
Designing and Implementing a Framework
for BDI-Style Communicating Agents in Haskell

(Position Paper)

Alessandro Solimando� and Riccardo Traverso�

Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi,
Università di Genova, Italy

{alessandro.solimando,riccardo.traverso}@unige.it

Abstract. In this position paper we present the design and prototypical
implementation of a framework for BDI-style agents defined as Haskell
functions, supporting both the explicit representation of beliefs and back-
tracking (at the level of individual agents), and asynchronous communi-
cation via message passing. The communication layer is separated from
the layers implementing the features of individual agents through dif-
ferent stacked monads, while beliefs are represented through atomic or
structured values depending on the user’s needs. Our long-term goal is
to develop a framework for purely functional BDI agents, which is cur-
rently missing, in order to take advantage of the features of the functional
paradigm, combined with the flexibility of an agent-oriented approach.

1 Introduction

The Belief-Desire-Intention (BDI) model is a well-known software model for pro-
gramming intelligent rational agents [11]. Only a few frameworks that implement
the BDI approach are developed directly on top of logical languages [7], while
most of them are built using imperative or object oriented languages. For ex-
ample, Jason [2] is developed in Java and exploits inheritance and overriding to
define selection functions and the environment in a convenient and flexible way.
The drawback is that many features natively available in the logic programming
paradigm have to be re-implemented from scratch, resulting in a more onerous
mixed-paradigm code. For instance, in Jason, unification is needed to find plans
relevant to a triggering event, and to resolve logical goals in order to verify that
the plan context is a logical consequence of the belief base. BDI-style agents are
usually described in a declarative way, no matter how the language interpreter is
implemented. The functional paradigm supports pattern matching for free and
gives all the advantages of declarativeness; moreover, the use of types for typ-
ing communication channels may provide great benefits to guarantee correctness
properties both a priori, and during the execution. Nevertheless, to the best of
our knowledge no functional frameworks for BDI-style communicating agents
have been proposed so far.
� Both authors of this paper are Ph. D. students at the University of Genova, Italy.

M. Baldoni et al. (Eds.): DALT 2012, LNAI 7784, pp. 203–207, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



204 A. Solimando and R. Traverso

In order to fill this gap, we propose a framework for functional agents tak-
ing inspiration from the BDI model (although not implementing all of its fea-
tures), and supporting communication and backtracking. A generic and easily
composable architecture should partition the agents’ functionalities into several
well-separated layers, and in functional programming monads are a powerful ab-
straction to satisfy these needs. Intuitively, in our solution agents are monadic
actions provided with local backtracking features and point-to-point message
passing primitives. Their local belief base is stored within variables that are
passed down through execution steps. Goals are defined with functions from be-
liefs to booleans. When it comes to monadic computations, Haskell [3], being
strongly based on them, is the best fit. However, even though we focus on a spe-
cific architecture, our purpose is not to propose a definitive implementation, but
rather to show that this kind of integration is indeed possible without sacrificing
or reimplementing fundamental features of different programming paradigms.

Our work is a generalization of [12], where the authors describe a single-agent
monadic BDI implementation relying on CHR [6]; we share with [12] the idea of
a BDI architecture based on monads, but instead of relying on CHR to represent
beliefs and their evolution, the aim of our work is to provide a better integration
with the language by handling them directly as Haskell values and expressions.

In [14] agents executing abstract actions relative to deontic specifications (pro-
hibition, permission, and obligation) are simulated in Haskell. Although close to
our approach up to some extent, that work does not take the BDI model into
account. We are not aware of other proposals using functional languages to rep-
resent BDI-style agents.

2 Preliminaries: Haskell

In this section we provide a very brief overview of Haskell’s syntax [9], to allow
the reader to understand our design choices.

The keyword data is used to declare new, possibly polymorphic, data types. A
new generic type may be, e.g., data MyType a b = MyType a a b: a and b are two
type variables, and the constructor for new values takes (in the order) two a ar-
guments and one b. A concrete type for MyType could be, e.g., MyType Int String.
A type signature for f is written f :: a, where a is a type expression; an arrow
→ is a right-associative infix operator for defining domain and codomain of
functions. A type class is a sort of interface or abstract class that data types
may support by declaring an instance for it. A special type (), called unit, acts
as a tuple with arity 0; its only value is also written ().

Further information on Haskell and monads can be found in [4,8,3] and in the
freely available book [9].

3 Our Framework

In our framework, we split the definition of the capabilities of the agents in
different layers by means of monads. The innermost one, Agent, provides support



Designing and Implementing a Framework for BDI-Style 205

for the reasoning that an agent may accomplish in isolation from the rest of the
system, that is without any need to communicate. On top of it we build another
monad CAgent for communicating agents that provides basic message-passing
features.

data Agent s a = Agent (s → (s,a))
instance Monad (Agent s) where {- omitted -}

The declaration of Agent follows the definition of the well-known state monad
[4]. It is parameterized on two types: the state s of the agent, containing its
current beliefs, and the return type a of the action in the monad. Each action is
a function from the current state to the (possibly modified) new one, together
with the return value.

At this layer it is safe to introduce goal-directed backtracking support, because
computations are local to the agent and no interaction is involved. In Haskell,
one could provide a basic backtracking mechanism for a monad m by defining
an instance of the MonadPlus type class. MonadPlus m instances must define two
methods, mzero :: m a and mplus :: m a → m a → m a, that respectively rep-
resent failure and choice. Infinite computations, i.e. with an infinite number of
solutions, can not be safely combined within MonadPlus because the program
could diverge. In order to address this problem the authors of [5] propose a sim-
ilar type class – along with a comparison between different implementations –
where its operators behave fairly, e.g. solutions from different choices are selected
with a round robin policy. In our work we plan to exploit their solutions to give
Agent the possibility to handle backtracking even in such scenarios. Goals can
be defined as predicates pred :: Agent s Bool to be used in guards that may
stop the computation returning mzero whenever the current state does not sat-
isfy pred. It is worth noting how this concept of goals fits well into Haskell: such
guards are the standard, natural way to use MonadPlus.

type AgentId = String
data Message a = Message AgentId AgentId a
data AgentChan a = {- omitted -}

Another building block for our MAS architecture is the FIFO channel AgentChan.
We omit the full definition for the sake of brevity: it is sufficient to know that
messages have headers identifying sender and receiver agents and a payload of
arbitrary type a.

data CAgentState a = CAgentState AgentId (AgentChan a)
data CAgent s a b = CAgent (CAgentState a → Agent s (CAgentState a, b))
instance Monad (CAgent s a) where {- omitted -}

A CAgent is, just like before, defined by means of a state monad. It only needs
to know its unique identifier and the communication channel to be used for
interacting with other agents. This is why, unlike before, the type that holds
the state is fixed as CAgentState. The function wrapped by CAgent, thanks to its
codomain Agent s (CAgentState a, b), is able to merge an agent computation
within a communicating agent. Intuitively, a CAgent can be executed by taking in
input the initial CAgentState and beliefs base s, producing at each intermediate



206 A. Solimando and R. Traverso

step a value b and the new CAgent and Agent states. The execution flow of
a CAgent may use functionalities from Agent; once the computation moves to
the inner monad we gain access to the beliefs base, goals, and backtracking,
but all the interaction capabilities are lost until the execution reaches CAgent
again. Both monads may be concisely defined through the use of the Monad
Transformer Library [4], thus many type class instances and utility functions
are already given.

A CAgent may interact using point-to-point message exchange. The commu-
nication interface is summarized below; all functions are blocking and asyn-
chronous, with the exception of tryRecvMsg that is non-blocking.

myId :: CAgent s a AgentId
sendMsg :: AgentId → a → CAgent s a ()
recvMsg :: CAgent s a (Message a)
tryRecvMsg :: CAgent s a (Maybe (Message a))

Given a set of communicating agents, it is straightforward to define a simple
module that manages the threads and the synchronization between them.

4 Conclusion and Future Work

We presented a basic architecture based on monads for MAS composed of Haskell
agents. Similarly to other solutions, our system provides backtracking capabili-
ties, even if they are limited to the decisions taken between two communication
acts.

We have been able to show how the concepts behind MAS can be naturally
instantiated in a purely functional language without any particular influence
from other paradigms or solutions that may undermine the integration of the
framework with the Haskell standard library.

This is still a preliminary work, as the architecture may change to better ad-
dress the objectives and the prototype of this framework needs to be developed
further in order to provide full support for all the described features. Some ideas
for future extensions are (1) integrating the backtracking capabilities described
in [5], (2) supporting event-based selection of plans, (3) adding communica-
tion primitives (e.g. broadcast, multicast), and (4) enriching the communication
model with session types [13] in order to check the correctness of ongoing com-
munication along the lines of [1] and [10].

References

1. Ancona, D., Drossopoulou, S., Mascardi, V.: Automatic Generation of Self-
Monitoring MASs from Multiparty Global Session Types in Jason. In: Baldoni,
M., Dennis, L., Mascardi, V., Vasconcelos, W. (eds.) DALT 2012. LNCS (LNAI),
vol. 7784, pp. 76–95. Springer, Heidelberg (2013)

2. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems
in AgentSpeak using Jason, vol. 8. Wiley-Interscience (2008)



Designing and Implementing a Framework for BDI-Style 207

3. Hudak, P., Hughes, J., Jones, S.P., Wadler, P.: A history of Haskell: being lazy
with class. In: HOPL III: Proceedings of the Third ACM SIGPLAN Conference on
History of Programming Languages, pp. 12-1–12-55 (2007)

4. Jones, M.: Functional Programming with Overloading and Higher-Order Polymor-
phism. In: Jeuring, J., Meijer, E. (eds.) AFP 1995. LNCS, vol. 925, pp. 97–136.
Springer, Heidelberg (1995)

5. Kiselyov, O., Shan, C., Friedman, D.P., Sabry, A.: Backtracking, interleaving, and
terminating monad transformers (functional pearl). In: Proceedings of the Tenth
ACM SIGPLAN International Conference on Functional Programming, ICFP 2005,
pp. 192–203. ACM, New York (2005)

6. Lam, E.S.L., Sulzmann, M.: Towards agent programming in CHR. CHR 6, 17–31
(2006)

7. Mascardi, V., Demergasso, D., Ancona, D.: Languages for programming BDI-style
agents: an overview. In: Proceedings of WOA 2005, pp. 9–15. Pitagora Editrice
Bologna (2005)

8. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991)
9. O’Sullivan, B., Stewart, D.B., Goerzen, J.: Real World Haskell. O’Reilly Media

(2009)
10. Pucella, R., Tov, J.A.: Haskell session types with (almost) no class. In: Haskell, pp.

25–36 (2008)
11. Rao, A.S.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Lan-

guage. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038,
pp. 42–55. Springer, Heidelberg (1996)

12. Sulzmann, M., Lam, E.S.L.: Specifying and Controlling Agents in Haskell
13. Takeuchi, K., Honda, K., Kubo, M.: An Interaction-based Language and its Typ-

ing System. In: Halatsis, C., Philokyprou, G., Maritsas, D., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994)

14. Wyner, A.Z.: A Functional Program for Agents, Actions, and Deontic Specifica-
tions. In: Baldoni, M., Endriss, U. (eds.) DALT 2006. LNCS (LNAI), vol. 4327,
pp. 239–256. Springer, Heidelberg (2006)


	Designing and Implementing a Framework for BDI-Style Communicating Agents in Haskell
	Introduction
	Preliminaries: Haskell
	Our Framework
	Conclusion and Future Work
	References




