
SAT-Based BMC for Deontic Metric Temporal Logic
and Deontic Interleaved Interpreted Systems�
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Abstract. We consider multi-agent systems’ (MASs) modelled by deontic in-
terleaved interpreted systems and we provide a new SAT-based bounded model
checking (BMC) method for these systems. The properties of MASs are ex-
pressed by means of the metric temporal logic with discrete semantics and ex-
tended to include epistemic and deontic operators. The proposed BMC approach
is based on the state of the art solutions to BMC. We test our results on a typical
MASs scenario: train controller problem with faults.

1 Introduction

By agents we usually mean rational, independent, intelligent and high-tech entities that
act autonomously on behalf of their users, across open and distributed environments,
to solve a growing number of complex problems. A multi-agent system (MAS) [27]
is a system composed of multiple interacting (communicating, coordinating, cooperat-
ing, etc.) agents which can be used to solve problems that are beyond the individual
capacities or knowledge of a single agent.

Deontic interpreted systems (DISs) [18] are models of MASs that make possible
reasoning about epistemic and correct functioning behaviour of MASs. They provide a
computationally grounded semantics on which it is possible to interpret the Oiα modal-
ity, representing the fact “in all correct functioning executions of agent i, α holds”,
as well as a traditional epistemic modalities and temporal operators. By deontic in-
terleaved interpreted systems (DIISs) we mean a restriction of DISs that enforce the
executions of agents to be interleaved. Thus we assume that agents act as network of
synchronised automata; note that one can see DIISs as a deontic extension of the for-
malism of interleaved interpreted systems [17]. We consider DIISs since they allow for
the distinction between correct (or ideal, normative, etc.) and incorrect states, and they
enable more efficient verification of MASs, the behaviour of which is as the behaviour
of synchronised automata. Note that although our method is described for DIISs, it can
be applied to DISs [10] as well; as it will be clear below the main difference between
DIISs and DISs is in the definition of the global evolution function. Thus, to apply
our method to DISs it is enough to change the definition a propositional formula that
encodes the transition relation. However, only DIISs can be combined with partial or-
der reductions allowing for more efficient verification of MASs that are not so loosely
coupled.
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Model checking [6,24] has been developed as a method for automatic verification of
finite state concurrent systems, and impressive strides have been made on this problem
over the past thirty years. The main aim of model checking is to provide an algorithm
determining whether an abstract model - representing, for example, a software project
- satisfies a formal specification expressed as a modal formula. Moreover, if the prop-
erty does not hold, the method discovers a counterexample execution that shows the
source of the problem. The practical applicability of model checking in MASs set-
tings requires the development of algorithms hacking the state explosion problem. In
particular, to avoid this problem the following approaches have been developed: BDD-
based bounded [13,19,20] and unbounded [26,25] model checking, SAT-based bounded
[22,23,29,31,30] and unbounded [14] model checking.

To express the requirements of MASs, various extensions of temporal [9] or real time
[2] temporal logics with epistemic (to represent knowledge) [10], doxastic (to represent
beliefs) [16], and deontic (to represent norms and prescriptions) [18,3] components
have been proposed. In this paper we consider a deontic and epistemic extension of
Metric Temporal Logic (MTL) [15], which we call MTLKD, and interpret over discrete-
time models; note that over the adopted discrete-time model, MTL is simply LTL, but
with an exponentially succinct encoding [11]. MTLKD allows for the representation
of the quantitative temporal evolution of epistemic states of the agents, as well as their
correct and incorrect functioning behaviour. It can express multiple timing constraints
on computations, which is really interesting for writing specifications. For example,
MTLKD allows to express property asserting that whenever the system finds itself in a
p-state, then agent c knows that the system will be in a q-state precisely one time unit
later; note that this can be specified by the formula G[0,∞)(p⇒ KcF[1,1]q).

In our past research we have provided a theoretical underpinnings of a preliminary
bounded model checking (BMC) algorithm for DIS and an existential part of a com-
putation tree logic extended to include an epistemic and deontic modalities (ECTLKD)
[29]. However, the method have not been implemented and experimentally evaluated.
Moreover, it was not tailored to the DIISs settings, and it was not based on the state-
of-the art BMC method for an existential part of a computation tree logic (ECTL) [32],
which uses a reduced number of paths, what results in significantly smaller and less
complicated propositional formulae that encode the ECTLKD properties. In [30] we
have defined and experimentally evaluated a BMC algorithm for the existential part
of an epistemic and deontic extension of real time CTL (RTCTLKD) [8] by means
of which we can automatically verify not only epistemic and temporal properties but
also deontic and quantitative temporal properties that express compliance of a MAS,
modelled by DIIS, with respect to specifications.

The main contributions of the paper are as follows. First, we introduce the MTLKD
language. Second, we propose a SAT-based BMC technique for DIISs and the existen-
tial part of MTLKD. This is the first time when the BMC method for linear time epis-
temic (and deontic) logics uses a reduced number of paths to evaluate epistemic and
deontic components what results in significantly smaller and less complicated propo-
sitional formulae that encode the MTLKD properties. Third, we implement the pro-
posed BMC method and evaluate it experimentally. To the best of our knowledge, this
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is the first work which provides a practical (bounded) model checking algorithm for the
MTLKD language, and the MTL itself.

The structure of the paper is the following. In Section 2 we shortly introduce DIISs
and the MTLKD language. In Section 3 we define a bounded semantics for EMTLKD
(the existential part of MTLKD) and prove that there is a bound such that both bounded
and unbounded semantics for EMTLKD are equivalent. In Section 4 we define a BMC
method for MTLKD. In Section 5 we present performance evaluation of our newly
developed SAT-based BMC algorithm. In Section 6 we conclude the paper.

2 Preliminaries

DIIS. We assume that a MAS consists of n agents, and by Ag = {1, . . . , n} we denote
the non-empty set of agents; note that we do not consider the environment component
because this may be added with no technical difficulty at the price of heavier notation.
We assume that each agent c ∈ Ag is in some particular local state at a given point
in time, and that a set Lc of local states for agent c ∈ Ag is non-empty and finite
(this is required by the model checking algorithms). We assume that for each agent
c ∈ Ag, its set Lc can be partitioned into faultless (green) and faulty (red) states. For
n agents and n mutually disjoint and non-empty sets G1, . . . ,Gn we define the set S of
all possible global states as the Cartesian product

∏n
c=1Lc , such that Lc ⊇ Gc . The set

Gc represents the set of green states for agent c. The complement of Gc with respect to
Lc (denoted by Rc) represents the set of red states for agent c. Note that for any agent
c, Lc = Gc ∪Rc . Further, by lc(s) we denote the local component of agent c ∈ Ag in
a global state s = (�1, . . . , �n).

With each agent c ∈ Ag we associate a finite set of possible actions Actc such that
a special “null” action (εc) belongs to Actc ; as it will be clear below the local state of
agent c remains the same, if the null action is performed. We do not assume that the sets
Actc (for all c ∈ Ag) are disjoint. Next, with each agent c ∈ Ag we associate a protocol
that defines rules, according to which actions may be performed in each local state. The
protocol for agent c ∈ Ag is a function Pc : Lc → 2Actc such that εc ∈ Pc(�) for
any � ∈ Lc , i.e., we insist on the null action to be enabled at every local state. For each
agent c, there is a (partial) evolution function tc : Lc × Actc → Lc such that for each
� ∈ Lc and for each a ∈ Pc(�) there exists �′ ∈ Lc such that tc(�, a) = �′; moreover,
tc(�, εc) = l for each � ∈ Lc . Note that the local evolution function considered here
differs from the standard one (see [10]) by having the local action instead of the join
action as the parameter. Further, we define the following sets Act =

⋃
c∈Ag Actc and

Agent(a) = {c ∈ Ag | a ∈ Actc}.
The global interleaved evolution function t : S ×

∏n
i=1 Acti → S is defined as

follows: t(s, a1, . . . , an) = s′ iff there exists an action a ∈ Act\ {ε1, . . . , εn} such that
for all c ∈ Agent(a), ac = a and tc(lc(s), a) = lc(s

′), and for all c ∈ Ag \Agent(a),
ac = εc and tc(lc(s), ac) = lc(s). In brief we write the above as s

a−→ s′.
Note that similarly to blocking synchronisation in automata, the above insists on all

agents performing the same non-null action in a global transition; additionally, note that
if an agent has the action being performed in its repertoire, it must be performed, for the
global transition to be allowed. This assumes that the local protocols are defined to per-
mit this; if a local protocol does not allow it, then the local action cannot be performed
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and therefore the global transition does not comply with the definition of interleaving
above. As we formally clarify below, we only consider interleaved transitions here.

Now, for a given set of agentsAg and a set of propositional variables PV we define a
deontic interleaved interpreted systemDIISas a tuple (ι, {Lc,Gc , Actc , Pc , tc}c∈Ag,V),
where ι ∈ S is an initial global state, and V : S → 2PV is a valuation function. With
such a DIIS we associate a Kripke model M = (ι, S, T, {∼c}c∈Ag, {��c}c∈Ag,V),
where ι is the initial global state; S is the set of global states; T ⊆ S × S is a
global transition (temporal) relation defined by: (s, s′) ∈ T iff there exists an action
a ∈ Act \ {ε1, . . . , εn} such that s

a−→ s′ (we assume that the relation is total, i.e.,
for any s ∈ S there exists an a ∈ Act \ {ε1, . . . , εn} such that s

a−→ s′ for some
s′ ∈ S); ∼c⊆ S × S is an indistinguishability relation for agent c defined by: s ∼c s

′

iff lc(s′) = lc(s); ��c⊆ S × S is a deontic relation for agent c defined by: s ��c s′ iff
lc(s

′) ∈ Gc ; V : S → 2PV is the valuation function of DIIS. V assigns to each state a
set of propositional variables that are assumed to be true at that state.

Syntax of MTLKD. Let p ∈ PV, c, d ∈ Ag, Γ ⊆ Ag, and I be an interval in IN =
{0, 1, 2, . . .} of the form: [a, b) and [a,∞), for a, b ∈ IN and a 
= b; note that the
remaining forms of intervals (i.e., [a, a], [a, b], (a, b), (a, b], and (a,∞)) can be defined
by means of [a, b) and [a,∞). Hereafter, let left(I) denote the left end of the interval I
(i.e., left(I) = a), and right(I) the right end of the interval I (i.e., right([a, b)) = b−1
and right([a,∞)) = ∞). The MTLKD formulae are defined by the following grammar:

α:= true | false | p | ¬α | α ∧ α | α ∨ α | Xα | αUIα |
GIα | Kcα | DΓα | EΓα | CΓα | Ocα | K̂

d

cα

The derived basic modalities are defined as follows: αRIβ
def
= βUI(α ∧ β) ∨ GIβ,

FIα
def
= trueUIα, Ocα

def
= ¬Oc¬α, Kcα

def
= ¬Kc¬α, K̂dcα

def
= ¬K̂

d

c¬α, DΓα
def
=

¬DΓ¬α, EΓα
def
= ¬EΓ¬α, CΓα

def
= ¬CΓ¬α, where c, d ∈ AG, and Γ ⊆ AG.

Intuitively, X, UI and GI are the operators, respectively, for “neXt time”, “bounded
until”, and “bounded always”. Xα is true in a computation if α is true at the second state
of the computation, αUIβ is true in a computation if β is true in the interval I at least
in one state and always earlier α holds, and GIα is true in a computation if α is true
at all the states of the computation that are in the interval I . Kc is the operator dual for
the standard epistemic modality Kc (“agent c knows”), so Kcα is read as “agent c does
not know whether or not α holds”. Similarly, the modalities DΓ ,EΓ ,CΓ are the dual
operators for DΓ ,EΓ ,CΓ representing distributed knowledge in the group Γ , everyone
in Γ knows, and common knowledge among agents in Γ . Further, we use the (double)

indexed modal operators Oc , Oc , K̂dc and K̂
d

c to represent the correctly functioning
circumstances of agent c. The formula Ocα stands for “for all the states where agent
c is functioning correctly, α holds”. The formula Ocα can be read as ”there is a state
where agent c is functioning correctly, and in which α holds”. The formula K̂dcα is read
as “agent c knows that α under the assumption that agent d is functioning correctly”.

K̂
d

c is the operator dual for the modality K̂dc . We refer to [18] for a discussion of this
notion; note that the operator Oc is there referred to as Pc .
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The existential fragment of MTLKD (denoted by EMTLKD) is defined by the fol-
lowing grammar:

α := true | false | p | ¬p | α ∧ α | α ∨ α | Xα | αUIα |
GIα | Kcα | DΓα | EΓα | CΓα | Ocα | K̂

d

cα

Semantics of MTLKD. Let M = (ι, S, T, {∼c}c∈Ag, {��c}c∈Ag,V) be a model for
DIIS. A path inM is an infinite sequenceπ = (s0, s1, . . .) of states such that (sm, sm+1)
∈ T for each m ∈ IN. For a path π and m ∈ IN, we take π(m) = sm. Moreover, the
m-th suffix of the path π is defined in the standard way: πm = (sm, sm+1, . . .), and
the m-th prefix of π is also defined in the standard way: π[. .m] = (s0, s1, . . . , sm).
By Π(s) we denote the set of all the paths starting at s ∈ S. For the group epistemic

modalities we define the following. If Γ ⊆ Ag, then ∼EΓ
def
=

⋃
c∈Γ ∼c , ∼CΓ

def
= (∼EΓ )+

(the transitive closure of ∼EΓ ), and ∼DΓ
def
=

⋂
c∈Γ ∼c . Given the above, the semantics

of MTLKD is the following.

Definition 1. Let I be an interval in IN of the form: [a, b) or [a,∞) for a, b ∈ IN, and

m ∈ IN. Then, I + m
df
= [a + m, b + m) if I = [a, b), and I + m

df
= [a + m,∞)

if I = [a,∞). A MTLKD formula ϕ is true (valid) along the path π (in symbols
M,π |= ϕ) iff M,π0 |= ϕ, where
M,πm |= true, M,πm 
|= false,
M,πm |= p iff p ∈ V(π(m)), M,πm |= ¬α iff M,πm 
|= α,
M,πm |= α ∧ β iff M,πm |= α and M,πm |= β,
M,πm |= α ∨ β iff M,πm |= α or M,πm |= β,
M,πm |= Xα iff M,πm+1 |= α,
M,πm |= αUIβ iff (∃i�m)[i∈I+m and M,πi |= β and (∀m � j < i)M,πj |= α],
M,πm |= GIα iff (∀i ∈ I +m)[M,πi |= α],
M,πm |= Kcα iff (∃π′ ∈ Π(ι))(∃i � 0)[π(m) ∼c π

′(i) and M,π′i |= α],
M,πm |= Ocα iff (∃π′ ∈ Π(ι))(∃i � 0)[π(m) ��c π

′(i) and M,π′i |= α],

M,πm |= K̂
d

cα iff (∃π′ ∈ Π(ι))(∃i � 0)[π(m) ∼c π
′(i) and π(m) ��d π

′(i) and
M,π′i |= α],

M,πm |= Y Γα iff (∃π′ ∈ Π(ι))(∃i � 0)[π(m) ∼YΓ π′(i) and M,π′i |= α],
where Y ∈ {D,E,C}.

A MTLKD formula ϕ holds in the model M (denoted M |= ϕ) iff M,π |= ϕ for all
the paths π ∈ Π(ι). An EMTLKD formula ϕ holds in the modelM , denotedM |=∃ ϕ,
iff M,π |= ϕ for some path π ∈ Π(ι). The existential model checking problem asks
whether M |=∃ ϕ.

3 Bounded Semantics for EMTLKD

The proposed bounded semantics is the backbone of the SAT-based BMC method for
EMTLKD, which is presented in the next section. The temporal part of this semantics
is based on the bounded semantics presented in [28,33]. As usual, we start by defining
k-paths and loops.

Let M = (ι, S, T, {∼c}c∈Ag, {��c}c∈Ag, V) be a model for DIIS, k ∈ IN, and
0 � l � k. A k-path πl is a pair (π, l), where π is a finite sequence π = (s0, . . . , sk) of
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states such that (sj , sj+1) ∈ T for each 0 � j < k. A k-path πl is a loop if l < k and
π(k) = π(l). Note that if a k-path πl is a loop, then it represents the infinite path of the
form uvω, where u = (π(0), . . . , π(l)) and v = (π(l + 1), . . . , π(k)). We denote this
unique path by 
(πl). Note that for each j ∈ IN, 
(πl)l+j = 
(πl)

k+j . By Πk(s) we
denote the set of all the k-paths starting at s in M .

Let k ∈ IN be a bound, 0 � m � k, 0 � l � k, and ϕ an EMTLKD formula. As in
the definition of semantics we need to define the satisfiability relation on suffixes of k-
paths, we denote by πml the pair (πl,m), i.e., the k-path πl together with the designated
starting point m. Further, M,πml |=k ϕ denotes that the formula ϕ is k-true along the
suffix (π(m), . . . , π(k)) of π.

Definition 2. An EMTLKD formula ϕ is k-true along the k−path πl (in symbols
M,πl |=k ϕ) iff M,π0

l |=k ϕ, where
M,πml |=k true, M,πml 
|=k false,
M,πml |=k p iff p ∈ V(π(m)), M,πml |=k ¬p iff p 
∈ V(π(m)),
M,πml |=k α ∧ β iff M,πml |=k α and M,πml |=k β,
M,πml |=k α ∨ β iff M,πml |=k α or M,πml |=k β,
M,πml |=k Xα iff (m < k and M,πm+1

l |=k α) or
(m = k and l < k and π(k) = π(l) and M,πl+1

l |=k α),
M,πml |=k αUIβ iff (∃m � j � k)(j ∈ I+m and M,πjl |=k β and (∀m � i < j)

M,πil |=k α) or (l < m and π(k) = π(l) and (∃l < j < m)

(j+k−l ∈ I+m and M,πjl |=k β and (∀l < i < j)M,πil |= α
and (∀m � i � k)M,πil |=k α)),

M,πml |=k GIα iff (k � right(I+m) and (∀j ∈ I +m) (M,πjl |=k α)) or
(k < right(I+m) and π(k) = π(l) and (∀max � j < k)

M,πjl |=k α and (∀l � j < max) (j + k − l ∈ I +m implies
M,πjl |=k α)), where max = max(left(I +m),m),

M,πml |=k Kcα iff (∃π′
l′ ∈ Πk(ι))(∃0 � j � k) (M,π′

l′
j |=k α and π(m) ∼c π

′(j)),
M,πml |=k Y Γα iff (∃π′

l′ ∈ Πk(ι)) (∃0 � j � k) (M,π′
l′
j |=k α and π(m) ∼YΓ π′(j)),

M,πml |=k Ocα iff (∃π′
l′ ∈ Πk(ι)) (∃0 � j � k) (M,π′

l′
j |=k α and π(m) ��c π

′(j)),

M,πml |=k K̂
d

cα iff (∃π′
l′ ∈ Πk(ι)) (∃0 � j � k) (M,π′

l′
j |=k α and π(m) ∼c π

′(j)
and π(m) ��d π

′(j)).

LetM be a model, and ϕ an EMTLKD formula. We use the following notations:M |=∃
k

ϕ iff M,πl |=k ϕ for some πl ∈ Πk(ι). The bounded model checking problem asks
whether there exists k ∈ IN such that M |=∃

k ϕ.

Equivalence of the Bounded and Unbounded Semantics. Now, we show that for
some particular bound the bounded and unbounded semantics are equivalent.

Lemma 1. Let M be a model, ϕ an EMTLKD formula, k � 0 a bound, πl a k-path in
M , and 0 � m � k. Then, M,πml |=k ϕ implies
1. if πl is not a loop, then M,ρm |= ϕ for each path ρ ∈M such that ρ[..k] = π.
2. if πl is a loop, then M,
(πl)

m |= ϕ.

Proof. (Induction on the length of ϕ) The lemma follows directly for the propositional
variables and their negations. Assume that M,πml |=k ϕ and consider the following
cases:
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1. ϕ = α ∧ β | α ∨ β | Xα. See the proof of Lemma 2.1 of [33].
2. ϕ = αUIβ. Assume that πl is not a loop. Then (∃m � j � k)(j ∈ I + m and
M,πjl |=k β and (∀m � i < j)(M,πil |=k α). By inductive hypothesis, for every
path ρ in M such that ρ[..k] = π, (∃m � j � k)(j ∈ I + m and M,ρj |= β
and (∀m � i < j)M,ρi |= α). Thus, for every path ρ in M such that ρ[..k] = π,
M,ρm |= ϕ.
Now assume that πl is a loop. Then l < m and π(k) = π(l) and (∃l < j < m)
(j+k−l ∈ I+m andM,πjl |=k β and (∀l < i < j)M,πil |= α and (∀m � i � k)
M,πil |=k α). By inductive hypothesis, (∃l < j < m)(j + k − l ∈ I + m and
M,
(πl)

j |= β and (∀l < i < j)M,
(πl)
i |= α and (∀m � i � k)M,
(πl)

i |=
α). Since for each n ∈ IN, 
(πl)l+n = 
(πl)

k+n, it follows that M,
(πl)
j+k−l |=

β and (∀k < i < j+ k− l) (M,
(πl)
i |= α) and (∀m � i � k) (M,
(πl)

i |= α).
Hence, 
(πl)j+k−l |= β and (∀m � i < j + k − l) (M,
(πl)

i |= α). Thus,
M,
(πl)

m |= ϕ.
3. ϕ = GIα. Assume that πl is not a loop. Then k ≥ right(I+m) and (∀j ∈ I +m)

(M,πjl |=k α). By inductive hypothesis, for every path ρ inM such that ρ[..k] = π,
(∀j ∈ I +m)(M,ρj |= α). Thus, for every path ρ in M such that ρ[..k] = π,
M,ρm |= ϕ.
Now assume that πl is a loop, and max = max(left(I + m),m). Then, k <
right(I + m) and π(k) = π(l) and (∀max � j < k) M,πjl |=k α and (∀l �
j < max) (j + k − l ∈ I + m implies M,πjl |=k α). By inductive hypothesis,
(∀max � j < k) M,
(πl)

j |= α and (∀l � j < max) (j + k − l ∈ I + m
implies M,
(πl)

j |= α). Since for each n ∈ IN, 
(πl)l+n = 
(πl)
k+n, it follows

that (∀n ∈ IN) (∀j � l + n) (j + k − l ∈ I +m implies M,
(πl)
j |= α). Thus,

M,
(πl)
m |= ϕ.

4. ϕ = Kcα. From M,πml |=k ϕ it follows that (∃π′
l′ ∈ Πk(ι))(∃0 � j � k)

(M,π′
l′
j |=k α and π(m) ∼c π

′(j)). Assume that both πl and π′
l′ are not loops. By

inductive hypothesis, for every path ρ′ in M such that ρ′[..k] = π′, (∃0 � j � k)

(M,ρ′j |= α and π(m) ∼c ρ′(j)). Further, for every path ρ in M such that
ρ[..k] = π, we have that ρ(m) ∼c ρ

′(j)). Thus, for every path ρ in M such that
ρ[..k] = π, M,ρm |= ϕ.
Now assume that π′

l′ is not a loop, and πl is a loop. By inductive hypothesis, for
every path ρ′ in M such that ρ′[..k] = π′, (∃0 � j � k)(M,ρ′j |= α and π(m) ∼c

ρ′(j)). Further, observe that 
(πl)(m) = π(m), thus M,
(πl)
m |= ϕ.

Now assume that both πl and π′
l′ are loops. By inductive hypothesis, (∃0 � j � k)

(M,
(π′
l′ )
j |= α and π(m) ∼c 
(π′

l′ )(j)). Further, observe that 
(πl)(m) =
π(m), thus M,
(πl)

m |= ϕ.
Now assume that π′

l′ is a loop, and πl is not a loop. By inductive hypothesis,
(∃0 � j � k) (M,
(π′

l′)
j |= α and π(m) ∼c 
(π

′
l′ )(j)). Further, for every path ρ

in M such that ρ[..k] = π, we have that ρ(m) ∼c 
(π
′
l′ )(j)). Thus, for every path

ρ in M such that ρ[..k] = π, M,ρm |= ϕ.

5. Let ϕ = Y Γα, where Y ∈ {D,E,C}, or ϕ = Ocα, or ϕ = K̂
d

cα. These cases can
be proven analogously to the case 4.
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Lemma 2. (Theorem 3.1 of [4]) Let M be a model, α an LTL formula, and π a path.
Then, the following implication holds: M,π |= α implies that for some k � 0 and
0 � l � k, M,ρl |=k α with π[. . k] = ρ.

Since MTL is simply LTL with an exponentially succinct encoding ([11]), every MTL
formula γ can be translated into an LTL formula αγ . Thus, by Lemma 2 we have that
the following lemma holds:

Lemma 3. Let M be a model, α an MTL formula, and π a path. Then, the following
implication holds: M,π |= α implies that for some k � 0 and 0 � l � k, M,ρl |=k α
with π[. . k] = ρ.

Lemma 4. Let M be a model, α an MTL formula, Y ∈ {Kc ,DΓ ,EΓ ,CΓ ,Oc, K̂
d

c},
and π a path. Then, the following implication holds: M,π |= Y α implies that for some
k � 0 and 0 � l � k, M,ρl |=k Y α with π[. . k] = ρ.

Proof. Let Xj denote the neXt time operator applied j times, i.e., Xj = X . . .X︸ ︷︷ ︸
j

.

1. Let Y = Kc . Then M,π |= Kcα iff M,π0 |= Kcα iff (∃π′ ∈ Π(ι)) (∃j �
0)[π′(j) ∼c π(0) and M,π′j |= α]. Since π′(j) is reachable from the initial state
of M , the checking of M,π′j |= α is equivalent to the checking of M,π′0 |= Xjα.
Now since Xjα is a pure MTL formula, by Lemma 3 we have that for some k � 0
and 0 � l � k, M,ρ′0l |=k Xjα with π′[. . k] = ρ′. This implies that M,ρ′jl |=k α
with π′[. . k] = ρ′, for some k � 0 and 0 � l � k. Now, since π′(j) ∼c π(0), we
have ρ′(j) ∼c ρ(0). Thus, by the bounded semantics we have that for some k � 0
and 0 � l � k, M,ρl |=k Kcα with π[. . k] = ρ.

2. Let Y = DΓ . Then M,π |= DΓα iff M,π0 |= DΓα iff (∃π′ ∈ Π(ι))(∃j �
0)[π′(j) ∼D

Γ π(0) and M,π′j |= α]. Since π′(j) is reachable from the initial state
of M , the checking of M,π′j |= α is equivalent to the checking of M,π′0 |= Xjα.
Now since Xjα is a pure MTL formula, by Lemma 3 we have that for some k � 0
and 0 � l � k, M,ρ′0l |=k Xjα with π′[. . k] = ρ′. This implies that M,ρ′jl |=k α
with π′[. . k] = ρ′, for some k � 0 and 0 � l � k. Now, since π′(j) ∼D

Γ π(0), we
have ρ′(j) ∼D

Γ ρ(0). Thus, by the bounded semantics we have that for some k � 0
and 0 � l � k, M,ρl |=k DΓα with π[. . k] = ρ.

3. Let Y = EΓ . Since EΓα =
∨

c∈Γ Kcα, the lemma follows from the case 1.
4. Let Y = CΓ . Since CΓα =

∨n
i=1(EΓ )

iα, where n is the size of the model M , the
lemma follows from the case 3.

5. Let Y = Oc . Then M,π |= Ocα iff M,π0 |= Ocα iff (∃π′ ∈ Π(ι)) (∃j �
0)[π(0) ��c π

′(j) and M,π′j |= α]. Since π′(j) is reachable from the initial state
of M , the checking of M,π′j |= α is equivalent to the checking of M,π′0 |= Xjα.
Now since Xjα is a pure MTL formula, by Lemma 3 we have that for some k � 0
and 0 � l � k, M,ρ′0l |=k Xjα with π′[. . k] = ρ′. This implies that M,ρ′jl |=k α
with π′[. . k] = ρ′, for some k � 0 and 0 � l � k. Now, since π(0) ��c π′(j), we
have ρ(0) ��c ρ′(j) Thus, by the bounded semantics we have that for some k � 0
and 0 � l � k, M,ρl |=k Ocα with π[. . k] = ρ.

6. Let Y = K̂
d

c . This case can be proven analogously to the case 1 and 5.
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Lemma 5. Let M be a model, ϕ an EMTLKD formula, and π a path. The following
implication holds: M,π |= ϕ implies that there exists k � 0 and 0 � l � k such that
M,ρl |=k ϕ with ρ[. . k] = π.

Proof. (Induction on the length of ϕ) The lemma follows directly for the propositional
variables and their negations. Assume that the hypothesis holds for all the proper sub-
formulas of ϕ and consider ϕ to be of the following form:

1. ϕ = ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | Xψ | ψ1UIψ2 | GIψ. Straightforward by the induction
hypothesis and Lemma 3.

2. Let ϕ = Y α, and Y, Y1, . . . , Yn, Z ∈ {Kc , DΓ , EΓ , CΓ , Oc , K̂
d

c}. Moreover, let
Y1α1, . . . , Ynαn be the list of all ”top level” proper Y -subformulas of α (i.e., each
Yiαi is a subformula of Y α, but it is not a subformula of any subformula Zβ of Y α,
where Zβ is different from Y α and from Y αi for i = 1, . . . , n).
If this list is empty, then α is a ”pure” MTL formula with no nested epistemic modal-
ities. Hence, by Lemma 4 we have M,π |= ϕ implies that there exists k � 0 and
0 � l � k such that M,ρl |=k ϕ with ρ[. . k] = π.
Otherwise, introduce for each Yiαi a new proposition qi, where i = 1, . . . , n. Using
first a translation of MTL formulae to LTL formulae, and then a symbolic state
labelling algorithm presented in [7] (for LTL modalities) and [26] (for epistemic
and deontic modalities), we can augment with qi the labelling of each state s of
M initialising some run along which the epistemic formula Yiαi holds, and then
translate the formula α to the formula α′, which instead of each subformula Yiαi
contains adequate propositions qi. Therefore, we obtain ”pure” LTL formula. Hence,
by Lemma 4 we have M,π |= ϕ implies that there exists k � 0 and 0 � l � k such
that M,ρl |=k ϕ with ρ[. . k] = π.

The following theorem, whose proof follows directly from Lemma 1 and Lemma 5,
states that for a given model and an EMTLKD formula there exists a bound k such that
the model checking problem (M |=∃ ϕ) can be reduced to the bounded model checking
problem (M |=∃

k ϕ).

Theorem 1. LetM be a model andϕ an EMTLKD formula. Then, the following equiv-
alence holds: M |=∃ ϕ iff there exists k � 0 such that M |=∃

k ϕ.

Further, by straightforward induction on the length of an EMTLKD formula ϕ, we can
show that ϕ is k-true in M if and only if ϕ is k-true in M with a number of k-paths
reduced to fk(ϕ), where the function fk : EMTLKD → IN gives a bound on the number
of k-paths, which are sufficient to validate a given EMTLKD formula.

In the definition of fk we assume that each EMTLKD formula is preceded by the
“path” quantifier E with the meaning “there exists a path in Πk(ι)”; this assumption
is only technical and it makes the definition of fk easy to implement. Note that in the
BMC method we deal with the existential validity (|=∃) only, so the above assumption
is just another way to express this fact. More precisely, let ϕ be an EMTLKD formula.
To calculate the value of fk(ϕ), we first extend the formula ϕ to the formula ϕ′ = Eϕ.
Next, we calculate the value of fk for ϕ′ in the following way: fk(Eϕ) = fk(ϕ) + 1;
fk(true) = fk(false) = 0; fk(p) = fk(¬p) = 0 for p ∈ PV; fk(α ∧ β) = fk(α) +
fk(β); fk(α ∨ β) = max{fk(α), fk(β)}; fk(Xα) = fk(α); fk(αUIβ) = k · fk(α) +
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fk(β); fk(GIα) = (k + 1) · fk(α); fk(CΓα) = fk(α) + k; fk(Y α) = fk(α) + 1 for

Y ∈ {Kc ,Oc , K̂
d

c ,DΓ ,EΓ }.

4 SAT-Based BMC for EMTLKD

Let M = (ι, S, T, {∼c}c∈Ag, {��c}c∈Ag,V) be a model, ϕ an EMTLKD formula, and
k � 0 a bound. The proposed BMC method is based on the BMC encoding presented
in [33], and it consists in translating the problem of checking whether M |=∃

k ϕ holds,
to the problem of checking the satisfiability of the propositional formula

[M,ϕ]k := [Mϕ,ι]k ∧ [ϕ]M,k

The formula [Mϕ,ι]k encodes sets of k-paths of M , whose size equals to fk(ϕ), and in
which at least one path starts at the initial state of the model M . The formula [ϕ]M,k

encodes a number of constraints that must be satisfied on these sets of k-paths for ϕ to
be satisfied. Note that our translation, like the translation from [33], does not require
that either all the k-paths used in the translation are loops or none is a loop. Once this
translation is defined, checking satisfiability of an EMTLKD formula can be done by
means of a SAT-solver.

In order to define the formula [M,ϕ]k we proceed as follows. We begin with an
encoding of states of the given modelM . Since the set of states ofM is finite, each state
s ofM can be encoded by a bit-vector, whose length r depends on the number of agents’
local states. Thus, each state s of M can be represented by a vector w = (w1, . . . , wr)
(called a symbolic state) of propositional variables (called state variables). The set of
all the propositional state variables we denote by SV .

Since any k-path (π, l) is a pair consisting of a finite sequence of states of length k
and a number l � k, to encode it by propositional formula, it suffices to take a finite se-
quence of symbolic states of length k and a formula that encodes the position l � k. The
designated position l can be encoded as a bit vector of the length t = max(1, �log2(k+
1)�). Thus, the position l can be represented by a valuation of a vector u = (u1, . . . , ut)
(called a symbolic number) of propositional variables (called propositional natural vari-
ables), which not appear among propositional state variables. The set of all the proposi-
tional natural variables we denote byNV , and we assume that SV ∩NV = ∅. Given the
above we can define a symbolic k-path as a pair ((w0, . . . , wk), u) consisting of a finite
sequence of symbolic states of length k and a symbolic number. Since in general we
may need to consider more than one symbolic k-path, therefore we introduce a notion
of the j-th symbolic k-path πj = ((w0,j , . . . , wk,j), uj), wherewi,j are symbolic states
for 0 � j < fk(ϕ) and 0 � i � k, and uj is a symbolic number for 0 � j < fk(ϕ).
Note that the exact number of symbolic k-paths depends on the checked formulaϕ, and
it can be calculated by means of the function fk.

Let PV = SV ∪ NV , and V : PV → {0, 1} be a valuation of propositional vari-
ables (a valuation for short). Each valuation induces the functions S : SV r → {0, 1}r
and J : NV t → IN defined in the following way: S((w1, . . . , wr)) = (V (w1), . . . ,
V (wr)), J((u1, . . . , ut)) =

∑t
i=1 V (ui) · 2i−1. Moreover, for a symbolic state w and a

symbolic number u, by SV (w) and NV (u) we denote, respectively, the set of all the
state variables occurring in w, and the set of all the natural variables occurring in u.
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Next, let w and w′ be two symbolic states such that SV (w) ∩ SV (w′) = ∅, and u be a
symbolic number. We define the following auxiliary propositional formulae:

• Is(w) is a formula over SV (w) that is true for a valuation V iff S(w) = s.
• p(w) is a formula over SV (w) that is true for a valuation V iff p ∈ V(S(w)) (encodes

a set of states of M in which p ∈ PV holds).
• H(w,w′) is a formula over SV (w)∪SV (w′) that is true for a valuation V iff S(w) =

S(w′) (encodes equality of two global states).
• Hc(w,w

′) is a formula over SV (w) ∪ SV (w′) that is true for a valuation V iff
lc(S(w)) = lc(S(w)) (encodes equality of local states of agent c).

• HOc(w,w
′) is a formula over SV (w) ∪ SV (w′) that is true for a valuation V iff

lc(S(w′)) ∈ Gc (encodes an accessibility of a global state in which agent c is func-
tioning correctly).

• Ĥd
c (w,w

′) := Hc(w,w
′) ∧HOd(w,w′).

• T (w,w′) is a formula over SV (w) ∪ SV (w′) that is true for a valuation V iff
(S(w), S(w′)) ∈ T (encodes the transition relation of M ).

• B∼

j (u) is a formula over NV (u) that is true for a valuation V iff j ∼ J(u), where
∼∈ {<,�,=,�, >}.

• Llk(πj) := B>k (uj) ∧H(wk,j , wl,j).

Moreover, let j ∈ IN, and I be an interval. Then,

In(j, I) =

{
true, if j ∈ I
false, if j 
∈ I

Let W = {SV (wi,j) | 0 ≤ i ≤ k and 0 � j < fk(ϕ)} ∪ {NV (uj) | 0 � j < fk(ϕ)}
be a set of propositional variables. The propositional formula [Mϕ,ι]k is defined over
the set W in the following way:

[Mϕ,ι]k := Iι(w0,0) ∧
fk(ϕ)−1∧

j=0

k−1∧

i=0

T (wi,j , wi+1,j) ∧
fk(ϕ)−1∧

j=0

k∨

l=0

B=
l (uj).

The next step of the reduction to SAT is the transformation of an EMTLKD formula
ϕ into a propositional formula [ϕ]M,k := [ϕ]

[0,0,Fk(ϕ)]
k , where Fk(ϕ) = {j ∈ IN | 0 �

j < fk(ϕ)}, and [ϕ]
[m,n,A]
k denotes the translation of ϕ along the symbolic path πm,n

with starting point m by using the set A.
For every EMTLKD formula ϕ the function fk determines how many symbolic k-

paths are needed for translating the formula ϕ. Given a formula ϕ and a set A of k-
paths such that |A| = fk(ϕ), we divide the set A into subsets needed for translating the
subformulae of ϕ. To accomplish this goal we need some auxiliary functions that were
defined in [33]. We recall the definitions of these functions.

The relation ≺ is defined on the power set of IN as follows: A ≺ B iff for all natural
numbers x and y, if x ∈ A and y ∈ B, then x < y.

Now, let A ⊂ IN be a finite nonempty set, and n, d ∈ IN, where d � |A|. Then,

• gl(A, d) denotes the subset B of A such that |B| = d and B ≺ A \B.
• gr(A, d) denotes the subset C of A such that |C| = d and A \ C ≺ C.
• gs(A) denotes the set A \ {min(A)}.
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• if n divides |A| − d, then hp(A, d, n) denotes the sequence (B0, . . . , Bn) of subsets
of A such that

⋃n
j=0 Bj = A, |B0| = . . . = |Bn−1|, |Bn| = d, and Bi ≺ Bj for

every 0 � i < j � n.

Now let hUk (A, d)
df
= hp(A, d, k) and hGk (A)

df
= hp(A, 0, k). Note that if hUk (A, d) =

(B0, . . . , Bk), then hUk (A, d)(j) denotes the set Bj , for every 0 � j � k. Similarly, if
hGk (A) = (B0, . . . , Bk), then hGk (A)(j) denotes the set Bj , for every 0 � j � k.

The functions gl and gr are used in the translation of the formulae with the main
connective being either conjunction or disjunction. For a given EMTLKD formulaα∧β,
if a set A is used to translate this formula, then the set gl(A, fk(α)) is used to translate
the subformula α and the set gr(A, fk(β)) is used to translate the subformula β; for
a given EMTLKD formula α ∨ β, if a set A is used to translate this formula, then the
set gl(A, fk(α)) is used to translate the subformula α and the set gl(A, fk(β)) is used
to translate the subformula β.

The function gs is used in the translation of the formulae with the main connective

Q ∈ {Kc, K̂
j

c, Oc , DΓ , EΓ }. For a given EMTLKD formula Qα, if a set A is used
to translate this formula, then the path of the number min(A) is used to translate the
operator Q and the set gs(A) is used to translate the subformula α.

The function hUk is used in the translation of subformulae of the form αUIβ. If a set
A is used to translate the subformula αUIβ at the symbolic k-path πn (with starting
point m), then for every j such that m � j � k, the set hUk (A, fk(β))(k) is used to
translate the formula β along the symbolic path πn with starting point j; moreover, for
every i such that m � i < j, the set hUk (A, fk(β))(i) is used to translate the formula α
along the symbolic path πn with starting point i. Notice that if k does not divide |A|−d,
then hUk (A, d) is undefined. However, for every set A such that |A| = fk(αUIβ), it is
clear from the definition of fk that k divides |A| − fk(β).

The function hGk is used in the translation of subformulae of the form GIα. If a set
A is used to translate the subformula GIα along a symbolic k-path πn (with starting
point m), then for every j such that m � j � k and j ∈ I , the set hGk (A)(j), is used to
translate the formula α along the symbolic paths πn with starting point j; Notice that if
k+ 1 does not divide |A|, then hGk (A) is undefined. However, for every set A such that
|A| = fk(GIα), it is clear from the definition of fk that k + 1 divides |A|.

Let ϕ be an EMTLKD formula, and k � 0 a bound. We can define inductively the
translation of ϕ over path number n ∈ Fk(ϕ) starting at symbolic state wm,n as shown
below. Let A′ = min(A), hUk = hUk (A, fk(β)) and hGk = hGk (A), then:

[true]
[m,n,A]
k := true, [false][m,n,A]

k := false,

[p]
[m,n,A]
k := p(wm,n), [¬p][m,n,A]

k := ¬p(wm,n),
[α ∧ β][m,n,A]

k := [α]
[m,n,gl(A,fk(α))]
k ∧ [β]

[m,n,gr(A,fk(β))]
k ,

[α ∨ β][m,n,A]
k := [α]

[m,n,gl(A,fk(α))]
k ∨ [β]

[m,n,gl(A,fk(β))]
k ,

[Xα]
[m,n,A]
k := [α]

[m+1,n,A]
k , if m < k

∨k−1
l=0 (Llk(πn) ∧ [α]

[l+1,n,A]
k ), if m = k

[αUIβ]
[m,n,A]
k :=

∨k
j=m(In(j, I +m) ∧ [β]

[j,n,hU
k (k)]

k ∧
∧j−1
i=m[α]

[i,n,hU
k (i)]

k )∨
(
∨m−1
l=0 (Llk(πn)) ∧

∨m−1
j=0 (B>j (un) ∧ [β]

[j,n,hU
k (k)]

k ∧
(
∨m−1
l=0 (B=

l (un) ∧ In(j + k − l, I +m)))∧
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∧j−1
i=0 (B>i (un) → [α]

[i,n,hU
k (i)]

k ) ∧
∧k
i=m[α]

[i,n,hU
k (i)]

k )),

[GIα]
[m,n,A]
k := if right(I +m) � k, then

∧right(I+m)
j=max [α]

[j,n,hG
k (j)]

k ,

if right(I +m) > k, then
∨k−1
l=0 (Llk(πn)) ∧

∧k−1
j=max[α]

[j,n,hG
k (j)]

k ∧
∧max−1
j=0 ((B�

j (un) ∧ (
∨max−1
l=0 (B=

l (un)∧ In(j + k − l, I +m))))

→ [α]
[j,n,hG

k (j)]
k ), where max = max(left(I +m),m)

[Kcα]
[m,n,A]

k := Iι(w0,A′) ∧
∨k
j=0([α]

[j,A′,gs(A)]
k ∧Hc(wm,n, wj,A′)),

[Ocα]
[m,n,A]

k := Iι(w0,A′) ∧
∨k
j=0([α]

[j,A′,gs(A)]
k ∧HOc(wm,n, wj,A′)),

[K̂
d

cα]
[m,n,A]

k := Iι(w0,A′) ∧
∨k
j=0([α]

[j,A′,gs(A)]
k ∧ Ĥd

c (wm,n, wj,A′)),

[DΓα]
[m,n,A]

k := Iι(w0,A′) ∧
∨k
j=0([α]

[j,A′,gs(A)]
k ∧

∧
c∈Γ Hc(wm,n, wj,A′)),

[EΓα]
[m,n,A]

k := Iι(w0,A′) ∧
∨k
j=0([α]

[j,A′,gs(A)]
k ∧

∨
c∈Γ Hc(wm,n, wj,A′)),

[CΓα]
[m,n,A]

k := [
∨k
j=1(EΓ )

jα]
[m,n,A]
k .

Now, let α be an EMTLKD formula. For every subformula ϕ of α, we denote by
[ϕ]

[α,m,n,A]
k the propositional formula [M ]

Fk(α)
k ∧ [ϕ]

[m,n,A]
k , where [M ]

Fk(α)
k =

∧fk(α)−1
j=0

∧k−1
i=0 T (wi,j , wi+1,j) ∧

∧fk(α)−1
j=0

∨k
l=0 B

=
l (uj). We write V � ξ to mean

that the valuation V satisfies the propositional formula ξ. Moreover, we write si,j in-
stead of S(wi,j), and lj instead of J(uj).

The lemmas below state the correctness and the completeness of the presented trans-
lation respectively.

Lemma 6. Correctness of the translation Let M be a model, α an EMTLKD formula,
and k ∈ IN. For every subformula ϕ of the formula α, every (m,n) ∈ {0, . . . , k} ×
Fk(α), every A ⊆ Fk(α) \ {n} such that |A| = fk(ϕ), and every valuation V , the

following condition holds: V � [ϕ]
[α,m,n,A]
k implies M, ((s0,n, . . . , sk,n), ln)

m |=k ϕ.

Proof. Let n ∈ Fk(α), A be a set such that A ⊆ Fk(α) \ {n} and |A| = fk(ϕ), m be

a natural number such that 0 � m � k and V a valuation. Suppose that V � [ϕ]
[α,m,n,A]
k

and consider the following cases:

1. Let ϕ = p | ¬p | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | Xψ with p ∈ PV. See Lemma 3.1. of [33].
2. ϕ = ψ1UIψ2. Denote by A1 the propositional formula

∨k
j=m

(
In(j, I + m) ∧

[ψ2]
[j,n,hU

k (A,fk(ψ2))(k)]
k ∧

∧j−1
i=m[ψ1]

[i,n,hU
k (A,fk(ψ2))(i)]

k

)
, and by A2 the proposi-

tional formula
∨m−1
l=0 (Llk(πn)) ∧

∨m−1
j=0

(
B>j (un) ∧ [β]

[j,n,hU
k (A,fk(β))(k)]

k ∧
(
∨m−1
l=0 (B=

l (un)∧In(j+k−l, I+m)))∧
∧j−1
i=0 (B>i (un) → [α]

[i,n,hU
k (A,fk(β))(i)]

k )∧
∧k
i=m[α]

[i,n,hU
k (A,fk(β))(i)]

k

)
. Observe that V � [ψ1UIψ2]

[α,m,n,A]
k iff V � A1 ∨A2

iff V � A1 or V � A2. Let us denote by πl the k-path ((s0,n, . . . , sk,n), ln), and
consider two cases:
(a) V � A1. From this we get: (∃m � j � k)

(
j ∈ I +m and M,πjl |=k ψ2 and

(∀m � i < j)M,πil |=k ψ1

)
. Hence M,πml |=k ψ1UIψ2.

(b) V � A2. From this we get: l < m and π(k) = π(l) and (∀m � i � k)M,πil |=k
ψ1 and (∃l<j<m)(j+k−l ∈ I+m andM,πjl |=k ψ2 and (∀l<i<j)M,πil |=
ψ1). Hence M,πml |=k ψ1UIψ2.
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3. ϕ = GIψ. If right(I +m) � k, then by B1 we denote the propositional formula:
∧right(I+m)
j=max(left(I+m),m)[ψ]

[j,n,hG
k (A)(j)]

k . If right(I +m) > k, then by B2 we denote

the propositional formula:
∨k−1
l=0 (Llk(πn))∧

∧k−1
j=max(left(I+m),m)[ψ]

[j,n,hG
k (A)(j)]

k ∧
∧max(left(I+m),m)−1
j=0

((
B�
j (un)∧(

∨max(left(I+m),m)−1
l=0 (B=

l (un)∧In(j+k−l, I+
m)))

)
→ [ψ]

[j,n,hG
k (A)(j)]

k

)
. Observe that V � [GIψ]

[α,m,n,A]
k iff V � B1 ∨ B2 iff

V � B1 or V � B2. Let us denote by πl the k-path ((s0,n, . . . , sk,n), ln), and con-
sider two cases:

(a) V � B1. From this we get: k � right(I+m) and (∀j ∈ I +m)(M,πjl |=k ψ).
Thus M,πml |=k GIψ.

(b) V � B2. From this we get: k < right(I +m) and π(k) = π(l) and (∀max �
j < k) M,πjl |=k ψ and (∀l � j < max)(j + k − l ∈ I + m implies
M,πjl |=k ψ), where max = max(left(I +m),m). Thus M,πml |=k GIψ.

4. Let ϕ = Kcψ. Let n′ = min(A), and π̃l′ denotes the k-path ((g0,n′ , . . . , gk,n′), ln′).

By the definition of the translation we haveV � [Kcψ]
[α,m,n,A]
k implies V �Iι(w0,n′)

∧
∨k
j=0([ψ]

[α,j,n′,gs(A)]
k ∧Hc(wm,n, wj,n′)). Since V � Hc(wm,n, wj,n′) holds, we

have gm,n ∼c g′j,n′ , for some j ∈ {0, . . . , k}. Therefore, by inductive hypothe-

ses we get (∃0 � j � k)(M, π̃jl′ |=k ψ and gm,n ∼c g′j,n′). Thus we have

M, ((g0,n, . . . , gk,n), ln)
m |=k Kcψ.

5. Let ϕ = Y Γψ, where Y ∈ {D,E,C}, or ϕ = Ocψ, or ϕ = K̂
d

cψ. These can be
proven analogously to Case 4.

Let B and C be two finite sets of indices. Then, by V ar(B) we denote the set of all the
state variables appearing in all the symbolic states of all the symbolic k-paths whose
indices are taken from the set B. Moreover, for every valuation V and every set of
indices B, by V ↑ B we denote the restriction of the valuation V to the set V ar(B).
Notice that if B ∩ C = ∅, then V ar(B) ∩ V ar(C) = ∅. This property is used in the
proof of the following lemma.

Lemma 7. Completeness of the translation Let M be a model, k ∈ IN, and α an
EMTLKD formula such that fk(α) > 0. For every subformulaϕ of the formulaα, every
(m,n) ∈ {(0, 0)}∪{0, . . . , k}×Fk(α), everyA ⊆ Fk(α)\{n} such that |A| = fk(ϕ),
and every k-path πl, the following condition holds: M,πml |=k ϕ implies that there ex-

ists a valuation V such that πl = ((s0,n, . . . , sk,n), ln) and V � [ϕ]
[α,m,n,A]
k .

Proof. First, note that given an EMTLKD formula α, and natural numbers k,m, n with
0 � m � k and n ∈ Fk(α), there exists a valuation V such V � [M ]

Fk(α)
k . This is

because M has no terminal states. Now we proceed by induction on the complexity
of ϕ. Let n ∈ Fk(α), A be a set such that A ⊆ Fk(α) \ {n} and |A| = fk(ϕ), ρl
be a k-path in M , and m be a natural number such that 0 � m � k. Suppose that
M,πml |=k ϕ and consider the following cases:

1. Let ϕ = p | ¬p | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | Xψ with p ∈ PV. See the proof of Lemma
3.3. of [33].

2. ϕ = ψ1UIψ2. LetAj = hUk (A, fk(ψ2))(j), for each 0 � j � k. We have to consider
two cases:
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(a) (∃m� j�k)
(
j∈I+m and M,πjl |=k ψ2 and (∀m� i<j)M,πil |=k ψ1

)
. By

inductive hypothesis, there exist valuations V0, V1, . . . , Vk , such that (∃m �
j � k)

(
Vk � [ψ2]

[α,j,n,Ak]
k and (∀m � i < j)Vi � [ψ2]

[α,i,n,Ai]
k

)
. Since the

family of sets {Aj}0�j�k is pairwise disjoint and the formula In(j, I +m) has
always a constant value equal to true or false, then there exists a valuation
V such that (∃m � j � k)

(
V � In(j, I+m) ∧ [ψ2]

[α,j,n,Ak]
k and (∀m � i <

j)V � [ψ2]
[α,i,n,Ai]
k

)
. From this we get that (∃m � j � k)

(
V � In(j, I +

m)∧[ψ2]
[α,j,n,Ak]
k andV �

∧j−1
i=m[ψ1]

[α,i,n,Ai]
k

)
. Hence,V �

∨k
j=m(In(j, I+

m) ∧ [ψ2]
[α,j,n,Ak]
k ∧

∧j−1
i=m[ψ2]

[α,i,n,Ai]
k ). Thus, V � [ψ1UIψ2]

[α,m,n,A]
k .

(b) (∃l<j<m)(j+k−l∈I+m andM,πjl |=k ψ2 and (∀l < i < j)M,πil |= ψ1)
and (∀m � i � k)M,πil |=k ψ1 and l < m and π(k) = π(l). By in-
ductive hypothesis, there exist valuations V0, V1, . . . , Vk , such that (∃l < j <

m)(Vk � [ψ2]
[α,j,n,Ak]
k and (∀m � i < j)Vi � [ψ2]

[α,i,n,Ai]
k ) and (∀m � i �

k)Vi � [ψ2]
[α,i,n,Ai]
k . Since the family of sets {Aj}0�j�k is pairwise disjoint,

and the formula In(j+ k− l, I+m) has always a constant value equal to true
or false, there exists a valuation V such that (∃l < j < m)(V � In(j + k −
l, I +m) ∧ [ψ2]

[α,j,n,Ak]
k and (∀l < i < j)V � [ψ2]

[α,i,n,Ai]
k ) and (∀m � i �

k)V � [ψ2]
[α,i,n,Ai]
k . Moreover, V � Llk(πn). From this we get: V �

∨m−1
j=0

(B>j (un)∧ [ψ2]
[j,n,hU

k (A,fk(ψ2))(k)]
k ∧(

∨m−1
l=0 (B=

l (un)∧In(j + k− l, I +m)))

∧
∧j−1
i=0 (B>i (un) → [ψ1]

[i,n,hU
k (A,fk(ψ2))(i)]

k ) ∧
∧k
i=m[ψ1]

[i,n,hU
k (A,fk(ψ2))(i)]

k )

and V �
∨m−1
l=0 Llk(πn). Hence, V � [ψ1UIψ2]

[α,m,n,A]
k .

3. ϕ = GIψ. Let Aj = hGk (A)(j), for each 0 � j � k. We have to consider two cases:
(a) k ≥ right(I +m) and (∀j ∈ I +m)(M,πjl |=k α). By inductive hypothesis,

there exist valuations V0, V1, . . . , Vk, such that (∀j ∈ I+m)Vj � [ψ]
[α,j,n,Aj]
k .

Since the family of sets {Aj}0�j�k is pairwise disjoint, there exists a valu-

ation V such that (∀j ∈ I + m)V � [ψ]
[α,j,n,Aj ]
k . From this we get: V �

∧right(I+m)
j=max(left(I+m),m)[α]

[j,n,hG
k (A)(j)]

k . Hence, V � [GIψ]
[α,m,n,A]
k .

(b) k < right(I + m) and π(k) = π(l) and (∀max � j < k) M,πjl |=k α

and (∀l � j < max)(j + k − l ∈ I + m implies M,πjl |=k α), where
max = max(left(I + m),m). By inductive hypothesis, there exist valua-

tions V0, V1, . . . , Vk, such that (∀max � j < k)Vj � [ψ]
[α,j,n,Aj]
k and (∀l �

j < max)(j + k − l ∈ I + m implies Vj � [ψ]
[α,j,n,Aj]
k ). Since the fam-

ily of sets {Aj}0�j�k is pairwise disjoint, there exists a valuation V such

that (∀max � j < k)V � [ψ]
[α,j,n,Aj]
k and (∀l � j < max)(j + k −

l ∈ I +m implies V � [ψ]
[α,j,n,Aj ]
k ). Moreover, V � Llk(πn). From this we

get: V �
∨k−1
l=0 (Llk(πn)) ∧

∧k−1
j=max[ψ]

[j,n,hG
k (A)(j)]

k ∧
∧max−1
j=0 ((B�

j (un) ∧
(
∨max−1
l=0 (B=

l (un)∧ In(j + k − l, I + m)))) → [ψ]
[j,n,hG

k (A)(j)]
k ). Hence,

V � [GIψ]
[α,m,n,A]
k .
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4. Let ϕ = Kcψ. Since M,πml |=k Kcψ, we have that (∃π′
l′ ∈ Πk(ι))(∃0 � j � k)

(M,π′j
l′ |=k ψ and π(m) ∼c π′(j)). Let n′ = min(A) and B = gs(A). By

the inductive hypothesis and the definition of the formula Hc , there exists a valu-

ation V ′ such that V ′ � [M ]
Fk(α)
k and V ′ � [ψ]

[j,n′,B]
k ∧Hc(wm,n, wj,n′) for some

j ∈ {0, . . . , k}. Hence we have V ′ �
∨k
j=0([ψ]

[j,n′,B]
k ∧ Hc(wm,n, wj,n′)). Fur-

ther, since π′
l′ ∈ Πk(ι), π′

l′(0) = ι. Thus, by the definition of the formula I ,

we get that V ′ � Iι(w0,n′). Therefore we have V ′ � Iι(w0,n′)∧
∨k
j=0([ψ]

[j,n′,B]
k ∧

Hc(wm,n, wj,n′)), which implies that V ′ � [Kcψ]
[m,n,A]

k . Since n′ /∈ B and n /∈ A,

there exists a valuation V such that V ↑B = V ′ ↑B and moreover V � [M ]
Fk(α)
k

and V � [Kcψ]
[m,n,A]

k . Therefore we get V � [Kcψ]
[α,m,n,A]
k .

5. Let ϕ = Y Γψ, where Y ∈ {D,E,C}, or ϕ = Ocψ, or ϕ = K̂
d

cψ. These can be
proven analogously to Case 4.

Theorem 2. Let M be a model, and ϕ an EMTLKD formula. Then for every k ∈ IN,
M |=∃

k ϕ if, and only if, the propositional formula [M,ϕ]k is satisfiable.

Proof. (=⇒) Let k ∈ IN andM,πl |=k ϕ for some πl ∈ Πk(ι). By Lemma 7 it follows
that there exists a valuation V such that πl = ((s0,0, . . . , sk,0), l0) with S(w0,0) =

s0,0 = ι and V � [ϕ]
[ϕ,0,0,Fk(ϕ)]
k . Hence, V � I(w0,0) ∧ [M ]

Fk(ϕ)
k ∧ [ϕ]

[0,0,Fk(ϕ)]
k .

Thus V � [M,ϕ]k.
(⇐=) Let k ∈ IN and [M,ϕ]k is satisfiable. It means that there exists a valuation V

such that V � [M,ϕ]k. So, V � I(w0,0) and V � [M ]
Fk(ϕ)
k ∧ [ϕ]

[0,0,Fk(ϕ)]
k . Hence, by

Lemma 6 it follows that M, ((s0,0, . . . , sk,0), l0) |=k ϕ and S(w0,0) = s0,0 = ι. Thus
M |=∃

k ϕ.

Now, from Theorems 1 and 2 we get the following.

Corollary 1. Let M be a model, and ϕ an EMTLKD formula. Then, M |=∃ ϕ if, and
only if, there exists k ∈ IN such that the propositional formula [M,ϕ]k is satisfiable.

5 Experimental Results

Our SAT-base BMC method for EMTLKD is, to our best knowledge, the first one for-
mally presented in the literature, and moreover there is no any other model checking
technique for the considered EMTLKD language. Further, our implementation of the
presented BMC method uses Reduced Boolean Circuits (RBC) [1] to represent the
propositional formula [M,ϕ]k. An RBC represents subformulae of [M,ϕ]k by fresh
propositions such that each two identical subformulae correspond to the same propo-
sition1. For the tests we have used a computer with Intel Core i3-2125 processor,

1 Following van der Meyden at al. [12], instead of using RBCs, we could directly encode
[M,ϕ]k in such a way that each subformula ψ of [M,ϕ]k occurring within a scope of a k-
element disjunction or conjunction is replaced with a propositional variable pψ and the re-
duced formula [M,ϕ]k is conjuncted with the implication pψ ⇒ ψ. However, in this case our
method, as the one proposed in [12], would not be complete.
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8 GB of RAM, and running Linux 2.6. We set the timeout to 5400 seconds, and memory
limit to 8GB, and we used the state of the art SAT-solver MiniSat 2. The specifications
for the described benchmark are given in the universal form, for which we verify the
corresponding counterexample formula, i.e., the formula which is negated and inter-
preted existentially.
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in1 in1
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out1in2 in2

ap1 ap2
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out2

in1

in1

in2

in2

out1out2

Fig. 1. An DIIS of FTC for two trains. Null ac-
tions are omitted.

To evaluate our technique, we have
analysed a scalable multi-agent system,
which is a faulty train controller system
(FTC). Figure 1 presents a DIIS com-
posed of three agents: a controller and
two trains, but in general the system con-
sists of a controller, and n trains (for n �
2) that use their own circular tracks for
travelling in one direction (states Away
(A)). At one point, all trains have to pass
through a tunnel (states Tunnel ’T’), but
because there is only one track in the tun-
nel, trains arriving from each direction
cannot use it simultaneously. There are colour light signals on both sides of the tunnel,
which can be either red (state ’R’) or green (state ’G’). All trains notify the controller
when they request entry to the tunnel or when they leave the tunnel. The controller con-
trols the colour of the colour light signals, however it can be faulty (state ’F’), i.e., a
faulty traffic light remains green when a train enters the tunnel, and thereby it does not
serve its purpose. In the figure, the initial states of the controller and the trains are ’G’
and ’W’ (Waiting in front of the tunnel) respectively, and the transitions with the same
label are synchronised.

Let PV = {inT1, . . . inTn, Red} be a set of propositional variables, which we find
useful in analysis of the scenario of the FTC system. A valuation function V : S → 2PV

is defined as follows. LetAg = {Train1 (T 1), . . . , T rainN (TN), Controller (C)}.
Then, inTc ∈ V(s) if lc(s) = T and c ∈ Ag \ {C}; Red ∈ V(s) if lC(s) = R. The
specifications are the following:

ϕ1 = G[0,∞] OC(
∧n−1
i=1

∧n
j=i+1 ¬(InTi ∧ InTj)). “Always when Controller is func-

tioning correctly, trains have exclusive access to the tunnel”.
ϕ2 = G[0,∞](inT1 ⇒ K̂CT1(

∧n
i=2(¬inTi))). “Always when Train1 is in the tunnel, it

knows under assumption that Controller is functioning correctly that none of the
other trains is in the tunnel”.

ϕ3 = G[0,∞](inT1 ⇒ K̂CT1(Red)). “Always when Train1 is in the tunnel, it knows
under assumption that Controller is functioning correctly that the colour of the light
signal for other trains is red”.

ϕ4 = G[0,∞](InT1 ⇒ KT1(F[1,n+1](
∨n
i=1 InTi))). “Always when Train1 is in the

tunnel, it knows that either it or other train will be in the tunnel during the next
n+ 1 time units”.

ϕ5 = G[0,∞](InT1 ⇒ KT1(G[3m−2,3m−2]InT1 ∨ F[1,n+1](
∨n
i=2 InTi))), wherem �

2. “Always when Train1 is in the tunnel, it knows that either he is in the tunnel every
3m−2 time units or other train will be in the tunnel during the nextn+1 time units”.
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All the above properties are false in our DIIS model of the FTC system. Since there is no
model checker that supports the EMTLKD properties, we were not able to compare our
results with others for the above formulae; McMAS [25] is the only model checker that
supports deontic modalities, however it is designated for branching time logics only.
Thus, we present results of our method only. An evaluation is given by means of the
running time and the memory used, and it is presented on the included line-charts. It
can be observed that for ϕ1, ϕ2, ϕ3, ϕ4 and ϕ5 we managed to compute the results for
130, 1300, 2900, 8, and 22 trains, respectively, in the time of 5400 seconds. The exact
data for the mentioned maximal number of trains are the following:

ϕ1: k = 4, fk(ϕ1) = 2, bmcT is 5.44, bmcM is 14.00, satT is 483.61, satM is 632.00,
bmcT+satT is 489.05, max(bmcM,satM) is 632.00;

ϕ2: k = 4, fk(ϕ2) = 2, bmcT is 148.02, bmcM is 909.00, satT is 3850.09, satM
1511.00, bmcT+satT is 3998.11, max(bmcM,satM) is 1511.00;

ϕ3: k = 1, fk(ϕ3) = 2, bmcT is 98.89, bmcM is 1114.00, satT is 9.69, satM 1869.00,
bmcT+satT is 108.58, max(bmcM,satM) is 1869.00;

ϕ4: k = 24, fk(ϕ4) = 2, bmcT is 2.00, bmcM is 3.57, satT is 1401.24, satM 93.00,
bmcT+satT is 1403.24, max(bmcM,satM) is 93.00;

ϕ5: k = 65, fk(ϕ5) = 2, bmcT is 281.50, bmcM is 18.13, satT is 149.59, satM 249.00,
bmcT+satT is 431.10, max(bmcM,satM) is 249.00,

where k is the bound, fk(ϕ) is the number of symbolic paths, bmcT is the encoding
time, bmcM is memory use for encoding, satT is satisfiability checking time, satM is
memory use for satisfiability checking.

The formulae ϕ1, ϕ2 and ϕ3 corroborates the efficiency of the SAT-based BMC
methods when the length of the counterexamples does not grow with the number of
agents (trains). On the other hand the formulae ϕ4 and ϕ5 demonstrate that SAT-based
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BMC becomes inefficient when the the length of the counterexamples grows with the
number of agents (trains).

6 Conclusions

We have proposed, implemented, and experimentally evaluated a BMC method for
EMTLKD interpreted over deontic interleaved interpreted systems. The experimental
results show that the method is very promising.

In [21] it has been shown that the BDD- and SAT-based BMC approaches for ELTLK
(an existential part of LTL that is extended with epistemic operators) are complemen-
tary. This result is consistent with comparisons for pure temporal logics [5]. Thus, in
the future we are going to check whether the same results we can get for DIIS and
EMTLKD. Therefore, we are going to define and implement a BDD-based BMC algo-
rithm for EMTLKD, and compare it with the method presented in this paper.

In [20] the semantics of interpreted systems (IS) and interleaved interpreted sys-
tems (IIS) were experimentally evaluated by means of the BDD-based bounded model
checking method for LTLK. IIS restrict IS by enforcing asynchronous semantics. The
paper shows that the modelling approach has a very strong impact on the efficiency of
verification by means of BMC. Thus, our future work will involve an implementation
of the method for deontic interpreted systems and a comparison of the SAT-based BMC
for DIS with the method presented in this paper.
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to Bounded Model Checking for Linear Time Logic with Knowledge. In: Jezic, G., Kusek,
M., Nguyen, N.-T., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2012. LNCS, vol. 7327, pp.
514–523. Springer, Heidelberg (2012)

22. Penczek, W., Lomuscio, A.: Verifying epistemic properties of multi-agent systems via
bounded model checking. In: Proceedings of AAMAS 2003, pp. 209–216. ACM (2003)
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