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Abstract. Constraint Satisfaction Problems (CSPs) are the formaliza-
tion of a large range of problems that emerge from computer science. The
solving methodology described here is based on Naming Games (NGs).
NGs were introduced to represent N agents that have to bootstrap an
agreement on a name to give to an object (i.e., a word). In this pa-
per we focus on solving both Fuzzy NGs and Fuzzy Distributed CSPs
(Fuzzy DCSPs) with an algorithm inspired by NGs. In this framework,
each proposed solution is associated with a preference represented as a
fuzzy score. We want the agents to find the solution, which is associated
with the highest preference value among all solutions. The two main
features that distinguish this methodology from classical Fuzzy DCSPs
algorithms are that i) the system can react to small instance changes, and
ii) the fact the algorithm does not require a pre-agreed agent/variable
ordering.

1 Introduction

In this paper we present a distributed algorithm to solve Fuzzy Distributed Con-
straint Satisfaction Problems (Fuzzy DCSPs) [14,18,11,12,17] that comes from
a generalization of the Naming Game paradigm (NG) [15,1,13,10].

In Fuzzy DCSPs algorithms, the aim is to design a distributed architecture
of processors, or more generally a group of agents, which cooperate to solve a
particular Fuzzy DCSP instantiation. In the framework presented here, we see
the Fuzzy DCSP solution search as a dynamic system, and we set the stable
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states of the system as the solutions to our Fuzzy DCSP. To do this we design
each agent so that it moves towards a stable local state. This system may be
called “self-stabilizing” whenever the global stable state is obtained through the
reinforcement of the local stable states [7]. The system settles to a global stable
state when all agents are in stable local state, When the system finds this global
stable state the DCSP instantiation is solved. A protocol designed in this way
is resistant to damage and external threats, since it can react to small changes
in the original problem instance. Moreover, in our approach all agents have the
same probability to reveal private information, and for this reason such algorithm
is unbiased (i.e., “fair”) with respect to privacy.

The NG paradigm defines a set of problems where a number of agents boot-
strap a commonly agreed name for one or more objects [15,1,13,10]. In this
paper we discuss a NG generalization in which agents have individual fuzzy
preferences over words. This is a straightforward generalization of the NG, be-
cause this paradigm naturally models the endogenous agents preferences and the
attitudes towards a given naming system. These preferences may be driven by
pragmatic or rational reasons: same words may be associated to different ob-
jects, same words may be too long or too complex, or may be easy to confuse
and, therefore, less suitable as a solution for name assignments.

In Sec. 4, we define Fuzzy NG which are a generalization of the NG that
introduces agent preferences. To model agents preferences we associate individual
fuzzy levels with each word in the agents domain. In this way, the new game
may be interpreted as an optimization problem. The Fuzzy NG we obtain can
be seen as a particular instance of a Fuzzy DCSP with fuzzy unary constraints
and crisp binary constraints which impose that the possible solutions are the
ones in which all the agents connected by a communication link share the same
word as a naming convention. Then we extend the works in [3] and [4] in order
to consider agent preferences. Within this set of candidate solutions, the real
solutions are the ones that optimize the overall preference for the agreed name.
All the agents agree on the same word, which is the best possible according
to the composition of the preferences of all the participating agents. Since we
use fuzzy preferences, values are in the interval [0, 1], they are aggregated with
the min operator, and to optimize means to find the word with the maximum
preference possible (with the max operator).

The algorithm is defined through an asymmetric interaction among agents, in
which one peer is the “speaker” and the other involved agents are called “listen-
ers”. To let this interaction occur, our algorithm uses a central scheduler that
randomly draws a speaker at each round. This may be interpreted as a “central
blind orchestrator” scheme, anyhow this central scheduler has no information on
the DCSP instance, and has no pre-determined agent/variable ordering: there-
fore, it preserves the privacy of the agents.

In Sec. 5 we explain how the algorithm in Sec. 4.1 can be extended to solve
a generic instance of a Fuzzy DCSP, that is a DCSP problem where both unary
and binary constraints are associated with a fuzzy preference. Fuzzy DSCPs can
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be used to deal with resource allocation, collaborative scheduling and distributed
negotiation [11].

In summary, the main contributions of this paper are two. First, we discuss
how individual preferences can be modeled in the NG with the use of the Fuzzy
NG, and how we can use a distributed algorithm to solve this problem. Second,
we discuss ho a similar algorithm can be used to solve more the more general
class of Fuzzy DCSPs.

The paper extends preliminary work in [5], by refining the distributed algo-
rithm and sketching a sample execution of the algorithm, to better understand its
functioning. The paper is organized as follows: in Sec. 2 we respectively present
the background on Fuzzy DSCPs and NGs, while Sec. 3 summarizes the related
work. Section 4 presents an algorithm that solves Fuzzy NGs. Section 5 shows
how to extend the algorithm in Sec. 4 in order to solve generic Fuzzy DCSPs.
Then, in Sec. 6 we show a simple example on how the algorithm in Sec. 5 works,
and Sec. 7 presents the tests and the results for the Fuzzy NG algorithm. Finally,
in Sec. 8 we draw our conclusions and explain our future work.

2 Background

2.1 Distributed Constraint Satisfaction Problem (DCSP)

A classical constraint can be seen as the set of value combinations for the vari-
ables in its scope that satisfy the constraint. In the fuzzy framework, a constraint
is no longer a set, but rather a fuzzy set [14]. This means that, for each assign-
ment of values to its variables, we do not have to say whether it belongs to the
set or not, but how much it does so. In other words, we need to use a graded
notion of membership. This allows us to represent the fact that a combination
of values for the constraint variables is partially permitted. A Fuzzy CSP is
defined as a triple P = 〈X,D,C〉, where X is the set of variables and D is
the set of corresponding variable domains (we suppose a single domain for all
the variables). C is a set of fuzzy constraints. A fuzzy constraint is defined by
a function cV on a sequence of variables V , which is called the scope (or sup-
port) of the constraint, that is the set of variables on which the constraint is
defined on.

cV :
∏

xi∈V

Di → [0, 1]

The function cV indicates to what extent an assignment of the variables in V
satisfies the constraint [14]. In fuzzy constraints, 1 usually corresponds to the
best preference, and 0 to the worst preference value. The combination cV ⊗ cW
of two fuzzy constraints cV and cW is a new fuzzy constraint cV ∪W defined as

cV ∪W (η) = min(cV (η), cW (η))

where η is a complete assignment of the variables in the problem, i.e., an assign-
ment of the variables in X :
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η ∈
∏

xi∈X

Di

If c1η > c2η (e.g., c1η = 0.8 and c2η = 0.4), it means that the assignment η
satisfies c1 better than c2. In the following of the paper we will use the expression
cη[xi := d] to denote a constraint assignment in which variable xi ∈ X takes the
value d ∈ D.

We can now define the preference of the complete set C of constants in the
problem, by performing a combination of all the fuzzy constraints. Given any
complete assignment η we have

(
⊗

cV ∈C

cV )(η) = min
cV ∈C

cV (η)

Thus, the optimal solutions of a fuzzy CSP are the complete assignments whose
satisfaction degree is maximum over all the complete assignments, that is,

OptSol(P ) = {η | max
η

min
cV ∈C

cV (η)}

In the description of our algorithm in Sec. 4 we will also need a definition of
projection for fuzzy constraints: given a fuzzy constraint cV ∈ C and a variable
v ∈ V , the projection [2] of cV over v, written as cV ⇓v, is a fuzzy constraint
c′ such that c′η = max(cη[x1 := d1] . . . [xk := dk]), where d1 . . . dk ∈ D and
x1 . . . xk ∈ (V \{v}). For instance, if V = {v}, then cV ⇓v= cV . Informally,
projecting means to eliminate the influence of all the variables V \{v} over a
constraint (i.e., to remove the variables in V \{v} from its scope), by considering
the assignment that maximises the preference of c.

In DCSPs [18,14], the main difference to a classical CSP is that each variable is
controlled by a corresponding agent, meaning that this agent sets the variable’s
value. Formally, a DCSP is a tuple 〈X,D,C,A〉, i.e., a CSP with a set A of
n agents. We suppose the number of variables m to be greater/equal than the
number of agents n, i.e., m ≥ n. When an agent controls more than one variable,
this can be modeled by a single variable whose values are the combinations of
values of the original variable. It is further assumed that an agent knows the
domain of its variable and all the constraints involving its variable, and that
it can reliably communicate with all the other agents which share the same
constraints. The main challenge is to develop distributed algorithms that solve
the CSP by exchanging messages among the agents. Fuzzy DCSPs features both
all the features described in this section, i.e., fuzziness and distributivity.

2.2 Introduction to Naming Games

The NG model [15,1,13,10] describes a set of problems in which a number of
agents bootstrap a commonly agreed name for one or more objects.
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The game is played by a population of n agents which play pairwise interac-
tions in order to negotiate conventions, that is associations between forms and
meanings, and it is able to describe the emergence of a global consensus among
them. For the sake of simplicity this model does not take into account the pos-
sibility of homonymy, so that all meanings are independent and one can work
with only one of them, without loss of generality. An example of such a game is a
population that has to reach a consensus on the name (i.e., the form) to assign to
an object (i.e., the meaning), by exploiting local interactions only. However, the
same model is appropriate to address all those situations in which negotiation
rules a decision process (e.g., opinion dynamics) [1].

Each NG is defined by an interaction protocol. There are two important as-
pects in NGs:

– The agents randomly interact and use a simple set of rules to update their
state.

– The agents converge to a consistent state in which all the objects of the set
have a uniquely assigned name, by using a distributed social strategy.

Generally, two agents are randomly extracted at each round to perform the
role of the “speaker” and the “listener” (or “hearer”, as used in [15,1]). The
interaction between speaker and listener determines the update of the internal
state of the agents. DCSPs and NGs share a variety of common features, as
already introduced in [3,4].

2.3 Self-stabilizing Algorithms

The definition of self-stabilizing algorithm in distributed computing was first
introduced in [7]. A system is self-stabilizing whenever each system configuration
associated with a solution is an absorbing state (global stable state), and any
initial state of the system is in the basin of attraction of at least one solution.

In a self-stabilizing algorithm, we program the agents of our distributed sys-
tem to interact with their neighbors. The agents update their state through these
interactions by trying to find a stable state in their neighborhood. Since the na-
ture of these algorithms is distributed, many legal configurations of agents states
and their neighbors states start arising sparsely. Not all of these configurations
are mutually compatible, and, thus, they form mutually inconsistent potential
cliques. A self-stabilizing algorithm must find a way to make the global legal
state emerge from the competition among these potential cliques. Dijkstra [7]
and Collin [6] suggest that an algorithm designed in this way may not always
converge, and a special agent is needed to break the system symmetry. [4] shows
how a different strategy based on the concept of random behavior and proba-
bilistic transition function can solve specific distributed constraint satisfaction
problems with a probability of one. Moreover, [4] shows empirically how this
approach can be used on a variety of CSP instances. In Sec. 4.2 we discuss how
this later strategy is implemented on Fuzzy CSP instances.
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3 Related Work

This paper extends the results in [3,4], in which some of the authors of this
paper have solved (crisp) DCSPs with an algorithm inspired by the NG model.
Whilst a number of approaches have been proposed to solve DCSPs [14,18] or
centralized Fuzzy CSP [14] alone, there is less work in the literature related to
solution schemes able to solve CSP instances that are both fuzzy and distributed.

It is important to notice the fundamental difference, with respect to this work,
with the DCSP algorithms designed by Yokoo [18]. Yokoo addresses three fun-
damental kinds of DCSP algorithms: Asynchronous Backtracking, Asynchronous
weak-commitment Search and Distributed Breakout Algorithm, all of them also
presented in a survey article [18]. Although these algorithms share the property
of being asynchronous, they require a pre-agreed agent/variable ordering. The
algorithm presented in this paper does not need this initial condition. There-
fore, we do not require a pre-processing phase where the ordering is defined, and
it also allows for a more dynamic execution, since agents may leave and join
without redefining the ordering.

Fuzzy DCSPs has been of interest to the Multi-Agent System community, es-
pecially in the context of distributed resource allocation, collaborative schedul-
ing, and negotiation (e.g., [11]). Those works focus on bilateral negotiations and
when many agents take part, a central coordinating agent may be required.

For example, the work in [11] promotes a rotating coordinating agent which
acts as a central point to evaluate different proposals sent by other agents. Hence,
the network model employed in those work is not totally distributed. One more
important note is that this work focuses on competitive negotiation, where agents
try to outsmart each other (i.e., opposed to our collaborative negotiation).

In [12] the authors propose two approaches to solve these problems: an it-
erative method and an adaptation of the Asynchronous Distributed constraint
OPTimisation algorithm (ADOPT ) for solving Fuzzy DCSP. They also present
experiments on the performance comparison between the two approaches, show-
ing that ADOPT is more suitable for low density problems; density is equivalent
to the number of links divided by the number of agents.

Finally, in [16,17] the authors define the fuzzy GENET model for solving bi-
nary Fuzzy CSPs with a neural network model. Through transforming Fuzzy
CSPs into [0, 1] integer programming problems, the authors display the equiva-
lence between the underlying working mechanism of fuzzy GENET and the dis-
crete Lagrangian method. Benchmarking results confirm its feasibility in tackling
Fuzzy CSPs, and flexibility in dealing with over-constrained problems. After a
number of cycles, the network settles in a stable state. In this stable state, if the
obtained fuzzy preference is greater/equal than a predefined threshold α0, an ac-
ceptable solution is considered to be found. Otherwise, the network is trapped in
a local minimum. Even if this termination conditions can be implemented in our
self-stabilizing algorithm as shown in the tests over the n× (n− 1)-queens prob-
lem in Sec. 7. In the implementation we propose in Sec. 4 we let the algorithm
search for the best optimum of the problem (i.e., without a lower threshold).
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4 An Algorithm for Fuzzy Naming Games

In this section we extend classical NGs to take into account fuzzy scores asso-
ciated with words, therefore, we propose an algorithm that solves Fuzzy NGs.
Since we deal with fuzzy values associated only with words, we can consider
Fuzzy NGs as particular Fuzzy DCSP instances, P = 〈X,D,C,A〉 (see Sec. 2.1).
In this problem we have fuzzy unary constraints describing the preferences over
the possible words, and binary crisp constraints that are satisfied only if the
words chosen from two neighboring agents are the same (i.e., x = y). In Sec. 5
we further extend the algorithm in order to consider fuzzy binary constraints
among agents, and consequently, to solve plain Fuzzy DCSPs.

At each round, the algorithm is based on two kinds of entities. The first is a
single speaker, which communicates its choice on the word and the related fuzzy
preference. The second is a set of listeners, which are the speaker’s neighboring
agents. These neighbors are those agents that can directly communicate with the
speaker, through the communication network over the agents. At each round r,
an agent is drawn with uniform probability to be the speaker. In the following of
this section we describe in detail each step of the interaction scheme that defines
the behavior between the speaker and the listeners: we consider three phases,
i) broadcast, ii) feedback and iii) update. Each agent marks the element that it
expects to be the final shared name in order to recall it when necessary.

4.1 Interaction Protocol

Broadcast. The speaker as ∈ A executes the broadcast protocol. We suppose
that each speaker as manages a variable s ∈ X . The speaker checks if the
marked variable assignment b ∈ D is in top, where top is the set of current best
assignment, top = {xs|xs = argmaxx[(

⊗
cVsη[s := x]) ⇓s]}. The

⊗
composition

is performed over all the constraints that include s in their support Vs, that is
s ∈ Vs; then, the result is projected over s (see Sec. 2) in order to obtain a
constraint over s only, and, finally, we consider the best preference associated
with this constraint (with max). If the current marked variable assignment is not
in top, the the agent selects a new variable assignment b from top with uniform
probability, and marks it. The agent recalls the value u = (

⊗
cVsη[s := b]) ⇓s.

and broadcasts the couple 〈b, u〉 to all its listeners, that is, it sends its subjective
preference for the name of s.

Notice that, even if in this case we only have one unary fuzzy constraint over
s, we perform the

⊗
composition to enforce the consistency w.r.t. not allowed

values of s imposed by crisp binary constraints over it. As a remind, crisp binary
constraints impose equality among the variables of different agents.

Feedback. All the listeners receive the broadcastmessage 〈b, u〉 from the speaker.
Each listener al ∈ A, which controls variable l, computes the value (

⊗
cVl

η[s :=
b][l := dk]) ⇓l for all possible dk values, where dk is any possible assignment for
variable l, and cVl

is any constraint with a scope that includes variable l. In other
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words, we compute the combination of the fuzzy preferences (equal to vk) for each
dk assignment, supposing that the speaker chooses word b. Each listener sends
back to as a feedback message according to the following two cases:

– Failure. If u > max
k

(vk) there is a failure, and the listener feedbacks a failure

message containing the maximum value and the corresponding assignment
for l,Fail〈max

k
(vk)〉. This corresponds to a failure because the value proposed

by the speaker is better than an upper preference threshold for the same
word, computed from the point of view of the listener instead.

– Success. If u ≤ max
k

(vk) we are in success conditions, the listener feedbacks

Succ only.

Update. The listener feedback determines the update of as and of each al that
has participated to the interaction. When a listener al feedbacks a Succ, and if
it has an preference value for dk = b higher than u, then it lowers the preference
level for dk to u. If as receives only Succ feedback messages from all its listeners,
then it does not need to update.

Otherwise, as may receive a number h ≥ 1 of Fail〈vj〉 feedback messages. In
this case, the speaker selects the worst fuzzy preference vw, s.t. ∀j, vw ≤ vj . As a
consequence, as sends to all its listeners a FailUpdate〈vw〉. Thus, the speaker
changes the preference for b of its unary constraint c{s} with the worst fuzzy
level among the failure feedback messages, i.e., c{s}η[s := b] = vw. In words, it
adapts the value of its variable s in accordance to its neighborhood, since fuzzy
preferences are composed with the min operator. In addition, each listener al
sets its preference for word b to vw, i.e., c{l}η[s := b][l := dl] = vw. In words, the
feedback of the “worst” listener is propagated to all the listeners of as.

4.2 Theorems

In this section we report the lemmas and theorems that lead to the convergence
property of the algorithm described in Sec. 4.1: we formally prove that the
algorithm always terminates with the best solution, that is the word with the
highest fuzzy preference. With Lemma 1 we state that a subset of constraints
C′ ⊆ C has a higher fuzzy preference w.r.t. C. We say that a fuzzy constraint
problem is α-consistent if it can be solved with a level of satisfiability of at least
α (see also [2]), that is if a there exists a solution with a preference better than
(or equal to) threshold α (with α ∈ [0..1]). Lemma 1 holds because min is a
monotonically decreasing function.

Lemma 1 ([2]). Consider a set of constraints C and any subset C′ of C. Then
we have

⊗
C ≤ ⊗

C′.

The speaker selection-rule defines a probability distribution function F that tells
us the probability that a certain domain assignment is selected. In Lemma 2 we
relate F to the convergence of the algorithm with probability 1, related to the
level of satisfiability of the problem.
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Lemma 2. If function F selects only the domain elements with preference level
greater then α, then the algorithm converges with probability 1, to a solution with
a preference greater than α.

From [3,4] we know that if function F allows a random exploration of the word
domain, then the algorithm converges to the same word, but this word may
not be the optimal one. If we choose F in order to select only words with a
preference greater than α, then the algorithm converges to a solution with a
global preference greater than α.

With Prop. 1 and Prop. 2 we prepare the background for the main theorem
of this section, that is Th. 1. Proposition 1 describes how the global state of
the agents converges, while Prop. 2 states that the algorithm converges with a
probability of 1.

Proposition 1. For round r → +∞, the weight associated to the optimal solu-
tion is equal for all the agents, and it is equal to the minimum preference level
of that word.

Proposition 2. For any probability distribution F the algorithm converges with
a probability of 1.

These two propositions can be derived as proposed in [3,4]. At last, we state that
the presented algorithm always converges to the best solution of a Fuzzy DCSP.

Theorem 1. The algorithm described in Sec. 4.1 always converges to the best
solution of the represented Fuzzy NG, i.e., it converges to the solution with the
highest fuzzy preference.

The proof comes from the fact that, i) according to Prop. 2, the algorithm always
converges, and ii) we choose a proper function F as described in Lemma 2.

5 Solving Fuzzy Distributed Constraint Satisfaction
Problems as Naming Games

In this section we improve the Fuzzy NG algorithm presented in Sec. 4 in order
to solve generic Fuzzy DCSPs instances. To accomplish this, we also consider
binary fuzzy constraints instead of crisp ones only, as in Sec. 4. In our algorithm
we limit ourselves to unary and binary constraints only because any CSP can be
translated to an equivalent one, adopting only unary/binary constraints [14].

As proposed in [18], we assign each variable xi ∈ X of P = 〈X,D,C,A〉 to
an agent ai ∈ A. We assume that each agent knows all the constraints that
concern its variables [18]. Each agent i = 1, 2, . . . , n (where |A| = n) searches
its own variable domain di ∈ D for an assignment that optimizes P . Each agent
has an unary constraint ci, whose support is defined over its managed variable
xi ∈ X ; this unary constraints represent the local agent preference for each
variable assignment di ∈ D. Each agent can interact only with its neighbors:
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we may say that the communication network is determined by the network of
binary constraints, since we suppose that an agent ai ∈ A can communicate only
with an aj ∈ A agent sharing a binary constraint with it, i.e., c{i,j} ∈ C. Any
binary constraint c{i,j} returns a preference value in the [0, 1] interval, which
states the combined preference over the assignment of xi and xj together.

The algorithm is dived into time intervals (we call it a “round”), during which
the agents are able to interact and share information on their variable assign-
ments and the mutual constraints. At each round r, an agent is drawn with
uniform probability to be the speaker as. As in Sec. 4, each speaker has a set of
listeners al, each of them sharing a binary constraint with as. In this algorithm
the agents keep a list of speakers’ proposals up to the last failed interaction, this
list is composed of agent-assignment tuples S = {〈as1 , bs1〉, . . . , 〈asq , bsq 〉}. The
phases of the algorithm are three as in Sec. 4: i) broadcast, ii) feedback and iii)
update.

5.1 Interaction Protocol

Broadcast. The speaker as executes the broadcast protocol. The speaker com-
putes top = {xs|xs = argmaxx[(

⊗
cVsη[s := x]) ⇓s]}, as in the previous case

4.1. Then, it checks if the marked variable assignment b is in top. If the marked
variable assignment is not in top it selects a new variable assignment b with
uniform probability from top, and marks it. Then, the agent recalls the value
u = (

⊗
cVsη[s := b]) ⇓s, and as sends the couple 〈b, u〉 to all its listeners. In

words, the agent composes all the constraints whose scope contains variable s,
that is s ∈ Vs, and it sends its preferred assignment.

Feedback. All the al ∈ A listeners receive the broadcast message 〈b, u〉 from as
(with u =

⊗
cVsη[s := b]). Each listener al adds 〈b, u〉 to

S = {〈as1 , bs1〉, . . . , 〈asq , bsq 〉, 〈as, b〉}.

Then it computes the value vk = (
⊗

cVl
η[s := b1] . . . [s := bq][l := dk]) ⇓l for all

the possible dk values, where dk is any possible assignment for variable l, and cVl

is any constraint with a scope that includes both the speaker s, and the listener
l. Then it computes dmax = argmaxdk

(vk) and vmax = maxdk
(vk). Each listener

sends back to as a feedback message according to the following two cases:

– Failure. If u > vmax we obtain a failure, and the listener may only feedback
Fail〈⊗ cVl

η[s := b][l := dmax]〉.
– Success. If u ≤ vmax, we obtain a success for this round, and the listener

may feedback Succ to the speaker.

Notice that this computation is different from the one in the same phase of
the algorithm in Sec. 4.1. In this case, the check has to be computed w.r.t. the
composition of all the constraints with variable s in their scope. the reason is
that in Fuzzy DCSPs we have fuzzy binary constraints either.
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Update. As in Sec. 4.1, the feedback of the listeners determines the update of
the listeners and of the speaker itself. When al feedbacks Succ, and if there is
a
⊗

cVl
η[s := b][l := dk] > u, then it sets

⊗
cVl

η[s := b][l := dk] = u. If the
speaker receives only Succ feedback messages from all its listeners, then it does
not need to update and the round ends.

Otherwise, that is if the speaker receives a number h ≥ 1 of Fail〈vj〉 feedback
messages. In this case, the speaker selects the worst fuzzy preference vw, s.t.
∀j, vw ≤ vj . As a consequence, as sends to all its listeners a FailUpdate〈vw〉.

then the speaker sets
⊗

csη[s := b] = vw, as performed in Sec. 4.1. In addition,
each listener al sets its preference for s := b and l := dl to vw, i.e., c{s,l}η[s :=
b][l := dl] = vw. In words, the feedback of the “worst” listener is propagated to
all the listeners of as. Finally, the speaker and the listeners set S = ∅.

6 An Example of Algorithm Execution

In this section we show a sample execution of the algorithm for Fuzzy DCSP
presented in Sec. 5.1. We consider a problem P = 〈X,D,C,A〉 with three agents
(i.e., a1, a2, a3 ∈ A) and both unary and binary constraints, as defined by the
network represented in Fig. 1a. The domain for the variables x1, x2, x3 ∈ X is
D = {�,©}.

When we start executing the algorithm, at round r = 1 (whose final state is
represented in Fig. 1b) we suppose a1 is the first agent to be randomly chosen
as a speaker. It computes the elements with the highest preference over the
constraints cVs , and fills its list top with them (which was previously empty).
Since this is the first interaction among the agents, the speaker has no marked
element, thus it may only draw an element from top with uniform probability.
As already introduced, agent a1 computes

⊗
cVx1

η for all ∀d ∈ D, obtaining
that

⊗
cVx1

η[x1 := �] = 0.1, and
⊗

cVx1
η[x1 := ©] = 0.2. Thus, it marks ©

(marked with an asterisk in Fig. 1b), and choses to broadcast 〈©, 0.2〉 to its
neighbors a2 and a3 (the broadcast is underlined in Fig. 1b).

Listener a2 updates the successful speaker-assignment list S = {(a1,©)},
then it computes vk =

⊗
cVx1,x2

η[x1 := ©][x2 := dk]. For dk = � it finds
v1 =

⊗
cVx1,x2

η[x1 := ©][x2 := �] = 0.3, and for dk = © it finds v2 =⊗
cVx1,x2

η[x1 := ©][x2 := ©] = 0.7. Thus, a2 returns Succ, since 0.2 ≤
max(0.3, 0.7).

Simultaneously, listener a3 updates the successful speaker-assignment list S =
{(a1,©)}, and computes vk =

⊗
cVx1,x3

η[x1 := ©][x3 := dk]. For dk = � it
finds v1 =

⊗
cVx1,x3

η[x1 := ©][x3 := �] = 0.5, and for dk = © it finds
v2 =

⊗
cVx1,x3

η[x1 := ©][x3 := ©] = 0.4. Thus, it returns Succ, since 0.2 ≤
max(0.5, 0.4).

In the update phase the listeners a2 and a3 change the preference levels of
all the vk > 0.2 to vk = 0.2, i.e., the value broadcast by a1 in this round (the
changed values are represented in bold in Fig. 1b).
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cx1
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c{x1,x3}
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(©,©)=0.4.

c{x2,x3}
(�,�)=0.8;
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(a). r=0, initial state
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(�,�)=0.3;
(�,©)=0.5;
(©,�)=0.2;
(©,©)=0.2.
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(�,�)=0.8;
(�,©)=0.6;
(©,�)=0.6;
(©,©)=0.9.

(b). r=1
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(c). r=2
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(e). r=4

Fig. 1. Example of algorithm run on simple Fuzzy DCSP problem

At r = 2 (whose final state is represented in Fig. 1c), agent a3 is randomly
selected. It finds that

⊗
cVx3

η[x3 := �] = 0.3, and
⊗

cVx3
η[x3 := ©] = 0.5.

Thus, it marks ©, and it broadcasts 〈©, 0.5〉 to its listeners a1 and a2. Listener
a1 updates the successful speaker-assignment list S = {(a3,©)}, and computes
vk =

⊗
cVx1,x3

η[x3 := ©][x1 := dk]. For dk = � it finds v1 =
⊗

cVx1,x3
η[x3 :=

©][l := �] = 0.1, and for dk = © it finds v2 =
⊗

cVx1,x3
η[x3 := ©][x1 := ©] =

0.2. Thus, since 0.5 > max(0.1, 0.2), a1 returns Fail〈©, 0.2〉.
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Simultaneously, listener a2 updates the successful speaker-assignment list S =
{(a1,©), (a3,©)}, then computes vk =

⊗
cVx1,x2,x3

η[x1 := ©][x2 := dk][x3 :=
©]. For dk = � it finds v1 =

⊗
cVx1,x2,x3

η[x1 := �][x2 := �][x3 := ©] = 0.4,
and for dk = © it finds v2 =

⊗
cVx1,x2,x3

η[x1 := ©][x2 := ©]η[x3 := ©] = 0.2.
Thus, since 0.2 ≤ max(0.5, 0.2), a2 feedbacks Succ.

Since a3 receives a failure feedback, it calls FailUpdate(0.2). Then, the
speaker update its preference level, © = 0.2. The listeners a1 and a2 change
their preference levels vk = 0.2 (colored in blue in Fig. 1c). a1, a2, and a3
update their successful speaker-assignment lists S = ∅.

At round r = 3 (whose final state is represented in Fig. 1d), a2 is the third
agent to speak. It finds that

⊗
cVx2

η[x2 := �] = 0.4, and
⊗

cVx2
η[x2 := ©] =

0.2. Thus, it marks �, and it broadcasts 〈�, 0.4〉 to agents a1 and a3. Listener
a1 updates the successful speaker-assignment list S = {(a2,�)}, then computes
vk =

⊗
cVx1,x2

η[x1 := dk][x2 := �]. For dk = � it finds v1 =
⊗

cVx1,x2
η[x1 :=

�][x2 := �] = 0.1, and for dk = © it finds v2 =
⊗

cVx1,x2
η[x1 := ©][x2 :=

�] = 0.2. Thus, it returns Fail(b,0.2).
Listener a3 updates the successful speaker-assignment list S = {(a2,�)},

then computes vk =
⊗

cVx2,x3
η[x2 := �][x3 := dk]. For dk = � it finds

v1 =
⊗

cVx2,x3
η[x2 := �][x3 := �] = 0.3, and for dk = © it finds v2 =⊗

cVx2,x3
η[x2 := �][x3 := ©] = 0.2. Thus, it returns Succ. Since a2 receives a

failure feedback, it calls FailUpdate(0.2). Then, the speaker update its pref-
erence level, � = 0.2, and the listeners a1 and a2 change their preference levels
vk = 0.2.

At round r = 4 (see Fig. 1e), a3 is the fourth agent to speak. It finds that⊗
cVx3

η[x3 := �] = 0.3, and
⊗

cVx3
η[x3 := ©] = 0.2. Thus, it marks �, and it

broadcasts 〈�, 0.3〉 to a1 and a2.
Listener a1 updates the successful speaker-assignment list S = {(a3,�)},

then computes vk =
⊗

cVx1,x3
η[x1 := dk][x3 := �]. For dk = � it finds

v1 =
⊗

cVx1,x3
η[x1 := �][x3 := �] = 0.1, and for dk = © it finds v2 =⊗

cVx1,x3
η[x1 := ©][x3 := �] = 0.2. Thus, it returns Fail(b,0.2). Listener a2

updates the successful speaker-assignment list S = {(a3,�)}, then computes
vk =

⊗
cVx2,x3

η[x3 := �][x2 := dk]. For dk = � it finds v1 =
⊗

cVx2,x3
η[x3 :=

�][x2 := �] = 0.2, and for dk = © it finds v2 =
⊗

cVx2,x3
η[x3 := �][x2 := ©] =

0.2. Thus, it returns Fail(b,0.2). Since a3 receives two failure feedbacks, it calls
FailUpdate(0.2). Then, the speaker updates its preference level, � = 0.2, and
listeners a1 and a2 change their preference levels vk = 0.2.

At round r = 5, a2 is the fifth agent to speak. It finds that
⊗

cVx2
η[x2 :=

�] = 0.2, and
⊗

cVx2
η[x2 := ©] = 0.2, thus, � is in top. Then a2 broadcasts

〈�, 0.2〉 to a1 and a3. Listener a1 computes vk =
⊗

cVx1,x2
η[x2 := �][x3 :=

dk]. For dk = � it finds v1 =
⊗

cVx1,x2
η[x2 := �][x3 := �] = 0.1, and for

dk = © it finds v2 =
⊗

cVx1,x2
η[x2 := �][x3 := ©] = 0.2. Thus, it returns

Succ. Listener a3 computes vk =
⊗

cVx2,x3
η[x2 := �][x3 := dk]. For dk = �

it finds v1 =
⊗

cVx2,x3
η[x2 := �][x3 := �] = 0.2, and for dk = © it finds

v2 =
⊗

cVx2,x3
η[x2 := �][x3 := ©] = 0.2. Thus, it returns Succ. Since all
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interactions are successful the speaker calls a success update, the listeners a1
and a3 do not change the preference levels, because vk ≤ 0.2.

From r = 6 the system converges to an absorbing state in which all interac-
tions are success, and the preference levels do not change. This state is also a
solution of the fuzzy DCSP.

7 Experimental Results

7.1 Fuzzy NG Benchmarks

In this subsection we show the performance results related to the algorithm
presented in Sec. 4. To evaluate different executions we define the probability of
a successful interaction at round r, i.e., Pr(succ), given the state of the system
in that turn. Notice that with r we mean the current round of speaker/listener
interaction: if r = 2 it means that we are at the second round. Pr(succ) is
determined by the probability that an agent is a speaker s at round r (i.e.,
P (s = ai)), and by the probability that the agent interaction is successful (i.e.,
Pr(succ | s = ai)). This is computed considering all the n agents participating
to the distributed computation:

Pr(succ) =

n∑

i=1

Pr(succ | s = ai)P (s = ai)

The probability Pr(succ | s = ai) depends on the state of the agent at round r.
In particular, it depends on the variable assignment (or word) b selected. Given
an algorithm execution, at each round r we can compute Pr(succ | s = ai) over
the states of all agents, before that the interaction is performed. Since we have
that P (s = ai) = 1/n, we can compute the probability of being in a successful
state as:

Pr(succ) =
1

n

n∑

i=1

Pr(succ | s = ai)

To set up our benchmark, we generate Random Fuzzy NG instances (RFNGs).
To generate such problems, we assign to each agent the same domain of names
D, and for each agent and each name in the agent’s domain we draw a preference
level in the interval [0, 1], by using an uniform distribution. Moreover, RFNGs
can only have crisp binary equality-constraints (as defined in Sec. 4). Then,
we set the network of agents to be fully connected, in this way, any agent can
speak to any agent. We call this kind of problem as completely connected RFNG
instance, which represents the first set of problems that we use as benchmark.
Clearly, by using a completely connected network, the successful global state
(where the system is stabilized and a solution is found) is reached very quickly,
as it can be seen in Fig. 2a (we discuss this figure in the following).

For the first round of tests, we generate 5 completely connected RFNG in-
stances, with 10 agents and 10 words each (each agent has a word). For each



130 S. Bistarelli, G. Gosti, and F. Santini

one of these instances, we compute the best preference level and the word as-
sociated to this solution, by using a brute-force algorithm. Then, we execute
this algorithm 10 times on each instance. To decide when the algorithm finds
the solution, a graph crawler checks marked word of each agent, and the related
preference value. If all the agents agree on the marked variable, this means they
find an agreement on the name. Then, the graph crawler checks if the shared
word has a preference level equal to the best preference (found through the bru-
tal force initial-phase), in such case we conclude that the algorithm has found
the optimal solution. In Fig. 2a we can see that the average number of rounds
for each of the 5 instances is less than r = 16, i.e., within 16 speaker/listeners
rounds we can solve all the completely connected RFNG instances.
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(a). Completely connected RFNG.
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(b). Path RFNG.

Fig. 2. Evolution of the average Pr(succ) over 5 different completely connected RFNG
instances (2a) and 5 different path RFNG instances (2b). For each instance, we com-
puted the mean Pr(succ) over 10 different runs. We set n = 10, and the number of
words to 10.

As a second round of tests, we change the topology of our agent networks
by defining Path RFNG instances [4], which are RFNG instances where the
constraint network corresponds to a path graph. A path graph (or linear graph) is
a particularly simple example of a tree, which has two terminal vertices (vertices
that have degree 1), while all others (if any) have degree 2.

In Fig. 2b we report the performance in terms of Pr(succ) for such instances.
The instances have been generated following the same guidelines as before: 5
instances with 10 agents and 10 words, and 10 executions for each instance;
each preference value in taken from the interval [0, 1], by using an uniform
distribution.

As for Fig. 2a, even in Fig. 2b when Pr(succ) = 1 the system is in an absorbing
state, which we know is also a solution (see Th. 1). As we can notice in Fig. 2b,
the network topology among agents strongly influences the performance: having
a path graph significantly delays reaching the absorbing state, since we obtain
a solution between 140 and 230 speaker/listeners rounds.
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In Fig. 3 we show how the Mean Number of Messages (MNM ) needed to find
a solution scales over different numbers n of variables in path RFNG instance.
For each value n, the MNM is measured over 5 different path RFNG instances.
We notice that the points approximately overlap the function cN1.8.
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Fig. 3. Scaling of the MNM needed to the system to find a solution for different
numbers n of variables. For each value n, the MNM is measured over 5 different path
RFNG instances. We notice that the points approximately overlap the function cN1.8.

7.2 Fuzzy CSP Benchmark

For the first fuzzy CSP benchmark, we generate Random Fuzzy CSP instances
(RFCSP). To generate such problems, we consider 10 variables and we assign to
each agent a domain of variables D of size 5, and for each assignment we draw
a preference level in the interval [0, 1], by using an uniform distribution. Then,
we set the binary constraints in such a way that they form a path graph, and
we randomly drawn form a uniform distributions in the interval [0, 1] the all the
possible fuzzy values of each binary constraint. We call instance a path RFCSP
instance. In Fig. 4 we show the evolution of the preference level of the solution
proposals. In this execution, our algorithm found the best solution after 264
rounds. The level of this solution is 0.4135. We are certain that this is the best
solution to the path RFCSP instance because we used a brute-force algorithm
to find all the best solutions in advance. It is important to point out that we
did not have to set a threshold level, and the algorithm found the best solution
autonomously.

For the second fuzzy CSP benchmark we consider the n × (n − 1)-queens
problem. The n × (n − 1)-queens problem [9] is a modification of the n-queens
problem in which our objective is to place n queens on a n× (n− 1) chessboard.
Because, this board misses a row it is impossible to find a configuration of the
queens such that there dos not exist a couple of queens that attack each other.
Therefore, we consider a fuzzy version of this problem in which if two queen
do not attack each other, their constraint returns a fuzzy preference of one.
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Fig. 4. This graph shows the evaluation of the value of the current solution proposal
at each round r for a single algorithm run on a path RFCSP problem, where n = 10
and domain size 5

Otherwise, the preference level is proportional to the distance of the queens,
according to the formula:

|i2 − i1| − 1

n− 1
(1)

Where i1 is the column of the first queen and i2 is the column of the second
queen. First, as in [17], we search an assignment of the variables in the n×(n−1)-
queens problem that has a preference level greater then 0.8.

Table 1. Results on n × (n − 1)-queens problem with a threshold of 0.8. The table
shows the mean number of rounds MNR, and the mean number of messages MNM
necessary to solve the n× (n− 1)-queens problem at different values of n.

n MNR MNM

10 756 20,401
20 1,870 106,590
30 2,130 185,310
40 2,300 269,100
50 2,600 382,200

In Tab. 1, we present the mean number of roundsMNR, and the mean number
of messages MNM necessary to find a solution with a threshold of 0.8 to the
n× (n− 1)-queens problem. We notice that the algorithm appears to scale well
with regards to the increase in the instance size.

Next, Fig. 5 shows the evaluation of the proposed solution at each round r
for two algorithms runs on n × (n − 1)-queens problem for n = 8. Where we
did not set a threshold and the algorithm searches for the best possible solution.
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We notice that in both executions the algorithm found optimal solutions greater
then 0.8. Unfortunately, the algorithm fails to settle on this solution, because we
did not set a threshold level and because the algorithm in unable to infer that the
optimal solution is lower the 1. To understand that the n×(n−1)-queens problem
has global solution smaller then one the algorithm would have compute not only
the binary constraint among its variable and its neighbor variable, but also the
combination of the binary constraints among the variables of its neighbors. A
complete version of this algorithm would consider this constraint or find a way
to propagate this constraints as in the Asynchronous Backtracking algorithm
[18]. In future work, we intend to implement such complete version. For now it
is important to notice that it is unclear if similar algorithms that do not share
a variable ordering are able to solve this problem, because in [17] the authors
do not consider this situation. Moreover,it is important to point out that in
undistributed CSPs it is reasonable to consider various runs at different threshold
level to find the best solution. But in a distributed CSP this would require an
other level of coordination among the agent that in some circumstances may
require costly or unnecessary assumptions on the communication network.
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Fig. 5. These two graphs show the evaluation of value of the current solution proposal
at each round r for two algorithms runs on n× (n− 1)-queens problem with n = 8

8 Conclusions and Future Work

In this paper we have shown two main contributions: first we have extended
the NG problem [15,1,13,10] to take into account fuzzy preferences over words.
Secondly, we have also further extended this algorithm in order to solve a generic
instance of Fuzzy DCSPs [14,18,11,12,17], by allowing the solution of binary
fuzzy constraints.

Our algorithm is based on the random exploration of the system state-space:
our method travels through the possible states until it finds the absorbing state,
where it stabilizes. These goals are achieved through the merging of ideas com-
ing from two different fields, and respectively addressed by statistical physics
(i.e., NGs), and the computational framework posed by constraint solving (i.e.,
DCSPs).
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The algorithm proposed in Sec. 5 positively answers to an important question:
can a distributed uniform probabilistic-algorithm solve general Fuzzy DCSP in-
stances? In other words, we show that a Fuzzy DCSP algorithm may work with-
out a predetermined agent/variable ordering, and it can probabilistically solve
instances by taking into account changes to the problem, e.g. deletion/addition
of agents during the execution.

Moreover, in the real world, a predetermined agent ordering may be a quite
restrictive assumption. For example, we may consider our agents to be corpo-
rations, regions in a nation, states in a federation, or independent government
agencies. In all of these cases, a predetermined order may not be acceptable for
many reasons. Hence, we think it is very important to explore and understand
how such distributed systems may work, and what problems may arise.

In the future, we intend to evaluate in depth an asynchronous version of this
algorithm, and to test it using comparison metrics, such as a communication
cost (number of messages sent) and the Number of Non-Concurrent Constraint
Checks (NCCCs). We would also like to compare our algorithm against other dis-
tributed and asynchronous algorithms, such as the Distributed Stochastic Search
Algorithm (DSA) [8], and the Distributed Breakout Algorithm (DBA) [18]. In
addition, we intend to investigate the “fairness” in the loss of privacy between
algorithms with no pre-agreed agent/variable ordering, and algorithms with pre-
agreed agent/variable ordering. We also plan to develop other functions used to
select the speaker in the broadcast phase, and to study the convergence by com-
paring the performance with the function F used in this paper (see Sec. 4.1).

Finally, we will try to generalise the proposed method to generic semiring-
based CSP instances [2], extending the preference from fuzzy to weighted or
probabilistic schemes.
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