population of individuals. This evolution process will be repeated
until the termination condition is satisfied.

Finally, the non-dominated individual with the smallest value for the second
objective in the last population will be returned. In general, the computation of the
parallel MOEA can be roughly divided into five types: (1) Fitness value evaluation
(steps 3 and 5(d)) (2) Parent selection (step 5(a)) (3) Crossover and mutation
(steps 5(b) and 5(c), respectively) (4) The dominance-checking procedure designed
for parallel algorithms (steps 4(a) and 5(f)) (5) The non-dominated-selection

296 M.L. Wong and G. Cui

Fig. 3 The non-dominated-selection algorithm

procedure which selects individuals from the selection pool (steps 4(b) and 5(g))
These operations will be discussed in the following subsections.

3.1 Data Organization

Suppose we have � individuals and each contains N variables. The most natural
representation for an individual is an array. Figure 4 shows how we represent �

Data Mining Using Parallel Multi-objective Evolutionary Algorithms 297

m

m

h h h h h h

h h

h hh h

h h

Fig. 4 Representing individuals of 32 variables on global memory

individuals in the global memory. Without loss of generality, we take N D 32 as an
example of illustration throughout this chapter.

Since the global memory space is not cached in some GPUs,1 it is important to
use the right access pattern to get maximum memory bandwidth. When the concur-
rent memory accesses by 16 CUDA threads in a half wrap (for GPUs of compute
capability 1.x) or 32 threads in a warp (for GPUs of compute capability 2.x) 2 can
be coalesced into a single memory transaction, the global memory bandwidth can be
improved [21]. In order to fulfill the requirements for coalesced memory accesses,
the same variables from all individuals are grouped and form a tile of � values in the
global memory as shown in Fig. 4. On the other hand, the efficiency of accessing
the same variables of all individuals in parallel will be reduced, if an individual
is mapped to 32 consecutive locations, because the simultaneous memory accesses
cannot be coalesced and multiple memory transactions are required.

3.2 Fitness Value Evaluation

In steps 3 and 5(d) of Fig. 1, the objective vectors of all individuals in the initial
population and all offspring in the temporary population P 3 are calculated. Each
CUDA thread returns an objective vector by feeding the multi-objective function
� with the decision variables of the individual. This evaluation process usually
consumes significant part of the computational time.

1Cache for global memory is only available in GPUs of compute capability 2.x.
2In CUDA, the GPU creates, manages, schedules, and executes threads in groups of 32 parallel
threads called warps. A half-warp is either the first or second half of a warp.

298 M.L. Wong and G. Cui

Since no interaction among threads is required during evaluation, the evaluation
is fully parallelizable. Recall that the individuals are broken down and stored in the
tiles within the global memory. The evaluation kernel looks up the corresponding
variable in each tile during the evaluation. The objective vectors are saved in an
output array of size m � �, because each thread generates a vector of m values.

3.3 Parent Selection

The selection process determines which individuals will be selected as parents
to reproduce offspring. Different selection methods including the roulette wheel
selection, truncation selection, and stochastic tournament have been applied in the
field [11]. The stochastic tournament is employed in our parallel MOEA, because
it is not practical to implement a parallel method on GPU to collect statistical
information on the whole population. Since this information is not required in the
stochastic tournament while it is needed for the other two methods, the stochastic
tournament is more suitable for GPU.

In the tournament selection method, two groups of q individuals are randomly
chosen from the population for each CUDA thread. The number q is the tournament
size. The two individuals with the smallest rankings within the two groups will
be selected as the parents to produce offspring by using crossover and mutation.
If more than one individual in a group has the smallest ranking, the one with
the largest crowding distance will be chosen. A GPU-based random number
generator [14, 22] is used to generate a large number of random numbers stored
in the global memory. These random numbers can then be used for selecting
individuals randomly. Since there are �=2 CUDA threads (see step 5(a) of Fig. 1),
� � q random numbers are used.

We implement our parent selection method in a kernel program. The input of
the kernel is the arrays containing the rankings and the crowding distances of the
individuals, as well as the array containing the random numbers. While the output
of the kernel is the addresses of the breeding parents selected. The addresses of all
selected parents are stored in an output array of size �.

3.4 Crossover and Mutation

The selection operator focuses on searching promising regions of the solution space.
However, it is not able to introduce new solutions that are not in the current
population. In order to escape from local optima and introduce larger population
diversity, the crossover and mutation operators are applied.

We apply single-point crossover in our parallel MOEA. The kernel program takes
input arrays containing the addresses of the selected parents, the individuals, and the
random numbers. It generates � offspring individuals that are stored in the global
memory.

Data Mining Using Parallel Multi-objective Evolutionary Algorithms 299

To accomplish the mutation process on GPU, we designed two kernel programs,
one for computing x0 and the other for �0. They implement the Cauchy mutation
method proposed by Yao and Liu [31]. The individuals xi and �i are stored in two
input arrays while the mutated offspring are generated and written to two output
arrays xi

0 and �0
i. Besides, random numbers stored in the global memory are used by

the two kernels.

3.5 Dominance Checking

We implement the fast dominance-checking procedure applied in NSGA-II [8].
For each individual in the population, two entities are evaluated: Ci is the number
of the other individuals that dominates the ith individual and Si is the set of the
other individuals that are dominated by the ith individual. Thus the ith individual is
non-dominated if the corresponding Ci is 0. This procedure is efficient because only
O.�2/ dominance comparisons should be performed.

Suppose that there are 2� individuals (step 5(f) of Fig. 1), the Ci is stored in an
array of short integer. On the other hand, the Si are represented in a 2D array of
bit, S . If the jth bit of the ith row of S is 1, the jth individual is dominated by the
ith individual. The size of C is 2� short integers, while that of S is 4�2 bits. For
example, their sizes are 16 KB and 8 MB, respectively, if � is 4,096. Their sizes are,
respectively, 64 KB and 128 MB if � is 16,384.

The kernel program implementing the procedure of Fig. 2 takes an input array
of objective vectors of all individuals and produces C and S in the global memory.
Since there is no interaction among the CUDA threads, they can efficiently execute
this kernel in parallel.

Because of the reasons described in Sect. 3.6, the objective vectors, C and S , are
transferred from the global memory to the CPU memory after computing C and S .

3.6 Non-dominated Selection

Instead of executing non-dominated selection on GPU, this procedure is performed
on CPU because of a number of reasons. First, the number of individuals in F (step
7(b) of Fig. 3) varies from one iteration to other iterations. Some CUDA threads
may be idle in some iterations. Second, it is necessary to sort the individuals in
NF (step 7(c) of Fig. 3) according to their objective vectors, in order to calculate
their crowding distances. Although it is possible to execute a sorting algorithm
on GPU [15], its efficiency is doubtful when it is used to sort a relatively small
number of values. Third, many synchronizations may be performed as the variables
Ck and NF may be accessed and modified by different threads concurrently (step
7(b)iii of Fig. 3).

300 M.L. Wong and G. Cui

The CPU implementation of the procedure accesses the objective vectors of
individuals, C and S , that are already stored in the CPU memory. It finds the
rankings and the crowding distances and summarizes the selected individuals in the
output array V . Then, the rankings, the crowding distances, and V are transferred to
the GPU memory.

Based on the information stored in V , the actual replacements of individuals,
the rankings, and the crowding distances are performed on GPU. Thus, the data
movement between the GPU memory and the CPU memory can be reduced, because
it is not necessary to transfer the individuals between the two memory spaces.

In summary, the whole MOEA program, except the non-dominated-selection
procedure, is executed on GPU. Thus, our parallel MOEA gains the most benefit
from the SIMT architecture of GPU.

4 Experiments

In this section, the parallel MOEA is applied to a data mining problem in direct
marketing. The objective of the problem is to predict potential prospects from
the buying records of previous customers. Advertising campaign, which includes
mailing of catalogs or brochures, is then targeted on the group of potential prospects.
Hence, if the prediction is accurate, it can help to enhance the response rate of
the advertising campaign and increase the ROI. The direct marketing problem
requires ranking the customer database according to the customers’ scores obtained
by the prediction models [23].

We compare the parallel MOEA, the parallel HGA [29], and the DMAX
approach for learning prediction models. Since the parallel HGA is a single-
objective optimization algorithm, it is used to optimize the objective defined in (6).
The experiment test bed was an Intel Pentium Dual E2220 CPU with an nVidia
GTX 460 display card, with 2,048 MB main memory and 768 MB GPU memory.
The CPU speed is 2.40 GHz and the GPU contains 336 unified shaders. Microsoft
Windows XP Professional, Microsoft Visual C++ 2008, and nVidia CUDA version
3.1 are used to develop the parallel MOEA and the parallel HGA. On the other hand,
the DMAX approach is developed in Java. The following parameters have been used
in the experiments:

• Population size: � D 256
• Tournament size: q D 2

• Maximum number of generation: G D 500

• The percentage of customers to be solicited: r % D 20 %

4.1 Methodology

The prediction models are evaluated on a large real-life direct marketing dataset
from a US-based catalog company. It sells multiple product lines of merchandise

Data Mining Using Parallel Multi-objective Evolutionary Algorithms 301

including gifts, apparel, and consumer electronics. This dataset contains the records
of 106,284 consumers in a recent promotion as well as their purchase history
over a 12-year period. Furthermore, demographic information from the 1995 US
Census and credit information from a commercial vendor were appended to the main
dataset. Altogether, each record contains 361 variables. The most recent promotion
sent a catalog to every customer in this dataset and achieved a 5.4 % response rate,
representing 5,740 buyers.

Typical in any data mining process, it is necessary to reduce the dimension of
the dataset by selecting the attributes that are considered relevant and necessary.
Towards this feature selection process, there are many possible options. For
instance, we could use either a wrapper selection process or a filter selection
process [25]. In a wrapper selection process, different combinations are iteratively
tried and evaluated by building an actual model out of the selected attributes. In a
filter selection process, certain evaluation function, which is based on information
theory or statistics, is defined to score a particular combination of attributes. Then,
the final combination is obtained in a search process. In this experiment, we have
applied the forward selection method to select 17 variables, that are relevant to
prediction, out of the 361 variables.

Since direct marketers usually have a fixed budget and can only contact a small
portion of the potential customers in their dataset (e.g., top 20 %), simple error rates
or overall classification accuracy of models are not meaningful. To support direct
marketing and other targeted marketing decisions, maximizing the number of true
positives at the top deciles is usually the most important criterion for assessing the
performance of prediction models [1, 33].

To compare the performance of different prediction models, we use decile
analysis which estimates the enhancement of the response rate and the profit for
marketing at different depth-of-file. Essentially, the ranked list is equally divided
into ten deciles. Customers in the first decile are the top-ranked customers that are
most likely to give response and generate high profit. On the other hand, customers
in the tenth decile are ranked lowest. To measure the performance of a model at
different depths of file, direct marketing researchers have relied on the “lift,” which
is the ratio of true positives to the total number of records identified by the model
in comparison with that of a random model at a specific decile of the file. Thus,
comparing the performance of models across depths of file using cumulative lifts
or the “response rate” are necessary to inform decisions in direct marketing. Profit
lift is the amount of extra profit generated with the new method over that generated
by a random method. In this sense, the goal to achieve higher lifts in the upper
deciles becomes a ranking problem based on the scores returned by the model and
help to evaluate the effectiveness of targeted marketing and to forecast sales and
profitability of promotion campaigns.

4.2 Cross-Validation Results

In order to compare the robustness of the prediction models, we adopt a ten-
fold cross-validation approach for performance estimation. A dataset is randomly

302 M.L. Wong and G. Cui

Table 1 Cumulative lifts of the models learned by different methods

Decile Parallel MOEA Parallel HGA DMAX

0 358.47 (25.11) 147.53 (16.84)C 310.60 (34.10)C

1 270.46 (9.54) 132.51 (6.98)C 234.20 (20.50)C

2 219.11 (6.58) 125.68 (5.82)C 195.50 (12.30)C

3 182.48 (3.92) 120.65 (5.88)C 170.60 (6.30)C

4 156.11 (2.54) 115.84 (4.70)C 150.90 (3.90)
5 138.17 (2.51) 111.59 (3.42)C 136.60 (2.90)
6 124.95 (2.99) 109.12 (2.69)C 125.20 (2.10)
7 114.51 (2.63) 106.17 (1.88)C 115.40 (1.60)
8 106.77 (1.18) 103.66 (0.84)C 106.90 (1.20)
9 100.00 (0.00) 100.00 (0.00) 100.00(0.00)

partitioned into 10 mutually exclusive and exhaustive folds. Each time, a different
fold is chosen as the test set, and other nine folds are combined together as the
training set. Prediction models are learned from the training set and evaluated on
the corresponding test set.

In Table 1, the average of the cumulative lifts of the models learned by
different methods are summarized. Numbers in the parentheses are the standard
deviations. The highest cumulative lift in each decile is highlighted in bold. The
superscript C represents that the cumulative lift of the model obtained by the parallel
MOEA is significant higher at 0.05 level than that of the models obtained by the
corresponding methods. The superscript � represents that the cumulative lift of the
model obtained by the parallel MOEA is significantly lower at 0.05 level than that
of the corresponding models.

From Table 1, the models generated by the parallel MOEA have the average
cumulative lifts of 358.47 and 270.46 in the first two deciles, respectively, suggest-
ing that by mailing to the top two deciles alone, the models generate over twice
as many respondents as a random mailing without a model. Moreover, the average
cumulative lifts of the models learnt by the parallel MOEA are significantly higher
than those of the models obtained by the other methods for the first four deciles.

The average of the cumulative profit lifts of the models learned by different
methods are summarized in Table 2. It is observed that the average cumulative
profit lifts of the models learnt by the parallel MOEA are significantly higher than
those of the models obtained by the other methods for the first three deciles. The
average profits for different models are listed in Table 3. Direct marketers can get
$11,461.63 if they use the parallel MOEA to generate models for selecting 20 % of
the customers from the dataset. On the other hand, they can get only $10,514.24 if
they apply the DMAX approach for selecting customers. The parallel HGA cannot
learn good models because the objective (i.e., (7)) representing the constraint is not
considered in this approach.

In order to study the effect of the value of r on the performance of the
models learnt by the parallel MOEA, we apply different values of r and compare

Data Mining Using Parallel Multi-objective Evolutionary Algorithms 303

Table 2 Cumulative profit lifts of the models learned by different
methods

Decile Parallel MOEA Parallel HGA DMAX

0 621.00 (49.16) 242.35 (38.54)C 550.80 (61.00)C

1 382.03 (14.14) 188.26 (16.5)C 350.80 (24.10)C

2 278.72 (10.26) 166.24 (9.71)C 261.70 (15.70)C

3 221.96 (8.05) 151.66 (12.04)C 213.30 (7.40)
4 181.81 (4.90) 139.39 (9.96)C 179.10 (5.30)
5 155.32 (5.27) 129.93 (5.91)C 156.30 (4.20)
6 135.55 (4.51) 121.79 (4.74)C 137.60 (3.90)
7 121.20 (3.71) 114.63 (2.95)C 122.10 (3.00)
8 110.20 (1.57) 108.2 (1.16)C 109.70 (2.00)
9 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

Table 3 Average profits for the models learned by different methods

Decile Parallel MOEA Parallel HGA DMAX

0 $9,339.04 $3,646.49 $8,254.34
1 $11,461.63 $5,650.60 $10,514.24
2 $12,545.96 $7,472.12 $11,765.58
3 $13,317.80 $9,077.67 $12,786.13
4 $13,631.38 $10,429.06 $13,420.04
5 $13,974.12 $11,677.79 $14,053.96
6 $14,234.71 $12,768.95 $14,434.60
7 $14,542.35 $13,744.59 $14,638.41
8 $14,867.79 $14,588.65 $14,795.77
9 $14,986.09 $14,986.09 $14,986.09

Table 4 Cumulative lifts of the models learned by the parallel MOEA

Decile r D 10 % r D 30 % r D 40 % r D 50 %

0 363.28 (24.59) 354.39 (27.66) 363.28 (24.59) 363.28 (24.59)
1 267.32 (8.40) 267.02 (12.43) 267.32 (8.40) 267.32 (8.40)
2 214.89 (5.59) 220.53 (7.28) 214.89 (5.59) 214.89 (5.59)
3 180.27 (4.61) 185.51 (4.78) 180.27 (4.61) 180.27 (4.61)
4 155.63 (3.76) 161.84 (3.74) 155.63 (3.76) 155.63 (3.76)
5 137.96 (3.03) 143.03 (1.98) 137.96 (3.03) 137.96 (3.03)
6 124.69 (2.68) 128.90 (1.85) 124.69 (2.68) 124.69 (2.68)
7 114.10 (1.95) 117.33 (1.48) 114.10 (1.95) 114.10 (1.95)
8 106.16 (1.50) 108.72 (0.85) 106.16 (1.50) 106.16 (1.50)
9 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

the cumulative lifts and the cumulative profit lifts of the induced models. From
Tables 4 and 5, it is found that our approach is quite stable because it can learn good
models for different values of r .

304 M.L. Wong and G. Cui

Table 5 Cumulative profit lifts of the models learned by the parallel MOEA

Decile r D 10 % r D 30 % r D 40 % r D 50 %

0 621.08 (46.31) 616.99 (51.25) 621.08 (46.31) 621.08 (46.31)
1 377.88 (14.76) 377.51 (18.49) 377.88 (14.76) 377.88 (14.76)
2 276.31 (9.96) 281.15 (11.13) 276.31 (9.96) 276.31 (9.96)
3 217.91 (6.91) 222.98 (10.05) 217.91 (6.91) 217.91 (6.91)
4 181.69 (5.75) 185.63 (6.98) 181.69 (5.75) 181.69 (5.75)
5 154.24 (4.39) 158.46 (3.67) 154.24 (4.39) 154.24 (4.39)
6 134.84 (4.25) 139.18 (3.18) 134.84 (4.25) 134.84 (4.25)
7 119.91 (2.99) 123.25 (2.36) 119.91 (2.99) 119.91 (2.99)
8 108.40 (2.52) 111.31 (0.82) 108.40 (2.52) 108.40 (2.52)
9 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

Table 6 The average execution time (in seconds) of the CPU implementation

Generation

100 150 200 250 300 350 400 450 500

OT 129:29 194:15 259:10 324:09 389:11 454:15 519:20 584:29 648:11

DC 0:50 0:79 1:06 1:34 1:60 1:88 2:15 2:41 2:67

NS 0:01 0:02 0:02 0:03 0:03 0:05 0:06 0:06 0:07

FE 128:78 193:35 258:02 322:73 387:48 452:22 516:99 581:82 645:37

ratio 0:9960 0:9959 0:9958 0:9958 0:9958 0:9958 0:9958 1:00 1:00

The OT, DC, NS, and FE rows show the average time in performing, respectively, all steps, the
dominance-checking step, the non-dominated-selection step, and fitness evaluations

Table 7 The average execution time (in seconds) of the GPU implementation

Generation

100 150 200 250 300 350 400 450 500

OT 5:75 8:55 11:35 14:14 16:93 19:72 22:51 25:31 28:04

DC 0:03 0:04 0:06 0:07 0:09 0:11 0:14 0:16 0:17

NS 0:03 0:05 0:06 0:07 0:08 0:09 0:10 0:11 0:11

FE 5:68 8:46 11:23 14:00 16:77 19:52 22:28 25:05 27:75

ratio 0:989 0:989 0:989 0:990 0:990 0:990 0:989 0:990 0:990

4.3 Comparison Between GPU and CPU Approaches

We compare the CPU and the GPU implementations of the MOEA. The average
execution time of different steps of the CPU implementation is summarized in
Table 6. The ratios of the time used in fitness evaluations to the overall execution
time are also reported in this table. It can be observed that the fitness evaluation time
is significantly higher than that of the other steps because the training sets are very
large. The average execution time of the GPU implementation is summarized in
Table 7. The parallel MOEA takes about 28 s to learn a model. On the other hand, it
takes about 648 and 7,315 s, respectively, for the CPU implementation of the MOEA
and the DMAX approach to learn a model.

Data Mining Using Parallel Multi-objective Evolutionary Algorithms 305

Table 8 The speedups of the GPU implementation with the CPU implementation

Generation

100 150 200 250 300 350 400 450 500

OT 22:505 22:713 22:835 22:919 22:978 23:024 23:058 23:085 23:115

DC 15:317 18:740 17:542 19:153 18:368 16:782 15:007 15:457 15:440

NS 0:354 0:305 0:346 0:350 0:388 0:527 0:572 0:542 0:602

FE 22:669 22:869 22:982 23:054 23:111 23:167 23:209 23:231 23:255

Table 8 displays the speedups of the overall programs and different
steps of the programs. The speedups of the GPU implementation of the
dominance-checking procedure range from 15.00 to 18.74. On the other hand,
the Pnon-dominated-selection procedure of the GPU implementation is slower than
that of the CPU approach. The overall speedup is about 23.1.

Since a marketing campaign often involves huge dataset and large investment,
prediction models which can categorize more prospects into the target list are valu-
able as they will enhance the response rate as well as the ROI. From the experimental
results, the prediction models generated by the parallel MOEA are more effective
than the other models and the parallel MOEA is significantly faster than the DMAX
approach.

5 Conclusions

An important issue in targeted marketing is how to find potential customers who
contribute large profits to a firm under constrained resources. In this chapter, we
have proposed a data mining method to learn models for identifying valuable
customers. We have formulated this learning problem as a constrained optimization
problem of finding a scoring function f and a threshold value � . We have then
converted it to an unconstrained MOP.

By limiting f to be a linear function, a parallel MOEA on GPU has been used
to handle the MOP and find the parameters of f as well as the value of � . We
have used tenfold cross-validation and decile analysis to compare the performance
of the parallel MOEA, the parallel HGA, and the DMAX approach for a real-life
direct marketing problem. Based on the cumulative lifts, cumulative profit lifts, and
average profits, it can be concluded that the models generated by the parallel MOEA
significantly outperform the models learnt by other methods in many deciles. Thus,
the parallel MOEA is more effective. Moreover, it is significantly faster than the
DMAX approach.

We have performed experiments to compare our parallel MOEA and a CPU
implementation of MOEA. It is found that the overall speedup is about 23.1. Thus,
our approach will be very useful for solving difficult direct marketing problems that
involve large datasets and require huge population sizes.

For future work, we will extend our method to learn nonlinear scoring functions
and apply it to other targeted marketing problems under resource constraints.

306 M.L. Wong and G. Cui

Acknowledgements This work is supported by Hong Kong RGC General Research Fund
LU310111.

References

1. Bhattacharyya, S.: Direct marketing performance modeling using genetic algorithms.
INFORMS J. Comput. 11(3), 248–257 (1999)

2. Bult, J.R., Wansbeek, T.: Optimal selection for direct mail. Manag. Sci. 14(4), 1362–1381
(1995)

3. Chitty, D.M.: A data parallel approach to genetic programming using programmable graphics
hardware. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary
Computation (GECCO ’07), vol. 2, pp. 1566–1573 (2007)

4. Coello Coello, C.A., Toscano Pulido, G., Salazar Lechuga, M.: Handling multiple objectives
with particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2004)

5. Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: region-based selection in
evolutionary multiobjective optimization. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO’2001), pp. 283–290 (2001)

6. Cui, G., Wong, M.L.: Implementing neural networks for decision support in direct marketing.
Int. J. Market Res. 46(2), 1–20 (2004)

7. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, New York
(2001)

8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

9. Fieldsend, J.E., Everson, R.M., Singh, S.: Using unconstrained elite archives for multiobjective
optimization. IEEE Trans. Evol. Comput. 7(3), 305–323 (2003)

10. Fok, K.L., Wong, T.T., Wong, M.L.: Evolutionary computing on consumer-level graphics
hardware. IEEE Intell. Syst. 22(2), 69–78 (2007)

11. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley, Reading (1989)

12. Harding, S., Banzhaf, W.: Fast genetic programming on GPUs. In: Proceedings of the 10th
European Conference on Genetic Programming (EuroGP’2007), pp. 90–101 (2007)

13. Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched Pareto genetic algorithm for multiobjective
optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation,
IEEE World Congress on Computational Intelligence, vol. 1, pp. 82–87 (1994)

14. Howes, L., Thomas, D.: Efficient random number generation and application using CUDA. In:
Nguyen, H. (ed.) GPU Gems 3, pp. 805–830. Addison-Wesley, Reading (2007)

15. Kipfer, P., Westermann, R.: Improved GPU Sorting. In: Pharr, M. (ed.) GPU Gems 2, pp. 733–
746. Addison-Wesley, Reading (2005)

16. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto Archived
Evolution Strategy. Evol. Comput. 8(2), 149–172 (2000)

17. Knowles, J.D., Corne, D.W.: Properties of an adaptive archiving algorithm for storing
nondominated vectors. IEEE Trans. Evol. Comput. 7(2), 100–116 (2003)

18. Langdon, W.B., Banzhaf, W.: A SIMD interpreter for genetic programming on GPU graph-
ics cards. In: Proceedings of the 11th European Conference on Genetic Programming
(EuroGP’2008), pp. 73–85 (2008)

19. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in
evolutionary multi-objective optimization. Evol. Comput. 10(3), 263–282 (2002)

20. Mulhern, F.J.: Customer profitability analysis: measurement, concentration, and research
directions. J. Interact. Market. 13(1), 25–40 (1999)

21. nVidia: NVIDIA CUDA C Programming Guide Version 3.1. Technical Report, nVidia
Corporate (2010). http://developer.nvidia.com/object/cuda.html

http://developer.nvidia.com/object/cuda.html

Data Mining Using Parallel Multi-objective Evolutionary Algorithms 307

22. Pang, W.M., Wong, T.T., Heng, P.A.: Generating massive high-quality random numbers using
GPU. In: Proceedings of the 2008 Congress on Evolutionary Computation (CEC 2008),
pp. 841–847 (2008)

23. Rud, O.P.: Data Mining Cookbook: Modeling Data for Marketing, Risk and Customer
Relationship Management. Wiley, New York (2001)

24. Runarsson, T.P., Yao, X.: Search biases in constrained evolutionary optimization. IEEE Trans.
Syst. Man Cybern. C 35(2), 233–243 (2005)

25. Singh, M.: Learning Bayesian networks for solving real-world problems. Ph.D. thesis,
University of Pennsylvania (1998)

26. Wang, Y., Cai, Z., Guo, G., Zhou, Y.: Multiobjective optimization and hybrid evolutionary
algorithm to solve constrained optimization problems. IEEE Trans. Syst. Man Cybern. B 37(3),
560–575 (2007)

27. Wilson, G., Banzhaf, W.: Linear genetic programming GPGPU on Microsoft’s Xbox 360. In:
Proceedings of the 2008 Congress on Evolutionary Computation (CEC’2008), pp. 378–385
(2008)

28. Wong, M.L., Wong, T.T., Fok, K.L.: Parallel evolutionary algorithms on graphics processing
unit. In: Proceedings of the 2005 Congress on Evolutionary Computation (CEC’2005),
pp. 2286–2293 (2005)

29. Wong, M.L., Wong, T.T., Fok, K.L.: Parallel hybrid genetic algorithms on consumer-level
graphics hardware. In: Proceedings of the 2006 Congress on Evolutionary Computation
(CEC’2006), pp. 10330–10337 (2006)

30. Yan, L., Baldasare, P.: Beyond classification and ranking: constrained optimization of the ROI.
In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 948–953 (2006)

31. Yao, X., Liu, Y.: Fast evolutionary programming. In: Evolutionary Programming V: Proceed-
ings of the 5th Annual Conference on Evolutionary Programming. MIT Press, Cambridge
(1996)

32. Yen, G.G., Lu, H.: Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank
and density estimation. IEEE Trans. Evol. Comput. 7(3), 253–274 (2003)

33. Zahavi, J., Levin, N.: Applying neural computing to target marketing. J. Direct Market. 11(4),
76–93 (1997)

34. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary
algorithm. In: Giannakoglou, K., Tsahalis, D., Periaux, J., Papailou, P., Fogarty, T. (eds.)
EUROGEN 2001. Evolutionary Methods for Design, Optimization and Control with Appli-
cations to Industrial Problems, pp. 95–100. International Center for Numerical Methods in
Engineering, Barcelona (2002)

35. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and
the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

	Data Mining Using Parallel Multi-objective Evolutionary Algorithms on Graphics Processing Units
	1 Introduction
	2 Overview
	2.1 Constrained Optimization for Direct Marketing
	2.2 Multi-objective Evolutionary Algorithms
	2.3 Graphics Processing Units

	3 Parallel MOEA for Constrained Optimization on Graphics Processing Units
	3.1 Data Organization
	3.2 Fitness Value Evaluation
	3.3 Parent Selection
	3.4 Crossover and Mutation
	3.5 Dominance Checking
	3.6 Non-dominated Selection

	4 Experiments
	4.1 Methodology
	4.2 Cross-Validation Results
	4.3 Comparison Between GPU and CPU Approaches

	5 Conclusions
	References

