
New Ideas in Parallel Metaheuristics on GPU:
Systolic Genetic Search

Martı́n Pedemonte, Francisco Luna, and Enrique Alba

Abstract This chapter presents an in-depth study of a novel parallel optimization
algorithm specially designed to run on Graphic Processing Units (GPUs). The
underlying operation relates to systolic computing and is inspired by the systolic
contraction of the heart that makes possible blood circulation. The algorithm, called
Systolic Genetic Search (SGS), is based on the synchronous circulation of solutions
through a grid of processing units and tries to profit from the parallel architecture
of GPUs to achieve high time performance. SGS has shown not only to numerically
outperform a random search and two genetic algorithms for solving the Knapsack
Problem over a set of increasingly sized instances, but also its parallel imple-
mentation can obtain a runtime reduction that, depending on the GPU technology
used, can reach more than 100 times. A study of the performance of the parallel
implementation of SGS on four different GPUs has been conducted to show the
impact of the Nvidia’s GPU compute capabilities on the runtimes of the algorithm.

1 Introduction

The design of parallel metaheuristics [1], thanks to the increasing power offered
by modern hardware architectures, is a natural research line in order to reduce the
execution time of the algorithms, especially when solving problems of a high dimen-
sion, highly restricted, and/or time bounded. Parallel metaheuristics are often based

M. Pedemonte (�)
Instituto de Computación, Facultad de Ingenierı́a, Universidad de la República,
Montevideo, Uruguay
e-mail: mpedemon@fing.edu.uy

F. Luna � E. Alba
Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga, Málaga,
Spain
e-mail: flv@lcc.uma.es; eat@lcc.uma.es

S. Tsutsui and P. Collet (eds.), Massively Parallel Evolutionary Computation
on GPGPUs, Natural Computing Series, DOI 10.1007/978-3-642-37959-8 10,
© Springer-Verlag Berlin Heidelberg 2013

203

mailto:mpedemon@fing.edu.uy
mailto:flv@lcc.uma.es
mailto:eat@lcc.uma.es


204 M. Pedemonte et al.

on new different search patterns that are later implemented on physically parallel
hardware, then improving the quality of results obtained by traditional sequential
algorithms and also reducing their execution time. As a consequence, research on
parallel metaheuristics has grown substantially in recent years, motivated by the
excellent results obtained in their application to the resolution of problems in search,
optimization, and machine learning.

Among parallel metaheuristics, Parallel Evolutionary Algorithms (PEAs) have
been extensively adopted and are nowadays quite popular, mainly because Evolu-
tionary Algorithms (EAs) are naturally prone to parallelism. For this reason, the
study of parallelization strategies for EAs has laid the foundations for working
in parallel metaheuristics. The most usual criterion for categorizing PEAs distin-
guishes three categories [3, 17]: the master–slave model (functional distribution
of the algorithm), the distributed or island model (the population is partitioned
into a small number of subpopulations that evolve in semi-isolation) [3], and
the cellular model (the population is structured in overlapping neighborhoods
with limited interactions between individuals) [2]. Although tied to hardware
(clusters and multicores, especially), the previous research actually deals a lot with
decentralization of search techniques, leaving the running platform sometimes as a
background aid just to reduce time.

The use of Graphics Processing Units (GPUs) for general purpose computing
(GPGPU) has experienced tremendous growth in recent years. This growth has been
based on its wide availability, low economic cost, and inherent parallel architecture
and also on the emergence of general purpose programming languages, such as
CUDA [11, 20]. This fact has also motivated many scientists from different fields
to take advantage of the use of GPUs in order to tackle general problems in various
fields like numerical linear algebra [8], databases [21], model order reduction [5],
and scientific computing [11].

GPGPU also represents an inspiring domain for research in parallel metaheuris-
tics. Naturally, the first works on GPUs have gone in the direction of implementing
the mentioned three categories of PEAs on this new kind of hardware [14]. Thus,
many results show the time savings of running master–slave [18], distributed [30],
and cellular [28, 29] metaheuristics on GPU, mainly Genetic Algorithms (GAs)
[18, 22] and Genetic Programming [9, 14–16, 19] but also other types of techniques
like Ant Colony Optimization [6], Differential Evolution [7], and Particle Swarm
Optimization [31].

A different approach is not to take a regular existing family of algorithms and
port it to a GPU but to propose new techniques based on the architecture of GPUs.
Recently, two optimization algorithms have been proposed, Systolic Neighborhood
Search (SNS) [4] and Systolic Genetic Search (SGS) [23], based on the idea of
systolic computing.

The concept systolic computing was developed at Carnegie-Mellon University
by Kung and Leiserson [12, 13]. The basic idea focuses on creating a network
of different simple processors or operations that rhythmically compute and pass
data through the system. Systolic computation offers several advantages, including
simplicity, modularity, and repeatability of operations. This kind of architecture
also offers transparent, understandable, and manageable but still quite powerful



New Ideas in Parallel Metaheuristics on GPU: Systolic Genetic Search 205

parallelism. However, this architecture had difficulties in the past, since building
systolic computers was not easy and, especially, because programming high-level
algorithms on such a low-level hardware was hard, error prone, and too manual.
Now with GPUs we can avoid such problems and get only the advantages.

In the leading work on optimization algorithms using systolic computing, the
SNS algorithm has been proposed, based on local search [4]. Then, we have
explored a new line of research that involved more diverse operations. Therefore,
we have proposed a novel parallel optimization algorithm that is based on the
synchronous circulation of solutions through a grid of cells and the application of
adapted evolutionary operators. We called this algorithm SGS [23]. In SGS [23],
solutions flow across processing units according to a synchronous execution plan.
When two solutions meet in a cell, adapted evolutionary operators (crossover and
mutation) are applied to obtain two new solutions that continue moving through the
grid. In this way, solutions are refined again and again by simple low-complexity
search operators.

The goal of this work is to evaluate one of the new algorithms that can be
proposed based on the premises of SGS. In the first place, we evaluate SGS
regarding the quality of solutions obtained. Then, we focus on analyzing the
performance of the GPU implementation of the algorithm on four different cards.
This evaluation shows how changes produced in GPUs in a period of only 2 years
impact on the runtime of the algorithm implemented. Considering the results in
a broader perspective, it also shows the impressive progress on the design and
computing power of these devices.

This chapter is organized as follows. The next section introduces the SGS algo-
rithm. Section 3 describes the implementation of the SGS on a GPU. Then, Sect. 4
presents the experimental study considering several instances of the Knapsack
Problem (KP) evaluated over four different Nvidia’s GPUs. Finally, in Sect. 5, we
outline the conclusions of this work and suggest future research directions.

2 Systolic Genetic Search

In a SGS algorithm, the solutions are synchronously pumped through a bidimen-
sional grid of cells. The idea is inspired by the systolic contraction of the heart that
makes possible that ventricles eject blood rhythmically according to the metabolic
needs of the tissues.

It should be noted that although SGS has points of contact with the behavior
of Systolic Arrays (SAs) [10] and both ideas are inspired by the same biological
phenomenon, they have an important difference. In SAs, the data is pumped from
the memory through the units before returning to the memory, whereas in SGSs the
data only circulates through the cells, all time.

At each step of SGS, as it is shown in Fig. 1, two solutions enter each cell,
one from the horizontal (Si;j

H ) and one from the vertical (Si;j
V ), where adapted

evolutionary/genetic operators are applied to obtain two new solutions that leave
the cell, one through the horizontal (Si;j C1

H ) and one through the vertical (SiC1;j
V ).



206 M. Pedemonte et al.

Fig. 1 Systolic cell

Algorithm 1 Systolic Genetic Search
1: for all c Cell do
2: c:h DgenerateRandomSolution();
3: c:v DgenerateRandomSolution();
4: end for
5: for i D 1 to maxGenerat ion do
6: for all c Cell do
7: .tempH ; tempV / Dcrossover(c:h; c:v);
8: tempH Dmutation(tempH );
9: tempV Dmutation(tempV );

10: c1 DcalculateNextHorizontalCell(c);
11: c2 DcalculateNextVerticalCell(c);
12: tempH Delitism(c:h; tempH );
13: tempV Delitism(c:v; tempV );
14: moveSolutionToCell(tempH ; c1:h);
15: moveSolutionToCell(tempV ; c2:v);
16: end for
17: end for

The pseudocode of the SGS algorithm is presented in Algorithm 1. Each cell
applies the basic evolutionary search operators (crossover and mutation) but to
different, preprogrammed fixed positions of the tentative solutions that circulate
throughout the grid. In this way, the search process is actually structured. The cells
use elitism to pass on to the next cells the best solution among the incoming solution
and the newly generated one by the genetic operators. The incorporation of elitism
is critical, since there is no global selection process as in standard EAs.

Each cell sends the outgoing solutions to the next horizontal and vertical cells that
are previously calculated, as shown in the pseudocode. Thus it is possible to define
different cell interconnection topologies. In this work, and in order to make the idea
of the method more easily understood, we have used a bidimensional toroidal grid
of cells, as shown in Fig. 2.

In order to better illustrate the working principles of SGS, let us consider that
the problem addressed can be encoded as binary string, with bit-flip mutation and
two-point crossover as evolutionary search operators. We want to remark that the
idea of the proposal can be adapted to other representations and operators. In this
case (binary representation), the positions in which operators are applied in each cell



New Ideas in Parallel Metaheuristics on GPU: Systolic Genetic Search 207

Fig. 2 Two-dimensional toroidal grid of cells

are computed by considering the coordinates occupied by the cell in the grid, thus
avoiding the generation of random numbers. Some key aspects of the algorithm such
as the size of the grid and the calculation of the mutation point and the crossover
points are discussed next.

2.1 Size of the Grid

The length and width of the grid should allow the algorithm to have a good explo-
ration, but without increasing the population to sizes that compromise performance.
In order to generate all possible mutation points at each row, the grid length is l

(the length of the tentative solutions), and therefore each cell in a row modifies a
different position of the solutions. For the same reason, the natural value for the
width of the grid is also l . However, in order to keep the total number of solutions
of the population within an affordable value, the width of the grid has been reduced
to � D dlg le. Therefore, the number of solutions of the population is 2 � l � � (two
solutions for each cell).

2.2 Mutation

The mutation operator always changes one single bit in each solution. Figure 3
shows the general idea followed to distribute the points of mutation over the entire
grid.



208 M. Pedemonte et al.

Fig. 3 Distribution of mutation points across the grid

Each cell in the same row mutates a different bit in order to generate diversity by
encouraging the exploration of new solutions. On the other hand, cells in the same
column should not mutate the same bit in order to avoid deteriorating the search
capability of the algorithm. For this reason, the mutation points on each row are
shifted div.l; �/ places.

Figure 4 shows an example of the mutation points of the cells from column j .
The general formula for calculating the mutation point of a cell .i; j / is:

1 C
��

i � 1

�
l

�
C j � 1

�
mod l ; (1)

where mod is the modulus of the integer division and the division in the formula is
an integer division.

2.3 Crossover

Figure 5 shows the general idea followed to distribute the crossover points over the
entire grid.

For the first crossover point two different values are used in each row, one for
the first l=2 cells and another one for the last l=2 cells. These two values differ by
div.l; 2�/, while cells of successive rows in the same column differ by div.l; �/. This
allows using a large number of different values for the first crossover point following



New Ideas in Parallel Metaheuristics on GPU: Systolic Genetic Search 209

Fig. 4 Mutation points for column j

Fig. 5 Distribution of crossover points across the grid

a pattern known a priori. Figure 6 illustrates the first crossover point calculation. The
general formula for calculating the first crossover point of a cell .i; j / is:

2 C l

�
.i � 1/ C j � 1

l
2

l

2�
; (2)

where all the divisions in the formula are integer divisions.



210 M. Pedemonte et al.

Fig. 6 First crossover point calculation

Fig. 7 Second crossover point calculation

For the second crossover point, the distance to the first crossover point increases
with the column, from a minimum distance of 2 positions to a maximum distance
of div.l; 2/ C 1 positions. In this way, cells in successive columns exchange a larger
portion of the solutions. Figure 7 illustrates the second crossover point calculation,
being F1 the first crossover point for the first l=2 cells and F2 the first crossover
point for the last l=2 cells. If the value of second crossover point is smaller than the
first one, the values are swapped. The general formula for calculating the second
crossover point of a cell .i; j / is:

1 C
 

3 C l

�

�
i � 1

�
C j � 1

l
2

l

2�
C
�

.j � 1/ mod
l

2

�!
mod l ; (3)

where all the divisions in the formula are integer divisions.

2.4 Exchange of Directions

As the length of the grid is larger than the width of the grid, the solutions moving
through the vertical axis would be limited to only � different mutation and crossover
points, while those moving horizontally use a wider set of values. In order to avoid
this situation, which can cause the algorithm not to reach its full potential, every �

iterations the two solutions being processed in each cell exchange their directions.
That is, the solution moving horizontally leaves the cell through the vertical axis,
while the one moving vertically continues through the horizontal.



New Ideas in Parallel Metaheuristics on GPU: Systolic Genetic Search 211

3 SGS Implementation

This section is devoted to presenting how SGS has been deployed on a GPU. In
this work we study the performance of the GPU implementation of SGS in four
different Nvidia’s devices, so we provide a general snapshot of GPU devices and
briefly comment some important differences between the devices used. Then, all
the implementation details are introduced.

3.1 Graphics Processing Units

The architecture of GPUs was designed following the idea of devoting more
transistors to computation than traditional CPUs [11]. As a consequence, current
GPUs have a large number of small cores and are usually considered many-cores
processors.

The CUDA architecture abstracts these computing devices as a set of shared
memory multiprocessors (MPs) that are able to run a large number of threads
in parallel. Each MP follows the Single Instruction Multiple Threads (SIMT)
parallel programming paradigm. SIMT is similar to SIMD but in addition to data-
level parallelism (when threads are coherent) allows thread-level parallelism (when
threads are divergent) [11, 20].

When a kernel is called in CUDA, a large number of threads are generated
on the GPU. The threads are grouped into blocks that are run concurrently on
a single MP. The blocks are divided into warps that are the basic scheduling
unit in CUDA and consist of 32 consecutive threads. Threads can access data on
multiple memory spaces during their lifetime, being the most commonly used:
registers, global memory, shared memory, and constant memory. Registers and
shared memory are fast memories, but registers are only accessible by each thread,
while shared memory can be accessed by any thread of a block. The global memory
is the slowest memory on the GPU and can be accessed by any executing thread.
Finally, constant memory is fast although is read-only for the device [27].

The compute capability allows knowing some features of a GPU device. In this
work we use a GPU with compute capability 1.1 (a GeForce 9800 GTXC), two
with compute capability 1.3 (a Tesla C1060 and a GeForce GTX 285), and one
with compute capability 2.0 (a GeForce GTX 480). Table 1 presents some of the
most important features for devices with the compute capabilities considered in this
work [20].

It should also be noted that the global memory access has improved significantly
in devices with newer compute capabilities [20]. In devices with compute capability
1.1, each half-warp must read 16 words in sequence that lie in the same segment
to produce a single access to global memory for the half-warp, which is known as
coalesced access. Otherwise, when a half-warp reads words from different segments
(misaligned reads) or from the same segment but the words are not accessed



212 M. Pedemonte et al.

Table 1 Features according to compute capabilities of the device

Compute capability

Technical specification 1.1 1.3 2.0

Maximum number of threads per block 512 512 1; 024

Number of 32-bit registers per multiprocessor (K) 8 16 32

Maximum amount of shared memory per multiprocessor (KB) 16 16 48

Constant memory size (KB) 64 64 64

Number of CUDA cores per multiprocessor 8 8 32

Warp schedulers 1 1 2

sequentially, it produces an independent access to global memory for each thread of
the half-warp. The access to global memory was improved considerably in devices
with compute capabilities 1.2 and 1.3, and threads from the same half-warp can
read any words in any order in a segment with a single access (including when
several threads read the same word). Finally, the devices with compute capabilities
2.0 include cached access to global memory.

3.2 Implementation Details

Figure 8 shows the structure of the GPU implementation of the SGS algorithm.
The execution starts with the initialization of the population that runs in the CPU
and solutions are transferred to the global memory of the GPU. Thus, the results
obtained working with the same seed are exactly the same for the CPU and GPU
implementations. This restriction can increase the runtime of the GPU implementa-
tion but simplifies the experimental analysis by focusing in the performance. Then,
the constant data required for computing the fitness values is copied to the constant
memory of the GPU. At each iteration, the crossover and mutation operators
(crossoverAndMutation kernel), the fitness function evaluation (evaluate kernel),
and the elitist replacement (elitism kernel) are executed on the GPU. Additionally,
the exchange of directions operator (exchange kernel) is applied on the GPU in
given iterations (when div.generation; �/ DD 0). Finally, when the algorithm
reaches the stop condition, the population is transferred back from the GPU to
the CPU.

The kernels are implemented following the idea used in [22], in which operations
are assigned to a whole block and all the threads of the block cooperate to perform
an operation. If the solution length is larger than the number of threads in the block,
each thread processes more than one element of the solution but the elements used
by a single thread are not contiguous. Thus, each operation is applied to a solution
in chunks of the size of the thread block (T in the following figure), as it is shown
in Fig. 9.



New Ideas in Parallel Metaheuristics on GPU: Systolic Genetic Search 213

Fig. 8 Structure of GPU implementation

Fig. 9 Threads organization

l �� Blocks are launched for the execution of crossoverAndMutation kernel (one
for each cell). Initially, the global memory location of the solutions of the cell, the
global memory location where the resulting solutions should be stored, the crossover
points, and the mutation point are calculated from the block identifiers. Then, the
crossover is applied to the two solutions, processing the solution components in
chunks of size of the thread block. Finally, the thread zero of the block performs the
mutation of both solutions.



214 M. Pedemonte et al.

The elitism, exchange, and evaluate kernels follow the same idea regarding the
thread organization and behavior and are also launched for execution organized in
l � � blocks. The fitness function evaluation (evaluate kernel) uses data from the
constant memory of the GPU and an auxiliary structure in shared memory to store
the partial fitness values computed by each thread. Finally, it applies a reduction to
calculate the full fitness value.

4 Experimental Results

This section describes the problem used for the experimental study, the parameters
setting, and the execution platforms. Then, the results obtained are presented and
analyzed.

4.1 Test Problem: The Knapsack Problem

The KP is a classical combinatorial optimization problem that belongs to the class
of N P-hard problems [25]. It is defined as follows. Given a set of n items, each of
them having associated an integer value pi called profit or value and an integer value
wi known as weight, the goal is to find the subset of items that maximizes the total
profit keeping the total weight below a fixed maximum capacity (W ) of the knapsack
or bag. It is assumed that all profits and weights are positive, that all the weights are
smaller than W (items heavier than W do not belong to the optimal solution), and
that the total weight of all the items exceeds W (otherwise, the optimal solution
contains all the items of the set).

The most common formulation of the KP is as the integer programming model
presented in (4a)–(4c), being xi the binary decision variables of the problem that
indicate whether the item i is included or not in the knapsack.

(KP) maximize f .x/ D
nX

iD1

pi xi (4a)

subject to:
nX

iD1

wi xi 6 W (4b)

xi 2 f0; 1g; 8i D 1; : : : ; n (4c)

It should be noted that there are very efficient specific heuristics for solving the
KP [26], but we have selected this problem because it is a classical problem that can
be used to evaluate the proposed algorithm against similar techniques.



New Ideas in Parallel Metaheuristics on GPU: Systolic Genetic Search 215

Table 2 Knapsack instances used in the experimental evaluation and
their exact optimal solutions

Profit of Weight of
Instance n R W opt. sol. opt. sol.

100–1,000 100 1;000 1;001 5;676 983
100–10,000 100 10;000 10;001 73;988 9;993

200–1,000 200 1;000 1;001 10;867 1;001

200–10,000 200 10;000 10;001 100;952 9;944

500–1,000 500 1;000 1;001 19;152 1;000

500–10,000 500 10;000 10;001 153;726 9;985

1,000–1,000 1;000 1;000 1;001 27;305 1;000

1,000–10,000 1;000 10;000 10;001 231;915 9;996

Table 2 presents the instances used in this work. These instances have been
generated with no correlation between the weight and the profit of an item (i.e.,
wi and pi are chosen randomly in Œ1; R�) using the generator described in [25]. The
Minknap algorithm [24], an exact method based on dynamic programming, was
used to find the optimal solution of each of the instances.

The algorithms studied use a penalty approach to manage infeasibility. In this
case, the penalty function subtracts W from the total profit for each unit of the total
weight that exceeds the maximum capacity. The formula for calculating the fitness
for infeasible solutions is:

f .x/ D
nX

iD1

pi xi �
 

nX
iD1

wi xi � W

!
� W : (5)

4.2 Algorithms

In addition to the algorithm proposed in this chapter, we have included two
algorithms, a random search (RS) and a simple GA with and without elitism, in
order to compare the quality of the solutions obtained. The former is considered as
a sanity check, just to show that our algorithmic proposals are more intelligent than
a pure random sampling. On the other hand, the GAs have been chosen because of
their popularity in the literature and also they share the same basic search operators
(crossover and mutation) so we can properly compare the underlying search engine
of the techniques. Briefly, the details of the algorithms used in this work are:

• RS: The RS algorithm processes the items sequentially. If an item in the knapsack
exceeds the maximum capacity, it is discarded. Otherwise, the item is included
at random with probability 0.5.

• Simple Genetic Algorithm (SGA): It is a generational GA with binary tourna-
ment, two-point crossover, and bit-flip mutation.



216 M. Pedemonte et al.

Table 3 Hardware platforms used for experimental analysis

GPU CPU RAM memory (GB)

GeForce 9800 GTXC Pentium Dual-Core E5200 at 2.50 GHz 2
Tesla C1060 Quad Core Xeon E5530 at 2.40 GHz 48
GeForce GTX 285 Quad Core i7-920 at 2.67 GHz 4
GeForce GTX 480 Core 2 Duo E7400 at 2.80 GHz 2

• Elitist Genetic Algorithm (EGA): It is similar to SGA but with elitist replace-
ment, i.e., each child solution replaces its parent solution only if it has a better
(higher) fitness value.

• SGS: The SGS algorithm presented in Sect. 2.

Each of the algorithms studied has been implemented on CPU. The implemen-
tation is straightforward so no further details are provided. Additionally, SGS has
been implemented on GPU. Both the CPU and GPU implementations of SGS have
exactly the same behavior.

4.3 Parameters Setting and Test Environment

The SGA and EGA parameter values used are 0.9 for the crossover probability and
1=l for the mutation probability, where l is the length of the tentative solutions.
The population size and the number of iterations are defined by considering the
features of SGS, using exactly the same values for the two GA versions. In this
study, the population size is 2 � l � � and the number of iterations is 10 � l (recall
that � D dlg le). Finally, 2 � l � � � 10 � l solutions are generated by RS to perform
a fair comparison.

The execution platform for the CPU versions of the algorithms is a PC with
a Quad Core Xeon E5530 processor at 2.40 GHz with 48 GB RAM using Linux
operating system. These CPU versions have been compiled using the -O2 flag and
are executed as single-thread applications.

Several GPU cards have been used to evaluate the GPU version of the algorithm.
Each Nvidia’s GPU is connected to a PC with different features (see Table 3 for
the main characteristics of the entire computing platform). All the PCs use Linux
operating system. Table 4 provides the details of each one of the GPUs used in the
evaluation (PTMB stands for Peak of Theoretical Memory Bandwidth and MP for
Multiprocessors) [20]. The GPU versions were also compiled using the -O2 flag.
Considering the features of all the GPU platforms, executions with 32, 64, 128, and
256 threads per block were made.

All the results reported in the next subsection are over 50 independent runs
and rounded to two significant figures. The CPU and GPU versions of SGS were
executed using the same seeds in order that the numerical results of the two versions
are exactly the same. The transference times of data between CPU and GPU are
always included in the reported total runtime of the GPU version.



New Ideas in Parallel Metaheuristics on GPU: Systolic Genetic Search 217

Table 4 GPU cards used for experimental analysis

CUDA Processor GPU PTMB Compute
GPU MP cores clock (MHz) memory (GB) (GB/s) capability

GeForce 9800 GTXC 16 128 1,836 0.5 70:4 1.1
Tesla C1060 30 240 1,296 4 102 1.3
GeForce GTX 285 30 240 1,476 1 159 1.3
GeForce GTX 480 15 480 1,401 1.5 177:4 2.0

4.4 Experimental Analysis

This section describes the experimental analysis conducted to validate SGS. The
experiments include a study of the numerical efficiency of the algorithm proposed
and a study of the performance of the parallel GPU implementation of SGS.

4.4.1 Numerical Efficiency

Table 5 presents the experimental results regarding the quality of the solutions
obtained. The table includes the best and worst solution found, the average solution,
the standard deviation, and the number of times the optimal solution is found
(#Hits).

The results obtained show that SGS is able to find the optimal solution in 7 out
of the 8 instances for every run and in the remaining instance (1,000–1,000) in 45
out of 50 trials. EGA also performs well, finding the optimal solution for all the
instances, but it is noticeable that SGS is clearly superior to EGA in five instances
(200–10,000, 500–1,000, 500–10,000, 1,000–1,000 and 1,000–10,000) concerning
the hit rate. Figure 10 graphically displays this fact. It is clear that the structured
search of SGS has allowed this algorithm to identify the region where the optimal
solution is located for the considered instances. SGS is likely to provide a more
robust search under this experimental conditions. On the other hand, SGA only
reaches the optimal solution in one of the smallest instance and generally cannot
obtain good solutions. Finally, RS presents uncompetitive results with the other
algorithms, which means that SGS performs a rather intelligent exploration of the
search space. Within the context of this experimental evaluation, the potential of the
algorithm proposed in this work regarding the quality of the obtained solutions has
been shown.

Table 6 shows the mean runtime in seconds and the standard deviation for SGA,
EGA, and SGS executed on CPU. The runtime of RS is not included in the table
due to the poor numerical results obtained. The results show that SGS is the best
performing algorithm. This is mainly caused because the crossover and mutation
points of each cell are calculated from its position on the grid, thus avoiding the
generation of random numbers during the execution of the algorithm.



218 M. Pedemonte et al.

Table 5 Experimental results on CPU

Instance Algorithm Best Worst Mean˙Std #Hits

100–1,000 RS 4,488 4,040 4086:86˙85:59 0

SGA 5,494 5,000 5273:58˙133:88 0
EGA 5,676 5,521 5670:86˙25:99 48
SGS 5,676 5,676 – 50

100–10,000 RS 60,568 51,499 54389:30˙1776:28 0

SGA 73,988 63,809 67417:88˙2049:59 1
EGA 73,988 73,988 – 50
SGS 73,988 73,988 – 50

200–1,000 RS 6,020 5,270 5599:54˙165:37 0

SGA 10,464 8,692 9162:54˙287:83 0
EGA 10,867 10,805 10863:36˙14:56 47
SGS 10,867 10,867 – 50

200–10,000 RS 75,160 67,234 71321:76˙1768:17 0

SGA 95,770 87,195 90110:86˙1833:58 0
EGA 100,952 1,00,681 100938:42˙38:62 29
SGS 100,952 100,952 – 50

500–1,000 RS 7,704 6,920 7241:82˙173:60 0

SGA 16,062 14,198 14850:76˙408:36 0
EGA 19,152 19,003 19129:88˙37:38 34
SGS 19,152 19,152 – 50

500–10,000 RS 90,449 79,086 83063:16˙2202:37 0

SGA 125,643 115,003 119379:78˙2552:46 0
EGA 153,726 153,048 153571:24˙165:13 23
SGS 153,726 153,726 – 50

1,000–1,000 RS 9167 7685 8048:40˙289:26 0

SGA 20,929 18,605 19377:40˙465:07 0
EGA 27,305 27,172 27252:34˙41:92 16
SGS 27,305 27,236 27299:48˙17:11 45

1,000–10,000 RS 104,916 92,906 98130:06˙2626:53 0

SGA 176,900 157,820 166420:80˙4022:98 0
EGA 231,915 229,970 231515:06˙636:43 35
SGS 231,915 231,915 – 50

4.4.2 Parallel Performance

Table 7 shows the mean runtime in seconds and the standard deviation of SGS
executed on the GeForce 9800 GTXC, the Tesla C1060, the GeForce GTX 285,
and the GeForce GTX 480.

Let us start with an analysis of the performance by graphic card. The first results
examined are those obtained by the SGS deployment on the oldest of the GPU
available in our laboratory, the GeForce 9800 GTXC. The best performance of
the algorithm is obtained when using 32 threads per block for all the instances



New Ideas in Parallel Metaheuristics on GPU: Systolic Genetic Search 219

Fig. 10 Hit rate reached by all the algorithms evaluated (no bar means zero hit rate)

Table 6 Runtime in seconds of CPU versions (mean˙std)

Instance SGA EGA SGS

100–1,000 2:03˙0:13 2:22˙0:05 0:98˙0:01

100–10,000 2:18˙0:90 2:32˙0:01 1:03˙0:01

200–1,000 17:40˙1:08 19:09˙0:58 7:91˙0:47

200–10,000 17:98˙1:00 18:80˙0:06 8:09˙0:49

500–1,000 295:18˙17:83 314:16˙6:07 116:24˙3:54

500–10,000 298:51˙18:24 308:82˙1:21 115:29˙5:60

1,000–1,000 2591:67˙126:15 2785:61˙86:42 915:74˙12:78

1,000–10,000 2606:81˙152:53 2740:27˙70:99 901:12˙16:95

studied. In general, the results reached are poor as the reduction in execution time
is less than two when comparing to the runtime of the CPU version. However, these
results should be put in perspective. The GPU used is quite old and has very limited
capacities, while the CPU used is a powerful server with a large amount of RAM.
The main reason of such a poor performance of the algorithm on this GPU is how
the access to global memory is handled by devices with compute capability 1.1.
Indeed, in the implemented algorithm, the solutions are stored sequentially in global
memory and may have an arbitrary length (the length is given by the instance being
addressed).

When solutions are read from global memory, the same word should be accessed
by different threads of the half-warp (data is stored in 8 bits and the size of the
minimum addressable word is 32 bits) and there are misaligned accesses. For these
reasons, each thread of the half-warp accesses independently to global memory
instead of coalescing the access to global memory for the whole half-warp. This
was improved in devices with larger compute capability, as it was commented in
Sect. 3.1, and it is verified in the results of the following cards.

The best performance of the algorithm when executed on the Tesla C1060 is
obtained when using 32 threads per block for smallest instances and 64 threads per
block for the rest of the instances. The results show an impressive reduction of up



220 M. Pedemonte et al.

Table 7 Runtime in seconds of SGS on GPU (mean˙std), highlighted in bold the shortest runtime
for each GPU in each instance

Threads per block

Instance GPU 32 64 128 256

100–1,000 9800 GTXC 0:86˙0:02 0:92˙0:02 1:15˙0:01 1:83˙0:01

Tesla C1060 0:30˙0:01 0:30˙0:01 0:35˙0:01 0:46˙0:01

GTX 285 0:21˙0:01 0:22˙0:01 0:26˙0:01 0:35˙0:01

GTX 480 0:19˙0:01 0:19˙0:01 0:20˙0:01 0:24˙0:01

100–10,000 9800 GTXC 0:86˙0:01 0:92˙0:01 1:15˙0:01 1:83˙0:01

Tesla C1060 0:30˙0:01 0:30˙0:01 0:35˙0:01 0:46˙0:01

GTX 285 0:21˙0:01 0:22˙0:01 0:26˙0:01 0:35˙0:01

GTX 480 0:19˙0:01 0:19˙0:01 0:20˙0:01 0:24˙0:01

200–1,000 9800 GTXC 5:06˙0:01 5:43˙0:01 6:65˙0:01 9:94˙0:01

Tesla C1060 0:96˙0:01 0:90˙0:01 1:11˙0:01 1:61˙0:01

GTX 285 0:73˙0:01 0:71˙0:01 0:86˙0:01 1:29˙0:01

GTX 480 0:60˙0:01 0:54˙0:01 0:57˙0:01 0:75˙0:01

200–10,000 9800 GTXC 5:06˙0:01 5:43˙0:01 6:65˙0:01 9:93˙0:01

Tesla C1060 0:96˙0:01 0:90˙0:01 1:11˙0:01 1:61˙0:01

GTX 285 0:73˙0:01 0:71˙0:01 0:86˙0:01 1:29˙0:01

GTX 480 0:61˙0:01 0:54˙0:01 0:57˙0:01 0:75˙0:01

500–1,000 9800 GTXC 76:92˙0:01 80:87˙0:01 90:95˙0:02 115:00˙0:01

Tesla C1060 8:46˙0:03 7:71˙0:23 8:26˙0:02 11:41˙0:04

GTX 285 6:36˙0:01 5:56˙0:01 6:42˙0:01 9:25˙0:04

GTX 480 5:61˙0:03 4:23˙0:01 4:05˙0:01 5:34˙0:01

500–10,000 9800 GTXC 76:89˙0:01 80:83˙0:01 90:97˙0:02 115:05˙0:01

Tesla C1060 8:42˙0:04 7:70˙0:22 8:25˙0:02 11:41˙0:04

GTX 285 6:34˙0:01 5:55˙0:01 6:41˙0:01 9:24˙0:01

GTX 480 5:57˙0:01 4:21˙0:01 4:04˙0:01 5:34˙0:01

1,000–1,000 9800 GTXC 673:56˙0:02 691:65˙0:02 738:98˙0:03 833:05˙0:02

Tesla C1060 58:10˙0:19 50:63˙0:13 52:93˙0:13 62:25˙0:09

GTX 285 43:97˙0:01 36:19˙0:01 39:84˙0:03 49:52˙0:01

GTX 480 40:69˙0:03 28:43˙0:02 25:25˙0:06 29:44˙0:03

1,000–10,000 9800 GTXC 673:14˙0:02 691:80˙0:02 739:28˙0:03 832:94˙0:02

Tesla C1060 57:71˙0:15 50:40˙0:13 52:56˙0:10 62:18˙0:09

GTX 285 43:62˙0:01 36:06˙0:03 39:47˙0:01 49:26˙0:01

GTX 480 40:24˙0:02 28:39˙0:06 25:39˙0:01 29:90˙0:02

to 14 times in the runtime with respect to the 9800 GTXC. This reduction is mainly
caused by the changes in coalesced access conditions of the devices and the increase
in the number of CUDA cores.

The best performance of the algorithm when executed on the GeForce GTX
285 is obtained when using 32 threads per block for smallest instances and 64
threads per block for the rest of the instances. The results show a reduction in the
execution time of up to 40 % regarding the Tesla C1060. This result is interesting



New Ideas in Parallel Metaheuristics on GPU: Systolic Genetic Search 221

since both cards have the same compute capability and the same number of cores
and multiprocessors. The main difference between both cards is the theoretical peak
of memory bandwidth that is 50 % greater in the GTX 285 than in the Tesla C1060
GPU (see Table 4). This fact is the main reason that explains the difference in
execution times. It should be noted that the algorithm is divided into three kernels,
one for the crossover and mutation, one for the calculation of the fitness values, and
one for applying the elitism (in certain iterations there is an additional kernel for
the exchange of directions of the solutions). Each of these kernels copy data from
global memory to the multiprocessors, apply the operation, and copy the modified
data back to the global memory, so the bandwidth of global memory is critical.
Another reason that could explain the improvement in the performance is that the
processors clock of the GTX 285 is 10 % faster than the processors clock of the
Tesla C1060.

Finally, the best performance of the algorithm when executed on the GTX 480 is
obtained when using 64 threads per block for smaller instances and 128 threads
per block for the bigger instances. The results show an additional reduction in
the execution time of up to 73 % regarding the GTX 285. The greatest reductions
in runtime are achieved in executions with a large number of threads. This is
provoked by the increase in the number of CUDA cores per multiprocessor as well
as the inclusion of a double warp scheduler in each multiprocessor in devices with
Fermi architecture (like the GeForce GTX 480 card). The results also show that
the SGS implementation on a modern GPU can achieve significant performance
improvements.

A further analysis on the comparative performance of the CPU and GPU
implementations for the same configuration is elaborated next. Figures 11 and 12
show the improvement in performance (in terms of the wall-clock time reduction)
of the GPU implementation versus the CPU implementation of SGS on the instances
with 100, 200, 500, and 1000 items. The reductions range from 5.09 (100–1,000)
to 35.71 (1,000–1,000) for the best setting for the number of threads per block on
GTX 480. The tendency for more modern GPU models and for a given GPU card
and a given number of threads is clear, the larger the instance, the higher the time
reduction. The reason is twofold. On the one hand, larger tentative solutions allow
SGS to better profit from the parallel computation of the threads, and on the other
hand, the SGS model requires larger populations when the size of the instances
increases (the grid has to be enlarged to meet the SGS structured search model), so
a higher number of blocks have to be generated and the algorithm takes advantage of
the capabilities offered by the GPU architecture. The experimental evaluation also
allows to see the impressive evolution of GPUs in a period of only 2 years, since the
runtime of SGS in the GeForce 9800 GTXC is reduced up to 26� when executing
in a GeForce GTX 480.

Although the improvements in the performance achieved are satisfactory, there
is still room for larger improvements. Indeed, the GPU implementation can be
further tuned to the Fermi architecture (GTX 480). If the implementation is tailored
to the specific features of this architecture, the runtime of SGS can be reduced
even more. In addition to this, most of the kernels used to deploy SGS on GPU



222 M. Pedemonte et al.

Fig. 11 Runtime reduction on GPU versus CPU for the smaller instances

Fig. 12 Runtime reduction on GPU versus CPU for the larger instances

have a similar behavior, making it possible to merge all the operations into one,
storing intermediate results in shared memory, and thus reducing accesses to global
memory.

Finally, to study the performance of the GPU implementation of SGS versus the
other algorithms implemented in CPU, we use the number of solutions built and



New Ideas in Parallel Metaheuristics on GPU: Systolic Genetic Search 223

Table 8 Solutions (in millions) built and evaluated by the algorithms per second

Instance SGACPU EGACPU SGS480

100–1,000 0:690 0:631 7:520
100–10,000 0:642 0:602 7:460
200–1,000 0:368 0:335 11:867
200–10,000 0:356 0:340 11:919
500–1,000 0:152 0:143 11:104
500–10,000 0:151 0:146 11:141
1,000–1,000 0:077 0:072 7:921
1,000–10,000 0:077 0:073 7:878

Fig. 13 Factor of improvement of SGS on GPU over SGA and EGA on CPU

evaluated by the algorithms. Table 8 presents the number of solutions (in millions)
built and evaluated for each algorithm per second. The values reported were rounded
to have three significant decimals.

Figure 13 shows the improvement factor when comparing the number of solu-
tions built and evaluated by SGS on GPU against SGA and EGA on CPU. The
results obtained show that the GPU implementation of SGS can build and evaluate
solutions more than 100 times faster than the CPU implementation of SGA and
EGA on CPU for the larger instances considered in this experimental evaluation.

5 Conclusions

In this work we have presented an in-depth study of a relatively new parallel opti-
mization algorithm, the SGS algorithm. SGS is inspired by the systolic contraction
of the heart that makes it possible that ventricles eject blood rhythmically according
to the metabolic needs of the tissues, and previous ideas of systolic computing. This



224 M. Pedemonte et al.

is just one of the first algorithms that tries to adapt new concepts (not the algorithms
themselves) of existing metaheuristics to the very special architecture of a GPU.

The experimental evaluation conducted here showed the potential of the new SGS
search model, outperforming three other algorithms for solving the KP in instances
with up to 1000 items. The results have also shown that the GPU implementation
of SGS speeds up the runtime up to 35 times when executing in a GTX 480 and
automatically scales when solving instances of increasing size. The experimental
evaluation also showed that the runtime of SGS executed in the oldest GPU available
in our laboratory (the 9800 GTXC) can be reduced up to 26� when executed in the
newest GPU available in our laboratory (the GTX 480). Finally, the comparative
evaluation between the GPU implementation of SGS and the CPU implementation
of SGA and EGA showed that SGS can build and evaluate solutions more than 100
times faster for the biggest instances considered in this work.

The lines of work currently explored are the study of the effect of merging the
three kernels into one and providing wider impact analysis by solving additional
problems to extend the existing evidence of the benefits of this line of research.

Acknowledgements Martı́n Pedemonte acknowledges support from Programa de Desarrollo de
las Ciencias Básicas, Universidad de la República, and Agencia Nacional de Investigación e
Innovación, Uruguay. Enrique Alba and Francisco Luna acknowledge support from the “Consejerı́a
de Innovación, Ciencia y Empresa,” Junta de Andalucı́a under contract P07-TIC-03044, the
DIRICOM project (http://diricom.lcc.uma.es), and the Spanish Ministry of Science and Innovation
and FEDER under contracts TIN2008-06491-C04-01 (the M* project: http://mstar.lcc.uma.es) and
TIN2011-28194 (the roadME project).

References

1. Alba, E. (ed.): Parallel Metaheuristics: A New Class of Algorithms. Wiley, London (2005)
2. Alba, E., Dorronsorso, B. (eds.): Cellular Genetic Algorithms. Springer, New York (2008)
3. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans. Evol. Comput.

6(5), 443–462 (2002)
4. Alba, E., Vidal, P.: Systolic optimization on GPU platforms. In: 13th International Conference

on Computer Aided Systems Theory (EUROCAST 2011) (2011)
5. Benner, P., Ezzatti, P., Kressner, D., Quintana-Ortı́, E.S., Remón, A.: A mixed-precision

algorithm for the solution of Lyapunov equations on hybrid CPU-GPU platforms. Parallel
Comput. 37(8), 439–450 (2011)

6. Cecilia, J.M., Garcı́a, J.M., Ujaldon, M., Nisbet, A., Amos, M.: Parallelization strategies for
ant colony optimisation on GPUs. In: Proceedings of the 25th IEEE International Symposium
on Parallel and Distributed Processing (IPDPS 2011), Anchorage, pp. 339–346, 2011

7. de Veronese, L.P., Krohling, R.A.: Differential evolution algorithm on the GPU with C-CUDA.
In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2010), Barcelona,
pp. 1–7, 2010

8. Ezzatti, P., Quintana-Ortı́, E.S., Remón, A.: Using graphics processors to accelerate the
computation of the matrix inverse. J. Supercomput. 58(3), 429–437 (2011)

9. Harding, S., Banzhaf, W.: Implementing Cartesian genetic programming classifiers on graphics
processing units using GPU.NET. In: Proceedings of the 13th Annual Conference Companion

http://diricom.lcc.uma.es
http:// mstar.lcc.uma.es


New Ideas in Parallel Metaheuristics on GPU: Systolic Genetic Search 225

Material on Genetic and Evolutionary Computation (GECCO 2011), Dublin, pp. 463–470,
2011

10. Johnson, K.T., Hurson, A.R., Shirazi, B.: General-purpose systolic arrays. Computer 26(11),
20–31 (1993)

11. Kirk, D., Hwu, W.: Programming Massively Parallel Processors: A Hands-on Approach.
Morgan Kaufmann, Los Altos (2010)

12. Kung, H.T.: Why systolic architectures? Computer 15(1), 37–46 (1982)
13. Kung, H.T., Leiserson, C.E.: Systolic arrays (for VLSI). In: Proceedings of the Sparse Matrix,

pp. 256–282 (1978)
14. Langdon, W.B.: Graphics processing units and genetic programming: an overview. Soft

Comput. 15(8), 1657–1669 (2011)
15. Langdon, W.B., Banzhaf, W.: A SIMD interpreter for genetic programming on GPU graphics

cards. In: Proceedings of 11th European Conference on Genetic Programming (EuroGP 2008),
Naples, 2008. Lecture Notes in Computer Science, vol. 4971, pp. 73–85. Springer, New York
(2008)

16. Lewis, T.E., Magoulas, G.D.: Strategies to minimise the total run time of cyclic graph
based genetic programming with GPUs. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2009), Montreal, pp. 1379–1386, 2009

17. Luque, G., Alba, E.: Parallel Genetic Algorithms: Theory and Real World Applications. Studies
in Computational Intelligence, vol. 367. Springer, Berlin (2011)

18. Maitre, O., Krüger, F., Querry, S., Lachiche, N., Collet, P.: EASEA: specification and execution
of evolutionary algorithms on GPGPU. Soft Comput. 16(2), 261–279 (2012)

19. Maitre, O., Lachiche, N., Collet, P.: Fast evaluation of GP trees on GPGPU by optimiz-
ing hardware scheduling. In: Proceedings of the Genetic Programming, 13th European
Conference (EuroGP 2010), Istanbul, 2010. Lecture Notes in Computer Science, vol. 6021,
pp. 301–312. Springer, New York (2010)

20. NVIDIA: NVIDIA CUDA C Programming Guide Version 4.0 (2011)
21. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Purcell, T.J.:

A survey of general-purpose computation on graphics hardware. Comput. Graph. Forum 26(1),
80–113 (2007)

22. Pedemonte, M., Alba, E., Luna, F.: Bitwise operations for GPU implementation of genetic
algorithms. In: Proceedings of the 13th Annual Conference Companion on Genetic and
Evolutionary Computation (GECCO ’11), pp. 439–446. ACM, New York (2011)

23. Pedemonte, M., Alba, E., Luna, F.: Towards the design of systolic genetic search. In: IEEE
26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum,
pp. 1778–1786. IEEE Computer Society, Silver Spring (2012)

24. Pisinger, D.: A minimal algorithm for the 0–1 knapsack problem. Oper. Res. 45, 758–767
(1997)

25. Pisinger, D.: Core problems in knapsack algorithms. Oper. Res. 47, 570–575 (1999)
26. Pisinger, D.: Where are the hard knapsack problems? Comput. Oper. Res. 32, 2271–2282

(2005)
27. Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose GPU

Programming. Addison-Wesley Professional, Reading (2010)
28. Soca, N., Blengio, J., Pedemonte, M., Ezzatti, P.: PUGACE, a cellular evolutionary algorithm

framework on GPUs. In: Proceedings of the IEEE Congress on Evolutionary Computation,
CEC 2010, pp. 1–8. IEEE, Brisbane (2010)

29. Vidal, P., Alba, E.: Cellular genetic algorithm on graphic processing units. In: Nature Inspired
Cooperative Strategies for Optimization (NICSO 2010), pp. 223–232 (2010)

30. Zhang, S., He, Z.: Implementation of parallel genetic algorithm based on CUDA. In: ISICA
2009. Lecture Notes in Computer Science, vol. 5821, pp. 24–30. Springer, Berlin (2009)

31. Zhou, Y., Tan, Y.: GPU-based parallel particle swarm optimization. In: Proceedings of the
IEEE Congress on Evolutionary Computation (CEC 2009), Trondheim, pp. 1493–1500, 2009


	New Ideas in Parallel Metaheuristics on GPU: Systolic Genetic Search
	1 Introduction
	2 Systolic Genetic Search
	2.1 Size of the Grid
	2.2 Mutation
	2.3 Crossover
	2.4 Exchange of Directions

	3 SGS Implementation
	3.1 Graphics Processing Units
	3.2 Implementation Details

	4 Experimental Results
	4.1 Test Problem: The Knapsack Problem
	4.2 Algorithms
	4.3 Parameters Setting and Test Environment
	4.4 Experimental Analysis
	4.4.1 Numerical Efficiency
	4.4.2 Parallel Performance


	5 Conclusions
	References


