
Commitment Protocol Generation

Akın Günay1,∗, Michael Winikoff2, and Pınar Yolum1

1 Computer Engineering Department, Bogazici University, Istanbul, Turkey
{akin.gunay,pinar.yolum}@boun.edu.tr

2 Department of Information Science, University of Otago, Dunedin, New Zealand
michael.winikoff@otago.ac.nz

Abstract. Multiagent systems contain agents that interact with each other to
carry out their activities. The agents’ interactions are usually regulated with pro-
tocols that are assumed to be defined by designers at design time. However, in
many settings, such protocols may not exist or the available protocols may not
fit the needs of the agents. In such cases, agents need to generate a protocol on
the fly. Accordingly, this paper proposes a method that can be used by an agent
to generate commitment protocols to interact with other agents. The generation
algorithm considers the agent’s own goals and capabilities as well as its beliefs
about other agents’ goals and capabilities. This enables generation of commit-
ments that are more likely to be accepted by other agents. We demonstrate the
workings of the algorithm on a case study.

1 Introduction

Interaction is a key element of many multiagent systems. Agents need to interact for
various reasons such as coordinating their activities, collaborating on tasks, and so on.
These interactions are generally regulated by interaction protocols that define the mes-
sages that can be exchanged among agents. Traditionally, agents are supplied with inter-
action protocols at design time. Hence, they do not need to worry about which protocol
to use at run time and can just use the given protocol as they see fit.

However, in open agent systems, where agents enter and leave, an agent may need
to interact with another agent for which no previous interaction protocol has been de-
signed. For example, a buyer may know of interaction protocols to talk to a seller,
but may not be aware of an interaction protocol to talk to a deliverer. If these two
agents meet, they need to figure out a protocol to complete their dealing. Additionally,
even if there is an existing interaction protocol, the interaction protocols that are de-
signed generically may make false assumptions about agents’ capabilities, which would
make the interaction protocol unusable in a real setting. For example, assume that an
e-commerce protocol specifies that a buyer can pay by credit card upon receiving goods
from a seller. If the buyer does not have the capability to pay by credit card, this protocol
will not achieve its purpose. Even when the capabilities of the agents are aligned with
those expected by the interaction protocol, the current context of the agents may not be
appropriate to engage in the protocol. Following the previous example, an agent who

∗ Akın Günay is partially supported by TÜBİTAK Scholarships 2211 and 2214 and Pınar Yolum
is partially supported by a TÜBİTAK Scholarship 2219.

M. Baldoni et al. (Eds.): DALT 2012, LNAI 7784, pp. 136–152, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Commitment Protocol Generation 137

can pay by credit card might have a current goal of minimizing bank transactions for
that month and thus may find it more preferable to pay cash. That is, based on its cur-
rent goals and existing commitments, the interactions that it is willing to engage in may
differ. Therefore an interaction protocol that is blind to agents’ current needs would not
be applicable in many settings.

Accordingly, we argue that an agent needs to generate appropriate interaction pro-
tocols itself at run time. Since the agent would know its own capabilities, goals, and
commitments precisely, it can generate an interaction protocol that respects these. How-
ever, for the interaction protocol to be successful, it should also take into account the
participating agents’ context.

Many times, even though the goals, commitments, or the capabilities of the other
agents may not be known in full, partial information will exist. For example, agents may
advertise their capabilities especially if they are offering them as services (e.g., selling
goods). Existing commitments of the other agents may be known if the agent itself
is part of those commitments (e.g., the agent has committed to deliver, after payment).
The partial goal set of the participating agents may be known from previous interactions
(e.g., the agent is interested in maximizing cash payments), or from domain knowledge
(e.g. merchants in general have the goal of selling goods and/or services). Hence, the
other agents’ context can be approximated and using this approximate model a set of
possible interaction protocols can be generated.

To realize this, we propose a framework in which agents are represented with their
capabilities, goals, and commitments. The interactions of the agents are represented
using commitments [3,14] and the interaction protocols are modeled as commitment
protocols. Commitments offer agents flexibility in carrying out their interactions and
enable them to reason about them [9,19,21]. An agent that wants to engage in an inter-
action considers its own goals, makes assumptions about the other agents’ goals, and
proposes a set of commitments such that, if accepted by the other agent, will lead the
initial agent to realize its goal. While doing this generation, the agent also considers its
own capabilities, so that it generates commitments that it can realize. Note that even
with a good approximation of the other agent, the proposed protocol may not be ac-
ceptable. For this reason, the agent generates a set of alternative protocols rather than a
single one. The exact protocol that will be used is chosen after deliberations with other
agents. Having alternative protocols is also useful for recoverability. That is, if a pro-
tocol is chosen by the agents, but if one of the agents then violates a commitment, the
goals will not be realized as expected. In this case, agents can switch to an alternative
protocol. This work is novel in that it situates commitment-based protocols in the larger
context of agents by relating commitments to the agents goals, capabilities, and their
knowledge of other agents’ goals and capabilities.

The rest of this paper is organized as follows. Section 2 describes our technical
framework in depth. Section 3 introduces our algorithm for generating commitment
protocols based on agents’ goals and capabilities. Section 4 applies the algorithm to a
case study. Section 5 explains how our approach can be used in a multiagent system.
Finally, Section 6 discusses our work in relation to recent work.

138 A. Günay, M. Winikoff, and P. Yolum

2 Technical Framework

In this section we define formally the necessary concepts: agents which have goals that
they want to fulfill, and certain capabilities (formalized as propositions that they are able
to bring about). We also define the notion of a social commitment between agents (in
line with existing approaches, e.g. [21]). The concepts are captured using the following
syntax, where prop is a proposition, and agent is an agent identifier.

commitment → C(agent, agent, prop, prop)cstate

goal → Gagent(prop, prop, prop)gstate

service → Sagent(prop, prop)
belief → BGagent(agent, prop, prop) | BSagent(agent, prop, prop)
cstate → Null |Requested |Active |Conditional |Violated |Fulfilled |Terminated
gstate → Inactive | Active | Satisfied | Failed

Requested (R) Terminated (T)

Null (N) Conditional (C) Active (A)

Fulfilled (F) Violated (V)

request create

reject

create antecedent

cancel

consequent timeoutconsequent

Fig. 1. Life cycle of a commitment

Commitments. A commitment C(debtor, creditor, antecedent, consequent)state ex-
presses the social contract between the agents debtor and creditor, such that if the
antecedent holds, then the debtor is committed to the creditor to bring about the
consequent. Each commitment has a state that represents the current state of the com-
mitment in its life cycle. The state of a commitment evolves depending on the state of
the antecedent and the consequent and also according to the operations performed by
the debtor and the creditor of the commitment. We show the life cycle of a commitment
in Fig. 1. In this figure, the rectangles represent the states of the commitment and the di-
rected edges represent the transitions between the states. Each transition is labeled with
the name of the triggering event. A commitment is in Null state before it is created. The
create operation is performed by the debtor to create the commitment and the state of
the commitment is set to Conditional. If the antecedent already holds while creating
the commitment, the state of the commitment becomes Active immediately. It is also
possible for the creditor of a commitment in Null state to make a request to the debtor
to create the commitment. In this case, the state of the commitment is Requested. The
debtor is free to create the requested commitment or reject it, which makes the commit-
ment Terminated. A Conditional commitment becomes Active if the antecedent starts

Commitment Protocol Generation 139

to hold, Fulfilled if the consequent starts to hold or Terminated if the debtor cancels
the commitment. An Active commitment becomes Fulfilled if the consequent starts
to hold, Violated if the debtor cancels the commitment or Terminated if the creditor
releases the debtor from its commitment. Fulfilled, Violated and Terminated states are
terminal states (depicted with thicker borders in Fig. 1)

Inactive (I) Active (A)

Failed (F) Satisfied (S)

activate

suspend

achievefail

Fig. 2. Life cycle of a goal

Goals. A goal Gagent(precondition, satisfaction, failure)
state represents an aim

of an agent such that the agent has a goal to achieve satisfaction if precondition
holds and the goal fails if failure occurs (adapted from [20]). The state of the goal is
represented by state. We show the life cycle of a goal in Fig. 2. A goal is in Inactive
state if its precondition does not hold. An inactive goal is not pursued by the agent. A
goal is in Active state if its precondition holds and neither satisfaction nor failure
holds. An active goal is pursued by the agent. A goal is Satisfied, if satisfaction starts
to hold while in the Active state. A goal is Failed, if failure occurs while in the Active
state. An active goal may also be suspended, if the precondition ceases to hold. The
Satisfied and Failed states are terminal states.

Capabilities. A capability Sagent(precondition, proposition) states that an agent has
the capability of performing an action (or actions) that will make proposition true.
However, this is only possible if the precondition holds. Note that we use the terms
“capability” and “service” interchangeably: in a context where an agent does some-
thing for itself “capability” makes more sense, but when an agent acts for another agent,
then “service” is more appropriate.

Beliefs. Agents have their own beliefs about other agents’ goals and capabili-
ties. BGagenti (agentj, condition, satisfaction) represents that agenti believes
agentj has the goal satisfaction if condition holds. Note that beliefs about other
agents’ goals do not include information about the failure conditions. Similarly
BSagenti(agentj , condition, proposition) represents that agenti believes agentj is
able to bring about the proposition, if the condition holds. Beliefs about other agents’
capabilities essentially correspond to services provided by other agents and interpreted
as agenti believes that agentj provides a service to bring about proposition, if
condition is brought about (most probably by an effort of agenti). As discussed in
Section 1, although in general other agents’ goals and capabilities are private, some
information will be available. Although it is possible that advertised services may dif-
fer from the actual capabilities of the agent. For example, certain capabilities may not be

140 A. Günay, M. Winikoff, and P. Yolum

advertised, or some advertised services may in fact be realized by a third party (e.g. a
merchant delegating delivery to a courier).

Agents and Multiagent system. An agent is a four tuple A = 〈G,S, C,B〉, where G
is a set of goals that agent A has, S is a set of services (aka capabilities) that agent A
can provide, C is a set of commitments that agent A is involved in and B is a set of
beliefs that agent A has about other agents. A multiagent system A is a set of agents
{A1, . . . , An}. We write a.X to denote the X component of the agent, e.g. writing a.G
to denote the agent’s goals, a.C to denote its commitments etc.

Protocol. We adopt the definition of commitment protocols [7,21] in which a protocol
P is a set of (conditional) commitments. Hence, we do not have explicit message or-
derings. Each agent can manipulate the commitments as it sees fit. The manipulations
of the commitments lead to state changes in the lifecycles of the commitments as de-
picted in Fig. 1. Unlike traditional approaches to capturing protocols, such as AUML,
this approach, using social commitments, aims to provide minimal constraints on the
process by which the interaction achieves its aims [15]. We emphasise that a set of
commitments is a protocol in the sense that it allows for a range of possible concrete
interactions, unlike the notion of contract used by Alberti et al. [1] which represents a
single specific concrete interaction.

Definition 1 (Proposition Support). Given a set Γ of propositions that hold, and a
proposition p, the agent a = 〈G,S, C,B〉 supports p, denoted as a � p, iff at least one
of the following cases holds:

– base case: Γ |= p, i.e. p already holds
– capability: ∃Sa(pre, prop) ∈ S : {prop → p ∧ a � pre}, i.e. the agent is able

to bring about p (more precisely, a condition prop which implies p) itself, and the
required condition is also supported

– commitment: ∃C(a′, a,�, cond)A ∈ C : {cond → p}, i.e. there is an active com-
mitment from another agent to bring about p

– conditional: ∃C(a′, a, ant, cond)C ∈ C : {cond → p ∧ a � ant}, i.e. there is a
conditional commitment from another agent to bring about p, and the antecedent
of the commitment is supported by agent a

The capability case states that p can be made true by agent a if p is one of the agent’s
capabilities. This is the strongest support for p, since p can be achieved by the agent’s
own capabilities. The commitment case states that the agent has a commitment in which
it expects p to become true (because it is the creditor of an active commitment). Note
that this is weaker than the capability condition since the commitment may be violated
by its debtor. In the conditional case, the agent first needs to realize the antecedent for
p to be achieved.

Definition 2 (Goal Support). A goal g = Ga(pre, sat, fail)
A is supported by the

agent a = 〈G,S, C,B〉, denoted as a � g, if a � sat.

Theorem 1. If a proposition p (respectively goal g) is supported by agent a, then the
agent is able to act in such a way that p (resp. g) eventually becomes true (assuming all
active commitments are eventually fulfilled).

Proof: Induction over the cases in Definition 2 (details omitted).

Commitment Protocol Generation 141

3 Commitment Protocol Generation Algorithm

We present an algorithm that uses the agent’s capabilities, commitments and also be-
liefs about other agents, to generate a set of alternative commitment protocols1 such
that each generated protocol supports the given agent’s set of goals. That is, for each
given goal of the agent, either the agent is able to achieve the goal by using its own
capabilities, or the agent is able to ensure that the goal is achieved by relying appropri-
ately on a commitment from another agent which has the goal’s satisfaction condition
as its consequent. More precisely, if an agent a cannot achieve a desired proposition p
using its own capabilities, then the algorithm generates a proposed commitment such
as C(a′, a, q, p)R (ensuring q is supported by a) to obtain (conditional) proposition
support for p, which implies goal support for goal g ≡ Ga(pre, p, fail).

Note that in general, we can only expect to be able to obtain conditional support (in
terms of Definition 1). Obtaining capability support amounts to extending the agent’s
capabilities, and obtaining commitment support amounts to getting an active commit-
ment C(a′, a,�, q)A which, in general, another agent a′ would not have any reason to
accept. Thus, the algorithm proposes commitments that are likely to be attractive to a′

by considering its beliefs about the goals of a′ and creating a candidate commitment
C(a′, a, q, p)R where q is a proposition that is believed to be desired by a′ (i.e. satisfies
one of its goals). Clearly, there are situations where a given goal cannot be supported
(e.g. if no other agents have the ability to bring it about, or if no suitable q can be found
to make the proposed commitments attractive), and hence the algorithm may not always
generate a protocol.

We divide our algorithm into four separate functions (described below) for clarity:

– generateProtocols takes an agent and the set of proposition that hold in the world
as arguments, and returns a set of possible protocols P = {P1, . . . , Pn}, where
each protocol is a set of proposed commitments (i.e. it returns a set of sets of com-
mitments).

– findSupport takes as arguments an agent, a queue of goals, a set of propositions
that are known to hold, and a set of commitments that are known to exist (initially
empty); and does the actual work of computing the possible protocols, returning a
set of possible protocols P .

– isSupported takes as arguments an agent, a proposition, a set of propositions known
to hold, and a set of commitments known to exist; and determines whether the
proposition is supported, returning a Boolean value.

– updateGoals is an auxiliary function used by the main algorithm, and is explained
below.

The generateProtocols function (see Algorithm 1) is the entry point of the algorithm.
It has as parameters an agent a and a set of propositions Γ that hold in the world. Γ
is meant to capture a’s current world state. The algorithm finds possible, alternative
protocols such that when executed separately, each protocol ensures that all of the goals
of that agent are achievable.

1 In practice, we may want to generate the set incrementally, stopping when a suitable protocol
is found.

142 A. Günay, M. Winikoff, and P. Yolum

Algorithm 1. P generateProtocols(a, Γ)
Require: a, the agent that the algorithm runs for
Require: Γ , set of propositions known to be true
1: queue G′ ← {g|g ∈ a.G ∧ g.state = Active}
2: return findSupport(a,G′, Γ, ∅)

The generateProtocols function copies the agent’s active goals into a queue structure
G′ for further processing and then calls the recursive function findSupport providing
a (the agent), G′ (its currently active goals), Γ (the propositions that currently hold),
and ∅ (initial value for Δ) as arguments. The generateProtocols function returns the
result of findSupport, which is a set of commitment protocols (P), i.e. a set of sets of
commitments. Recall that we use a.G to denote the goals G of agent a, and that for goal
g we use g.state to denote its state.

The main function is findSupport (see Algorithm 2). The function recursively calls
itself to generate alternative commitment protocols which support every given goal of
the agent a. The function takes as arguments an agent a, the queue of the agent’s goals
G′ that need to be supported, a set Γ of propositions that are known to be true, and
a set Δ of commitments that are known to exist. The function first defines sets BG
and BS of (respectively) the beliefs of agent a about the goals and the services of
other agents. It then pops the next goal g from the goal queue G′ (Line 3). If all goals
are considered (i.e. g = Null), then there is no need to generate extra commitments.
Hence, the algorithm simply returns one protocol: the set of the commitments already
proposed. This corresponds to the base case of the recursion (Lines 4–5). If the agent
already supports g (determined by isSupported function, see Algorithm 3), then the
algorithm ignores g and calls itself for the next goal in G′ (Line 8).

Otherwise, the function searches for one or more possible sets of commitments that
will support the goal g. It first initializes the set of alternative protocols P to the empty
set (Line 10). Then the algorithm searches for candidate commitments that will support
g. As a first step it checks whether it has any capabilities that would support this goal
if the precondition of the capability could be achieved through help from other agents
(Line 11). Note that if the preconditions could be achieved by the agent itself then the
algorithm would have detected this earlier in Line 3. Hence, here the specific case being
handled is that the precondition of a capability cannot be achieved by the agent itself,
but if it were achieved through other agents, then the capability would enable the agent
to reach its goal g. For each such capability, we make the precondition pre a new goal
for the agent, add it to the list of goals G′ that it wants to achieve, and recursively call
findSupport to find protocols.

After checking its own capabilities for achieving g, the agent then also starts looking
for another agent with a known service s′ ∈ BS such that s′ achieves the satisfaction
condition of the goal g (Line 14). For any such service s′, we generate a proposed
commitment of the form C(a′, a, sat′, prop)R (Line 16), where a′ is the agent that is
believed to be provide the service s′, a is the agent being considered by the call to the
function (its first argument), prop implies the satisfaction condition of the desired goal
g (i.e. prop → sat), and sat′ is an “attractive condition” to the proposed debtor agent
(a′). The notion of “attractive to agent a′” is defined in line 15: we look for a condition

Commitment Protocol Generation 143

Algorithm 2. P findSupport(a,G′, Γ,Δ)

Require: a, the agent that the algorithm runs for
Require: G′, queue of agent’s (active) goals
Require: Γ , set of propositions known to be true
Require: Δ, set of commitments already generated (initially called with ∅)
1: define BG ≡ {b|b ∈ a.B ∧ b = BGa(a

′, gc, s)}
2: define BS ≡ {b|b ∈ a.B ∧ b = BSa(a

′, c, p)}
3: g ← pop(G′)
4: if g = Null then
5: return {Δ}
6: // else g = Ga(gpre, sat, fail)

A

7: else if isSupported(a, sat, Γ,Δ) then
8: return findSupport(a,G′, Γ,Δ)
9: else

10: P = ∅
11: for all {s | Sa(pre, prop) ∈ a.S ∧ prop→ sat} do
12: P ← P ∪ findSupport(a, {Ga(, pre,⊥)A} ∪ G′, Γ,Δ)
13: end for
14: for all {s′ | BSa(a

′, cond, prop) ∈ BS ∧ prop→ sat} do
15: for all {g′ | BGa(a

′, pre′, sat′) ∈ BG ∧ isSupported(a, pre′, Γ,Δ)} do
16: c← C(a′, a, sat′, prop)R

17: G′′ ← updateGoals(sat′, prop, a.G,G′)
18: if ¬isSupported(a, sat′, Γ,Δ) then
19: G′′ ← {Ga(, sat′,⊥)A} ∪ G′′
20: end if
21: if ¬ isSupported(a, cond, Γ,Δ) then
22: G′′ ← {Ga(, cond,⊥)A} ∪ G′′
23: end if
24: P ← P ∪ findSupport(a,G′′, Γ,Δ ∪ {c})
25: end for
26: end for
27: return P
28: end if

sat′ that is believed to be a goal of agent a′. Specifically, we consider the known goals
BG of other agents, and look for a g′ ∈ BG such that g′ = BGa(a

′, pre′, sat′) where
pre′ is already supported by agent a.

Next, having generated a potential commitment C(a′, a, sat′, prop)R where the
debtor, a′, has a service that can achieve the desired condition prop and has a goal
to bring about sat′ (which makes the proposed commitment attractive), we update the
goals of the agent (discussed below) and check whether (1) the promised condition sat′

is supported by agent a, and (2) the precondition cond for realizing prop is supported
by agent a. If they are supported, then a does not need to do anything else. Otherwise,
it adds the respective proposition to the list of goals G′′ (Lines 19 and 22), so that ap-
propriate support for these propositions can be obtained.

Finally, the agent calls the function recursively to deal with the remainder of the
goals in the updated goal queue G′′. When doing this, it adds the currently created

144 A. Günay, M. Winikoff, and P. Yolum

commitment c to the list of already generated commitments Δ. The result of the func-
tion call is added to the existing set of possible protocolsP (line 24). Once the agent has
completed searching for ways of supporting g, it returns the collected set of protocols
P . Note that if the agent is unable to find a way of supporting its goals, then P will be
empty, and the algorithm returns the empty set, indicating that no candidate protocols
could be found.

Algorithm 3. {true | false} isSupported(a, p, Γ , Δ)
Require: a, agent to check for support of p
Require: p, property to check for support
Require: Γ , set of propositions known to be true
Require: Δ, set of commitments already generated
1: if Γ |= p then
2: return true
3: end if
4: for all s = Sa(pre, prop) ∈ a.S do
5: if prop→ p ∧ isSupported(a, pre, Γ,Δ) then
6: return true
7: end if
8: end for
9: for all {c | C(a′, a, cond, prop) ∈ (a.C ∪Δ)} do

10: if c.state = Active ∧ prop→ p then
11: return true
12: else if (c.state = Conditional ∨ c.state = Requested) ∧ prop → p ∧

isSupported(a, cond, Γ,Δ) then
13: return true
14: end if
15: end for
16: return false

Algorithm 3 defines the isSupported function. This algorithm corresponds to Defi-
nition 1 and returns true if the given proposition p is supported by the given agent a,
and false otherwise. The first case (line 1) checks whether the proposition is known to
be true. The second case checks capability support. That is, whether p is supported by
a capability s of the agent. More precisely, if the proposition prop of s implies p and
the precondition pre of s is supported by the agent (Lines 4-8). The third case checks
commitment support by checking whether a has (or will have) an active commitment c,
in which a is the creditor and the consequent prop implies p (Lines 10-11). In the last
case, the algorithm checks conditional support by checking whether a has (or will have)
a conditional commitment c, in which a is the creditor, the consequent prop implies p
and a supports the antecedent cond (Lines 12-14). If none of the above cases hold, then
the algorithm returns false, indicating that p is not supported by a.

Algorithm 4 defines the updateGoals function. This function is called when a new
commitment is generated to support goal g of agent a. It takes propositions ant and
cons corresponding respectively to the antecedent and consequent of the new commit-
ment. The function also takes as arguments the goals G of agent a, and the queue of

Commitment Protocol Generation 145

Algorithm 4. G′′ updateGoals(ant, cons, G, G′)
Require: ant, the antecedent of the new commitment
Require: cons, the consequent of the new commitment
Require: G, set of agent’s goals
Require: G′, the current queue of (potentially) unsupported goals
1: create new queue G′′
2: G′′ ← copy of G′
3: for all {g | Ga(pre, sat, fail) ∈ G} do
4: if g.state = Inactive ∧ (ant→ pre ∨ cons→ pre) then
5: g.state← Active
6: push(G′′, g)
7: end if
8: end for
9: return G′′

currently unsupported goals G′. The algorithm assumes that both ant and cond will
be achieved at some future point due to the generated commitment. Accordingly, the
algorithm assumes that currently inactive goals which have ant or cond as their pre-
condition will be activated at some future point. Hence, these goals also need to be able
to be achieved, i.e. to be supported by agent a. The algorithm thus generates these ad-
ditional goals, and adds them to a (new queue) G′′. The algorithm first creates a new
queue G′′ and copies into it the current contents of G′ (Line 2). Then the goals in G that
are inactive but will be activated are pushed into G′′ as active goals (Lines 3-8). Finally,
G′′ is returned. Instead of pushing the goals that are assumed to be activated directly
into G′, the algorithm creates a new queue. This is done because every recursive call in
line 24 of Algorithm 2 is related to a different commitment, which activates different
goals depending on its antecedent and consequent. Hence each recursive call requires a
different goal queue.

The algorithms presented are sound in the sense of Theorem 1: for any generated
protocol, the agent is able to act in such a way as to ensure that the desired goal
becomes achieved, without making any assumptions about the behaviour of other agents,
other than that they fulfill their active commitments. The algorithms in this section have
been implemented (available from http://mas.cmpe.boun.edu.tr/akin/
cpgen.html), and have been used to generate protocols for a number of case studies,
including the one we present next, which took 0.6 seconds to generate protocols (on a
2.7GHz Intel Core i7 machine with 4 GB RAM running Ubuntu Linux).

4 Case Study

We illustrate our commitment generation algorithm’s progress through an e-commerce
scenario. In this scenario there is a customer (Cus), a merchant (Mer) and a bank
(Bank). The goal of the customer is to buy some product from the merchant. The
customer also has a goal of being refunded by the merchant, if the purchased product is
defective. The customer is capable of making payment orders to the bank to pay to the
merchant. The customer can also use a gift card, instead of payment. The merchant’s

http://mas.cmpe.boun.edu.tr/akin/cpgen.html
http://mas.cmpe.boun.edu.tr/akin/cpgen.html

146 A. Günay, M. Winikoff, and P. Yolum

goal is to be paid or to receive a gift card and the bank’s goal is to get payment orders
to earn commissions. We discuss the scenario from the customer’s point of view, who
runs our algorithm to generate a protocol in order to satisfy her goals. We first describe
the propositions that we use and their meanings:

– Delivered: The purchased product is delivered to the customer.
– Paid: The merchant is paid.
– HasGiftCard: The customer has a gift card.
– GiftCardUsed: The customer uses the gift card.
– Defective: The delivered product is defective.
– Returned: The delivered product is returned to the merchant.
– Refunded: The customer is refunded.
– PaymentOrdered: The bank receives a payment order.

The customer has the following goals and capabilities: g1 states that the goal of the
customer is to have the product be delivered (without any condition) and g2 represents
the goal of the customer to be refunded, if the delivered product is defective, s1 states
that the customer is able to make payment orders (without any condition), and s2 states
that the customer is able to use a gift card (instead of payment), if she has one. Finally,
s3 states that the customer is capable of returning a product, if it is defective.

– g1 = GCus(�, Delivered,¬Delivered)
– g2 = GCus(Defective, Refunded,¬Refunded)
– s1 = SCus(�, PaymentOrdered)
– s2 = SCus(HaveGiftCard,GiftCardUsed)
– s3 = SCus(Defective, Returned)

The customer has the following beliefs about the other agents: b1 and b2 state that
the customer believes that the merchant provides a service to deliver a product, if the
merchant is paid or a gift card is used, respectively. b3 represents the belief that the
merchant will give a refund, if a product is returned, and b4 is the belief about the
service of the bank to perform a money transaction for payment, if the bank receives
such a request. The customer also believes that the goal of the merchant is to be paid
(b5) or to receive a gift card (b6) and refund the customer if a sold product is defective
(b7), in order to ensure customer satisfaction. The goal of the bank is to receive payment
orders (b8), so that it can earn a commission from payment orders.

– b1 = BSCus(Mer, Paid,Delivered)
– b2 = BSCus(Mer,GiftCardUsed,Delivered)
– b3 = BSCus(Mer,Returned,Refunded)
– b4 = BSCus(Bank, PaymentOrdered, Paid)
– b5 = BGCus(Mer,�, Paid)
– b6 = BGCus(Mer,�, GiftCardUsed)
– b7 = BGCus(Mer,Defective, Returned)
– b8 = BGCus(Bank,�, PaymentOrdered)

Commitment Protocol Generation 147

Figure 3 summarises the case study. Ovals are used to denote services, and rectangles
denote propositions. Solid arrows (e.g. between the proposition Paid and the service
Delivered in the Merchant) indicate the preconditions of a service. Dashed arrows
show where a service in one agent is able to bring about a precondition that is desired
by another agent.

Customer

Merchant

Bank

Delivered Refunded
(if Defective)

PaymentOrdered

PaymentOrdered

GiftCardUsed
(if HasGiftCard)

GiftCardUsed

Returned
(if Defective)

Returned
(if Defective)

Paid

Delivered Refunded

Paid

Fig. 3. Case Study

Let us first discuss the states of the merchant’s goals g1 and g2. The algorithm con-
siders both goals as active. g1 is active, since its condition is �. On the other hand,
Defective actually does not hold initially, which means g2 should not be active. How-
ever, the algorithm assumes that Defective holds, since its truth value is not controlled
by any agent and therefore may or may not be true while executing the protocol. Us-
ing this assumption, the algorithm aims to create necessary commitments to capture all
potential future situations during the execution of the protocol.

Let us walk through the protocol generation process. The algorithm starts with g1. To
support Delivered, which is the satisfaction condition of g1, the algorithm generates
the commitment c1 = C(Mer,Cus, Paid,Delivered)R using the belief b1, which is
about the service to provide Delivered and b5, which is the goal of the merchant. How-
ever, the antecedent Paid of c1 is not supported by the customer. Hence, the algorithm
considers Paid as a new goal of the customer and starts to search for support for it. It
finds the belief b4, which indicates that the bank can bring about Paid with a condition
PaymentOrdered, which is also a goal of the bank due to b8. PaymentOrdered is
already supported, since it is a capability of the customer (s1). Hence, the algorithm
generates the commitment c2 = C(Bank,Cus, PaymentOrdered, Paid)R. At this
point, everything is supported to achieve g1. The algorithm continues for g2, which is
achieved, if Refunded holds. Refunded can be achieved by generating the commit-
ment c3 = C(Mer,Cus,Returned,Refunded)R using the service b3 and the goal
b7 of the merchant. The antecedent Returned is a capability of the customer with a
supported condition Defective. Hence, everything is supported to achieve g2 and the
algorithm returns the protocol that contains commitments c1, c2, and c3.

148 A. Günay, M. Winikoff, and P. Yolum

Let us examine the protocol. c1 states that the merchant is committed to deliver the
product if the customer pays for it. However, the customer is not capable of payment
(cannot bring about Paid by itself). c2 handles this situation, since the bank is com-
mitted to make the payment if the customer orders a payment. Finally, c3 guarantees
a refund, if the customer returns the product to the merchant. Note that the customer
returns the product only if it is defective (s2), hence there is no conflict with the goal
(b5) of the merchant.

Although the above protocol supports all the goals of the customer, the algorithm
continues to search for other alternative protocols, since our aim is to generate all pos-
sible protocols to achieve the goals. Hence, it starts to search for alternative protocols
that support the goals of the customer. It finds that it is possible to support g1 also
by using the service b2. Accordingly, the algorithm initiates a new alternative protocol
and generates the commitment c2−1 = C(Mer,Cus,GiftCardUsed,Delivered)R

using the beliefs b2 and b6. However, the antecedent GiftCardUsed of c2−1 is not
supported by the customer, since HasGiftCard, which is the condition of service s2,
does not hold. The algorithm searches for support for HasGiftCard, but it fails, since
neither the customer nor any other agent is able to bring it about.

Note that our algorithm also generates other protocols, which, due to information
about other agents not being complete or correct, may be inappropriate. For instance,
such a protocol may include a commitment such as C(Mer,Cus, Paid,Refunded)R.
This happens because the algorithm considers all believed goals of the other agents
while creating commitments. Specifically, to satisfy her goal Refunded, the customer
considers the known goals of the merchant, and finds three options to offer to the mer-
chant in return: Paid, GiftCardUsed and Returned. Hence the algorithm creates
three alternative commitments using each of these three goals of the merchant and each
commitment is considered as an alternative protocol. Another example of this is a sit-
uation where the merchant actually replaces a defective product instead of refunding
money (i.e. b2 is incorrect). We deal with inappropriate protocols by requiring all in-
volved agents to agree to a proposed protocol (see below). Specifically in this case
when the customer requests the commitment from the merchant, the merchant would
not accept the request.

5 Using Generated Protocols

The algorithm presented in the previous section generates candidate protocols, i.e. pos-
sible sets of proposed commitments that, if accepted, support the achievement of the
desired propositions. In this section we consider the bigger picture and answer the ques-
tion: how are the generated candidate protocols used?

The process is described in Algorithm 5, which uses two variables: the set of candi-
date protocols (P), and the set of commitments (in the current candidate protocol, P)
that agents have already accepted (C). We begin by generating the set of protocols P
(line 1). Next, we need to select one of the protocols2 (line 2). The selected protocol
is removed from P . We then propose each commitment in the protocol to its debtor.

2 For the present we assume that the selection is done based on the simple heuristic that fewer
commitments are preferred.

Commitment Protocol Generation 149

Algorithm 5. generateAndUseProtocols(a, Γ)
Require: a, the agent that the algorithm runs for
Require: Γ , set of propositions known to be true
1: P ← generateProtocols(a,Γ)
2: select P ∈ P
3: P ← P \ {P}
4: C ← ∅
5: for all C(x, y, p, q)R ∈ P such that x �= a do
6: Propose C(x, y, p, q)R to agent x
7: if Agent x declines then
8: for all C(x, y, p, q)R ∈ C do
9: Release agent x from the commitment C(x, y, p, q)R

10: end for
11: Go to line 2
12: else
13: C ← C ∪ {C(x, y, p, q)R}
14: end if
15: end for
16: Execute Protocol P

This is needed because, as noted earlier, domain knowledge about other agents’ goals
may not be entirely correct or up-to-date. If any agent declines the proposed commit-
ment then we cannot use the protocol, and so we clean up by releasing agents from their
commitments in the protocol, and then try an alternative protocol. If all agents accept
the commitments, then the protocol is executed.

Note that, since agents may not always fulfill their active commitments, we need to
monitor the execution (e.g. [10]), and in case a commitment becomes violated, initiate
action to recover. There are a range of possible approaches for recovery including sim-
ply abandoning the protocol and generating new protocols in the new state of the world;
and using compensation [18].

6 Discussion

We developed an approach that enables agents to create commitment protocols that fit
their goals. To achieve this, we proposed to represent agents’ capabilities and commit-
ments in addition to their goals. Agents reason about their goals as well as their beliefs
about other agents’ capabilities and goals to generate commitments. Our experiments
on an existing case study showed that an agent can indeed generate a set of commitment
protocols that can be used among agents. Hence, even agents who do not have any prior
protocols among them can communicate to carry out their interactions.

While we primarily discuss how our approach can be used at runtime, many of the
underlying ideas can be used at design time as well. That is, a system designer who is
aware of some of the goals and capabilities of the agents that will interact at runtime, can
use the algorithm to generate protocols for them. This will enable a principled approach
for designing commitment-based protocols.

150 A. Günay, M. Winikoff, and P. Yolum

Goals and commitments have been both widely studied in the literature. On the goals
side, Thangarajah et al. [17] study relations and conflicts between goals. van Riems-
dijk et al. [13] study different types of goals and propose to represent them in a unify-
ing framework. On the commitments side, El-Menshawy et al. [8] study new semantics
for commitments. Chopra and Singh [5,6] study the interoperability and alignment of
commitments. However, the interaction between goals and commitments has started to
receive attention only recently.

Chopra et al. [4] propose a formalization of the semantic relationship between agents’
goals and commitment protocols. Their aim is to check whether a given commitment
protocol can be used to realize a certain goal. To do this, they define a capability set
for each agent and first check if an agent can indeed carry out the commitments it
participates in. This is important and can be used by agents to choose among possible
commitment protocols. Chopra et al. assume that the commitment protocols are already
available for agents. By contrast, in our work, we are proposing a method for the agents
to generate a commitment protocol that they can use to realize their goals from scratch.

Işıksal [11] studies how an agent can create a single commitment to realize its goal
with the help of other agents’ in the system. She proposes reasoning rules that can
be applied in various situations and she applies these rules on an ambient intelligence
setting. She does not generate a set of alternative protocols and does not consider beliefs
about other agents’ goals as we have done here.

Desai et al. [7] propose Amoeba, a methodology to design commitment based pro-
tocols for cross-organizational business processes. This methodology enables a system
designer to specify business processes through the participating agents’ commitments.
The methodology accommodates useful properties such as composition. Desai et al.
model contextual changes as exceptions and deal with them through metacommitments.
Their commitment-based specification is developed at design time by a human, based
on the roles the agents will play. In this work, on the other hand, we are interested in
agents generating their commitments themselves at run time. This will enable agents to
interact with others even when an appropriate protocol has not been designed at design
time.

Telang et al. [16] develop an operational semantics for goals and commitments. They
specify rules for the evolution of commitments in light of agents’ goals. These practical
rules define when an agent should abandon a commitment, when it should negotiate, and
so on. These rules are especially useful after a commitment protocol has been created
and is in use. In this respect, our work in this paper is a predecessor to the execution
of the approach that is described by Telang et al., that is, after the protocol has been
generated, the agents can execute it as they see fit, based on their current goals.

The work of Marengo et al. [12] is related to this work. Specifically, our notion of
support (Definition 1) is analogous to their notion of control: intuitively, in order for an
agent to consider a proposition to be supported, it needs to be able to ensure that it is
achieved, i.e. be able to control its achievement. However, whereas the aim of their work
is to develop a framework for reasoning about control and safety of given protocols, our
aim is to derive protocols.

Commitment Protocol Generation 151

There are a number of directions for future work:

– A key direction is the development of means for ranking generated alternative pro-
tocols.

– A second direction is to explore how well our algorithms manage to generate ap-
propriate protocols in situations where the agent’s beliefs about other agents’ goals
and capabilities are incomplete or inconsistent.

– When generating protocols, it may be possible to reduce the search space by inter-
leaving protocol generation with checking the acceptability of the protocol. Rather
than waiting until a complete protocol is constructed, whenever a commitment is
proposed, we could check with the proposed debtor whether that commitment is
acceptable. In general, a commitment’s acceptability may depend on the rest of the
protocol, but there may be some commitments that are clearly unacceptable regard-
less of context, and in these cases we can terminate the generation of protocols
including that commitment.

– Our representation of protocols follows the “traditional” approach to commitment-
based protocols. It has been argued that the representation ought to be extended
with the ability to represent regulative temporal constraints [2], and one direction
for future work is to extend our protocol generation framework and algorithm to
support such constraints.

References

1. Alberti, M., Cattafi, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Montali, M., Tor-
roni, P.: A Computational Logic Application Framework for Service Discovery and Con-
tracting. International Journal of Web Services Research (IJWSR) 8(3), 1–25 (2011)

2. Baldoni, M., Baroglio, C., Capuzzimati, F., Marengo, E., Patti, V.: A Generalized Com-
mitment Machine for 2CL Protocols and its Implementation. In: Baldoni, M., Dennis, L.,
Mascardi, V., Vasconcelos, W. (eds.) DALT 2012. LNCS (LNAI), vol. 7784, pp. 96–115.
Springer, Heidelberg (2013)

3. Castelfranchi, C.: Commitments: From Individual Intentions to Groups and Organizations.
In: Lesser, V.R., Gasser, L. (eds.) ICMAS, pp. 41–48. The MIT Press (1995)

4. Chopra, A.K., Dalpiaz, F., Giorgini, P., Mylopoulos, J.: Reasoning about Agents and Proto-
cols via Goals and Commitments. In: International Conference on Autonomous Agents and
Multiagent Systems, AAMAS, pp. 457–464 (2010)

5. Chopra, A.K., Singh, M.P.: Constitutive Interoperability. In: International Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS, pp. 797–804 (2008)

6. Chopra, A.K., Singh, M.P.: Multiagent Commitment Alignment. In: International Confer-
ence on Autonomous Agents and Multiagent Systems, AAMAS, pp. 937–944 (2009)

7. Desai, N., Chopra, A.K., Singh, M.P.: Amoeba: A Methodology for Modeling and Evolving
Cross-organizational Business Processes. ACM Transactions on Software Engineering and
Methodology 19, 6:1–6:45 (2009)

8. El-Menshawy, M., Bentahar, J., Dssouli, R.: A New Semantics of Social Commitments Using
Branching Space-Time Logic. In: WI-IAT 2009: Proceedings of the 2009 IEEE/WIC/ACM
International Joint Conference on Web Intelligence and Intelligent Agent Technology, pp.
492–496 (2009)

9. Fornara, N., Colombetti, M.: Operational Specification of a Commitment-Based Agent Com-
munication Language. In: International Conference on Autonomous Agents and Multiagent
Systems, AAMAS, pp. 536–542 (2002)

152 A. Günay, M. Winikoff, and P. Yolum

10. Günay, A., Yolum, P.: Detecting Conflicts in Commitments. In: Sakama, C., Sardina, S.,
Vasconcelos, W., Winikoff, M. (eds.) DALT 2011. LNCS, vol. 7169, pp. 51–66. Springer,
Heidelberg (2012)

11. Işıksal, A.: Use of Goals for Creating and Enacting Dynamic Contracts in Ambient Intelli-
gence. Master’s thesis, Bogazici University (2012)

12. Marengo, E., Baldoni, M., Baroglio, C., Chopra, A.K., Patti, V., Singh, M.P.: Commitments
with Regulations: Reasoning about Safety and Control in REGULA. In: International Con-
ference on Autonomous Agents and Multiagent Systems, AAMAS, pp. 467–474 (2011)

13. van Riemsdijk, M.B., Dastani, M., Winikoff, M.: Goals in Agent Systems: A Unifying
Framework. In: International Conference on Autonomous Agents and Multiagent Systems,
AAMAS, pp. 713–720 (2008)

14. Singh, M.P.: An Ontology for Commitments in Multiagent Systems. Artificial Intelligence
and Law 7(1), 97–113 (1999)

15. Singh, M.P.: Information-Driven Interaction-Oriented Programming: BSPL, the Blindingly
Simple Protocol Language. In: International Conference on Autonomous Agents and Multi-
agent Systems, AAMAS, pp. 491–498 (2011)

16. Telang, P.R., Yorke-Smith, N., Singh, M.P.: A Coupled Operational Semantics for Goals
and Commitments. In: 9th International Workshop on Programming Multi-Agent Systems,
ProMAS (2011)

17. Thangarajah, J., Padgham, L., Winikoff, M.: Detecting & Avoiding Interference Between
Goals in Intelligent Agents. In: Proceedings of the 18th International Joint Conference on
Artificial Intelligence, pp. 721–726 (2003)

18. Torroni, P., Chesani, F., Mello, P., Montali, M.: Social Commitments in Time: Satisfied or
Compensated. In: Baldoni, M., Bentahar, J., van Riemsdijk, M.B., Lloyd, J. (eds.) DALT
2009. LNCS, vol. 5948, pp. 228–243. Springer, Heidelberg (2010)

19. Winikoff, M., Liu, W., Harland, J.: Enhancing Commitment Machines. In: Leite, J., Omicini,
A., Torroni, P., Yolum, p. (eds.) DALT 2004. LNCS (LNAI), vol. 3476, pp. 198–220.
Springer, Heidelberg (2005)

20. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative & procedural goals in
intelligent agent systems. In: KR, pp. 470–481 (2002)

21. Yolum, P., Singh, M.P.: Flexible Protocol Specification and Execution: Applying Event Cal-
culus Planning using Commitments. In: International Conference on Autonomous Agents
and Multiagent Systems, AAMAS, pp. 527–534 (2002)

	Commitment Protocol Generation
	Introduction
	Technical Framework
	Commitment Protocol Generation Algorithm
	Case Study
	Using Generated Protocols
	Discussion
	References

