
Automatic Generation of Self-monitoring MASs

from Multiparty Global Session Types in Jason

Davide Ancona1, Sophia Drossopoulou2, and Viviana Mascardi1

1 DIBRIS, University of Genova, Italy
{davide.ancona,viviana.mascardi}@unige.it

2 Imperial College, London, UK
scd@doc.ic.ac.uk

Abstract. Global session types are behavioral types designed for speci-
fying in a compact way multiparty interactions between distributed com-
ponents, and verifying their correctness. We take advantage of the fact
that global session types can be naturally represented as cyclic Prolog
terms - which are directly supported by the Jason implementation of
AgentSpeak - to allow simple automatic generation of self-monitoring
MASs: given a global session type specifying an interaction protocol,
and the implementation of a MAS where agents are expected to be com-
pliant with it, we define a procedure for automatically deriving a self-
monitoring MAS. Such a generated MAS ensures that agents conform
to the protocol at run-time, by adding a monitor agent that checks that
the ongoing conversation is correct w.r.t. the global session type.

The feasibility of the approach has been experimented in Jason for
a non-trivial example involving recursive global session types with al-
ternative choice and fork type constructors. Although the main aim of
this work is the development of a unit testing framework for MASs, the
proposed approach can be also extended to implement a framework sup-
porting self-recovering MASs.

1 Introduction

A protocol represents an agreement on how participating systems inter-
act with each other. Without a protocol, it is hard to do a meaningful
interaction: participants simply cannot communicate effectively.
The development and validation of programs against protocol descriptions
could proceed as follows:
– A programmer specifies a set of protocols to be used in her applica-

tion.
...
– At the execution time, a local monitor can validate messages with

respect to given protocols, optionally blocking invalid messages from
being delivered.

This paper starts with a few sentences drawn from the manifesto of Scribble, a
language to describe application-level protocols among communicating systems

M. Baldoni et al. (Eds.): DALT 2012, LNAI 7784, pp. 76–95, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Automatic Generation of Self-monitoring MASs 77

initially designed by Kohei Honda and Gary Brown1. The team working on
Scribble involves both scientists active in the agent community and scientists
active in the session types one. Their work inspired the proposal presented in
this paper where multiparty global session types are used on top of the Jason
agent oriented programming language for runtime verification of the conformance
of a MAS implementation to a given protocol. This allows us to experiment our
approach on realistic scenarios where messages may have a complex structure,
and their content may change from one interaction to another.

Following Scribble’s manifesto, we ensure runtime conformance thanks to a
Jason monitor agent that can be automatically generated from the global session
type, represented as a Prolog cyclic term. Besides the global session type, the
developer must specify the type of the actual messages that are expected to be
exchanged during a conversation.

In order to verify that a MAS implementation is compliant with a given pro-
tocol, the Jason code of the agents that participate in the protocol is extended
seamlessly and automatically. An even more transparent approach would be
possible by overriding the underlying agent architecture methods of Jason re-
sponsible for sending and receiving messages, which could intercept all messages
sent by the monitored agents, and send them to the monitor which could manage
them in the most suitable way. In this approach message “sniffing” would have
to occur at the Java (API) level, gaining in transparency but perhaps loosing in
flexibility.

In this paper we show the feasibility of our approach by testing a MAS against
a non-trivial protocol involving recursive global session types with alternative
choice and fork type constructors.

The paper is organized in the following way: Section 2 provides a gentle intro-
duction to the global session types we used in our research; Section 3 discusses
our implementation of the protocol testing mechanism; Section 4 presents the
results of some experiments we have carried out; Section 5 discusses the related
literature and outlines the future directions of our work.

2 A Gentle Introduction to Global Session Types for
Agents

In this section we informally introduce global session types (global types for
short) and show how they can be smoothly integrated in MASs to specify mul-
tiparty communication protocols between agents. To this aim, we present a typ-
ical protocol that can be found in literature as our main running example used
throughout the paper.

Our example protocol involves three different agents playing the roles of a
seller s, a broker b, and a client c, respectively. Such a protocol is described
by the FIPA AUML interaction diagram [17] depicted in Figure 1: initially, s
communicates to b the intention to sell a certain item to c; then the protocol

1 http://www.jboss.org/scribble/

http://www.jboss.org/scribble/

78 D. Ancona, S. Drossopoulou, and V. Mascardi

Fig. 1. The Brokering interaction protocol in FIPA AUML

enters a negotiation loop of an arbitrary number n (with n ≥ 0) of iterations,
where b sends an offer to c and c replies with a corresponding counter-offer.
After such a loop, b concludes the communication by sending in an arbitrary
order the message of type result to c, and of type final to s.

Even though the AUML diagram of Figure 1 is very intuitive and easy to un-
derstand, a more compact and formal specification of the protocol is required to
perform verification or testing of a MAS, in order to provide guarantees that the
protocol is implemented correctly. Global session types [8,14] have been intro-
duced and studied exactly for this purposes, even though in the more theoretical
context of calculi of communicating processes. A global type describes succinctly
all sequences of sending actions that may occur during a correct implementation
of a protocol.

Depending on the employed type constructors, a global type can be more or
less expressive. Throughout this paper we will use a fixed notion of global type,
but our proposed approach can be easily adapted for other kinds of global types.
The notion of global type we adopt is a slightly less expressive version of that
proposed by Deniélou and Yoshida [10] (which, however, allows us to specify the
protocol depicted in Figure 1), defined on top of the following type constructors:

– Sending Actions : a sending action occurs between two agents, and specifies
the sender and the receiver of the message (in our case, the names of the
agents, or, more abstractly, the role they play in the communication), and
the type of the performative and of the content of the sent message; for
instance, msg(s, b, tell, item) specifies that agent s (the seller) sends the
tell performative to agent b (the broker) with content of type item.

Automatic Generation of Self-monitoring MASs 79

– Empty Type: the constant end represents the empty interaction where no
sending actions occur.

– Sequencing: sequencing is a binary constructor allowing a global type t to be
prefixed by a sending action a; that is, all valid sequences of sending actions
denoted by seq(a,t) are obtained by prefixing with a all those sequences
denoted by t. For instance,

seq(msg(alice ,bob , te l l ,ping),
seq(msg(bob ,alice , te l l ,pong),end))

specifies the simple interaction where first alice sends tell(ping) to bob,
then bob replies to alice with tell(pong), and finally the interaction stops.

– Choice: the choice constructor has variable arity2 n (with n ≥ 0) and ex-
presses an alternative between n possible choices. Because its arity is variable
we use a list to represent its operands. For instance,

choice([

seq(msg(c,b, te l l ,counter),end),
seq(msg(b,s, te l l ,final),end),
seq(msg(b,c, te l l ,result),end)

])

specifies an interaction where either c sends tell(counter) to b, or b sends
tell(final) to s, or b sends tell(result) to c.

– Fork : the fork binary3 constructor specifies two interactions that can be
interleaved. For instance,

fork(

seq(msg(b,s, te l l ,final),end),
seq(msg(b,c, te l l ,result),end)

)

specifies the interaction where first b sends tell(final) to s, and then b sends
tell(result) to c, or the other way round.

Recursive types: the example types shown so far do not specify any interaction
loop, as occurs in the protocol of Figure 1. To specify loops we need to consider
recursive global types; for instance, the protocol consisting of infinite sending
actions where first alice sends tell(ping) to bob, and then bob replies tell(pong)

to alice, can be represented by the recursive type T s.t.

T = seq(msg(alice ,bob , te l l ,ping),
seq(msg(bob ,alice , te l l ,pong),T))

If we interpret the equation above syntactically (that is, as a unification prob-
lem), then the unique solution is an infinite term (or, more abstractly, an infinite
tree) which is regular, that is, whose set of subterms is finite. In practice, the
unification problem above is solvable in most modern implementations of Prolog,

2 Arity 0 and 1 are not necessary, but make the definition of predicate next simpler.
3 For simplicity, the operator has a fixed arity, but it could be generalized to the case
of n arguments (with n ≥ 2) as happens for the choice constructor.

80 D. Ancona, S. Drossopoulou, and V. Mascardi

where cyclic terms are supported; this happens also for the Jason implementa-
tion, where Prolog-like rules can be used to derive beliefs that hold in the current
belief base4. As another example, let us consider the type T2 s.t.

T2 = seq(msg(alice ,bob , te l l ,ping),
seq(msg(bob ,alice , te l l ,pong),choice([T2,end])))

Such a type contains the infinite interaction denoted by T above, but also all finite
sequences of length 2n (with n ≥ 1) of alternating sending actions msg(alice,bob,
tell,ping) and msg(bob,alice,tell,pong).

We are now ready to specify the Brokering protocol with a global type BP,
where for sake of clarity we use the auxiliary types OffOrFork, Off, and Fork:

BP = seq(msg(s,b, te l l ,item),OffOrFork),
OffOrFork = choice([Off ,Fork])

Off = seq(msg(b,c, te l l ,offer),
seq(msg(c,b, te l l ,counter),OffOrFork))

Fork = fork(seq(msg(b,s, te l l ,final),end),
seq(msg(b,c, te l l ,result),end))

Note that for the definition of global types we consider in this paper, the fork

constructor does not really extend the expressiveness of types: any type using
fork can be transformed into an equivalent one without fork. However, such a
transformation may lead to an exponential growth of the type .To see this, let
us consider the following type F:

F = fork(AliceBob ,CarolDave),

AliceBob = seq(msg(alice ,bob , te l l ,ping),
seq(msg(bob ,alice , te l l ,pong),AliceBob))

CarolDave = seq(msg(carol ,dave , te l l ,ping),
seq(msg(dave ,carol , te l l ,pong),CarolDave))

Type F is equivalent to the following type AC that does not contain any fork:

AC = choice([seq(msg(alice ,bob , te l l ,ping),BC),
seq(msg(carol ,dave , te l l ,ping),AD)]),

BC = choice([seq(msg(bob ,alice , te l l ,pong),AC),
seq(msg(carol ,dave , te l l ,ping),BD)]),

AD = choice([seq(msg(alice ,bob , te l l ,ping),BD),
seq(msg(dave ,carol , te l l ,pong),AD)]),

BD = choice([seq(msg(bob ,alice , te l l ,pong),AD),
seq(msg(dave ,carol , te l l ,pong),BC)])

Formal Definitions

Figure 2 defines the abstract syntax of the global session types that will be used
in the rest of the paper. As already explained in the previous section, global
types are defined coinductively: GT is the greatest set of regular terms defined
by the productions of Figure 2.

4 Persistency of cyclic terms is supported by the very last version of Jason; since
testing of this feature is still ongoing, it has not been publicly released yet.

Automatic Generation of Self-monitoring MASs 81

GT ::= choice([GT1,. . ., GTn]) (n ≥ 0) |
seq(SA, GT) |
fork(GT1, GT1) |
end

SA ::= msg(AId1,AId2,PE,CT)

Fig. 2. Syntax of Global Types

The meta-variables AId, PE and CT range over agent identifiers, performa-
tives, and content types, respectively. Content types are constants specifying the
types of the contents of messages.

The syntactic definition given so far still contains global types that are not
considered useful, and, therefore, are rejected for simplicity. Consider for instance
the following type NC:

NC = choice([NC,NC])

Such a type is called non contractive (or non guarded), since it contains an infi-
nite path with no seq type constructors. These kinds of types pose termination
problems during dynamic global typechecking. Therefore, in the sequel we will
consider only contractive global types (and we will drop the term “contractive”
for brevity), that is, global types that do not have paths containing only the
choice and fork type constructors. Such a restriction does not limit the expres-
sive power of types, since it can be shown that for every non contractive global
type, there exists a contractive one which is equivalent, in the sense that it rep-
resents the same set of sending action sequences. For instance, the type NC as
defined above corresponds to the empty type end.

Interpretation of global types. We have already provided an intuition of the
meaning of global types. We now define their interpretation, expressed in terms of
a next predicate, specifying the possible transitions of a global type. Intuitively,
a global type represents a state from which several transition steps to other
states (that is, other global types) are possible, with a resulting sending action.
Consider for instance the type F defined by

fork(seq(msg(b,s, te l l ,final),end),
seq(msg(b,c, te l l ,result),end))

Then there are two possible transition steps: one yields the sending action
msg(b,s,tell,final) and moves to the state corresponding to the type

fork(end ,

seq(msg(b,c, te l l ,result),end))

while the other yields the sending action msg(b,c,tell,result) and moves to the
state corresponding to the type

fork(seq(msg(b,s, te l l ,final),end),
end)

82 D. Ancona, S. Drossopoulou, and V. Mascardi

Predicate next is defined below, with the following meaning: if next(GT1,SA,GT2)
succeeds, then there is a one step transition from the state represented by the
global type GT1 to the state represented by the global type GT2, yielding the
sending action SA. The predicate is intended to be used with the mode indicators
next(+,+,-), that is, the first two arguments are input, whereas the last is an
output argument.

1 next (seq(msg(S, R, P, CT),GT),msg(S, R, P, C),GT) :-

has_type (C, CT).

2 next (choice([GT1|_]),SA,GT2) :- next(GT1 ,SA,GT2).

3 next (choice([_|L]),SA,GT) :- next(choice(L),SA,GT).

4 next (fork(GT1 ,GT2),SA,fork(GT3 ,GT2)) :- next(GT1 ,SA,GT3).

5 next (fork(GT1 ,GT2),SA,fork(GT1 ,GT3)) :- next(GT2 ,SA,GT3).

We provide an explanation for each clause:

1. For a sequence seq(msg(S, R, P, CT),GT) the only allowed transition step
leads to state GT, and yields a sending action msg(S, R, P, C) where C is
required to have type CT; we assume that all used content types are defined
by the predicate has_type, whose definition is part of the specification of the
protocol, together with the initial global type.

2. The first clause for choice states that there exists a transition step from
choice([GT1|_]) to GT2 yielding the sending action SA, whenever there exists
a transition step from GT1 to GT2 yielding the sending action SA.

3. The second clause for choice states that there exists a transition step from
choice([_|L]) to GT yielding the sending action SA, whenever there exists a
transition step from choice(L) (that is, the initial type where the first choice
has been removed) to GT yielding the sending action SA.
Note that both clauses for choice fail for the empty list, as expected (since
no choice can be made).

4. The first clause for fork states that there exists a transition from
fork(GT1,GT2) to fork(GT3,GT2) yielding the sending action SA, whenever
there exists a transition step from GT1 to GT3 yielding the sending action SA.

5. The second clause for fork is symmetric to the first one.

We conclude this section by a claim stating that contractive types ensure termi-
nation of the resolution of next.

Proposition 1. Let us assume that has_type(c,ct) always terminates for any
ground atoms c and ct. Then, next(gt,sa,X) always terminates, for any ground
terms gt and sa, and logical variable X, if gt is a contractive global type.

Proof. By contradiction, it is straightforward to show that if next(gt,sa,X) does
not terminate, then gt must contain a (necessarily infinite) path with only choice

and fork constructors, hence, gt is not contractive.

3 A Jason Implementation of a Monitor for Checking
Global Session Types

As already explained in the Introduction, the main motivation of our work is a
better support for testing the conformance of a MAS to a given protocol, even

Automatic Generation of Self-monitoring MASs 83

though we envisage other interesting future application scenarios (see Section 5).
From this point of view our approach can be considered as a first step towards
the development of a unit testing framework for MASs where testing, types, and
– more generally – formal verification can be reconciled in a synergistic way.

In more detail, given a Jason implementation of a MAS5, our approach allows
automatic generation6 of an extended MAS from it, that can be run on a set
of tests to detect possible deviations of the behavior of a system from a given
protocol. To achieve this the developer is required to provide (besides the original
MAS, of course) the following additional definitions:

– The Prolog clauses for predicate next defining the behavior of the used global
types (as shown in Section 2); such clauses depend on the notion of global
type needed for specifying the protocol; depending on the complexity of the
protocol, one may need to adopt more or less expressive notions of global
types, containing different kinds of type constructors, and for each of them
the corresponding behavior has to be defined in terms of the next predicate.
However, we expect the need for changing the definition of next to be a
rare case; the notion of global type we present here captures a large class
of frequently used protocols, and it is always possible to extend the testing
unit framework with a collection of predefined notions of global types among
which the developer can choose the most suitable one.

– The global type specifying the protocol to be tested; this can be easily defined
in terms of a set of unification equations.

– The clauses for the has_type predicate (already mentioned in Section 2),
defining the types used for checking the content of the messages; also in this
case, a set of predefined primitive types could be directly supported by the
framework, leaving to the developer the definition of the user-defined types.

The main idea of our approach relies on the definition of a centralized monitor
agent that verifies that a conversation among any number of participants is
compliant with a given global type, and warns the developer if the MAS does
not progress. Furthermore, the code of the agents of the original MAS requires
minimal changes that, however, can be performed in an automatic way.

In the sequel, we describe the code of the monitor agent, and the changes
applied to all other agents (that is, the participants of the implemented protocol).

3.1 Monitor

We illustrate the code for the monitor by using our running brokering example.
The monitor can be automatically generated from the global type specification in
a trivial way. The global type provided by the developer is simply a conjunction
UnifEq of unification equations of the form X = GT , where X is a logical
variable, and GT is a term (possibly containing logical variables) denoting a
global type. The use of more logical variables is allowed for defining auxiliary

5 We assume that the reader is familiar with the AgentSpeak language [20].
6 Its implementation has not been completed yet.

84 D. Ancona, S. Drossopoulou, and V. Mascardi

types that make the definition of the main type more readable. Then from UnifEq
the following Prolog rule is generated:

initial_state (X) :- UnifEq.

where X is the logical variable contained in UnifEq corresponding to the main
global type. The definition of the type of each message content must be provided
as well. In fact, the protocol specification defines also the expected types (such as
item, offer, counter, final and result) for the correct content of all possible
messages. For example, the developer may decide that the type offer defines all
terms of shape offer(Item, Offer), where Item is a string and Offer is an integer;
similarly, the type item corresponds to all terms of shape item(Client, Item)

where both Client and Item are strings.
Consequently, the developer has to provide the following Prolog rules that

formalize the descriptions given above:

has_type(offer(Item , Offer), offer) :-

string(Item) & int(Offer).

has_type(item(Client , Item), item) :-

string(Client) & string(Item).

The monitor keeps track of the runtime evolution of the protocol by saving its
current state (corresponding to a global type), and checking that each message
that a participant would like to send, is allowed by the current state. If so,
the monitor allows the participant to send the message by explicitly sending an
acknowledgment to it. We explain how participants inform the monitor of their
intention to send a message in Section 3.2.

The correctness of a sending action is directly checked by the next predicate,
that also specifies the next state in case the transition is correct. In other words,
verifying the correctness of the message sent by S to R with performative P and
content C amounts to checking if it is possible to reach a NewState from the
CurrentState, yielding a sending action msg(S, R, P, C) (type_check predicate).

/* Monitor ’s initial beliefs and rules */

// user -defined predicates
initial_state(Glob) :-

Merge = choice ([Off,Fork]) &
Off= seq(msg(b, c, tell , offer),

seq(msg(c, b, tell , counter), Merge)) &
Fork= fork(seq(msg(b, s, tell , final),end),

seq(msg(b, c, tell , result),end)) &
Glob = seq(msg(s, b, tell , item),Merge).

has_type (offer(Item , Offer), offer) :-
string(Item) & int(Offer).

has_type (counter (Item , Offer), counter) :-
string(Item) & int(Offer).

has_type (final(Res , Client , Item , Offer), final) :-
string(Res) & string(Client) & string(Item) & int(Offer).

has_type (result(Res , Item , Offer), result) :-
string(Res) & string(Item) & int(Offer).

has_type (item(Client , Item), item) :-
string(Client) & string(Item).

// end of user -defined predicates

timeout (4000).

Automatic Generation of Self-monitoring MASs 85

type_check(msg(S, R, P, C), NewState) :-
current_state(CurrentState) &
next(CurrentState , msg(S, R, P, C), NewState).

// Rules defining the next predicate follow
........

The monitor prints every information relevant for testing on the console with
the .print internal action. The .send(R, P, C) internal action implements the
asynchronous delivery of a message with performative P and content C to agent
R.

A brief description of the main plans follow.

– Plan test is triggered by the initial goal !test that starts the testing, by
setting the current state to the initial state.

– Plan move2state upgrades the belief about the current state.
– Plan successfulMove is triggered by the !type check message(msg(S, R,

P, C)) internal goal. If the type check(msg(S, R, P, C), NewState) con-
text is satisfied, then S is allowed to send the message with performative P

and content C to R. The state of the protocol changes, and monitor notifies
S that the message can be sent.

– Plan failingMoveAndProtocol is triggered, like successfulMove, by the
!type check message(msg(S, R, P, C)) internal goal. It is used when suc-
cessfulMove cannot be applied because its context is not verified. This
means that S is not allowed to send message P with content C to R, because
a dynamic type error has been detected: the message does not comply with
the protocol.

– Plan messageReceptionOK is triggered by the reception of a tell message
with msg(S, R, P, C) content; the message is checked against the proto-
col, and the progress check is activated (!check progress succeeds either
if a message is received before a default timeout, or if the timeout elapses,
in which case !check progress is activated again: .wait(+msg(S1, R1,

P1, C1), MS, Delay) suspends the intention until msg(S1, R1, P1, C1)

is received or MS milliseconds have passed, whatever happens first; Delay
is unified to the elapsed time from the start of .wait until the event or
timeout).

All plans whose context involves checking the current state and/or whose body
involves changing it are defined as atomic ones, to avoid problems due to inter-
leaved check-modify actions.

/* Initial goals */

!test .

/* Monitor ’s plans */

@test [atomic]

+!test : initial_state (InitialState)

<- +current_state (InitialState).

@move2state [atomic]

86 D. Ancona, S. Drossopoulou, and V. Mascardi

+!move_to_state (NewState) : current_state (LastState)

<- -current_state (LastState);

+current_state (NewState).

@successfulMove [atomic]

+!type_check_message (msg(S, R, P, C)) : type_check (msg(S, R, P, C), NewState)

<- !move_to_state (NewState);

.print ("\ nMessage ", msg(S, R, P, C), "\nleads to state ", NewState , "\n");

.send (S, tell , ok_check (msg(S, R, P, C))).

@failingMoveAndProtocol

+!type_check_message (msg(S, R, P, C)) : current_state (Current)

<- .print ("\n*** DYNAMIC TYPE -CHECKING ERROR ***\ nMessage ", msg(S, R, P, C),

"\ ncannot be accepted in the current state ", Current , "\n");

!move_to_state (failure).

@messageReceptionOK

+msg(S, R, P, C)[source(S)]: true

<- -msg(S, R, P, C)[source(S)];

!type_check_message (msg(S, R, P, C));

!check_progress .

+!check_progress : timeout(MS)

<- .wait ({+ msg(S1 , R1 , P1 , C1)}, MS, Delay);

!aux_check_progress (Delay).

+!aux_check_progress (Delay) : timeout (MS) & Delay < MS.

+!aux_check_progress (Delay) : timeout (MS) & current_state (Current) & Delay >= MS

<- .print ("\n*** WARNING ***\ nNo progress for ", Delay , " milliseconds

in the current state ", Current , "\n");

!check_progress .

3.2 Participants

We assume that participants interact via asynchronous exchange of messages
with tell performatives.

To keep the implementation as general and flexible as possible, in the partici-
pants’ code extended as explained below we use the Perf logical variable where
the message performative is expected. Under the assumption that only tell

performatives will be used, Perf will always be bound to the tell ground atom.
Only two changes are required to the code of participants:

1. .send is replaced by !my send and
2. two plans are added for managing the interaction with the monitor.

The first plan is triggered by the !my send internal goal; my send has the same
signature as the .send internal action, but, instead of sending a message with
performative Perf and Content to Receiver, it sends a tell message to the
monitor in the format msg(Sender, Receiver, Perf, Content). When re-
ceived, this message will be checked by the monitor against the global type,
as explained in Section 3.1.

The second plan is triggered by the reception of the monitor’s message that
allows the agent to actually send Content to Receiver, by means of a message
with performative Perf. In reaction to the reception of such a message, the agent
sends the corresponding message to the expected agent.

Automatic Generation of Self-monitoring MASs 87

/* Plans for runtime type checking */

+!my_send (Receiver , Perf , Content) : true
<- .my_name (Sender);

.send(monitor , tell , msg(Sender , Receiver , Perf , Content)).

+ok_check (msg(Sender , Receiver , Perf , Content))[source(monitor)] : true
<- -ok_check (msg(Sender , Receiver , Perf , Content))[source(monitor)];

.send(Receiver , Perf , Content).

3.3 Discussion

Alternative implementations. We opted to implement the proof-of-concept of
our approach by extending the code of the existing participants rather than
modifying the code of the Jason interpreter, because this was the simplest and
quickest solution we could devise for developing a prototype, and easily experi-
menting different design choices. However, the same results could be obtained by
directly modifying the .send internal action by overriding the underlying agent
architecture methods of Jason responsible for sending and receiving messages.

This solution would not require any modification of the code of the partici-
pants, and would allow the monitor to forward the message, when correct, di-
rectly to the recipient agent, thus reducing the number of interactions required
among agents.

Another interesting solution would consist in creating a monitor agent for
each agent participating to the interaction, thus avoiding the communication
problems of the centralized approach where the unique monitor is required to
exchange a large amount of messages with the other agents; however, this solu-
tion requires to project the global session type to end-point types (a.k.a. local
types), specifying the expected behavior of each single agent involved in the in-
teraction. Depending on the considered notion of global type, it might be non
trivial to find an efficient and complete projection algorithm.

Global type transition. We have already shown that the next predicate is ensured
to terminate on contractive global types; however, a developer may erroneously
define a non contractive type for testing its system. Fortunately, there exist
algorithms for automatically translating a non contractive global type into an
equivalent contractive one.

Another issue concerns non deterministic global types, that is, global types
where transitions are not deterministic. Consider for instance the following global
type:

fork(seq(msg(alice ,bob ,tell ,ping),

seq(msg(bob ,alice ,tell ,pong),end)),

seq(msg(alice ,bob ,tell ,ping),

seq(msg(alice ,bob ,tell ,bye),end)))

In this case the next predicate has to guess which of the two operand types must
progress upon reception of the message matching with msg(alice,bob,tell,ping);
this means that in case of non deterministic global types the monitor may de-
tect false positives. To avoid this problem one could determinize the type, but

88 D. Ancona, S. Drossopoulou, and V. Mascardi

depending on the considered notion of global type, it would not be easy, or even
possible, to devise a determinization algorithm. Alternatively, the monitor could
store the whole sequence of received sending actions to allow backtracking in
case of failure, thus making the testing procedure much less efficient.

Finally, it is worth mentioning that the proposed approach makes an efficient
use of memory space if the initial global type does not contain loops with the
fork constructor. In this case the space required by a global type representing
an intermediate state is bounded by the size of the initial global type; since
only one type at a time is kept in the belief base of the monitor, this implies
a significant space optimization when the total number of all possible states is
exponential w.r.t. the size of the initial global type. As already pointed out, this
consideration does not apply to types with loops involving the fork constructor,
like in the following example:

T = fork(seq(msg(alice ,bob , te l l ,ping),T),
seq(msg(bob ,alice , te l l ,pong),T)).

In this case the term grows at each transition step (and there are cases where
the type cannot be simplified to a smaller one); however, we were not able to
come up with examples of realistic protocols that require types with fork in a
loop to be specified.

4 The Framework at Work

In this section we show the actual functioning of our framework by discussing
the experiments we made with the brokering global type. We show the correct
code of seller (s), broker (b) and client (c) apart from the fragments common to
all of them and discussed in Section 3, and omitting the definition of intuitive
predicates, and then we discuss how the framework works with both correct and
buggy code.

Seller. The seller starts the conversation (it has a !start initial goal) by sending
a message to the broker telling that it wants to sell orange to c. It has a plan
triggered by the reception of the final result of the negotiation, whose body is
empty, and no initial beliefs.

/* Plans */

+!start : true
<- !my_send (b, tell , item(c, orange)).

+final(Res, Client , Item , Offer)[source(Broker)] : true.

Broker. The broker has no initial goals and its policy is the following:

– whatever the item to trade, and the client with whom trading, it proposes
to sell it at an initial price stored in its belief base (10 euros for a crate of
oranges when trading with c).

– Depending on the counter offer it receives, three situations may take place:

Automatic Generation of Self-monitoring MASs 89

1. The counter offer is in a range that leaves room for negotiation. The
broker makes an offer with price decremented by one with respect to the
previous offered one (first plan triggered by +counter(Item, Offer)).

2. The counter offer is too low and there is no room for negotiating. The
final decision (noDeal) is sent both to the seller and to the client (second
plan triggered by +counter(Item, Offer)).

3. The counter offer can be accepted. The final decision (ok) is sent both
to the seller and to the client. We do not show the plan for this case,
since it is very similar to the previous one.

/* Initial beliefs and rules */

initial_offer(c, orange , 11).
acceptable_offer(c, orange , 6).

/* Plans */

+item(Client , Item)[source(s)] : initial_offer(Client , Item , Offer)
<- +current_offer(Client, Item , Offer);

!my_send (Client , tell , offer(Item , Offer)).

+counter (Item , Offer)[source(Client)] : acceptable_offer(Client , Item , Min)
& Offer < Min & Offer > Min -4

<- !decrement(Client , Item , NewOffer);
!my_send (Client , tell , offer(Item , NewOffer)).

+counter (Item , Offer)[source(Client)] : acceptable_offer(Client , Item , Min)
& Offer <= Min -4

<- !my_send (Client , tell , result(noDeal , Item , Offer));
!my_send (s, tell , final(noDeal , Client , Item , Offer)).

Client. The client has a reactive behavior: whatever the offer it receives, the
client answers with a counter offer depending on the initial counter offer

belief in its belief base, and increments it by one at any interaction step, until
it receives the result of the negotiation.

/* Initial beliefs and rules */

initial_counter_offer (b, orange , 3).

/* Plans */

+offer (Item , Offer)[source(Broker)] : initial_counter_offer (Broker , Item , Initial)

<- -initial_counter_offer (Broker , Item , Initial);

-offer (Item , Offer)[source(Broker)];

+current_counter_offer (Broker , Item , Initial);

!my_send(Broker , tell , counter (Item , Initial)).

+offer (Item , Offer)[source(Broker)] : true

<- -offer (Item , Offer)[source(Broker)];

!increment (Broker , Item , NewOffer);

!my_send(Broker , tell , counter (Item , NewOffer)).

+result(Res , Item , Offer)[source(Broker)]: true .

4.1 Running the Example

When running the MAS consisting of agents monitor, s, b, and c, we obtain
console messages like those shown below (we only show the first operators of the

90 D. Ancona, S. Drossopoulou, and V. Mascardi

printed states, for space constraints; we use “ ” for the dropped text, since “...”
is part of the cyclic term representation; Msg -> St means that the agent moves
to state St upon reception of Msg). The conversation complies with the global
type and a state that is equivalent to end is reached. Since we do not model
the notion of protocol termination, the monitor cannot know that the protocol
terminated successfully, and keeps watching the conversation and issues warning
messages every M seconds. The developer can easily verify that no messages are
sent because no more messages had to be sent in state fork(end,end).

[monitor]
msg(s,b,tell ,item(c,orange)) -> choice ([... seq(msg(b,c,tell ,offer),_)
....

[monitor]
msg(b,c,tell ,offer(orange ,9)) -> seq(msg(c,b,tell ,counter),choice ([_]))

[monitor]
msg(c,b,tell ,counter (orange ,5)) -> choice ([... seq(msg(b,c,tell ,offer),_)])

[monitor]
msg(b,c,tell ,offer(orange ,8)) -> seq(msg(c,b,tell ,counter),choice ([_]))

[monitor]
msg(c,b,tell ,counter (orange ,6)) -> choice ([... seq(msg(b,c,tell ,offer),_)])

[monitor]
msg(b,c,tell ,result(ok,orange ,6)) -> fork(seq(msg(b,s,tell ,final),end),end)

[monitor]
msg(b,s,tell ,final(ok,c,orange ,6)) -> fork(end,end)

[monitor]
*** WARNING ***
No progress for 4001 milliseconds in the current state fork(end,end)

Bug 1. Let us suppose that the second plan for dealing with offers in the client’s
code, is the following:

+offer(Item , Offer)[source(Broker)] : true
<- -offer(Item , Offer)[source (Broker)];

!increase (Broker , Item , NewOffer);
!my_send (Broker , tell , offer(Item , NewOffer));
!my_send (Broker , tell , anotherOffer(Item , NewOffer)).

Instead of sending a counter offer, the client sends an offer followed by a mes-
sage with unknown type. The console messages we obtain in this case are shown
below.

...

[monitor]
msg(b,c,tell ,offer(orange ,8)) -> seq(msg(c,b,tell ,counter),choice ([_]))

[monitor]
*** DYNAMIC TYPE -CHECKING ERROR ***
msg(c,b,tell ,offer(orange ,4)) cannot be accepted in
seq(msg(c,b,tell ,counter), choice ([_]))

[monitor]
*** DYNAMIC TYPE -CHECKING ERROR ***
msg(c,b,tell ,anotherOffer(orange ,4)) received when no ongoing protocol

Automatic Generation of Self-monitoring MASs 91

The monitor notifies two dynamic type checking errors: the first one due to
the unexpected offer message, and the second one due to the message received
after the protocol testing failed. The message that caused the failure and the
current global type state are shown. When a protocol fails, warnings about lack
of progress are suppressed.

The developer can either fix the code of the agent that sent the message or
the specification of the global type, depending on where the error was.

Bug 2. The client has a !start initial goal, hence it autonomously starts to
interact with the broker before the previous messages that the protocol enforces
have been sent:

/* Plans */

+!start : initial_counter_offer(Broker , Item , Initial)
<- -initial_counter_offer(Broker , Item , Initial);

+current_counter_offer(Broker , Item , Initial);
!my_send (Broker , tell , counter (Item , Initial)).

The monitor prints out the following message:

[monitor]
*** DYNAMIC TYPE -CHECKING ERROR ***
msg(c,b,tell ,counter (orange ,3)) cannot be accepted in
seq(msg(s,b,tell ,item),choice ([_]))

Bug 3. We deleted all the plans triggered by the reception of +counter(Item,
Offer)[source(Client)] from the broker’s code, making the broker agent un-
able to react to a counter offer. The state of the protocol printed out by the
monitor in its warning message helps the MAS developer in identifying the agent
that is expected to send a message at that point of the conversation.

[monitor]

msg(s,b,tell ,item (c,orange)) -> state choice ([... seq(msg(b,c,tell ,offer),_])

[monitor]

msg(b,c,tell ,offer (orange ,11)) -> state seq(msg(c,b,tell ,counter),choice ([_]))

[monitor]

msg(c,b,tell ,counter (orange ,3)) -> state choice ([... seq(msg(b,c,tell ,offer),_])

[monitor]

*** WARNING ***

No progress for 4000 ms in choice ([... seq(msg(b,c,tell ,offer),_)])

We run the MAS with different values for the broker’s initial and acceptable
offers, and with various communication errors besides those described in the
paragraphs above, always obtaining the expected result.

5 Related and Future Work

Our work represents a first step in two directions: extending an existing agent
programming language with session types, and supporting testing of protocol
conformance within a MAS. In this section we consider the related works in
both areas, discuss the (lack of) proposals of integrating session types in existing
MASs frameworks, and outline possible extensions of our work.

92 D. Ancona, S. Drossopoulou, and V. Mascardi

Session types on top of existing programming languages. The integration of ses-
sion types into existing languages is a recent activity, dating back to less than ten
years ago for object oriented calculi, and less than five years for declarative ones.
The research field is very lively and open, with the newest proposals published
just a few months ago.

Session types have been integrated into object calculi starting from 2005
[11,12]. The first full implementation of a language and run-time for session-
based distributed programming on top of Java, featuring asynchronous mes-
sage passing, delegation, session subtyping and interleaving, combined with class
downloading and failure handling, dates back to 2008 [16]. More recently, a Java
language extension has been proposed, that counters the problems of traditional
event-based programming with abstractions and safety guarantees based on ses-
sion types [15].

Closer to our work on declarative languages, the paper [21] discusses how
session types have been incorporated into Haskell as a standard library that
allows the developer to statically verify the use of the communication primitives
provided without an additional type checker, preprocessor or modification to
the compiler. A session typing system for a featherweight Erlang calculus that
encompasses the main communication abilities of the language is presented in
[19]. Structured types are used to govern the interaction of Erlang processes,
ensuring that their behavior is safe with respect to a defined protocol.

Protocol representation and verification in MASs. Because of the very nature
of MASs as complex systems consisting of autonomous communicating entities
that must adhere to a given protocol in order to allow the MAS correct function-
ing, the problem of how representing interaction protocols has been addressed
since the dawning of research on MASs (one of the most well known outcomes
being FIPA AUML interaction diagrams [17]), and the literature on protocol
conformance verification is extremely rich.

Although a bit dated, [6] still represents one of the most valuable contribu-
tions to verification of a priori conformance. In that paper the authors propose
an approach based on the theory of formal languages to formally prove the inter-
operability of two policies (the actual protocol implementations), each of which
is compliant with a protocol specification.

The problem of verifying the compliance of protocols at run time has been
tackled – among others – within the SOCS project7, where the SCIFF compu-
tational logic framework [1] is used to provide the semantics of social integrity
constraints. Such a semantics is based on abduction: expectations on the possibly
observable, yet unknown, events are modeled as abducibles and social integrity
constraints are represented as integrity constraints. To model MAS interaction,
expectation-based semantics specifies the links between the observed events and
the expected ones. The recent paper “Modelling Interactions via Commitments
and Expectations” [23] discusses that and related approaches. Although aimed
at testing run-time conformance of an actual conversation with respect to a given
protocol, our approach differs from the expectation-based one in many respects,

7 http://lia.deis.unibo.it/research/projects/SOCS/

http://lia.deis.unibo.it/research/projects/SOCS/

Automatic Generation of Self-monitoring MASs 93

including the lack of notion of expectation in the agent language, and the im-
plementation of the testing mechanism in a seamless way on top of an existing
and widespread agent-oriented programming language. As far as formalisms for
representing agent interaction protocols are concerned, the reader may find a
concise but very good survey in Section 4 of [22] where the authors propose a
commitment-based semantics of protocols.

Our approach is currently limited to the runtime verification of the MAS
compliance to the interaction protocol, but the exploitation of session types as
the formalism to represent protocols allows us to take advantage of all the results
achieved in the session types research field, which include session subtyping
and algorithms for static verification of protocol properties such as safety and
liveness. The ability to specify the type of messages (has_type(c,ct) predicate)
in order to relate actual messages to messages specified in the protocol, usually
given at a more abstract level, is a characterizing feature of our approach and
seems to be supported by none of the proposals mentioned above.

Session Types and MASs. As demonstrated for example by the Scribble language
mentioned in the Introduction and by [13], using session types to represent and
verify protocol conformance inside MASs is not a new idea but, to the best of
our knowledge, no attempts of taking advantage of global session types to verify
MASs programmed in some widespread agent oriented programming languages
had been made so far, and our proposal is an original one.

Future extensions. Some extensions to our work have already been implemented
in the last few months: in [2] we explored the theoretical foundations of our
framework and we introduced a concatenation operator that allows a signifi-
cant enhancement of the expressive power of our global types. In [3] we further
empowered our formalism with a mechanism for easily expressing constrained
shuffle of message sequences like the alternating bit protocol discussed in [10]; ac-
cordingly, we modified the semantics of the new introduced feature, and showed
the expressive power of these “constrained global types”. With respect to this
extension, we are currently exploring the work of Baier, et al. on Constraint
Automata [4,5] that offers a transition system using synchronization constraints
and data constraints to specify behavior and concurrent protocols as automata
models. Constraint Automata are compositional, i.e., more complex protocol-
s/behaviors can be constructed as a composition of simpler protocols/behaviors,
which is a common goal with our work.

Our work can be further extended in many ways. Besides the specific issues
mentioned in Section 3, and the fully automatic generation of the monitor and
participants code, our short term goals include analyzing how our approach could
be extended to other Prolog-based agent-programming languages, such as GOAL
[7] or 2APL [9], and designing more complex protocols to stress-test our system
and provide a quantitative assessment of its runtime behavior and scalability.

In the medium term, we plan to work for evolving our mechanism towards
a framework supporting self-recovering MASs. This evolution would require to
modify the way we extend the code of the participant agents, in order to au-
tomatically select other messages to send in the current state, if any, in case

94 D. Ancona, S. Drossopoulou, and V. Mascardi

the monitor realizes that the chosen one does not respect the protocol. Default
recovery actions for the situation where no other choices are available, should
be defined as well. In such a context – more oriented towards verification of in-
teroperability of deployed systems rather than testing of systems-to-be –, agents
might advertise to the monitor the services they offer and the protocols to follow
in order to obtain them. Besides ensuring the protocol’s compliance, the monitor
could then act as a repository of <service specification, protocol specification>
couples, helping agents to locate services in an open MAS in a similar way the
Universal Description, Discovery and Integration (UDDI) registry does for web
services.

In the long term, the integration of ontology-based meaning into protocol
specifications, leading to “ontology-aware session types”, will be addressed. Our
previous work on CooL-AgentSpeak [18] will represent the starting point for that
extension.

Acknowledgments. We are grateful to J. F. Hübner and R. H. Bordini for
their effort in making cyclic terms in Jason belief base persistent, thus making
the implementation of our monitor agent possible. We also thank the anonymous
reviewers for their careful reading of the paper and for the valuable suggestions
provided to improve its quality.

References

1. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: The SCIFF Ab-
ductive Proof-Procedure. In: Bandini, S., Manzoni, S. (eds.) AI*IA 2005. LNCS
(LNAI), vol. 3673, pp. 135–147. Springer, Heidelberg (2005)

2. Ancona, D., Barbieri, M., Mascardi, V.: Global Types for Dynamic Checking of
Protocol Conformance of Multi-Agent Systems (Extended Abstract). In: Massazza,
P. (ed.) ICTCS 2012, pp. 39–43 (2012)

3. Ancona, D., Barbieri, M., Mascardi, V.: Constrained global types for dynamic
checking of protocol conformance in multi-agent systems. In: SAC 2013. ACM (to
appear, 2013)

4. Arbab, F., Baier, C., de Boer, F.S., Rutten, J.J.M.M.: Models and temporal log-
ical specifications for timed component connectors. Software and System Model-
ing 6(1), 59–82 (2007)

5. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connec-
tors in Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)

6. Baldoni, M., Baroglio, C., Martelli, A., Patti, V.: Verification of Protocol Con-
formance and Agent Interoperability. In: Toni, F., Torroni, P. (eds.) CLIMA VI.
LNCS (LNAI), vol. 3900, pp. 265–283. Springer, Heidelberg (2006)

7. Braubach, L., Pokahr, A., Moldt, D., Lamersdorf, W.: Goal Representation for BDI
Agent Systems. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A.
(eds.) PROMAS 2004. LNCS (LNAI), vol. 3346, pp. 44–65. Springer, Heidelberg
(2005)

8. Carbone, M., Honda, K., Yoshida, N.: Structured Communication-Centred Pro-
gramming for Web Services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 2–17. Springer, Heidelberg (2007)

Automatic Generation of Self-monitoring MASs 95

9. Dastani, M.: 2APL: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems 16(3), 214–248 (2008)

10. Deniélou, P.-M., Yoshida, N.: Multiparty Session Types Meet Communicating Au-
tomata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer,
Heidelberg (2012)

11. Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N., Drossopoulou, S.: Session
Types for Object-Oriented Languages. In: Thomas, D. (ed.) ECOOP 2006. LNCS,
vol. 4067, pp. 328–352. Springer, Heidelberg (2006)

12. Dezani-Ciancaglini, M., Yoshida, N., Ahern, A., Drossopoulou, S.: A Distributed
Object-Oriented Language with Session Types. In: De Nicola, R., Sangiorgi, D.
(eds.) TGC 2005. LNCS, vol. 3705, pp. 299–318. Springer, Heidelberg (2005)

13. Grigore, C., Collier, R.: Supporting agent systems in the programming language.
In: WI/IAT, pp. 9–12. IEEE Computer Society (2011)

14. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL 2008, pp. 273–284. ACM (2008)

15. Hu, R., Kouzapas, D., Pernet, O., Yoshida, N., Honda, K.: Type-Safe Eventful
Sessions in Java. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 329–
353. Springer, Heidelberg (2010)

16. Hu, R., Yoshida, N., Honda, K.: Session-Based Distributed Programming in Java.
In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 516–541. Springer, Heidel-
berg (2008)

17. Huget, M.-P., Bauer, B., Odell, J., Levy, R., Turci, P., Cervenka, R., Zhu, H.: FIPA
modeling: Interaction diagrams. Working Draft Version (July 02, 2003),
http://www.auml.org/auml/documents/ID-03-07-02.pdf

18. Mascardi, V., Ancona, D., Bordini, R.H., Ricci, A.: CooL-AgentSpeak: Enhancing
AgentSpeak-DL agents with plan exchange and ontology services. In: IAT 2011,
pp. 109–116. IEEE Computer Society (2011)

19. Mostrous, D., Vasconcelos, V.T.: Session Typing for a Featherweight Erlang. In:
De Meuter, W., Roman, G.-C. (eds.) COORDINATION 2011. LNCS, vol. 6721,
pp. 95–109. Springer, Heidelberg (2011)

20. Rao, A.S.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Lan-
guage. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038,
pp. 42–55. Springer, Heidelberg (1996)

21. Sackman, M., Eisenbach, S.: Session types in Haskell: Updating message passing
for the 21st century. Technical report, Imperial College, Department of Computing
(2008), http://spiral.imperial.ac.uk:8080/handle/10044/1/5918

22. Singh, M.P., Chopra, A.K.: Correctness Properties for Multiagent Systems. In:
Baldoni, M., Bentahar, J., van Riemsdijk, M.B., Lloyd, J. (eds.) DALT 2009. LNCS,
vol. 5948, pp. 192–207. Springer, Heidelberg (2010)

23. Torroni, P., Yolum, P., Singh, M.P., Alberti, M., Chesani, F., Gavanelli, M.,
Lamma, E., Mello, P.: Modelling interactions via commitments and expectations.
In: Handbook of Research on Multi-Agent Systems: Semantics and Dynamics of
Organizational Models. IGI Global (2009)

http://www.auml.org/auml/documents/ID-03-07-02.pdf
http://spiral.imperial.ac.uk:8080/handle/10044/1/5918

	Automatic Generation of Self-monitoring MASs from Multiparty Global Session Types in Jason
	Introduction
	A Gentle Introduction to Global Session Types for Agents
	A Jason Implementation of a Monitor for Checking Global Session Types
	Monitor
	Participants
	Discussion

	The Framework at Work
	Running the Example

	Related and Future Work
	References

