
Strong Planning in the Logics of Communication
and Change

Pere Pardo1 and Mehrnoosh Sadrzadeh2

1 Institut d’Investigació en Intel·ligència Artificial (IIIA - CSIC), Spain
2 Dept. of Computer Science, University of Oxford, UK

Abstract. In this contribution we study how to adapt Backward Plan search to
the Logics of Communication and Change (LCC). These are dynamic epistemic
logics with common knowledge modeling the way in which announcements,
sensing and world-changing actions modify the beliefs of agents or the world
itself. The proposed LCC planning system greatly expands the social complexity
of scenarios involving cognitive agents that can be solved. For example, goals or
plans may consist of a certain distribution of beliefs and ignorance among agents.
Our results include: soundness and completeness of backward planning (breadth
first search), both for deterministic and strong non-deterministic planning.

1 Introduction

Practical rationality or decision-making is a key component of autonomous agents, like
humans, and correspondingly has been studied at large. This research has been con-
ducted from several fields: game theory, planning, decision theory, etc. each focusing
on a different aspect (strategic decision-making, propositional means-ends analysis, and
uncertainty, respectively).

While the different models are well-understood, they were (understandably) de-
signed with a considerably low level of expressivity at the object language. For instance,
game-theory does not represent the logical structure underlying the states, actions and
goals; planning [5], on the other hand, represents part of it with atomic facts and nega-
tion, but it traditionally disregards other existing agents. All this contrasts with the area
of logic, where logics for multi-agent systems (with increasing expressivity) have been
characterized.

Specially relevant to the topic of cognitive agents are the notions of belief, action,
goal, norm, and so on. The first two elements are the target of dynamic epistemic logics
DEL [3], [15], [16], a recent family of logics which allow us to reason about agents’
communications, observations and the usual world-changing actions. We focus on the
so-called Logics of Communication and Change (LCC) [13], which generalize many
previously known DEL logics, and hence include a rich variety of epistemic actions
(in the DEL literature) and ontic actions (from the tradition on planning). Briefly, LCC
logics are dynamic epistemic logics with common knowledge, ontic actions and several
types of communicative actions (truthful or lying, public or private announcements).

Less consensus exists about representing and reasoning with motivational attitudes
like goals, desires or intentions. On the one hand, logics in the BDI tradition (belief-
desire-intention) [12] make them explicit in the language, e.g. one can express agent a

M. Baldoni et al. (Eds.): DALT 2012, LNAI 7784, pp. 37–56, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

38 P. Pardo and M. Sadrzadeh

has goalϕ; in the planning tradition, though, one only makes explicit their propositional
contentϕ (what makesϕ a goal is just its membership to the set of goals). Here we adopt
the second (and less expressive) representation of goals.

In the present contribution, we describe a system for planning that accepts arbitrary
epistemic formulas (e.g. common knowledge) as goals or state descriptions, and with
ontic/epistemic actions given by Kripke-like action models. The language of LCC log-
ics (used to this end) is further extended with action composition ⊗ and choice ∪, in
order to study planning with non-deterministic actions. In this sense, we slightly gen-
eralize on previous results in [9] and [10], by dropping a technical restriction on the
precondition of non-deterministic actions, and proposing slightly different plan struc-
tures. In summary, we define a breadth first search (BFS) algorithm for strong planning
in the extended LCC logics. This search method is proved to be sound and complete:
its outputs are (logically) successful plans and if such a successful plan exists, the al-
gorithm terminates with some such solution. Finally, this algorithm easily extends to
optimal plan search when each action is assigned some cost for its execution.

Motivating Example. Our aim, then, is to endow LCC logic based agents with plan-
ning capacities for this logic, so they can achieve their goals in scenarios where other
agents have similar cognitive and acting abilities. In particular, LCC planning seems
necessary for an agent whose goals consist in (or depend on) a certain distribution of
knowledge and ignorance among agents. To illustrate the kind of rational behavior an
LCC planner can exhibit, consider the following example:

Example 1. Agent a placed a bet with agent b that the next coin toss would be heads
(h). Agent a knows she can toss the coin and detect its outcome, or flip the coin, without
agent b knowing about it. Given a sensing action that tells a whether h holds or not, a
successful plan seems to be: toss the coin; if sense that h, then show h to b; otherwise
flip the coin and show h.

2 Related Work

Among logics for action guidance, the family of BDI [12] and related logics for inten-
tion are possibly the more popular. While these logics usually allow for considerable
expressivity w.r.t. motivational attitudes (and their interaction with beliefs), they are not
completely understood at a syntactic level. In fact, the use of planning methods has
been suggested for an implementation of a BDI architecture. In particular, [4] suggest
the use of LCC planning for the corresponding fragment of BDI logic. In this work [4]
(see also [8]), the authors study LCC forward planning based on the semantics of update
models; the BFS search algorithm is shown to be complete for LCC forward planning
and in addition this problem (LCC forward planning) is shown to be semi-decidable
in the general multi-agent case. An extension for (single-agent) conditional plan search
in AND/OR-graphs can be found in [1]. The present work addresses the multi-agent
case using instead a backward search approach (in OR-graphs). The motivation for this
lies in the nature of communicative actions: while forward search is based on actions
that are executable, backward search focuses on actions that are relevant to the current
goals. This makes a difference in LCC since many actions will exist which are every-
where executable, so forward planning will typically face the state explosion problem.

Strong Planning in LCC 39

Another work along the same lines is [2] (and related papers) where regression methods
are introduced for the fragment of LCC without common knowledge. Regression can
also be used as a (non-incremental) planning algorithm for LCC.

3 Preliminaries: The Logics of Communication and Change

Logics for agents with epistemic and communicative abilities have been developed in
the recent years, ranging from epistemic logic [7] (for individual, group or common
belief or knowledge), to logics of announcements [3], [15] (public or private, honest or
dishonest), and finally to incorporating ontic actions (i.e. world-changing actions) [16].
All this has been unified within the single framework of Logics of Communication and
Change [13], or LCC logics, formally a dynamic extension of epistemic logic using
action models. This work proposes a general (translation-based) method that provides a
complete axiomatization of an LCC logic from the specification of its particular action
model. Since LCC logics are built by adding dynamic action modelsU on top ofE·PDL
(propositional dynamic logic PDL under an epistemic reading), we recall PDL first.

3.1 Epistemic PDL

Propositional dynamic logic [6] is a modal logic for reasoning about programs, with
modalities [π] (and 〈π〉) expressing after executing program π it is necessarily (resp.
possibly) the case that. Using a semantics for programs π based on relations Rπ (be-
tween the internal states of a machine running the program), the PDL programs π are
built from basic actions a and the program constructors of composition a; b (do a then
b), choice a ∪ b (either do a or b), test ?ϕ (test ϕ, and proceed if true or terminate) and
iteration a∗ (do a; repeat) (the Kleene-star for the reflexive transitive closure). It was
later suggested [13] that the dynamic modalities of PDL naturally admit an epistemic
interpretation as well, called E·PDL, if we read the basic “program” [a] as the modality
for agent a’s knowledge or belief; that is, [a]ϕ reads: a knows ϕ, or a believes ϕ; and
〈a〉 reads: a considers it possible that ϕ. Note that epistemic PDL does not distinguish
between knowledge and belief, as usually understood by the S5 and KD45 modal log-
ics, respectively. And thus, at the abstract level of PDL we will indistinctly refer to [a]
as knowledge or belief. Within a particular model, though, we can properly refer to one
or the other depending on the semantic properties, e.g. whether [a]ϕ→ ϕ holds, etc.

Definition 1. The language of E·PDL, denoted by LE·PDL, for a given sets of atoms
p ∈ Var and agents a ∈ Ag consists of the following formulas ϕ and programs π:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | [π]ϕ π ::= a | ?ϕ | π1;π2 | π1 ∪ π2 | π∗

The symbols ⊥,∨,↔ and 〈π〉 are defined from the above as usual. Under the epistemic
reading, the PDL program constructors allow us to model, among others,

[a; b] agent a believes that b believes that (nested belief)
[B], or [a ∪ b] agents in B = {a, b} believe that (group belief)

[B∗], or [(a ∪ b)∗] it is common knowledge among B that (comm. knowl.)

40 P. Pardo and M. Sadrzadeh

An E·PDL model M = (W, 〈Ra〉a∈Ag, V) does, as usual, contain a set of worlds
W , a relation Ra in W for each agent a, and an evaluation V : Var → P(W)).

Definition 2. The semantics of E·PDL consists of models M = (W, 〈Ra〉a∈Ag, V),
containing: a set of worlds W , a relation Ra in W for each agent a, and an evaluation
V : Var → P(W). This map V extends to a map �ϕ�

M for each formula ϕ in LE·PDL:

���M =W �a�M = R(a)

�p�
M

= V (p) �?ϕ�
M

= Id�ϕ�

�¬ϕ�M =W � �ϕ�
M

�π1;π2�
M

= �π1�
M ◦ �π2�M

�ϕ1∧ϕ2�
M = �ϕ1�

M∩ �ϕ2�
M �π1∪π2�M = �π1�

M ∪ �π2�
M

�π∗�M = (�π�
M
)∗

�[π]ϕ�M = {w ∈ W | ∀v((w, v) ∈ �π�M ⇒ v ∈ �ϕ�M}
where ◦ and ∗ are the composition and reflexive transitive closure of relations.

Notice in particular that �?⊥�
M

= ∅ and �?��
M

= IdW (the identity relation on W).
We recall the axioms/rules ofE·PDL that provide a sound and complete axiomatization:

(K) � [π](ϕ→ ψ) → ([π]ϕ→ [π]ψ)
(test) � [?ϕ1]ϕ2 ↔ (ϕ1 → ϕ2)

(sequence) � [π1;π2]ϕ↔ [π1][π2]ϕ
(choice) � [π1 ∪ π2]ϕ↔ [π1]ϕ ∧ [π2]ϕ
(mix) � [π∗]ϕ↔ ϕ ∧ [π][π∗]ϕ, and

(induction) � ϕ ∧ [π∗](ϕ→ [π]ϕ)) → [π∗]ϕ.
(Modus ponens) From � ϕ1 and � ϕ1 → ϕ2, infer ϕ2,
(Necessitation) From � ϕ, infer � [π]ϕ.

3.2 Action Models U, e

An LCC logic will add to an E·PDL language a set of modalities [U, e] for each pointed
action model U, e with distinguished (actual) action e. These new operators [U, e] read
after each execution of action e it is the case that. An action model is a tuple U =
(E,R, pre, post) containing

– E = {e0, . . . , en−1}, a set of actions
– R : Ag → (E× E), a map assigning a relation Ra to each agent a ∈ Ag
– pre : E → LPDL, a map assigning a precondition pre(e) to each action e
– post : E × Var → LPDL, a map assigning a post-condition post(e)(p), or ppost(e),

to each e ∈ E and p ∈ Var

Let us fix the above enumeration e0, . . . , en−1 which will be used throughout the paper,
unless stated otherwise. During plan search, in particular, when we refine a plan with
some new action, the different alternatives will be considered according to this ordering:
the refinement with e0 will be considered before the refinement with e1, and so on.

Strong Planning in LCC 41

Definition 3. The language of the LCC-logic for an action model U extends the for-
mulas of E·PDL (for the same set of variables Var and agents Ag) with modalities for
pointed action models U, e, giving the following sets of formulas ϕ and programs π:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | [π]ϕ | [U, e]ϕ π ::= a | ?ϕ | π1;π2 | π1 ∪ π2 | π∗

The new modalities [U, e]ϕ represent “after the execution of e, ϕ will hold”. The se-
mantics of LCC computes M,w |= [U, e]p in terms of the product update of M,w and
U, e. This product update is (again) an E·PDL pointed model M ◦ U, (w, e), with

M ◦ U = (W ′, 〈R′
a〉a∈Ag, V

′) where

– the set W ′ consists of those worlds (w, e) such that M,w |= pre(e)
(so executing e will lead to the corresponding state (w, e).)

– the relation (w, e)R′
a(v, f) holds iff both wRav and eRaf hold; and

– the valuations are V ′(p) = {(w, e) ∈ W ′ |M,w |= post(e)(p)},
(the truth-value of p after e depends on that of post(e)(p) before the execution)

An updated model (W ′, 〈R′
a〉a∈Ag, V

′) will be denoted (WM◦U, 〈RM◦U
a 〉a∈Ag, V

M◦U).

Example 2. Several types of announcement (that ϕ by agent a) can be expressed. As
purely epistemic actions, they are assigned the trivial post-condition post(·)(p) = p.

– a (successful) truthful announcement to sub-groupX ⊆ Ag, denoted [U, ϕ!aX], with

pre(ϕ!aX) = ϕ and Rb(ϕ!
a
X , e) ⇔

{
e = ϕ!aX if b ∈ X ∪ {a}
e ∈ {ϕ!aX , skip} if b /∈ X ∪ {a}

– a (successful) lying announcement to X , denoted U, ϕ†aX , is defined by the same
accessibility relation but with precondition pre(ϕ†aX) = ¬ϕ.

(Here skip is the null action defined pre(skip) = �, and post(skip)(p) = p.)

From here on we assume that post-conditions post(e)(p) are restricted to the elements
{p,�,⊥}, rather than post(e)(p) being an arbitrary formula. This restriction was stud-
ied in [16] for logics similar to LCC, with epistemic modalities for agents [a] and group
common knowledge [B∗] for B ⊆ Ag. The authors show that the logic resulting after
this restriction on post-conditions is as expressive as the original where post-conditions
are arbitrary formulas.

Later, we recover this expressivity by introducing a non-deterministic choice opera-
tor for actions. Let us remark that choice is more general than arbitrary post-conditions
ϕ, since it can model the toss of a coin without describing which conditions ϕ would
result in the coin landing heads.

This restriction makes the truth-value of p after e to be either of the following:

if post(e)(p) = . . . then the truth-value of p after e is . . .
� true (since � is always true, hence true before e)
p its truth-value before the execution of e
⊥ false (since ⊥ is always false)

42 P. Pardo and M. Sadrzadeh

3.3 Logics of Communication and Change

ThePDL semantics �·� for E·PDL-formulas extends to a semantics forLCC by adding:

�[U, e]ϕ�M = {w ∈ W | if M,w |= pre(e) then (w, e) ∈ �ϕ�M◦U}.

In [13], the authors define program transformersTU
ij(π) that provide a mapping between

E·PDL programs (see Def. 4). Given any combination of actions in a model U the
transformers provide a complete set of reduction axioms, reducing LCC to E·PDL. In
a sketch, the U, e-modalities are pushed inside the formula, up to the case [U, e]p.

Definition 4. Let an action model U with E = {e0, . . . , en−1} be given. The program
transformer function TU

ij is defined as follows:

T U
ij(a) =

{
?pre(ei); a if eiR(a)ej ,

?⊥ otherwise

T U
ij(?ϕ) =

{
?(pre(ei) ∧ [U, ei]ϕ), if i = j

?⊥ otherwise

T U
ij(π1;π2) =

⋃n−1
k=0 (T

U
ik(π1);T

U
kj(π2))

T U
ij(π1 ∪ π2) = T U

ij(π1) ∪ T U
ij(π2)

T U
ij(π

∗) = KU
ijn(π).

where KU
ijn is inductively defined as follows:

KU
ij0(π) =

{
?� ∪ T U

ij(π) if i = j

T U
ij(π) otherwise

KU
ij(k+1)(π) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(KU

kkk(π))
∗ if i = k = j

(KU
kkk(π))

∗;KU
kjk(π) if i = k �= j

KU
ikk(π); (K

U
kkk(π))

∗ if i �= k = j

KU
ijk(π) ∪ (KU

ikk(π); (K
U
kkk(π))

∗;KU
kjk(π)) if i �= k �= j

A calculus for the LCC logic of a given action model U is given by the following:

the axioms and rules for E·PDL

[U, e]� ↔ � (top)

[U, e]p↔ (pre(e) → post(e)(p)) (atoms)

[U, e]¬ϕ↔ (pre(e) → ¬[U, e]ϕ) (negation)

[U, e](ϕ1 ∧ ϕ2) ↔ ([U, e]ϕ1 ∧ [U, e]ϕ2) (conjunction)

[U, ei][π]ϕ↔ ∧n−1
j=0 [T

U
ij(π)][U, ej]ϕ (E·PDL-programs)

if � ϕ then � [U, e]ϕ (Necessitation)

Strong Planning in LCC 43

The completeness for this calculus is shown by reducing LCC to E·PDL. The transla-
tion, simultaneously defined for formulas t(·) and programs r(·) is

t(�) = � r(a) = a
t(p) = p r(B) = B
t(¬ϕ) = ¬t(ϕ) r(?ϕ) =?t(ϕ)
t(ϕ1 ∧ ϕ2) = t(ϕ1) ∧ t(ϕ2) r(π1;π2) = r(π1); r(π2)
t([π]ϕ) = [r(π)]t(ϕ) r(π1 ∪ π2) = r(π1) ∪ r(π2)
t([U, e]�) = � r(π∗) = (r(π))∗

t([U, e]p) = t(pre(e)) → ppost(e)

t([U, e]¬ϕ) = t(pre(e)) → ¬t([U, e]ϕ)
t([U, e](ϕ1 ∧ ϕ2)) = t([U, e]ϕ) ∧ t([U, e]ϕ2)

t([U, ei][π]ϕ) =
∧n−1

j=0 [T
U
ij(r(π))]t([U, ej]ϕ)

t([U, e][U, e′]ϕ) = t([U, e]t([U, e′]ϕ))

These translation functions t and r will be part of the backward planning algorithms
presented in the next sections.

4 Backward Deterministic Planning in LCC

We proceed to introduce search algorithms for planning domains expressible in some
LCC logic. In this section we study the deterministic case. The first step is to adapt the
basic elements of planning systems:

– the goal and initial state are formulas of E·PDL (the static fragment of LCC).
– the set of available actions A ⊆ E, among those in the action model U
– an available action is a pointed action model U, e where e ∈ A

A deterministic plan is an executable sequence of actions in A that necessarily leads
from any initial state to some goal state.

As we said, the proposed search methods for LCC planning are based on the above
reduction of LCC into E·PDL. Given a (goal) formula ϕ for the current plan π and
some action e, we want to compute the minimal conditions ψ (upon an arbitrary state)
that would make ϕ to hold after e. After refinement of π with e, this minimal condition
ψ will be the new goal replacing ϕ. More formally, we say ψ ∈ LPDL is the weakest
precondition for a formula [U, e]ϕ, iff (in LCC)

|= ψ ↔ [U, e]ϕ.

This notion generalizes the definition in classical planning of open goals after refine-
ment. Recall in classical planning, the different variables (or literals) p, q are logically
independent, so the total effects of an action simply decompose into the individual ef-
fects w.r.t. each variable.

The weakest precondition for e to cause an arbitrary formula ϕ is the formula:

t([U, e]ϕ ∧ 〈U, e〉�)

44 P. Pardo and M. Sadrzadeh

extracted from the reduction to E·PDL by way of translation using t, r. Indeed, the
correctness of the translation based on t, r makes

|= t([U, e]ϕ ∧ 〈U, e〉�) ↔ [U, e]ϕ ∧ 〈U, e〉�
These functions t, r can then be seen as goal-transforming functions: a current goal ϕ
is mapped into t([U, e]ϕ ∧ 〈U, e〉�), which becomes the new goal after we refine the
plan with e.

Definition 5. Given some LCC logic for an action model U, a planning domain is a
triple � = (ϕT , A, ϕG), where ϕT , ϕG are consistent E·PDL formulas describing,
resp., the initial and goal states; and A ⊆ E is the subset of a actions available to the
agent.

A solution to � is a sequence f1, . . . , fm ∈ A<ω of actions in A, such that

|= ϕT → [U, f1] . . . [U, fm]ϕG and |= ϕT → 〈U, f1〉 . . . 〈U, fm〉�
The subset A ⊆ E denotes those actions that are actually available to our planner-
executor agent a. The reason to distinguish A from E is that some other agent b ∈ Ag
might attribute our agent a some abilities which a does not actually possess, or b might
fail to attribute a some of her actual abilities (and attribute her instead a decaffeinated
version of some of these abilities). Thus, on the one hand, we want to distinguish the
beliefs of b after an execution of some action e as depending on how b interpret this
action e. On the other, we want to make explicit which abilities does our agent possess,
in order to build realistic plans.

From here on, π will denote a deterministic plan, i.e. a sequence of actions e in de-
creasing order of execution (rather than an arbitrary epistemic PDL program as before).
Plans are denoted by a pair (action sequence, open goals)

Definition 6. Given some planning domain � = (ϕT , A, ϕG), the (initial) empty
plan is the pair π∅ = (∅, ϕG) and if π = (π, ϕgoals(π)) is a plan, then π(e) =
(π∩〈e〉, ϕgoals(π(e))), defined by the goal ϕgoals(π(e)) = t([U, e]ϕgoals(π) ∧ 〈U, e〉�),
is also a plan. A plan π is a leaf iff ϕgoals(π(e)) is inconsistent, or |= ϕgoals(π(e)) →
ϕgoals(π).

Leafs are plans not worth considering, either because (a) when we add the last action
refinement e, the resulting plan demands an inconsistent precondition ϕgoals(π(e)) (and
hence the plan cannot be executed) or (b) because e does not contribute to delete part
of the previous goals ϕgoals(π). The search space for the proposed planning algorithm
(see below) is the set sequences (f1, . . . , fm) ∈ A<ω. (These sequences are read in
decreasing order of execution, i.e. as the sequence of operators U, fm, . . . ,U, f1.) Then,
the planning algorithm explores just a fragment of this space, since it will not bother to
generate/evaluate further refinements of leaf plans. A breadth first search (henceforth,
BFS) algorithm for deterministic planning in LCC is given in Figure 1.

Actions e ∈ E, as defined above, are deterministic, in the sense that |= [U, e]ϕ ∨
ψ ↔ ([U, e]ϕ ∨ [U, e]ψ). Thus, deterministic plans consist of actions e ∈ E in our
current action modelsU. Later we will extendLCC with composition⊗ and choice ∪ to
study the non-deterministic case. There we will fully recover the expressivity of actions

Strong Planning in LCC 45

Input : � = (ϕT , A, ϕG).
LET Plans = 〈π∅〉 and π = π∅

WHILE �|= ϕT → ϕgoals(π)

DELETE π FROM Plans
SET Plans = Plans ∩〈 π(e) | e ∈ A and π(e) not a leaf 〉
SET π = the first element of Plans

Output : π (i.e. the sequence [U, e1] . . . [U, ek])

Fig. 1. BFS algorithm for backward deterministic planning in LCC

defined by arbitrary post-conditions ppost(e) = ϕ of [13], i.e. actions with conditional
effects: if ϕ then (after e) p. The first contribution of this paper is the following result:1

Theorem 1. BFS is sound and complete for LCC backward planning: the output π of
the algorithm in Fig. 1 is a solution for (ϕT , A, ϕG); conversely, if a solution exists,
then the algorithm terminates (with a solution output).

5 An Extension of LCC with Action Composition and Choice

In this section we propose an extension of LCC logic with bounded composition and
choice, denoted LCC∪⊗n. To this end, we first expand any LCC logic with the compo-
sition of at most n actions, denoted⊗n, and later we add choice ∪. Both operations map
two actions e, f to a new action denoted, resp., e⊗ f and e ∪ f, interpreted as follows:

– e⊗ f models an execution of e followed by an execution of f, and
– e ∪ f models non-deterministic actions: each execution of e ∪ f either instantiates

as an execution of e or as an execution of f.

For the composition of actions, the resulting action models are shown equivalent to a
bounded number of updates with the previous simple actions. The logic of the former
action updates, denoted LCC⊗n reduces to the corresponding LCC logic.

Then we introduce choice ∪ into these models U≤n. The semantics for non-
deterministic actions e ∪ f is presented in terms of multi-pointed models (w, e) and
(w, f), one for each possible realization of the former action. Again we extend the lan-
guage and axioms accordingly for this logic LCC∪⊗n, and reduce this logic again to
E·PDL. In the next section, we will study non-deterministic planning problems in terms
of plan solutions expressible in this LCC∪⊗n logics.

5.1 Update with the Product of n Actions in Un

To define the composition of actions, we simply consider the product of an action model
by itself, U1 ⊗ · · · ⊗ Uk, for each k ≤ n. Here n denotes the maximum number of

1 Proofs for results in this paper can be found at the first author’s webpage
www.iiia.csic.es/en/individual/pere-pardo.

46 P. Pardo and M. Sadrzadeh

compositions allowed in the resulting logic LCC⊗n. An obvious requirement is that
these action models are defined for the same set of variables Var and agents Ag.

We define first action models of the form Un = U1⊗· · ·⊗Un and study them from a
semantic point of view. This action model Un just contains arbitrary products of exactly
n actions: f1 ⊗ · · · ⊗ fn.

Note that, in the next definition, the pre′ functions of the product action model
Un are defined in terms of the corresponding functions pre from U, and pre′ from
U2, . . . ,Un−1. From here on, we let

−→
f denote some sequence f1⊗· · ·⊗ fk, also written

f1, . . . , fk, for an appropriate k.

Definition 7. Let U = (E,R, pre, post) be an action model. We define the product ac-
tion model

Un = (E′,R′, pre′, post′)

inductively as follows:

E′ = En = {(f1, . . . , fn) | f1, . . . , fn ∈ E}
R′
a = {〈(e, . . . , e′), (f, . . . , f′)〉 | eRaf and . . . and e′Raf

′}
pre′(e⊗ f) = pre(e) ∧ [U, e]pre(f) for the case n = 2

pre′(f1 ⊗−→
f) = pre(e) ∧ [U, e]pre(

−→
f)

post′(f1 ⊗ · · · ⊗ fn) =

⎧⎪⎨
⎪⎩
post(fk)(p) if post(fk)(p) �= p =

= post(fk+1)(p) = . . . = post(fn)(p)

post(f1)(p) if post(f1)(p) = . . . = post(fn)(p) = p

More formally, in Def. 7 we should rather define inductively (from the case n = 2)

pre′(e⊗−→
f) = pre(e) ∧ t([U, e]pre′(−→f))

in order to comply with the condition upon action models: pre : E → LPDL. But for the
sake of simplicity, we will keep the above notation. Also note that in Un the product of
actions f⊗· · ·⊗ f′ treats p just as the latest action in this tuple satisfying post(·)(p) �= p
(i.e. the latest action non-trivial w.r.t. p). Finally, observe that some combinations e⊗ f
in the product action model will never be applicable, e.g. when |= [U, e]¬pre(f). For the
purpose of planning, one can forget about the existence of these actions in the resulting
model U⊗ U.

It can be seen by direct inspection that the so-called product action model Un is
indeed an action model, provided U is. Moreover, the update of an E·PDL modelM by
a product action model, say U ⊗ U, reduces to a sequence of updates with the simpler
action model, e.g. (M ◦ U) ◦ U. With more detail, updating a state w with an action
e⊗ f is semantically equivalent to updatingw with e first, and then updating again with
f. We first check this is the case for U2 = U⊗ U.

Lemma 1. We have the following isomorphism

M ◦ (U⊗ U) ∼= (M ◦ U) ◦ U.

This isomorphism extends to the valuations of arbitrary formulas and programs.

Strong Planning in LCC 47

Corollary 1. For each formula ϕ in the language of U⊗ U:

(w, (e, f)) ∈ �ϕ�
M◦U2 ⇔ ((w, e), f) ∈ �ϕ�

(M◦U)◦U

Also, note that the proof of Lemma 1 does not depend upon the assumption that the two
action models are the same. More generally, we have the following result for different
action models U,U′.

Corollary 2. Let U,U′ be action models defined on the same sets of variables Var and

agents Ag. Then,M ◦(U⊗U′) ∼= (M ◦U)◦U′. Moreover, �ϕ�M◦(U⊗U′)
= �ϕ�

(M◦U)◦U′
,

for each ϕ in the language of U⊗ U′.

Before proceeding to the generalization of this lemma, we need the claim that the update
with an action model U preserves isomorphisms.

Lemma 2. If M ∼= M ′ are isomorphic epistemic models, and U is an action model,
then M ◦ U ∼=M ′ ◦ U.

The previous Corollary 2 for the basic case n = 2 extends to an arbitrary finite number
n ≥ 2 of actions f1, . . . , fn. That is, it extends to updates with products of arbitrary n
actions taken from a given action model U.

Corollary 3. We have M ◦ Un ∼= (M ◦ U1) · · · ◦ Un

5.2 Update with the Produce of ≤ n Actions in U≤n

Finally, we can define the action model U≤n for the product of at most n actions (from
a fixed action model U) in terms of the product action models U,U2, . . . ,Un previously
defined.

Definition 8. Let U be an action model and let U1 = . . . = Un(= U) be n different
copies of U, denoted Uk = (Ek,Rk, prek, postk) for each 1 ≤ k ≤ n. We define
U≤n = (E≤n,R≤n, pre≤n, post≤n) as follows

E≤n =
⋃

k≤n Ek pre≤n =
⋃

k≤n prek
R≤n(a) =

⋃
k≤n Rk(a) post≤n =

⋃
k≤n postk

In parallel, the sequence of at most n updates on a model M , denoted

(M ◦ U1) · · · ◦ U≤n = (W (M◦U1)···◦U≤n , R(M◦U1)···◦U≤n , V (M◦U1)···◦U≤n)

can be defined in a straightforward way from each product action model (M ◦U1) · · · ◦
Uk.

W (M◦U1)···◦U≤n =
⋃

k≤nW
(M◦U1)···◦Uk

R(M◦U1)···◦U≤n(a) =
⋃

k≤nR
(M◦U1)···◦Uk(a)

V (M◦U1)···◦U≤n =
⋃

k≤n V
(M◦U1)···◦Uk

It can be observed that U≤n is an action model; and also that (M ◦ U1) · · · ◦ U≤n is an
E·PDL model. Moreover, we can extend Corollary 3 to the present case:

Corollary 4. If U is an action model, then

M ◦ U≤n ∼= (M ◦ U1) · · · ◦ U≤n

48 P. Pardo and M. Sadrzadeh

5.3 The Logic LCC⊗n of the Action Model U≤n

Let U be again a fixed action model and consider the corresponding product action
model U≤n. The language LLCC⊗n

of the logic LCC⊗n for this action model U≤n is
simply the language of LCC, but now with action modalities of the form [U≤n, f1 ⊗
· · · ⊗ fk], for each f1 ⊗ · · · ⊗ fk ∈ E≤n in the present action model U≤n.

The semantics of updates with pointed action model U≤n, (f1, . . . , fk) is also that of
simple action models U. In the present case, we have

M,w |= [Un, e⊗ · · · ⊗ f]ϕ iff M,w |= pre(e⊗ · · · ⊗ f) implies

M ◦ Un, (w, (e⊗ · · · ⊗ f)) |= ϕ

A complete axiom system for LCC⊗n, the logic of (bounded) product action models
U≤n, is obtained by extending the previous LCC axioms and rules with reduction ax-
ioms for the new product actions f1 ⊗ · · · ⊗ fk.

the LCC reduction axioms and rules for [U, e]ϕ formulas with ϕ ∈ LLCC⊗n

plus

[U≤n, (f1, f2, . . . , fk)]ϕ ↔ [U≤n, f1][U
≤n, (f2, . . . , fk)]ϕ (Product)

Fig. 2. The axioms and rules for LCC⊗n

These axioms suffice for the introduction of composition. They induce again a trans-
lation function t which splits product actions [U≤n, e ⊗ f] into a sequence of updates
[U≤n, e][U≤n, f] and proceeds as the translation for LCC for the remaining cases.

Lemma 3. The product axiom is sound:

|= [U≤n, f1 ⊗ f2 ⊗ · · · ⊗ fk]ϕ ↔ [U≤n, f1][U
≤n, f2 ⊗ · · · ⊗ fn]ϕ

As we said, we extend the previous translation LLCC → LE·PDL into a translation
LLCC⊗n

→ LE·PDL with the help of an additional clause

t([U≤n, (f1, f2, . . . , fn)]ϕ) = t([U≤n, f1]t([U
≤n, (f2, . . . , fk)]ϕ))

Theorem 2. For each formula ϕ ∈ LLCC⊗n
, we have

|= ϕ⇔ � ϕ

Proof. (⇐) Soundness is established by the corresponding result for LCC in [13] plus
the above result for the reduction axiom for product actions. These results also establish
the correctness of the extended translation function: each formula in LCC⊗n is logically
equivalent (in LCC) to an E·PDL-formula t(ϕ).

(⇒) E·PDL is complete, and each formula in LLCC⊗n
is equivalent to some LE·PDL

formula.

Strong Planning in LCC 49

In addition, the LCC reduction axioms that would correspond to product modalities
(except for the case of E·PDL-programs) are also sound.

Proposition 1. Except for the LCC axiom on E·PDL-programs, the LCC reduction
axioms are sound for product action modalities [U≤n, f1 ⊗ · · · ⊗ fk] are sound.

In contrast to the previous section on deterministic planning, we cannot fix a priori
which action model U≤n (and logic) are we working with, when solving a given plan-
ning domain based on U. It is only after the planning algorithm terminates with a solu-
tion, that we (a posteriori) discover for which n the action model U≤n (actually U∪≤n,
see below) will suffice to check that this plan is indeed a solution. Non-deterministic
solutions are more naturally expressed if we further extend the logics LCC⊗n with
non-deterministic choice.

5.4 LCC∪⊗n: Choice and Non-deterministic Actions

In this section we extend the LCC-logics of bounded composition with the operator
choice, that maps some pairs of actions e, f into a new action e∪ f. The latter expression
denotes an action with indeterminate effects: an execution of e∪ f will turn either as an
execution of e or as an execution of f. It is an external agent, the environment (nature)
in principle, who chooses the particular outcome after each execution of e ∪ f. (This is
called demonic non-determinism, in opposition to so-called angelic non-determinism
where the planner agent itself selects a course of actions e rather than another one f, if
both are executable.) Choice will be indistinctly represented as follows Ed, {e, . . . , f}
or e ∪ . . . ∪ f.

The language of LCC∪⊗n adds to that of LCC⊗n a clause for action modalities of
the form

[U≤n,Ed]ϕ

where Ed ⊆ E≤n is an arbitrary (but non-empty) set of product actions (f1 ⊗ · · · ⊗ fk).
The new actions, say,

Ed = {(f1 ⊗ · · · ⊗ fk), . . . , (f
′
1 ⊗ · · · ⊗ f′k′)} are also denoted

= (f1 ⊗ · · · ⊗ fk) ∪ . . . ∪ (f′1 ⊗ · · · ⊗ f′k′).

The presence of post-conditions in LCC actions prevents us from modeling the new
non-deterministic actions, e.g. e ∪ f, as full-fledged actions in the action model (as we
did for product e ⊗ f ∈ E≤n). The problem is that for actions like tossing a coin, the
post-condition for heads, say the variable h, will be at each execution either � or ⊥;
hence the post-condition for h is not a unique formula, and post cannot be a map.

This contrasts with the match between U≤n and LCC⊗n above, and also with the
purely epistemic action models [3]. In these logics, each action operator in the language
is associated an element in the action model. In this sense, even if our set of actions in
the model is the same E≤n that we had for LCC⊗n logics, each constructible non-
deterministic plans will be shown “equivalent” to some Ed modality. For example, the
plan -informally written as- e ⊗ (f ∪ f′) will be associated the modality [U, (e ⊗ f) ∪
(e⊗ f′)].

As suggested in [13] non-deterministic actions are introduced with the help of multi-
pointed semantics.

50 P. Pardo and M. Sadrzadeh

Definition 9. Given an epistemic model M and an action model U, let Wd ⊆ W and
Ed = {f1, . . . , fk} ⊆ E. Then M,Wd and U,Ed are multi-pointed models. We define

M,Wd |= ϕ iff M,w |= ϕ for each w ∈Wd

M,w |= [U,Ed]ϕ iff M ◦ U, {(w, f), . . . , (w, f′)} |= ϕ

for each (w, f), . . . , (w, f′) ∈WM◦U with f, . . . , f′ ∈ Ed

In other words, this semantics for [U,Ed] modalities simply amounts to the semantics
of the operators [U, f] for each f ∈ Ed. That is,

M,w |= [U,Ed]ϕ iff for each f ∈ Ed, M,w |= pre(f) implies M ◦ U, (w, f) |= ϕ

For the reasons pointed above, non-deterministic actions e ∪ f or Ed are not actions in
the action model, only their components e and f are. In other words, the action model
is just U≤n. In summary, we just add the modalities [U,Ed] and expand the semantics
to the multi-pointed case, rather than expanding the action models themselves.

In [13], the additional reduction axiom listed next is suggested for non-deterministic
choice. Here we add it to the previous system LCC⊗n:

the reduction axioms and rules of LCC⊗n

plus

[U,Ed]ϕ ↔ ∧
e∈Ed

[U, e]ϕ (choice)

Fig. 3. The axioms and rules for LCC∪⊗n

It is straightforward that the reduction axiom (choice) for [U,Ed]ϕ is sound w.r.t. the
semantics above. This allows us to extend once more the translation function t from
LCC⊗n to LCC∪⊗n with the clause

t([U≤n, e ∪ . . . ∪ f]ϕ) = t([U≤n, e]ϕ) ∧ . . . ∧ t([U≤n, f]ϕ)

The resulting translation function t splits the new modalities [U,Ed] and then proceeds
as in the case of LCC⊗n. The soundness of the axiom (choice) preserves the soundness
of the expanded translation function, again reducing the language of LCC∪⊗n to that
of E·PDL and giving the next completeness result.

Corollary 5. The logic LCC∪⊗n is sound and complete.

Fact 1. The LCC axioms for [U, e] that do not involve preconditions pre(·) are also
sound for [U, e ∪ f] modalities. That is, all the LCC axioms except for (atoms) and
(partial functionality).

Also notice that the executability of non-deterministic actions e ∪ f only requires that
some action e or f (or both) is executable.

Lemma 4. The following holds: |= 〈U,Ed〉� ↔ ∨
e∈Ed

pre(e).

Strong Planning in LCC 51

6 Non-deterministic Plans in LCC

Now we turn into non-deterministic planning, for planning domains containing actions
with disjunctive effects are available to the agent, e.g.

|= [U, f0 ∪ f1] p ∨ q, but with �|= [U, f0 ∪ f1]p and �|= [U, f0 ∪ f1]q

as given by the post-conditions postconditions post(f0)(p) = post(f1)(q) = �, and
post(f0)(q) = q and post(f1)(p) = p).

In particular, we focus on strong non-deterministic planning. Recall a strong solution
for a given planning domain is a plan such that all of its possible executions in the initial
state lead to a goal state. Thus, ignoring preconditions, the above action f0∪f1 is a strong
solution to (ϕT , {f0 ∪ f1}, ϕG), for the goal ϕG = p∨ q; and it is a weak solution when
the goal is ϕG = p.)

Example 3. Consider the action toss a coin. This can be seen as a non-deterministic
choice between the two deterministic actions of toss heads and toss tails. Let (resp.)
tossh and toss¬h denote these actions, with assigned post-conditions

post(tossh) : h �−→ �, and post(toss¬h) : h �−→ ⊥
Note that the executing agent a cannot distinguish whether she executes tossh or toss¬h

(at least until the coin has landed and the agent proceeds to observe the result). This
indistinguishability, formally given by Ra(tossh, toss¬h) and viceversa, is called run-
time indistinguishability in [4]. Even if the agent intends the toss to result in heads (i.e.
the agent intends tossh), the action really available to a is

tossh ∪ toss¬h computed as
⋃

{e ∈ E | Ra(tossh, e)}
Randomness is not essential feature to non-deterministic actions, as the next example
illustrates.

Example 4. Consider for instance, the action of pressing a button on the wall, which
will switch the light on or off (the latter denoting ¬on). Let the corresponding deter-
ministic actions be denoted on and off, defined by similar post-conditions:

post(on) : on �−→ �, and post(off) : on �−→ ⊥
In contrast to the coin example, these two actions have different (in fact, mutually in-
consistent) preconditions:

pre(on) = off and pre(off) = on

Suppose first our executing agent a is blind (or blind-folded), so she cannot distinguish
on from off at run-time (during execution). See Figure 4 (Top). Notice that on∪ off has
a trivial precondition: on ∨ ¬on, given by pre(on) ∨ pre(off).

Secondly, suppose instead that the agent can see (or has been told) whether the light
is initially on, Figure 4(Mid). She knows which of the two actions on� or off� is exe-
cutable (has a true precondition), so we can model them separately as two deterministic
actions.

52 P. Pardo and M. Sadrzadeh

Fig. 4. (Top) A blind agent pressing the light button: on ∪ off. (Mid) Switching the light on
(while seeing): on�. Similarly for off�. (Bottom) Pressing the light button (while seeing), during
the planning phase.

Along this line, the planner agent a might not know (during planning) whether she
will find the light on or off, when she switches it (this being a planned action). Figure
4 (Bottom). This is called plan-time indistinguishability in [4], since only at execution
time the agent will know whether whether she is going to turn the light on or off. This
kind of actions, modeled as a choice on� ∪ off�.

After this review on the effects of partial observability of states and actions, we proceed
to the task of plan search. As these examples show, the previous notions of available
actions A, plan and solution must be redefined for the present non-deterministic case.
For the sake of simplicity, we will only consider the choice between two actions f0 ∪ f1.
The definitions and results in this paper can be generalized to the choice of finitely
many actions f0 ∪ f1 ∪ · · · ∪ fk .

From here on, we abstract from any particular bound n upon the length of plans, so
in the following we will just write the action model as U rather than as a fixed action
model U≤n. With this remark in mind, recall the set of action sequences definable in
LCC∪⊗n is any sequence of action modalities

[U,E1] . . . [U,Ek] (also written (E0, . . . ,Ek))

Concerning the basic actions available to the agent, we have: (1) a set Ae of actions e
from E; and (2) a set of A∪ containing pairs of actions, denoted e ∪ f, with again e ∈ E
and f ∈ E. For an example of these basic actions, we have on�in AE and on� ∪ off� and
tossh ∪ toss¬h in A∪. The following definition replace the old set A from Definition 5
by the new set AE ∪ A∪.

Definition 10. A non-deterministic planning domain in U is a triple

� = (ϕT , AE ∪ A∪, ϕG)

with AE ⊆ E, and A∪ ⊆ E× E.

Strong Planning in LCC 53

Not all of the above action sequences [U,E1] . . . [U,Ek] in the language of LCC∪⊗n

denote action sequences that are available to the agent according to a planning domain
�. The latter sub-class is defined next.

Definition 11. We say [U, e] and [U, e∪ f] are �-sequences whenever e ∈ AE and e∪ f
in A∪. Moreover, if e′ ⊗ · · ·⊗ e′′ and f′ ⊗ · · · ⊗ f′′ are elements of A<ω

E and e∪ f ∈ A∪
satisfies (e, f), (f, e) /∈ Ra, then

[U, (e⊗ e′ ⊗ · · · ⊗ e′′) ∪ (f ⊗ f′ ⊗ · · · ⊗ f′′)] is an �-sequence

Finally, any finite sequence [U,Ek] . . . [U,E1] of �-sequences is an �-sequence.

The idea of �-sequences is to minimally constrain (within the limits of LLCC∪⊗n) how
much freedom an agent is allowed after executing a non-deterministic action e∪f (while
preserving epistemic control):

– if the components e and f are run-time indistinguishable according to Ra, the next
action after executing e ∪ f must be uniquely specified (though it can be another
non-deterministic action),

– if the components e and f are run-time distinguishable, one can execute alternative
(deterministic) actions, say e′ or f′, depending on whether the execution of e ∪ f
instantiated, resp., as e or as f.

Example 5. (Cont’d) Recall the sets of available actions AE = ∅ and A∪ = {tossh ∪
toss¬h} from Example 3. Read the tossing action as causing the coin to land into agent
a’s hand. And expand these sets with a sensing action in A∪ (feeling in your hand
whether the coin landed heads) and a flip (into heads) action in AE:

feelh ∪ feel¬h pre(feelh) = h pre(feel¬h) = ¬h
post(feelh) = idVar post(feel¬h) = idVar
Ra(feelh, feel¬h) Ra(feel¬h, feelh)

fliph pre(fliph) = ¬h
post(fliph) : h �→ �

Then, the following is an �-sequence leading to a heads result in any execution.

[U, tossh ∪ toss¬h] [U, (feelh ∪ (feel¬h ⊗ fliph)]
tossing the coin, sensing it, and if tails flip it to heads

Definition 12. We say that an �-sequence [U,E1], . . . , [U,Er] is a solution to the plan-
ning domain � = (ϕT , AE ∪ A∪, ϕG) iff

|= ϕT → [U,E1] . . . [U,Er]ϕG (success)
|= ϕT → 〈U,E1〉 . . . 〈U,Er〉� (executability)

It can be shown that the �-sequence from Ex. 5 is a solution for the planning domain

� = (�, { tossh ∪ toss¬h, feelh ∪ feel¬h, fliph, skip }, [(a ∪ b)∗]h)

54 P. Pardo and M. Sadrzadeh

7 A Search Algorithm for Non-deterministic Planning in LCC

Let us then proceed to the study of search algorithms for arbitrary planning domains �.
These planning algorithms search for solutions in the space of plans, defined below. The
idea is to reduce a non-deterministic plan into a sequence of pairs of deterministic plans,
each pair motivated by the introduction of a non-deterministic action. These plans are
a triple consisting of: (1) a (possibly empty) �-sequence [U,Ek], . . . [U,E1], (possibly)
prefixed by an operator-like expression [U, ·] (denoting the operator under construction);
and formulas for (2) an initial state and (3) open goals corresponding to (1).

plan π = (operator + �-sequence, init. state ϕinit(π), open goals ϕgoals(π))

Again we abuse notation and refer to (1) with the label π of the plan it belongs to.

Definition 13. Given a planning domain � = (ϕT , AE ∪ A∪, ϕG), the empty plan for
� is the pair π∅ = (∅, ϕG). For a given plan πk = [U,Ek] . . . [U,E1] and its refinement
with some e ∈ AE, denoted π = πk(e) = [U, e]πk, we define the refinements π(·) with
f ∈ AE or a run-time dist. action f ∪ f′ ∈ A∪ as:

π(f) = [U, f ⊗ e]πk π(f ∪ f′) = [U, (f ⊗ e) ∪ (f′ ⊗ x)]πk
ϕinit(π(f)) = ϕT ϕinit(π(f∪f′)) = “[U, f′](·)”
ϕgoals(π(f)) = t([U, f]ϕgoals(π) ∧ 〈U, f〉�) ϕgoals(π(f∪f′)) = ϕgoals(πk)

Given a plan π of the form π = ([U, (f ⊗ e)∪ (f′ ⊗ x⊗ e′)]πk, “[U, f′](·)”, ϕgoals(π)),
and an action e′′ ∈ AE we define the refinement π(e′′) as

π(e′′) =

{
[U, (f ⊗ e) ∪ (f′ ⊗ x⊗ e′′ ⊗ e)]πk if �|= [U, f′][U, e′′ ⊗ e]ϕgoals(πk)

[U, (f ⊗ e) ∪ (f′ ⊗ e′′ ⊗ e)] otherwise

ϕinit(π(e′′)) =

{
ϕinit(π(e′′)) if �|= [U, f′][U, e′′ ⊗ e]ϕgoals(πk)

ϕT otherwise

ϕgoals(π(e′′)) =

⎧⎪⎨
⎪⎩
t([U, e′′]ϕgoals(π) ∧ 〈U, e′′〉�) if �|= [U, f′][U, e′′ ⊗ e]ϕgoals(πk)

t([U, (f ⊗ e) ∪ (f′ ⊗ e′′ ⊗ e)]ϕgoals(πk)

∧〈U, (f ⊗ e) ∪ (f′ ⊗ e′′ ⊗ e)〉�) otherwise

Finally, if f ∪ f′ is run-time indistinguishable to the agent, i.e. (f, f′), (f′, f) ∈ Ra, we
define the refinement of πk with f ∪ f′ as:

π(f ∪ f′) = [U, f ∪ f′]πk
ϕinit(π(f∪f′)) = ϕT

ϕgoals(π(f∪f′)) = t([U, f ∪ f′]ϕgoals(πk) ∧ 〈U, f ∪ f′〉�)

Given a plan π and a refinement of it π(·), we say π(·) is a leaf iff either ϕπ(·) is
inconsistent or |= ϕgoals(π(·)) → ϕgoals(π). The Terminating Condition for a plan π is

ϕinit(π) = ϕT and |= ϕinit(π) → ϕgoals(π)

After a run-time indistinguishable action, e.g. coin tossing, conditional plans can be
made depending on the outcome of an observation. Let us finally address the properties
of non-deterministic planning based on BFS.

Strong Planning in LCC 55

Input : � = (ϕT , AE ∪ A∪, ϕG).
LET Plans = 〈π∅〉 and π = π∅

WHILE π does not satisfy Terminating Condition
DELETE π FROM Plans
SET Plans = Plans∩〈 π′ | π′ refines π and π′ not a leaf 〉.
SET π = the first element of Plans

Output : π (i.e. the �-sequence defined by π)

Fig. 5. BFS algorithm for backward non-deterministic planning in LCC∪⊗n

Theorem 3. Let the output of the BFS algorithm in Fig. 5 be [U,E1] . . . [U,Ek] for a
planning domain �. Then, [U,E1] . . . [U,Ek] is an �-sequence and a solution for �.

Theorem 4. For a given planning domain �, if some �-sequence exists that is a solu-
tion to �, then the BFS algorithm in Fig. 5 terminates (with a solution).

Fig. 6. Plan search in Example 1. Incremental construction of a solution for the coin example.

Example 6. Recall Example 1, where the planner agent a must show heads, denoted h,
to win the prize. The action fliph is secret in the sense of (fliph, skip) ∈ Rb, i.e. agent
b believes nothing is happening; this secrecy is known by a provided fliph is only Ra-
related to itself. The construction of a solution is shown in Figure 6, where: (Left) a
deterministic plan is being built, consisting of a’s demonstration h!!ab that h to b (with
a knowing a priori that h); a plan-time indistinguishable action feelh ∪ feel¬h is added.
(Center) The planner proceeds to solve the rightmost case where feel¬h is executed (due
to a ¬h state). This planning sub-problem is solved by a fliph action, followed by the
same demonstration h!!ab . (Right) Finally, the algorithm stops after adding the run-time
indistinguishable action of tossing tossh ∪ toss¬h. Note the remaining of the plan is
executable no matter the result of the coin toss. The slightly different plan construction
from [10] can also be built with two deterministic sensing actions (for h and ¬h).

56 P. Pardo and M. Sadrzadeh

8 Conclusions and Future Work

We presented backward planning algorithms for a planner-reasoner agent enabling
her to find deterministic or (non-deterministic) strong plans in multi-agent scenarios.
We considered dynamic epistemic logics with ontic actions, further extended with
composition and choice. Planners in these logics are sensitive to others’ beliefs and
may contain communications and observations as well as the usual fact-changing
actions. As for future work, we would like to study more complex plan structures, or
new kinds of actions like belief revision announcements. Another direction would be
the study of (logical) heuristics to improve the performance of LCC planners.

Acknowledgements. This work has been funded by projects AT (CSD 2007-022), AR-
INF (TIN2009-14704-C03-03); and grants 2009-SGR-1434 and EPSRC EP/J002607/1.

References

1. Andersen, M.B., Bolander, T., Jensen, M.H.: Conditional Epistemic Planning. In: del Cerro,
L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519, pp. 94–106.
Springer, Heidelberg (2012)

2. Aucher, G.: DEL-sequents for progression. Journal of Applied Non-Classical Logics 21(3-4),
289–321 (2011)

3. Baltag, A., Moss, L., Solecki, S.: The logic of public announcements, common knowledge
and private suspicions. In: Proc. of 7th Conf. TARK 1998, pp. 43–56 (1998)

4. Bolander, T., Andersen, M.: Epistemic planning for single- and multi-agent systems. Journal
of Applied Non-Classical Logics 21(1), 9–34 (2011)

5. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Morgan Kauf-
mann (2004)

6. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Massachusetts (2000)
7. Hintikka, J.: Knowledge and belief: an introduction to the logic of the two notions. Cornell

University Press (1962)
8. Löwe, B., Pacuit, E., Witzel, A.: Planning based on dynamic epistemic logic (2010)
9. Pardo, P., Sadrzadeh, M.: Planning in the Logics of Communication and Change. In: Proc.

of AAMAS 2012 (2012)
10. Pardo, P., Sadrzadeh, M.: Backward Planning in the Logics of Communication and Change.

In: Proc. of Agreement Technologies AT 2012 (2012)
11. Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-

Wesley (1984)
12. Rao, A., Georgeff, M.: Modeling rational agents within a BDI-architecture. In: Proc. of Prin-

ciples of Knowledge Representation and Reasoning (KR), pp. 473–484 (1991)
13. van Benthem, J., van Eijck, J., Kooi, B.: Logics of Communication and Change. Information

and Computation 204, 1620–1662 (2006)
14. van der Hoek, W., Wooldridge, M.: Tractable Multiagent Planning for Epistemic Goals. In:

Proc. of AAMAS 2002, pp. 1167–1174 (2002)
15. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer (2008)
16. van Ditmarsch, H., Kooi, B.: Semantic results for ontic and epistemic change. In: Bonanno,

van der Hoek, Wooldridge (eds.) LOFT 7, pp. 87–117 (2008)

	Strong Planning in the Logics of Communication and Change
	Introduction
	Related Work
	Preliminaries: The Logics of Communication and Change
	Epistemic PDL
	Action Models U,e
	Logics of Communication and Change

	Backward Deterministic Planning in LCC
	An Extension of LCC with Action Composition and Choice
	Update with the Product of n Actions in Un
	Update with the Produce of n Actions in Un
	The Logic LCCn of the Action Model Un
	LCCn: Choice and Non-deterministic Actions

	Non-deterministic Plans in LCC
	A Search Algorithm for Non-deterministic Planning in LCC
	Conclusions and Future Work
	References

