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Abstract Secure, sustainable, and cost-effective energy development will be one
of the greatest global challenges in coming decades. This development will include
an extensive range of energy resources including coal, conventional and uncon-
ventional oil and natural gas, wind, solar, biofuels, geothermal, and nuclear. CO2

capture and storage (CCS) infrastructure is a key example; meaningful CCS in
the US could involve capturing CO2 from hundreds of CO2 sources, including
coal-fired and natural gas power plants, and transporting a volume of CO2 greater
than US oil consumption. Here, we highlight breakthroughs and future challenges
for CCS infrastructure optimization and modeling. We start with the evolution of
CCS infrastructure modeling from early attempts to represent the capture (sources),
transport (network), and storage (sinks) of CO2, through to the integration of
more advanced spatial optimization (or location-allocation) approaches including
mixed integer-linear programming. We then highlight key future challenges and
opportunities, including the representation of significant uncertainties throughout
the CCS supply chain and the ability to represent policy and business decisions into
CCS infrastructure optimization. Finally, we examine the role that next-generation
CCS infrastructure modeling can have in wider massive-scale energy network
investments.
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Introduction

Secure, sustainable, and cost-effective energy development will be one of the great-
est global challenges in coming decades. This development will include an extensive
range of energy resources including coal, conventional and unconventional oil and
natural gas, wind, solar, biofuels, geothermal, and nuclear. To meet global energy
demands with these resources, energy infrastructure will have to be constructed on
an unprecedented scale. In the US alone, this will include construction of perhaps
hundreds of power plants, including wind and solar farms and several hundred
thousand kilometers of pipelines and transmission lines. Integrating this diverse
range of energy sources into an integrated, cost-effective system will take careful
and comprehensive planning. Location-allocation modeling, or spatial optimization,
should and will be a critical tool in this planning.

CO2 capture and storage (CCS) is a climate change mitigation technology that
reduces CO2 emissions by capturing CO2 at large stationary sources (e.g., coal-
fired power plants), transporting the CO2 in dedicated pipelines, and injecting and
storing the CO2 in geologic reservoirs (e.g., deep saline aquifers or depleted oil and
gas reservoirs) (Middleton et al. 2012a; Stauffer et al. 2011). To have a meaningful
impact, the US alone would have to install CO2 capture infrastructure on hundreds
of coal-fired and gas power plants as well as build a CO2 pipeline network capable
of transporting a volume of CO2 greater than US oil consumption (Middleton et al.
2012b). Optimizing CCS infrastructure on this scale is large and complex problem,
a problem well-suited to spatial optimization. For example, commercial-scale CCS
involves capturing CO2 from point sources, transporting the CO2 over a network,
and delivering the CO2 to specific sinks. That is, this is a classic source-network-
sink optimization problem.

Here, we explore and discuss the evolution of CCS infrastructure modeling,
from early developments introduced by CCS researchers through to the current
state-of-the-art led by experts in infrastructure modeling and optimization. The
early researchers used their CCS technology expertise to identify that there was
an important source-network-sink problem to solve, but did not necessarily have the
required tools to adequately solve CCS problems. Later, researchers with operations
research and optimization backgrounds were brought into the equation, establishing
classic optimization approaches to the problems. And more recently, CCS infras-
tructure modeling has begun to mature to the stage where advanced concepts—such
as system uncertainty, fluctuating CO2 flows, and real-world policy—have been
integrated into models. Specifically, we identify how spatial optimization has solved
many research gaps in CCS modeling, but also discuss how CCS presents a unique
set of challenges particularly in scale and uncertainty and that these issues must
be resolved going forward. We also highlight how many of the breakthroughs and
challenges developed by CCS infrastructure modeling can be solved by a flexible
modeling approach and how the solutions developed for CCS modeling can be
applied to energy infrastructure in general.
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Early CCS Development

The IPCC’s Special Report on CCS, published in 2005, illustrates the early
emphasis on CO2 capture technology and economics, with much less emphasis on
CO2 transport and storage (Metz et al. 2005), let alone any mention of integrated
infrastructure modeling. This is of no surprise. For instance, the cost to capture
CO2 is still perhaps as much as an order of magnitude more expensive than either
the transport or storage of CO2, hence the early focus on CO2 capture technology
and economics. Arguably, this capture-focus remains today since capture costs still
have the greatest flexibility for cost reduction. Similarly, without any large-scale
CCS source-network-sink infrastructure in place (largely still true today), system
CCS infrastructure modeling and optimization received scant attention. Although
geological storage had been proposed in some detail over more than a decade
before the IPCC report (Koide et al. 1992), later including storage below the ocean
seafloor (Koide et al. 1997), very little advancement in economic characterization
of geological storage had been made by the time the IPCC report was compiled
and published. At the time, geological storage in deep saline aquifers was widely
regarded as a sequestration option with the largest physical potential, a belief
borne out by subsequent refinements of storage characterization, most notably the
continuing efforts of the US Department of Energy to map out storage potential in
North America (USDOE 2010).

The IPCC report devotes some attention to transport costs and very little to
storage costs. Without widespread adoption of CCS technology at the time, and
indeed with only perhaps a single large commercial CCS project using a pipeline
of any length—Weyburn (Petroleum Technology Research Centre 2011)—little
attention was paid to CO2 transportation. Conversely, even without CCS in place,
millions of tonnes of natural (i.e., non-anthropogenic) CO2 have been transported
large distances for several decades, taking CO2 from natural geologic formations
(such as salt domes) and injecting the CO2 into depleted oil fields for enhanced
oil recovery (EOR). Currently, EOR annually stores between 50 and 70 million
tonnes (50–70 MtCO2/year) in the US. However, transportation and integrated
infrastructure modeling were not a high priority. In short, the IPCC report heavily
concentrated on CO2 capture technology, devoted some attention to geologic storage
engineering and costs, but with almost no emphasis on CO2 transportation and
integrated CCS modeling.

The IPCC report relied on just three reports for CO2 injection and storage costs:
Bock (2002), Allinson et al. (2003a), and Hendriks and Bock (1993), a covering a
broad geographic range (Australia, the United States, and Europe, respectively). In
the US, Bock’s report for the Electric Power Research Institute (with the US DOE)
found ranges between $0.40/tCO2 and $4.50/tCO2. In Australia, Allinson et al.’s
article in the APPEA Journal found a similar $0.20 to $5.10 per tonne (Allinson et
al. 2003b). Hendriks et al. (2004), in a report for Ecofys with the Netherland’s TNO,
found a range between $1.90 and $6.20 for Europe. Offshore costs were slightly
higher and had a wider range, and oil and gas fields were roughly the same (Metz et
al. 2005).
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Perhaps because the ranges were relatively narrow or because their magnitude
was so small compared to the estimated cost of capture, most large models seemed
to focus on variations in capture parameters as controlling the degree of penetration
of CCS. It is in fact rare to find any kind of documentation of transport or
storage costs in the stabilization scenario modeling that accompanies many IPCC
reports (Bernstein et al. 2007) or in, for example, the US Energy Information
Administration’s National Energy Modeling system at the time (EIA 2007). Highly
sophisticated techno-economic models for power plants focused their attention on
capture (Rubin et al. 2005, 2007) since the characteristics of power plant/capture
systems were easier to model with little computational effort.

The preferred method for incorporating transport and storage cost estimation
into large scale modeling is well-illustrated by Bock’s analysis of transport and
storage cost for deep saline aquifers in the United States (Bock 2002). By 2000, the
Bureau of Economic Geology at the University of Texas at Austin had compiled
and digitized maps for 20 aquifers with information on over a dozen geological
parameters, all of which might impact the storage capacity of the aquifer, the cost
of injecting CO2, or both (BEG 2000). Bock used this information to estimate the
injection rate of CO2 through a single well, which is an important value because it
determines the number of wells that a sequestration site would require and the cost
of drilling those wells is a major component of the overall cost of storage (Bock
2002). Although this analysis was almost certainly flawed—for example, it appeared
to overestimate the injection rate by a considerable amount (Eccles et al. 2009)—it
is certainly a good initial framework for estimating storage costs. The framework
presented related total costs and injection rate, which continues to be a good way of
representing the cost of CO2 abatement in cost per tonne. Beyond this, however,
the variation in geology and its effect on cost and capacity vanished when this
component of the cost model was coupled to the transport component.

Similarly, the cost of transport was simplified drastically. Literature on transport
costs at the time revealed that there might be a dramatic variation in the cost of
transport depending on the scale at which CO2 was transported (Kuby et al. 2011b)
and the distance the pipeline had to cover (Chandel et al. 2010). Indeed, data on
natural gas pipelines showed fairly clearly that although there was a great deal of
variation in cost for short pipelines, cost of long pipelines was largely dependent
on these two factors (Parker 2004). The transport component of models, then, could
simply focus on arriving at two summary statistics for the pipeline network: the
average length of pipeline and the average size of a source (or cluster of sources).

Bock’s report is an excellent example of this method, in which the author
estimates the cost of transport by determining an average distance and power plant
size and determining the cost of transport from them (Bock 2002). This philosophy
also appears in the IPCC report, where transport costs tend to be summarized
by these two variables. Several figures demonstrate how far the understanding of
source-sink matching has come just by the scale of their axes—plotting transport
costs as a function of distance, the distance variable stretches up into the many
thousands of kilometers, which now seems quite unlikely (Metz et al. 2005).
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This approach very clearly discards the important fact that although one might
summarize any pipeline network by the average size and length of pipelines, the
development of that network will rarely include any pipelines that are actually at
the average size and length. That is, most sources would face a cost to link to a
sink that is different than the average, which might in turn affect their decision
to link to that sink or to even capture in the first place. Critical in determining
whether it is appropriate to distill the cost of transport (and storage) to average
values is understanding the distribution of costs associated with transport. If the cost
is not normally distributed or has a high variance, very little certainty is gained by
reporting or using average figures in integrated modeling. The averaging approach
was clearly meant to simplify first-order calculations in a complex problem, but
could not survive very long without investigation as to the nature of variation in
actual transport or storage costs.

Later investigations revealed variations in transport cost ranging over tens of
dollars per tonne of CO2, which is clearly large enough to impact decisions from
pipeline routing and storage location all the way to the decision to capture itself,
generally dominated by the cost of capture. Using an average length completely
discards critical decision information and renders the results of these analyses
suspect at best. Early transport cost figures did not include the variation in transport
costs that would enable valuable conclusions to be drawn from CCS models.

This variation was clearly understood by the authors of the early studies, but
they especially lacked a good framework for estimating how this variation would
interact with the geographic and geologic variation in storage costs. This led to a
combination of approaches in which each component was analyzed separately and
a summarizing statistic or two was used to couple the components together. Thus,
instead of interacting, the components could simply be added together to get the
total cost of a CCS system.

Until recently, this was how major CCS modeling by the EPA (Dooley et al.
2008) and the EIA (2007) was conducted—the best understanding of a combined
average cost of transport and storage was added to better-understood economics
of capture and used to estimate the deployment or potential of CCS. This was
not limited to government agencies or research organizations; various private
estimates also took this approach (e.g., BCG 2008; McKinsey Climate Change
Initiative 2008), since it had major advantages in terms of complexity, computational
requirements, and data availability.

It was fairly clear, however, that this was not a permanent solution, even to
the authors of the IPCC special report, who note that “[t]he full range of costs
is acknowledged to be larger than shown” (Metz et al. 2005). While large-scale
efforts to improve characterization of storage capacity focused on physical capacity
(Ciferno et al. 2010), research into the impact of geological factors on storage cost
by Eccles et al. found storage costs that ranged over several orders of magnitude
just from the basic cost of injection, ranging from the sub-$1/tCO2 found by Bock
(2002) all the way up to thousands of dollars per tonne (Eccles et al. 2009).

Such research paralleled decades-old conventional wisdom in the oil and gas
industry as well as any other extractive industry: resources are rarely utilized at their
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average cost, and the economic ease of extraction plays a major role in the resource
utilization (Craft et al. 1991). Leaders in the CCS field called for more advanced
characterization of storage sites, including the use of techno-economic models to
evaluate realistic or economic storage potential (Bachu et al. 2007).

At the same time, modelers began to acknowledge (or advocate) that storage
and transport costs could not be taken separately and just added together (Dooley
et al. 2008). This was especially clear in the special case of geological storage with
enhanced oil recovery. Although deep saline aquifers could (incorrectly) be imag-
ined to be large, homogeneous bodies with similarly homogeneous characteristics,
it was entirely obviously that oil fields are quite different from one another, and that
not only would the costs of injecting CO2 in oil fields vary based on the geology,
the offsetting revenue from recovered oil would also vary (Nemeth et al. 2011).

Geographic Optimization and CCS

The problem, as presented starkly by EOR assessments, was an excellent opportu-
nity for simple optimization: given various options for storage, each with a capacity
and cost, and various agents who might utilize this storage, what configuration
of source-sink matching would minimize total costs for the storage and transport
system (Middleton et al. 2011)? This early optimization was pioneered by Dooley
et al. (2004), who developed an optimization framework that could solve relatively
simple versions of the source-sink matching problem. The approach represented a
considerable advance over the uncoupled summary statistic one and represented an
important move toward geographic optimization.

However, this approach still suffered from a number of drawbacks, possibly
stemming from the research questions it may have been meant to solve. The authors
devoted time and attention on enhanced oil recovery and geological characterization
of the oil fields, but treated saline aquifers as economically homogeneous bodies
(Dahowski and Dooley 2004). Although the documentation of the model is sparse,
it appears that the cost of storage in saline aquifers for evaluations that are relatively
massive in scale (i.e. all of North America and later China) is exactly the same
over thousands of square kilometers of these aquifer’s surface footprint (Dahowski
et al. 2009; Dooley et al. 2004). The saline aquifers, moreover, completely dominate
the source-sink matching, in which hundreds of sources in their analysis optimize
simply the distance to the closest saline formation and nothing else, which renders
the results largely unusable for policy planning.

At the same time, other modelers focused more heavily on understanding or
integrating realistic costs of storage and, where possible, doing integrated source-
sink matching with transport optimization (McCoy and Rubin 2008; Middleton
and Bielicki 2009; Middleton et al. 2012d). After Dooley et al.’s evaluation of
North America, but before Dahowski et al.’s evaluation of China, the EPA (2008)
published a detailed estimate of roughly 80 cost categories for geological storage,
many of which would depend on geological characteristics or project requirements
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that stem from the characteristics such as the number of wells required. This allowed
researchers to develop advanced semi-analytical models for geological storage, such
the one underlying SimCCS (Middleton and Bielicki 2009). As more geological data
became available, numerical simulations or models based on them, such as CO2-
PENS (Stauffer et al. 2009; Viswanathan et al. 2008), also became more prolific,
allowing a much better characterization of geological potential.

At the same time, pipeline optimization and the methods associated with location
optimization began to appear in CCS literature. An MIT project developed a
cost weighting surface (Herzog et al. 2007), a necessary prerequisite for the cost
distance/backlink calculations that form the basis of pipeline routing algorithms.
SimCCS uses a similar but more detailed surface (Middleton and Bielicki 2009,
2013; Middleton et al. 2012d). Since then, a proliferation of transport models
that utilize geographic optimization methods have emerged including Han and Lee
(2011), Mendelevitch et al. (2010), Morbee et al. (2012), Kemp and Kasim (2010),
and van den Broek et al. (van den Broek et al. 2010).

At this point, the development of transport and storage modeling is now mature
enough to have completely integrated capture, transport, and storage components
that consider all elements of the CCS system in combination (Keating et al. 2010).
The results from integrated models have provided interesting perspectives on the
potential of carbon capture and storage.

First, large-scale characterizations of geological storage potential indicate that
there is plenty of storage capacity (USDOE 2010). The total technical potential may
reach tens of billions of tonnes of storage space in North America alone, which is
more than enough to sequester decades or centuries of emissions. This abundance,
however, is not necessarily evenly distributed geographically. Just as with oil and
gas extraction, it is not possible to utilize a storage resource anywhere. Although
sedimentary formations are common across the United States, Eccles et al. (2011)
find that the vast majority of cheap, abundant storage potential is concentrated in the
Michigan and Ohio Basins, in Cretaceous sediments along the East Coast, and in
Texas, especially along the Gulf Coast. Fortunately, these areas are easily accessible
for many large CO2 sources, but in terms of physical surface area, they make up a
relatively small portion of sedimentary basins in the United States in general (Eccles
et al. 2011).

These findings indicate that at least at first, carbon storage might be utilized
for below the “average” cost of storage because these large, cheap reservoirs
could be easily exploited. From the wrong perspective, the variation in carbon
storage potential might lead to the conclusion that because many geological
formations are unsuitable for cheap, large-scale storage, the technology does not
have much potential for abating climate change. However, an integrated examination
of geographic variation in geology indicates that cheap, large-scale storage sites
might be deployed first, and thus the initial cost of utilization might be less than a
summary statistic might indicate.

Second, transport of CO2 over long distances can be relatively cheap, with
appropriate coordination and scale, enabling the use of large, low-cost reservoirs
that may not be proximate to sources. This may be apparent even when simply
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examining techno-economic models (McCoy and Rubin 2008) or summaries of
transport costs for pipelines (Chandel et al. 2010)—transporting CO2 at scale
(greater than perhaps 10 MT of CO2 per pipeline route per year) decreases the cost
per tonne of transport by a significant amount. Chandel et al. indicate that cost for
transport (including labor and materials, both for pipelines and pumping stations)
can drop from $0.018 per tonne per km for low volume transport (roughly 1 MT per
year) to under $0.010 per tonne per km for 10 MT per year; even larger pipelines
might see cost drop as low as $0.006 per tonne per km (Chandel et al. 2010). These
numbers put the levelized cost of transport for 250 km of pipeline and 10–20 MT of
CO2 per year at a relatively low $2/t. This does not include the cost of rights of way,
but is obviously smaller in scale than the variation in the cost of geological storage
and the total cost of capture.

In earlier versions of geographic optimization, we see the argument that transport
and storage will be low-cost because most sources are close to some kind of sink
(Dooley et al. 2004; Wildenborg et al. 2004). Geological variations and their impact
on cost appear to contradict this, because not every storage site is going to a feasible
sink economically. However, we can see that geographic optimization indicates
that large-scale transport is relatively low cost and national-scale geological data
indicates that there are at least a few huge, low-cost storage options; whether sources
and sinks are close to each other may be largely irrelevant.

Large-scale optimization brings these elements together and can more or less
easily determine what the nature of an integrated, planned network of pipelines
would be and how much it would cost. Integrated optimization is fairly standard
for transport and storage modeling. As compared to a decade ago, there are many
different models competing for attention in academic literature, where geographers
have made a substantial impact on improving and refining our understanding of the
physical potential for CO2 storage and the nature of the infrastructure that would
support that storage system.

Issues with Optimization

Advances brought by traditional geographic optimization have not been able to
overcome some interesting challenges posed by geological storage and the CCS
system in general.

The first most obvious of these is geological uncertainty. CO2 storage pilot
projects have until recently been demonstration-scale, with a few large commercial-
scale endeavors (Michael et al. 2010). Of these, Sleipner Vest is probably the most
well-known of non-EOR projects. From a geological perspective, the Utsira sand,
into which the Sleipner project injects about a million tonnes of CO2 per year, is an
ideal environment. It is high-permeability, unconsolidated sand, and even though it
is almost 200 m thick, the horizontal well-bore is perforated along only 100 m and
can still sustain injection rates of nearly 3000 tonnes per day (Eccles et al. 2009).
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The Snovhit project was expected to have similar performance to Sleipner Vest,
but rapid increases in reservoir pressure early in its operation indicated that the
Snovhit geology was not exactly as expected. Consequently, engineers at Statoil had
to intervene to increase injectivity (Eiken et al. 2011). From a technical perspective
this is a success story since, although the site did not operate as expected, Statoil was
able to adapt to the situation. However, from a planning or operations perspective,
the project is considered a minor disaster. In a large-scale storage system, Snovhit
would not have been a one-off project, it would have been one of an interconnected
series of CO2 storage sites selected for their physical and economic characteristics
as better than other sites that would have been more costly to utilize. The unexpected
characteristics of Snovhit would have increased its cost and made it less reliable as a
CO2 sink than other sites, but the source-sink matching algorithm would obviously
not have been able to take that into account.

Geological uncertainty is especially pernicious because Snovhit was supposedly
well characterized (Eiken et al. 2011). Uncertain geologic characteristics can be
challenging to incorporate into linear optimization, but Monte Carlo frameworks
and other techniques could be used to create hybrid optimization models that would
incorporate uncertain characteristics; uncertainty in storage and cost estimates are
somewhat linked (Middleton et al. 2012c).

First, optimization models will have to be constrained to require the inclusion
of reserve capacity. Snovhit isn’t the only storage project with uncertain operating
parameters. Even the very small (48 t/day) Nagaoka project experienced wide
variations in injection performance, and systems that manage 100-megaton-scale
emissions must be able to handle such intermittent performance (Research Insti-
tute of Innovative Technology for the, 2007). The cost of possible intermittency
must be traded off against the cost of emissions, putting CCS in the same reliability
boat as renewables like wind and solar.

Second, models must be able to appropriately digest uncertain operating param-
eters and provide useful results the incorporate the known uncertainty in geology.
This is distinct from the problem of including reserve capacity in that reserve
capacity is generally meant to accommodate short-term issues with performance.
In electrical production and transmission, this might be the failure of a generator
but not necessarily the complete removal of that generator from the grid. With
geological storage, there can be considerable uncertainty as to the performance
of the sequestration site on a long-term basis, as with Snovhit. Although various
sensing techniques can mitigate this uncertainty, it is entirely possible that in
addition to seeing daily fluctuations in the capacity of an injection well, a storage
site operator might encounter systemic flaws in geology which permanently reduce
the operating capacity of the site (Middleton et al. 2012c).

This might not even be the result of geological uncertainty. Underground
injection has long-lived effects on the pressure environment, which reduces the
injectivity of wells and requires compensation through either increased injection
pressure or active reservoir management or simply toleration of the reduced
performance (Eccles et al. 2012). In some cases, active reservoir management may
be too expensive (because of fluid disposal costs) or increasing pressure may not be
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feasible (because the pressure may be near the fracture limit), which would mean
that tolerance for decreased performance might be the only option. If wells are not
correctly spaced, this decreased performance could be dramatic (Eccles et al. 2012).
Perhaps most importantly, the decreased performance is more or less directly related
to the permeability of the formation, the parameter at issue in the Snovhit problems.

The optimization framework must therefore not only account for short-term
reserve capacity, but also the cost of building out the system to account for possible
long-term disruptions. The degree and nature of the long-term disruptions is in many
ways quite uncertain, more or less in direct relation to the degree to which geological
conditions are well-characterized.

In addition to accounting for geological uncertainty, spatial optimization must
take into consideration complex decision variables in which different components
of the CCS system might interact in unexpected ways. This somewhat ambiguous
statement is best illustrated in the consideration of peaking plants and the dispatch of
power (Middleton and Eccles 2013). Traditionally, CCS is modeled as a monolithic
technology with constant operation that matches the capacity factor of the source
to which it is attached. For baseload coal plants, this is not necessarily incorrect,
but for plants with high ramp rates that operate as peaking plants or load-following
plants, there is an interesting problem: what size should the capture facility be?
It could be sized anywhere from zero to the maximum CO2 output of the plant –
depending on the plant’s dispatch characteristics, though, it could be underutilized
to a considerable degree. If the plant is a peaking natural gas plant, it might sit
unused for most of the day, which obviously affects the economics of its operation.

The key element of the problem is the cost of CO2 disposal vs. the cost
of emissions (Middleton and Eccles 2013); with a high enough carbon price
(or, critically, a low enough disposal cost) the plant would oversize its capture
equipment. The carbon price is a matter of policy and is essentially out of the hands
of the modeler (Kuby et al. 2011a), but the disposal cost can be a decision parameter.
Whether the plant sends its emissions to a local EOR producer vs. sending them to
a big, centralized CCS facility a few states over is critical to the initial decision of
installing capture equipment, a feedback loop that is challenging to incorporate into
the structure of geographic optimization models.

Broadly speaking, this decision comes down to incorporating the option to
underutilize infrastructure. There are other reasons to underutilize infrastructure (or
the equivalent, to oversize its initial construction), which includes resources coming
online at different times and the storage capacity or reserve capacity of underutilized
infrastructure. But these decision options need to be integrated very carefully with
the simple but powerful source-sink matching optimization that currently exists.
Even something as unobtrusive as fault tolerance (what happens when a pipeline
goes down?) needs consideration in planning, optimization, and cost estimation.

Finally, slow movement on climate change policy has thrown into sharp relief
the unusual question of the nature of the objective function. Lacking a financial
incentive to avoid emissions, proponents of CCS have turned to carbon utilization
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as a motivation for CCS deployment. Carbon dioxide is currently used most widely
in EOR, where each tonne of injected CO2 might extract 3 (using industry standards)
or more (using reservoir modeling) barrels of oil. At the current price of oil, it is not
difficult to see that the financial incentives for capture are much different than we
might expect under a carbon price, which has led to renewed interest in enhanced
oil recovery using CCS as the source for the CO2.

In this environment, it is not necessarily appropriate to minimize costs: the actors
in the system would rather want to maximize revenue, especially the oil producers. It
was never particularly clear what entities would be operating the pipeline transport
or CO2 storage portions of the CCS system, but in the current environment, it
seems it is almost certainly not going to be the same entity that operates the
CO2 source, so the different motivations must be integrated into optimization
modeling. Additionally, echoing earlier issues of uncertainty, this environment
might dramatically change over the planning lifetime of a CCS project. It is certainly
not out of the question that even the somewhat recalcitrant United States might have
a carbon price in the next two decades; what impact would this have halfway through
the planning and/or deployment of a large-scale carbon storage system? How will
the policy treat stranded capital or ongoing investments? Perhaps more importantly,
will the policy itself be based on the lessons learned or results from optimization
modeling and deployment of CCS systems?

Beyond these questions of uncertainty and motivation, it is clear that deployment
of CCS on the scale that would impact CO2 emissions dramatically is an application
of geographic optimization that has never been seen before. The CO2 emissions
from the US electric power sector alone would produce the same volume of
(compressed) CO2 as the entire would consumes in oil. We have certainly used
geographic optimization for pipeline planning and transport optimization, but never
at such a large scale. The idea of designing a system that would move a billion
tonnes of CO2 from the ground up is mind-boggling, and there are almost certainly
challenges of working at that scale that have not even been considered, much less
integrated into modeling.

Flexible Modeling Approach

To deal with these issues, a flexible modeling approach that draws from the
best traditions of spatial optimization is necessary. As the name implies, flexible
modeling could involve many different techniques to modify basic network-sink
optimization. Some of these variations might be innovative applications of linear
programming, and some might involve extending linear optimization to mixed-
integer programming, using creative constraints or decision variables, or even
shifting to hybrid approaches, especially involving unconventional optimization
modeling.
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Mixed-integer programming is the easiest technique to incorporate, as is clear
from the fact that it is already used in several optimization models (Middleton and
Bielicki 2009; Morbee et al. 2012). One reason to use mixed-integer programming
is the prevalence of fixed pipeline sizes in industry and modeling; pipelines have to
be scaled to accommodate the optimum CO2 flux but have to use one of the fixed
pipeline sizes, so MIP has to be used (Middleton 2013). MIP techniques are
common in transport optimization, and thus it may not be particularly revolutionary
to say that they should be used here. At the same time, however, MIP solutions
take more computation to find, so MIP models have to be constructed or deployed
carefully in complex or very large-scale optimization problems.

MIP’s limitations are especially important when the issues of geological uncer-
tainty and peaking plant’s decision options (i.e. how much capture capacity to
install) are considered. At first glance, this may not be apparent. Reserve require-
ments that can mitigate daily fluctuations in transport or sequestration capacity may
simply require constraints in a MIP model that would overbuild capacity given
probabilities, expected values, and so on. Even longer-term issues might also be
solved with clever MIP applications such as, for example, multiple time periods for
capacity to come online to deal with reduced performance with possible acceleration
or the equivalent of spinning reserves in electricity transmission applied to CCS
systems (Middleton et al. 2012e). This dramatically increases the complexity of the
MIP problems to be solved, but that is not necessarily prohibitive.

However, modelers may want to consider a more flexible solution, which is
to employ a variety of techniques at different scales specifically designed to
incorporate uncertainty and probability. At local scales for individual projects,
this might not be much different than the techniques we see today. But at larger
scales with more uncertainty, modelers may wish to take advantage of Monte Carlo
techniques. To deal with large-scale geological uncertainty, Monte Carlo models
might solve many variations on the same problem to arrive at a variety of outcomes
and distributions of their costs; this has previously been done with CCS and MIPs
(Middleton et al. 2012c). In transportation routing, this is of course very challenging
to interpret, because it is in some ways only the beginning of the decision process
that leads to a build-out on the ground. Nonetheless, it can be paired with the more-
detailed local routing to give industry stakeholders and policymakers a multi-scale
tool that could correctly incorporate uncertainty and risk at some levels but provide
useful, detailed routing and cost information at other levels.

Beyond iterating network-sink problems in a Monte Carlo framework, evolu-
tionary or agent-based algorithms deployed at the right scale could also narrow
decision options and also provide a “fuzzier” picture of optimal decisions. These
types of algorithms, in some ways like Monte Carlo models, can give multiple
decision options that are close to the optimum, which might be especially useful
in accounting for geological uncertainty or determining how to plan simulations
are a more detailed scale. They have another advantage, which is that they tend to
incorporate behavior by the agents involved (like power plant, pipeline, and storage
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site operators) that is easier to tweak or to limit so as to match the conditions or
behavior that are observed in the real world. These agent models might be especially
effective if the agents solve simple transport optimization problems as part of the
model structure.

A variety of models using different techniques at different scales might thus
incorporate varying degrees of complexity in transport optimization yet in their
entirety provide more value than a rigid approach to multi-scale modeling using
linear or mixed integer programming alone. The flexible suite of models allows
evaluation of CCS resources, decisions, and policy and many levels and with many
degrees of confidence, from the detailed and somewhat traditional pipeline routing
at a local or project level used to actually plan a CCS installation to the plethora
of techniques that can be applied at national or international scales to assess the
mitigation potential of the resource.

Regardless of the structure of these models in the future, it is fairly clear
that spatial optimization has dramatically improved the assessment of CCS at all
scales already. The flexible approaches of the future will continue to refine our
understanding of CCS potential in the energy system. Perhaps most importantly,
the unique challenges presented in CCS modeling may provide valuable insight into
hybrid or flexible modeling techniques in other arenas, generalizing the issues and
solutions to spatial optimization as a field.

The scalable, flexible approach is almost certainly applicable to energy infras-
tructure modeling as a whole. Spatial optimization is critical in understanding the
deployment of future energy projects, from transmission for wind projects (e.g.,
Phillips and Middleton 2012) to the CCS pipeline infrastructure issues described
above. Other resources are likely to have the same or more uncertainty as we find in
CCS. Intermittency in renewable generation is another critical issue that will impact
its deployment and the deployment of infrastructure that supports it, another clear
application of spatial optimization with uncertain parameters that might require a
flexible approach. Integrating plugin hybrid electric vehicles as an energy storage
system in the smart grid of the future likewise requires different approaches to deal
with uncertainty at different scales.

The techniques that will be developed to deal with the issues in CCS optimization
will almost certainly have value in these and other arenas, making them not simply
useful to the CCS research community, but to the larger energy infrastructure
research community and to the field of spatial optimization. Flexible modeling
approaches can help solve critical challenges in energy production in the future,
in a world constrained by climate change and resource allocation as well as
increasing demand. Spatial distribution of resources will be a feature of the energy
infrastructure of the future for decades to come, and location allocation will thus be
an invaluable tool in understanding and planning for the energy needs of civilization
in years to come (Figs. 1 and 2).
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Fig. 1 Schematic of the CO2 capture and injection/storage process; CO2 transport is not depicted

Fig. 2 Variability of CO2 injection and storage costs for major deep saline aquifers in the United
States (Eccles et al. (2011))
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