
The Nearest Neighbor Ant Colony System: A
Spatially-Explicit Algorithm for the Traveling
Salesman Problem

Jean-Claude Thill and Yu-Cheng Kuo

Abstract Inspired from the behavior of real ants, the ant colony algorithm has
provided a new approach for solving discrete optimization problems, such as
the traveling salesman problem. However, traditional ant colony algorithms may
consume an inordinate amount of computing time to converge to a solution. In this
chapter, a new heuristic algorithm called the nearest neighbor ant colony system
(NNAC) is proposed in order to reduce computing time, without sacrificing on
the optimality properties of the solutions. The NNAC is an intelligent form of
the original ant colony system that follows a spatial strategy. Thanks to a search
strategy that eliminates a large number of inefficient solutions up front on the basis
of proximity-based neighborhoods, the NNAC is able to find the best solution in a
fraction of the time that the conventional ant colony system consumes. The paper
summarizes the principles of heuristics based on ant colony systems and highlighted
some of their limitations. The proposed NNAC algorithm is presented in detail. The
NNAC is tested on five different data sets and compared to a traditional ant colony
system heuristic.

Keywords TSP • Traveling Salesman Problem • Ant colony system • Spatially
explicit modeling

Introduction

The Traveling salesman problem (TSP) is one of the most notable operational
models of spatial planning. It involves finding the shortest way of visiting each
of a given set of locations (also known as cities) exactly once and returning to the

J.-C. Thill (�)
Department of Geography and Earth Sciences, University of North Carolina, Charlotte,
NC 28223, USA
e-mail: jean-claude.Thill@uncc.edu

Y.-C. Kuo
Department of Geography, University at Buffalo – The State University of New York, Buffalo,
NY, USA

© Springer-Verlag Berlin Heidelberg 2018
J.-C. Thill (ed.), Spatial Analysis and Location Modeling in Urban and Regional
Systems, Advances in Geographic Information Science,
https://doi.org/10.1007/978-3-642-37896-6_13

301

mailto:jean-claude.Thill@uncc.edu
https://doi.org/10.1007/978-3-642-37896-6_13

302 J.-C. Thill and Y.-C. Kuo

starting point at the end of the tour. If travel cost is substituted for the distance
between each pair of locations, the TSP is then to find the least-cost way of visiting
all the locations.

The TSP has a number of real-world applications such as bus routing (Spada
et al. 2005), delivery and repair vehicle routing (Weigel and Cao 1999), newspaper
delivery (Song et al. 2002), business logistics (Exnar and Machac 2011), and
individual trip planning (Thill and Thomas 1991). Because it is such a prominent
problem of spatial planning and since many problems can be structured as a TSP
on networks, the TSP is fairly widely implemented in Geographic Information
Systems (Curtin et al. 2014). There are also a number of applications beyond these
conventional applications. In industrial engineering and in sciences, the TSP is used
to schedule a robot to drill holes in a circuit board (Ball and Magazine 1988),
for genome sequencing (Johnson and Liu 2006), to design the layout of a satellite
module (Sun and Teng 2003), optimal production sequencing (Jeong et al. 1997), as
well as many other novel uses. Perhaps as important is that the TSP has become a
fundamental platform for the study and assessment of general methods that can be
applied to solve discrete optimization problems in different fields of research. There
are several reasons for the TSP to play such an important role in combinational
optimization. First, the TSP is a conceptually simple problem that turns out to
be hard to solve because of being an NP-hard problem. Second, the TSP has no
other additional constraints that are usually difficult to control in practice (Hoos and
Stützle 2005). Finally, the TSP is the substructure of many other problems arising
in real-life practical situations (Christofides 1979).

Many approaches have been developed to solve the TSP (Rego et al. 2011).
Recently, ant colony algorithms have been proposed as a new heuristic approach for
solving discrete optimization problems in general, and the TSP in particular. These
algorithms simulate the collective intelligence of ants living in the same colony,
particularly their foraging behavior. Although the Ant Colony System (ACS) and
its variants have been successfully applied to various optimization fields, it does
come with major drawbacks. Most significantly, when the number of cities to visit
becomes large, huge computation time and failure to find an optimal solution at
convergence become problematic. This chapter aims at improving the performance
of the ACS with respect to these two key considerations by proposing enhancements
that take advantage of the known spatial structure of the set of cities to be visited.
An overview of the TSP is provided in the second section, while the principles
of the Ant Colony Algorithm are presented in the third section. The enhanced
ACS algorithm, dubbed the Nearest Neighbor Ant Colony (NNAC) algorithm, is
presented next. The implementation of the NNAC algorithm is then pursued on
Oliver-30, a dataset commonly used in testing and benchmarking described in
Whitley et al. (1989), as well as four other derivative datasets. This provides the test
bed for comparing the original ACS and the new NNAC algorithm. Conclusions are
drawn at the end of the chapter.

The Nearest Neighbor Ant Colony System: A Spatially-Explicit Algorithm for. . . 303

The Traveling Salesman Problem

The traveling salesman problem (TSP) was first treated mathematically in the spe-
cial case of the so-called Hamiltonian circuit in the 1800s by the Irish mathematician
William R. Hamilton and by the British mathematician Thomas P. Kirkman. The
general form of the TSP was first discussed in a series of publications by K. Menger
in the late 1920s and the computational complexity of solutions to the TSP was
addressed by H. Whitney in a 1934 seminar talk at Princeton University (Flood
1956; Schrijver 2005).

The TSP is known to be a NP hard problem for which no known efficient
algorithm exists. The computational time to solve NP hard problems increases
exponentially with problem size. Compared with any polynomial time problem
whose computational time increases as N2, where N is the problem size, the NP
hard problem increases as 2N instead. The TSP is very difficult to solve optimally
due to its combinatorial complexity.

Since Dantzig et al. (1954) introduced the technique of plane cutting in inte-
ger programming, several modern and high-performance techniques have been
developed to find the exact TSP solution. These include the branch and cut
method (Padberg and Rinaldi 1991; Applegate et al. 2006), the branch and bound
method (Little et al. 1963; Held and Karp 1970) and a few others. With enhanced
linear programming-based techniques and greater computing power, problems of
increasingly large sizes have been solved optimally, fromDantzig et al.’s 49 German
cities in 1954 to Applegate et al.’s 85,900-city instance solved by the CONCORDE
branch-and-cut algorithm (Applegate et al. 2006).

Given the large computing time of exact algorithms, practical TSP solution
procedures are necessarily heuristic (Curtin 2007). Various approximation methods,
whose rate of growth of computation time is a low order polynomial in n, have
been experimentally observed to perform well (Christofides 1979; Curtin et al.
2014). The nearest neighbor heuristic (Hoos and Stützle 2005) is a form of greedy
algorithm. Other approaches include simulated annealing (Meer 2007), Tabu search
(Gendreau et al. 1994), and the Lin-Kernihan (LK) heuristic (Lin and Kernihan, Lin
and Kernighan 1973). The LK algorithm is a particularly prominent TSP solution
method. It is a tour improvement method that attempts to improve a given graph
by exchanging a set of edges in order to obtain an alternative graph of lower cost
(Applegate et al. 2006). The basic concept of the LK algorithm is based on the 2-opt
moves method (Flood 1956).

Several heuristic methods based on a biological metaphor hold great promises
for solving combinatorial optimization problems of the complexity exhibited by the
TSP. The main approaches here are the genetic algorithm (GA), Neural Networks
(NN), Particle Swarm Optimization (PSO), and Ant Colony Optimization. Some
solution strategies resort to hybrid approaches where multiple heuristics are inte-
grated (see for instance Marinakis et al. 2010; He and Mo 2011). The well-known
approximate search technique of genetic algorithm (GA) simulates evolutional

304 J.-C. Thill and Y.-C. Kuo

mechanisms of genetic material such as selection, mutation and crossover to
determine the better solution from its prior generation (Shengwu and Chengjun
2002). The GA has a better chance that some other algorithms to avoid getting
trapped in the local minimum because the mutation operator alters one or more
gene values in a chromosome and can result in entirely new genes being added
to the gene pool; hence the algorithm has the opportunity to escape from the
local minimum. Neural networks find an optimal TSP solution through learning by
simulating the human nervous system. Unsupervised forms of neural networks such
as Kohonen’s self-organizing map or adaptive resonance theory (ART) (Goldstein
1990; Vishwanathan and Wunsch 2001; Mulder and Wunch 2003) iteratively fit a
prototype tour to the set of nodes to the visited in the solution space. PSO has a
population of candidate solutions (particles) that move in the search-space, guided
by their own best known position as well as the entire swarm’s best known position
in this space (Cunkas and Ozsaglam 2009). Ant colony optimization is described in
more detail in the following section.

Ant Colony Optimization

Ants are known to have developed evolved social strategies to efficiency find food
supply and identify short paths between their nest and food sources. Inspired from
the behavior of real ant colonies, Dorigo’s (1992) Ant System (AS) is a heuristic
method that simulates individual and collective behaviors of an ant colony. It is
often regarded as one of the most advanced techniques for approximate optimization
across diverse domains of application (Blum 2005). Since the early 1990s, the ant
colony algorithm has been used to solve discrete optimization problems, such as
the traveling salesman problem (Colorni et al. 1992; Dorigo et al. 1996; Dorigo and
Gambardella 1997), vehicle routing problems (Reimann et al. 2004; Abousleiman
et al. 2017), packet-switched communication network problems (Schoonderwoerd
et al. 1997; Di Caro and Dorigo 1998), the network design problem (Poorzahedy and
Abulghasemi 2005), land cover zoning and planning (Li et al. 2011), and others.

Rather simple principles of behavior can explain not only the ability of ants
to find the shortest path but also the ability to adjust to changes in their decision
environment. Each ant has an inclination for certain chemical compounds called
pheronomes, deposited on trails by other ants. When ants arrive at decision nodes
where they have to decide what direction to follow, they tend to follow the path that
has been discovered by most ants, which means that stronger pheromone has been
deposited on this path. A strong pheromone on the shorter path will obviously be
created much faster than on longer paths. This will prompt an increasing number of
ants to choose the shorter path until most ants have found the shortest path.

As a form of swarm optimization approach, ant colony heuristics assign a large
number of virtual ant agents to the task of exploring many possible paths between

The Nearest Neighbor Ant Colony System: A Spatially-Explicit Algorithm for. . . 305

cities. As it builds a tour, each ant selects the next city to visit through a stochastic
rule that features the amount of virtual pheromone deposited on the edges. The ants
explore untraversed edges and in doing so, they deposit pheromone on edges until
their tour is completed (local trail updating). Once all the ants have completed the
shortest tour, virtual pheromone is deposited on the complete route (global trail
updating). The amount of pheromone is inversely proportional to the tour length.

The AS has been used in different optimization applications and results have
shown this algorithm to be capable of finding optimal solutions. In addition, AS is
easy to understand, to program, and to combine with other heuristic algorithms.
However, is suffers from serious drawbacks. Most notably, it consumes large
computation time and gets stuck on local minima rather easily. The algorithm
routinely takes at least 1–2000 iterations of all virtual ants through a solution search
to find an optimal result and, even then, the algorithm could still have reached
stagnation behavior (local minimum) without finding a global optimum.

Different strategies have been proposed to remedy this deficiency. For instance,
Dorigo et al. (1996) introduced the Elitist Ant System (EAS) in which improvement
is achieved by providing additional reinforcement to the edges belonging to the
best tour found since the start of the algorithm. Stützle and Hoos (1997) developed
a Max-Min ant system which imposes constraints on the updating of pheromone
laid on the trail in order to solve the stagnation situation: ants can only deposit
pheromone on the edges which belong to the tour that outperforms others in or
up to the current iteration. Wu et al. (Wu et al. 1999) applied mutation features
to the ant colony algorithm in order to prevent the early stagnation behavior and
to decrease the computational time. In the Rank-based Ant System (Bullnheimer
et al. 1999) the amount of pheromone deposited on the edges of a tour depends on
how well this tour ranks against others. Zhu and Yang (2004) proposed a dynamic
pheromone updating approach, which ensures that every ant’s contribution can be
efficiently adopted during the search phase. Dorigo and Gambardella’s (1997) Ant
Colony System (ACS) differs from the AS by granting virtual ants more intelligent
ability to not only exploit learned knowledge but also of exploring tours other than
good tours identified hitherto in the algorithm.

The search strategy of ACS and other ant colony algorithms involves the
maintenance of a candidate list of all nodes that remain to be visited. Virtual ants
search every possible node on this list for their next position, whether this is likely
to be an efficient move or not. This strategy causes computation time to be wasted
on searching inefficient candidates. Inefficient candidates are those nodes selected
by ant agents at their current position that will, by no means, become optimal
solutions. Furthermore, because pheromone is also deposited when inefficient nodes
are visited, the probability that other ants choose the same route is raised, which
may induce the algorithm to step into a stagnation situation without finding the best
route, or lead to search results that are randomly scattered because ant agents are
misled by the pheromone.

306 J.-C. Thill and Y.-C. Kuo

The Nearest Neighbor Ant Colony Algorithm

The Principle

As mentioned previously, the ant colony algorithms search every possible node
listed in the candidate list. Thus, for a 30-node problem, 30! possible combinations
are searched in order to find an optimal solution. In fact, most of the computation
time involved in finding a solution may be wasted on node combinations that are
not efficient. The Nearest Neighbor Ant Colony (NNAC) algorithm is proposed to
improve computation time that is wasted on searching the inefficient combinations
and to avoid early stagnation.

Careful observation of the Traveling Salesman Problem and of its solutions in the
Euclidean plane indicates that optimal solutions commonly share a few fundamental
properties. These properties are as follows:

1. Every node is linked by a solution edge to one of its nearest neighbors.
2. Outlier nodes, which are relatively far away from any others in the solution space,

are not placed at the end of the visiting node sequence.
3. No two edges on a solution tour intersect, thus creating a planar solution.

These fundamental properties are exploited here in order to enhance the effi-
ciency of ant colony algorithms. The proposed Nearest Neighbor Ant Colony
(NNAC) algorithm incorporates a new searching strategy for the TSP that takes
into account the spatial arrangement of cities across the study region. The algorithm
responds to the spatial clumpiness of cities in the search for better paths traversing
and connecting cities. It modifies the ant colony system to exhibit the properties
described above so as to converge faster and thus reduce computing time. In
addition, the NNAC implements a mutation function (Wu et al. Wu et al. 1999)
that is intended to minimize the chance of stagnation on a local optimum. Some
similar considerations drawn from local measurement of nearest neighbors were
introduced by earlier researchers, in particular Doerner et al. (2002), Wetcharaporn
et al. (2006), and Qi (2007). The novel structures of the proposed algorithm are
discussed in more detail in the rest of this section.

The Nearest Neighbor Searching Strategy

The ACS algorithms sequentially search through many possible solutions (although
not necessarily all of them); however, most of these solutions can readily be
dismissed for being obviously suboptimal. In line with the first solution principle
introduced above, the proposed NNAC algorithm focuses on nodes within a certain
distance threshold r from current node i, instead of searching all nodes in the
candidate list as a TSP tour is being built. The nearest candidate list, NNAC-candi,

The Nearest Neighbor Ant Colony System: A Spatially-Explicit Algorithm for. . . 307

0
0

10

20

30

40

50

60

70

80

90

100

10 20 30 40

r

r

r

50 60 70 80 90 100

Fig. 1 The NNAC searching strategy

formed of nodes within the preset threshold eliminates most inferior nodes, which
can reduce computation time to a great degree.

In contrast to the ACS algorithms that save every node that has never been visited
to the candidate list, the NNAC-candi list of the Nearest Neighbor Ant Colony
(NNAC) only saves a limited number of potential nodes which are located within a
certain distance r to the ant’s current location, as depicted in Fig. 1. It is a dynamic
concept as it needs to be recomposed after each move on the tour by identifying all
nodes encompassed by the moving circular window (buffer) of radius r. Practically,
a sorted list of neighbors for all nodes can be computed in a pre-processing step
and only those that are not tabu must be considered and placed in the NNAC-candi
list. This search strategy takes into consideration the spatial process that generated
the nodes to be visited. As a result, the number of nodes on an NNAC-candi list
depends on the spatial structure of nodes in the vicinity of the current node: a
local cluster produces a long list, while a sparse layout of competing and mutually
avoiding nodes yields a short list. The search radius r is a critical parameter whose
value directly impacts on the computation time as well as the optimality of the
solution. The conventional candidate list is a limit case of the NNAC-candi list. The
probability of choosing next node j from the NNAC-candi list, given the current
node, follows the original ACS approach. It should be noted that parameter r must

308 J.-C. Thill and Y.-C. Kuo

0
0

10

20

30

40

50

60

70

80

90

100

20 40 60 80

Outlier

Outlier

100

Fig. 2 Outlier nodes

be carefully selected to avoid: too small a value may exclude an optimal or near-
optimal solution as the NNAC-candi list may be very short (and possibly empty),
while a large r results in no computational savings.

The Problem of Outlier Nodes

Let us consider the nodes that are relatively far away from any others. The
probability of selecting any of these outliers (Fig. 2) until close to the end of a tour is
rather low since the distance between pairs of nodes is a controlling parameter of the
probability function that drives the ACS algorithm. Therefore, in solutions produced
by an ACS algorithm, outliers are usually listed at the end of the visiting list, which
is at variance with known optimal solutions (second principle). Hence, whether an
outlier is correctly placed in the visiting nodes sequence or not during the searching
procedure is a critical criterion for finding an optimal solution. In order to enhance
the proposed algorithm so that outliers are not ignored, an outlier-first searching
strategy is deployed. Instead of randomly selecting a start node as in ACS, outliers
are here given higher priority of being processed.

The Nearest Neighbor Ant Colony System: A Spatially-Explicit Algorithm for. . . 309

20

20

21

22

26

27

28

29

30

25
2

4

7
8

9

13

15

16

17

14

1211

10

6

5

1

3

24

23

18
19

30 40 50 60 70 80 90 100100
0

10

20

30

40

50

60

70

80

90

100

Fig. 3 Planar searching strategy

Planar Searching Strategy

Let us consider the scenario depicted by Fig. 3, where an ant agent starts from
node 5. According to the NNAC, this ant chooses the sequence of nodes 6, 10,
11, 12, 13, 14, and so on. Up to this point, the searching sequence has followed a
nearest neighbor searching strategy, according to which each new edge connects a
node to its nearest neighbor. Let us now look at the NNAC-candi list of an agent
arrived at node 14; this list includes nodes 9, 15, 16, and 8. According to the
probability function controlling edge formation, the ant agent chooses node 9 as
its next destination. This selection satisfies the searching strategy rule that the node
is within searching distance r. However, the final result will not be the optimal route
because it violates a fundamental property of TSP solutions, namely that segments
12; 13 and 9; 14 intersect. In order to reduce the likelihood that this property is
violated, an improved pheromone updating rule is proposed.

Two pheromone updating strategies are applied in the proposed algorithm to
represent the reinforcement mechanism that happens when agents explore routes
and find good solutions. One is a local updating rule, while the other is an updating
rule that takes into account the best tour found by an agent during each iteration.
The latter replaces the global updating rule used in the ACS algorithm. Both rules

310 J.-C. Thill and Y.-C. Kuo

contribute to reinforcing the ant agents’ learning from their prior action and to
speeding the convergence of the algorithm, while preserving the desired properties
of TSP solutions.

Local Updating Rule

In the NNAC algorithm, the pheromone density value on each segment is updated
right after an ant agent passes through. However, instead of adding a constant
amount of pheromone on each segment as in the ACS, the amount decreases
according to how far the ant agent has traveled so far. It is consistent with the
expectation that the significance of information for making an optimal decision
does not remain constant as an agent progresses along the route: information is
more important at an early stage than in later phases. The route choices made early
in the search are more important than those made later because each selection has
a compounding impact on subsequent selections. A correct decision at an early
stage will lead to a higher chance that the ant will make correct decisions at a
later stage. When a selection is made at a more advanced stage of the tour, the
remaining choices are so limited that its impact on the entire optimization becomes
relatively minor. Meanwhile, the amount of pheromone also depends on whether
the ant’s searching strategy violates optimal route properties. For instance, if an ant
agent picks its next node in a way that violates the properties of route planarity, the
amount of pheromone deposited on this segment is discounted.

The local pheromone updating rule for any segment ijis mathematically
expressed as:

�ij.t/ D .1 � �1/ �ij .t � 1/ C ��ij.t/ (1)

where t is the time index, such that one and only one edge is traversed per time unit,
and 0 < �1 < 1 is a user-defined coefficient representing the rate at which pheromone
evaporates between consecutive time periods t-1 and t. The term �� ij(t) controls the
deposit of pheromone during time period t. It lets ant agents learn the best action to
perform in each possible state; it is defined as

8
<

:

��ij.t/ D
P

�kl.t/
L if segment ij 2 planar

��ij.t/ D
P

�kl.t/
L ı otherwise;

(2)

where L is the cumulative distance from start node s to current node i, the
P

� ij is
the accumulated pheromone density from start node s to current node i, and 0 < ı < 1
is the scalar penalty assigned for violating the optimal route properties.

The Nearest Neighbor Ant Colony System: A Spatially-Explicit Algorithm for. . . 311

Iteration-Best Updating Rule

The iteration-best path is the shortest route of m runs (m ants) on any given iteration.
The iteration-best updating rule is performed after all ants have completed their tour
in the current iteration so as to reinforce the pheromone density on the segments
belonging to the iteration-best route. By laying pheromone on the shortest route
only, the NNAC iteration-best updating rule embodies the principle of “winner take
all”, which is intended to provide advantage to those segments which are identified
as being part of the best combination.

The iteration-best rule for updating the pheromone value on segment ij is
expressed mathematically as follows:

�ij .t D n/ D .1 � �2/ �ij .t D 1/ C ��ij (3)

where t is the time index, 0 < �2 < 1 is a user-defined coefficient representing the rate
at which pheromone evaporates between the start (t D 1) and the end (t D n) of the
tour construction. The term �� ij controls the deposit of pheromone on the best tout
of the iteration, in inverse proportion of its length. It is defined as

��ij D
�

.Literation�best/
�1 if ij 2 iteration best tour

0 otherwise
(4)

where Literation� best is the length of the iteration’s shortest tour.

Mutation

Like most heuristic methods, ant colony optimization has the disadvantage of
sticking on local minima; as a result, it may not be able to find the globally optimal
route. This situation can be avoided by randomly disturbing the pheromone density
of certain segments by resetting or increasing their values. This behavior is similar
to the mutation function in genetic algorithms (Lin et al. 1993). During the iteration-
best pheromone updating phase, the mutation function randomly switches the order
of two nodes on the iteration-best route, which will cause an incorrect update of the
pheromone density and also give the NNAC algorithm the opportunity to find the
real global shortest path, if it happens to have erred towards a local optimum.

Procedures of NNAC and Comparison with ACS

The NNAC heuristic involves the iteration through a number of steps, which parallel
the original ACS algorithm. For sake of clarity, a run of the simulation is defined

312 J.-C. Thill and Y.-C. Kuo

as a complete route performed by a single ant agent. An iteration of an ant-based
algorithm encompasses all the routing decisions made by all m ants. Therefore, in
an m-ant simulation, an iteration has m runs and an ant run consists of n edges
connecting nodes to form an ant’s tour. A detailed description of ACS is available
in Dorigo and Stützle (2004).

1. Choosing a start node

Instead of randomly selecting a start node from the set of nodes to be visited on a
run as the original ACS does, the NNAC gives outliers more chances to be selected
as a start node. For each odd run number, the NNAC randomly selects a start node
from the outlier node pool. Conversely, on even runs, the start node is randomly
selected from dataset as the traditional ACS does.

2. List of nodes that remain to be visited: NNAC-candi versus candidate list

For each ant k at node i, a NNAC-candi list is created. Only nodes within distance r
from node i can be listed:

NNAC � candik D .j1; j2; j3 : : : jn/ ;

where jn is a node within distance r of node i that has not yet been visited. In the
ACS algorithm, all nodes which have not been visited are listed in the candidate list:

candik D (j1, j2, j3 : : : jn), where jn is a node that has not yet been visited.

3. Choosing next node j

The NNAC algorithm applies the same choice rule as the ACS for selecting the
node to which an ant moves at a certain run, given the list of nodes that are yet to be
visited. This rule is given by

j D

8
ˆ̂
<

ˆ̂
:

arg max
s 2 candik.t/

s 2 NNAC � candik.t/

n
Œ�is.t/� Œ�is�

ˇ
o

if q � q0

S otherwise

(5)

where q is a uniformly distributed random number defined on [0, 1], q0 is a pre-
defined parameter (0� q0 � 1), and S is the node that achieves the highest value on
the following stochastic function:

pkij.t/ D

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

Œ�ij.t/�
˛
Œ�ij�

ˇ

P

u 2 candik.t/

u 2 NNAC � tabuk.t/

Œ�iu.t/�˛ Œ�iu�ˇ

if j 2 candik.t/ for ACS; j 2 NNAC � candik.t/ for NNAC
0 otherwise

(6)

The Nearest Neighbor Ant Colony System: A Spatially-Explicit Algorithm for. . . 313

where � ij(t) is the density of pheromone on edge (i,j) during time period t, �ij is
the inverse value of distance between node i and node j, and ˛ ,ˇ are user-defined
parameters which represent the importance of pheromone and distance, respectively,
in the selection of the next node to visit. The latter equation is in fact the node
selection rule of the original AS heuristic.

4. Local pheromone updating rule

In the ACS and NNAC algorithms, the pheromone density on each segment is
updated right after an ant agent passes through. However, while a constant amount
of pheromone is added on each segment in the ACS, the amount decreases according
to how far the ant agent has traveled so far. The NNAC local updating rule is given
by Eqs. (1) and (2). In contrast, in the standard ACS heuristic, the latter is replaced
by

�� k
ij D

(
Q
Lk

if ant k uses path .i; j/ in its tour

0 otherwise
(7)

where Q is a constant and Lk is the length of the tour of the kth ant starting from its
start node i, visiting all nodes, and returning to start node i.

5. Iteration-Best and global pheromone updating rule

In addition to the local updating rule, the NNAC performs an iteration-best
pheromone updating rule at the end of each iteration so as to reinforce the
pheromone density on the segments belonging to the iteration-best route. This rule
is given by (3)–(4). It supersedes the ACS global pheromone updating rule, which
is triggered at the end of each iteration when an ant k has identified the shortest
tour during the searching period. The global pheromone updating rule is given by
following equations:

�ij .t D n/ D .1 � �/ �ij .t D 1/ C ��ij (8)

where

��ij D
(�

Lgb
��1

if .i; j/ 2 global best tour
0 otherwise

(9)

and � is the pheromone decay parameter and Lgbis the length of the best of all the
tours produced by all m agents since the beginning of the iteration.

6. Mutation

If the iteration-best route returns the same value for a number X of consecutive
iterations, two nodes in the iteration-best visiting list are randomly switched and the
pheromone values are updated accordingly. Number X is a user-defined constant
that controls the rate of mutation by setting the permissible number of identical
consecutive solutions. No mutation is allowed in the ACS heuristic.

314 J.-C. Thill and Y.-C. Kuo

7. Additional iterations

Steps 1 through 6 are repeated for a predetermined number of iterations and the
shortest routes obtained in each iteration are then compared to produce the TSP
solution.

Experimentation Results

In this section, we implement and test the NNAC heuristic on Oliver-30 (Whitley
et al. 1989), a 30-city test problem commonly used in the literature for validation
and benchmarking purposes. The NNAC heuristic is also tested on four other
randomly generated 30-node datasets for consistency analysis. The experimentation
results and the analysis of consistency of applying the NNAC algorithm on different
datasets are reported below.

NNAC Performance on Five Datasets

Ant population size is set at 6 for all of the following experiments.1 The outlier
nodes are identified by visually examining the different datasets. In addition, good
values of parameters ˛ and ˇ are determined by testing multiple combinations, the
best of which is reported below for each data set. The other user-defined parameters
are set as follows:

pheromone decay .�/ D 0:5

segment intersected penalty .ı/ D 0:7

q0 D 0:5:

Figure 4 depicts the results of one out of 50 trials with 100 iterations conducted
on each test dataset. The left-hand side of each panel shows a plot of the length of
the best route found by ant agents in each iteration of the depicted trial; the right-
hand side maps the route that has the shortest length on all 100 iterations. As the
results on the five 30-node datasets indicate, the NNAC generates TSP routes that
are reasonable. Furthermore, the algorithm rather quickly converges to minimum-
length routes that dominate the solutions after 50 iterations or so.

1Our experiments reveal that smaller population sizes degrade the performance of the solution
algorithm. Conversely, large sizes increase computational time with no performance benefits.

The Nearest Neighbor Ant Colony System: A Spatially-Explicit Algorithm for. . . 315

Oliver-30
a =1, b = 3 (Shortest route = 423.74)

Layout 1
a =1, b = 3 (Shortest route = 369.47)

Layout 2
a =1.7, b = 3 (Shortest route = 439.15)

Best NNAC Solution

Best NNAC Solution

Best NNAC Solution

0
360

560

540

520

500

480

460

440

420

370

380

390

400

410

420

430

440

420

440

460

480

500

520

540

560

10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50
Iteration

Iteration

Iteration

T
ou

r
L

en
gt

h
T

ou
r

L
en

gt
h

T
ou

r
L

en
gt

h

60 70 80 90 100 0
0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

Fig. 4 NNAC results for five different city layouts

316 J.-C. Thill and Y.-C. Kuo

Layout 4
a =2.2, b = 3 (Shortest route = 432.06)

Layout 3
a =2.2, b = 3 (Shortest route = 455.37)

Best NNAC Solution

Best NNAC Solution

0
420

440

460

480

500

520

540

560

450

500

550

600

10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50

Iteration

Iteration

T
ou

r
L

en
gt

h
T

ou
r

L
en

gt
h

60 70 80 90 100
0

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

Fig. 4 (continued)

Consistency and Validation of NNAC Solutions

The Oliver-30 and four different 30-node layouts are also used to test the consistency
of NNAC solutions. Results are obtained by running the NNAC algorithm on 50
trials; each trial includes 100 iterations with six ant agents. Table 1 reports the mean,
standard deviation, and minimum of the best routes obtained over 50 trials. The
average error is computed as the ratio between the mean of 50 best tour lengths
and the length of the shortest tour. As shown in Table 1, the average error and the
standard deviation are consistently small, which indicates that the performance of
the NNAC algorithm is very consistent across all five test datasets.

While the NNAC heuristic is found to produce consistent TSP solutions, it is a
worthy solution method only if it can be validated against known solutions. The
best NNAC solution on Oliver-30 depicted in Fig. 4 (with a length of 423.74) is also
found to be the best known solution of this test dataset (Whitley et al. 1989). No
similar statement can be made for the other four test layouts as there are no known

The Nearest Neighbor Ant Colony System: A Spatially-Explicit Algorithm for. . . 317

Table 1 Summary statistics of NNAC best tour lengths for five test data sets

Best tour length

Mean
Standard
deviation

Minimum (best
solution)

Average error
(%)

Oliver-30 425.46 2.44 423.74 0.4
Layout 1 369.47 0.00 369.47 0.0
Layout 2 444.97 5.77 439.15 1.3
Layout 3 459.54 4.50 455.37 0.9
Layout 4 438.32 7.31 432.06 1.5

best solutions for these data sets. However, the best solutions attained in our tests
can be benchmarked against known fundamental properties of optimal solutions
reported in section “The Principle”. All best solutions generated in our experiments
meet the optimal properties mentioned which are:

1. Every node is linked by a solution edge to one of its nearest neighbors;
2. Outliers are correctly selected: the to-nodes of outliers are limited to their nearer

neighbors;
3. No two link segments intersect on the route.

Furthermore, the NNAC heuristic is found to converge to a best solution
exhibiting these desirable properties in 100 iterations or less (See Fig. 4). This
represents a significant improvement in efficiency in solving the TSP with ant
colony algorithms. In fact, the NNAC heuristic outranks the efficiency of the ACS
algorithms by a large margin, since the latter typically need thousands of iterations
to find the best solution. It has already been noted earlier that the standard deviations
and average error percentages yielded by the NNAC algorithm on various data sets
are small, which indicates that the solutions generated by the NNAC algorithm
tightly cluster around the best value. These two considerations lead us to conclude
that the NNAC heuristic is a reliable and robust solution approach to the TSP.

Experiment Comparison

The performance of the NNAC algorithm can also be assessed by comparing its
solutions to those of the ACS on the same dataset. Dorigo and Gambardella (1997)
conducted Ant Colony System (ACS) experiments with three different specifications
of the local pheromone updating rule (1) on the Oliver-30 dataset. Their TSP
solutions are reported here. The three ACS variants differ by the term �� ij that
controls the deposit of new pheromone during each time period. Specifically, in
the simple ACS, �� ij D �0, where �0 is a constant; the ant-Q updating rule uses
�� ij D � max � ij, where � is a user-defined parameter; finally �� ij D 0 is assumed
in a naïve ACS heuristic.

318 J.-C. Thill and Y.-C. Kuo

Table 2 Experiment comparison on Oliver-30

Heuristic Tour length

Average
Standard
deviation Minimum

NNAC 425.46 1.44 423.74
Simple ACS 424.74 2.83 423.74
Ant-Q 424.70 2.00 423.74
Naïve ACS with ��(r, s)D 0 427.52 5.21 423.74

The ACS solutions with the three different pheromone updating rules serve to
benchmark the NNAC solutions. The local updating and global updating rules in
the NNAC are described by Eqs. (1–2) and (3–4), respectively. Table 2 shows the
results obtained from Dorigo and Gambardella (1997) and NNAC.

According to the results shown in Table 2, the NNAC heuristic and the ACS
with all three alternate specifications of �� ijcan find the best TSP solution with
a route length of 423.74. Although the simple ACS and Ant-Q approaches have
better performance in term of average tour length, the lower standard deviation of
the NNAC indicates that the NNAC algorithm more consistently finds a close to
optimal solution than the variants of the ACS algorithm.

It should be pointed out that experiments with NNAC involve 25,100-iteration
trials with 6 ants. On the other hand, results reported for the three ACS variants
were generated by 25 2500-iteration trials with 10 ants. Therefore, the total number
of ant runs in the latter experiments is 625,000, which contrasts with a mere 15,000
runs of the NNAC. The NNAC uses 2.4% of the ant runs of more traditional ACS
algorithms. Remarkably, not only does the NNAC generate TSP solutions with less
variance than the ACS algorithm, it also does so in a fraction of the computing time.

Conclusions and Future Enhancements

While ant colony heuristics have been successfully applied to various optimization
problems such as the TSP, they suffer from huge computation time and from a
tendency to settle on local optima at convergence. In this chapter, we have proposed
several enhancements to the conventional ACS algorithms. The proposed NNAC
algorithm capitalizes on the optimal route properties to reduce computing time
without sacrificing on the optimality properties of the solutions. The performance of
this algorithm was shown to be better than that of the ACS algorithm on computing
time by eliminating inefficient routes in advance. Instead of searching every possible
node, the NNAC searching strategy exploits the spatial structure existing among
cities to be visited by focusing on nodes within a certain radius from the current
node. Thus, the time saving comes from narrowing down the possible solutions
from 30! to less than 525 * 4! in a 30-node problem.

The Nearest Neighbor Ant Colony System: A Spatially-Explicit Algorithm for. . . 319

The NNAC also brings to bear prior knowledge on the spatial distribution of
nodes in handling nodes which are relatively far away from the other nodes. These
spatial outliers are largely ignored during the searching phase of ACS, which causes
pheromone density to be inadequately updated and computing time to be wasted.
In the NNAC algorithm, the randomly selected start node strategy is replaced by
a conditional outlier-first strategy. The advantages of the conditional outlier-first
strategy are:

1. An increase of the reliability of pheromone update rules;
2. A Reduction of the information noise generated by ignored outliers;
3. A reduction of the computing time.

Two enhanced pheromone updating rules are implemented in the NNAC. The
local pheromone updating rule follows the traditional ACS approach but gives
more intelligence while updating the pheromone density. In lieu of increasing
the pheromone density uniformly, the NNAC local updating rule adds an amount
according to the distance that an ant has traveled, which reinforces the importance
of information received in the early searching stage. The NNAC local updating rule
also assigns a penalty to non-planar link segments. The iteration-best updating rule,
on the other hand, reinforces the information on the most efficient solution in each
iteration, which reduces the probability of inefficient nodes being selected in the
remaining iterations.

A mutation function is also implemented in the NNAC algorithm. The mutation
function prevents the algorithm from being limited to a local minimum and falling
in convergence without finding the global minimum. The mutation function in the
NNAC is executed in the global pheromone update phase. By doing so, it gives the
NNAC the chance to escape from a possible local minimum and to find the real
global minimum value.

Currently the NNAC algorithm focuses on problem of small to moderate sizes.
The NNAC features several solution strategies designed to consistently generate
optimal solution properties. It provides an approach for eliminating inefficient
node combinations in advance so as to reduce the computing time on the TSP
problem. Thorough testing of the heuristic is in order to identifying best performing
combination of parameters. Further parameter sensitivity analysis is needed to
establish rules of thumb for the selection of appropriate parametric specifications.
It is also anticipated that further enhancement of the efficient of the NNAC solution
approach can be achieved by capitalizing to a greater extent on the spatial structure
of nodes. Particularly, knowledge on the presence of local clusters of nodes can be
exploited to avoid searching along dominated solution paths. It is our contention
that the articulation of techniques of spatial point pattern analysis with ant colony
optimization principles will lead to solution approaches suitable for large-scale TSP
problems. Also, the algorithm should be tested and customized to problems on
networks, which have become rather standard in an era where much geospatial data
are available on transportation infrastructure and their operational properties, such
as speed and capacity.

320 J.-C. Thill and Y.-C. Kuo

References

Abousleiman, R., Rawashdeh, O., & Boimer, R. (2017). Electric vehicles energy efficient routing
using ant Colony optimization. SAE International Journal of Alternative Powertrains, 6(1).

Applegate, D. L., Bixby, R. E., Chvatal, V., & Cook, W. J. (2006). The traveling salesman problem:
A computational study. Princeton: Princeton University Press.

Ball, M. O., & Magazine, M. J. (1988). Sequencing of insertions in printed circuit board assembly.
Operations Research, 36, 192–201.

Blum, C. (2005). Ant Colony optimization: Introduction and recent trends. Physics of Life Reviews,
2, 353–373.

Bullnheimer, B., Hartl, R. F., & Strauss, C. (1999). A new rank based version of the ant system: A
computational study. Central European Journal of Operations Research, 7, 25–38.

Christofides, N. (1979). The traveling salesman problem. In N. Christophides, A. Mingozzi, P.
Toth, & C. Sandi (Eds.), Combinatorial Optimization (pp. 131–149). New York: Wiley.

Colorni, A., Dorigo, M., & Maniezzo, V. (1992). An investigation of some properties of an ant
algorithm. In Parallel problem solving from nature conference (PPSN 92) (pp. 509–520). New
York.

Cunkas, M., & Ozsaglam, M. Y. (2009). A comparative study on particle swarm optimization and
genetic algorithms for traveling salesman problems. Cybernetics and Systems, 40, 490–507.

Curtin, K. (2007). Network analysis in geographic information science: Review, assessment, and
projections. Cartography and Geographic Information Science, 34, 103–111.

Curtin, K., Voicu, G., Rice, M. T., & Stefanides, A. (2014). A comparative analysis of traveling
salesman solutions from geographic information systems. Transactions in GIS, 18, 286–301.

Dantzig, G., Fulkerson, R., & Johnson, S. (1954). Solution of a large-scale traveling salesman
problem. Operations Research, 2, 393–410.

Doerner, K. F., Gronalt, M., Hartl, R. F., Reimann, M., Strauss, C., & Stummer, M. (2002). Savings
ants for the vehicle routing problem. In S. Cagnoni, J. Gottlieb, E. Hart, M.Middendorf, & G. R.
Raidl (Eds.), Applications of evolutionary computing (pp. 11–20). Berlin/Heidelberg: Springer
LNCS 2279.

Di Caro, G., & Dorigo, M. (1998). AntNet: Distributed stigmergetic control for communication
networks. Journal of Artificial Intelligence Research, 9, 317–365.

Dorigo, M. (1992).Optimization, learning and natural algorithms. Unpublished Ph.D. dissertation,
Dipartimento di Elettronica, Politecnico di Milano, Milan, Italy.

Dorigo, M., & Gambardella, L. (1997). Ant colony system: A cooperative learning approach to the
travelling salesman problem. IEEE Transactions on Evolutionary Computation, 1, 53–66.

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: Optimization by a Colony of
cooperating agents. IEEE Transactions on System, Man, and Cybernetics—Part B: Cybernetics,
26, 29–41.

Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge, MA: MIT Press.
Exnar, P., & Machac, O. (2011). The travelling salesman problem and its application in logistic.

WEAS Transactions on Business and Economics, 18, 163–173.
Flood, M. M. (1956). The traveling salesman problem. Operations Research, 4, 61–75.
Gendreau, M., Hertz, A., & Laporte, G. (1994). A Tabu search heuristic for the vehicle routing

problem. Management Science, 40, 1276–1290.
Goldstein M (1990) Self-organizing feature maps for the multiple traveling salesman problem

(MTSP). In: Proceedings IEEE international conference on neural networks, Paris, pp. 258–
261.

He, X. B., & Mo, Y. W. (2011). Solving the TSP by simulated annealing genetic algorithm based
on Google maps JavaScript API. Advanced Materials Research, 201–203, 733–737.

Held, M., & Karp, R. M. (1970). The traveling salesman problem and minimum spanning trees.
Operations Research, 18, 1138–1162.

Hoos, H. H., & Stützle, T. (2005). Stochastic local search: Foundations and applications. San
Francisco: Morgan Kaufmann.

The Nearest Neighbor Ant Colony System: A Spatially-Explicit Algorithm for. . . 321

Jeong, E. Y., SC, O., Yeo, Y. K., Chang, K. S., Chang, J. Y., & Kim, K. S. (1997). Application of
traveling salesman problem (TSP) for decision of optimal production sequence.Korean Journal
of Chemical Engineering, 14, 416–421.

Johnson, O., & Liu, J. (2006). A traveling salesman approach for predicting protein functions.
Source Code for Biology and Medicine, 1, 3.

Li, X., Lao, C. H., Liu, X. P., & Chen, Y. M. (2011). Coupling urban cellular automata with
ant Colony optimization for zoning protected natural areas under a changing landscape.
International Journal of Geographical Information Science, 25, 575–593.

Lin, S., & Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling-salesman
problem. Operations Research, 21, 498–516.

Lin, F. T., Kao, C. Y., & Hsu, C. C. (1993). Applying the genetic approach to simulated annealing
in solving some NP-hard problems. IEEE Transactions on Systems, Man and Cybernetics, 23,
1752–1767.

Little, J. D. C., Murty, K. G., Sweeney, D. W., & Karel, C. (1963). An algorithm for the traveling
salesman problem. Operations Research, 11, 972–989.

Marinakis, Y., Marinaki, M., & Dounias, G. (2010). A hybrid particle smarm optimization
algorithm for the vehicle routing problem. Engineering Applications of Artificial Intelligence,
23, 463–472.

Meer, K. (2007). Simulated annealing versus metropolis for a TSP instance. Information Process-
ing Letters, 104, 216–219.

Mulder, S. A., & Wunch, D. C. (2003). Million city traveling salesman problem solution by divide
and conquer clustering with adaptive resonance neural networks. Neural Networks, 16, 827–
832.

Padberg, M., & Rinaldi, G. (1991). A branch-and-cut algorithm for the resolution of large-scale
symmetric traveling salesman problems. SIAM Review, 33, 60–100.

Poorzahedy, H., & Abulghasemi, F. (2005). Application of ant system to network design problem.
Transportation, 32, 251–273.

Qi, C. (2007). An ant colony system hybridized with randomized algorithm for TSP. In: Eighth
ACIS international conference on software engineering, artificial intelligence, networking, and
parallel/distributed computing (SNPD 2007), pp. 461–465.

Rego, C., Gamboa, D., Glover, F., & Osterman, C. (2011). Traveling salesman problem heuristics:
Leading methods, implementations and latest advances. European Journal of Operational
Research, 211, 427–441.

Reimann, M., Doerner, K., & Hartl, R. F. (2004). D-ants: Savings based ants divide and conquer
the vehicle routing problems. Computers & Operations Research, 31, 563–591.

Schoonderwoerd, R., Holland, O., Bruten, J., & Rothkrantz, L. (1997). Ant-based load balancing
in telecommunications networks. Adaptive Behavior, 5, 169–207.

Schrijver, A. (2005). On the history of combinatorial optimization (till 1960). In K. Aardal,
G. L. Nemhauser, & R. Weismantel (Eds.), Handbook of discrete optimization (pp. 1–68).
Amsterdam: Elsevier.

Shengwu, X., & Chengjun, L. (2002). A distributed genetic algorithm to TSP. In: Proceedings of
the 4th world congress on intelligent control and automation (Vol. 3, pp. 1827–1830).

Song, S. H., Lee, K. S., & Kim, G. S. (2002). A practical approach to solving a newspaper logistics
problem using a digital map. Computers and Industrial Engineering, 43, 315–330.

Spada, M., Bierlaire, M., & Liebling, T. M. (2005). Decision-aiding methodology for the school
bus routing and scheduling problem. Transportation Science, 39, 477–490.

Sun, Z. G., & Teng, H. F. (2003). Optimal layout design of a Satellite Module. Engineering
Optimization, 35, 513–529.

Stützle, T., & Hoos, H. H. (1997). MAX-MIN ant system and local search for the traveling
salesman problem. In: IEEE Int’l conference on evolutionary computation (pp. 309–314). IEEE
Press.

Thill, J. C., & Thomas, I. (1991). Towards conceptualizing trip-chaining behavior: A review.
Geographical Analysis, 19, 1–17.

322 J.-C. Thill and Y.-C. Kuo

Vishwanathan, N., & Wunsch, D. C. II. (2001). ART/SOFM: A hybrid approach to the TSP.
In: Proceedings of neural networks (Vol. 4, IJCNN ’01, pp. 2554–2557). International Joint
Conference, Washington, DC.

Wetcharaporn, W., Chaiyaratana, N., & Tongsima, S. (2006). DNA fragment assembly: An
ant colony system approach. In F. Rothlauf et al. (Eds.), Applications of evolutionary
computing. EvoWorkshops 2006. Lecture notes in computer science (Vol. 3907, pp. 231–242).
Berlin/Heidelberg: Springer.

Weigel, D., & Cao, B. (1999). Applying GIS and OR techniques to solve Sears technician-
dispatching and home delivery problems. Interfaces, 29, 112–130.

Whitley, D., Starkweather, T., & Fuquay, D. (1989). Scheduling problem and traveling salesman:
The genetic edge recombination operator. In: Proceedings of the third international conference
on genetic algorithm, Morgan Kaufmann, Palo Alto, CA, pp. 133–140.

Wu, Q. H., Zhang, J. H., & XH, X. (1999). An ant colony algorithm with mutation features. Journal
of Computer Research and Development, 36, 1240–1245.

Zhu, Q. B., & Yang, Z. J. (2004). An ant colony optimization algorithm based on mutation and
dynamic pheromone updating. Journal of Software, 5, 185–192.

	The Nearest Neighbor Ant Colony System: A Spatially-Explicit Algorithm for the Traveling Salesman Problem
	Introduction
	The Traveling Salesman Problem
	Ant Colony Optimization
	The Nearest Neighbor Ant Colony Algorithm
	The Principle
	The Nearest Neighbor Searching Strategy
	The Problem of Outlier Nodes
	Planar Searching Strategy
	Local Updating Rule
	Iteration-Best Updating Rule

	Mutation
	Procedures of NNAC and Comparison with ACS

	Experimentation Results
	NNAC Performance on Five Datasets
	Consistency and Validation of NNAC Solutions
	Experiment Comparison

	Conclusions and Future Enhancements
	References

