
Matteo Baldoni
Louise Dennis
Viviana Mascardi
Wamberto Vasconcelos (Eds.)

 123

LN
AI

 7
78

4

10th International Workshop, DALT 2012
Valencia, Spain, June 2012
Revised Selected Papers

Declarative
Agent Languages
and Technologies X

Lecture Notes in Artificial Intelligence 7784

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Matteo Baldoni Louise Dennis
Viviana Mascardi WambertoVasconcelos (Eds.)

Declarative
Agent Languages
and Technologies X
10th International Workshop, DALT 2012
Valencia, Spain, June 4, 2012
Revised Selected Papers

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Matteo Baldoni
Università degli Studi di Torino, Dipartimento di Informatica
Via Pessinetto, 12, 10149 Torino, Italy
E-mail: baldoni@di.unito.it

Louise Dennis
University of Liverpool, Department of Computer Science
Ashton Building, Liverpool, L69 3 BX, UK
E-mail: l.a.dennis@liverpool.ac.uk

Viviana Mascardi
Università degli Studi di Genova, DIBRIS, Dipartimento di Informatica
Via Dodecaneso, 35, 16146, Genova, Italy
E-mail: viviana.mascardi@unige.it

Wamberto Vasconcelos
University of Aberdeen, Department of Computing Science
Meston Building, Aberdeen, AB24 3UE, UK
E-mail: w.w.vasconcelos@abdn.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-37889-8 e-ISBN 978-3-642-37890-4
DOI 10.1007/978-3-642-37890-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013935526

CR Subject Classification (1998): I.2.11, I.2.0, I.2.2-4, F.3.1, D.2, D.1.6, F.1.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The Workshop on Declarative Agent Languages and Technologies (DALT), in its
tenth edition in 2012, is a well-established forum for researchers and practitioners
interested in exploiting declarative approaches for tackling the great challenges
that today’s distributed applications raise. Current distributed systems are usu-
ally made up of highly autonomous components working in open, dynamic, and
unpredictable environments. A large, useful, practical, and popular subcategory
of such distributed systems includes software agents and multi-agent systems
(MASs). Designing, developing, testing, and maintaining such systems calls for
models and technologies that ensure predictability and allow for the verification
of critical properties, while still maintaining flexibility. Rapid prototyping and
knowledge representation and management are often important in the design and
development of such systems. Declarative approaches have the potential to offer
solutions that satisfy the needs arising when engineering systems as complex as
MASs. For this reason, declarative approaches have gained more and more atten-
tion in important application areas such as the Semantic Web, service-oriented
computing, security, and electronic contracting.

This volume presents the latest developments in the area of declarative
languages and technologies, which aim to provide rigorous frameworks for en-
gineering autonomous interacting agents. These frameworks are based on com-
putational logics and other formal methods such as mathematical models and
game theoretical approaches that facilitate the development of agents reasoning
and acting rationally, and support the formal verification of the agents’ behavior
against their specification.

In the tradition of DALT, the 2012 meeting was held as a satellite workshop of
the 11th International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2012), in Valencia, Spain. Following the success of DALT 2003
in Melbourne (LNAI 2990), DALT 2004 in New York (LNAI 3476), DALT 2005
in Utrecht (LNAI 3904), DALT 2006 in Hakodate (LNAI 4327), DALT 2007 in
Honolulu (LNAI 4897), DALT 2008 in Estoril (LNAI 5397), DALT 2009 in Bu-
dapest (LNAI 5948), DALT 2010 in Toronto (LNAI 6619), and DALT 2011 in
Taiwan (LNAI 7169), DALT 2012 was organized as a forum in which theoreticians
and practitioners could meet for scientific exchange on declarative approaches for
specifying, verifying, programming, and running software agents and MASs.

This volume contains 13 contributions: four are revised and extended versions
of short papers accepted at AAMAS 2012; and the remaining nine papers are
original contributions presented at DALT 2012, revised and extended in light
of our reviewers’ comments. All the full papers have been carefully reviewed to
check their originality, quality, and technical soundness. The DALT 2012 work-
shop received eight regular submissions and three position papers. Six papers
and three position papers were selected by the Program Committee and are

VI Preface

included in this volume. Each paper received at least three reviews. The posi-
tion papers were an innovation introduced to celebrate DALT’s 10th edition and
the Alan Turing year. Each paper received two “light touch” reviews and was
evaluated on the basis of its potential for stimulating discussion.

“Handling Change in Normative Specifications” by Duangtida Athakravi,
Domenico Corapi, Alessandra Russo, Marina De Vos, Julian Padget, and Ken
Satoh describes a (semi-)automated process for controlling the elaboration of
normative specifications and demonstrates its effectiveness through a proof-of-
concept case study. The methodology for elaborating normative specifications
is based on use-cases to capture desirable and undesirable system behaviors,
and inductive logic programming to justify why certain changes are better than
others.

“Latest Developments of WADE to Support User-Centric Business Processes”
by Federico Bergenti, Giovanni Caire, and Danilo Gotta presents the latest
developments of WADE (Workflows and Agents Development Environment),
aimed at enhancing its agent-based runtime platform by providing improved
non-functional features and a better integration with the external software sys-
tems, and enabling the rapid and effective realization of user-centric business
processes.

“Strong Planning in the Logics of Communication and Change” by Pere
Pardo and Mehrnoosh Sadrzadeh discusses how to adapt backward plan search
to the logics of communication and change (LCC). The proposed LCC planning
system greatly expands the social complexity of scenarios involving cognitive
agents that can be solved: for example, goals or plans may consist of a certain
distribution of beliefs and ignorance among agents.

“Agent Deliberation via Forward and Backward Chaining in Linear Logic” by
Luke Trodd, James Harland, and John Thangaraja explores how a BDI approach
can be implemented in the Lygon logic programming language based on linear
logic. The way backward and forward chaining techniques can be used to provide
proactive and reactive agent behaviors is discussed, as well as extensions to Lygon
to generate plans that achieve a given goal using abduction techniques, and to
proactively check maintenance goals.

“Automatic Generation of Self-Monitoring MASs from Multiparty Global
Session Types in Jason” by Davide Ancona, Sophia Drossopoulou, and Viviana
Mascardi exploits global session types specifying multi-party interaction proto-
cols to allow automatic generation of self-monitoring MASs. Such a generated
MAS ensures that agents conform to the protocol at run-time, by adding a mon-
itor agent that checks that the ongoing conversation is correct w.r.t. the global
session type.

“A Generalized Commitment Machine for 2CL Protocols and Its Imple-
mentation” by Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, Elisa
Marengo, and Viviana Patti proposes an operational semantics for the commit-
ment protocol language 2CL. This semantics relies on an extension of Singh’s
Generalized Commitment Machine and has been implemented in Prolog by ex-
tending Winikoff, Liu, and Harland’s implementation with a graphical tool that

Preface VII

allows the analyst to explore all the possible executions, showing both commit-
ment and constraint violations.

“Solving Fuzzy Distributed CSPs: An Approach with Naming Games” by
Stefano Bistarelli, Giorgio Gosti, and Francesco Santini focuses on solving both
Fuzzy Naming Games and Fuzzy Distributed Constraint Satisfaction Problems
(DCSPs) with an algorithm inspired by Naming Games. With respect to classical
Fuzzy DCSPs, the proposed system can react to small instance changes, and the
algorithm does not require a pre-agreed agent/variable ordering.

“Commitment Protocol Generation” by Akin Gunay, Michael Winikoff, and
Pınar Yolum faces the problem of generating commitment protocols on the fly
to interact with other agents when no predefined protocols are available. The
generation algorithm considers the agent’s own goals and capabilities as well
as its beliefs about other agents’ goals and capabilities, in order to generate
commitments that are more likely to be accepted by other agents.

“Goal-Based Qualitative Preference Systems” by Wietske Visser, Koen Hin-
driks, and Catholijn Jonker shows that qualitative preference systems (QPSs)
provide a general, flexible, and succinct way to represent preferences based on
goals. If the domain is not Boolean, preferences are often based on orderings
on the possible values of variables. The paper shows that QPSs based on such
multi-valued criteria can be translated into equivalent goal-based QPSs that are
just as succinct, and that goal-based QPSs allow for more fine-grained updates
than their multi-valued counterparts.

“SAT-Based BMC for Deontic Metric Temporal Logic and Deontic Inter-
leaved Interpreted Systems” by Bożena Woźna-Szcześniak and Andrzej Zbrzezny
considers MASs modeled by deontic interleaved interpreted systems and provides
a new SAT-based bounded model checking (BMC) method for these systems.
The properties of MASs are expressed by means of the metric temporal logic with
discrete semantics and extended to include epistemic and deontic operators.

“Some Thoughts About Commitment Protocols (Position Paper)” by Matteo
Baldoni and Cristina Baroglio deals with commitment protocols and, after more
than ten years from their introduction, look at whether a “commitment to do
something” is the only kind of regulative norm that we need in order to give
social semantics to a physical action, and if commitment protocols realize what
they promised.

“Semantic Web and Declarative Agent Languages and Technologies: Current
and Future Trends” (Position Paper) by Viviana Mascardi, James Hendler, and
Laura Papaleo reviews the state of the art in the integration of Semantic Web
concepts in declarative agent languages and technologies and outlines what the
authors expect the future trends of this research topic to be.

“Designing and Implementing a Framework for BDI-Style Communicating
Agents in Haskell” (Position Paper) by Riccardo Traverso and Alessandro Soli-
mando presents the design and prototypical implementation of a framework for
BDI-style agents defined as Haskell functions, supporting both the explicit rep-
resentation of beliefs and backtracking (at the level of individual agents), and
asynchronous communication via message passing.

VIII Preface

Given the exciting discussion carried out during the workshop and the high
quality of the papers collected in this volume, the DALT 2012 organizers would
like to thank all authors for their contributions, the members of the Steering
Committee for the valuable suggestions and support, and the members of the
Program Committee for their excellent work during the reviewing phase

January 2013 Matteo Baldoni
Louise Dennis

Viviana Mascardi
Wamberto Vasconcelos

Organization

Workshop Organizers

Matteo Baldoni University of Turin, Italy
Louise Dennis University of Liverpool, UK
Viviana Mascardi University of Genova, Italy
Wamberto Vasconcelos University of Aberdeen, UK

Programe Committee

Thomas Ågotnes Bergen University College, Norway
Marco Alberti Universidade Nova de Lisboa, Portugal
Natasha Alechina University of Nottingham, UK
Cristina Baroglio University of Turin, Italy
Rafael Bordini Pontificia Universidade Católica do Rio

Grande do Sul, Brazil
Jan Broersen University of Utrecht, The Netherlands
Federico Chesani University of Bologna, Italy
Flavio Correa Da Silva Universidade de São Paulo, Brazil
Marina De Vos University of Bath, UK
Francesco Donini Università della Tuscia, Italy
Michael Fink Vienna University of Technology, Austria
James Harland RMIT University, Australia
Andreas Herzig Paul Sabatier University, France
Koen Hindriks Delft University of Technology,

The Netherlands
Shinichi Honiden National Institute of Informatics, Japan
João Leite Universidade Nova de Lisboa, Portugal
Yves Lespérance York University, Canada
Nicolas Maudet University of Paris-Dauphine, France
John-Jules C. Meyer Utrecht University, The Netherlands
Peter Novak Czech Technical University in Prague,

Czech Republic
Fabio Patrizi Imperial College London, UK
Enrico Pontelli New Mexico State University, USA
David Pym University of Aberdeen, UK
Alessandro Ricci University of Bologna, Italy
Michael Rovatsos The University of Edinburgh, UK
Guillermo Simari Universidad Nacional del Sur, Argentina
Tran Cao Son New Mexico State University, USA

X Table of Contents

Steering Committee

Matteo Baldoni University of Turin, Italy
Andrea Omicini University of Bologna-Cesena, Italy
M. Birna van Riemsdijk Delft University of Technology,

The Netherlands
Tran Cao Son New Mexico State University, USA
Paolo Torroni University of Bologna, Italy
Pınar Yolum Bogazici University, Turkey
Michael Winikoff University of Otago, New Zealand

Additional Reviewers

Michal Cap Czech Technical University in Prague,
Czech Republic

Table of Contents

Invited Papers

Handling Change in Normative Specifications . 1
Duangtida Athakravi, Domenico Corapi, Alessandra Russo,
Marina De Vos, Julian Padget, and Ken Satoh

Latest Developments of WADE to Support User-Centric Business
Processes . 20

Federico Bergenti, Giovanni Caire, and Danilo Gotta

Strong Planning in the Logics of Communication and Change 37
Pere Pardo and Mehrnoosh Sadrzadeh

Agent Deliberation via Forward and Backward Chaining in Linear
Logic . 57

Luke Trodd, James Harland, and John Thangarajah

Contributed Papers

Automatic Generation of Self-monitoring MASs from Multiparty
Global Session Types in Jason . 76

Davide Ancona, Sophia Drossopoulou, and Viviana Mascardi

A Generalized Commitment Machine for 2CL Protocols and Its
Implementation . 96

Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati,
Elisa Marengo, and Viviana Patti

Solving Fuzzy Distributed CSPs: An Approach with Naming Games 116
Stefano Bistarelli, Giorgio Gosti, and Francesco Santini

Commitment Protocol Generation . 136
Akın Günay, Michael Winikoff, and Pınar Yolum

Goal-Based Qualitative Preference Systems . 153
Wietske Visser, Koen V. Hindriks, and Catholijn M. Jonker

SAT-Based BMC for Deontic Metric Temporal Logic and Deontic
Interleaved Interpreted Systems . 170

Bożena Woźna-Szcześniak and Andrzej Zbrzezny

XII Table of Contents

Position Papers

Some Thoughts about Commitment Protocols (Position Paper) 190
Matteo Baldoni and Cristina Baroglio

Semantic Web and Declarative Agent Languages and Technologies:
Current and Future Trends (Position Paper) . 197

Viviana Mascardi, James Hendler, and Laura Papaleo

Designing and Implementing a Framework for BDI-Style
Communicating Agents in Haskell (Position Paper) 203

Alessandro Solimando and Riccardo Traverso

Author Index . 209

Handling Change in Normative Specifications

Duangtida Athakravi1, Domenico Corapi1, Alessandra Russo1, Marina De Vos2,
Julian Padget2, and Ken Satoh3

1 Department of Computing
Imperial College London

{da407,d.corapi,a.russo}@imperial.ac.uk
2 Department of Computing

University of Bath
{mdv,jap}@cs.bath.ac.uk

3 Principles of Informatics Research Division
National Institute of Informatics

ksatoh@nii.ac.jp

Abstract. Normative frameworks provide a means to address the governance of
open systems, offering a mechanism to express responsibilities and permissions
of the individual participants with respect to the entire system without compro-
mising their autonomy. In order to meet requirements careful design is crucial.
Tools that support the design process can be of great benefit. In this paper, we de-
scribe and illustrate a methodology for elaborating normative specifications. We
utilise use-cases to capture desirable and undesirable system behaviours, employ
inductive logic programming to construct elaborations, in terms of revisions and
extensions, of an existing (partial) normative specification and provide justifica-
tions as to why certain changes are better than others. The latter can be seen as
a form of impact analysis of the possible elaborations, in terms of critical conse-
quences that would be preserved or rejected by the changes. The main contribu-
tions of this paper is a (semi) automated process for controlling the elaboration
of normative specifications and a demonstration of its effectiveness through a
proof-of-concept case study.

1 Introduction

Normative frameworks provide a powerful tool for governing open systems by pro-
viding guidelines for the behaviour of the individual components without regimenta-
tion [1]. Using a formal declarative language to specify the behaviour of a normative
system gives the system’s designer a means to verify the compliance of the system with
respect to desirable behaviours or properties [2, 3]. When errors are detected, manually
identifying what changes to make in order to attain compliance with desired behaviours
is often difficult and error-prone: additional errors may be inadvertently introduced in
the specification as a result of misinterpretations, incompleteness or unexpected impact
of the manual changes. The availability of a systematic and automated framework for
elaborating and handling change in normative specifications would benefit the develop-
ment process of such systems.

Corapi et al. [4] have shown how Inductive Logic Programming (ILP) can be used to
support the elaboration of partial normative specifications, modelled using Answer Set

M. Baldoni et al. (Eds.): DALT 2012, LNAI 7784, pp. 1–19, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 D. Athakravi et al.

Programming (ASP). The system designer provides intended behaviours in the form
of use-cases. These are defined as specific (partial) scenarios of events and expected
outcomes, and are used to validate the correctness of the specifications. Use-cases that
fail the validation process are taken as positive examples (or learning objectives) for an
inductive learning tool, which in turn constructs suggestions for improving the specifi-
cation to guarantee the satisfiability of the failed use-cases. The learning of such sug-
gestions (or elaborations) is performed within a search space defined by a given set of
mode declarations that captures the format of possible changes that could be applied to
a given formalised normative specification.

Use-cases are inherently partial descriptions of a system behaviour. While their sparse
nature is well suited for the non-monotonicity of ASP, the learning process also be-
comes less restricted, thus causing the problem of how to choose among the multiple
suggestions for change computed by the learner. For example, the failure to signal a
violation when an agent tries to borrow a book from a library could be caused by the
specification not correctly capturing any one of the following conditions: (i) the agent
has already borrowed the maximum number of items allowed, (ii) the book is for refer-
ence only, or (iii) a combination of all these reasons. In general, to address any of these
errors and establish the desired violations, there is more than one possible revision for
the given specification, with each one having its own impact on the overall behaviour
of the system. Thus, the problem with choosing the most appropriate revision is not the
revision itself, but the effect of that revision when it is combined with the rest of the
system and ensuring that desired system properties are maintained and undesired ones
are not introduced.

The approach in [4] lacks criteria for selecting among a (possibly large) number of
learned suggestions. This paper addresses this limitation and the general problem of
how to choose between alternative changes to make to a (partial) normative specifica-
tion, by providing an approach for analysing the impact of these changes. We make use
of the notion of relevant literals as critical elements of the domain that are required to
be positive or negative consequences in the intended specification, in order to discrimi-
nate between the suggested changes. The solution proposed in this paper provides also
a general method for choosing among alternative hypotheses in the wider context of
inductive learning.

The remainder of the paper is structured as follows: the next two sections provide
background in the form of a summary of the formal and computational model (sec-
tion 2) and an outline of the revision process (section 3) as described in detail in [4]; the
method of test generation and the ranking of results is described in section 4 and then
demonstrated in section 5 using the same file-sharing scenario as [4]. The paper ends
with a discussion of some related work (section 6) and conclusions (section 7).

2 Normative Framework

Actions that we take in society are regulated by laws and conventions. Similarly, actions
taken by agents or entities in open systems may be regulated or governed by the social
rules of the system they operate in. It is the task of the normative framework to specify
these rules and observe the interactions between the various entities with respect to these

Handling Change in Normative Specifications 3

rules. The essential idea of normative frameworks is a (consistent) collection of rules
whose purpose is to describe A standard or pattern of social behaviour that is accepted
in or expected of a group [OED]. These rules may be stated in terms of events or actions,
but specifically the events that matter for the functioning of the normative framework,
based on its current state. In turn, each event/action can influence the normative state.

The control of an agent’s or entity’s power (effectiveness of an action) and permis-
sion to perform certain actions, its obligations and violations of the norms, needs to
occur within the context of normative system. For example, raising a hand in class
means something different than raising a hand during an auction. This relation between
the physical and normative context is described by Conventional Generation [5] where
an event in the physical world may correspond to an normative event. An example is
clicking the “buy” button on Amazon, which counts as paying for the good.

2.1 The Formal Model

In this paper we use the model as set out in [2] based on the concept of exogenous
events within the physical world and normative states, those within the framework’s
context. Events change the state of the normative system by acting on normative fluents,
properties of the system that can be true at certain points in time.

The essential elements of the normative framework (summarised in Fig. 1(a)) are
events (E), which bring about changes in state, and fluents (F), which characterise the
state at a given instant. The function of the framework is to define the interplay between
these concepts over time, in order to capture the evolution of a particular institution
through the interaction of its participants. The model has two kinds of events: normative
(Enorm), that are the events defined by the framework, and exogenous (Eex), some of
whose occurrence may trigger normative events in a direct reflection of “counts-as” [6],
while the rest may have no relevance for a given framework. Normative events are
further partitioned into normative actions (Eact) that denote changes in normative state
and violation events (Eviol), that signal the occurrence of violations. Violations may
arise either from explicit generation, (i.e. from the occurrence of a non-permitted event),
or from the non-fulfilment of an obligation. The model also has two kinds of fluents:
normative fluents that denote normative properties of the state such as permissions (P),
powers (W) and obligations (O), and domain fluents (D) that correspond to properties
specific to a particular normative framework.

A normative state is represented by the fluents that hold true in that state. Fluents
that are not present are held to be false. Conditions on a state (X) are expressed by a set
of fluents that should be true or false. The normative framework is initialised with the
state I.

Changes in the normative state are specified by two relations: (i) the generation
relation (G), which implements counts-as by specifying how the occurrence of one (ex-
ogenous or normative) event generates another (normative) event, subject to the empow-
erment of the actor and the conditions on the state, and (ii) the consequence relation (C),
which specifies the initiation and termination of fluents, given a certain state condition
and event.

The semantics of a normative framework is defined over a sequence, called a trace,
of exogenous events. Starting from the initial state, each exogenous event is responsible

4 D. Athakravi et al.

N = 〈E ,F , C,G, I〉, where

1. F = W ∪P ∪O ∪ D
2. G : X × E → 2Enorm

3. C : X × E → 2F × 2F

where
C(X, e) =
(C↑(φ, e), C↓(φ, e)) where

(i) C↑(φ, e) initiates
fluents

(ii) C↓(φ, e) terminates
fluents

4. E = Eex ∪ Enorm

with Enorm = Eact ∪ Eviol

5. I, initial instiutional state
6. State Formula: X = 2F∪¬F

(a)

p ∈ F ⇔ ifluent(p). (1)
e ∈ E ⇔ event(e). (2)

e ∈ Eex ⇔ evtype(e, obs). (3)
e ∈ Eact ⇔ evtype(e, act). (4)
e ∈ Eviol ⇔ evtype(e, viol). (5)

C↑(φ, e) = P ⇔ ∀p ∈ P initiated(p, T) : − (6)
occurred(e, I), EX(φ, T). (7)

C↓(φ, e) = P ⇔ ∀p ∈ P terminated(p, T) : − (8)
occurred(e, T), EX(φ, T). (9)

G(φ, e) = E ⇔ ∀g ∈ E, occurred(g, T) : −
occurred(e, T),
holdsat(pow(e), T),EX(φ, T).

(10)
p ∈ I ⇔ holdsat(p, i00). (11)

(b)

Fig. 1. (a) Formal specification of the normative framework and (b) translation of normative
framework-specific rules into AnsProlog

for a state change, through the eventual initiation and termination of fluents. This is
achieved by a three-step process: (i) the transitive closure of G with respect to a given
exogenous event determines all the generated (normative) events, (ii) to this, all vio-
lations of non-permitted events and non-fulfilled obligations are added, giving the set
of all events whose consequences determine the new state, (iii) the application of C to
this set of events identifies all fluents that are initiated and terminated with respect to the
current state, so determining the next state. For each trace, the normative framework can
determine a sequence of states that constitutes the model of the framework for that trace.
This process is realised as a computational process using answer set programming.

2.2 Computational Model

The formal model described above is translated into an equivalent computational model
using answer set programming (ASP) [7] with AnsProlog as the implementation lan-
guage1. AnsProlog is a knowledge representation language that allows the program-
mer to describe a problem and the requirements for solutions declaratively, rather than
specifying an algorithm to find the solutions to the problem. The mapping follows the
naming convention used in the Event Calculus [8] and Action languages [9].

The basic components of the language are atoms, elements that can be assigned
a truth value. An atom can be negated using negation as failure or classical nega-
tion. Literals are atoms a or classically negated atoms −a. Extended literals are lit-
erals l or negated literals not l. The latter is true if there is no evidence supporting
the truth of a. Atoms and (extended) literals are used to create rules of the general
form: a : −b1, ..., bm, not c1, ..., not cn, where a, bi and cj are literals. Intuitively, this

1 In this paper we use the SMODELS syntax for writing AnsProlog programs.

Handling Change in Normative Specifications 5

means if all literals bi are known/true and no literal cj is known/true, then a must
be known/true. a is called the head and b1, ..., bm, not c1, ..., not cn the body of the
rule. Rules with an empty body are called facts. Rules with an empty head are called
constraints, indicating that no solution should be able to satisfy the body. A (normal)
program (or theory) is a conjunction of rules and is also denoted by a set of rules. The
semantics of AnsProlog is defined in terms of answer sets, that is, assignments of true
and false to all atoms in the program that satisfy the rules in a minimal and consistent
fashion. A program may have zero or more answer sets, each corresponding to a solu-
tion. They are computed by a program called an answer set solver. For this paper the
solver we used was ICLINGO [10].

The mapping of a normative framework consists of two parts: an independent base
component and the framework-specific component. The independent component deals
with inertia of the fluents, the generation of violation events of non-permitted actions
and of (un)fulfilled obligations.

The mapping uses the following atoms:

– ifluent(p) to identify fluents,
– evtype(e, t) to describe the type of an event,
– event(e) to denote the events,
– instant(i) for time instances,
– final(i) for the last time instance,
– next(i1, i2) to establish time ordering,
– occurred(e, i) to indicate that the (normative) event happened at time i,
– observed(e, i) that the (exogenous) event was observed at time i,
– holdsat(p, i) to state that the normative fluent p holds at i, and finally
– initiated(p, i) and terminated(p, i) for fluents that are initiated and termi-

nated at i.

Given that exogenous events are always empowered while normative events are not,
the mapping must keep type information for the events, hence the evtype(e, t) atoms.
Similarly, violation events are always permitted and empowered. However, all fluents,
irrespective of type, are treated the same way so the mapping does not differentiate
between them.

Figure 1(b) provides the framework-specific translation mechanism.An expression φ
in the framework is translated into AnsProlog rule bodies as conjunction of literals,
using negation as failure for negated expressions, denoted as EX(φ, T). The translation
of the formal model is augmented with a trace program that specifies (i) the length of
traces that the designer is interested in, and (ii) the property that each, except the final,
time instant is associated with exactly one exogenous event (iii) specifics of the desired
trace(s), for example length, or the occurrence of a specific event.

3 Revising Normative Rules

In this section we briefly summarise the approach described in [4] for computing
elaborations of normative specifications through use-cases by means of non-monotonic
inductive logic programming. Our proposed technique for analysing the impact that

6 D. Athakravi et al.

possible elaborations could have on a normative specification extends this approach
with a formal mechanism for narrowing down the number of suggested elaborations
based on a notion of relevant literals.

The development of a normative specification is captured in [4] by an iterative pro-
cess that supports automated synthesis of new rules and revisions of existing one from
given use-cases. The latter represent instances of executions that implicitly capture the
desired behaviour of the system. They are defined as tuples 〈T,O〉 where T (trace)
specifies a (partial) sequence of exogenous events (observed(e, t)), and O (output)
describes the expected output as a set of holdsat and occurred literals that should
appear in the normative state. The traces do not have to be complete (i.e. include an
event for each time instance) and the expected output may contain positive as well as
negative literals and does not have to be exhaustive. An existing (partial) normative
specification N is validated against a use-case 〈T,O〉, specified by the designer, by
using T as a trace program for N and adding a constraint that no answer set should
be accepted that does not satisfy O. If no answer set is computed then the normative
specification does not comply with the use-case and a learning step is performed to
compute new rules and/or revisions of existing rules that guarantee the satisfiability of
the use-case. This validity check can be extended to a set of use-cases U from which
we derive the conjunction of all the traces TU and outputs OU (making sure that there
is no conflict in the time points being used).

The learning step is in essence a Theory Revision [11] task, defined in terms of
a non-monotonic inductive logic programming [12], and implemented in answer set
programming using the learning system ASPAL [13], [14].

Within the context of our computational model of normative systems, this task is
expressed as a tuple 〈OU, NB ∪ TU, NT,M〉, where:

1. OU is the set of expected outputs,
2. NB is the part of the normative specification that is not subject to revisions (i.e.

“static” background knowledge) augmented with the traces of the use-cases,
3. NT is the part of the normative system that is subject to modification, and
4. M is the set of mode declarations that establish how rules in the final solution

shall be structured. A mode declaration can be of the form modeh(s) or modeb(s),
where s is the schema of the predicate that can be used in the head or body of a rule
respectively.

These last define the literals that can appear in the head and in the body of a well-
formed revision. The choice of the M is therefore crucial. Larger M with more mode
declarations ensures higher coverage of the specification but increase the computation
time. Conversely, smaller mode declarations improve performance but may result in
partial or incorrectly formed solutions.

In [4] the mode declaration M is specified to allow the synthesis of new normative
rules as well as revision of existing rules. To compute the first type of solutions, M
allows predicates occurred, initiated and terminated to appear in the head of
the learned rules and predicates holdsat and occurred to appear in the body of the
learned rules. To compute revisions on existing rules the mode declaration M makes
use of special predicates: exception(p, v̄), where p is a reified term for a rule existing

Handling Change in Normative Specifications 7

in the specification and v̄ the list of variables in the rule that are involved in the change.
This special predicate can appear in the head of a learned rule whose body gives the new
literals that need to be added to the existing rule p with specific variables v̄. Another
special predicate is del(i, j), where i is the index of an existing rule and j the number
of the literal in the body of the existing rule that needs to be removed. This is learned
as a ground fact. By means of these two special predicates it is possible to learn rules
that define what literals to add to and what literals to remove from existing rules of the
normative specification NT. The reader may refer to [4] for further details.

4 Handling Change

The approach proposed by [4] provides an automated way for computing suggestions
of possible elaborations of a given normative specification. The designer must then
choose the most appropriate revision from a (possibly large) set of alternative changes.
In real applications this is impractical, as the number of suggested changes can be too
large to work with. Informally, possible alternative revisions can be any combinations
of addition of new literals and/or deletion of existing literals in any of the existing rules
of the specification. Automated criteria for selecting solutions from the suggestions
provided by the learning are therefore essential.

In the remainder of this paper, we show that analysing the impact of suggested
changes, in terms of relevant literals that would be preserved or discarded, can be
an effective criteria for revision selection. Considering all the consequences that each
possible revision would give is clearly not a practical solution. What is needed is a
mechanism for identifying key consequences that would allow to reject some suggested
changes whilst preserving others. We propose that test generation can provide such a
mechanism and show how the process can carried out in answer set programming to fit
with both the inductive learner and the computational model of the normative frame-
works.

4.1 Test Generation

A test normally defines the set of outcomes that have to be observed given certain
achievable information in order to confirm or refute an hypothesis. Using the definitions
from [15], a test can formally be defined as a pair (A, l) where A is a conjunction of
achievable literals, the initial condition specified by the tester, and l is an observable, the
outcome (l or ¬l) decided by the tester. Using this structure, we can define confirmation
and refutation tests with respect to given background knowledge Σ.

Definition 1. The outcome a of a test is said to confirm a hypothesis H iff Σ ∧A ∧H
is satisfiable and Σ∧A � H → a. The outcome a of a test is said to refute a hypothesis
H iff Σ ∧ A ∧H is satisfiable and Σ ∧A � H → ¬a.

Hence, a refutation test has the power to eliminate the hypothesis when its outcome is
not included in the consequence of Σ ∧ A where H is true. Note that in this paper the
symbol |= is associated with the skeptical stable model semantics2 in conformity with
the underlying ASP framework.

2 P |= a if a is true in every answer set of P .

8 D. Athakravi et al.

Using the notion of relevant test in [15], we define relevant literals as follows.

Definition 2. (Relevant Literal) Let 〈T,O〉 be a use-case consisting of a partial trace
T and desired outcome O, Σ a given (partial) normative specification, and HY P the
set of hypotheses representing the suggested revisions of Σ that satisfy 〈T,O〉. A literal
l is relevant if:

1. Σ ∧ T ∧O ∧Hi is satisfiable, for all Hi ∈ HY P
2. Σ ∧ T ∧O �

∨
Hi∈HY P ¬Hi

3. T ∧O ∧ l is an abductive explanation for
∨

Hi∈HY P ¬Hi

4. T ∧O ∧ l is not an abductive explanation for ¬Hi, for all Hi ∈ HY P

Conditions 1 and 2 above state, respectively, that each suggested revision (Hi) satisfies
the given use-case and is consistent with the normative specification and the use-case.
Both these conditions are guaranteed by the correctness of the learning process [13].
Conditions 3 and 4 above ensure that some but not all suggested revisions are refuted
by the relevant literal l. Thus should l be observed, at least one hypothesis may be
rejected.

The automated generation of tests for specific objectives (e.g. eliminate some hy-
pothesis H) can be formulated [15] in terms of an abductive problem [16] so that
Σ ∪ (A, l) � ¬H . Informally, given an abductive problem 〈B,Ab,G〉, where B is a
background knowledge, G is a goal, and Ab a set of abducibles, a conjunction of liter-
als E in the language Ab, is an abductive explanation for G, with respect to B if and
only if B ∧ E is satisfiable and B ∧ E � G.

4.2 The Approach

Our approach extends the work of [4] with an iterative process for computing relevant
literals and discarding learned revisions that are refuted by the relevant literals. As il-
lustrated in Fig. 2, once possible changes are learned, this iterative process is activated.
At each iteration, the (remaining) learned revisions are “combined” with the existing
normative specification as integrity constraints in order to capture conditions 3 and 4
above and ensure that the abduced relevant literals have the power to eliminate some
suggested revisions. Traces of the given use-cases are included as achievable literals to
guarantee that the abduced relevant literals conform with the use-cases. The abduced
relevant literals are ranked according to how much information can be gained from
them. The most highly ranked literal is then presented to the designer, who can then
specify the truth value for the literal. Based on the designer’s answer, suggested revi-
sions that are refuted by the relevant literal are discarded. The process is repeated: new
relevant literals and their scores are computed with respect to the remaining suggested
revisions. This process is repeated until no further relevant literals can be identified.
This is the inner loop of the process depicted in Fig. 2. The remaining learned revi-
sions are then returned to the designer. If only one suggested revision remains, this is
used to change the specification automatically and the revised normative description is
returned.

Handling Change in Normative Specifications 9

Fig. 2. Handling changes in normative specifications

Suggested Revisions as Hypotheses. Changes to our normative specifications can be
one of three different varieties: addition of new rules, deletion of an existing rule, and
addition or deletion of a body literal in an existing rule. These modifications correspond
to the following facts in each solution:

1. r ← c1, . . . , cn: A new rule is added to the revised specification.
2. del(i, j): The condition j of rule ri in NT is deleted. If a rule has all of its condition

deleted, then it is removed from the revised specification.
3. xt(i, ri) ← c1, . . . , cn: The condition of rule ri in NT is extended with the condi-

tions c1, . . . , cn. Should a solution contain two of such facts for extending the same
rule, then the revised specification contains two different versions of the extended
rule.

To abduce relevant literals, each modification in a learned solution is (automatically)
combined with the static part of the background knowledge NB. For each revisable rule
ri in solution Sk the following clause is added:

1. If ri is deleted by Sk, then clauses corresponding to ri are not added to NB

2. ¬hypk : − not ri, c1, . . . , cn, cn+1, . . . , cm
If both xt(i, ri) ← c1, . . . , cn and del(i, j) facts are in Sk and cn+1, . . . , cm are
the conditions of rule ri from NT that are not deleted by Sk

3. ¬hypk : − not ri, c1, . . . , cm
If only del(i, j) is in Sk, and c1, . . . , cm are conditions of rule ri from NT that are
not deleted by Sk

4. ¬hypk : − not ri, c1, . . . , cn, cn+1, . . . , cm
If only xt(i, ri) ← c1, . . . , cn is in Sk, and cn+1, . . . , cm are the conditions of ri
from NT

5. ¬hypk : − not ri, c1, . . . , cm
If Sk does not change ri, and c1, . . . , cm are the conditions of ri from NT

10 D. Athakravi et al.

For example, if we have the following NT:

terminated(perm(shoot(A1,A2)), Time) : −initiated(peace, Time).
terminated(perm(shoot(A1,A2)), Time) : −holdsat(peace, Time).

...and three alternative suggested revisions:

1. Add: initiated(perm(shoot(A1, A2)), Time) : −initiated(war, Time). The
following rules are added to the normative specification, with head predicate¬hyp(1):

¬hyp(1) : − not initiated(perm(shoot(A1, A2)), Time),
initiated(war, Time).

¬hyp(1) : − not terminated(perm(shoot(A1, A2)), Time),
initiated(peace, Time).

¬hyp(1) : − not terminated(perm(shoot(A1, A2)), Time),
holdsat(peace, Time).

The first of the above rules represents the new rule added by the suggestion, while
the latter two correspond to changes made by alternative revision suggestions but
left unchanged by the current suggestion.

2. Change: terminated(perm(shoot(A1, A2)), Time) : −initiated(peace, Time).
to: terminated(perm(shoot(A1, A2)), Time) : −terminated(war, Time). The
following rules are added:

¬hyp(2) : − not terminated(perm(shoot(A1, A2)), Time),
terminated(war, Time).

¬hyp(2) : − not terminated(perm(shoot(A1, A2)), Time),
holdsat(peace, Time).

Similarly, the revised rule in the second suggestion is captured by the first rule
above with head predicate ¬hyp(2), while the second of these represents the rule
deleted by the third suggestion.

3. Remove: terminated(perm(shoot(A1, A2)), Time) : −holdsat(peace, Time).
This results in the following rules been added to the normative specification:

¬hyp(3) : − not terminated(perm(shoot(A1, A2)), Time),
initiated(peace, Time).

The above rule, with head predicate ¬hyp(3), corresponds to the rule revised by
the second revision suggestion.

Abducing Relevant Literals. Let 〈T,O〉 be the use-case that was used to learn the set
R of suggested revisions, NB be the part of the normative specification that R leaves
unchanged, NR the rules in the specification that one or more suggestions in R re-
vise, CH/2 be the function that transform rules by suggested revisions as described in

Handling Change in Normative Specifications 11

section 4.2, and let HYP be the set of hypotheses in CH(NR, R). The relevant literals
are solutions of the abductive task 〈B,Ab,G〉 where:

B = NB ∪ T ∪ CH(NR, R)
G = O ∪ ¬(

∧
Hi∈HYP ¬Hi) ∪ ¬(

∧
Hi∈HYP Hi)

and Ab is the set of ground instances of (possible) outcomes. The relevant literals is a
set E ⊆ Ab such that B ∪ E � G.

The above abductive task is computed using ASP and the solutions generated are
answer sets containing relevant literals. To know the exact impact each relevant literal
has on the hypothesis space, it is important to match it to the hypotheses it refutes.
Algorithm 1 is used to extract relevant literals that refute a given suggested change
(i.e. learned hypothesis) from the answer sets, using a series of set comparisons. The
algorithm finds the differences between an answer set with a falsified hypothesis and
another where it is not, then finds the smallest subsets of all these differences. The
output of the algorithm are the smallest sets of literals that can refute the hypothesis.
Note that while set intersection could potentially be used to extract such relevant literals,
it would disregard the cases where a disjunction of literals l1∨l2 can falsify a hypothesis.

Scoring Relevant Literals. Ideally we want to be able to dismiss as many suggested
revisions as possible. The number of hypotheses that could be discarded depends on the
relevant literal’s truth value: e.g. while we may be able to reject nearly all hypotheses if
the literal is true, we may not be able to reject any should it be false. We use the number
of minimum hypotheses that a relevant literal may reject as the score for comparing
the literal against other relevant literals, using a fractional score when the literal can
only falsify a hypothesis in conjunction with others. Thus, for each relevant literal l that
rejects n suggested revisions when it is true, and m suggested revisions when it is false,
minimum(n,m) is the score for l. The most relevant literals are those with the highest
value of these scores, and could be further ranked according to the maximum number
of hypotheses each one falsifies.

5 Case Study

The case study is taken from [4]. The scenario describes a system of file sharing agents
where:

Agents are initialized to have ownership of a unique block of digital data, which
all together comprise a digital object – a file of some kind. After the initial
download of the unique block, an agent must share a copy of a block of data
it possesses before acquiring the right to download a copy of a block from
another agent. Violations and misuses are generated when an agent requests a
download without having shared a copy of a block after its previous download,
and a misuse terminates its empowerment to download blocks. However, if an
agent has VIP status, it can download blocks without any restriction.

12 D. Athakravi et al.

Algorithm 1. Extracting relevant literals of a given hypothesis
Input: answer sets ANS , hypothesis predicate h, and the set of hypothesis predicates HYP
Output: a set
REV of relevant literals that refute h

1: {Find the difference between Si and answer sets that do not have relevant literals of h}
2: DIFF = ∅
3:
4: for all Si ∈ ANS do
5: if ¬h ∈ Si then
6: for all Sj ∈ ANS do
7: if ¬h /∈ Sj then
8: NREV = Sj ∪HYP ∪ {¬h : HYP}
9: DIFF = DIFF ∪ {Si − NREV }

10: end if
11: end for
12: end if
13: end for
14:
15: {Find the smallest subsets from the sets in DIFF}
16: REV = ∅
17:
18: for all D ∈ DIFF do
19: REV = REV − {R : REV |R ⊃ D}
20: if D /∈ REV and �R : REV (R ⊂ D) then
21: REV = REV ∪ {D}
22: end if
23: end for
24:
25: return REV

Our existing normative specification includes the six revisable rules in Fig.3(a), that is
NT. The learner is supplied with the use-case comprising T (Fig.3(b)) and O (Fig.3(c)).
This use-case shows how a violation is raised when alice downloads data consec-
utively without sharing any data in between. On the other hand, no violations are
raised when charlie downloads data without sharing, as charlie is a VIP. For the
system specification to comply with the use-case, the fourth and fifth rule need to
be revised, so that VIP agent’s empowerment will not be terminated after a down-
load, and a syntactic error in the fifth rule corrected, where the first Y should be X

in occurred(download(Y,Y,B),I).
For this particular use-case and six revisable rules, with a maximum of seven rules

per solution the learner outputs 41 ways in which the rules could be revised. Due to the
space limitations, we look only at 4 of the proposed 41 (see Fig. 4).

Handling Change in Normative Specifications 13

% Rule 1
initiated(hasblock(X,B),I) :-

occurred(myDownload(X,B),I).
% Rule 2
initiated(perm(myDownload(X,B)),

I) :-
occurred(myShare(X),I).

% Rule 3
terminated(pow(

extendedfilesharing,
myDownload(X,B)),I) :-
occurred(misuse(X),I).

% Rule 4
terminated(perm(

myDownload(X,B2)),I) :-
occurred(myDownload(X,B),I).

% Rule 5
occurred(myDownload(X,B),I) :-

occurred(download(Y,Y,B),I),
holdsat(hasblock(Y,B),I).

% Rule 6
occurred(myShare(X),I) :-

occurred(download(Y,X,B),I),
holdsat(hasblock(X,B),I).

(a)

T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

observed(start,i00)
observed(download(alice,bob,x3),

i01)
observed(download(charlie,bob,x3)

,i02)
observed(download(bob,alice,x1),

i03)
observed(download(charlie,alice,

x1),i04)
observed(download(alice,charlie,

x5),i05)
observed(download(alice,bob,x4),

i06)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(b)

O =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

not viol(myDownload(alice,x3),
i01)

not viol(myDownload(charlie,x3),
i02)

not viol(myDownload(bob,x1),i03)
not viol(myDownload(charlie,x1),

i04)
not viol(myDownload(alice,x5),

i05)
viol(myDownload(alice,x4),i06)
occurred(misuse(alice), i06)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⋃

{
not occurred(misuse(a), i)
| a ∈ Agents, i ∈ Instances, i �= i06

}

(c)

Fig. 3. Rules for revision (a), with use-case trace (b) and outputs (c)

5.1 Generating Relevant Literals

To form the background knowledge for the abductive task, rule 4 and rule 5 are
removed from the current specification, and their suggested revisions included in the
specifications following the representation described in section 4.2. Fig. 5 contains an
extract from the ASP encoding of our abductive task for computing relevant literals
regarding revisions for rule 4 and rule 5.

By adding the trace, as well as these hypotheses to the framework, the program can
be used as the background data for the abduction task. The head of the suggested new
and revised rules are used as abducible predicate symbols, while their revised conditions
are used as constraints for these abducibles to avoid an explosion in the number of
answer sets. The following integrity constraints capture conditions 2 and 4 of our test
characterisation given in section 4.2

:- hyp(1), hyp(2), hyp(3), hyp(4).
:- -hyp(1), -hyp(2), -hyp(3), -hyp(4).

14 D. Athakravi et al.

%---Suggestion 1
% New rule
occurred(misuse(A),I) :- occurred(viol(myDownload(A,C)),I).
% Revise rule 4
terminated(perm(myDownload(X,B2)),I) :- occurred(myDownload(X,B),I), not isVIP(X).
% Revise rule 5
occurred(myDownload(X,B),I) :-

holdsat(hasblck(Y,B),I), occurred(download(X,Y,B),I).

%---Suggestion 2
% New rule
occurred(misuse(A),I) :- occurred(viol(myDownload(A,C)),I).
% Revise rule 4
terminated(perm(myDownload(X,B2)),I) :- occurred(myDownload(X,B),I), not isVIP(X).
% Revise rule 5
occurred(myDownload(X,B),I) :-

holdsat(hasblck(Y,B),I), occurred(download(X,Y,B),I).
occurred(myDownload(X,B),I) :-

holdsat(hasblck(Y,B),I), occurred(viol(myDownload(Y,B2)),I).

%---Suggestion 3
% New rule
occurred(misuse(A),I) :- occurred(viol(myDownload(A,C)),I).
% Revise rule 4
terminated(perm(myDownload(X,B2)),I) :- occurred(myDownload(X,B),I), not isVIP(X).
% Revise rule 5
occurred(myDownload(X,B),I) :- occurred(download(X,Y,B),I).

%---Suggestion 4
% New rule
occurred(misuse(A),I) :- occurred(viol(myDownload(A,C)),I).
% Revise rule 4
terminated(perm(myDownload(X,B2)),I) :- occurred(myDownload(X,B),I), not isVIP(X).
% Revise rule 5
occurred(myDownload(X,B),I) :-

holdsat(hasblck(Y,B),I), occurred(download(X,Y,B),I).
occurred(myDownload(X,B),I) :-

holdsat(hasblck(Y,B),I), occurred(viol(myDownload(X,B2)),I).

Fig. 4. 4 selected revision suggestions from the 41 proposed

However, since we use Algorithm 1 to identify the relevant literals, as explained in
section 4.2 the constraint is relaxed to:

:- -hyp(1), -hyp(2), -hyp(3), -hyp(4).

The constraint above is still needed, as the algorithm searches for answer sets which
includes -hyp/1 instances to extract relevant literals from. Thus, while the answer
sets without any refuted hypothesis are excluded from the algorithm’s output, answer
sets with all hypotheses refuted will still be included.

Applying Algorithm 1 to the answer sets generated by the abductive task, the follow-
ing relevant literals are computed:

Literals that
can falsify both
hyp(2) and
hyp(4):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

¬ occurred(viol(myDownload(alice,x1)),i06),
¬ occurred(viol(myDownload(alice,x2)),i06),
¬ occurred(viol(myDownload(alice,x3)),i06),
¬ occurred(viol(myDownload(alice,x5)),i06),
¬ occurred(viol(myDownload(bob,x1)),i06),
¬ occurred(viol(myDownload(bob,x2)),i06),
¬ occurred(viol(myDownload(bob,x3)),i06),
¬ occurred(viol(myDownload(bob,x4)),i06),
¬ occurred(viol(myDownload(bob,x5)),i06)

Handling Change in Normative Specifications 15

% New Rule
-hyp(H) :- not occurred(misuse(A),I), occurred(viol(myDownload(A,C)),I), hyp_id(H)

.
% Rule 4
-hyp(H) :- not terminated(perm(myDownload(X,B2)),I), occurred(myDownload(X,B),I),

not isVIP(X), hyp_id(H).

%---Suggestion 1
% Rule 5
-hyp(1) :- not occurred(myDownload(X,B),I), occurred(download(X,Y,B),I),

holdsat(hasblck(Y,B),I).

%---Suggestion 2
% Rule 5
-hyp(2) :- not occurred(myDownload(X,B),I), occurred(download(X,Y,B),I),

holdsat(hasblck(Y,B),I).
-hyp(2) :- not occurred(myDownload(X,B),I), occurred(viol(myDownload(Y,B2)),I),

holdsat(hasblck(Y,B),I).

%---Suggestion 3
% Rule 5
-hyp(3) :- not occurred(myDownload(X,B),I), occurred(download(X,Y,B),I).

%---Suggestion 4
% Rule 5
-hyp(4) :- not occurred(myDownload(X,B),I), occurred(download(X,Y,B),I),

holdsat(hasblck(Y,B),I).
-hyp(4) :- not occurred(myDownload(X,B),I), occurred(viol(myDownload(X,B2)),I),

holdsat(hasblck(Y,B),I).

Fig. 5. Computing relevant literals

Literals that
can falsify
only hyp(4):

⎧⎪⎨⎪⎩
occurred(misuse(bob),i06) ∧ occurred(viol(myDownload(bob,x1)),i06)
occurred(misuse(bob),i06) ∧ occurred(viol(myDownload(bob,x2)),i06)
occurred(misuse(bob),i06) ∧ occurred(viol(myDownload(bob,x3)),i06)
occurred(misuse(bob),i06) ∧ occurred(viol(myDownload(bob,x5)),i06)

However, hyp(1) and hyp(3) cannot be falsified as both revisions produce the same
consequences using the current use-case.

5.2 Scoring the Relevant Literals

When scoring the literals such as occurred(misuse(bob),i06), where the literal
alone cannot refute a hypothesis, a fractional score is given corresponding to how many
other literals are needed to reject the hypothesis. The scores for each relevant literal are
given in Table 1, with the following four literals having highest score:

occurred(viol(myDownload(bob,x1)),i06)
occurred(viol(myDownload(bob,x2)),i06)
occurred(viol(myDownload(bob,x3)),i06)
occurred(viol(myDownload(bob,x4)),i06)
occurred(viol(myDownload(bob,x5)),i06)

Any of these literals can be returned to the designer as the most relevant. Should the
designer consider the returned literal to be false, then both the second and fourth sug-
gested revisions could be discarded. However, if the literal is considered to be true, the
dependent literal occurred(misuse(bob),i06) is given to the designer. This is be-
cause the two literals are dependent as shown by the lists of relevant literals for each
hypothesis given above.

16 D. Athakravi et al.

Table 1. Scoring of relevant literals

Relevant literal
Truth value
True False

occurred(viol(myDownload(alice,x1)),i06) 0.0 2.0
occurred(viol(myDownload(alice,x2)),i06) 0.0 2.0
occurred(viol(myDownload(alice,x3)),i06) 0.0 2.0
occurred(viol(myDownload(alice,x5)),i06) 0.0 2.0
occurred(viol(myDownload(bob,x1)),i06) 0.5 2.0
occurred(viol(myDownload(bob,x2)),i06) 0.5 2.0
occurred(viol(myDownload(bob,x3)),i06) 0.5 2.0
occurred(viol(myDownload(bob,x4)),i06) 0.5 2.0
occurred(viol(myDownload(bob,x5)),i06) 0.5 2.0
occurred(misuse(bob),i06) 0.0 0.5

6 Related Work

The literature on norm change and norm revision is quite diverse, but also quite thinly
spread across a range of disciplines. Many normative frameworks include appeal to ex-
trinsic normative frameworks, such as negotiation, argumentation, voting, or even fiat
(dictatorship) to mediate norm change. These are not the concern of this paper. Our fo-
cus is on the specific nature of the revision: what needs to change, rather than how it
shall be brought about. In human societies, the identification of what may be informal,
or the outcome of an extensive evaluative study, along with proposals for which rules to
revoke, which rules to add and an assessment of the consequences. This reflects work
in the philosophy of law, the logic of norms, or the logic of belief change [17], where
the drive has been the discovery of norm conflicts and their subsequent revision in the
framework of deontic logic. However, this only explores the principle of norm conflict
and norm inconsistency (concluding that they are in fact the same), and that it may be re-
solved by a process of norm revision in which the norm set is reduced and subsequently
extended (consistently). Further theoretical studies can be found in [18–20]

Artikis [21] presents a formalization of a (run-time) process for changing the rules
governing a protocol, central to which are the notions of stratification and degrees of
freedom to determine a metric for the magnitude and hence feasibility of the change
from the current rules to the new rules. However, fundamental to this scheme is that
the state-space of alternatives be known a priori, so it is essentially limited to known-
knowns, rather than the exploration of all possibilities to remedy shortcomings.

Campos et al. [22] propose a mechanism for the adaptation of a normative frame-
work – which they call an electronic institution (EI) – in which the EI is goal-driven
and utilizes a feedback mechanism to compare observations with expected goals in or-
der to self-reconfigure using transition functions. The expected goals are quantitative
constraints on values of observed properties, while actual performance is captured in an
objective function comprising a weighted aggregation of observed properties. As with
Artikis, above, the scope for adaptation is limited in that responses are pre-determined
in the specification and may only affect parameters of norms.

Handling Change in Normative Specifications 17

Tinnemeier et al. [23] make clear that normative concepts should be used to affect
which entities have the permission and the power to effect norm change, they also point
out that norm-reasoning is typically beyond the competence of typical agency. In con-
sequence of the latter, they choose for the normative framework to provide suitable
norm-change operators for the agents to use that do not require detailed norm knowl-
edge. While the scope of changes is more extensive than either Artikis or Campos, the
rules for norm scheme change (sic) appear to depend both on domain knowledge and
the foresight of the designer.

Thus, although there is a select literature which addresses norm change in various
ways, it either suffers from an absence of a computational model, or has very restricted
solution space which depends on prediction of what changes may be needed. In contrast,
we provide technical support for a formal model of norm revision, as presented here and
in our earlier paper [4], which can adapt the normative framework arbitrarily, to meet
evolving requirements, expressed through goals, and is, we believe, entirely novel.

7 Conclusions

In this paper, we have tackled the problem of distinguishing between revisions of nor-
mative specifications through the use of test generation. While we have concentrated on
problem of choosing between normative revisions, more generally our work for choos-
ing between alternate hypotheses is applicable to any theory revision problem. As dis-
cussed in [11], there appears two ways of judging whether one revision is better than
another. The first is by looking at how complete and consistent the revised theory would
be by checking it satisfies a set of desired characteristics such as the AGM postulate (see
Chapter 2 of [24]). As we depended on previous work for the correctness of the revi-
sion, this is not the directly related to our work. The second is by following the principle
of minimal change which takes the revision that changes the original theory the least
as the best solution. While this approach ensures that as much knowledge as possible
is retained by the change, the minimal revision may not always reflect the specification
that the designer wants. Thus, other criteria in addition to minimal changes should be
used in a revision framework based on use-cases.

Although examining all possible revisions may give a more complete view of the
changes made to the original partial specification, our approach can help the user by
pointing out the key discriminating aspects between the different revisions. By identi-
fying comparable consequences of the suggested revisions, we are able to use them as
a rationale for rejecting possible changes. We have investigated how test generation can
be applied, providing a notion of test characteristics for revisions, and used this charac-
terisation to describe how abduction can be used to find such relevant literals. In [15],
the discriminating test is mentioned as another type of test that could reject hypothe-
ses regardless of its truth value. It is also mentioned that while they are ideal to use
for rejecting hypotheses, their characteristics are too restrictive and thus relevant tests
were discussed. For the relevant literals in this paper, the scoring mechanism ensures
that relevant literals satisfying the characteristics of discriminating tests have higher
priority.

Our case study demonstrates how our proposed approach could be integrated into
an existing framework for normative refinement, where ASP can be used to compute

18 D. Athakravi et al.

relevant literals and score them in order to identify those that are most relevant. It also
shows a situation where our approach may not discriminate all suggested revisions.
While the revision suggestions are different, our approach could not find any relevant
literals as the system trace used to find it does not describe a scenario in which the
revisions would differ. As the revision process is designed to be carried out iteratively,
use-cases from previous cycles could be kept either as additional constraints or as addi-
tional traces to use for generating relevant literals.

References

1. Grossi, D., Aldewereld, H., Dignum, F.: Ubi Lex, Ibi Poena: Designing Norm Enforcement
in E-Institutions. In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V.,
Fornara, N., Matson, E. (eds.) COIN 2006 Workshops. LNCS (LNAI), vol. 4386, pp. 101–
114. Springer, Heidelberg (2007)

2. Cliffe, O., De Vos, M., Padget, J.: Answer Set Programming for Representing and Reason-
ing About Virtual Institutions. In: Inoue, K., Satoh, K., Toni, F. (eds.) CLIMA VII. LNCS
(LNAI), vol. 4371, pp. 60–79. Springer, Heidelberg (2007)

3. Artikis, A., Sergot, M., Pitt, J.: An executable specification of an argumentation protocol. In:
Proceedings of Conference on Artificial Intelligence and Law, ICAIL, pp. 1–11. ACM Press
(2003)

4. Corapi, D., Russo, A., Vos, M.D., Padget, J.A., Satoh, K.: Normative design using inductive
learning. TPLP 11(4-5), 783–799 (2011)

5. Searle, J.R.: A Construction of Social Reality. Allen Lane, The Penguin Press (1955)
6. Jones, A.J., Sergot, M.: A Formal Characterisation of Institutionalised Power. ACM Com-

puting Surveys 28(4es), 121 (1996) (read November 28, 2004)
7. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.

New Generation Computing 9(3-4), 365–386 (1991)
8. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gen. Comput. 4(1), 67–95

(1986)
9. Gelfond, M., Lifschitz, V.: Action languages. Electron. Trans. Artif. Intell. 2, 193–210 (1998)

10. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering
an Incremental ASP Solver. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 190–205. Springer, Heidelberg (2008)

11. Wrobel, S.: First order theory refinement (1996)
12. Sakama, C.: Induction from answer sets in nonmonotonic logic programs. ACM Trans. Com-

put. Log. 6(2), 203–231 (2005)
13. Corapi, D.: Nonmonotonic Inductive Logic Programming as Abductive Search. PhD thesis,

Imperial College London (2012)
14. Corapi, D., Russo, A., Lupu, E.: Inductive Logic Programming in Answer Set Programming.

In: Muggleton, S.H., Tamaddoni-Nezhad, A., Lisi, F.A. (eds.) ILP 2011. LNCS, vol. 7207,
pp. 91–97. Springer, Heidelberg (2012)

15. Mcilraith, S.: Generating tests using abduction. In: Proceedings of the Fourth International
Conference on Principles of Knowledge Representation and Reasoning, KR 1994, pp. 449–
460. Morgan Kaufmann (1994)

16. Kakas, A.C., Kowalski, R., Toni, F.: Abductive logic programming. Journal of Logic and
Computation 2(6), 719–770 (1992)

17. Alchourrón, C.E.: Conflicts of norms and the revision of normative systems. Law and Phi-
losophy 10, 413–425 (1991), doi:10.1007/BF00127412

Handling Change in Normative Specifications 19

18. Ullmann-Margalit, E.: Revision of norms. Ethics 100(4), 756–767 (1990) Article Stable,
http://www.jstor.org/stable/2381777 (retrieved March 20, 2012)

19. Boella, G., van der Torre, L.W.N.: Regulative and constitutive norms in normative multiagent
systems. In: Dubois, D., Welty, C.A., Williams, M.A. (eds.) KR, pp. 255–266. AAAI Press
(2004)

20. Governatori, G., Rotolo, A.: Changing legal systems: legal abrogations and annulments in
defeasible logic. Logic Journal of the IGPL 18(1), 157–194 (2010)

21. Artikis, A.: Dynamic protocols for open agent systems. In: Sierra, C., Castelfranchi, C.,
Decker, K.S., Sichman, J.S. (eds.) AAMAS (1), pp. 97–104. IFAAMAS (2009)

22. Campos, J., López-Sánchez, M., Rodrı́guez-Aguilar, J.A., Esteva, M.: Formalising Situat-
edness and Adaptation in Electronic Institutions. In: Hübner, J.F., Matson, E., Boissier, O.,
Dignum, V. (eds.) COIN 2008. LNCS, vol. 5428, pp. 126–139. Springer, Heidelberg (2009)

23. Tinnemeier, N.A.M., Dastani, M., Meyer, J.J.C.: Programming norm change. In: van der
Hoek, W., Kaminka, G.A., Lespérance, Y., Luck, M., Sen, S. (eds.) AAMAS, pp. 957–964.
IFAAMAS (2010)

24. Gabbay, D.M., Rodrigues, O., Russo, A.: Revision, Acceptability and Context - Theoretical
and Algorithmic Aspects. Cognitive Technologies. Springer (2010)

http://www.jstor.org/stable/2381777

Latest Developments of WADE to Support

User-Centric Business Processes

Federico Bergenti1, Giovanni Caire2, and Danilo Gotta2

1 Università degli Studi di Parma, 43124, Parma, Italy
federico.bergenti@unipr.it

2 Telecom Italia S.p.A., 10148, Torino, Italy
{giovanni.caire,danilo.gotta}@telecomitalia.it

Abstract. In this paper we present the latest developments of WADE
(Workflows and Agents Development Environment) that provide con-
crete support for a better realization of the innovative paradigm of
agent-based BPM (Business Process Management). First, we review and
critique the basic ideas behind agent-based BPM and we focus on its
innovative characteristics with respect to traditional BPM. Then, we
describe the most recent developments of WADE that are intended to
enhance its agent-based runtime platform by providing improved non-
functional features and a better integration with the external software
systems. Finally, we discuss the new functionality that WADE offers to
enable the rapid and effective realization of user-centric business pro-
cesses, i.e., business processes that are tightly integrated with the work
of users and that are mainly driven by user interactions. Such processes
are met frequently in practice and WADE seamlessly accommodates Web
and Android users by means of dedicated views. We conclude this pa-
per with a brief overview of notable mission-critical applications that are
already using WADE and its new features.

Keywords: Agent-based BPM, user-centric business processes, WADE.

1 Introduction

Business Process Management (BPM) is now a consolidated trend in IT that
has recently come up as a new discipline intended to unify related topics such
as process modeling, workflows, enterprise application integration and business-
to-business integration (see, e.g., [12]). BPM is today considered essential to the
life of complex and dynamic enterprises and the research on the subject from IT
and other perspectives is very active.

Despite the complexity of the subject that has been promoting interesting
and longstanding debates, we can broadly refer to a business process as a set of
interdependent activities that collectively realize a business objective or policy
within the context of an organizational structure that defines the functional roles
and the relationships between actors [22]. With this respect, BPM includes at
least the following activities regarding business processes [15]:

M. Baldoni et al. (Eds.): DALT 2012, LNAI 7784, pp. 20–36, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Latest Developments of WADE to Support User-Centric Business Processes 21

– Process description: every process must be described in some specification
language in order to enumerate (i) the activities that need to be performed,
(ii) the actors that perform them, and (iii) the interdependencies and related
constraints that exist between activities; and

– Process execution and operational management: organizations typically use
a software system, called BPM system, which is in charge of enacting the
process description and turn it into practice.

Generally speaking, a BPM system enables a wide range of tasks like automating
manual work, improving information and knowledge exchange among employees,
controlling business processes in place, and assist in design and engineering of
business processes. More in details, there are a few features that every BPM sys-
tem must provide and that we consider of paramount importance (see also [12]):

– It should transparently support multiple instances of a given process and a
given task;

– It should ensure that dependencies between the tasks are timely satisfied;
– It should allow the activities of users to be assigned appropriately; and
– It should smoothly integrate with the enterprise software tools required to

complete the tasks.

While the importance of BPM systems in process execution is obvious, it is of
equal importance to couple BPM systems with the models intended to express
the complexities of business processes in the scope of their organizational context,
and to support reasoning about processes for enabling future optimization and
reengineering activities. It is often the case in the practice of BPM that the
approach proposed by the adopted BPM system becomes the driving force of
BPM and we often see business processes accustomed to systems and not vice
versa. Such a counterintuitive approach is quite common practice in small and
dynamic enterprises and this is the main reason why we believe that the role of
the BPM systems in the large scope of BPM is often underestimated.

The introduction of a BPM system typically entails the adoption of appro-
priate workflows within the enterprise. A workflow, as defined in [22], is the
automation of a business process–in whole or part–during which artifacts, infor-
mation and/or tasks are passed from one actor to another according to a set of
procedural rules.

Among the large variety of possible classification of business processes, it is
worth noting that even the general definition of workflow that [22] proposes
stresses the central role of actors in BPM. Then, if we match such a general
definition with the everyday practice of BPM, we note that normally workflows
are designed to ensure that the right people receive the right information at the
right time. Workflows are often used to guide the work of people and we often
witness workflows that are only meant to interact with the users of the BPM
system. Such users are central subjects of BPM, exactly like BPM systems, and
we strongly believe that they deserve a special treatment on their own.

In order to emphasize the role of users in the very general landscape of BPM
and to justify the very frequent use of business processes to drive the work

22 F. Bergenti, G. Caire, and D. Gotta

of people, we talk about user-centric business processes every time a business
process is primarily intended to interact with the users of the BPM system in
order to guide and provide assistance on his or her operative work.

User-centric business processes are so frequent in practice and their impor-
tance is so relevant for actual uses that modern BPM systems are requested to
reserve a special treatment to them in order to enable specific functionality and
promote optimizations. Unfortunately, little or no attention to such a kind of
processes is paid by traditional BPM systems and interaction with users is of-
ten underestimated as yet another type of event. Such an approach is obviously
very generic, but it misses a relevant part of the peculiarity of such processes,
i.e., the need for the system to provide a means for users to effectively interact
with the business processes. In the description of a user-centric business process
we need to precisely describe the way users are presented the relevant informa-
tion regarding the state of the process, i.e., the view that the user has on the
process. Moreover, we also need to precisely describe the information that the
user is expected to provide in order for the process to continue smoothly. Both
such characteristics are of remarkable importance in practice and they deserve
special care that traditional BPM systems do not always provide. Traditional
BPM systems are high quality, mature tools intended primarily to manage busi-
ness processes that are well structured and whose paths are identified a priori
(see, e.g., [4]). However, the very high complexity and the intrinsic volatile and
evanescent nature of today’s business environment often make current BPM sys-
tems not sufficient. This has lead to the identification of a number of weaknesses
of current BPM systems and the criticism against available BPM systems is now
a solid movement (see, e.g., [15,17]). Therefore, we witness the rapid evolution
of alternative approaches to traditional BPM that notably include agent-based
BPM, and more generally, the adoption of the entire spectrum of agent technolo-
gies in the scope of BPM. The promise of agent technologies with this respect is
to provide solid warranties for greater dynamism, agility and adaptability.

We already have a number of agent-based BPM systems available (see, e.g.,
[1,2,6,7,13,16,17]) and all such proposals share the common factor of using the
autonomous and collaborative nature of agents to accommodate unexpected sit-
uations in dynamic business processes. This is a characteristic feature of agent-
based BPM systems that is often used to motivate their adoption, but it is
worth noting that agent technologies today provide so crucial advantages (e.g.,
in terms of non-functional features at runtime and effectiveness at design time)
that their use should not be limited to the situations in which dynamism is a
critical requirement.

In the practice of using agent-based BPM systems in real-world contexts (see,
e.g., the concluding section and [7,21]) we noticed that users often appreciate
them for their ease of use or for their robustness and dependability, rather than
for their ability to cope with dynamic and unexpected situations, which are very
rare and of marginal interest. The rest of this paper focuses on the weaknesses
of traditional BPM systems that we have just emphasized and it presents a set
of tools that effectively address them.

Latest Developments of WADE to Support User-Centric Business Processes 23

In the following section we describe the view of agent-based BPM that WADE
(Workflows and Agents Development Environment) [7] promotes and we sketch
a comparison with more traditional solutions. Then, Section 3 presents the most
recent developments of WADE that have turned it into a full-featured agent-
based BPM platform with improved non-functional characteristics and better
interfaces with external software systems. All described features of WADE are
available since version 3.1 (dated July 2012), which also includes a specific sup-
port for user-centric business processes, as described in Section 5. Finally, we
close the paper with a brief summary of mission-critical systems based on WADE
that are in everyday use in Telecom Italia.

2 Agent-Based BPM

In order to properly discuss the role of agent technologies in the scope of BPM,
we must first review in details what a BPM system is and how it is expected to
behave. The most relevant reference for this kind of systems is [22], which char-
acterizes a BPM system as a software system that defines, creates and manages
the execution of workflows that are running on one or more workflow engines.
Such workflow engines are able to interpret the process definition, interact with
workflow participants and, where required, invoke the use of other software.

Such BPM systems are typically modularized in a set of well-defined parts
(see, e.g., [12]) as follows:

– Business process definition tools: they allow modeling the process in terms
of workflows, actors, tasks, activities and their relationships and interde-
pendencies. This is normally done using a graphical notation that typically
resembles flowcharts.

– Business process servers: they are the software systems that provide the
runtime execution of defined processes. They read process definitions and
actually execute and track them.

– Business process clients: they are software systems that actors use to interact
with the workflow. The application does not need to be part of the BPM
system and it is typically a thin (Web) client that behaves as a front end
to allow users to receive information and to submit events to the business
process server.

– Business process monitoring and administration tools: they are intended to
provide a real-time view of the state of execution of workflows and they
provide means to manage unforeseen situations. They are valuable tools
that give concrete help at runtime and that trace the information needed to
optimization and reengineer processes.

Even if the modularization of typical BPM systems is well established and un-
derstood, in principle different systems can have different approaches to support
the lifecycle of business processes.

Unfortunately, according to [22], the majority of current generation BPM
systems share a common approach to structure the lifecycle of business pro-
cesses. They all start modeling business process from activity analysis and they

24 F. Bergenti, G. Caire, and D. Gotta

pay principal attention to business process tasks interdependences in order to
correctly enact known sequence of the tasks [12]. All in all, such systems are
adequate only in situations where a business process is fully understood and ev-
ery conceivable outcome of tasks and activities can be considered and controlled
beforehand.

As we briefly discussed before, not all business processes can be defined with
such a fine level of control at design time. Real-world business processes are
complex and continuously changing in order to accommodate the changes of
their operative environment. Because of that, [12] provides a list of the major
drawbacks and limitations of traditional BPM systems, which we review here
taking into account recent developments in the field:

– Limited flexibility during process enactment;

– Inability to cope with dynamic changes in the availability of resources needed
to accomplish activities and tasks, as existing systems tend to lack the neces-
sary facilities to redistribute work items automatically as and when required;

– Inadequate handling of exceptional situations, especially when an excep-
tional case arises in a part of compound, yet possibly recoverable, tasks;

– Limited or even null ability to predict changes due to external events, in
both the volume and the time distribution of activities; and

– Insufficient interoperability with other software systems, as the majority of
existing BPM systems consist of centralized and monolithic systems that are
meant to control their operative environment and that are not designed to
cooperate with other, possibly unknown, controllers.

Even a superficial read of the mentioned drawbacks suggests that agent tech-
nologies are capable of addressing and effectively solving all such issues. If agent
technologies are involved in the enactment of business processes, we benefit from
the intrinsic dynamism and flexibility of agent-based systems and we rely on ma-
ture technologies that provide solid solutions to common software development
issues. Moreover, the use of agent technologies can fruitfully enable a declarative
approach to BPM that has already gained a significant interest for its inherent
characteristics (see, e.g., [18,20]).

An agent-based BPM system is made of a set of software modules that meet
the coarse grained criteria that define agenthood and that are involved in man-
aging the flow of work throughout a business process [15,17]. The basic idea
is to rethink the mentioned modules of a traditional BPM system in terms of
interacting agents in charge of peculiar responsibilities and capable of predicting
and reacting to unforeseen situations. This does not mean that we need to re-
think the discussed modularization of a BPM system; rather agents give us the
possibility of going deeper in the characterization of the parts of a BPM system.
All such parts are then viewed as agents in order to benefit from the intrinsic
characteristics of agents themselves.

Moreover, the use of agents enables another, orthogonal, modularization pos-
sibility, as suggested in [12]. An agent-based BPM system can split a business
process into parts and trust the control over such parts to individual agents.

Latest Developments of WADE to Support User-Centric Business Processes 25

Given such a view of an agent-based BPM system we can sum up the major
advantages of such an approach as follows [4,15]:

– Agents allow decentralized ownership of tasks, information and resources
involved in business processes;

– The use of communicating agents, which also concerns about business logic,
allows flexible and dynamic solution paths to the business process execution;

– The adoption of agents provides a high degree of natural concurrency when
many interrelated tasks are running at any given point of the business pro-
cess;

– The decoupling of the parts of the system that agents ensure allows them to
be swapped out, replaced, or even added to the system without impacting
other parts; and

– Agent technologies are today ready to build highly decentralized and dis-
tributed systems with notable non-functional features in terms of solidity
and robustness.

Unfortunately the literature has already identified some disadvantages of the
promising agent-based approach to the realization of BPM systems (see, e.g.,
[15]). We summarize the most prominent here for the sake of completeness:

– Agent-based systems have no overall system controller, which implies that
the agent-based approach might not be the best choice for managing business
processes with a lot of global constraints to be satisfied; and

– Agent-based systems have no global complete knowledge, i.e., an agent’s
actions are determined by that agent’s local knowledge and this may mean
that agents could make globally sub-optimal decisions.

It is worth noting that such issues are actually common to all agent-based soft-
ware systems and they are not typical of BPM systems. All in all, such issues
and their importance originate from the common understanding that considers
agent-based systems useful only in a limited set of contexts that are characterized
by intrinsic dynamism and uncertainty. This is no longer the case as the agent
technologies of today have already proved their maturity and their valuable role
in the design and realization of solid and robust software.

3 WADE as a BPM Platform

Obviously not all operative environments are so critical to make apparent the
shortcomings of agent technologies and often the benefits that agent-based BPM
brings are more relevant than the related issues. In fact, our experiences in real-
world BPM suggest that agent technologies can work effectively in traditional
settings and that they can provide notable benefits to common tasks of BPM.
The work presented in this paper is precisely motivated by such a point of view:
we think that agent technologies are now ready to deliver very solid, scalable
and visually programmable software systems even in traditional environments
where dynamism and uncertainty are not major issues.

26 F. Bergenti, G. Caire, and D. Gotta

3.1 Aims and Scope of WADE

We have been using agent technologies frequently in traditional operative envi-
ronments and users appreciated such a choice for its maturity and effectiveness
in the provision of non-functional features coupled with the possibility of visu-
ally programming complex behaviors. The heart of all our experience is WADE
(Workflow and Agent Development Environment) [7], a software tool for the vi-
sual development of agents as workflow executors that since version 3.0 can be
considered a first class agent-based BPM system. Actually, WADE has already
been successfully adopted in a number of mission-critical software systems, as
detailed further at the end of this paper, for the possibilities it provides in the
visual realization of solutions with distinguished non-functional requirements in
terms of scalability and robustness. The role of WADE agents in such systems is
not only about exploiting the autonomy of agents in the management of dynamic
and unforeseen situations; rather it is about providing developers with friendly
tools that represent a robust shield against the complexity of non-functional
requirements. Moreover, the tight integration of WADE with mainstream devel-
opment technologies, like Java and Web services, allows developers incremen-
tally adopting agent technologies in their systems. The parts of the system that
can fruitfully empower the features of agents are easily developed using WADE,
while other parts are still developed using mainstream technologies with no effort
needed for integration.

More in details, WADE is an open-source framework meant to develop dis-
tributed and decentralized applications based on the agent paradigm and the
workflow metaphor. It is built on top of JADE [3,14], the popular open-source
middleware for the implementations of multi-agents systems in compliance with
FIPA specifications [9]. WADE adds to JADE the possibility to define agent
tasks in terms of workflows and a set of mechanisms to handle the complex-
ity of administration and fault tolerance operations in a decentralized and dis-
tributed environment. In the view of a system that WADE advocates, each agent
is equipped with a set of workflows and the principal duty of an agent is to enact
the proper workflow depending on the dynamic situations it faces. Such work-
flows are normally described using the pleasant visual notation of the WOLF
(WOrkflow LiFe cycle management environment) graphical editor (see also [1,2]
for similar graphical languages for agent-based workflows). WOLF promotes a
high-level view of workflows, i.e., of the tasks of agents, and it gives developers
a friendly tool shown in Figure 1.

It is worth noting that the conception of WADE and related tools is always
concerned about the smooth transition from mainstream technologies and agent
technologies in order to ensure a proper management of all well/known issues
related to a substantial paradigm shift. This is the reason why WOLF tightly
couples the graphical view of a workflow with the underlying Java class that
concretely implements it. The developer is free to work on either the graphical
view or the Java class freely and he or she can change its work approach as easily
as clicking on a tab because WOLF ensures a real-time roundtrip accordance of
the two views. Moreover, the choice of implementing WOLF as Eclipse plug-in [8]

Latest Developments of WADE to Support User-Centric Business Processes 27

Fig. 1. WOLF visual editor for WADE workflows

that fully exploits the features of the Eclipse platform ensures that developers
are allowed to work in one of the most appreciated environments available today.

Many advantages have been demonstrated to become effective once we decide
to follow the WADE approach and, among them, it is worth mentioning the
possibility of having a graphical representation of a workflow which is easily
understandable by domain experts as well as by programmers. Because of the
workflows expressiveness, domain experts can directly validate the system logics
and, in some cases, they can even contribute to the actual development of the
system with no need of programming skills.

3.2 BPM-Oriented Evolutions of WADE

WADE was initially conceived back in 2006 to exploit the workflow approach
in the implementations of system internal logics that can be modeled in terms
of short running processes. Such kind of processes are generally characterized
by a short execution time (typically seconds or in some cases minutes) and a
high CPU time consumption, and they can be defined in terms of the activities
to be executed, the relations between such activities, which specify the execu-
tion flow, and the conditions of start-up and termination. Consistently with the
aforementioned requirements regarding short-running processes, some design de-
cisions have been taken. First, workflows are modeled in terms of Java code to
ensure maximum efficiency and flexibility. In the literature several formalisms,
e.g., XPDL, BPEL, WS-BPEL [19], can be found to describe workflows. How-
ever, if on the one hand they provide a clear and intuitive representation of the
process execution flow, on the other hand they are not suitable to specify all the

28 F. Bergenti, G. Caire, and D. Gotta

details involved in the implementation of a piece of the internal logic of a given
software system. A general-purpose programming language like Java is definitely
more powerful and flexible to deal with data transformations, computations and
with the low level auxiliary operations that are often needed when specifying
the internal logic of the system under development. Then, given that workflows
start and terminate their executions in a short time, no persistency mechanism
was considered necessary and workflows did not survive to the shutdown of their
WADE platform.

Starting from 2010 new requirements from Telecom Italia WADE-based sys-
tems, as well as from the open-source community, showed that, though very
effective for a particular type of applications, the advocated approach restricted
too tightly the actual uses of WADE. In particular, more and more frequently
the need to properly manage situations where a workflow could block waiting for
external events that may happen in hours, days or even months was indicated
as a mandatory feature.

To meet such ever growing requirements, with version 3.0, WADE had a strong
evolution that, though preserving its distinctive characteristics, makes it now a
tool that can effectively play a substantial role in agent-based BPM contexts.

Long-Running Workflows. The base for all WADE BPM-oriented features
described in this section is the possibility of having workflows that survive to
a system restart. Such workflows are identified as long-running. In details, if
the platform is shut down just after a long-running workflow W has executed
activity An, as soon as the platform starts up again, workflowW is automatically
reloaded and forced to recover its execution starting from activity An+1. Under
the hood WADE saves the state of a long-running workflow on a persistent
storage after the execution of each activity. The persistent storage is implemented
by a relational database accessed through Hibernate. The mechanism has been
developed and tested with a number of different database management systems,
e.g., H2, mySql and Oracle. A new administrator agent called WSMA (Workflow
Status Manager Agent) has been introduced and it is responsible to manage all
operations related to tracing, persisting and recovering the status of workflows.

Asynchronous Events. Another major step in the evolution of WADE is the
introduction of an integrated event sub-system implemented as an agent called
ESA (Event System Agent). When developing a workflow, besides regular ac-
tivities, it is now possible to include new synchronization activities that, when
reached, make the execution block until a given event happens. In details, when
the process enters such a synchronization activity, the related agent thread is
released to prevent resource consumption and the WSMA switches the work-
flow state from ACTIVE to SUSPENDED. A dedicated API is then provided
to allow agents submitting events to the event system. As soon as an event
matching the template specified in the synchronization activity is submitted,
the workflow agent is resumed and the state of the workflow is switched back
to ACTIVE. Furthermore, the information that the event bares is made available

Latest Developments of WADE to Support User-Centric Business Processes 29

to the workflow for further processing. The event system stores received events
for a configurable amount of time so that it is now possible to transparently deal
with situations where a synchronization activity is reached after the expected
event happened. In such cases the workflow does not even block and it immedi-
ately steps forward. It should be noted that the possibility of blocking to receive
asynchronous events is not strictly related to long-running workflows however, if
the system is restarted, long-running workflows will be recovered transparently
and all suspended short-running workflows are immediately aborted.

Web Service Exposure. Since version 2.0 WADE includes a powerful embed-
ded support to invoke Web services from within a workflow. In version 3.0 such
a support is enriched with the dual possibility of exposing Web services. Such
a new feature is twofold. First, it is possible to expose the operations specified
in a given WSDL and block a workflow waiting for a given operation to be in-
voked. This is achieved by combining the new Web service exposure feature with
the support for asynchronous event described previously. An ad-hoc WaitWeb-
Service synchronization activity is now available that, when reached, blocks the
workflow until the event corresponding to the invocation of a previously exposed
Web service operation happens. Internally, the code serving the Web service in-
vocation encapsulates the operation parameters into an event that is submitted
to the event system. Second, it is now possible to automatically expose a work-
flow as a Web service. The workflow name is mapped to the service name and
a single execute operation is generated with input parameters matching work-
flow’s ones. The code intended to serve the invocation triggers the execution of
the workflow.

From the architectural point of view, the Web service exposure feature is
implemented by a new component called WadeServices. This is a common Web
application that can be executed within any servlet container, e.g., Apache Tom-
cat.

It is worth noting that this new feature of WADE is made available in WOLF
by means of a simple point-and-click on the workflow Java class.

Administration Web Console. According to the new evolutions of WADE
and in order to facilitate the administration of the platform, a Web monitor and
configuration console was developed to allow performing both low level man-
agement operations, e.g., the start-up/shut-down of the platform, and high-level
actions related to the business logics, e.g., browsing and launching a workflow.
This new Web console was implemented using the ZK framework [23], an open
source solution to develop Web applications based on AJAX machinery. In par-
ticular, the ZK framework has been extended to support new ZK components
specifically intended to support WADE administration functionalities. Such com-
ponents, developed for and used by the Web console, can be also reused inside
custom Web applications that need to integrate WADE platform management
functionality.

30 F. Bergenti, G. Caire, and D. Gotta

4 WADE User-Centric Workflows

The extensive use of WADE in mission-critical applications (see the concluding
section and [7] for some examples) has witnessed the notable importance of user
interactions in the scope of workflows. This is not surprising and we acknowl-
edge that the idea of workflows has its origins in the management of the work
of people. Nonetheless, we believe that the common approach of treating user
interactions as yet another type of event does not adequately capture the im-
portance and the high frequency of them. So called user-centric workflows are
therefore introduced in WADE version 3.0 as a means to capture workflows that
(i) frequently need to interact with users, and (ii) are mainly intended to gather
information and provide feedback to users. WADE now lifts user interactions
to a higher level and it provides specific tools and features to manage them ef-
fectively. The design guidelines for such a recent development of WADE are as
follows:

– The description of the information to provide to users and the related input
to acquire from users must be independent of the device that the user is
concretely accessing;

– Any element of such a description must be extensible in order to let develop-
ers provide more specific descriptions of both input and output information;

– The software application that the user accesses must be replaceable by any
custom application once the communication with the WADE platform is
correctly performed; and

– No device is privileged and developers must be able to describe workflows in
full generality, if they really want.

From such very generic guidelines we choose the Model-View-Controller (MVC)
[10] architectural design pattern as the coarse grained model around which we
designed the new interactivity package of WADE. Therefore, WADE version 3.0
adopts the following terminology:

– The model of the interaction is the abstract description of the information
to provide to users and the related input expected from users; and

– The view of the interaction is the visual representation of the model realized
by the application that the user adopts to connect to a workflow. In concrete
terms, the new interactivity package of WADE provides the Java classes of
the model and a number of visualizers intended to be integrated in the
application shipped to users.

In order to fully exploit the power of user-centric business processes, the de-
veloper of a workflow should first inform WADE that the workflow itself needs
to interact with users. This is accomplished by realizing a workflow class that
extends the InteractiveWorkflow class rather than the common Workflow

class. Such an InteractiveWorkflow class is a specific subclass of Workflow
that provides the needed machinery to link a workflow instance to a visualizer.
WADE ensures a one-to-one correspondence between a user and an instance of

Latest Developments of WADE to Support User-Centric Business Processes 31

an InteractiveWorkflow and therefore an InteractiveWorkflow has just one
user at a time. Multiple users can be accommodated into a single instance of a
workflow by having the control of the workflow passed between users, just like
we normally do in user-centric workflows.

When an InteractiveWorkflow is connected to a visualizer, it is requested to
provide the visualizer with a description of the information to present to the user
and with a related description of the possible user inputs. Such a mechanism is
concretely driven by the workflow developer who can freely use the new method
interact() that InteractiveWorkflow provides. Such a method is supplied
with an Interaction object that contains the following parts:

– An abstract description of the information to be presented to the user with
some abstract requirements on the way information is presented, e.g., by
indicating how a set of labels should be aligned on the user screen;

– An abstract description of the information that the user is allowed to return
in his or her response;

– An abstract description of the constraints that the user response must meet
to be considered valid; and

– A list of possible abstract actions that the user is allowed to choose as valid
responses.

Upon executing the interact() method, the workflows is put into a SUS-
PENDED state to allow the corresponding visualizer to present the information
to the user and to enable the user to provide feedback by means of one of the
available response actions. The visualizer is on duty for showing the information
in the best possible way and for allowing the user to provide its response. The
visualizer is also responsible for the correctness of the provided response because
it is in charge of checking the constraints that identify valid responses. Once the
user has validly compiled its response and chosen one of the available response
actions, the visualizer returns user response to the workflow instance in terms
of a copy of the original Interaction object that now contains relevant user
input and from which the developer can extract the user response easily. Such
an approach allows developers retrieving response information from where they
originally decided they should be contained. Moreover, it ensures no redundant
information is sent back in responses.

The interaction between the workflow and the visualizer relies completely on
WADE agents because (i) WADE ensures that any running workflow instance
is associated with an agent; and (ii) visualizers are implemented by means of
WADE agents that can interact with user devices.

How WADE agents are concretely connected with user devices is heavily de-
pendent on the actual visualizer the user is accessing, as discussed briefly later
in this section.

4.1 A Model of Interactions

In the WADE nomenclature an interaction is both an abstract description of
the information to be provided to users and a means to allow users constructing

32 F. Bergenti, G. Caire, and D. Gotta

responses. Therefore, WADE provides a set of Java classes that are used to
describe interactions with such a dual meaning. Such classes are designed using
the standard approach adopted in modern user interfaces and they are structured
in a containment tree. Figure 2 sketches a class diagram of some of the classes
that the developer can use to create a model. Such classes are divided into the
following major groups:

– Passive elements, e.g., labels and pictures, that are leafs of the containment
tree intended to describe the information to be provided to users;

– Information elements, e.g., text areas and menus of various types, that are
leafs of the containment tree and that are meant to provide the user with a
means to compile his or her responses;

– Containers, e.g., list and grid panels, that are designed to aggregate a group
of children in order to describe their relative position in an abstract manner;

– Actions that describe the types of responses the user can select; and
– Constraints that concretely provide check procedures to ensure the correct-

ness of the user responses.

With the notable exception of constraints, all such Java classes are purely de-
scriptive and they are simple containers for information flowing between an In-
teractiveWorkflow and a visualizer. They are designed to maintain the clear
separation of concerns of the MVC design pattern. All such classes describe
the model of an interaction, while the relative controller is implemented by the
adopted visualizer, which also generates on the fly the relative view. Such an
approach ensures, among other things, that developers are free to add new vi-
sualizers and that no visualizer is privileged.

Constraints are peculiar in the scope of the MVC pattern because they are
intended to validate user input. They represent a pluggable part of the con-
troller because they are responsible for updating the view upon changes in the
model, e.g., by marking invalid components with an error notification. WADE
provides a set of general purpose constraints that can be used, e.g., to make sure
a mandatory menu has at least an item selected or to warrantee that the text
in a text field conforms to a given regular expression.

Finally, it is worth mentioning that WADE version 3.1 already provides de-
scriptors for visual elements that are not supposed to be available to all visual-
izers. This is the case, e.g., of the Position and of the Camera classes that are
now available only to the Android visualizer. This is not contradictory with the
abstract and extensible approach that we enforced with the mentioned design
guidelines. In fact, no visual element is guaranteed to be available to all visu-
alizers even if the most common of them are likely to be always there. It is up
to the developers of the application that integrates WADE workflows to ensure
that workflows use components that are actually available.

4.2 Available Visualizers

At the time of writing WADE provides three visualizers meant to accommo-
date two important classes of users: Web users and Android users. Web users

Latest Developments of WADE to Support User-Centric Business Processes 33

Fig. 2. Excerpt from WADE interactivity package

are allowed to activate new interactive workflows and to connect to suspended
workflows by means of dedicated visualizers developed using the ZK toolkit [23]
and the GWT (Google Web Toolkit) [11].

ZK is a very popular toolkit to develop AJAX applications in Java and it is
easily interfaced with WADE1. The ZK visualizer instantiates one JADE agent
on the server side of the Web application for each and every Web session and
it ensures agents are properly connected with the WADE platform. The client
side of the ZK application is meant to (i) present information to the user, (ii)
provide selectable actions in terms of buttons, and (iii) ensure constraints are
met before passing any response to workflow agents. The chosen approach en-
sures a lightweight client that is only in charge of realizing the user interface on
the fly and of validating constraints. ZK provides a proprietary communication
means between the client browser and the server side of the application that is
completely hidden in the deep internals of ZK, thus becoming transparent to
developers.

1 The WADE administration Web console is also developed with ZK.

34 F. Bergenti, G. Caire, and D. Gotta

Fig. 3. Android emulator presenting the user interface of a WADE interactive workflow

GWT is the Google’s proposal to develop highly interactive Web applications
and it provides almost unique means to develop client-side Java code. The GWT
visualizer is essentially a porting of the ZK visualizer, even if a clearer separation
between the client code and server code can be accomplished. Just like any other
GWT application, the visualizer is split into a client side that is responsible to
provide a rich GUI to the user, and a server side that communicates with back-
end agents and progresses workflows. The two side are linked via GWT RCP
mechanism and JADE agents are confined on the server side. Therefore, the
actual logic of the visualizer resides on the server side, while the client side is
only responsible for building user interfaces and for collecting user input which
is then passed back to workflows.

The Android visualizer is developed along the lines of the two Web visualizers
and we ensured that the internals of the two visualizers are developed using the
same architecture and adopting closely related classes. The major difference with
Web visualizers is that the Android visualizer is a single Android application that
hosts on the user terminal:

– A JADE container in split mode (see JADE documentation for details [14])
which is created in the scope of the WADE platform;

– The agent needed to connect the user with the workflow; and
– The visual components that are used to dynamically assemble and render

the user interface.

Latest Developments of WADE to Support User-Centric Business Processes 35

No proprietary communication mechanism is needed in this case because the
agent and the visual components share some memory of the terminal.

Figure 3 shows the Android emulator presenting the user interface of the
sample interactive workflow depicted in Figure 1.

5 Conclusions

This paper presents recent developments of WADE in the larger scope of agent-
based BPM. It gives an overview of the main concepts of agent-based BPM and
it emphasizes the main features of it in comparison with traditional BPM. Even
if we acknowledge the power and possibilities of agent-based BPM to tackle dy-
namic and unforeseen situations, we advocate the use of agent technologies in
the development of BPM systems for their solid non-functional features and for
their proven ease of use. Such features are easily understood and mastered by
the personnel involved in BPM projects and they ensure a smooth transition
from mainstream approaches to innovative technologies with minimal, or even
null, issues. Actually, WADE has been appreciated in the development of mis-
sion critical agent-based BPM systems for the agile approach that it brings in.
WADE provides a solid platform for the development of complex BPM systems
that tightly integrate the power of a visual approach with scalability, robust-
ness and interoperability with mainstream technologies. This has reduced the
effort needed to develop effective demonstrators and prototypes that were fruit-
fully scaled up to the cores of real systems, thus reducing time-to-market and
improving the overall qualities of systems and of development processes.

WADE is commonly used in Telecom Italia for a number of mission critical
systems [7,21] that are now in everyday use with real users and in the scope of
projects with real customers. The following is a brief list of the most notable
initiatives that use WADE in Telecom Italia:

– NNEM implements a mediation layer between network elements and OSS
systems for millions of Telecom Italia customers;

– Wizard provides step-by-step guidance to thousands Telecom Italia techni-
cians performing installation and maintenance operations in the fields with
more than 1 million documented assisted installation since 2007; and

– WeMash, a mash-up platform for service-oriented architectures, enables non-
developer users to self-create simple applications and to share them within
the team they are working in.

The results were so compelling that Telecom Italia chose WADE as the enabling
middleware for a SAAS (Software As A Service) offer for Utilities customers
in the fields of electricity, gas and water. This offer includes various systems
based on the new functionalities of WADE 3.1 described in this paper with a
fully functional service-oriented architecture based completely on open source
components.

36 F. Bergenti, G. Caire, and D. Gotta

References

1. Bartocci, E., Corradini, F., Merelli, E.: Building a Multi-Agent System from a User
Workflow Specification. In: Proc. Workshop “Dagli Oggetti agli Agenti”. CEUR
Workshop Proceedings, vol. 204 (2006)

2. Bartocci, E., Corradini, F., Merelli, E., Scortichini, L.: BioWMS: A Web-based
Workflow Management System for Bioinformatics. BMC Bioinformatics 8(S-1)
(2007)

3. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. John Wiley & Sons (2007)

4. Bolcer, G.A., Taylor, R.N.: Advanced Workflow Management Technologies. Soft-
ware Process: Improvement and Practice 4(3), 125–171 (1998)

5. BPMN – Business Process Modeling Notation, http://www.bpmn.org
6. Cai, T., Gloor, P.A., Nog, S.: DartFlow: A Workflow Management System on the

Web Using Transportable Agents. Technical Report, Dartmouth College (1997)
7. Caire, G., Gotta, D., Banzi, M.: WADE: A Software Platform to Develop Mission

Critical Applications Exploiting Agents and Workflows. In: Proc. 7th Int’l Conf.
Autonomous Agents and Multiagent Systems, pp. 29–36 (2008)

8. Eclipse, http://www.eclipse.org
9. FIPA – Foundation for Intelligent Physical Agents, http://www.fipa.org

10. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley
(2003)

11. Google Web Toolkit, http://code.google.com
12. Grundspenkis, J., Pozdnyakov, D.: An Overview of the Agent.Based Systems for

the Business Process Management. In: Proc. Int’l Conf. Computer Systems and
Technologies (2006)

13. Hawryszkiewycz, I., Debenham, J.: A Workflow System Based on Agents. In:
Quirchmayr, G., Bench-Capon, T.J.M., Schweighofer, E. (eds.) DEXA 1998. LNCS,
vol. 1460, pp. 135–144. Springer, Heidelberg (1998)

14. JADE – Java Agent Development framework, http://jade.tilab.com
15. Jennings, N.R., Faratin, P., Johnson, M.J., Norman, T.J., Wiegand, M.E.: Agent-

Based Business Process Management. Int’l J. Cooperative Information Sys-
tems 5(2-3), 105–130 (1996)

16. Jin, W., Chang, S.T.: Agent-based Workflow: TRP Support Environment (TSE).
Computer Networks and ISDN Systems 28(7-11), 1501–1511 (1996)

17. Pang, G.: Implementation of an Agent-Based Business Process. Technical Report,
University of Zurich (2000)

18. Pesic, M., Schonenberg, H., Van der Aalst, W.M.P.: DECLARE: Full Support
for Loosely-Structured Processes. In: Proc. 11th IEEE International Enterprise
Distributed Object Computing Conference, p. 287 (2007)

19. Shapiro, R: A Comparison of XPDL, BPML and BPEL4WS (Rough Draft), Cape
Vision (2002)

20. Telang, P.R., Singh, M.P.: Specifying and Verifying Cross-Organizational Business
Models: An agent-Oriented Approach. IEEE Transactions on Services Comput-
ing 5(3), 305–318 (2012)

21. Trione, L., Long, D., Gotta, D., Sacchi, G.: Wizard, WeMash, WADE: Unleash the
Power of Collective Intelligence. In: Proc. 8th Int’l Conf. Autonomous Agents and
Multiagent Systems (2009)

22. Workflow Management Coalition. Workflow Management Coalition Terminology
& Glossary, http://www.wfmc.org

23. ZK Open-Source Framework, http://www.zkoss.org

http://www.bpmn.org
http://www.eclipse.org
http://www.fipa.org
http://code.google.com
http://jade.tilab.com
http://www.wfmc.org
http://www.zkoss.org

Strong Planning in the Logics of Communication
and Change

Pere Pardo1 and Mehrnoosh Sadrzadeh2

1 Institut d’Investigació en Intel·ligència Artificial (IIIA - CSIC), Spain
2 Dept. of Computer Science, University of Oxford, UK

Abstract. In this contribution we study how to adapt Backward Plan search to
the Logics of Communication and Change (LCC). These are dynamic epistemic
logics with common knowledge modeling the way in which announcements,
sensing and world-changing actions modify the beliefs of agents or the world
itself. The proposed LCC planning system greatly expands the social complexity
of scenarios involving cognitive agents that can be solved. For example, goals or
plans may consist of a certain distribution of beliefs and ignorance among agents.
Our results include: soundness and completeness of backward planning (breadth
first search), both for deterministic and strong non-deterministic planning.

1 Introduction

Practical rationality or decision-making is a key component of autonomous agents, like
humans, and correspondingly has been studied at large. This research has been con-
ducted from several fields: game theory, planning, decision theory, etc. each focusing
on a different aspect (strategic decision-making, propositional means-ends analysis, and
uncertainty, respectively).

While the different models are well-understood, they were (understandably) de-
signed with a considerably low level of expressivity at the object language. For instance,
game-theory does not represent the logical structure underlying the states, actions and
goals; planning [5], on the other hand, represents part of it with atomic facts and nega-
tion, but it traditionally disregards other existing agents. All this contrasts with the area
of logic, where logics for multi-agent systems (with increasing expressivity) have been
characterized.

Specially relevant to the topic of cognitive agents are the notions of belief, action,
goal, norm, and so on. The first two elements are the target of dynamic epistemic logics
DEL [3], [15], [16], a recent family of logics which allow us to reason about agents’
communications, observations and the usual world-changing actions. We focus on the
so-called Logics of Communication and Change (LCC) [13], which generalize many
previously known DEL logics, and hence include a rich variety of epistemic actions
(in the DEL literature) and ontic actions (from the tradition on planning). Briefly, LCC
logics are dynamic epistemic logics with common knowledge, ontic actions and several
types of communicative actions (truthful or lying, public or private announcements).

Less consensus exists about representing and reasoning with motivational attitudes
like goals, desires or intentions. On the one hand, logics in the BDI tradition (belief-
desire-intention) [12] make them explicit in the language, e.g. one can express agent a

M. Baldoni et al. (Eds.): DALT 2012, LNAI 7784, pp. 37–56, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

38 P. Pardo and M. Sadrzadeh

has goalϕ; in the planning tradition, though, one only makes explicit their propositional
contentϕ (what makes ϕ a goal is just its membership to the set of goals). Here we adopt
the second (and less expressive) representation of goals.

In the present contribution, we describe a system for planning that accepts arbitrary
epistemic formulas (e.g. common knowledge) as goals or state descriptions, and with
ontic/epistemic actions given by Kripke-like action models. The language of LCC log-
ics (used to this end) is further extended with action composition ⊗ and choice ∪, in
order to study planning with non-deterministic actions. In this sense, we slightly gen-
eralize on previous results in [9] and [10], by dropping a technical restriction on the
precondition of non-deterministic actions, and proposing slightly different plan struc-
tures. In summary, we define a breadth first search (BFS) algorithm for strong planning
in the extended LCC logics. This search method is proved to be sound and complete:
its outputs are (logically) successful plans and if such a successful plan exists, the al-
gorithm terminates with some such solution. Finally, this algorithm easily extends to
optimal plan search when each action is assigned some cost for its execution.

Motivating Example. Our aim, then, is to endow LCC logic based agents with plan-
ning capacities for this logic, so they can achieve their goals in scenarios where other
agents have similar cognitive and acting abilities. In particular, LCC planning seems
necessary for an agent whose goals consist in (or depend on) a certain distribution of
knowledge and ignorance among agents. To illustrate the kind of rational behavior an
LCC planner can exhibit, consider the following example:

Example 1. Agent a placed a bet with agent b that the next coin toss would be heads
(h). Agent a knows she can toss the coin and detect its outcome, or flip the coin, without
agent b knowing about it. Given a sensing action that tells a whether h holds or not, a
successful plan seems to be: toss the coin; if sense that h, then show h to b; otherwise
flip the coin and show h.

2 Related Work

Among logics for action guidance, the family of BDI [12] and related logics for inten-
tion are possibly the more popular. While these logics usually allow for considerable
expressivity w.r.t. motivational attitudes (and their interaction with beliefs), they are not
completely understood at a syntactic level. In fact, the use of planning methods has
been suggested for an implementation of a BDI architecture. In particular, [4] suggest
the use of LCC planning for the corresponding fragment of BDI logic. In this work [4]
(see also [8]), the authors study LCC forward planning based on the semantics of update
models; the BFS search algorithm is shown to be complete for LCC forward planning
and in addition this problem (LCC forward planning) is shown to be semi-decidable
in the general multi-agent case. An extension for (single-agent) conditional plan search
in AND/OR-graphs can be found in [1]. The present work addresses the multi-agent
case using instead a backward search approach (in OR-graphs). The motivation for this
lies in the nature of communicative actions: while forward search is based on actions
that are executable, backward search focuses on actions that are relevant to the current
goals. This makes a difference in LCC since many actions will exist which are every-
where executable, so forward planning will typically face the state explosion problem.

Strong Planning in LCC 39

Another work along the same lines is [2] (and related papers) where regression methods
are introduced for the fragment of LCC without common knowledge. Regression can
also be used as a (non-incremental) planning algorithm for LCC.

3 Preliminaries: The Logics of Communication and Change

Logics for agents with epistemic and communicative abilities have been developed in
the recent years, ranging from epistemic logic [7] (for individual, group or common
belief or knowledge), to logics of announcements [3], [15] (public or private, honest or
dishonest), and finally to incorporating ontic actions (i.e. world-changing actions) [16].
All this has been unified within the single framework of Logics of Communication and
Change [13], or LCC logics, formally a dynamic extension of epistemic logic using
action models. This work proposes a general (translation-based) method that provides a
complete axiomatization of an LCC logic from the specification of its particular action
model. Since LCC logics are built by adding dynamic action modelsU on top ofE·PDL
(propositional dynamic logic PDL under an epistemic reading), we recall PDL first.

3.1 Epistemic PDL

Propositional dynamic logic [6] is a modal logic for reasoning about programs, with
modalities [π] (and 〈π〉) expressing after executing program π it is necessarily (resp.
possibly) the case that. Using a semantics for programs π based on relations Rπ (be-
tween the internal states of a machine running the program), the PDL programs π are
built from basic actions a and the program constructors of composition a; b (do a then
b), choice a ∪ b (either do a or b), test ?ϕ (test ϕ, and proceed if true or terminate) and
iteration a∗ (do a; repeat) (the Kleene-star for the reflexive transitive closure). It was
later suggested [13] that the dynamic modalities of PDL naturally admit an epistemic
interpretation as well, called E·PDL, if we read the basic “program” [a] as the modality
for agent a’s knowledge or belief; that is, [a]ϕ reads: a knows ϕ, or a believes ϕ; and
〈a〉 reads: a considers it possible that ϕ. Note that epistemic PDL does not distinguish
between knowledge and belief, as usually understood by the S5 and KD45 modal log-
ics, respectively. And thus, at the abstract level of PDL we will indistinctly refer to [a]
as knowledge or belief. Within a particular model, though, we can properly refer to one
or the other depending on the semantic properties, e.g. whether [a]ϕ→ ϕ holds, etc.

Definition 1. The language of E·PDL, denoted by LE·PDL, for a given sets of atoms
p ∈ Var and agents a ∈ Ag consists of the following formulas ϕ and programs π:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | [π]ϕ π ::= a | ?ϕ | π1;π2 | π1 ∪ π2 | π∗

The symbols⊥,∨,↔ and 〈π〉 are defined from the above as usual. Under the epistemic
reading, the PDL program constructors allow us to model, among others,

[a; b] agent a believes that b believes that (nested belief)
[B], or [a ∪ b] agents in B = {a, b} believe that (group belief)

[B∗], or [(a ∪ b)∗] it is common knowledge among B that (comm. knowl.)

40 P. Pardo and M. Sadrzadeh

An E·PDL model M = (W, 〈Ra〉a∈Ag, V) does, as usual, contain a set of worlds
W , a relation Ra in W for each agent a, and an evaluation V : Var→ P(W)).

Definition 2. The semantics of E·PDL consists of models M = (W, 〈Ra〉a∈Ag, V),
containing: a set of worlds W , a relation Ra in W for each agent a, and an evaluation
V : Var→ P(W). This map V extends to a map �ϕ�

M for each formula ϕ in LE·PDL:

���M = W �a�M = R(a)

�p�
M

= V (p) �?ϕ�
M

= Id�ϕ�

�¬ϕ�M = W � �ϕ�
M

�π1;π2�
M

= �π1�
M ◦ �π2�

M

�ϕ1∧ϕ2�
M = �ϕ1�

M∩ �ϕ2�
M �π1∪π2�

M = �π1�
M ∪ �π2�

M

�π∗�M = (�π�
M
)∗

�[π]ϕ�M = {w ∈ W | ∀v((w, v) ∈ �π�M ⇒ v ∈ �ϕ�M}

where ◦ and ∗ are the composition and reflexive transitive closure of relations.

Notice in particular that �?⊥�
M

= ∅ and �?��
M

= IdW (the identity relation on W).
We recall the axioms/rules ofE·PDL that provide a sound and complete axiomatization:

(K) � [π](ϕ→ ψ)→ ([π]ϕ→ [π]ψ)
(test) � [?ϕ1]ϕ2 ↔ (ϕ1 → ϕ2)

(sequence) � [π1;π2]ϕ↔ [π1][π2]ϕ
(choice) � [π1 ∪ π2]ϕ↔ [π1]ϕ ∧ [π2]ϕ
(mix) � [π∗]ϕ↔ ϕ ∧ [π][π∗]ϕ, and

(induction) � ϕ ∧ [π∗](ϕ→ [π]ϕ)) → [π∗]ϕ.
(Modus ponens) From � ϕ1 and � ϕ1 → ϕ2, infer ϕ2,
(Necessitation) From � ϕ, infer � [π]ϕ.

3.2 Action Models U, e

An LCC logic will add to an E·PDL language a set of modalities [U, e] for each pointed
action model U, e with distinguished (actual) action e. These new operators [U, e] read
after each execution of action e it is the case that. An action model is a tuple U =
(E,R, pre, post) containing

– E = {e0, . . . , en−1}, a set of actions
– R : Ag → (E× E), a map assigning a relation Ra to each agent a ∈ Ag
– pre : E→ LPDL, a map assigning a precondition pre(e) to each action e
– post : E × Var → LPDL, a map assigning a post-condition post(e)(p), or ppost(e),

to each e ∈ E and p ∈ Var

Let us fix the above enumeration e0, . . . , en−1 which will be used throughout the paper,
unless stated otherwise. During plan search, in particular, when we refine a plan with
some new action, the different alternatives will be considered according to this ordering:
the refinement with e0 will be considered before the refinement with e1, and so on.

Strong Planning in LCC 41

Definition 3. The language of the LCC-logic for an action model U extends the for-
mulas of E·PDL (for the same set of variables Var and agents Ag) with modalities for
pointed action models U, e, giving the following sets of formulas ϕ and programs π:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | [π]ϕ | [U, e]ϕ π ::= a | ?ϕ | π1;π2 | π1 ∪ π2 | π∗

The new modalities [U, e]ϕ represent “after the execution of e, ϕ will hold”. The se-
mantics of LCC computes M,w |= [U, e]p in terms of the product update of M,w and
U, e. This product update is (again) an E·PDL pointed model M ◦ U, (w, e), with

M ◦ U = (W ′, 〈R′
a〉a∈Ag, V

′) where

– the set W ′ consists of those worlds (w, e) such that M,w |= pre(e)
(so executing e will lead to the corresponding state (w, e).)

– the relation (w, e)R′
a(v, f) holds iff both wRav and eRaf hold; and

– the valuations are V ′(p) = {(w, e) ∈ W ′ |M,w |= post(e)(p)},
(the truth-value of p after e depends on that of post(e)(p) before the execution)

An updated model (W ′, 〈R′
a〉a∈Ag, V

′) will be denoted (WM◦U, 〈RM◦U
a 〉a∈Ag, V

M◦U).

Example 2. Several types of announcement (that ϕ by agent a) can be expressed. As
purely epistemic actions, they are assigned the trivial post-condition post(·)(p) = p.

– a (successful) truthful announcement to sub-groupX ⊆ Ag, denoted [U, ϕ!aX], with

pre(ϕ!aX) = ϕ and Rb(ϕ!
a
X , e)⇔

{
e = ϕ!aX if b ∈ X ∪ {a}
e ∈ {ϕ!aX , skip} if b /∈ X ∪ {a}

– a (successful) lying announcement to X , denoted U, ϕ†aX , is defined by the same
accessibility relation but with precondition pre(ϕ†aX) = ¬ϕ.

(Here skip is the null action defined pre(skip) = �, and post(skip)(p) = p.)

From here on we assume that post-conditions post(e)(p) are restricted to the elements
{p,�,⊥}, rather than post(e)(p) being an arbitrary formula. This restriction was stud-
ied in [16] for logics similar to LCC, with epistemic modalities for agents [a] and group
common knowledge [B∗] for B ⊆ Ag. The authors show that the logic resulting after
this restriction on post-conditions is as expressive as the original where post-conditions
are arbitrary formulas.

Later, we recover this expressivity by introducing a non-deterministic choice opera-
tor for actions. Let us remark that choice is more general than arbitrary post-conditions
ϕ, since it can model the toss of a coin without describing which conditions ϕ would
result in the coin landing heads.

This restriction makes the truth-value of p after e to be either of the following:

if post(e)(p) = . . . then the truth-value of p after e is . . .
� true (since � is always true, hence true before e)
p its truth-value before the execution of e
⊥ false (since ⊥ is always false)

42 P. Pardo and M. Sadrzadeh

3.3 Logics of Communication and Change

ThePDL semantics �·� for E·PDL-formulas extends to a semantics forLCC by adding:

�[U, e]ϕ�M = {w ∈ W | if M,w |= pre(e) then (w, e) ∈ �ϕ�M◦U}.

In [13], the authors define program transformersTU
ij(π) that provide a mapping between

E·PDL programs (see Def. 4). Given any combination of actions in a model U the
transformers provide a complete set of reduction axioms, reducing LCC to E·PDL. In
a sketch, the U, e-modalities are pushed inside the formula, up to the case [U, e]p.

Definition 4. Let an action model U with E = {e0, . . . , en−1} be given. The program
transformer function TU

ij is defined as follows:

T U
ij(a) =

{
?pre(ei); a if eiR(a)ej ,

?⊥ otherwise

T U
ij(?ϕ) =

{
?(pre(ei) ∧ [U, ei]ϕ), if i = j

?⊥ otherwise

T U
ij(π1;π2) =

⋃n−1
k=0 (T

U
ik(π1);T

U
kj(π2))

T U
ij(π1 ∪ π2) = T U

ij(π1) ∪ T U
ij(π2)

T U
ij(π

∗) = KU
ijn(π).

where KU
ijn is inductively defined as follows:

KU
ij0(π) =

{
?� ∪ T U

ij(π) if i = j

T U
ij(π) otherwise

KU
ij(k+1)(π) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(KU

kkk(π))
∗ if i = k = j

(KU
kkk(π))

∗;KU
kjk(π) if i = k �= j

KU
ikk(π); (K

U
kkk(π))

∗ if i �= k = j

KU
ijk(π) ∪ (KU

ikk(π); (K
U
kkk(π))

∗;KU
kjk(π)) if i �= k �= j

A calculus for the LCC logic of a given action model U is given by the following:

the axioms and rules for E·PDL

[U, e]� ↔ � (top)

[U, e]p↔ (pre(e)→ post(e)(p)) (atoms)

[U, e]¬ϕ↔ (pre(e)→ ¬[U, e]ϕ) (negation)

[U, e](ϕ1 ∧ ϕ2)↔ ([U, e]ϕ1 ∧ [U, e]ϕ2) (conjunction)

[U, ei][π]ϕ↔
∧n−1

j=0 [T
U
ij(π)][U, ej]ϕ (E·PDL-programs)

if � ϕ then � [U, e]ϕ (Necessitation)

Strong Planning in LCC 43

The completeness for this calculus is shown by reducing LCC to E·PDL. The transla-
tion, simultaneously defined for formulas t(·) and programs r(·) is

t(�) = � r(a) = a
t(p) = p r(B) = B
t(¬ϕ) = ¬t(ϕ) r(?ϕ) =?t(ϕ)
t(ϕ1 ∧ ϕ2) = t(ϕ1) ∧ t(ϕ2) r(π1;π2) = r(π1); r(π2)
t([π]ϕ) = [r(π)]t(ϕ) r(π1 ∪ π2) = r(π1) ∪ r(π2)
t([U, e]�) = � r(π∗) = (r(π))∗

t([U, e]p) = t(pre(e)) → ppost(e)

t([U, e]¬ϕ) = t(pre(e)) → ¬t([U, e]ϕ)
t([U, e](ϕ1 ∧ ϕ2)) = t([U, e]ϕ) ∧ t([U, e]ϕ2)

t([U, ei][π]ϕ) =
∧n−1

j=0 [T
U
ij(r(π))]t([U, ej]ϕ)

t([U, e][U, e′]ϕ) = t([U, e]t([U, e′]ϕ))

These translation functions t and r will be part of the backward planning algorithms
presented in the next sections.

4 Backward Deterministic Planning in LCC

We proceed to introduce search algorithms for planning domains expressible in some
LCC logic. In this section we study the deterministic case. The first step is to adapt the
basic elements of planning systems:

– the goal and initial state are formulas of E·PDL (the static fragment of LCC).
– the set of available actions A ⊆ E, among those in the action model U
– an available action is a pointed action model U, e where e ∈ A

A deterministic plan is an executable sequence of actions in A that necessarily leads
from any initial state to some goal state.

As we said, the proposed search methods for LCC planning are based on the above
reduction of LCC into E·PDL. Given a (goal) formula ϕ for the current plan π and
some action e, we want to compute the minimal conditions ψ (upon an arbitrary state)
that would make ϕ to hold after e. After refinement of π with e, this minimal condition
ψ will be the new goal replacing ϕ. More formally, we say ψ ∈ LPDL is the weakest
precondition for a formula [U, e]ϕ, iff (in LCC)

|= ψ ↔ [U, e]ϕ.

This notion generalizes the definition in classical planning of open goals after refine-
ment. Recall in classical planning, the different variables (or literals) p, q are logically
independent, so the total effects of an action simply decompose into the individual ef-
fects w.r.t. each variable.

The weakest precondition for e to cause an arbitrary formula ϕ is the formula:

t([U, e]ϕ ∧ 〈U, e〉�)

44 P. Pardo and M. Sadrzadeh

extracted from the reduction to E·PDL by way of translation using t, r. Indeed, the
correctness of the translation based on t, r makes

|= t([U, e]ϕ ∧ 〈U, e〉�)↔ [U, e]ϕ ∧ 〈U, e〉�

These functions t, r can then be seen as goal-transforming functions: a current goal ϕ
is mapped into t([U, e]ϕ ∧ 〈U, e〉�), which becomes the new goal after we refine the
plan with e.

Definition 5. Given some LCC logic for an action model U, a planning domain is a
triple � = (ϕT , A, ϕG), where ϕT , ϕG are consistent E·PDL formulas describing,
resp., the initial and goal states; and A ⊆ E is the subset of a actions available to the
agent.

A solution to � is a sequence f1, . . . , fm ∈ A<ω of actions in A, such that

|= ϕT → [U, f1] . . . [U, fm]ϕG and |= ϕT → 〈U, f1〉 . . . 〈U, fm〉�

The subset A ⊆ E denotes those actions that are actually available to our planner-
executor agent a. The reason to distinguish A from E is that some other agent b ∈ Ag
might attribute our agent a some abilities which a does not actually possess, or b might
fail to attribute a some of her actual abilities (and attribute her instead a decaffeinated
version of some of these abilities). Thus, on the one hand, we want to distinguish the
beliefs of b after an execution of some action e as depending on how b interpret this
action e. On the other, we want to make explicit which abilities does our agent possess,
in order to build realistic plans.

From here on, π will denote a deterministic plan, i.e. a sequence of actions e in de-
creasing order of execution (rather than an arbitrary epistemic PDL program as before).
Plans are denoted by a pair (action sequence, open goals)

Definition 6. Given some planning domain � = (ϕT , A, ϕG), the (initial) empty
plan is the pair π∅ = (∅, ϕG) and if π = (π, ϕgoals(π)) is a plan, then π(e) =
(π∩〈e〉, ϕgoals(π(e))), defined by the goal ϕgoals(π(e)) = t([U, e]ϕgoals(π) ∧ 〈U, e〉�),
is also a plan. A plan π is a leaf iff ϕgoals(π(e)) is inconsistent, or |= ϕgoals(π(e)) →
ϕgoals(π).

Leafs are plans not worth considering, either because (a) when we add the last action
refinement e, the resulting plan demands an inconsistent precondition ϕgoals(π(e)) (and
hence the plan cannot be executed) or (b) because e does not contribute to delete part
of the previous goals ϕgoals(π). The search space for the proposed planning algorithm
(see below) is the set sequences (f1, . . . , fm) ∈ A<ω. (These sequences are read in
decreasing order of execution, i.e. as the sequence of operators U, fm, . . . ,U, f1.) Then,
the planning algorithm explores just a fragment of this space, since it will not bother to
generate/evaluate further refinements of leaf plans. A breadth first search (henceforth,
BFS) algorithm for deterministic planning in LCC is given in Figure 1.

Actions e ∈ E, as defined above, are deterministic, in the sense that |= [U, e]ϕ ∨
ψ ↔ ([U, e]ϕ ∨ [U, e]ψ). Thus, deterministic plans consist of actions e ∈ E in our
current action modelsU. Later we will extendLCC with composition⊗ and choice∪ to
study the non-deterministic case. There we will fully recover the expressivity of actions

Strong Planning in LCC 45

Input : � = (ϕT , A, ϕG).
LET Plans = 〈π∅〉 and π = π∅

WHILE �|= ϕT → ϕgoals(π)

DELETE π FROM Plans
SET Plans = Plans ∩〈 π(e) | e ∈ A and π(e) not a leaf 〉
SET π = the first element of Plans

Output : π (i.e. the sequence [U, e1] . . . [U, ek])

Fig. 1. BFS algorithm for backward deterministic planning in LCC

defined by arbitrary post-conditions ppost(e) = ϕ of [13], i.e. actions with conditional
effects: if ϕ then (after e) p. The first contribution of this paper is the following result:1

Theorem 1. BFS is sound and complete for LCC backward planning: the output π of
the algorithm in Fig. 1 is a solution for (ϕT , A, ϕG); conversely, if a solution exists,
then the algorithm terminates (with a solution output).

5 An Extension of LCC with Action Composition and Choice

In this section we propose an extension of LCC logic with bounded composition and
choice, denoted LCC∪⊗n. To this end, we first expand any LCC logic with the compo-
sition of at most n actions, denoted⊗n, and later we add choice∪. Both operations map
two actions e, f to a new action denoted, resp., e⊗ f and e ∪ f, interpreted as follows:

– e⊗ f models an execution of e followed by an execution of f, and
– e ∪ f models non-deterministic actions: each execution of e ∪ f either instantiates

as an execution of e or as an execution of f.

For the composition of actions, the resulting action models are shown equivalent to a
bounded number of updates with the previous simple actions. The logic of the former
action updates, denoted LCC⊗n reduces to the corresponding LCC logic.

Then we introduce choice ∪ into these models U≤n. The semantics for non-
deterministic actions e ∪ f is presented in terms of multi-pointed models (w, e) and
(w, f), one for each possible realization of the former action. Again we extend the lan-
guage and axioms accordingly for this logic LCC∪⊗n, and reduce this logic again to
E·PDL. In the next section, we will study non-deterministic planning problems in terms
of plan solutions expressible in this LCC∪⊗n logics.

5.1 Update with the Product of n Actions in Un

To define the composition of actions, we simply consider the product of an action model
by itself, U1 ⊗ · · · ⊗ Uk, for each k ≤ n. Here n denotes the maximum number of

1 Proofs for results in this paper can be found at the first author’s webpage
www.iiia.csic.es/en/individual/pere-pardo.

46 P. Pardo and M. Sadrzadeh

compositions allowed in the resulting logic LCC⊗n. An obvious requirement is that
these action models are defined for the same set of variables Var and agents Ag.

We define first action models of the form Un = U1⊗· · ·⊗Un and study them from a
semantic point of view. This action model Un just contains arbitrary products of exactly
n actions: f1 ⊗ · · · ⊗ fn.

Note that, in the next definition, the pre′ functions of the product action model
Un are defined in terms of the corresponding functions pre from U, and pre′ from
U2, . . . ,Un−1. From here on, we let

−→
f denote some sequence f1⊗· · ·⊗ fk, also written

f1, . . . , fk, for an appropriate k.

Definition 7. Let U = (E,R, pre, post) be an action model. We define the product ac-
tion model

Un = (E′,R′, pre′, post′)

inductively as follows:

E′ = En = {(f1, . . . , fn) | f1, . . . , fn ∈ E}
R′
a = {〈(e, . . . , e′), (f, . . . , f′)〉 | eRaf and . . . and e′Raf

′}
pre′(e⊗ f) = pre(e) ∧ [U, e]pre(f) for the case n = 2

pre′(f1 ⊗
−→
f) = pre(e) ∧ [U, e]pre(

−→
f)

post′(f1 ⊗ · · · ⊗ fn) =

⎧⎪⎨⎪⎩
post(fk)(p) if post(fk)(p) �= p =

= post(fk+1)(p) = . . . = post(fn)(p)

post(f1)(p) if post(f1)(p) = . . . = post(fn)(p) = p

More formally, in Def. 7 we should rather define inductively (from the case n = 2)

pre′(e⊗−→
f) = pre(e) ∧ t([U, e]pre′(

−→
f))

in order to comply with the condition upon action models: pre : E→ LPDL. But for the
sake of simplicity, we will keep the above notation. Also note that in Un the product of
actions f⊗· · ·⊗ f′ treats p just as the latest action in this tuple satisfying post(·)(p) �= p
(i.e. the latest action non-trivial w.r.t. p). Finally, observe that some combinations e⊗ f
in the product action model will never be applicable, e.g. when |= [U, e]¬pre(f). For the
purpose of planning, one can forget about the existence of these actions in the resulting
model U⊗ U.

It can be seen by direct inspection that the so-called product action model Un is
indeed an action model, provided U is. Moreover, the update of an E·PDL model M by
a product action model, say U ⊗ U, reduces to a sequence of updates with the simpler
action model, e.g. (M ◦ U) ◦ U. With more detail, updating a state w with an action
e⊗ f is semantically equivalent to updating w with e first, and then updating again with
f. We first check this is the case for U2 = U⊗ U.

Lemma 1. We have the following isomorphism

M ◦ (U⊗ U) ∼= (M ◦ U) ◦ U.

This isomorphism extends to the valuations of arbitrary formulas and programs.

Strong Planning in LCC 47

Corollary 1. For each formula ϕ in the language of U⊗ U:

(w, (e, f)) ∈ �ϕ�
M◦U2

⇔ ((w, e), f) ∈ �ϕ�
(M◦U)◦U

Also, note that the proof of Lemma 1 does not depend upon the assumption that the two
action models are the same. More generally, we have the following result for different
action models U,U′.

Corollary 2. Let U,U′ be action models defined on the same sets of variables Var and

agents Ag. Then, M ◦(U⊗U′) ∼= (M ◦U)◦U′. Moreover, �ϕ�M◦(U⊗U′)
= �ϕ�

(M◦U)◦U′
,

for each ϕ in the language of U⊗ U′.

Before proceeding to the generalization of this lemma, we need the claim that the update
with an action model U preserves isomorphisms.

Lemma 2. If M ∼= M ′ are isomorphic epistemic models, and U is an action model,
then M ◦ U ∼= M ′ ◦ U.

The previous Corollary 2 for the basic case n = 2 extends to an arbitrary finite number
n ≥ 2 of actions f1, . . . , fn. That is, it extends to updates with products of arbitrary n
actions taken from a given action model U.

Corollary 3. We have M ◦ Un ∼= (M ◦ U1) · · · ◦ Un

5.2 Update with the Produce of ≤ n Actions in U≤n

Finally, we can define the action model U≤n for the product of at most n actions (from
a fixed action model U) in terms of the product action models U,U2, . . . ,Un previously
defined.

Definition 8. Let U be an action model and let U1 = . . . = Un(= U) be n different
copies of U, denoted Uk = (Ek,Rk, prek, postk) for each 1 ≤ k ≤ n. We define
U≤n = (E≤n,R≤n, pre≤n, post≤n) as follows

E≤n =
⋃

k≤n Ek pre≤n =
⋃

k≤n prek
R≤n(a) =

⋃
k≤n Rk(a) post≤n =

⋃
k≤n postk

In parallel, the sequence of at most n updates on a model M , denoted

(M ◦ U1) · · · ◦ U≤n = (W (M◦U1)···◦U≤n , R(M◦U1)···◦U≤n , V (M◦U1)···◦U≤n)

can be defined in a straightforward way from each product action model (M ◦U1) · · · ◦
Uk.

W (M◦U1)···◦U≤n =
⋃

k≤n W
(M◦U1)···◦Uk

R(M◦U1)···◦U≤n(a) =
⋃

k≤n R
(M◦U1)···◦Uk(a)

V (M◦U1)···◦U≤n =
⋃

k≤n V
(M◦U1)···◦Uk

It can be observed that U≤n is an action model; and also that (M ◦ U1) · · · ◦ U≤n is an
E·PDL model. Moreover, we can extend Corollary 3 to the present case:

Corollary 4. If U is an action model, then

M ◦ U≤n ∼= (M ◦ U1) · · · ◦ U≤n

48 P. Pardo and M. Sadrzadeh

5.3 The Logic LCC⊗n of the Action Model U≤n

Let U be again a fixed action model and consider the corresponding product action
model U≤n. The language LLCC⊗n

of the logic LCC⊗n for this action model U≤n is
simply the language of LCC, but now with action modalities of the form [U≤n, f1 ⊗
· · · ⊗ fk], for each f1 ⊗ · · · ⊗ fk ∈ E≤n in the present action model U≤n.

The semantics of updates with pointed action model U≤n, (f1, . . . , fk) is also that of
simple action models U. In the present case, we have

M,w |= [Un, e⊗ · · · ⊗ f]ϕ iff M,w |= pre(e⊗ · · · ⊗ f) implies

M ◦ Un, (w, (e⊗ · · · ⊗ f)) |= ϕ

A complete axiom system for LCC⊗n, the logic of (bounded) product action models
U≤n, is obtained by extending the previous LCC axioms and rules with reduction ax-
ioms for the new product actions f1 ⊗ · · · ⊗ fk.

the LCC reduction axioms and rules for [U, e]ϕ formulas with ϕ ∈ LLCC⊗n

plus

[U≤n, (f1, f2, . . . , fk)]ϕ ↔ [U≤n, f1][U
≤n, (f2, . . . , fk)]ϕ (Product)

Fig. 2. The axioms and rules for LCC⊗n

These axioms suffice for the introduction of composition. They induce again a trans-
lation function t which splits product actions [U≤n, e ⊗ f] into a sequence of updates
[U≤n, e][U≤n, f] and proceeds as the translation for LCC for the remaining cases.

Lemma 3. The product axiom is sound:

|= [U≤n, f1 ⊗ f2 ⊗ · · · ⊗ fk]ϕ ↔ [U≤n, f1][U
≤n, f2 ⊗ · · · ⊗ fn]ϕ

As we said, we extend the previous translation LLCC → LE·PDL into a translation
LLCC⊗n

→ LE·PDL with the help of an additional clause

t([U≤n, (f1, f2, . . . , fn)]ϕ) = t([U≤n, f1]t([U
≤n, (f2, . . . , fk)]ϕ))

Theorem 2. For each formula ϕ ∈ LLCC⊗n
, we have

|= ϕ⇔ � ϕ

Proof. (⇐) Soundness is established by the corresponding result for LCC in [13] plus
the above result for the reduction axiom for product actions. These results also establish
the correctness of the extended translation function: each formula in LCC⊗n is logically
equivalent (in LCC) to an E·PDL-formula t(ϕ).

(⇒) E·PDL is complete, and each formula in LLCC⊗n
is equivalent to someLE·PDL

formula.

Strong Planning in LCC 49

In addition, the LCC reduction axioms that would correspond to product modalities
(except for the case of E·PDL-programs) are also sound.

Proposition 1. Except for the LCC axiom on E·PDL-programs, the LCC reduction
axioms are sound for product action modalities [U≤n, f1 ⊗ · · · ⊗ fk] are sound.

In contrast to the previous section on deterministic planning, we cannot fix a priori
which action model U≤n (and logic) are we working with, when solving a given plan-
ning domain based on U. It is only after the planning algorithm terminates with a solu-
tion, that we (a posteriori) discover for which n the action model U≤n (actually U∪≤n,
see below) will suffice to check that this plan is indeed a solution. Non-deterministic
solutions are more naturally expressed if we further extend the logics LCC⊗n with
non-deterministic choice.

5.4 LCC∪⊗n: Choice and Non-deterministic Actions

In this section we extend the LCC-logics of bounded composition with the operator
choice, that maps some pairs of actions e, f into a new action e∪ f. The latter expression
denotes an action with indeterminate effects: an execution of e∪ f will turn either as an
execution of e or as an execution of f. It is an external agent, the environment (nature)
in principle, who chooses the particular outcome after each execution of e ∪ f. (This is
called demonic non-determinism, in opposition to so-called angelic non-determinism
where the planner agent itself selects a course of actions e rather than another one f, if
both are executable.) Choice will be indistinctly represented as follows Ed, {e, . . . , f}
or e ∪ . . . ∪ f.

The language of LCC∪⊗n adds to that of LCC⊗n a clause for action modalities of
the form

[U≤n,Ed]ϕ

where Ed ⊆ E≤n is an arbitrary (but non-empty) set of product actions (f1 ⊗ · · · ⊗ fk).
The new actions, say,

Ed = {(f1 ⊗ · · · ⊗ fk), . . . , (f
′
1 ⊗ · · · ⊗ f′k′)} are also denoted

= (f1 ⊗ · · · ⊗ fk) ∪ . . . ∪ (f′1 ⊗ · · · ⊗ f′k′).

The presence of post-conditions in LCC actions prevents us from modeling the new
non-deterministic actions, e.g. e ∪ f, as full-fledged actions in the action model (as we
did for product e ⊗ f ∈ E≤n). The problem is that for actions like tossing a coin, the
post-condition for heads, say the variable h, will be at each execution either � or ⊥;
hence the post-condition for h is not a unique formula, and post cannot be a map.

This contrasts with the match between U≤n and LCC⊗n above, and also with the
purely epistemic action models [3]. In these logics, each action operator in the language
is associated an element in the action model. In this sense, even if our set of actions in
the model is the same E≤n that we had for LCC⊗n logics, each constructible non-
deterministic plans will be shown “equivalent” to some Ed modality. For example, the
plan -informally written as- e ⊗ (f ∪ f′) will be associated the modality [U, (e ⊗ f) ∪
(e⊗ f′)].

As suggested in [13] non-deterministic actions are introduced with the help of multi-
pointed semantics.

50 P. Pardo and M. Sadrzadeh

Definition 9. Given an epistemic model M and an action model U, let Wd ⊆ W and
Ed = {f1, . . . , fk} ⊆ E. Then M,Wd and U,Ed are multi-pointed models. We define

M,Wd |= ϕ iff M,w |= ϕ for each w ∈Wd

M,w |= [U,Ed]ϕ iff M ◦ U, {(w, f), . . . , (w, f′)} |= ϕ

for each (w, f), . . . , (w, f′) ∈WM◦U with f, . . . , f′ ∈ Ed

In other words, this semantics for [U,Ed] modalities simply amounts to the semantics
of the operators [U, f] for each f ∈ Ed. That is,

M,w |= [U,Ed]ϕ iff for each f ∈ Ed, M,w |= pre(f) implies M ◦ U, (w, f) |= ϕ

For the reasons pointed above, non-deterministic actions e ∪ f or Ed are not actions in
the action model, only their components e and f are. In other words, the action model
is just U≤n. In summary, we just add the modalities [U,Ed] and expand the semantics
to the multi-pointed case, rather than expanding the action models themselves.

In [13], the additional reduction axiom listed next is suggested for non-deterministic
choice. Here we add it to the previous system LCC⊗n:

the reduction axioms and rules of LCC⊗n

plus

[U,Ed]ϕ ↔ ∧
e∈Ed

[U, e]ϕ (choice)

Fig. 3. The axioms and rules for LCC∪⊗n

It is straightforward that the reduction axiom (choice) for [U,Ed]ϕ is sound w.r.t. the
semantics above. This allows us to extend once more the translation function t from
LCC⊗n to LCC∪⊗n with the clause

t([U≤n, e ∪ . . . ∪ f]ϕ) = t([U≤n, e]ϕ) ∧ . . . ∧ t([U≤n, f]ϕ)

The resulting translation function t splits the new modalities [U,Ed] and then proceeds
as in the case of LCC⊗n. The soundness of the axiom (choice) preserves the soundness
of the expanded translation function, again reducing the language of LCC∪⊗n to that
of E·PDL and giving the next completeness result.

Corollary 5. The logic LCC∪⊗n is sound and complete.

Fact 1. The LCC axioms for [U, e] that do not involve preconditions pre(·) are also
sound for [U, e ∪ f] modalities. That is, all the LCC axioms except for (atoms) and
(partial functionality).

Also notice that the executability of non-deterministic actions e ∪ f only requires that
some action e or f (or both) is executable.

Lemma 4. The following holds: |= 〈U,Ed〉� ↔
∨

e∈Ed
pre(e).

Strong Planning in LCC 51

6 Non-deterministic Plans in LCC

Now we turn into non-deterministic planning, for planning domains containing actions
with disjunctive effects are available to the agent, e.g.

|= [U, f0 ∪ f1] p ∨ q, but with �|= [U, f0 ∪ f1]p and �|= [U, f0 ∪ f1]q

as given by the post-conditions postconditions post(f0)(p) = post(f1)(q) = �, and
post(f0)(q) = q and post(f1)(p) = p).

In particular, we focus on strong non-deterministic planning. Recall a strong solution
for a given planning domain is a plan such that all of its possible executions in the initial
state lead to a goal state. Thus, ignoring preconditions, the above action f0∪f1 is a strong
solution to (ϕT , {f0 ∪ f1}, ϕG), for the goal ϕG = p∨ q; and it is a weak solution when
the goal is ϕG = p.)

Example 3. Consider the action toss a coin. This can be seen as a non-deterministic
choice between the two deterministic actions of toss heads and toss tails. Let (resp.)
tossh and toss¬h denote these actions, with assigned post-conditions

post(tossh) : h �−→ �, and post(toss¬h) : h �−→ ⊥

Note that the executing agent a cannot distinguish whether she executes tossh or toss¬h

(at least until the coin has landed and the agent proceeds to observe the result). This
indistinguishability, formally given by Ra(tossh, toss¬h) and viceversa, is called run-
time indistinguishability in [4]. Even if the agent intends the toss to result in heads (i.e.
the agent intends tossh), the action really available to a is

tossh ∪ toss¬h computed as
⋃
{e ∈ E | Ra(tossh, e)}

Randomness is not essential feature to non-deterministic actions, as the next example
illustrates.

Example 4. Consider for instance, the action of pressing a button on the wall, which
will switch the light on or off (the latter denoting ¬on). Let the corresponding deter-
ministic actions be denoted on and off, defined by similar post-conditions:

post(on) : on �−→ �, and post(off) : on �−→ ⊥

In contrast to the coin example, these two actions have different (in fact, mutually in-
consistent) preconditions:

pre(on) = off and pre(off) = on

Suppose first our executing agent a is blind (or blind-folded), so she cannot distinguish
on from off at run-time (during execution). See Figure 4 (Top). Notice that on∪ off has
a trivial precondition: on ∨ ¬on, given by pre(on) ∨ pre(off).

Secondly, suppose instead that the agent can see (or has been told) whether the light
is initially on, Figure 4(Mid). She knows which of the two actions on� or off� is exe-
cutable (has a true precondition), so we can model them separately as two deterministic
actions.

52 P. Pardo and M. Sadrzadeh

Fig. 4. (Top) A blind agent pressing the light button: on ∪ off. (Mid) Switching the light on
(while seeing): on�. Similarly for off�. (Bottom) Pressing the light button (while seeing), during
the planning phase.

Along this line, the planner agent a might not know (during planning) whether she
will find the light on or off, when she switches it (this being a planned action). Figure
4 (Bottom). This is called plan-time indistinguishability in [4], since only at execution
time the agent will know whether whether she is going to turn the light on or off. This
kind of actions, modeled as a choice on� ∪ off�.

After this review on the effects of partial observability of states and actions, we proceed
to the task of plan search. As these examples show, the previous notions of available
actions A, plan and solution must be redefined for the present non-deterministic case.
For the sake of simplicity, we will only consider the choice between two actions f0 ∪ f1.
The definitions and results in this paper can be generalized to the choice of finitely
many actions f0 ∪ f1 ∪ · · · ∪ fk .

From here on, we abstract from any particular bound n upon the length of plans, so
in the following we will just write the action model as U rather than as a fixed action
model U≤n. With this remark in mind, recall the set of action sequences definable in
LCC∪⊗n is any sequence of action modalities

[U,E1] . . . [U,Ek] (also written (E0, . . . ,Ek))

Concerning the basic actions available to the agent, we have: (1) a set Ae of actions e
from E; and (2) a set of A∪ containing pairs of actions, denoted e ∪ f, with again e ∈ E
and f ∈ E. For an example of these basic actions, we have on�in AE and on� ∪ off� and
tossh ∪ toss¬h in A∪. The following definition replace the old set A from Definition 5
by the new set AE ∪ A∪.

Definition 10. A non-deterministic planning domain in U is a triple

� = (ϕT , AE ∪ A∪, ϕG)

with AE ⊆ E, and A∪ ⊆ E× E.

Strong Planning in LCC 53

Not all of the above action sequences [U,E1] . . . [U,Ek] in the language of LCC∪⊗n

denote action sequences that are available to the agent according to a planning domain
�. The latter sub-class is defined next.

Definition 11. We say [U, e] and [U, e∪ f] are �-sequences whenever e ∈ AE and e∪ f
in A∪. Moreover, if e′⊗ · · ·⊗ e′′ and f′⊗ · · · ⊗ f′′ are elements of A<ω

E and e∪ f ∈ A∪
satisfies (e, f), (f, e) /∈ Ra, then

[U, (e⊗ e′ ⊗ · · · ⊗ e′′) ∪ (f ⊗ f′ ⊗ · · · ⊗ f′′)] is an �-sequence

Finally, any finite sequence [U,Ek] . . . [U,E1] of �-sequences is an �-sequence.

The idea of �-sequences is to minimally constrain (within the limits of LLCC∪⊗n) how
much freedom an agent is allowed after executing a non-deterministic action e∪f (while
preserving epistemic control):

– if the components e and f are run-time indistinguishable according to Ra, the next
action after executing e ∪ f must be uniquely specified (though it can be another
non-deterministic action),

– if the components e and f are run-time distinguishable, one can execute alternative
(deterministic) actions, say e′ or f′, depending on whether the execution of e ∪ f
instantiated, resp., as e or as f.

Example 5. (Cont’d) Recall the sets of available actions AE = ∅ and A∪ = {tossh ∪
toss¬h} from Example 3. Read the tossing action as causing the coin to land into agent
a’s hand. And expand these sets with a sensing action in A∪ (feeling in your hand
whether the coin landed heads) and a flip (into heads) action in AE:

feelh ∪ feel¬h pre(feelh) = h pre(feel¬h) = ¬h
post(feelh) = idVar post(feel¬h) = idVar
Ra(feelh, feel¬h) Ra(feel¬h, feelh)

fliph pre(fliph) = ¬h
post(fliph) : h �→ �

Then, the following is an �-sequence leading to a heads result in any execution.

[U, tossh ∪ toss¬h] [U, (feelh ∪ (feel¬h ⊗ fliph)]
tossing the coin, sensing it, and if tails flip it to heads

Definition 12. We say that an �-sequence [U,E1], . . . , [U,Er] is a solution to the plan-
ning domain � = (ϕT , AE ∪ A∪, ϕG) iff

|= ϕT → [U,E1] . . . [U,Er]ϕG (success)
|= ϕT → 〈U,E1〉 . . . 〈U,Er〉� (executability)

It can be shown that the �-sequence from Ex. 5 is a solution for the planning domain

� = (�, { tossh ∪ toss¬h, feelh ∪ feel¬h, fliph, skip }, [(a ∪ b)∗]h)

54 P. Pardo and M. Sadrzadeh

7 A Search Algorithm for Non-deterministic Planning in LCC

Let us then proceed to the study of search algorithms for arbitrary planning domains �.
These planning algorithms search for solutions in the space of plans, defined below. The
idea is to reduce a non-deterministic plan into a sequence of pairs of deterministic plans,
each pair motivated by the introduction of a non-deterministic action. These plans are
a triple consisting of: (1) a (possibly empty) �-sequence [U,Ek], . . . [U,E1], (possibly)
prefixed by an operator-like expression [U, ·] (denoting the operator under construction);
and formulas for (2) an initial state and (3) open goals corresponding to (1).

plan π = (operator + �-sequence, init. state ϕinit(π), open goals ϕgoals(π))

Again we abuse notation and refer to (1) with the label π of the plan it belongs to.

Definition 13. Given a planning domain � = (ϕT , AE ∪ A∪, ϕG), the empty plan for
� is the pair π∅ = (∅, ϕG). For a given plan πk = [U,Ek] . . . [U,E1] and its refinement
with some e ∈ AE, denoted π = πk(e) = [U, e]πk, we define the refinements π(·) with
f ∈ AE or a run-time dist. action f ∪ f′ ∈ A∪ as:

π(f) = [U, f ⊗ e]πk π(f ∪ f′) = [U, (f ⊗ e) ∪ (f′ ⊗ x)]πk

ϕinit(π(f)) = ϕT ϕinit(π(f∪f′)) = “[U, f′](·)”
ϕgoals(π(f)) = t([U, f]ϕgoals(π) ∧ 〈U, f〉�) ϕgoals(π(f∪f′)) = ϕgoals(πk)

Given a plan π of the form π = ([U, (f ⊗ e)∪ (f′ ⊗ x⊗ e′)]πk, “[U, f′](·)”, ϕgoals(π)),
and an action e′′ ∈ AE we define the refinement π(e′′) as

π(e′′) =

{
[U, (f ⊗ e) ∪ (f′ ⊗ x⊗ e′′ ⊗ e)]πk if �|= [U, f′][U, e′′ ⊗ e]ϕgoals(πk)

[U, (f ⊗ e) ∪ (f′ ⊗ e′′ ⊗ e)] otherwise

ϕinit(π(e′′)) =

{
ϕinit(π(e′′)) if �|= [U, f′][U, e′′ ⊗ e]ϕgoals(πk)

ϕT otherwise

ϕgoals(π(e′′)) =

⎧⎪⎨⎪⎩
t([U, e′′]ϕgoals(π) ∧ 〈U, e′′〉�) if �|= [U, f′][U, e′′ ⊗ e]ϕgoals(πk)

t([U, (f ⊗ e) ∪ (f′ ⊗ e′′ ⊗ e)]ϕgoals(πk)

∧〈U, (f ⊗ e) ∪ (f′ ⊗ e′′ ⊗ e)〉�) otherwise

Finally, if f ∪ f′ is run-time indistinguishable to the agent, i.e. (f, f′), (f′, f) ∈ Ra, we
define the refinement of πk with f ∪ f′ as:

π(f ∪ f′) = [U, f ∪ f′]πk

ϕinit(π(f∪f′)) = ϕT

ϕgoals(π(f∪f′)) = t([U, f ∪ f′]ϕgoals(πk) ∧ 〈U, f ∪ f′〉�)
Given a plan π and a refinement of it π(·), we say π(·) is a leaf iff either ϕπ(·) is
inconsistent or |= ϕgoals(π(·)) → ϕgoals(π). The Terminating Condition for a plan π is

ϕinit(π) = ϕT and |= ϕinit(π) → ϕgoals(π)

After a run-time indistinguishable action, e.g. coin tossing, conditional plans can be
made depending on the outcome of an observation. Let us finally address the properties
of non-deterministic planning based on BFS.

Strong Planning in LCC 55

Input : � = (ϕT , AE ∪ A∪, ϕG).
LET Plans = 〈π∅〉 and π = π∅

WHILE π does not satisfy Terminating Condition
DELETE π FROM Plans
SET Plans = Plans∩〈 π′ | π′ refines π and π′ not a leaf 〉.
SET π = the first element of Plans

Output : π (i.e. the �-sequence defined by π)

Fig. 5. BFS algorithm for backward non-deterministic planning in LCC∪⊗n

Theorem 3. Let the output of the BFS algorithm in Fig. 5 be [U,E1] . . . [U,Ek] for a
planning domain �. Then, [U,E1] . . . [U,Ek] is an �-sequence and a solution for �.

Theorem 4. For a given planning domain �, if some �-sequence exists that is a solu-
tion to �, then the BFS algorithm in Fig. 5 terminates (with a solution).

Fig. 6. Plan search in Example 1. Incremental construction of a solution for the coin example.

Example 6. Recall Example 1, where the planner agent a must show heads, denoted h,
to win the prize. The action fliph is secret in the sense of (fliph, skip) ∈ Rb, i.e. agent
b believes nothing is happening; this secrecy is known by a provided fliph is only Ra-
related to itself. The construction of a solution is shown in Figure 6, where: (Left) a
deterministic plan is being built, consisting of a’s demonstration h!!ab that h to b (with
a knowing a priori that h); a plan-time indistinguishable action feelh ∪ feel¬h is added.
(Center) The planner proceeds to solve the rightmost case where feel¬h is executed (due
to a ¬h state). This planning sub-problem is solved by a fliph action, followed by the
same demonstration h!!ab . (Right) Finally, the algorithm stops after adding the run-time
indistinguishable action of tossing tossh ∪ toss¬h. Note the remaining of the plan is
executable no matter the result of the coin toss. The slightly different plan construction
from [10] can also be built with two deterministic sensing actions (for h and ¬h).

56 P. Pardo and M. Sadrzadeh

8 Conclusions and Future Work

We presented backward planning algorithms for a planner-reasoner agent enabling
her to find deterministic or (non-deterministic) strong plans in multi-agent scenarios.
We considered dynamic epistemic logics with ontic actions, further extended with
composition and choice. Planners in these logics are sensitive to others’ beliefs and
may contain communications and observations as well as the usual fact-changing
actions. As for future work, we would like to study more complex plan structures, or
new kinds of actions like belief revision announcements. Another direction would be
the study of (logical) heuristics to improve the performance of LCC planners.

Acknowledgements. This work has been funded by projects AT (CSD 2007-022), AR-
INF (TIN2009-14704-C03-03); and grants 2009-SGR-1434 and EPSRC EP/J002607/1.

References

1. Andersen, M.B., Bolander, T., Jensen, M.H.: Conditional Epistemic Planning. In: del Cerro,
L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519, pp. 94–106.
Springer, Heidelberg (2012)

2. Aucher, G.: DEL-sequents for progression. Journal of Applied Non-Classical Logics 21(3-4),
289–321 (2011)

3. Baltag, A., Moss, L., Solecki, S.: The logic of public announcements, common knowledge
and private suspicions. In: Proc. of 7th Conf. TARK 1998, pp. 43–56 (1998)

4. Bolander, T., Andersen, M.: Epistemic planning for single- and multi-agent systems. Journal
of Applied Non-Classical Logics 21(1), 9–34 (2011)

5. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Morgan Kauf-
mann (2004)

6. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Massachusetts (2000)
7. Hintikka, J.: Knowledge and belief: an introduction to the logic of the two notions. Cornell

University Press (1962)
8. Löwe, B., Pacuit, E., Witzel, A.: Planning based on dynamic epistemic logic (2010)
9. Pardo, P., Sadrzadeh, M.: Planning in the Logics of Communication and Change. In: Proc.

of AAMAS 2012 (2012)
10. Pardo, P., Sadrzadeh, M.: Backward Planning in the Logics of Communication and Change.

In: Proc. of Agreement Technologies AT 2012 (2012)
11. Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-

Wesley (1984)
12. Rao, A., Georgeff, M.: Modeling rational agents within a BDI-architecture. In: Proc. of Prin-

ciples of Knowledge Representation and Reasoning (KR), pp. 473–484 (1991)
13. van Benthem, J., van Eijck, J., Kooi, B.: Logics of Communication and Change. Information

and Computation 204, 1620–1662 (2006)
14. van der Hoek, W., Wooldridge, M.: Tractable Multiagent Planning for Epistemic Goals. In:

Proc. of AAMAS 2002, pp. 1167–1174 (2002)
15. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer (2008)
16. van Ditmarsch, H., Kooi, B.: Semantic results for ontic and epistemic change. In: Bonanno,

van der Hoek, Wooldridge (eds.) LOFT 7, pp. 87–117 (2008)

Agent Deliberation via Forward and Backward
Chaining in Linear Logic

Luke Trodd, James Harland, and John Thangarajah

School of CS & IT, RMIT University
GPO Box 2476

Melbourne, 3001, Australia
{luke.trodd,james.harland,johnt}@rmit.edu.au

Abstract. Agent systems are designed to work in complex dynamic environ-
ments, which requires an agent to repeatedly deliberate over its choice of actions.
A common way to achieve this is to use agent architectures based on the Belief-
Desire-Intention (BDI) model, in which an agent continuously deliberates over
the best way to achieve its goals in the current environment. In this paper we
explore how a BDI approach can be implemented in Lygon, a logic program-
ming language based on linear logic. In particular, we show how backward and
forward chaining techniques can be used to provide proactive and reactive agent
behaviours. We discuss some extensions to Lygon which allow us to use abduc-
tion techniques to generate plans to achieve a given goal, as well as an addition
to the syntax of Lygon which greatly simplifies the specification of a sequence
of goals to be achieved. We also show how a simple addition to the backward
chaining process allows us to specify proactive checking of maintenance goals.

1 Introduction

Intelligent agents are often used to determine software solutions to problems that occur
in complex dynamic environments. Three common properties of agents in such envi-
ronments are being situated, reactive and proactive [19]. Being situated means that the
agent is embedded in the environment, and can both sense it and act on it. This means
that the agent needs to be able to take input from the environment and use it to de-
termine an appropriate course of action. Being reactive means that it needs to be able
to adapt its behaviour to changes in the environment. This means that the agent needs
to continually monitor the environment and potentially change what it has previously
decided to do. Being proactive means that the agent has a particular agenda that it is
trying to achieve.

For example, consider a robot vacuum cleaner in an office building, which is in-
structed to ensure that a particular set of offices is clean. This robot has sensors which
enable it to tell whether a given room is clean or dirty, and has a vacuum action that can
be performed to convert a dirty room into a clean one. The robot can also only clean
the room that it is currently located in, so that to clean another room, it must move to
the other room first. The robot must also maintain a certain minimum of battery energy,
and if the level falls below a certain amount, it must return to the charging station and
recharge before proceeding. As people and other robots can come and go within the

M. Baldoni et al. (Eds.): DALT 2012, LNAI 7784, pp. 57–75, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

58 L. Trodd, J. Harland, and J. Thangarajah

building, the status of each room can vary from clean to dirty and vice-versa, due to
human interaction (clean to dirty) or a helpful fellow robot (dirty to clean). This robot
is situated, as it can sense the status of the rooms, and perform actions (vacuum,
move, charge) which will update the environment. This robot will need to be re-
active, as rooms originally thought to be dirty can turn out to be clean and vice-versa.
This robot will also need to be proactive, in that it will need to find a way to clean its
allocated offices. It will also need to monitor its battery usage, and recharge whenever
necessary to maintain its minimum level of battery power.

Agent solutions to this kind of problem are often based on the Belief-Desire-Intention
(BDI) paradigm [15,19]. Beliefs represent what the agent believes to be the current state
of the world. Desires specify the proactive behaviour of the agent, in that the agent
works to make these true. Often desires can be mutually exclusive or contradictory,
requiring the agent to select from among them. For example, our cleaning robot may
desire to clean multiple rooms but can only clean one at any given time. For this rea-
son BDI implementations often use goals, which can be thought of as desires with
some restrictions on them (such as requiring goals to be consistent, feasible and not yet
achieved). There can be several types of goals, including achievement goals, such as
cleaning a room (which is dropped once it is achieved), and maintenance goals, such as
maintaining a minimum level of charge (which is an ongoing process). Intentions are
plans of action that the agent has selected to achieve its current goals. Often there are
many ways to achieve a set of goals that the agent is working on, implying the need for
a mechanism to choose between them.

Implementations of BDI systems are usually based around an observe-think-act cy-
cle, in which an agent will observe the current environment, which may have changed
since the last observation, determine which goals it should be pursuing and what plans
should be used to achieve them, and choose a particular action to perform. Note that
while the number of actions performed in the act phase is not specified, it is intended to
be relatively small, so that the agent will be able to detect changes in the environment
(which is only done in the observe phase) and respond to them within an appropriate
amount of time. Hence a fundamental feature of BDI systems is the manner in which
they provide both proactive (or goal-directed) and reactive behaviour.

In this paper, we consider how we may adapt existing logical inference techniques
to implement a BDI architecture. Using logic as a basis for the architecture will mean
that we can develop methods for formal analysis of agent systems via logical inference,
as well as being able to exploit existing automated reasoning technologies to develop
applications. In particular, we will investigate the use of linear logic [5] for such sys-
tems. Linear logic has the potential to offer many advantages in the agent context over
other logics due to its resource-oriented nature. Linear logic is able to specify actions
cleanly and intuitively [12], can effectively express resource oriented problems and has
a native notion of concurrency appropriate for agent architectures. Linear logic has also
been recently applied to agent negotiation [14], and adaptive narratives [1]. This sug-
gests that there is significant potential for the development of BDI agents based on linear
logic. In particular, the existence of logic programming languages based on linear logic,
such as Lygon [6] and Lolli [9] make such languages a natural starting point for this
investigation.

Agent Deliberation via Forward and Backward Chaining in Linear Logic 59

Our BDI agent architecture will be based on Lygon technology. This means that we
proceed in a bottom-up manner, i.e. commencing with what can be readily implemented
in Lygon, identifying where extensions are needed, adding these to Lygon and eventu-
ally developing a BDI deliberation cycle. This has been implemented and applied to
various problems (including the gold mining problem used in the CLIMA agent pro-
gramming contest1). Our focus is hence not so much on the design of (yet another)
agent programming language, nor on the formal analysis of such a language, but on
the similarities and differences between what is provided in linear logic programming
languages such as Lygon and what is required by a BDI agent architecture. Once this
is done, we intend to use our implementation experience to develop both appropriate
language features and a formal analysis of their properties.

One of the key features of a BDI architecture is the distinction between the think
phase and the act phase. In order to support the latter phase, we have developed and
implemented a forward-chaining inference mechanism (see Section 2.3 for more de-
tails) to complement Lygon’s existing backward-chaining mechanism. This provides a
natural method for implementing reactive behaviour. We demonstrate a variety of en-
hancements that extend upon the existing Lygon architecture, facilitating agent oriented
programming. We introduce new concepts and connectives which significantly simplify
the expression of some typical agent programs. We introduce a novel, simple but effec-
tive technique for proactive checking of maintenance goals [4] in a generic manner. We
describe a novel BDI agent deliberation cycle that accommodates the mentioned reac-
tive and deliberative behaviours. We have implemented these techniques in Lygon and
have developed and tested a number of applications.

This paper is organised as follows. In Section 2, we discuss linear logic and backward-
and forward-chaining methods, and in Section 3, we discuss how we describe our ex-
tensions to Lygon. In Section 4, we present our version of the BDI deliberation cycle,
and we discuss our implementation with a detailed example in Section 5 highlighting
the advantages of this approach. Finally in Section 6, we present our conclusions.

2 Background

2.1 Linear Logic

There is a vast literature on linear logic [5] and its variants, and we do not attempt a
general introduction here. However, we give an overview of the main features relevant
to this paper.

Linear logic is often described as being “resource-sensitive”, in its ability to control
the duplication of formulae. A defining difference between linear and classical logic
is that in linear logic by default each formula can be used only once. This means that
differences in resources, such as having two dollars rather than one, can be captured
simply by having two copies of an appropriate formula rather than one. This property
means that linear logic is a natural way in which to specify fluents, which is appropriate
for many practical agent scenarios. As discussed by Masseron et al. [12], this makes it
simple to represent actions and hence plans in linear logic. Linear logic also allows the

1 http://centria.di.fct.unl.pt/˜clima

http://centria.di.fct.unl.pt/~clima

60 L. Trodd, J. Harland, and J. Thangarajah

default behaviour to be overridden by operators known as exponentials, which means
that it is possible to use classical reasoning if desired. There are two versions of and
conjunction (denoted ⊗ and &) and disjunction (denoted � and ⊕), the first one of
which accumulates resources (multiplicative ⊗ and �) and another which does not (
additive & and ⊕).

The⊗ operator can intuitively be thought of as combining two resources together. As
an example, consider a situation in which we visit a restaurant to order a meal. We might
represent a meal in the form Burger ⊗ Fries ⊗ Coke, indicating that we will receive the
three food ’resources’ together. Intuitively we can think of the & operator as a choice
that we can make. In a statement Burger � Fries, the choice between a Burger or Fries
is arbitrary and we can be sure that both are valid choices. The ⊕ operator resembles ∨
in classical logic, encoding a choice which is not ours to make. A statement Burger ⊕
Fries implies that we will receive either a Burger or Fries but have no say in the matter
(the choice is made by the restaurant). The par operator � is the dual of the ⊗ operator,
but has less intuitive definition. In practice it defines a concurrent operation whereby the
context can be split between both sides of the operator, allowing us to share resources.

The operator � is the linear version of classical implication. The fundamental dif-
ference between this and classical implication is that a resource must be consumed in
the process. The linear implication Money � Coke tells us that given Money we can
obtain a Coke, but that we must “consume” Money to get it. Note that from the state-
ment Money � Coke we can infer by backward-chaining that if we want Coke, we need
first acquire Money, and that by forward-chaining we can infer that from Money we can
acquire Coke.

Linear logic also has a negation (⊥) which can be used to represent supply or debt.
For example to represent the perspective of the restaurant providing the above meal we
can write Burger⊥ � Fries⊥ � Coke⊥.

2.2 Lygon

Lygon is a logic programming language based on linear logic [6,17]. Lygon is a strict
extension of pure Prolog that incorporates linear logic reasoning capabilities. Lygon by
default allows resources to be used only once during a computation. This makes it an
excellent tool for problem domains which are resource-oriented.

Lygon maps each of the linear logic connectives as follows:

Logic ⊗ & � ⊕ � F⊥

Lygon * & # @ -> neg F

For example, t o specify a program which exchanges two dollars for a meal we may
write:

meal <- dollar * dollar

where * is the ASCII for ⊗ and we write � ‘backwards’ à la Prolog as <-. To specify
that buying a meal consumes two dollars and provides a burger, fries and coke we might
define the clause:

Agent Deliberation via Forward and Backward Chaining in Linear Logic 61

meal <- dollar * dollar * (neg burger # neg fries # neg coke).

This same pattern can be used for agent actions, in that the above rule can be interpreted
as an action meal with pre-conditions dollar * dollar and post-conditions
burger * fries * coke.

The most significant difference between Lygon and Prolog is that in Lygon a program
context must be maintained, which may vary from step to step. For example, given a
goal such as G1 ∗ G2, it is necessary to split the (linear part of) the program into two
mutually exclusive and exhaustive parts P1 and P2 such that P1 � G1 and P2 � G2. In
Prolog, as formulae can be arbitrarily copied, this is not necessary. In Lygon (and other
implementations, such as Lolli [9]) the implementation of * will provide the entire
context to G1, and if it succeeds, the remaining unused context is passed to G2. Hence
the transmission of the program context is fundamental in Lygon, and as we shall see,
this is a critical property for BDI agent systems.

2.3 Inference and Abduction

The requirement for an agent to use a combination of both proactive and reactive
behaviour corresponds in automated reasoning to a combination of both backward-
chaining and forward-chaining inference [7,2,11]. Backward-chaining involves reason-
ing backwards from a goal towards known truths, whereas forward-chaining involves
using what is known to be true to infer new results. Harland and Winikoff [8] have pro-
posed a BDI system based on linear logic, in which the proactive behaviour of the agent
is provided by backward-chaining methods and the reactive behaviour of the agent is
provided by forward-chaining methods. In terms of the BDI cycle mentioned above,
this means that the think phase would be implemented by backward-chaining tech-
niques and the act and observe phases by forward-chaining ones. Backward-chaining
methods have been the basis of logic programming languages based on linear logic,
such as Lygon [6] and Lolli [9]. Forward-chaining methods have also been used [7],
and techniques to combine both methods into one system have also been studied [2,11].
However, there has been comparatively little work on applying such methods to agent
systems. In addition, the work of Harland and Winikoff was purely a design; no precise
execution method was given and no implementation was developed.

Backward-chaining has long been the standard technique in logic programming, the-
orem provers and other applications. Given a set of formulae and a goal, backward-
chaining seeks to find a proof by starting at the goal and recursively decomposing it
into subgoals, attempting to resolve them using depth-first recursion and backtracking.
Consider the formulae below.

X flies -> X has wings
X has a beak -> X is a bird

X has wings -> X is a bird

Given these rules we may wish to prove X is a bird, given that we know it flies.
We would then select the second and third rules, since X is a bird is the conclusion

62 L. Trodd, J. Harland, and J. Thangarajah

of these rules. Following the inference backwards from the conclusion to the premise,
we then determine that either X has a beak or X has wings imply our goal.
By following a similar process, we determine that X has wings is implied by X
flies, and so we have proved our result. In a linear logic context, a backward-chaining
proof tells us that we can achieve some state (or resources) G, given some initial state
or resources and a set of valid exchanges. The backward-chaining approach is usefully
applied to many applications such as the querying of databases and solving a set of
constraints. In an agent context, backward-chaining may be viewed as a method for
finding plans, as it allows us to ask “what if?”questions about the world, and hence
provides means of implementing proactive behaviour.

Backward-chaining is very closely related to another technique known as abduction.
Logical deduction can be considered a projection forward from cause to effects that en-
able us to predict the logical outcome of a set of inferences. Abduction on the other hand
allows us to project backwards from effects to causes to abduce possible explanations for
our observations [16]. A classic example of this is demonstrated by the following [3]:

grass is wet← rained last night
grass is wet← sprinkler was on

shoes are wet← grass is wet

Given the above rules, we may observe that our shoes are wet and attempt to abduce
an explanation for why this is so. By recursively computing explanations for our obser-
vations we determine that our shoes may be wet because it rained last night or because
the sprinkler was on.

Forward-chaining essentially uses modus ponens as an inference rule. For example,
consider the following rules:

There is smoke -> There is a fire

There is a fire -> There is an emergency

Given these implications, if we observe smoke we can conclude there is a fire and can
therefore conclude there is an emergency. One useful application of forward chaining to
agent systems is its natural resemblance to reactive behaviours. Given some situation,
we can define a rule that reactively applies some action or plan. For example we may
define a reactive rule:

There is fire − > Sound alarm

This makes it straightforward to include such rules in an agent, to allow for strictly
reactive behaviour such as an emergency response or performing safely-critical actions
such as braking. A reactive system may be made up of many forward chaining rules,
which can be seen as a collection of stimulus-response, in-out or condition-action rules
[10].

3 Agents in Lygon

Our general strategy is to map each phase of the observe-think-act cycle to a particular
paradigm. In the observe phase, the beliefs of the agent are updated, depending on

Agent Deliberation via Forward and Backward Chaining in Linear Logic 63

the output from the agent’s sensors or other means of perceiving the environment. As
we shall see, this may also involve some forward-chaining computation. In the think
phase, we apply backward-chaining techniques to our current goals, to determine the
appropriate actions to be taken. In the act phase, we apply forward-chaining techniques
to perform the chosen actions, which will generally involve updating the agent’s beliefs
in a corresponding manner.

3.1 Actions

We now describe our extensions to Lygon to make it feasible to use as a BDI agent
programming system. To make our discussion concrete, we will first specify Lygon
rules for the actions in the vacuum cleaner example. We assume that the robot has a
maximum of 100 units of energy, and a single move action costs 10 units. A vacuum
action can only take place when the room the robot is in is dirty, and this takes 20 units
of energy. The rules for the move, vacuum and charge actions are below. These,
modulo some simple syntactic sugar, can be directly used in Lygon.2 We prefix actions
with the reserved word act. The general form of rules for action is

act Name: Preconditions -> Postconditions.

act move(Y): at(X)*energy(C) -> at(Y)*energy(C-10).
act charge: at(charger)*energy(C) -> at(charger)*energy(100).
act vacuum(X): at(X)*dirty(X)*energy(C) ->

at(X)*clean(X)*energy(C-20).

Fig. 1. Vacuum cleaner actions

One of the first issues that arises is that Lygon is designed as a logic programming
language, and hence goals are queries, which result in an answer of “yes” or “no”. In
an agent system, goals are not only assumed not to be true, but the point of performing
computation on goals is to determine a particular set of actions that will make the goal
true. Hence our first step is to extend Lygon with abductive capabilities, so that the result
of a computation is not just an answer, but is a set of actions to be performed (possibly
empty, corresponding to a “yes”) in order to make the goal true. The abducibles, i.e. the
results of the abduction process, are constrained here to be actions, which is why the
action rules are preceded by the keyword act.

Consider the example above if the robot is in room 1, room 2 is dirty, the robot
has 70 units of energy, and has a goal of clean(2). The rules above can be used to
show that the robot needs to achieve the goal at(2) before it can perform the action
vacuum(2), which will result in the goal being achieved. To achieve at(2), the rules
above also show that it will need to perform move(2). As there are no more goals to be
achieved, it has determined that the sequence of actions move(2) then vacuum(2)
will achieve the goal.

2 This and many other details can be found in a detailed technical report available from
http://www.cs.rmit.edu.au/˜jah/agents-in-lygon. Lygon code and the ex-
tensions described herein can be found at the same URL.

http://www.cs.rmit.edu.au/~jah/agents-in-lygon

64 L. Trodd, J. Harland, and J. Thangarajah

3.2 The >> Operator

The basic idea is to write actions and plans as rules in Lygon, and to use backward-
chaining together with abduction to determine a set of actions that will achieve the
goal. A subtlety here that may not be immediately apparent is that there is a need to
specify sequences of goals, i.e. goals and actions that must be performed in a partic-
ular order. In the above example, it is clear that the move action must be performed
before the vacuum action, as a post-condition of the move action (i.e. being in room
2) is a pre-condition of the vacuum action. This means that subgoal at(2) must be
achieved before the action vacuum(2) is performed. Moreover, it is common for plans
to require that a particular set of actions be performed in a specific order, sometimes in-
termixed with subgoals [18]. This means that in order to implement a BDI-style system,
we need to be able to specify a sequential order in which actions, plans and goals are to
be executed or achieved. This is nothing more or less than a reflection of the fact that
the actions required to achieve a particular goal are usually constrained to work in a
particular sequence.

Unfortunately there is no (simple) way to use existing Lygon connectives to do this.
One promising possibility is to use *, which does something related, but as discussed
by Winikoff [17], this does not work, as * can only distribute existing resources. Given
a goal G1 ∗G2 any new information generated in the solution of G1 (and in particular
the postconditions of an executed action) cannot be passed onto G2. Using G1#G2

does allow this, but does not restrict the computation of G1 to be performed before
G2 (and in fact allows both goals to be pursued concurrently). Another possibility is
to use the “continuation-passing style” mechanism proposed by Winikoff, which adds a
continuation argument to each rule, and splits each rule into a number of rules. However,
this is unwieldy, and the number of rules can potentially grow very large and hence
difficult to maintain, especially due to the recursive nesting of rules that is required.

Hence we introduce a new connective >> (read ‘then’), in order to succinctly state
what is required. Intuitively, an agent wanting to sequentially achieve goals G1 and G2

will first perform actions to achieve G1, and, having noted the updates to the world that
these actions have made, make plans for achieving G2 from that updated world. Hence
a program and goal P,G1 >> G2 results in the program and goal P1, G2 where P1 is
the result of actions A1 which convert P to P1 and for which P1 � G1.

The >> operator defines an intuitive notion of a sequence of formulae. When com-
bined with the agent paradigm it can be used to define sequences of actions or plans
whose outcomes rely on those that come before. Implicit in this definition is the need
for the connective to pass state between its left and right sides, in which the output state
after achieving the left side should feed into the right side. For example, we may wish
to specify that plan A be executed to accomplish some state in the world, followed by
plan B to give us a final state. This can be represented as plan A >> plan B.

Note that much of the effort in implementing logic programming languages based
on linear logic is centred on the management of context [9,6,17]. Computation involves
updating these contexts, and possibly passing them onto other goals according to par-
ticular management rules (based on the rules of inference of linear logic). From an
agent perspective, this is very similar to updating the state of world after an action is
performed. What the above discussion shows is that the management of agent contexts

Agent Deliberation via Forward and Backward Chaining in Linear Logic 65

requires an approach that does not correspond directly to those already in use in linear
logic programming languages.

In some cases we may wish to specify a sequence, but are not concerned with the
order in which that sequence occurs. For example, we may wish to specify that our
vacuum robot should clean the lounge and bedroom in some sequence but we do not
care which comes first. With a simple extension to the >> operator we can achieve this
behaviour, defining the operator <> with the semantics (A >> B @ B >> A).

3.3 Reasoning about Agents

The >> mechanism makes it straightforward to specify agent behaviours. It also seems
intuitively simple, although it in some ways combines both forward- and backward-
chaining. Consider a program P0 and the goal G1 >> G2 >> . . . >> Gn. This asks

the agent system to find, if possible, actions A1, A2 . . . An such that Pi−1
Ai�−→ Pi (i.e.

the actions Ai will convert Pi−1 to Pi) and Pi � Gi. If at any point, such an Ai cannot
be found, backtracking occurs to see if some alternatives can be found for earlier goals
(meaning that there can be many such Ai for each Gi). In other words, solving for
each goal Gi results in a backward-chaining computation to find Ai, and the results of
each action are propagated forwards to the next goal. The relationship between >> and
combinations of forward- and backward-chaining [2] is beyond the scope of this paper,
and is an item of future work.

It is important to note that the backward-chaining phase, including>>, is a planning
phase only; no actual changes are made at this point (i.e. no actions are performed).
The agent is at this point exploring future options, and it is possible that a number
of potential alternatives are investigated, from which the agent will select the most
appropriate one. It should also be noted that this process of determining an appropriate
course of action will be repeated at each think phase of the BDI cycle (see Section 4).

A pleasing by-product of this approach is that as the above mechanism requires the
generation of potential future states, it is straightforward to perform proactive checking
of maintenance goals [4]. These are goals which are intended to remain true, and so if
they become false, the agent must take action to restore them. As discussed by Duff et
al. [4], it is generally sensible to check these proactively, i.e. before attempting a goal
which may violate a maintenance goal. For example, our cleaning robot is required to
ensure that its battery never becomes fully discharged during the cleaning process. So
we specify a maintenance goal that requires the energy level to be at least 10 at all times.
A reactive approach would wait until the energy drops to 10 (or less), and then interrupt
the robot and require it to recharge. A proactive method would look at the robot’s plans,
and only allow it to consider plans in which the energy is always 10 or more throughout
the execution of the plan. Hence a proactive approach will eliminate action sequences
which will violate maintenance goals (although it is sensible to combine this with a
reactive approach, in case some unforeseen circumstances occur).

It is straightforward to implement both reactive and proactive checking of mainte-
nance goals in this framework. The reactive approach can be implemented by adding
appropriate rules which are evaluated during the observe phase by forward-chaining.
The proactive approach can be implemented during the think phase, as this involves
the explicit construction of the future states that the agent foresees as a result of its

66 L. Trodd, J. Harland, and J. Thangarajah

actions. Hence we can incorporate a procedure into this generation that will check for
constraints that each such state should satisfy. In the case of maintenance goals, this
constraint will be that no maintenance goal is violated by the state. If so, execution con-
tinues as normal. If not, (i.e. some maintenance goal is violated), failure occurs and the
system backtracks to attempt to find some alternatives.

In the case of our robot, we can thus enforce a constraint that it always maintains at
least 10 units of energy by simply adding a constraint that no state is allowed in which
this condition is violated.

3.4 Vacuum Example

To see how this works, consider the code in Figure 2, which should be considered
in conjunction with the rules for the actions move, vacuum and charge in Fig-
ure 1. Note that see(G) simply tests whether G is true, whereas G by itself means an
achievement goal.

plan clean(X): see(at(X))*see(dirty(X)) -> act vacuum(X).
plan clean(X): see(at(Y))*see(dirty(X)) ->

act move(X) >> act vacuum(X).
plan cleanall: not(dirty()).
plan cleanall: see(at(X))*see(dirty(X)) ->

plan clean(X) >> plan cleanall.
plan cleanall: see(dirty(X)) ->

plan clean(X) >> plan cleanall.
plan cleanall: see(energy(C))*lt(C,100) ->

act move(charger) >> act charge >> plan cleanall.
discharged <- see(energy(C))*lt(C,10).
constrain plan cleanall: not(discharged).

Fig. 2. Vacuum code

The first two rules specify plans for achieving the goal clean(X), which can be
done by either cleaning the room the robot is currently in (first rule) or moving to an-
other room and cleaning it (second rule). The next four rules specify a plan for cleaning
all rooms. If there are no dirty rooms, there is nothing to do. Otherwise, if the robot
can see that the current room is dirty, it cleans it, and then reconsiders the rooms (i.e.
this is a recursive rule). Otherwise, it will clean any dirty room it can see, and, lastly,
it will recharge itself by moving to the charger, recharging and then reconsidering what
needs to be done. The last two rules specify the constraint that during the computation
of plan cleanall, all states are required to have not(discharged) true, i.e.
that the maintenance goal must be proactively maintained.

Once a potential sequence of actions has been found, we then enter the act phase of
the cycle, which performs the given actions, and evaluates any appropriate rules along
the way. This is done in a straightforward manner using forward-chaining. It should be
noted that the observe phase is also executed in a forward-chaining manner, in that once
the input to the agent is received (in the form of sensors or events or other means), it
can be useful to perform some processing of these inputs.

Agent Deliberation via Forward and Backward Chaining in Linear Logic 67

For example, imagine that our robot has fire extinguishing capabilities. We could
define an event that activates a fire extinguishing mode when a fire is detected. This
could be expressed as

event alarm: see(fire(X)) -> plan respond(X).
plan respond(X): see(fire(X)) -> act move(X) >> act hose.

This event overrides the current goal of the agent with plan respond(X) when a
fire is detected in room X. When the plan is evaluated, it moves to the appropriate room
and activates its hose action to put out the fire. The execution clause of an event can be
any valid Lygon clause that can be decomposed into a series of actions. The specified
clause replaces the current goal in the BDI cycle, such that the agent will now work
towards achieving it rather than its original goal. The agent will return to its original
goal only when the new goal completes or is unachievable.

We present and discuss a more detailed example in Section 5.

4 BDI Deliberation Cycle

In this section we give a (necessarily brief) overview of our version of the BDI cycle.
The operation of the cycle can be summarised as follows: Given an expected world state
E, current intentions I and a goal G:

1. Observe the world to obtain current beliefs W.
2. Sequentially test each event (if events are active).

• If the event rule applies, recursively call BDI cycle with the event body as goal, deacti-
vating events.

• Reobserve the world to obtain updated beliefs W
3. If expected world E �= observed world W

• Construct a new plan of action with goal G, replacing I. If construction fails, terminate
indicating failure

4. If I is empty, terminate cycle, indicating success
5. Otherwise

• Obtain the first action A in intentions I
• Simulate action A on current beliefs W to get E2
• Execute action A
• If action A execution fails

– Restart cycle with E & I empty and with goal G
• Otherwise

– Remove A from intentions, getting I2
– Restart cycle with E2, I2, goal G

Steps 1 and 2 correspond to the observe phase, steps 3 and 4 to the think phase and step
5 to the act phase.

This cycle has a number of important properties.

• The observation function obtains the current state of the world from the world state
store. This enables states to persist between cycles and allows users to specify a
state at command line, or integrate external sensors in a relatively simple way.

68 L. Trodd, J. Harland, and J. Thangarajah

• Events are evaluated before planning occurs. This emphasises the reactive nature of
events; they always take priority over the current goal. Events can be deactivated,
for example if we are currently processing an event in the cycle we do not want to
introduce infinite recursion.

• The execution of an event recursively spawns its own BDI cycle. This effectively
takes over the current BDI cycle, trying to achieve the execution clause of the event.
It is important to note that although the execution clause is evaluated using the ab-
ductive planning mechanism, this does not significantly compromise responsive-
ness for simple action bodies. Where the clause contains actions only, the planning
mechanism will deterministically generate an action list from the specified action
clause. At the end of the new BDI cycle we are returned to the original cycle and
hence the original goal.

• Constructing a plan of action fully decomposes the goal into a sequence of atomic
actions. This guarantees its validity and allows the application of constraints de-
scribed later.

• It is possible that no solution can be found to achieve goal G, given the current
world W. In this case we terminate the cycle with a failure indication.

• The plan of action that is determined to achieve our goal constitutes our current
intentions. Success is determined when there are no more actions left to do (we
have no intentions). A world in which goal G is already accomplished will return
an empty plan of action if it is evaluated.

• Unnecessary replanning is avoided by maintaining an expected state of the world.
This expected state is obtained by simulating the present action on current beliefs
and collecting the resulting state using the clause act theAction >> collect.
Where the world is equivalent to the expected state, our current intentions are still
valid. External changes to the world may cause us to discard current intentions
(which are no longer achievable) and generate a new valid set of intentions.

• Actions can fail, which is handled by re-evaluating the original goal.
• The cycle is reiterated after the execution of each action. This means that events

have the opportunity to interrupt execution in between each action.

The mechanisms that have been discussed in this paper have been implemented in an
extended version of Lygon. Our extensions to Lygon have added around 1100 lines (of
sparsely arranged and duly commented code) to the original Lygon interpreter of 720
lines. The current implementation has been developed and tested using SWI-Prolog.

5 Features

5.1 Detailed Rules

The brevity and expressive power of the Lygon extensions we have implemented be-
come apparent when used in tandem and applied to complex agent problems. The syn-
tax allows us to express complex scenarios in a very concise and highly abstracted
fashion. This affords us clear productivity advantages over more prevalent imperative
languages such as JACK. A decisive advantage of the Lygon extensions are its ability
to express complex high level abstractions using expressive and concise syntax. This
makes the tool suitable for rapid prototyping scenarios.

Agent Deliberation via Forward and Backward Chaining in Linear Logic 69

To investigate the power of this approach, we have used it to develop solutions for
two problems:

– An extended version of the vacuum cleaner example
– The gold mining problem used in the CLIMA programming contest3.

Due to space limitations, we only discuss the vacuum cleaner example here. Whilst this
involves a fair bit of detail, we believe that doing so will provide a much better illustra-
tion of our approach than an abstract discussion of programming language features.

We extend the the robot cleaner program to accommodate more complex behaviour
as follows:

• We accommodate vacuuming of multiple rooms in appropriate sequence.
• We enable the robot to remove obstacles preventing movement (by vaporizing

them).
• We must maintain battery charge to prevent the robot running flat.
• We reactively detect and respond to intruders by activating an alarm.
• We detect and respond to presence of fire by replacing the current goal, and allow

for excessive battery discharge in this case.

An implementation that demonstrates these requirements is outlined in Figure 3.
The cleaner program demonstrates a variety of features of the implemented exten-

sions in Lygon. It has reactive and proactive properties, making use of deliberative
planning techniques to determine appropriate action sequences, and events to respond
to dynamic changes in the environment. It applies constraints in both the proactive plan-
ning phase to prevent inappropriate behaviour, and dynamically to react to exceptional
conditions. The program also demonstrates the integration of standard Lygon clauses to
define common functionality shared between components.

The cleaner program specifies a number of atomic actions which characterise the
agents interaction with the environment. The move rule allows the robot to change its
location to an arbitrarily defined position. In practice the implementation of such an
action will be encapsulated in an external system which handles all appropriate logic.
For the purposes of determining its outcome, we presume that a single movement con-
sumes 10% of the current charge. In a more precise implementation, we might specify
less generic movement actions with unique discharge rates that reflect the relative dis-
tances between locations. For example, we may wish to specify that moving between
the lounge and bedroom consumes 12 units of energy and between the bedroom and
kitchen 9 units, like so:

act move(lounge, bedroom): at(lounge)*energy(C) -> at(bedroom)*energy(C-12).
act move(bedroom, kitchen): at(bedroom)*energy(C) -> at(kitchen)*energy(C-9).

Internal action failures are modelled as complete failures if they report failure without
making any changes to the state of the world. For exampe, a move action may fail to
complete, leaving the robot in its original location. When such a failure occurs, the BDI
cycle responds by immediately restarting the cycle for re-planning and results in the

3 http://centria.di.fct.unl.pt/˜clima

http://centria.di.fct.unl.pt/~clima

70 L. Trodd, J. Harland, and J. Thangarajah

act move(Y): at()*energy(C)*is(C2,C-10) -> at(Y)*energy(C2).
act vacuum(X): at(X)*dirty(X)*energy(C)*is(C2,C-20) -> at(X)*clean(X)*energy(C2).
act charge: at(charger)*energy(C) -> at(charger)*energy(100).
act fastcharge: at(charger)*energy(C)*is(C2,50) -> at(charger)*energy(C2).
act extinguish: fire(X)*at(X) -> smoke(X)*at(X).
act soundalarm: alarm() -> alarm(on).
act stopalarm: alarm() -> alarm(off).
act vaporize(X): at(X)*obstacle(X)*energy(C)*is(C2,C-20) -> at(X)*energy(C2).

event fire: see(fire(X)) -> act soundalarm >> plan firerespond(X).
event intruder: see(intruder(X)) -> act soundalarm.
event lowbattery: batterylow -> act move(charger) >> act(charge).
event safe: see(alarm(on))*not(fire())*not(intruder()) -> act stopalarm.

plan clean(X): see(at(X))*see(obstacle(X)) -> act vaporize(X) >> act vacuum(X).
plan clean(X): see(at(X))*see(dirty(X))*not(obstacle(X)) -> act vacuum(X).
plan cleanall: not(dirty()).
plan cleanall: see(dirty(X))*see(at(X)) -> plan clean(X) >> plan cleanall.
plan cleanall: see(dirty(X))*not(at(X)) ->

act move(X)>> plan clean(X)>> plan cleanall.
plan cleanall: see(energy(C))*lt(C,100) ->

act move(charger)>> act charge>> plan cleanall.
constrain plan cleanall: not(batterylow).
plan firerespond(X): not(fire(X)).
plan firerespond(X): see(fire(X))*see(at(X)) -> act extinguish.
plan firerespond(X): see(fire(X))*see(at(Y)) -> act move(X)>> act extinguish.
plan firerespond(X): see(energy(C))*lt(C,100) ->

act move(charger)>> act fastcharge>> plan firerespond(X).
constrain plan firerespond(X): not(discharged).

discharged ← see(energy(C))*lt(C,1).
batterylow ← see(energy(C))*lt(C,25).

Fig. 3. Detailed rules for vacuum

construction of a plan identical to the previous (since the world has not changed). In
the case of partial failure (for example a movement action between the bedroom and
kitchen may fail halfway, leaving the robot in the lounge) the BDI cycle will re-plan
given the new state of the world generating a new plan that accommodates the partial
state changes made by the action.

A requirement of our robot is the maintenance of battery charge, which is consumed
by the various actions it can execute. This implies means to recharge the battery, we use
the charge and fastcharge actions (the latter for use in emergency situations at
the cost of reduced battery life). In order to remove obstacles from our path we use the
vaporize(X) action.

Our robots emergency handling requirements specify that it must be able to put out
fires (extinguish action) and respond to intruders with the sounding of an alarm
(soundalarm and stopalarm actions).

5.2 Execution

To initiate the specified program, we specify the command execute(plan
cleanall). The cleanall plan represents the top level goal seeking to ensure
all rooms have been appropriately vacuumed and are free of obstacles. The plan is de-
fined recursively, cleaning a single room and calling itself to deal with any additional
dirty rooms. The terminating condition is specified first and activated when there are

Agent Deliberation via Forward and Backward Chaining in Linear Logic 71

no dirty rooms observed, triggering the success of the plan. Two cases are identified for
cleaning requirements: when we are currently in a dirty room, and when there is a dirty
room elsewhere that requires us to travel. The ordering of these plans is specified such
that when the robot is cleaning the room it is currently in, this action will take prece-
dence over cleaning external rooms. Each of these rules calls the subplan clean(X)
to handle both cleaning and obstacle removal in the current room.

The clean(X) plan is called when we would like to clean the room that we are
currently in. It identifies two cases: one when we are blocked by an obstacle (requiring
it to be vaporized), and where we are free to clean. An alternative implementation to
the program we have specified might be to require the user to specify an order in which
to clean rooms using goals of the form

clean(lounge) <> clean(kitchen) <> ...

Considering such an implementation we might imagine a scenario in which a requested
goal is unachievable. For example we may specify that the lounge, kitchen, bedroom
and bathroom be cleaned in any order. Unfortunately it is not possible to have enough
charge to complete four consecutive rooms, and is thus unachievable.

A more useful response may be a description of why the goal cannot be achieved.
For example, we may indicate that the goal is unachievable because all planning paths
fail when charge is determined to fall below 0, preventing the calling of additional
actions. Given a list of reasons for failure (extracted from the various failure paths
during abduction), it may even be possible to determine how to best partially achieve the
specified goal (choosing the least undesirable failure). For example we could determine
that we can clean the lounge and kitchen but not the bedroom and bathroom.

An important consideration when specifying proactive constraints is the realisation
that in their present form they are a solution trimming feature. In the context of our
batterylow constraint, this means that any combination of actions leading to a low
battery level will cause the current plan decomposition to fail. For this reason we must
provide additional plan options that enable the cleaning decomposition to continue even
when the battery becomes low. This motivates the addition of a fourth cleanall plan
option:

plan cleanall: see(energy(C))*lt(C,100) ->
act move(charger) >> act charge >> plan cleanall

When planning decomposition has generated sufficient actions to cause the battery con-
straint to fail, the cleanall plan will be unable to continue cleaning rooms until it
is recharged. This will lead to the failure of the first three plan cases. Backtracking
will eventually reach the fourth plan option, enabling the robot to perform a recharge
before continuing with the cleanall plan. This approach can be used as a general
mechanism to accomplish constraint recovery in most circumstances 4.

4 One limitation of this approach however is in the presence of nested plans. When nesting
plans, all constraints are inherited and will therefore continue to trim solutions, however the
additional parent plan options are not available for recovery. This can lead to the complete
failure of the sub-plan even where recovery is possible by appropriate actions. The solution
when this is a problem is to duplicate the additional plan options on subplans, in the same way
that we did for the parent plans.

72 L. Trodd, J. Harland, and J. Thangarajah

5.3 Reactive Rules

In addition to the proactive approach, we also specify a reactive constraint in the form
of the batterylow event, which may seem redundant. In an ideal world a purely
proactive constraint approach would be sufficient. However in the practical scenarios
there may be circumstances in which the battery becomes low in ways that we cannot
plan for. For example the owner may install a new battery that is mostly depleted or
an action execution may consume more charge than expected. In such cases replanning
may not be the best approach, firstly because it consumes significant resources which
will consume additional battery charge, and secondly because assumptions about the
amount of battery charge consumed may be incorrect. This rule takes care of such sit-
uations by reactively overriding the robots current plan and moving it to the charger to
perform a recharge. In essence, this event can be considered a fail-safe mechanism that
compensates for the imperfect nature of planning. Using a combination of pro-active
and reactive maintenance goals ensures a robust system that is able to handle a variety
of failure scenarios.

A subtle limitation of the current battery maintenance constraint on the cleanall
plan can be seen during analysis of the programs behaviour. It can be observed that
plans which reduce the battery charge below 35% and then attempt to recharge will fail,
even though we might expect them to succeed providing charge stays above 25%. This
situation arises due to the implementation of the recharge option in the cleanall
plan. This plan consists of two actions, i.e. moving to the charger and then charging.
Because the constraint still applies during the execution of this plan, constraints are
enforced immediately after the movement action. Since movement costs 10% charge,
by the time the robot arrives at the charger it is expected to have a low battery and thus
the constraint indicates that the plan should fail. A simple solution in this case is to
enable the constraint to succeed if we are currently at the charger, like so:

constraint plan cleanall: not(batterylow) @ at(charger)

This constraint ensures that the batterylow constraint only applies when we are not
currently at the charger. Although conceptually simple, the updated constraint is a little
unintuitive. A improved approach might be a mechanism which excludes constraints
in certain scenarios, or to specify a clause that is executed in response to a constraint
violation (on which the constraint itself is not enforced).

The cleaning robot can deal with a number of dynamic scenarios through the use of
reactive events, defined in order of priority. An important function for our agent is the
handling of emergency situations. At the highest priority is the handling of fires when
they occur. The fire event responds by activating the alarm and then calling upon the
fireresponse(X) plan. Recalling our discussion on the implemented BDI cycle,
events always take priority over proactive plans, replacing whatever plan the agent is
currently pursuing and asserting the fireresponse(X) plan. This provides an intu-
itive mechanism for prioritising goals. Given some initial goal, events can replace that
goal when certain conditions arise, returning to the original goal only when event goals
have been achieved. Since events are evaluated in definition order, the programmer can
specify their priority by the order in which events are defined.

Agent Deliberation via Forward and Backward Chaining in Linear Logic 73

The fireresponse plan identifies three scenarios

– there is no fire (in which case we just succeed)
– there is a fire in the current room
– there is a fire in an external room

This plan makes use of the extinguish action to put out the fire, the expected out-
come of which will be the consumption of the fire fact, but generation of smoke. Like
the cleanall plan, this plan is constrained to prevent discharging of the battery. In
this case we would like to allow maximum discharge to fight the fire due to the emer-
gency situation (we obviously don’t want to attempt an unnecessary recharge whilst a
fire is raging). Hence, we specify that charge should not fall below 1%.

An important property to notice about this implementation is the possibility for the
cleanall rule to become unachievable in circumstances where a fire event occurs.
When the fire event is triggered, the robot responds by executing thefirerespond(X)
plan. Although the constraints on the plan ensure that we will not fully discharge the
battery during the fire fighting process, it does allow the circumstance where the bat-
tery can become close to depleted by the time the fire is put out. In some circumstances
the battery may be discharged below 10%, a level at which the robot does not have
enough power to move to the charger on conclusion of the fire-fighting plan. This be-
haviour is reasonable in the given circumstances, as we do not wish to attempt a battery
recharge during fire fighting unless the charge is critical. In practice, the lowbattery
event will attempt a recharge once fire-fighting is complete, but this is potentially un-
achievable, leading to the robot becoming stuck (a small price to pay for putting out the
fire). The presented scenario demonstrates the subtle interaction of multiple constrained
plans in the presence of events. Although a constraint should ensure the maintenance
of that condition throughout planning, it does not guarantee that the final state achieved
won’t lead to the violation of constraints in other plans. This subtle behaviour should
be considered when specifying multiple plans that contain constraints.

In addition to the fire event, we also specify an intruder event. This event
simply activates the alarm when an intruder is detected. Since it only performs a single
action, it is highly reactive, able to offer timeliness guarantees. Its immediate effect is
to replace the agents current intentions with the soundalarm action. Events of this
form are suitable for real-time interactions. Since no planning is required, they are a
purely forward-chaining mechanism. As a final reactive measure, to accommodate the
switching off of the alarm we define the safe event. This event is activated when the
alarm is on but there is no longer a threat (fire or intruder). This enables the automatic
deactivation of the alarm at the end of an emergency.

6 Conclusions and Further Work

We have seen how a BDI system can be constructed from the integration of proactive
and reactive components based on backward- and forward-chaining techniques within
a linear logic based agent system. Linear logic offers an intuitive and powerful frame-
work for modelling many agent concepts such as actions and plans. We believe that the
implementation we have developed shows conclusively that the framework proposed

74 L. Trodd, J. Harland, and J. Thangarajah

by Harland and Winikoff [8] is not only feasible, but has many valuable properties for
agent systems. The syntax we implemented on top of the Lygon interpreter offers an
intuitively simple yet very powerful framework for specifying agent behaviours. Linear
logic has proven to be an effective framework for application to agent oriented pro-
gramming, effectively modelling actions and resource oriented logic suitable for agents.
Specifying plans in linear logic turns out to be relatively intuitive once the appropriate
tools have been specified. Reactive behaviours have been effectively modelled in the
form of events, enabling a powerful synergy of agent behaviours suitable for many ap-
plications. One of the more pleasing artefacts of the implemented agent extensions was
the relatively straightforward means by which proactive constraints could be imple-
mented on top of the framework. Proactive constraints provide an extremely powerful
mechanism for arbitrarily restricting agent behaviours in an intuitive way. The con-
straint mechanism effectively implements many of the ideals proposed by Duff at al.
[4] for proactive maintenance goals in an agent context.

As future work, the precise relationship between the >> operator and the increas-
ingly sophisticated proof-theoretic combinations of backward- and forward-chaining
[2,11] requires further investigation. The definition of the >> operator itself is in some
sense orthogonal to the issues of backward- and forward-chaining, but the way in which
it is used in agent programs seems to imply that further analysis will be rewarding.
Given that G1 >> G2 specifies a particular order in which G1 and G2 must be used,
non-commutative versions of linear logic may be an appropriate starting point [13]. The
key technical issue is finding an appropriate interaction between the non-commutative
connective >> and the other commutative connectives, as distinct from having only
commutative or non-commutative properties alone.

Another aspect of future work is to incorporate maintenance goals into the planning
mechanism. This would mean that the generation of actions would also include the
possibility to generate actions designed to restore maintenance goals after a predicated
violation. Hence rather than just avoid situations where violations occur, the agent can
take actions to recover from violations.

Another direction for further work involves further sophistication of our BDI cycle,
and in particular in the ability of an agent to develop several alternative plans and to be
able to choose between them. We also intend to investigate how much forward-chaining
we should allow in the act phase. Currently we cease this phase after one action. This
is conservative, in that this means the agent has a chance to re-observe the world after
each update. However, it may be sensible in some circumstances to allow more actions
to execute, on the grounds that we can often predict that no changes to our plans will
result from the execution of these actions.

References

1. Bosser, A.-G., Cavazza, M., Champagnat, R.: Linear logic for non-linear storytelling. In:
Proceedings of the European Conference on Artificial Intelligence, Lisbon (August 2010)

2. Chaudhuri, K., Pfenning, F., Price, G.: A logical characterization of forward and backward
chaining in the inverse method. Journal of Automated Reasoning 40, 133–177 (2008)

3. Denecker, M., Kakas, A.C.: Abduction in Logic Programming. In: Kakas, A.C., Sadri, F.
(eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2407, pp.
402–436. Springer, Heidelberg (2002)

Agent Deliberation via Forward and Backward Chaining in Linear Logic 75

4. Duff, S., Harland, J., Thangarajah, J.: On proactivity and maintenance goals. In: Proceedings
of the International Conference on Autonomous Agents and Multi-Agent Systems, Hakodate,
pp. 1033–1040 (2006)

5. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50(1), 1–102 (1987)
6. Harland, J., Pym, D., Winikoff, M.: Programming in Lygon: An Overview. In: Nivat, M.,

Wirsing, M. (eds.) AMAST 1996. LNCS, vol. 1101, pp. 391–405. Springer, Heidelberg
(1996)

7. Harland, J., Pym, D., Winikoff, M.: Forward and backward chaining in linear logic. In:
CADE-17 Workshop on Proof-Search in Type-Theoretic Systems, Pittsburgh (June 2000)

8. Harland, J., Winikoff, M.: Agents via mixed-mode computation in linear logic. Annals of
Mathematics and Artificial Intelligence 42(1), 167–196 (2004)

9. Hodas, J., Miller, D.: Logic programming in a fragment of intuitionistic linear logic. Infor-
mation and Computation 110(2), 327–365 (1994)

10. Kowalski, R., Sadri, F.: Towards a Unified Agent Architecture that Combines Rationality
with Reactivity. In: Pedreschi, D., Zaniolo, C. (eds.) LID 1996. LNCS, vol. 1154, pp. 135–
149. Springer, Heidelberg (1996)

11. Liang, C., Miller, D.: Focusing and polarization in linear, intuitionistic, and classical logic.
Theoretical Computer Science 410(46), 4747–4768 (2009)

12. Masseron, M., Tollu, C., Vauzeilles, J.: Generating plans in linear logic i: Actions as proofs.
Theoretical Computer Science 113(2), 349–370 (1993)

13. Polakow, J.: Linear logic programming with an ordered context. In: Principles and Practice
of Declarative Programming, Montreal (September 2000)

14. Porello, D., Endriss, U.: Modelling multilateral negotiation in linear logic. In: Proceedings
of the European Conference on Artificial Intelligence, Lisbon, p. 939 (August 2010)

15. Rao, A.S., Georgeff, M.P.: An abstract architecture for rational agents. In: Proceedings of
the International Conference on Principles of Knowledge Representation and Reasoning, pp.
439–449 (1992)

16. Shanahan, M.: Prediction is deduction but explanation is abduction. In: Proceedings of the
International Joint Conference on Artificial Intelligence, pp. 1055–1060 (1989)

17. Winikoff, M.: Logic Programming With Linear Logic. PhD Thesis, University of Melbourne
(1997)

18. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative and procedural goals in
intelligent agent systems. In: Proceedings of the International Conference on Principles of
Knowledge Representation and Reasoning, Toulouse (April 2002)

19. Woolridge, M.: Intelligent Agents. MIT Press, Cambridge (1999)

Automatic Generation of Self-monitoring MASs

from Multiparty Global Session Types in Jason

Davide Ancona1, Sophia Drossopoulou2, and Viviana Mascardi1

1 DIBRIS, University of Genova, Italy
{davide.ancona,viviana.mascardi}@unige.it

2 Imperial College, London, UK
scd@doc.ic.ac.uk

Abstract. Global session types are behavioral types designed for speci-
fying in a compact way multiparty interactions between distributed com-
ponents, and verifying their correctness. We take advantage of the fact
that global session types can be naturally represented as cyclic Prolog
terms - which are directly supported by the Jason implementation of
AgentSpeak - to allow simple automatic generation of self-monitoring
MASs: given a global session type specifying an interaction protocol,
and the implementation of a MAS where agents are expected to be com-
pliant with it, we define a procedure for automatically deriving a self-
monitoring MAS. Such a generated MAS ensures that agents conform
to the protocol at run-time, by adding a monitor agent that checks that
the ongoing conversation is correct w.r.t. the global session type.

The feasibility of the approach has been experimented in Jason for
a non-trivial example involving recursive global session types with al-
ternative choice and fork type constructors. Although the main aim of
this work is the development of a unit testing framework for MASs, the
proposed approach can be also extended to implement a framework sup-
porting self-recovering MASs.

1 Introduction

A protocol represents an agreement on how participating systems inter-
act with each other. Without a protocol, it is hard to do a meaningful
interaction: participants simply cannot communicate effectively.
The development and validation of programs against protocol descriptions
could proceed as follows:
– A programmer specifies a set of protocols to be used in her applica-

tion.
...
– At the execution time, a local monitor can validate messages with

respect to given protocols, optionally blocking invalid messages from
being delivered.

This paper starts with a few sentences drawn from the manifesto of Scribble, a
language to describe application-level protocols among communicating systems

M. Baldoni et al. (Eds.): DALT 2012, LNAI 7784, pp. 76–95, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Automatic Generation of Self-monitoring MASs 77

initially designed by Kohei Honda and Gary Brown1. The team working on
Scribble involves both scientists active in the agent community and scientists
active in the session types one. Their work inspired the proposal presented in
this paper where multiparty global session types are used on top of the Jason
agent oriented programming language for runtime verification of the conformance
of a MAS implementation to a given protocol. This allows us to experiment our
approach on realistic scenarios where messages may have a complex structure,
and their content may change from one interaction to another.

Following Scribble’s manifesto, we ensure runtime conformance thanks to a
Jason monitor agent that can be automatically generated from the global session
type, represented as a Prolog cyclic term. Besides the global session type, the
developer must specify the type of the actual messages that are expected to be
exchanged during a conversation.

In order to verify that a MAS implementation is compliant with a given pro-
tocol, the Jason code of the agents that participate in the protocol is extended
seamlessly and automatically. An even more transparent approach would be
possible by overriding the underlying agent architecture methods of Jason re-
sponsible for sending and receiving messages, which could intercept all messages
sent by the monitored agents, and send them to the monitor which could manage
them in the most suitable way. In this approach message “sniffing” would have
to occur at the Java (API) level, gaining in transparency but perhaps loosing in
flexibility.

In this paper we show the feasibility of our approach by testing a MAS against
a non-trivial protocol involving recursive global session types with alternative
choice and fork type constructors.

The paper is organized in the following way: Section 2 provides a gentle intro-
duction to the global session types we used in our research; Section 3 discusses
our implementation of the protocol testing mechanism; Section 4 presents the
results of some experiments we have carried out; Section 5 discusses the related
literature and outlines the future directions of our work.

2 A Gentle Introduction to Global Session Types for
Agents

In this section we informally introduce global session types (global types for
short) and show how they can be smoothly integrated in MASs to specify mul-
tiparty communication protocols between agents. To this aim, we present a typ-
ical protocol that can be found in literature as our main running example used
throughout the paper.

Our example protocol involves three different agents playing the roles of a
seller s, a broker b, and a client c, respectively. Such a protocol is described
by the FIPA AUML interaction diagram [17] depicted in Figure 1: initially, s
communicates to b the intention to sell a certain item to c; then the protocol

1 http://www.jboss.org/scribble/

http://www.jboss.org/scribble/

78 D. Ancona, S. Drossopoulou, and V. Mascardi

Fig. 1. The Brokering interaction protocol in FIPA AUML

enters a negotiation loop of an arbitrary number n (with n ≥ 0) of iterations,
where b sends an offer to c and c replies with a corresponding counter-offer.
After such a loop, b concludes the communication by sending in an arbitrary
order the message of type result to c, and of type final to s.

Even though the AUML diagram of Figure 1 is very intuitive and easy to un-
derstand, a more compact and formal specification of the protocol is required to
perform verification or testing of a MAS, in order to provide guarantees that the
protocol is implemented correctly. Global session types [8,14] have been intro-
duced and studied exactly for this purposes, even though in the more theoretical
context of calculi of communicating processes. A global type describes succinctly
all sequences of sending actions that may occur during a correct implementation
of a protocol.

Depending on the employed type constructors, a global type can be more or
less expressive. Throughout this paper we will use a fixed notion of global type,
but our proposed approach can be easily adapted for other kinds of global types.
The notion of global type we adopt is a slightly less expressive version of that
proposed by Deniélou and Yoshida [10] (which, however, allows us to specify the
protocol depicted in Figure 1), defined on top of the following type constructors:

– Sending Actions : a sending action occurs between two agents, and specifies
the sender and the receiver of the message (in our case, the names of the
agents, or, more abstractly, the role they play in the communication), and
the type of the performative and of the content of the sent message; for
instance, msg(s, b, tell, item) specifies that agent s (the seller) sends the
tell performative to agent b (the broker) with content of type item.

Automatic Generation of Self-monitoring MASs 79

– Empty Type: the constant end represents the empty interaction where no
sending actions occur.

– Sequencing: sequencing is a binary constructor allowing a global type t to be
prefixed by a sending action a; that is, all valid sequences of sending actions
denoted by seq(a,t) are obtained by prefixing with a all those sequences
denoted by t. For instance,

seq(msg(alice ,bob , te l l ,ping),
seq(msg(bob ,alice , te l l ,pong),end))

specifies the simple interaction where first alice sends tell(ping) to bob,
then bob replies to alice with tell(pong), and finally the interaction stops.

– Choice: the choice constructor has variable arity2 n (with n ≥ 0) and ex-
presses an alternative between n possible choices. Because its arity is variable
we use a list to represent its operands. For instance,

choice([

seq(msg(c,b, te l l ,counter),end),
seq(msg(b,s, te l l ,final),end),
seq(msg(b,c, te l l ,result),end)

])

specifies an interaction where either c sends tell(counter) to b, or b sends
tell(final) to s, or b sends tell(result) to c.

– Fork : the fork binary3 constructor specifies two interactions that can be
interleaved. For instance,

fork(

seq(msg(b,s, te l l ,final),end),
seq(msg(b,c, te l l ,result),end)

)

specifies the interaction where first b sends tell(final) to s, and then b sends
tell(result) to c, or the other way round.

Recursive types: the example types shown so far do not specify any interaction
loop, as occurs in the protocol of Figure 1. To specify loops we need to consider
recursive global types; for instance, the protocol consisting of infinite sending
actions where first alice sends tell(ping) to bob, and then bob replies tell(pong)

to alice, can be represented by the recursive type T s.t.

T = seq(msg(alice ,bob , te l l ,ping),
seq(msg(bob ,alice , te l l ,pong),T))

If we interpret the equation above syntactically (that is, as a unification prob-
lem), then the unique solution is an infinite term (or, more abstractly, an infinite
tree) which is regular, that is, whose set of subterms is finite. In practice, the
unification problem above is solvable in most modern implementations of Prolog,

2 Arity 0 and 1 are not necessary, but make the definition of predicate next simpler.
3 For simplicity, the operator has a fixed arity, but it could be generalized to the case
of n arguments (with n ≥ 2) as happens for the choice constructor.

80 D. Ancona, S. Drossopoulou, and V. Mascardi

where cyclic terms are supported; this happens also for the Jason implementa-
tion, where Prolog-like rules can be used to derive beliefs that hold in the current
belief base4. As another example, let us consider the type T2 s.t.

T2 = seq(msg(alice ,bob , te l l ,ping),
seq(msg(bob ,alice , te l l ,pong),choice([T2,end])))

Such a type contains the infinite interaction denoted by T above, but also all finite
sequences of length 2n (with n ≥ 1) of alternating sending actions msg(alice,bob,
tell,ping) and msg(bob,alice,tell,pong).

We are now ready to specify the Brokering protocol with a global type BP,
where for sake of clarity we use the auxiliary types OffOrFork, Off, and Fork:

BP = seq(msg(s,b, te l l ,item),OffOrFork),
OffOrFork = choice([Off ,Fork])

Off = seq(msg(b,c, te l l ,offer),
seq(msg(c,b, te l l ,counter),OffOrFork))

Fork = fork(seq(msg(b,s, te l l ,final),end),
seq(msg(b,c, te l l ,result),end))

Note that for the definition of global types we consider in this paper, the fork

constructor does not really extend the expressiveness of types: any type using
fork can be transformed into an equivalent one without fork. However, such a
transformation may lead to an exponential growth of the type .To see this, let
us consider the following type F:

F = fork(AliceBob ,CarolDave),

AliceBob = seq(msg(alice ,bob , te l l ,ping),
seq(msg(bob ,alice , te l l ,pong),AliceBob))

CarolDave = seq(msg(carol ,dave , te l l ,ping),
seq(msg(dave ,carol , te l l ,pong),CarolDave))

Type F is equivalent to the following type AC that does not contain any fork:

AC = choice([seq(msg(alice ,bob , te l l ,ping),BC),
seq(msg(carol ,dave , te l l ,ping),AD)]),

BC = choice([seq(msg(bob ,alice , te l l ,pong),AC),
seq(msg(carol ,dave , te l l ,ping),BD)]),

AD = choice([seq(msg(alice ,bob , te l l ,ping),BD),
seq(msg(dave ,carol , te l l ,pong),AD)]),

BD = choice([seq(msg(bob ,alice , te l l ,pong),AD),
seq(msg(dave ,carol , te l l ,pong),BC)])

Formal Definitions

Figure 2 defines the abstract syntax of the global session types that will be used
in the rest of the paper. As already explained in the previous section, global
types are defined coinductively: GT is the greatest set of regular terms defined
by the productions of Figure 2.

4 Persistency of cyclic terms is supported by the very last version of Jason; since
testing of this feature is still ongoing, it has not been publicly released yet.

Automatic Generation of Self-monitoring MASs 81

GT ::= choice([GT1,. . ., GTn]) (n ≥ 0) |
seq(SA, GT) |
fork(GT1, GT1) |
end

SA ::= msg(AId1,AId2,PE,CT)

Fig. 2. Syntax of Global Types

The meta-variables AId, PE and CT range over agent identifiers, performa-
tives, and content types, respectively. Content types are constants specifying the
types of the contents of messages.

The syntactic definition given so far still contains global types that are not
considered useful, and, therefore, are rejected for simplicity. Consider for instance
the following type NC:

NC = choice([NC,NC])

Such a type is called non contractive (or non guarded), since it contains an infi-
nite path with no seq type constructors. These kinds of types pose termination
problems during dynamic global typechecking. Therefore, in the sequel we will
consider only contractive global types (and we will drop the term “contractive”
for brevity), that is, global types that do not have paths containing only the
choice and fork type constructors. Such a restriction does not limit the expres-
sive power of types, since it can be shown that for every non contractive global
type, there exists a contractive one which is equivalent, in the sense that it rep-
resents the same set of sending action sequences. For instance, the type NC as
defined above corresponds to the empty type end.

Interpretation of global types. We have already provided an intuition of the
meaning of global types. We now define their interpretation, expressed in terms of
a next predicate, specifying the possible transitions of a global type. Intuitively,
a global type represents a state from which several transition steps to other
states (that is, other global types) are possible, with a resulting sending action.
Consider for instance the type F defined by

fork(seq(msg(b,s, te l l ,final),end),
seq(msg(b,c, te l l ,result),end))

Then there are two possible transition steps: one yields the sending action
msg(b,s,tell,final) and moves to the state corresponding to the type

fork(end ,

seq(msg(b,c, te l l ,result),end))

while the other yields the sending action msg(b,c,tell,result) and moves to the
state corresponding to the type

fork(seq(msg(b,s, te l l ,final),end),
end)

82 D. Ancona, S. Drossopoulou, and V. Mascardi

Predicate next is defined below, with the following meaning: if next(GT1,SA,GT2)
succeeds, then there is a one step transition from the state represented by the
global type GT1 to the state represented by the global type GT2, yielding the
sending action SA. The predicate is intended to be used with the mode indicators
next(+,+,-), that is, the first two arguments are input, whereas the last is an
output argument.

1 next (seq(msg(S, R, P, CT),GT),msg(S, R, P, C),GT) :-

has_type (C, CT).

2 next (choice([GT1|_]),SA,GT2) :- next(GT1 ,SA,GT2).

3 next (choice([_|L]),SA,GT) :- next(choice(L),SA,GT).

4 next (fork(GT1 ,GT2),SA,fork(GT3 ,GT2)) :- next(GT1 ,SA,GT3).

5 next (fork(GT1 ,GT2),SA,fork(GT1 ,GT3)) :- next(GT2 ,SA,GT3).

We provide an explanation for each clause:

1. For a sequence seq(msg(S, R, P, CT),GT) the only allowed transition step
leads to state GT, and yields a sending action msg(S, R, P, C) where C is
required to have type CT; we assume that all used content types are defined
by the predicate has_type, whose definition is part of the specification of the
protocol, together with the initial global type.

2. The first clause for choice states that there exists a transition step from
choice([GT1|_]) to GT2 yielding the sending action SA, whenever there exists
a transition step from GT1 to GT2 yielding the sending action SA.

3. The second clause for choice states that there exists a transition step from
choice([_|L]) to GT yielding the sending action SA, whenever there exists a
transition step from choice(L) (that is, the initial type where the first choice
has been removed) to GT yielding the sending action SA.
Note that both clauses for choice fail for the empty list, as expected (since
no choice can be made).

4. The first clause for fork states that there exists a transition from
fork(GT1,GT2) to fork(GT3,GT2) yielding the sending action SA, whenever
there exists a transition step from GT1 to GT3 yielding the sending action SA.

5. The second clause for fork is symmetric to the first one.

We conclude this section by a claim stating that contractive types ensure termi-
nation of the resolution of next.

Proposition 1. Let us assume that has_type(c,ct) always terminates for any
ground atoms c and ct. Then, next(gt,sa,X) always terminates, for any ground
terms gt and sa, and logical variable X, if gt is a contractive global type.

Proof. By contradiction, it is straightforward to show that if next(gt,sa,X) does
not terminate, then gt must contain a (necessarily infinite) path with only choice

and fork constructors, hence, gt is not contractive.

3 A Jason Implementation of a Monitor for Checking
Global Session Types

As already explained in the Introduction, the main motivation of our work is a
better support for testing the conformance of a MAS to a given protocol, even

Automatic Generation of Self-monitoring MASs 83

though we envisage other interesting future application scenarios (see Section 5).
From this point of view our approach can be considered as a first step towards
the development of a unit testing framework for MASs where testing, types, and
– more generally – formal verification can be reconciled in a synergistic way.

In more detail, given a Jason implementation of a MAS5, our approach allows
automatic generation6 of an extended MAS from it, that can be run on a set
of tests to detect possible deviations of the behavior of a system from a given
protocol. To achieve this the developer is required to provide (besides the original
MAS, of course) the following additional definitions:

– The Prolog clauses for predicate next defining the behavior of the used global
types (as shown in Section 2); such clauses depend on the notion of global
type needed for specifying the protocol; depending on the complexity of the
protocol, one may need to adopt more or less expressive notions of global
types, containing different kinds of type constructors, and for each of them
the corresponding behavior has to be defined in terms of the next predicate.
However, we expect the need for changing the definition of next to be a
rare case; the notion of global type we present here captures a large class
of frequently used protocols, and it is always possible to extend the testing
unit framework with a collection of predefined notions of global types among
which the developer can choose the most suitable one.

– The global type specifying the protocol to be tested; this can be easily defined
in terms of a set of unification equations.

– The clauses for the has_type predicate (already mentioned in Section 2),
defining the types used for checking the content of the messages; also in this
case, a set of predefined primitive types could be directly supported by the
framework, leaving to the developer the definition of the user-defined types.

The main idea of our approach relies on the definition of a centralized monitor
agent that verifies that a conversation among any number of participants is
compliant with a given global type, and warns the developer if the MAS does
not progress. Furthermore, the code of the agents of the original MAS requires
minimal changes that, however, can be performed in an automatic way.

In the sequel, we describe the code of the monitor agent, and the changes
applied to all other agents (that is, the participants of the implemented protocol).

3.1 Monitor

We illustrate the code for the monitor by using our running brokering example.
The monitor can be automatically generated from the global type specification in
a trivial way. The global type provided by the developer is simply a conjunction
UnifEq of unification equations of the form X = GT , where X is a logical
variable, and GT is a term (possibly containing logical variables) denoting a
global type. The use of more logical variables is allowed for defining auxiliary

5 We assume that the reader is familiar with the AgentSpeak language [20].
6 Its implementation has not been completed yet.

84 D. Ancona, S. Drossopoulou, and V. Mascardi

types that make the definition of the main type more readable. Then from UnifEq
the following Prolog rule is generated:

initial_state (X) :- UnifEq.

where X is the logical variable contained in UnifEq corresponding to the main
global type. The definition of the type of each message content must be provided
as well. In fact, the protocol specification defines also the expected types (such as
item, offer, counter, final and result) for the correct content of all possible
messages. For example, the developer may decide that the type offer defines all
terms of shape offer(Item, Offer), where Item is a string and Offer is an integer;
similarly, the type item corresponds to all terms of shape item(Client, Item)

where both Client and Item are strings.
Consequently, the developer has to provide the following Prolog rules that

formalize the descriptions given above:

has_type(offer(Item , Offer), offer) :-

string(Item) & int(Offer).

has_type(item(Client , Item), item) :-

string(Client) & string(Item).

The monitor keeps track of the runtime evolution of the protocol by saving its
current state (corresponding to a global type), and checking that each message
that a participant would like to send, is allowed by the current state. If so,
the monitor allows the participant to send the message by explicitly sending an
acknowledgment to it. We explain how participants inform the monitor of their
intention to send a message in Section 3.2.

The correctness of a sending action is directly checked by the next predicate,
that also specifies the next state in case the transition is correct. In other words,
verifying the correctness of the message sent by S to R with performative P and
content C amounts to checking if it is possible to reach a NewState from the
CurrentState, yielding a sending action msg(S, R, P, C) (type_check predicate).

/* Monitor ’s initial beliefs and rules */

// user -defined predicates
initial_state(Glob) :-

Merge = choice ([Off,Fork]) &
Off= seq(msg(b, c, tell , offer),

seq(msg(c, b, tell , counter), Merge)) &
Fork= fork(seq(msg(b, s, tell , final),end),

seq(msg(b, c, tell , result),end)) &
Glob = seq(msg(s, b, tell , item),Merge).

has_type (offer(Item , Offer), offer) :-
string(Item) & int(Offer).

has_type (counter (Item , Offer), counter) :-
string(Item) & int(Offer).

has_type (final(Res , Client , Item , Offer), final) :-
string(Res) & string(Client) & string(Item) & int(Offer).

has_type (result(Res , Item , Offer), result) :-
string(Res) & string(Item) & int(Offer).

has_type (item(Client , Item), item) :-
string(Client) & string(Item).

// end of user -defined predicates

timeout (4000).

Automatic Generation of Self-monitoring MASs 85

type_check(msg(S, R, P, C), NewState) :-
current_state(CurrentState) &
next(CurrentState , msg(S, R, P, C), NewState).

// Rules defining the next predicate follow
........

The monitor prints every information relevant for testing on the console with
the .print internal action. The .send(R, P, C) internal action implements the
asynchronous delivery of a message with performative P and content C to agent
R.

A brief description of the main plans follow.

– Plan test is triggered by the initial goal !test that starts the testing, by
setting the current state to the initial state.

– Plan move2state upgrades the belief about the current state.
– Plan successfulMove is triggered by the !type check message(msg(S, R,

P, C)) internal goal. If the type check(msg(S, R, P, C), NewState) con-
text is satisfied, then S is allowed to send the message with performative P

and content C to R. The state of the protocol changes, and monitor notifies
S that the message can be sent.

– Plan failingMoveAndProtocol is triggered, like successfulMove, by the
!type check message(msg(S, R, P, C)) internal goal. It is used when suc-
cessfulMove cannot be applied because its context is not verified. This
means that S is not allowed to send message P with content C to R, because
a dynamic type error has been detected: the message does not comply with
the protocol.

– Plan messageReceptionOK is triggered by the reception of a tell message
with msg(S, R, P, C) content; the message is checked against the proto-
col, and the progress check is activated (!check progress succeeds either
if a message is received before a default timeout, or if the timeout elapses,
in which case !check progress is activated again: .wait(+msg(S1, R1,

P1, C1), MS, Delay) suspends the intention until msg(S1, R1, P1, C1)

is received or MS milliseconds have passed, whatever happens first; Delay
is unified to the elapsed time from the start of .wait until the event or
timeout).

All plans whose context involves checking the current state and/or whose body
involves changing it are defined as atomic ones, to avoid problems due to inter-
leaved check-modify actions.

/* Initial goals */

!test .

/* Monitor ’s plans */

@test [atomic]

+!test : initial_state (InitialState)

<- +current_state (InitialState).

@move2state [atomic]

86 D. Ancona, S. Drossopoulou, and V. Mascardi

+!move_to_state (NewState) : current_state (LastState)

<- -current_state (LastState);

+current_state (NewState).

@successfulMove [atomic]

+!type_check_message (msg(S, R, P, C)) : type_check (msg(S, R, P, C), NewState)

<- !move_to_state (NewState);

.print ("\ nMessage ", msg(S, R, P, C), "\nleads to state ", NewState , "\n");

.send (S, tell , ok_check (msg(S, R, P, C))).

@failingMoveAndProtocol

+!type_check_message (msg(S, R, P, C)) : current_state (Current)

<- .print ("\n*** DYNAMIC TYPE -CHECKING ERROR ***\ nMessage ", msg(S, R, P, C),

"\ ncannot be accepted in the current state ", Current , "\n");

!move_to_state (failure).

@messageReceptionOK

+msg(S, R, P, C)[source(S)]: true

<- -msg(S, R, P, C)[source(S)];

!type_check_message (msg(S, R, P, C));

!check_progress .

+!check_progress : timeout(MS)

<- .wait ({+ msg(S1 , R1 , P1 , C1)}, MS, Delay);

!aux_check_progress (Delay).

+!aux_check_progress (Delay) : timeout (MS) & Delay < MS.

+!aux_check_progress (Delay) : timeout (MS) & current_state (Current) & Delay >= MS

<- .print ("\n*** WARNING ***\ nNo progress for ", Delay , " milliseconds

in the current state ", Current , "\n");

!check_progress .

3.2 Participants

We assume that participants interact via asynchronous exchange of messages
with tell performatives.

To keep the implementation as general and flexible as possible, in the partici-
pants’ code extended as explained below we use the Perf logical variable where
the message performative is expected. Under the assumption that only tell

performatives will be used, Perf will always be bound to the tell ground atom.
Only two changes are required to the code of participants:

1. .send is replaced by !my send and
2. two plans are added for managing the interaction with the monitor.

The first plan is triggered by the !my send internal goal; my send has the same
signature as the .send internal action, but, instead of sending a message with
performative Perf and Content to Receiver, it sends a tell message to the
monitor in the format msg(Sender, Receiver, Perf, Content). When re-
ceived, this message will be checked by the monitor against the global type,
as explained in Section 3.1.

The second plan is triggered by the reception of the monitor’s message that
allows the agent to actually send Content to Receiver, by means of a message
with performative Perf. In reaction to the reception of such a message, the agent
sends the corresponding message to the expected agent.

Automatic Generation of Self-monitoring MASs 87

/* Plans for runtime type checking */

+!my_send (Receiver , Perf , Content) : true
<- .my_name (Sender);

.send(monitor , tell , msg(Sender , Receiver , Perf , Content)).

+ok_check (msg(Sender , Receiver , Perf , Content))[source(monitor)] : true
<- -ok_check (msg(Sender , Receiver , Perf , Content))[source(monitor)];

.send(Receiver , Perf , Content).

3.3 Discussion

Alternative implementations. We opted to implement the proof-of-concept of
our approach by extending the code of the existing participants rather than
modifying the code of the Jason interpreter, because this was the simplest and
quickest solution we could devise for developing a prototype, and easily experi-
menting different design choices. However, the same results could be obtained by
directly modifying the .send internal action by overriding the underlying agent
architecture methods of Jason responsible for sending and receiving messages.

This solution would not require any modification of the code of the partici-
pants, and would allow the monitor to forward the message, when correct, di-
rectly to the recipient agent, thus reducing the number of interactions required
among agents.

Another interesting solution would consist in creating a monitor agent for
each agent participating to the interaction, thus avoiding the communication
problems of the centralized approach where the unique monitor is required to
exchange a large amount of messages with the other agents; however, this solu-
tion requires to project the global session type to end-point types (a.k.a. local
types), specifying the expected behavior of each single agent involved in the in-
teraction. Depending on the considered notion of global type, it might be non
trivial to find an efficient and complete projection algorithm.

Global type transition. We have already shown that the next predicate is ensured
to terminate on contractive global types; however, a developer may erroneously
define a non contractive type for testing its system. Fortunately, there exist
algorithms for automatically translating a non contractive global type into an
equivalent contractive one.

Another issue concerns non deterministic global types, that is, global types
where transitions are not deterministic. Consider for instance the following global
type:

fork(seq(msg(alice ,bob ,tell ,ping),

seq(msg(bob ,alice ,tell ,pong),end)),

seq(msg(alice ,bob ,tell ,ping),

seq(msg(alice ,bob ,tell ,bye),end)))

In this case the next predicate has to guess which of the two operand types must
progress upon reception of the message matching with msg(alice,bob,tell,ping);
this means that in case of non deterministic global types the monitor may de-
tect false positives. To avoid this problem one could determinize the type, but

88 D. Ancona, S. Drossopoulou, and V. Mascardi

depending on the considered notion of global type, it would not be easy, or even
possible, to devise a determinization algorithm. Alternatively, the monitor could
store the whole sequence of received sending actions to allow backtracking in
case of failure, thus making the testing procedure much less efficient.

Finally, it is worth mentioning that the proposed approach makes an efficient
use of memory space if the initial global type does not contain loops with the
fork constructor. In this case the space required by a global type representing
an intermediate state is bounded by the size of the initial global type; since
only one type at a time is kept in the belief base of the monitor, this implies
a significant space optimization when the total number of all possible states is
exponential w.r.t. the size of the initial global type. As already pointed out, this
consideration does not apply to types with loops involving the fork constructor,
like in the following example:

T = fork(seq(msg(alice ,bob , te l l ,ping),T),
seq(msg(bob ,alice , te l l ,pong),T)).

In this case the term grows at each transition step (and there are cases where
the type cannot be simplified to a smaller one); however, we were not able to
come up with examples of realistic protocols that require types with fork in a
loop to be specified.

4 The Framework at Work

In this section we show the actual functioning of our framework by discussing
the experiments we made with the brokering global type. We show the correct
code of seller (s), broker (b) and client (c) apart from the fragments common to
all of them and discussed in Section 3, and omitting the definition of intuitive
predicates, and then we discuss how the framework works with both correct and
buggy code.

Seller. The seller starts the conversation (it has a !start initial goal) by sending
a message to the broker telling that it wants to sell orange to c. It has a plan
triggered by the reception of the final result of the negotiation, whose body is
empty, and no initial beliefs.

/* Plans */

+!start : true
<- !my_send (b, tell , item(c, orange)).

+final(Res, Client , Item , Offer)[source(Broker)] : true.

Broker. The broker has no initial goals and its policy is the following:

– whatever the item to trade, and the client with whom trading, it proposes
to sell it at an initial price stored in its belief base (10 euros for a crate of
oranges when trading with c).

– Depending on the counter offer it receives, three situations may take place:

Automatic Generation of Self-monitoring MASs 89

1. The counter offer is in a range that leaves room for negotiation. The
broker makes an offer with price decremented by one with respect to the
previous offered one (first plan triggered by +counter(Item, Offer)).

2. The counter offer is too low and there is no room for negotiating. The
final decision (noDeal) is sent both to the seller and to the client (second
plan triggered by +counter(Item, Offer)).

3. The counter offer can be accepted. The final decision (ok) is sent both
to the seller and to the client. We do not show the plan for this case,
since it is very similar to the previous one.

/* Initial beliefs and rules */

initial_offer(c, orange , 11).
acceptable_offer(c, orange , 6).

/* Plans */

+item(Client , Item)[source(s)] : initial_offer(Client , Item , Offer)
<- +current_offer(Client, Item , Offer);

!my_send (Client , tell , offer(Item , Offer)).

+counter (Item , Offer)[source(Client)] : acceptable_offer(Client , Item , Min)
& Offer < Min & Offer > Min -4

<- !decrement(Client , Item , NewOffer);
!my_send (Client , tell , offer(Item , NewOffer)).

+counter (Item , Offer)[source(Client)] : acceptable_offer(Client , Item , Min)
& Offer <= Min -4

<- !my_send (Client , tell , result(noDeal , Item , Offer));
!my_send (s, tell , final(noDeal , Client , Item , Offer)).

Client. The client has a reactive behavior: whatever the offer it receives, the
client answers with a counter offer depending on the initial counter offer

belief in its belief base, and increments it by one at any interaction step, until
it receives the result of the negotiation.

/* Initial beliefs and rules */

initial_counter_offer (b, orange , 3).

/* Plans */

+offer (Item , Offer)[source(Broker)] : initial_counter_offer (Broker , Item , Initial)

<- -initial_counter_offer (Broker , Item , Initial);

-offer (Item , Offer)[source(Broker)];

+current_counter_offer (Broker , Item , Initial);

!my_send(Broker , tell , counter (Item , Initial)).

+offer (Item , Offer)[source(Broker)] : true

<- -offer (Item , Offer)[source(Broker)];

!increment (Broker , Item , NewOffer);

!my_send(Broker , tell , counter (Item , NewOffer)).

+result(Res , Item , Offer)[source(Broker)]: true .

4.1 Running the Example

When running the MAS consisting of agents monitor, s, b, and c, we obtain
console messages like those shown below (we only show the first operators of the

90 D. Ancona, S. Drossopoulou, and V. Mascardi

printed states, for space constraints; we use “ ” for the dropped text, since “...”
is part of the cyclic term representation; Msg -> St means that the agent moves
to state St upon reception of Msg). The conversation complies with the global
type and a state that is equivalent to end is reached. Since we do not model
the notion of protocol termination, the monitor cannot know that the protocol
terminated successfully, and keeps watching the conversation and issues warning
messages every M seconds. The developer can easily verify that no messages are
sent because no more messages had to be sent in state fork(end,end).

[monitor]
msg(s,b,tell ,item(c,orange)) -> choice ([... seq(msg(b,c,tell ,offer),_)
....

[monitor]
msg(b,c,tell ,offer(orange ,9)) -> seq(msg(c,b,tell ,counter),choice ([_]))

[monitor]
msg(c,b,tell ,counter (orange ,5)) -> choice ([... seq(msg(b,c,tell ,offer),_)])

[monitor]
msg(b,c,tell ,offer(orange ,8)) -> seq(msg(c,b,tell ,counter),choice ([_]))

[monitor]
msg(c,b,tell ,counter (orange ,6)) -> choice ([... seq(msg(b,c,tell ,offer),_)])

[monitor]
msg(b,c,tell ,result(ok,orange ,6)) -> fork(seq(msg(b,s,tell ,final),end),end)

[monitor]
msg(b,s,tell ,final(ok,c,orange ,6)) -> fork(end,end)

[monitor]
*** WARNING ***
No progress for 4001 milliseconds in the current state fork(end,end)

Bug 1. Let us suppose that the second plan for dealing with offers in the client’s
code, is the following:

+offer(Item , Offer)[source(Broker)] : true
<- -offer(Item , Offer)[source (Broker)];

!increase (Broker , Item , NewOffer);
!my_send (Broker , tell , offer(Item , NewOffer));
!my_send (Broker , tell , anotherOffer(Item , NewOffer)).

Instead of sending a counter offer, the client sends an offer followed by a mes-
sage with unknown type. The console messages we obtain in this case are shown
below.

...

[monitor]
msg(b,c,tell ,offer(orange ,8)) -> seq(msg(c,b,tell ,counter),choice ([_]))

[monitor]
*** DYNAMIC TYPE -CHECKING ERROR ***
msg(c,b,tell ,offer(orange ,4)) cannot be accepted in
seq(msg(c,b,tell ,counter), choice ([_]))

[monitor]
*** DYNAMIC TYPE -CHECKING ERROR ***
msg(c,b,tell ,anotherOffer(orange ,4)) received when no ongoing protocol

Automatic Generation of Self-monitoring MASs 91

The monitor notifies two dynamic type checking errors: the first one due to
the unexpected offer message, and the second one due to the message received
after the protocol testing failed. The message that caused the failure and the
current global type state are shown. When a protocol fails, warnings about lack
of progress are suppressed.

The developer can either fix the code of the agent that sent the message or
the specification of the global type, depending on where the error was.

Bug 2. The client has a !start initial goal, hence it autonomously starts to
interact with the broker before the previous messages that the protocol enforces
have been sent:

/* Plans */

+!start : initial_counter_offer(Broker , Item , Initial)
<- -initial_counter_offer(Broker , Item , Initial);

+current_counter_offer(Broker , Item , Initial);
!my_send (Broker , tell , counter (Item , Initial)).

The monitor prints out the following message:

[monitor]
*** DYNAMIC TYPE -CHECKING ERROR ***
msg(c,b,tell ,counter (orange ,3)) cannot be accepted in
seq(msg(s,b,tell ,item),choice ([_]))

Bug 3. We deleted all the plans triggered by the reception of +counter(Item,
Offer)[source(Client)] from the broker’s code, making the broker agent un-
able to react to a counter offer. The state of the protocol printed out by the
monitor in its warning message helps the MAS developer in identifying the agent
that is expected to send a message at that point of the conversation.

[monitor]

msg(s,b,tell ,item (c,orange)) -> state choice ([... seq(msg(b,c,tell ,offer),_])

[monitor]

msg(b,c,tell ,offer (orange ,11)) -> state seq(msg(c,b,tell ,counter),choice ([_]))

[monitor]

msg(c,b,tell ,counter (orange ,3)) -> state choice ([... seq(msg(b,c,tell ,offer),_])

[monitor]

*** WARNING ***

No progress for 4000 ms in choice ([... seq(msg(b,c,tell ,offer),_)])

We run the MAS with different values for the broker’s initial and acceptable
offers, and with various communication errors besides those described in the
paragraphs above, always obtaining the expected result.

5 Related and Future Work

Our work represents a first step in two directions: extending an existing agent
programming language with session types, and supporting testing of protocol
conformance within a MAS. In this section we consider the related works in
both areas, discuss the (lack of) proposals of integrating session types in existing
MASs frameworks, and outline possible extensions of our work.

92 D. Ancona, S. Drossopoulou, and V. Mascardi

Session types on top of existing programming languages. The integration of ses-
sion types into existing languages is a recent activity, dating back to less than ten
years ago for object oriented calculi, and less than five years for declarative ones.
The research field is very lively and open, with the newest proposals published
just a few months ago.

Session types have been integrated into object calculi starting from 2005
[11,12]. The first full implementation of a language and run-time for session-
based distributed programming on top of Java, featuring asynchronous mes-
sage passing, delegation, session subtyping and interleaving, combined with class
downloading and failure handling, dates back to 2008 [16]. More recently, a Java
language extension has been proposed, that counters the problems of traditional
event-based programming with abstractions and safety guarantees based on ses-
sion types [15].

Closer to our work on declarative languages, the paper [21] discusses how
session types have been incorporated into Haskell as a standard library that
allows the developer to statically verify the use of the communication primitives
provided without an additional type checker, preprocessor or modification to
the compiler. A session typing system for a featherweight Erlang calculus that
encompasses the main communication abilities of the language is presented in
[19]. Structured types are used to govern the interaction of Erlang processes,
ensuring that their behavior is safe with respect to a defined protocol.

Protocol representation and verification in MASs. Because of the very nature
of MASs as complex systems consisting of autonomous communicating entities
that must adhere to a given protocol in order to allow the MAS correct function-
ing, the problem of how representing interaction protocols has been addressed
since the dawning of research on MASs (one of the most well known outcomes
being FIPA AUML interaction diagrams [17]), and the literature on protocol
conformance verification is extremely rich.

Although a bit dated, [6] still represents one of the most valuable contribu-
tions to verification of a priori conformance. In that paper the authors propose
an approach based on the theory of formal languages to formally prove the inter-
operability of two policies (the actual protocol implementations), each of which
is compliant with a protocol specification.

The problem of verifying the compliance of protocols at run time has been
tackled – among others – within the SOCS project7, where the SCIFF compu-
tational logic framework [1] is used to provide the semantics of social integrity
constraints. Such a semantics is based on abduction: expectations on the possibly
observable, yet unknown, events are modeled as abducibles and social integrity
constraints are represented as integrity constraints. To model MAS interaction,
expectation-based semantics specifies the links between the observed events and
the expected ones. The recent paper “Modelling Interactions via Commitments
and Expectations” [23] discusses that and related approaches. Although aimed
at testing run-time conformance of an actual conversation with respect to a given
protocol, our approach differs from the expectation-based one in many respects,

7 http://lia.deis.unibo.it/research/projects/SOCS/

http://lia.deis.unibo.it/research/projects/SOCS/

Automatic Generation of Self-monitoring MASs 93

including the lack of notion of expectation in the agent language, and the im-
plementation of the testing mechanism in a seamless way on top of an existing
and widespread agent-oriented programming language. As far as formalisms for
representing agent interaction protocols are concerned, the reader may find a
concise but very good survey in Section 4 of [22] where the authors propose a
commitment-based semantics of protocols.

Our approach is currently limited to the runtime verification of the MAS
compliance to the interaction protocol, but the exploitation of session types as
the formalism to represent protocols allows us to take advantage of all the results
achieved in the session types research field, which include session subtyping
and algorithms for static verification of protocol properties such as safety and
liveness. The ability to specify the type of messages (has_type(c,ct) predicate)
in order to relate actual messages to messages specified in the protocol, usually
given at a more abstract level, is a characterizing feature of our approach and
seems to be supported by none of the proposals mentioned above.

Session Types and MASs. As demonstrated for example by the Scribble language
mentioned in the Introduction and by [13], using session types to represent and
verify protocol conformance inside MASs is not a new idea but, to the best of
our knowledge, no attempts of taking advantage of global session types to verify
MASs programmed in some widespread agent oriented programming languages
had been made so far, and our proposal is an original one.

Future extensions. Some extensions to our work have already been implemented
in the last few months: in [2] we explored the theoretical foundations of our
framework and we introduced a concatenation operator that allows a signifi-
cant enhancement of the expressive power of our global types. In [3] we further
empowered our formalism with a mechanism for easily expressing constrained
shuffle of message sequences like the alternating bit protocol discussed in [10]; ac-
cordingly, we modified the semantics of the new introduced feature, and showed
the expressive power of these “constrained global types”. With respect to this
extension, we are currently exploring the work of Baier, et al. on Constraint
Automata [4,5] that offers a transition system using synchronization constraints
and data constraints to specify behavior and concurrent protocols as automata
models. Constraint Automata are compositional, i.e., more complex protocol-
s/behaviors can be constructed as a composition of simpler protocols/behaviors,
which is a common goal with our work.

Our work can be further extended in many ways. Besides the specific issues
mentioned in Section 3, and the fully automatic generation of the monitor and
participants code, our short term goals include analyzing how our approach could
be extended to other Prolog-based agent-programming languages, such as GOAL
[7] or 2APL [9], and designing more complex protocols to stress-test our system
and provide a quantitative assessment of its runtime behavior and scalability.

In the medium term, we plan to work for evolving our mechanism towards
a framework supporting self-recovering MASs. This evolution would require to
modify the way we extend the code of the participant agents, in order to au-
tomatically select other messages to send in the current state, if any, in case

94 D. Ancona, S. Drossopoulou, and V. Mascardi

the monitor realizes that the chosen one does not respect the protocol. Default
recovery actions for the situation where no other choices are available, should
be defined as well. In such a context – more oriented towards verification of in-
teroperability of deployed systems rather than testing of systems-to-be –, agents
might advertise to the monitor the services they offer and the protocols to follow
in order to obtain them. Besides ensuring the protocol’s compliance, the monitor
could then act as a repository of <service specification, protocol specification>
couples, helping agents to locate services in an open MAS in a similar way the
Universal Description, Discovery and Integration (UDDI) registry does for web
services.

In the long term, the integration of ontology-based meaning into protocol
specifications, leading to “ontology-aware session types”, will be addressed. Our
previous work on CooL-AgentSpeak [18] will represent the starting point for that
extension.

Acknowledgments. We are grateful to J. F. Hübner and R. H. Bordini for
their effort in making cyclic terms in Jason belief base persistent, thus making
the implementation of our monitor agent possible. We also thank the anonymous
reviewers for their careful reading of the paper and for the valuable suggestions
provided to improve its quality.

References

1. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: The SCIFF Ab-
ductive Proof-Procedure. In: Bandini, S., Manzoni, S. (eds.) AI*IA 2005. LNCS
(LNAI), vol. 3673, pp. 135–147. Springer, Heidelberg (2005)

2. Ancona, D., Barbieri, M., Mascardi, V.: Global Types for Dynamic Checking of
Protocol Conformance of Multi-Agent Systems (Extended Abstract). In: Massazza,
P. (ed.) ICTCS 2012, pp. 39–43 (2012)

3. Ancona, D., Barbieri, M., Mascardi, V.: Constrained global types for dynamic
checking of protocol conformance in multi-agent systems. In: SAC 2013. ACM (to
appear, 2013)

4. Arbab, F., Baier, C., de Boer, F.S., Rutten, J.J.M.M.: Models and temporal log-
ical specifications for timed component connectors. Software and System Model-
ing 6(1), 59–82 (2007)

5. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connec-
tors in Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)

6. Baldoni, M., Baroglio, C., Martelli, A., Patti, V.: Verification of Protocol Con-
formance and Agent Interoperability. In: Toni, F., Torroni, P. (eds.) CLIMA VI.
LNCS (LNAI), vol. 3900, pp. 265–283. Springer, Heidelberg (2006)

7. Braubach, L., Pokahr, A., Moldt, D., Lamersdorf, W.: Goal Representation for BDI
Agent Systems. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A.
(eds.) PROMAS 2004. LNCS (LNAI), vol. 3346, pp. 44–65. Springer, Heidelberg
(2005)

8. Carbone, M., Honda, K., Yoshida, N.: Structured Communication-Centred Pro-
gramming for Web Services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 2–17. Springer, Heidelberg (2007)

Automatic Generation of Self-monitoring MASs 95

9. Dastani, M.: 2APL: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems 16(3), 214–248 (2008)

10. Deniélou, P.-M., Yoshida, N.: Multiparty Session Types Meet Communicating Au-
tomata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer,
Heidelberg (2012)

11. Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N., Drossopoulou, S.: Session
Types for Object-Oriented Languages. In: Thomas, D. (ed.) ECOOP 2006. LNCS,
vol. 4067, pp. 328–352. Springer, Heidelberg (2006)

12. Dezani-Ciancaglini, M., Yoshida, N., Ahern, A., Drossopoulou, S.: A Distributed
Object-Oriented Language with Session Types. In: De Nicola, R., Sangiorgi, D.
(eds.) TGC 2005. LNCS, vol. 3705, pp. 299–318. Springer, Heidelberg (2005)

13. Grigore, C., Collier, R.: Supporting agent systems in the programming language.
In: WI/IAT, pp. 9–12. IEEE Computer Society (2011)

14. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL 2008, pp. 273–284. ACM (2008)

15. Hu, R., Kouzapas, D., Pernet, O., Yoshida, N., Honda, K.: Type-Safe Eventful
Sessions in Java. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 329–
353. Springer, Heidelberg (2010)

16. Hu, R., Yoshida, N., Honda, K.: Session-Based Distributed Programming in Java.
In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 516–541. Springer, Heidel-
berg (2008)

17. Huget, M.-P., Bauer, B., Odell, J., Levy, R., Turci, P., Cervenka, R., Zhu, H.: FIPA
modeling: Interaction diagrams. Working Draft Version (July 02, 2003),
http://www.auml.org/auml/documents/ID-03-07-02.pdf

18. Mascardi, V., Ancona, D., Bordini, R.H., Ricci, A.: CooL-AgentSpeak: Enhancing
AgentSpeak-DL agents with plan exchange and ontology services. In: IAT 2011,
pp. 109–116. IEEE Computer Society (2011)

19. Mostrous, D., Vasconcelos, V.T.: Session Typing for a Featherweight Erlang. In:
De Meuter, W., Roman, G.-C. (eds.) COORDINATION 2011. LNCS, vol. 6721,
pp. 95–109. Springer, Heidelberg (2011)

20. Rao, A.S.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Lan-
guage. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038,
pp. 42–55. Springer, Heidelberg (1996)

21. Sackman, M., Eisenbach, S.: Session types in Haskell: Updating message passing
for the 21st century. Technical report, Imperial College, Department of Computing
(2008), http://spiral.imperial.ac.uk:8080/handle/10044/1/5918

22. Singh, M.P., Chopra, A.K.: Correctness Properties for Multiagent Systems. In:
Baldoni, M., Bentahar, J., van Riemsdijk, M.B., Lloyd, J. (eds.) DALT 2009. LNCS,
vol. 5948, pp. 192–207. Springer, Heidelberg (2010)

23. Torroni, P., Yolum, P., Singh, M.P., Alberti, M., Chesani, F., Gavanelli, M.,
Lamma, E., Mello, P.: Modelling interactions via commitments and expectations.
In: Handbook of Research on Multi-Agent Systems: Semantics and Dynamics of
Organizational Models. IGI Global (2009)

http://www.auml.org/auml/documents/ID-03-07-02.pdf
http://spiral.imperial.ac.uk:8080/handle/10044/1/5918

A Generalized Commitment Machine for 2CL
Protocols and Its Implementation

Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati,
Elisa Marengo, and Viviana Patti

Università degli Studi di Torino
Dipartimento di Informatica

c.so Svizzera 185, I-10149 Torino, Italy
name.surname@unito.it

Abstract. This work proposes an operational semantics for the com-
mitment protocol language 2CL. This semantics relies on an extension of
Singh’s Generalized Commitment Machine, that we named 2CL-Generali-
zed Commitment Machines. The 2CL-Generalized Commitment Machine
was implemented in Prolog by extending Winikoff, Liu and Harland’s
implementation. The implementation is equipped with a graphical tool
that allows the analyst to explore all the possible executions, showing
both commitment and constraint violations, and thus helping the ana-
lyst as well as the protocol designer to identify the risks the interaction
could encounter. The implementation is part of an Eclipse plug-in which
supports 2CL-protocol design and analysis.

Keywords: Commitment protocols, constraints among commitments,
commitment machine, commitment machine implementation.

1 Introduction and Motivation

Agent interaction is generally specified by defining interaction protocols [21].
For communicating with one another, agents must follow the schema that the
protocol shapes. Different protocol models can be found in the literature, this
work concerns commitment-based protocols [19,24]. This kind of protocols relies
on the notion of commitment, which in turn encompasses the notions of debtor
and creditor: when a commitment is not fulfilled, the debtor is liable for that
violation but as long as agents reciprocally satisfy their commitments, any course
of action is fine.

In many practical contexts where protocols model business interactions (e.g.
trading, banking), designers must be able to regulate and constrain the pos-
sible interactions as specified by conventions, regulations, preferences or habits
[2,5]. Some proposals address the issue of introducing similar regulations in-
side commitment protocols [4,11,7,17], but none of them developed tools for
visualizing and analyzing how regulations or constraints impact on the interac-
tions allowed by a commitment-based protocol. The availability of intuitive and
possibly graphical tools of this kind would support the identification of possible

M. Baldoni et al. (Eds.): DALT 2012, LNAI 7784, pp. 96–115, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Generalized Commitment Machine for 2CL Protocols 97

violations, thus enabling an analysis of the risks the interaction could encounter.
As a consequence, it would be possible to raise alerts concerning possible vio-
lations before the protocol is enacted, and to reduce risks by defining proper
operational strategies, like regimentation (aimed at preventing the occurrence of
violations) or enforcement (introduction of warning mechanisms) [14].

The work presented in this paper aims at filling this gap. To this purpose,
we started from the commitment protocol language 2CL described in [4], whose
key characteristic is the extension of the regulative nature of commitments by
featuring the definition of patterns of interaction as sets of constraints. Such
constraints declaratively specify either conditions to be achieved or the order in
which some of them should be achieved. The first contribution is, therefore, a
formal, operational semantics for the proposal in [4], which relies on the Gener-
alized Commitment Machine in [20]. We named our extension 2CL-Generalized
Commitment Machines (2CL-GCM for short). On top of this, it was possible
to realize the second contribution of this work: a Prolog implementation for
2CL-GCM, which extends the implementation in [22], and is equipped with a
graphical tool to explore all the possible executions, showing both commitment
and constraint violations. The implementation is part of a plug-in Eclipse which
supports 2CL-protocol design and analysis.

The chief characteristic of our solution is that it performs a state evaluation of
protocol constraints, rather than performing path evaluation (as, instead, done
by model checking techniques). State evaluation allows considering each state
only once, labeling it as a state of violation if some constraint is violated in it
or as a legal state when no constraint is violated. This is a great difference with
respect to path evaluation, where a state belonging to different paths can be
classified as a state of violation or not depending on the path that is considered.
The advantage is practical: state evaluation allows to easily supply the user an
overall view of the possible alternatives of action, highlighting those which will
bring to a violation and those that will not. State evaluation, however, is possible
only by making some restriction on the proposal in [4]. Specifically, we assume
that the domain is expressed in terms of positive facts only.

The paper is organized as follows. Section 2 briefly summarizes 2CL interac-
tion protocol specification. Section 3 describes the formalization of 2CL-GCM.
Section 4 presents a Prolog implementation of 2CL-GCM. Section 5 describes the
2CL Tools that supply features for supporting the protocol design and analysis.
Section 6 discusses Related Work and Conclusions. Along the paper we use as a
running example the well-known NetBill interaction protocol.

2 Background: 2CL Interaction Protocols

Let us briefly recall the main characteristics of commitment protocols, as defined
in [4]. In this approach, commitment protocols are extended with a set of tempo-
ral constraints the interaction should respect. Constraints relate commitments.
By C(x, y, r, p) agent x commits to an agent y to bring about the consequent
condition p when the antecedent condition r holds. When r equals true, we use

98 M. Baldoni et al.

Table 1. 2CL operators and their meaning

Relation Operator Repr. LTL formula

Relation
Operators

Correlation
A correlate B A •− B ♦A ⊃ ♦B
A not correlate B A �•− B ♦A ⊃ ¬♦B

Co-existence
A co-exist B A •−• B A •− B ∧B •− A

A not co-exist B A �•−• B A �•− B ∧B �•− A

Temporal
Operators

Response
A response B A •−� B �(A ⊃ ♦B)

A not response B A �•−� B �(A ⊃ ¬♦B)

Before
A before B A −�• B ¬B ∪A

A not before B A �−�• B �(♦B ⊃ ¬A)

Cause
A cause B A •−�• B A •−� B∧A −�• B

A not cause B A �•−�• B A �•−� B∧A �−�• B

the short notation C(x, y, p). Commitments are used to define the social effects
of the protocol actions.

Definition 1 (Interaction protocol). P = 〈Ro, F, s0, A, Cst〉 An interaction
protocol P is a tuple 〈Ro, F, s0, A, Cst〉, where Ro is a set of roles, identifying
the interacting parties, F is a set of facts and commitments that can occur in
the social state, s0 is the set of facts and commitments in the initial state of the
interaction, A is a set of actions, and Cst is a set of constraints.

The set of social actions A, defined on F and on Ro, forms the constitutive
specification of the protocol. The social effects are introduced by the construct
means, which amounts to a counts-as relation [18,14]: by means of it, a physical
event is given a social meaning. An if condition denotes the context in which a
counts-as relation holds. For instance, consider the action sendGoods reported in
Table 1. Its social meaning is that it makes the facts goods true (the goods were
delivered to the customer) and creates the commitment C(m, c, pay, receipt) that
corresponds to a promise by the merchant to send a receipt after the customer
has paid. Further examples can be found in the first part of Table 1, which
reports all the actions of the NetBill protocol. The formalization is inspired by
those in [24,22].

2CL constraints Cst, defined on F and on Ro as well. Constraints express what
is mandatory and what is forbidden without the need of listing the possible
executions extensionally. The syntax is “dnf1 op dnf2”, where dnf1 and dnf2
are disjunctive normal forms of facts and commitments, and op is one of the 2CL
operators, reported in Table 1 together with their Linear-time Temporal Logic
[10] interpretation and with their graphical notation.

Constraints can either be relational or temporal. The former kind expresses
constraints on the co-occurrence of conditions (if a condition is achieved then
also another condition must be achieved, but the order of the two achievements
does not matter). For instance, one may wish to express that both the payment
for some item and its delivery must occur without constraining the order of the

A Generalized Commitment Machine for 2CL Protocols 99

Action Definitions
(a1) sendRequest means request if ¬quote ∧ ¬goods
(a2) sendQuote means quote ∧ create(C(m,c,C(c,m, goods, pay), goods))

∧ create(C(m,c, pay, receipt))
(a3) sendAccept means create(C(c,m, goods, pay)) if ¬pay
(a4) sendGoods means goods ∧ create(C(m,c, pay, receipt))
(a5) sendEPO means pay
(a6) sendReceipt means receipt if pay

Constraints
(c1) quote −�• C(c,m, goods, pay) ∨ C(c,m, pay)
(c2) C(m, c, pay, receipt) ∧ goods −�• pay
(c2) pay •−�• receipt

Fig. 1. Actions and constraints for the NetBill protocol: m stands for merchant while
c stands for customer

two conditions: no matter which occurs first, when one is met, also the other
must be achieved. Temporal constraints, instead, capture the relative order at
which different conditions should be achieved. Fig. 1 reports the constraints
imposed by the NetBill protocol: (c1) means that a quotation for a price must
occur before a commitment to pay or a conditional commitment to pay given
that some goods were delivered; (c2) that the conditional commitment to send a
receipt after payment and the delivery of goods must occur before the payment
is done; (c3) that after payment a receipt must be issued and if a receipt is
issued a payment must have occurred before.

Only interactions which respect the constraints are legal. Violations amounting
to the fact that a constraint is not respected can be detected during the execution.

3 2CL Generalized Commitment Machine

The semantics of 2CL commitment protocols is given based on the 2CL general-
ized commitment machine (2CL-GCM). In turn, 2CL-GCM relies on the notion of
generalized commitment machine (GCM) (introduced in [20]), extending it with
a proper account of 2CL constraints. Below we introduce the technical elements
on top of which the definition of a 2CL-GCM will be given.

Propositions. Propositions are meant to capture conditions of interests (e.g. the
fact that a payment has occurred or that a request for quote has been made) and
social relationships among the interacting parties. We represent them in terms
of facts and commitments, whose meaning is assumed to be known and agreed
by all the agents. Let us assume true and false to be part of this set, representing
respectively the true and the false values of propositional logic.

100 M. Baldoni et al.

States. The evolution of an interaction is represented by means of states: each
state captures a snapshot on a particular moment of the interaction. According
to [20], a GCM features a set S of possible states, each of which is represented
by a logical expression defined on a set of propositions.

Example 1. Considering NetBill, goods ∧ C(c,m, pay) represents one possible
configuration of the social state, i.e. it is a state in S. This expression means
that the goods were shipped and that there is a commitment from c (customer)
to m (merchant) to pay for them.

Initial state. Denoted by s0, it is the state from which the interaction starts.

Example 2. In the NetBill example, if we assume the commitment C(m, c, pay,
goods) to be part of the initial state it represents that, when accepting the role
of merchant, the agent is also taking the engagement to send the goods when
these are paid.

Good States. We identify a set G ⊆ S as the set of good states. Intuitively, they
capture desired possible endings of the interaction. For instance, they may be
those that do not contain unsatisfied active commitments, or those satisfying a
condition of interest (e.g. payment done and goods shipped).

Physical Events. The interaction evolves as the consequence of the occurrence
of physical events. We denote by LA their set.

Action Theory. Given the definition of an action a, and two states s and s′, it
is possible to determine whether a transition between the two can be inferred
as a consequence of the occurrence of a physical event a. As in [20], in 2CL-
GCM transitions between the states are logically inferred on the basis of an

action theory, that contains a set of axioms of the kind p
a
↪→ q, meaning that

q is a consequence of performing action a in a state where p holds. When q
is false the meaning is that a is impossible if p holds. Only transitions that
find correspondence in an axiom of the action theory can be inferred. In the
following E is the conjunction of EF, which is a logical expression (possibly
true) concerning facts only, and Eop, which is a logical expression (possibly true)
concerning operations on commitments only.

Definition 2 (Action theory). An action axiom s
a
↪→ s′ belongs to the

action theory Δ of a protocol P = 〈Ro,F, s0,A,Cst〉 iff there exists a definition
“a means E if Cond” in A s.t. s � Cond and:

(a) ∀eop s.t. Eop � eop and given z
eop
↪→ z′ according to commitment operations’

axioms (see [20, Section 2.2]) then if s � z then s′ � z′; and
(b) ∀eF s.t. EF � eF then s′ � eF and:
(b.1) if s � C(x, y, e, eF) (with e possibly true) then s′ � ¬C(x, y, e, eF) and
(b.2) if s � C(x, y, eF, e

′) then:
if s′ � e′ then s′ � ¬C(x, y, eF, e

′)∧C(x, y, e′); otherwise s′ � ¬C(x, y, eF,
e′) ∧ ¬C(x, y, e′).

A Generalized Commitment Machine for 2CL Protocols 101

where � and ≡ represent respectively the logical consequence and the logical equiv-
alence of propositional logic.

Given two states, in order to determine whether the latter can be a consequence
of the occurrence of a physical event in the former, it is necessary to consider
the definition of the corresponding action ‘a means E if Cond’. A transition
labelled by ‘a’ can be inferred only if the condition Cond can be derived in
the starting state. In this case it is necessary to consider the effects E of the
action and whether they can be derived on the target state. The target state
should derive all the facts in EF while for the operations on commitments Eop

we apply the rules defined in [20, Section 2.2]. Finally, conditions (b.1) and (b.2)
in Definition 2 check the discharge and the detach of commitments, due to facts
derived from EF.

Example 3. The action sendAccept, performed by the customer to accept a quote
by the merchant, is defined as sendAccept means create(C(c,m, goods, pay))

if ¬pay. The corresponding axiom is ¬pay sendAccept
↪→ C(c,m, goods, pay). Note

that, given a state, in which ¬pay ∧ quote holds, it is also possible to infer the

axiom ¬pay ∧ quote
sendAccept

↪→ C(c,m, goods, pay).

Constraints. A 2CL-GCM accounts for a set of constraints Cst that coincides
with that defined in the corresponding protocol. These constraints will be taken
into account for determining whether an interaction can be considered as a path
of the machine.

We now have all the elements for defining a 2CL-GCM. The definition adopts
the same notation in [20].

Definition 3 (2CL-GCM of a protocol). A 2CL-GCM of a protocol P = 〈Ro,
F, s0, A, Cst〉 is a tuple P = 〈S, LA, s0, Δ,G,Cst〉 where:
– S is a set of states represented as logical expressions;
– LA is a set of physical events s.t. a ∈ LA iff ∃a means E if Cond ∈ A ;
– s0 ∈ S and represents the initial state;

– Δ is an action theory s.t. ∀s, s′ ∈ S, s
a
↪→ s′ ∈ Δ iff there exists a means E

if Cond ∈ A s.t. s
a
↪→ s′ is an action axiom of ‘a’ according to Definition 2;

– G ⊆ S is a set of good states;
– Cst is a set of 2CL constraints.

Moreover:

– ∀s, s′ ∈ S, s �≡ s′, i.e. members of S are logically distinct;
– false �∈ S; and
– ∀s ∈ G, s′ ∈ S : (s′ � s) ⇒ (s′ ∈ G), i.e. any state that logically derives a

good state is also good.

Notice that by varying the sets S and G different 2CL-GCMs associated to the
same protocol can be obtained: when S contains all the states that can be reached
from s0, applying the protocol actions, the machine can infer all the possible
interactions; when S is smaller, only a subset of the possible interactions is
determined.

102 M. Baldoni et al.

3.1 Path of a 2CL-GCM

Interactions between agents can be seen as paths traversing states, the transitions
among which are labeled by the physical events which caused them. We denote
a path τ as the sequence 〈(τ0, a0, τ1), (τ1, a1, τ2), . . . 〉. In order for a path to be
part of a 2CL-GCM it must respect some conditions:

1. The path must be infinite;
2. All the transitions of the path must be inferable by the machine; and
3. All constraints must be satisfied in the path.

It is not restrictive to focus on infinite paths. Indeed, all finite paths can be trans-
formed into infinite ones by adding a transition from the last state of the finite
path towards an artificial new state with a self loop [20]. In 2CL-GCM we assume
that the action axioms that allow inferring such transitions are part of Δ.

2CL constraints verification can be done by exploiting the LTL formula asso-
ciated to each of them. In particular, a constraint is satisfied in a path when it
is verified in the transition system corresponding to the path. Given a path, the
corresponding transition system can be derived quite straightforwardly.

Definition 4 (Transition System). A transition system T (τ) of a path τ =
〈(τ0, a0, τ1), (τ1, a1, τ2), . . . 〉 is a tuple 〈Sτ , δτ , Lτ 〉 where:
– Sτ = {τi| τi is a state in τ};
– δτ : Sτ → Sτ is a transition function s.t. δ(τj) = τk iff (τj , a, τk) is in τ ;
– L : Sτ → 2F is a labelling function, s.t. F is a set of facts and commitments

and L(τi) = {e|τi � e}.
To define a 2CL-GCM path, we extend the definition of GCM path by additionally
requiring the satisfaction of all the constraints of the 2CL-GCM.

Definition 5 (2CL-GCM path). A path τ = 〈(τ0, a0, τ1), (τ1, a1, τ2) . . . 〉 is a
path of a 2CL-GCM P = 〈S, LA, s0, Δ,G,Cst〉 when:

i. ∀(τi, ai, τi+1) in τ then τi, τi+1 ∈ S, ai ∈ LA, and τi
ai
↪→ τi+1 ∈ Δ; and

ii. being inf(τ) the set of states that occur infinitely often in τ , then
inf(τ) ∩ G �= ∅; and

iii. being T (τ) the transition system of τ according to Definition 4, ∀c ∈ Cst :
T (τ), τ0 |=LTL c.

where the LTL satisfaction relation |=LTL is the one defined in [1].

In the above definition, (i) and (ii) are the conditions for a path to be generated.
Condition (i) requires that each state in the path is a state of the 2CL-GCM,
that the action that causes the transition from a state to the subsequent one
in the path is an action of the 2CL-GCM, and that the transition is inferable
according to the axioms in Δ. Condition (ii) requires that at least one good state
occurs infinitely often in the path. Condition (iii) accounts for the evaluation of
the constraints. According to the LTL semantics, T (τ), τ0 |=LTL c amounts to
checking if c is satisfied in all the paths of the transition system, corresponding
to τ . By construction T (τ) is a transition system made only of one linear path,
whose starting state is the starting state of τ .

A Generalized Commitment Machine for 2CL Protocols 103

4 Implementation of the 2CL Commitment Machine

This section describes a Prolog implementation that allows exploring all the
possible executions of an interaction protocol, showing the regulative violations –
i.e. both those states in which some constraint is violated and those that contain
unsatisfied commitments. We also prove the soundness of the implementation
w.r.t. the 2CL-GCM formalization presented in the previous sections.

We used tuProlog1 in our implementation, starting from the enhanced com-
mitment machine by Winikoff et al. [22]. By relying on it, we inherit the mecha-
nisms for the computation of the possible interactions. Specifically, the enhanced
commitment machine features the generation of the reachable states, the tran-
sitions among them and the management of commitments (like the operations
of discharge, creation and so on). Our extension equips it with the possibility of
evaluating 2CL constraints.

The main characteristic of our tool is that it provides an overall graphical view
of the possible interactions, highlighting those that will bring to a violation and
those that will not. To this aim, constraints are used as a means to classify the
possible interactions, rather than to prune the search space. The interacting par-
ties, indeed, are not prevented from entering in illegal paths (due to the agent’s
autonomy), but they are made aware of the risks they are encountering and that
they may incur in penalties as a consequence of the violations they caused [5].
This is a difference compared with those proposals where only the set of legal
paths is shown, or with other proposals that aim at properties verification. In
these cases, the verification ends when a path that does not satisfy the property
is found. Alternatively, only one path at a time is considered [6,9]. Thus, none
of these proposals provide an overview of possible interactions.

Starting from a protocol specification, our implementation determines the set
of reachable states by applying a depth-first search (as in [22]). Specifically, given
a state the program finds the set of applicable actions and computes the set of
successors. A state is added to the graph only if it is new, otherwise only the
transition is added. For what concerns the evaluation of protocol constraints,
we implemented it as a state evaluation, that is to say that given a constraint
its evaluation can be done on a state by considering its content only. In this
way, each possible state (reachable given the starting state and the protocol
actions) is considered only once and it is classified as a state of violation if some
constraint is violated in it or as a legal state when no constraint is violated. This
is a great difference with respect to path evaluation, where a state belonging to
different paths can be classified as a state of violation or not depending on the
path that is considered. The advantage is practical: given the set of reachable
states, the user is able to immediately determine which of them are legal and
which violate some constraints. Moreover, the overall representation results to
be more compact because each state appears only once.

In order to perform the state evaluation we consider states whose content is
given in terms of commitments and positive facts only. The characteristic of a

1 http://www.alice.unibo.it/xwiki/bin/view/Tuprolog/

http://www.alice.unibo.it/xwiki/bin/view/Tuprolog/

104 M. Baldoni et al.

fact is that it is false until it becomes invariably true. In this setting, the evalu-
ation of 2CL constraints can be made on single states. For instance, if in a state
b holds but a does not, we can infer that the constraint ‘a before b’ is violated.
Moreover, besides facts asserted by the protocol actions, in our implementation
we additionally consider a set of facts associated to the operations performed
on commitments. Specifically, along the line of Mallya et al. [15], whenever an
operation is performed on a commitment, a corresponding predicate is auto-
matically asserted in the state. For instance, when a commitment C(x, y, r, p)
is created, the predicate created(C(x, y, r, p)) is added to the state; when it is
discharged, the predicate discharged(C(x, y, r, p)) is added, and so forth for the
other operations. Notice that these predicates are not meant to express whether
a commitment is active or not. For instance, created does not mean that the
commitment is active in the state but simply that the corresponding operation
has been performed on the commitment. 2CL constraints can be defined by con-
sidering these facts also.

In order to achieve the benefits of a state evaluation while guaranteeing the
soundness of the verification with the theoretical framework presented in the
previous section, we need to make some assumptions on the way protocols are
specified:

1. Actions should be defined in such a way to do not retract facts;
2. The condition involved in constraints must involve conditions that persist

(i.e. that involve DNFs of facts without negation);
3. Constraints expressed on commitments are to be opportunely transformed

into constraints concerning operations preformed on commitments.

For the sake of clarity, we use the symbol PI to refer to a protocol that respects
these assumptions.

4.1 Generation of the Labeled Graph and Its Soundness

Let us consider a protocol PI. As reported in Listing 1.1, the exploration of
the search space is made as a depth-first-search (as in [22]). Specifically, given
a state, explore and nextstate find the set of possible successors, obtained
by considering the set of actions in PI. For those actions whose preconditions
are satisfied in the state, nextstate determines the resulting state by adding
the facts which constitute their social meaning, executing the operations per-
formed on commitments according to the commitments’ life cycle and asserting
the corresponding facts concerning such operations. Once the successor states
are obtained they are added to the set of reachable states together with the
corresponding transitions. The computation is rooted in the initial state. In our
program, states are represented as predicates.

Definition 6 (State). The predicate state(ID, Content, Label) represents a
state in the implementation where: ID is a unique identifier associated to the
state, Content is a list of facts and commitments and Label ⊆ {final,not-final,
violation, pending} is a list of labels that captures the absence (final) or the

A Generalized Commitment Machine for 2CL Protocols 105

1 exp l o r e (StateNum , Free , NextFree) :− s t a t e (StateNum , State ,) ,
2 f i n d a l l (t (StateNum ,A, S2) , n ex t s t a t e (State ,A, S2) , Ts) ,
3 add s ta t e s (Ts , Free , NextFree) , a dd t r an s i t i o n s (Ts) .
4

5 nex t s t a t e (State , Action , Resu l t) :− happens (Action , State) ,
6 f i n d a l l (Add , i n i t i a t e s (Action ,Add , State) , AddS) ,
7 f i n d a l l (Del , t e rminate s (Action , Del , S tate) , DelS) ,
8 merge addList (AddS , State , NewState) ,
9 f i n d a l l (StableProp , i n i t i a t e s s t a b l e p r o p (Action ,

10 StableProp , State , NewState) , StablePropS) ,
11 merge addList (AddS , StablePropS , AddList) ,
12 compute next state (State , AddList , DelS ,New) ,
13 remove dup l i cate s (New, Resu l t) .
14

15 add s ta t e s ([] ,N,N) .
16 add s ta t e s ([t (, , S) | Ss] ,N,N1) :−
17 s t a t e (, St ,) , s e t e q (St , S) , ! , add s ta t e s (Ss ,N,N1) .
18 add s ta t e s ([t (, , S) | Ss] ,N,N3) :−
19 l a b e l s (S ,L) , a s s e r t (s t a t e (N, S ,L)) ,
20 N1 i s N+1, exp l o r e (N,N1 ,N2) , add s ta t e s (Ss ,N2 ,N3) .
21

22 add t r an s i t i o n s ([]) .
23 add t r an s i t i o n s ([t (S1 ,A, S2) | Ss]) :− t r a n s i t i o n (S1 ,A, Ss2) ,
24 s e t e q (S2 , Ss2) , ! , a d d t ran s i t i o n s (Ss) .
25 add t r an s i t i o n s ([t (S1 ,A, S2) | Ss]) :− s t a t e (N2 , Ss2 ,) , s e t e q (Ss2 , S2) ,
26 a s s e r t (t r a n s i t i o n (S1 ,A,N2)) , a dd t r an s i t i o n s (Ss) .
27

28 subsumes (P,P) .
29 subsumes (P, c (, ,PP)) :− subsumes (P,PP) .
30 subsumes (P, cc (, , ,PP)) :− subsumes (P,PP) .
31 subsumes (c (X,Y,P) , cc (X,Y, Q ,PP)) :− subsumes (P,PP) .
32

33 happens (E,T) :− i sAc t i on (E) , precond (E,P) , impl i ed (P,T) .
34

35 i n i t i a t e s (E,P,T) :− happens (E,T) , i sF lu en t (P) , cause s (E,P) .
36 i n i t i a t e s (E, c (X,Y,P) ,T) :− cause s (E, c r e a t e (c (X,Y,P))) , happens (E,T) ,
37 \+(impl i ed (P,T)) .
38 i n i t i a t e s (E, c (X,Y,P) ,T) :− cause s (E, c r e a t e (cc (X,Y,Q,P))) ,
39 happens (E,T) , impl i ed (Q,T) , \+(impl i ed (P,T)) .
40 i n i t i a t e s (E, cc (X,Y,P,Q) ,T) :− cause s (E, c r e a t e (cc (X,Y,P,Q))) ,
41 happens (E,T) , \+(impl i ed (Q,T)) , \+(impl i ed (P,T)) .
42 i n i t i a t e s (E, c (X,Y,Q) ,T) :− holdsAt (cc (X,Y,P,Q) ,T) , happens (E,T) ,
43 subsumes (PP,P) , i n i t i a t e s (E,PP,T) .
44

45 te rminate s (E, c (X,Y,P) ,T) :− holdsAt (c (X,Y,P) ,T) , happens (E,T) ,
46 subsumes (PP,P) , i n i t i a t e s (E,PP,T) .
47 te rminate s (E, cc (X,Y,P,Q) , T) :− holdsAt (cc (X,Y,P,Q) ,T) , happens (E,T) ,
48 subsumes (QP,Q) , i n i t i a t e s (E,QP,T) .
49 te rminate s (E, cc (X,Y,P,Q) , T) :− holdsAt (cc (X,Y,P,Q) ,T) , happens (E,T) ,
50 subsumes (PP,P) , i n i t i a t e s (E,PP,T) .

Listing 1.1. Prolog clauses that compute the set of reachable states and that assert
the corresponding transitions The complete program can be downloaded at the URL
http://di.unito.it/2cl.

presence (not-final) of unsatisfied active commitments, the presence of pending
constraints or the violation of a constraint.

Notice that according to the clause add state reported in Listing 1.1 (line 16),
a state is added only if it is new, that is to say: there are no existing states with
the same content.

106 M. Baldoni et al.

Table 2. State conditions corresponding to 2CL operators

Relation State Condition

Correlation
ψ(A •− B) = A ∧B

ψ(A �•− B) = ¬(A ∧ B)

Co-existence
ψ(A •−• B) = ψ(A •− B) ∧ ψ(B •− A)

ψ(A �•−• B) = ψ(A �•− B) ∧ ψ(B �•− A)

Response
ψ(A •−� B) = A ∧B

ψ(A �•−� B) = ¬(A ∧B)

Before
ψ(A −�• B) = ¬(B ∧ ¬A)

ψ(A �−�• B) = ¬(A ∧B)

Cause
ψ(A •−�• B) = ψ(A •−� B) ∧ ψ(A −�• B)

ψ(A �•−�• B) = ψ(A �•−� B) ∧ ψ(A �−�• B)

Also transitions are represented by means of predicates, expressing the start-
ing and the target state and the physical events that caused them.

Definition 7 (Transition). The predicate transition(ID1,A, ID2) represents
a transition where ID1 and ID2 correspond to the identifiers of existing states,
and A is the action responsible for the transition.

Before adding a state, this is labeled according to the constraints it satisfies
or violates and to the commitments holding in it. Thanks to the assumptions
that constraints are defined in terms of positive facts that persist along the
interaction, the LTL formulas associated to the operators can be simplified. The
resulting formulas are reported in Table 2 (a proof of their soundness can be
found in [16, Chapter 6]. Below we provide an intuition).

Given a constraint c, we denote by ψ(c) the corresponding condition to be
verified on one state at a time (state condition). Consider, for instance, the before
operator (−�•): it requires that A is met before or in the same state of B. So,
given a run π, if in π there is a state j such that B holds while A does not, that
is a state where a violation occurred, in formulas: πi |=LTL A −�• B ⇔ ¬∃j ≥
i s.t. πj |=LTL (B ∧ ¬A)2.

The other 2CL operators can be divided in two cases. Correlation (•−) and
response (•−�) are tackled in a similar way.A •− B requires that if A is achieved in
a run, then also B is achieved in the same run (before or after A is not relevant).
If B is achieved before A it will remain true also after. Therefore, in those cases
in which the constraint is satisfied, from a certain time onwards both conditions
will hold. In formulas: πi |=LTL A •− B ⇔ ¬∃j ≥ i s.t. πj |=LTL A and ∀j′ ≥
j, πj′ |=LTL (A∧¬B). The same equivalence holds for πi |=LTL A •−� B. In 2CL
A •−� B requires that when A is met, B is achieved at least once later (even if
it already occurred in the past) but under our assumptions it can be checked in

2 Notice that since the second formula does not contain temporal operators it is verified
in the current state. Thus it is verified in all the states of the path.

A Generalized Commitment Machine for 2CL Protocols 107

the same way of correlation. The state condition amounts to verifying whether
a state satisfies A but does not satisfy B. Notice that states that satisfy the test
cannot be marked as states of violation because the constraint does not require
B to hold whenever A holds. A state of violation is signaled when the interaction
does not continue after it: we say that there is a pending condition.

Negated correlation, response and before correspond to the same formula:
πi |=LTL A op B ⇔ ¬∃j ≥ i s.t. πj |=LTL (A ∧ B) where op ∈ { �•−, �•−�, �−�•}.
Intuitively, a constraint of the kind A �•− B (negative correlation) requires that
if A holds, B is not achieved. Since facts persist, this amounts to check that
the two conditions do not hold in the same state, otherwise a violation occurs.
Negative response (negative before) adds a temporal aspect to not-correlation: if
A holds, B cannot hold later (before, respectively). Since facts persist, the first
achieved condition will remain true also after the other becomes true. Also in
this case we only need to check that the two conditions do not hold together.

Derived operators are decomposed and the reasoning made for the operators,
from which they derive, is applied. For instance, cause (•−�•) derives from before
and response. If a state does not satisfy the response part of the cause, it is
marked as “pending”; if it violates the before part, it is marked as a “violation”.
Both labels are applied when the state does not satisfy any of the two.

Summarizing, given a constraint formula and a state in which to verify it, we
have three possible outcomes: (i) the state satisfies the formula; (ii) the state
does not satisfy the formula and this leads to a violation; and (iii) the state
does not satisfy the formula but the violation is potential, depending on future
evolution. Considering all the constraints of a protocol, a state can both violate
some constraint and have pending conditions. Moreover, states are also evaluated
based on the presence of unsatisfied active commitments.

In our implementation, constraints are represented with predicates. For in-
stance, before(A,B,Id) represents a constraint of kind before whose antecedent
and consequent conditions are are respectively A and B and Id is a unique iden-
tifier for the constraint. The predicates for the other kinds of constraints are
similar, where before is substituted with the operator name. Constraints verifi-
cation is implemented as previously described. Listing 1.2 reports, as an example,
the verification of a response and of a before. The clause check pending that is
reported verifies response constraints: it is satisfied if there is a constraint of
kind response, whose antecedent condition can be derived in the state, while the
consequent condition cannot. In this case, the label pending is added to the list
of labels of the state. A similar clause checks the correlation constraint. Instead,
the clause check violation, checks constraints of kind before, which are violated
if the consequent condition can be derived in the state while their antecedent
cannot. Other similar clauses, checking different conditions, are defined for the
other operators. Finally, the program checks the presence of unsatisfied commit-
ments (check commitments) and adds the label final or not-final accordingly.
The result of running this program on a protocol specification is an annotated
graph of the reachable states.

108 M. Baldoni et al.

1 l a b e l s (State , Labe l s) :− f i n d l a b e l s (State , [] , Labe l s) .
2

3 f i n d l a b e l s (S , L1 ,R) :− c h e ck v i o l a t i o n (S , L1 , L2) ,
4 check pending (S , L2 , L3) , check commitments(S , L3 ,R) .
5

6 check pending (State , L , [pending (Constr) |L]) :− re sponse (A,B, Constr) ,
7 consequence (A, State) , \+consequence (B, State) .
8

9 ch e c k v i o l a t i o n (State , L , [v i o l a t i o n (Constr) |L]) :− be f o r e (A,B, Constr) ,
10 consequence (B, State) , \+consequence (A, State) .
11

12 check commitments(State , L , [f i n a l |L]) :− \+member(c (, ,) , S tate) .
13 check commitments(State , L , [non−f i n a l |L]) :− member(c (, ,) , S tate) .

Listing 1.2. Prolog clauses checking constraints and adding the corresponding labels
to the states

On the basis of the labels associated to a state, that are a consequence of
constraints verification, we can define a legal path.

Definition 8 (Legal path). Let PI = 〈Ro,F, s0,A,Cst〉 be a protocol. A legal
path π for PI is a sequence 〈(0, a0, 1), . . . , (n− 1, an−1, n)〉 where ∀i 0 ≤ i ≤ n,
i represents the identifier of a state, ai is an action in A and π is such that:

i. ∀(i, ai, i + 1) in π, there exist state(i, πi, Labeli) and state(i+1, πi+1,
Labeli+1) and transition(i, ai, i+1); and

ii. state(n, πn, Labeln) is such that final ∈ Labeln and {violation,pending}
∩ Labeln = ∅; and

iii. �i in π s.t. state(i, πi, Labeli) and violation ∈ Labeli.

In words, a sequence of states and transitions is a legal path for a program when
(i) each state in the path can be reached from the initial state by applying
the actions (and in the specified order) identified by the sequence; (ii) the last
state of the path does not contain unsatisfied active commitments or pending
constraints; and (iii) none of the states in the path violates constraints.

In order to prove the soundness of our implementation we have to show that a
legal path for our implementation is also a legal path for the corresponding 2CL-
GCM. This latter, however, works on infinite paths where states are represented
as logical formulas rather then as sets of facts and commitments. Along the line
of [20], we define an equivalent infinite path π∞ for a path π.

Definition 9 (Equivalent infinite path). π∞ = 〈(π0, a0, π1), . . .)〉 is the
equivalent infinite path corresponding to the finite path π = 〈(0, a0, 1), . . . , (n− 1,
an−1, n)〉 iff:

i. ∀i, 0 ≤ i ≤ n, given state(i, πi, Labeli) π∞
i � f iff f ∈ πi; and

ii. ∀i, 0 ≤ i < n (π∞
i , ai, π

∞
i+1) is in π∞ iff (i, ai, i+ 1) is in π; and

iii. ∀i ≥ n (π∞
i , ai, π

∞
i+1) in π∞ is such that π∞

i ≡ π∞
n and π∞

i+1 ≡ π∞
n and ai

is the action ‘act means true if π∞
n ’.

Intuitively, the infinite path is obtained by adding a self loop on the last state
of the finite path. Now we have all the elements for proving soundness.

A Generalized Commitment Machine for 2CL Protocols 109

Theorem 1 (Soundness). Consider a protocol PI = 〈Ro,F, s0,A,Cst〉. Let
π = 〈(0, a0, 1), . . . , (n− 1, an−1, n)〉 be a path and let π∞ be the correspond-
ing infinite path. Let P = 〈S∞π , LA, s0, Δ,G,Cst〉 be a 2CL-GCM of PI such that
S∞π = {π∞

i |π∞
i is in π∞} and G = {π∞

i |�C(x, y, p) s.t. π∞
i � C(x, y, p)}. If π is

a legal path for PI, then π∞ is a path of P.

Given a protocol and the program representing it, if a path is legal according to
this latter, then there exists a 2CL-GCM for which the corresponding infinite path
is a path according to Definition 5. More precisely a 2CL-GCM of the protocol
for which this condition holds is the one obtained by considering as set of states
the states that are part of the path. As good states we consider those that do
not contain unsatisfied active commitments.

Proof. In order for π∞ to be a path of the 2CL-GCM P = 〈S∞π , LA, s0, Δ, G,
Cst〉 it must satisfy the conditions (i)–(iii) of Definition 5:

i. ∀(π∞
i , ai, π

∞
i+1) in π∞ then (i.1) π∞

i , π∞
i+1 ∈ S∞π , (i.2) ai ∈ LA, and (i.3)

π∞
i

ai
↪→ π∞

i+1 ∈ Δ. Condition (i.1) holds by construction of PI. Condition
(i.2) holds trivially by definition of P (see Definition 3). Condition (i.3). Let

us assume, by absurd, that π∞
i

ai
↪→ π∞

i+1 �∈ Δ. This is possible when one of
the conditions in Definition 2 is not satisfied. For construction of π∞ then
∃(i, ai, i+ 1) ∈ π and consequently π∞

i � Cond of ai. Condition (a) holds
because each commitment’s axiom is translated into a corresponding clause
(see [20, Section 2.3]). Condition (b) holds because of clause initiates at
Line 35 in Listing 1.1. Conditions (b.1) and (b.2) are verified respectively by

clauses at Lines 45 and 47-49 of Listing 1.1. Therefore, π∞
i

ai
↪→ π∞

i+1 ∈ Δ.
ii. inf(τ) ∩ G �= ∅. Being π a legal path for PI then there exits state(n, πn,

Labeln) such that final ∈ Labeln, thus there are no active commitments in
πn. For construction of π∞, π∞

n ∈ G and π∞
n ∈ inf(π∞).

iii. ∀c ∈ Cst : T (τ), τ0 |=LTL c. Being π a legal path for PI then �i ∈ π such that
state(i, πi, Labeli) and violation ∈ Labeli. Moreover, pending �∈ state(n,
πn, Labeln). Thus, for construction of π∞, �c ∈ Cst s.t. T (π∞), π∞

0 �|=LTL c.
 !

5 2CL Tool for Protocol Design and Analysis

Based on the described technical framework, we developed a tool which supports
the user in two different ways: (i) it features two graphical editors for specify-
ing the protocol actions and the constraints; (ii) it generates different kinds of
graphs for supporting the user in the analysis of the possible interactions and in
understanding which of them are legal. The system is realized as an Eclipse plug-
in, available at the URL http://di.unito.it/2cl. The functionalities that the
system supports can be grouped into three components: design, reasoning and
visualization (see Fig. 2).

http://di.unito.it/2cl

110 M. Baldoni et al.

Fig. 2. Components and functionalities supplied by the system

Design Component. The design component provides the tools that are necessary
for defining the protocol. It supplies two editors: one for the definition of the
actions and one for the definition of constraints (Fig. 3). The action definition
editor is basically a text editor. The regulative specification editor allows the user
to graphically define a set of constraints. Constraints are represented by drawing
facts, connecting them with 2CL arrows (following the graphical representation of
Table 1) or with logical connectives so as to design DNF formulas. The advantage
of having a graphical editor is that it supplies a global view of constraints, thus
giving the perception of the flow imposed by them, without actually specifying
any rigid sequence (no-flow-in-flow principle [3]). Fig. 3 shows a snapshot of
the constraint editor with a representation of the NetBill constraints. On the
right the user can select the element to introduce in the graph. By editing the
properties (bottom of the figure), instead, he/she can specify the name of facts
and other graphical aspects.

Reasoning Component. The reasoning component consists of a Java Parser and
of the Prolog implementation of the commitment machine described in Section 4.
The former generates different kinds of graphs as well as the Prolog program cor-
responding to the protocol specification. The latter is the input of the Prolog
implementation of the commitment machine for the generation of the labeled
graph. As explained, the labeled graph represents all the possible interactions
where each state is labeled according to the evaluation of the protocol con-
straints. The graphical conventions is: (i) a state of violation is represented as

A Generalized Commitment Machine for 2CL Protocols 111

Fig. 3. Editor for constraint specification

a red diamond, with an incoming red dashed arrow (e.g. states 54, 57, 108 in
Fig. 4); (ii) a state in which there is a pending condition is yellow3 (e.g. states
45, 53, 108); (iii) a state with a single outline, independently from the shape
(e.g. 49, 57, 60), is a state that contains unsatisfied commitments; (iv) a state
with a double outline, independently from the shape, does not contain active
commitments (e.g. 41, 108). Graphical notations can be combined, e.g. a yellow
diamond with single outline is a state where there are unsatisfied active com-
mitments, where a constraint is violated and where there is a pending condition
(e.g. 53, 57, 114).

Visualization Component. All the graphs produced by the reasoning compo-
nent can be visualized as images. Labelled graph, however, can be explored by
means of the tool Graph Explorer, which is implemented in Java and relies on
iDot (Incremental Dot Viewer) – an open source project that uses the prefuse4

visualization framework for Dot graph display. The Graph Explorer supplies dif-
ferent functionalities, like the visualization of the shortest path given a source
and a target state, and the visualization of legal (or illegal) paths only. The user
can add or delete a node in a path; search a state starting from its label; and
search all the states that contain a certain fact or commitment. Moreover, the

3 Light gray states in black and white printing.
4 http://prefuse.org/

http://prefuse.org/

112 M. Baldoni et al.

Fig. 4. Part of the labelled Graph for NetBill

tool allows the exploration of the graph one state at a time, by choosing which
node to expand. Fig. 4 reports part of the labeled graph for NetBill.

Protocol Analysis. The tool can be used as a support in protocol analysis [5].
Particularly interesting is the possibility of exploring the labeled graph by means
of the Graph Explorer, which can be used to predict whether performing a certain
sequence of actions results in a violation and, in this case, if there is a way to
return on a legal path. For what concerns the designer, it is not always easy,
when specifying a protocol, to individuate which constraints to introduce but,
with the help of the tool, it becomes easy to identify misbehaviors and revise the
constraints so as to avoid them. Moreover, a designer can decide, by analyzing
the graph, to modify the specification so as to regiment some of the patterns
expressed as constraints, or to remove some of them. For instance, considering
the running example, from Fig. 4 it is possible to infer that the protocol does
not allow the customer to pay (sendEPO) before the merchant sends the goods.
This is due to the constraint created(C(m, c, pay, receipt)) ∧ goods −�• pay. If
this behavior was not in the intention of the designer, he/she can discover it and,
e.g., relax the before constraint (−�•) transforming it into a co-existence (•−•).
If, instead, that is exactly the desired behavior, one may decide to regiment
sendEPO so as to enable the payment only after the goods have been sent.

A Generalized Commitment Machine for 2CL Protocols 113

The complete NetBill protocol encoding and the corresponding labeled graph
together with further examples, like 2CL specifications of classical agent inter-
action protocols (CNet) and of real-life protocols (OECD guidelines and MiFID
[5]) are available at http://di.unito.it/2cl (section Examples).

6 Related Work and Conclusions

This work provides an operational semantics of 2CL protocols [3,4], based on
an extension of the Generalized Commitment Machine [20], and describes a
Prolog implementation of this formalization, where the constraint evaluation is
performed thanks to state conditions rather than by considering paths. Our aim
was to enrich commitment machines with a mechanism for constraint evaluation,
in a way that is suitable to creating tools which are useful in application domains.
The provided formalization allows the creation of compact and annotated graphs,
which provide a global overview of the possible interactions, showing which are
legal and which cause constraint (or commitment) violations. The aim was to
support an implementation, which enables the verification of exposure to risk
on the graph of the possible executions, and taking decisions concerning how to
behave or to modify the protocol in order to avoid such a risk. Due to this aim, we
decided to base our implementation on [22], rather than on formalizations which
support, for instance, model checking. The reason is that this work already is
along the same line of ours, the intent being to give a global view on desirable and
undesirable states. Winikoff et al. [22], however, propose to cope with undesired
paths or undesired final states by adding ad-hoc preconditions to the actions, or
by adding active commitments to states that are desired not to be final. This,
however, complicates the reuse and the adaptation of the specification to different
domains. On the contrary, the proposal in [4] results to be easily adaptable and
customizable so as to address different needs of different domains, and it also
allows for the specification of more expressive patterns of interaction, given as
2CL constraints.

Concerning model checking, in [8] it is possible to find a proposal of a
branching-time logic that extends CTL*, used to give a logical semantics to
the operations on commitments. This approach was designed to perform verifi-
cations on commitment-protocol ruled interactions by exploiting symbolic model
checking techniques. The properties that can be verified are those that are com-
monly checked in distributed systems: fairness, safety, liveness, and reachability.
It would be interesting to integrate in this logical framework the 2CL constraints
in order to combine the benefits of both approaches: on the one hand, the possi-
bility to embed in the protocols expressive regulative specification, and, on the
other hand, the possibility to exploit the logical framework to perform the listed
verifications.

For what concerns the semantics of commitment protocols, the literature pro-
poses different formalizations. Some approaches present an operational semantics
that relies on commitment machines to specify and execute protocols [24,23,22].
Some others, like [12], use interaction diagrams, operationally specifying com-
mitments as an abstract data type, and analyzing the commitment’s life cycle

http://di.unito.it/2cl

114 M. Baldoni et al.

as a trajectory in a suitable space. Further approaches rely on temporal logics
to give a formal semantics to commitments and to the protocols defined upon
them. Among these, [13] uses DLTL. All these approaches allow the inference
of the possible executions of the protocol, but, differently than [4], all of them
consider as the only regulative aspect of the protocol the regulative value of the
commitments.

Acknowledgements. The authors would like to thank the reviewers for their
valuable comments. This research was partially funded by “Regione Piemonte”
through the project ICT4LAW.

References

1. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)
2. Baldoni, M., Baroglio, C.: Some Thoughts about Commitment Protocols (Position

Paper). In: Baldoni, M., Dennis, L., Mascardi, V., Vasconcelos, W. (eds.) DALT
2012. LNCS (LNAI), vol. 7784, pp. 190–196. Springer, Heidelberg (2013)

3. Baldoni, M., Baroglio, C., Marengo, E.: Behavior-Oriented Commitment-based
Protocols. In: Proc. of ECAI. Frontiers in Artificial Intelligence and Applications,
vol. 215, pp. 137–142. IOS Press (2010)

4. Baldoni, M., Baroglio, C., Marengo, E., Patti, V.: Constitutive and Regulative
Specifications of Commitment Protocols: a Decoupled Approach. ACM Trans. on
Int. Sys. and Tech., Spec. Iss. on Agent Communication 4(2) (2013)

5. Baldoni, M., Baroglio, C., Marengo, E., Patti, V.: Grafting Regulations into Busi-
ness Protocols: Supporting the Analysis of Risks of Violation. In: Antón, A.,
Baumer, D., Breaux, T., Karagiannis, D. (eds.) Forth International Workshop on
Requirements Engineering and Law (RELAW 2011), Held in Conjunction with
the 19th IEEE International Requirements Engineering Conference, Trento, Italy,
August 30, pp. 50–59. IEEE Xplore (2011)

6. Chesani, F., Mello, P., Montali, M., Torroni, P.: Commitment Tracking via the
Reactive Event Calculus. In: Boutilier, C. (ed.) IJCAI, Pasadena, California, USA,
pp. 91–96 (July 2009)

7. Chopra, A.K., Singh, M.P.: Constitutive Interoperability. In: Padgham, L., Parkes,
D.C., Müller, J., Parsons, S. (eds.) Proc. of 7th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2008), Estoril, Portugal,
vol. 2, pp. 797–804. IFAAMAS (May 2008)

8. El-Menshawy, M., Bentahar, J., Dssouli, R.: Verifiable Semantic Model for Agent
Interactions Using Social Commitments. In: Dastani, M., El Fallah Segrouchni, A.,
Leite, J., Torroni, P. (eds.) LADS 2009. LNCS, vol. 6039, pp. 128–152. Springer,
Heidelberg (2010)

9. El-Menshawy, M., Bentahar, J., Dssouli, R.: Symbolic Model Checking Commit-
ment Protocols Using Reduction. In: Omicini, A., Sardina, S., Vasconcelos, W.
(eds.) DALT 2010. LNCS, vol. 6619, pp. 185–203. Springer, Heidelberg (2011)

10. Emerson, E.A.: Temporal and Modal Logic, vol. B. Elsevier, Amsterdam (1990)
11. Fornara, N., Colombetti, M.: Defining Interaction Protocols using a Commitment-

based Agent Communication Language. In: Rosenschein, J.S., Sandholm, T.,
Wooldridge, M., Yokoo, M. (eds.) Proc. of the Second International Joint Confer-
ence on Autonomous Agents & Multiagent Systems (AAMAS 2003), Melbourne,
Australia, pp. 520–527. ACM (July 2003)

A Generalized Commitment Machine for 2CL Protocols 115

12. Fornara, N., Colombetti, M.: A Commitment-Based Approach To Agent Commu-
nication. Applied Artificial Intelligence 18(9-10), 853–866 (2004)

13. Giordano, L., Martelli, A., Schwind, C.: Specifying and Verifying Interaction Pro-
tocols in a Temporal Action Logic. Journal of Applied Logic 5(2), 214–234 (2007)

14. Jones, A.J.I., Sergot, M.: On the Characterization of Law and Computer Systems:
the Normative Systems Perspective, pp. 275–307. John Wiley & Sons, Inc., New
York (1994)

15. Mallya, A.U., Singh, M.P.: Modeling Exceptions via Commitment Protocols. In:
Dignum, F., Dignum, V., Koenig, S., Kraus, S., Singh, M.P., Wooldridge, M. (eds.)
AAMAS, Utrecht, The Netherlands, pp. 122–129. ACM (July 2005)

16. Marengo, E.: 2CL Protocols: Interaction Patterns Specification in Commitment
Protocols. PhD thesis, Università degli Studi di Torino, Research Doctorate in
Science and High Technology, Specialization in Computer Science (October 2012),
http://www.di.unito.it/~emarengo/Thesis.pdf

17. Marengo, E., Baldoni, M., Baroglio, C., Chopra, A.K., Patti, V., Singh, M.P.:
Commitments with Regulations: Reasoning about Safety and Control in REGULA.
In: Sonenberg, L., Stone, P., Tumer, K., Yolum, P. (eds.) AAMAS, Taipei, Taiwan,
vol. 1–3, pp. 467–474. IFAAMAS (May 2011)

18. Searle, J.R.: The construction of social reality. Free Press, New York (1995)
19. Singh, M.P.: An Ontology for Commitments in Multiagent Systems. Artificial In-

telligence and Law 7(1), 97–113 (1999)
20. Singh, M.P.: Formalizing Communication Protocols for Multiagent Systems. In:

Veloso, M.M. (ed.) IJCAI, Hyderabad, India, pp. 1519–1524. AAAI Press (January
2007)

21. Weiss, G. (ed.): Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. The MIT Press (1999)

22. Winikoff, M., Liu, W., Harland, J.: Enhancing Commitment Machines. In: Leite,
J., Omicini, A., Torroni, P., Yolum, p. (eds.) DALT 2004. LNCS (LNAI), vol. 3476,
pp. 198–220. Springer, Heidelberg (2005)

23. Yolum, P., Singh, M.P.: Designing and Executing Protocols Using the Event Cal-
culus. In: Agents, pp. 27–28. ACM, New York (2001)

24. Yolum, P., Singh, M.P.: Commitment Machines. In: Meyer, J.-J.C., Tambe, M.
(eds.) ATAL 2001. LNCS (LNAI), vol. 2333, pp. 235–247. Springer, Heidelberg
(2002)

http://www.di.unito.it/~emarengo/Thesis.pdf

Solving Fuzzy Distributed CSPs:

An Approach with Naming Games�,��

Stefano Bistarelli1,2, Giorgio Gosti3, and Francesco Santini1,4

1 Dipartimento di Matematica e Informatica, Università di Perugia
{bista,francesco.santini}@dmi.unipg.it

2 Istituto di Informatica e Telematica (CNR), Pisa, Italy
stefano.bistarelli@iit.cnr.it

3 Institute for Mathematical Behavioral Sciences, University of California,
Irvine, USA

ggosti@uci.edu
4 Contraintes, INRIA - Rocquencourt, France

francesco.santini@inria.fr

Abstract. Constraint Satisfaction Problems (CSPs) are the formaliza-
tion of a large range of problems that emerge from computer science. The
solving methodology described here is based on Naming Games (NGs).
NGs were introduced to represent N agents that have to bootstrap an
agreement on a name to give to an object (i.e., a word). In this pa-
per we focus on solving both Fuzzy NGs and Fuzzy Distributed CSPs
(Fuzzy DCSPs) with an algorithm inspired by NGs. In this framework,
each proposed solution is associated with a preference represented as a
fuzzy score. We want the agents to find the solution, which is associated
with the highest preference value among all solutions. The two main
features that distinguish this methodology from classical Fuzzy DCSPs
algorithms are that i) the system can react to small instance changes, and
ii) the fact the algorithm does not require a pre-agreed agent/variable
ordering.

1 Introduction

In this paper we present a distributed algorithm to solve Fuzzy Distributed Con-
straint Satisfaction Problems (Fuzzy DCSPs) [14,18,11,12,17] that comes from
a generalization of the Naming Game paradigm (NG) [15,1,13,10].

In Fuzzy DCSPs algorithms, the aim is to design a distributed architecture
of processors, or more generally a group of agents, which cooperate to solve a
particular Fuzzy DCSP instantiation. In the framework presented here, we see
the Fuzzy DCSP solution search as a dynamic system, and we set the stable

� This work was carried out during the tenure of the ERCIM “Alain Bensoussan” Fel-
lowship Programme, which is supported by the Marie Curie Co-funding of Regional,
National and International Programmes (COFUND) of the European Commission.

�� Research partially supported by MIUR PRIN 2010-2011 2010FP79LR project: “Log-
ical Methods of Information Management”.

M. Baldoni et al. (Eds.): DALT 2012, LNAI 7784, pp. 116–135, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Solving Fuzzy Distributed CSPs: An Approach with Naming Games 117

states of the system as the solutions to our Fuzzy DCSP. To do this we design
each agent so that it moves towards a stable local state. This system may be
called “self-stabilizing” whenever the global stable state is obtained through the
reinforcement of the local stable states [7]. The system settles to a global stable
state when all agents are in stable local state, When the system finds this global
stable state the DCSP instantiation is solved. A protocol designed in this way
is resistant to damage and external threats, since it can react to small changes
in the original problem instance. Moreover, in our approach all agents have the
same probability to reveal private information, and for this reason such algorithm
is unbiased (i.e., “fair”) with respect to privacy.

The NG paradigm defines a set of problems where a number of agents boot-
strap a commonly agreed name for one or more objects [15,1,13,10]. In this
paper we discuss a NG generalization in which agents have individual fuzzy
preferences over words. This is a straightforward generalization of the NG, be-
cause this paradigm naturally models the endogenous agents preferences and the
attitudes towards a given naming system. These preferences may be driven by
pragmatic or rational reasons: same words may be associated to different ob-
jects, same words may be too long or too complex, or may be easy to confuse
and, therefore, less suitable as a solution for name assignments.

In Sec. 4, we define Fuzzy NG which are a generalization of the NG that
introduces agent preferences. To model agents preferences we associate individual
fuzzy levels with each word in the agents domain. In this way, the new game
may be interpreted as an optimization problem. The Fuzzy NG we obtain can
be seen as a particular instance of a Fuzzy DCSP with fuzzy unary constraints
and crisp binary constraints which impose that the possible solutions are the
ones in which all the agents connected by a communication link share the same
word as a naming convention. Then we extend the works in [3] and [4] in order
to consider agent preferences. Within this set of candidate solutions, the real
solutions are the ones that optimize the overall preference for the agreed name.
All the agents agree on the same word, which is the best possible according
to the composition of the preferences of all the participating agents. Since we
use fuzzy preferences, values are in the interval [0, 1], they are aggregated with
the min operator, and to optimize means to find the word with the maximum
preference possible (with the max operator).

The algorithm is defined through an asymmetric interaction among agents, in
which one peer is the “speaker” and the other involved agents are called “listen-
ers”. To let this interaction occur, our algorithm uses a central scheduler that
randomly draws a speaker at each round. This may be interpreted as a “central
blind orchestrator” scheme, anyhow this central scheduler has no information on
the DCSP instance, and has no pre-determined agent/variable ordering: there-
fore, it preserves the privacy of the agents.

In Sec. 5 we explain how the algorithm in Sec. 4.1 can be extended to solve
a generic instance of a Fuzzy DCSP, that is a DCSP problem where both unary
and binary constraints are associated with a fuzzy preference. Fuzzy DSCPs can

118 S. Bistarelli, G. Gosti, and F. Santini

be used to deal with resource allocation, collaborative scheduling and distributed
negotiation [11].

In summary, the main contributions of this paper are two. First, we discuss
how individual preferences can be modeled in the NG with the use of the Fuzzy
NG, and how we can use a distributed algorithm to solve this problem. Second,
we discuss ho a similar algorithm can be used to solve more the more general
class of Fuzzy DCSPs.

The paper extends preliminary work in [5], by refining the distributed algo-
rithm and sketching a sample execution of the algorithm, to better understand its
functioning. The paper is organized as follows: in Sec. 2 we respectively present
the background on Fuzzy DSCPs and NGs, while Sec. 3 summarizes the related
work. Section 4 presents an algorithm that solves Fuzzy NGs. Section 5 shows
how to extend the algorithm in Sec. 4 in order to solve generic Fuzzy DCSPs.
Then, in Sec. 6 we show a simple example on how the algorithm in Sec. 5 works,
and Sec. 7 presents the tests and the results for the Fuzzy NG algorithm. Finally,
in Sec. 8 we draw our conclusions and explain our future work.

2 Background

2.1 Distributed Constraint Satisfaction Problem (DCSP)

A classical constraint can be seen as the set of value combinations for the vari-
ables in its scope that satisfy the constraint. In the fuzzy framework, a constraint
is no longer a set, but rather a fuzzy set [14]. This means that, for each assign-
ment of values to its variables, we do not have to say whether it belongs to the
set or not, but how much it does so. In other words, we need to use a graded
notion of membership. This allows us to represent the fact that a combination
of values for the constraint variables is partially permitted. A Fuzzy CSP is
defined as a triple P = 〈X,D,C〉, where X is the set of variables and D is
the set of corresponding variable domains (we suppose a single domain for all
the variables). C is a set of fuzzy constraints. A fuzzy constraint is defined by
a function cV on a sequence of variables V , which is called the scope (or sup-
port) of the constraint, that is the set of variables on which the constraint is
defined on.

cV :
∏
xi∈V

Di → [0, 1]

The function cV indicates to what extent an assignment of the variables in V
satisfies the constraint [14]. In fuzzy constraints, 1 usually corresponds to the
best preference, and 0 to the worst preference value. The combination cV ⊗ cW
of two fuzzy constraints cV and cW is a new fuzzy constraint cV ∪W defined as

cV ∪W (η) = min(cV (η), cW (η))

where η is a complete assignment of the variables in the problem, i.e., an assign-
ment of the variables in X :

Solving Fuzzy Distributed CSPs: An Approach with Naming Games 119

η ∈
∏

xi∈X

Di

If c1η > c2η (e.g., c1η = 0.8 and c2η = 0.4), it means that the assignment η
satisfies c1 better than c2. In the following of the paper we will use the expression
cη[xi := d] to denote a constraint assignment in which variable xi ∈ X takes the
value d ∈ D.

We can now define the preference of the complete set C of constants in the
problem, by performing a combination of all the fuzzy constraints. Given any
complete assignment η we have

(
⊗
cV ∈C

cV)(η) = min
cV ∈C

cV (η)

Thus, the optimal solutions of a fuzzy CSP are the complete assignments whose
satisfaction degree is maximum over all the complete assignments, that is,

OptSol(P) = {η | max
η

min
cV ∈C

cV (η)}

In the description of our algorithm in Sec. 4 we will also need a definition of
projection for fuzzy constraints: given a fuzzy constraint cV ∈ C and a variable
v ∈ V , the projection [2] of cV over v, written as cV ⇓v, is a fuzzy constraint
c′ such that c′η = max(cη[x1 := d1] . . . [xk := dk]), where d1 . . . dk ∈ D and
x1 . . . xk ∈ (V \{v}). For instance, if V = {v}, then cV ⇓v= cV . Informally,
projecting means to eliminate the influence of all the variables V \{v} over a
constraint (i.e., to remove the variables in V \{v} from its scope), by considering
the assignment that maximises the preference of c.

In DCSPs [18,14], the main difference to a classical CSP is that each variable is
controlled by a corresponding agent, meaning that this agent sets the variable’s
value. Formally, a DCSP is a tuple 〈X,D,C,A〉, i.e., a CSP with a set A of
n agents. We suppose the number of variables m to be greater/equal than the
number of agents n, i.e., m ≥ n. When an agent controls more than one variable,
this can be modeled by a single variable whose values are the combinations of
values of the original variable. It is further assumed that an agent knows the
domain of its variable and all the constraints involving its variable, and that
it can reliably communicate with all the other agents which share the same
constraints. The main challenge is to develop distributed algorithms that solve
the CSP by exchanging messages among the agents. Fuzzy DCSPs features both
all the features described in this section, i.e., fuzziness and distributivity.

2.2 Introduction to Naming Games

The NG model [15,1,13,10] describes a set of problems in which a number of
agents bootstrap a commonly agreed name for one or more objects.

120 S. Bistarelli, G. Gosti, and F. Santini

The game is played by a population of n agents which play pairwise interac-
tions in order to negotiate conventions, that is associations between forms and
meanings, and it is able to describe the emergence of a global consensus among
them. For the sake of simplicity this model does not take into account the pos-
sibility of homonymy, so that all meanings are independent and one can work
with only one of them, without loss of generality. An example of such a game is a
population that has to reach a consensus on the name (i.e., the form) to assign to
an object (i.e., the meaning), by exploiting local interactions only. However, the
same model is appropriate to address all those situations in which negotiation
rules a decision process (e.g., opinion dynamics) [1].

Each NG is defined by an interaction protocol. There are two important as-
pects in NGs:

– The agents randomly interact and use a simple set of rules to update their
state.

– The agents converge to a consistent state in which all the objects of the set
have a uniquely assigned name, by using a distributed social strategy.

Generally, two agents are randomly extracted at each round to perform the
role of the “speaker” and the “listener” (or “hearer”, as used in [15,1]). The
interaction between speaker and listener determines the update of the internal
state of the agents. DCSPs and NGs share a variety of common features, as
already introduced in [3,4].

2.3 Self-stabilizing Algorithms

The definition of self-stabilizing algorithm in distributed computing was first
introduced in [7]. A system is self-stabilizing whenever each system configuration
associated with a solution is an absorbing state (global stable state), and any
initial state of the system is in the basin of attraction of at least one solution.

In a self-stabilizing algorithm, we program the agents of our distributed sys-
tem to interact with their neighbors. The agents update their state through these
interactions by trying to find a stable state in their neighborhood. Since the na-
ture of these algorithms is distributed, many legal configurations of agents states
and their neighbors states start arising sparsely. Not all of these configurations
are mutually compatible, and, thus, they form mutually inconsistent potential
cliques. A self-stabilizing algorithm must find a way to make the global legal
state emerge from the competition among these potential cliques. Dijkstra [7]
and Collin [6] suggest that an algorithm designed in this way may not always
converge, and a special agent is needed to break the system symmetry. [4] shows
how a different strategy based on the concept of random behavior and proba-
bilistic transition function can solve specific distributed constraint satisfaction
problems with a probability of one. Moreover, [4] shows empirically how this
approach can be used on a variety of CSP instances. In Sec. 4.2 we discuss how
this later strategy is implemented on Fuzzy CSP instances.

Solving Fuzzy Distributed CSPs: An Approach with Naming Games 121

3 Related Work

This paper extends the results in [3,4], in which some of the authors of this
paper have solved (crisp) DCSPs with an algorithm inspired by the NG model.
Whilst a number of approaches have been proposed to solve DCSPs [14,18] or
centralized Fuzzy CSP [14] alone, there is less work in the literature related to
solution schemes able to solve CSP instances that are both fuzzy and distributed.

It is important to notice the fundamental difference, with respect to this work,
with the DCSP algorithms designed by Yokoo [18]. Yokoo addresses three fun-
damental kinds of DCSP algorithms: Asynchronous Backtracking, Asynchronous
weak-commitment Search and Distributed Breakout Algorithm, all of them also
presented in a survey article [18]. Although these algorithms share the property
of being asynchronous, they require a pre-agreed agent/variable ordering. The
algorithm presented in this paper does not need this initial condition. There-
fore, we do not require a pre-processing phase where the ordering is defined, and
it also allows for a more dynamic execution, since agents may leave and join
without redefining the ordering.

Fuzzy DCSPs has been of interest to the Multi-Agent System community, es-
pecially in the context of distributed resource allocation, collaborative schedul-
ing, and negotiation (e.g., [11]). Those works focus on bilateral negotiations and
when many agents take part, a central coordinating agent may be required.

For example, the work in [11] promotes a rotating coordinating agent which
acts as a central point to evaluate different proposals sent by other agents. Hence,
the network model employed in those work is not totally distributed. One more
important note is that this work focuses on competitive negotiation, where agents
try to outsmart each other (i.e., opposed to our collaborative negotiation).

In [12] the authors propose two approaches to solve these problems: an it-
erative method and an adaptation of the Asynchronous Distributed constraint
OPTimisation algorithm (ADOPT) for solving Fuzzy DCSP. They also present
experiments on the performance comparison between the two approaches, show-
ing that ADOPT is more suitable for low density problems; density is equivalent
to the number of links divided by the number of agents.

Finally, in [16,17] the authors define the fuzzy GENET model for solving bi-
nary Fuzzy CSPs with a neural network model. Through transforming Fuzzy
CSPs into [0, 1] integer programming problems, the authors display the equiva-
lence between the underlying working mechanism of fuzzy GENET and the dis-
crete Lagrangian method. Benchmarking results confirm its feasibility in tackling
Fuzzy CSPs, and flexibility in dealing with over-constrained problems. After a
number of cycles, the network settles in a stable state. In this stable state, if the
obtained fuzzy preference is greater/equal than a predefined threshold α0, an ac-
ceptable solution is considered to be found. Otherwise, the network is trapped in
a local minimum. Even if this termination conditions can be implemented in our
self-stabilizing algorithm as shown in the tests over the n× (n− 1)-queens prob-
lem in Sec. 7. In the implementation we propose in Sec. 4 we let the algorithm
search for the best optimum of the problem (i.e., without a lower threshold).

122 S. Bistarelli, G. Gosti, and F. Santini

4 An Algorithm for Fuzzy Naming Games

In this section we extend classical NGs to take into account fuzzy scores asso-
ciated with words, therefore, we propose an algorithm that solves Fuzzy NGs.
Since we deal with fuzzy values associated only with words, we can consider
Fuzzy NGs as particular Fuzzy DCSP instances, P = 〈X,D,C,A〉 (see Sec. 2.1).
In this problem we have fuzzy unary constraints describing the preferences over
the possible words, and binary crisp constraints that are satisfied only if the
words chosen from two neighboring agents are the same (i.e., x = y). In Sec. 5
we further extend the algorithm in order to consider fuzzy binary constraints
among agents, and consequently, to solve plain Fuzzy DCSPs.

At each round, the algorithm is based on two kinds of entities. The first is a
single speaker, which communicates its choice on the word and the related fuzzy
preference. The second is a set of listeners, which are the speaker’s neighboring
agents. These neighbors are those agents that can directly communicate with the
speaker, through the communication network over the agents. At each round r,
an agent is drawn with uniform probability to be the speaker. In the following of
this section we describe in detail each step of the interaction scheme that defines
the behavior between the speaker and the listeners: we consider three phases,
i) broadcast, ii) feedback and iii) update. Each agent marks the element that it
expects to be the final shared name in order to recall it when necessary.

4.1 Interaction Protocol

Broadcast. The speaker as ∈ A executes the broadcast protocol. We suppose
that each speaker as manages a variable s ∈ X . The speaker checks if the
marked variable assignment b ∈ D is in top, where top is the set of current best
assignment, top = {xs|xs = argmaxx[(

⊗
cVsη[s := x]) ⇓s]}. The

⊗
composition

is performed over all the constraints that include s in their support Vs, that is
s ∈ Vs; then, the result is projected over s (see Sec. 2) in order to obtain a
constraint over s only, and, finally, we consider the best preference associated
with this constraint (with max). If the current marked variable assignment is not
in top, the the agent selects a new variable assignment b from top with uniform
probability, and marks it. The agent recalls the value u = (

⊗
cVsη[s := b]) ⇓s.

and broadcasts the couple 〈b, u〉 to all its listeners, that is, it sends its subjective
preference for the name of s.

Notice that, even if in this case we only have one unary fuzzy constraint over
s, we perform the

⊗
composition to enforce the consistency w.r.t. not allowed

values of s imposed by crisp binary constraints over it. As a remind, crisp binary
constraints impose equality among the variables of different agents.

Feedback. All the listeners receive the broadcastmessage 〈b, u〉 from the speaker.
Each listener al ∈ A, which controls variable l, computes the value (

⊗
cVl

η[s :=
b][l := dk]) ⇓l for all possible dk values, where dk is any possible assignment for
variable l, and cVl

is any constraint with a scope that includes variable l. In other

Solving Fuzzy Distributed CSPs: An Approach with Naming Games 123

words, we compute the combination of the fuzzy preferences (equal to vk) for each
dk assignment, supposing that the speaker chooses word b. Each listener sends
back to as a feedback message according to the following two cases:

– Failure. If u > max
k

(vk) there is a failure, and the listener feedbacks a failure

message containing the maximum value and the corresponding assignment
for l,Fail〈max

k
(vk)〉. This corresponds to a failure because the value proposed

by the speaker is better than an upper preference threshold for the same
word, computed from the point of view of the listener instead.

– Success. If u ≤ max
k

(vk) we are in success conditions, the listener feedbacks

Succ only.

Update. The listener feedback determines the update of as and of each al that
has participated to the interaction. When a listener al feedbacks a Succ, and if
it has an preference value for dk = b higher than u, then it lowers the preference
level for dk to u. If as receives only Succ feedback messages from all its listeners,
then it does not need to update.

Otherwise, as may receive a number h ≥ 1 of Fail〈vj〉 feedback messages. In
this case, the speaker selects the worst fuzzy preference vw, s.t. ∀j, vw ≤ vj . As a
consequence, as sends to all its listeners a FailUpdate〈vw〉. Thus, the speaker
changes the preference for b of its unary constraint c{s} with the worst fuzzy
level among the failure feedback messages, i.e., c{s}η[s := b] = vw. In words, it
adapts the value of its variable s in accordance to its neighborhood, since fuzzy
preferences are composed with the min operator. In addition, each listener al
sets its preference for word b to vw, i.e., c{l}η[s := b][l := dl] = vw. In words, the
feedback of the “worst” listener is propagated to all the listeners of as.

4.2 Theorems

In this section we report the lemmas and theorems that lead to the convergence
property of the algorithm described in Sec. 4.1: we formally prove that the
algorithm always terminates with the best solution, that is the word with the
highest fuzzy preference. With Lemma 1 we state that a subset of constraints
C′ ⊆ C has a higher fuzzy preference w.r.t. C. We say that a fuzzy constraint
problem is α-consistent if it can be solved with a level of satisfiability of at least
α (see also [2]), that is if a there exists a solution with a preference better than
(or equal to) threshold α (with α ∈ [0..1]). Lemma 1 holds because min is a
monotonically decreasing function.

Lemma 1 ([2]). Consider a set of constraints C and any subset C′ of C. Then
we have

⊗
C ≤

⊗
C′.

The speaker selection-rule defines a probability distribution function F that tells
us the probability that a certain domain assignment is selected. In Lemma 2 we
relate F to the convergence of the algorithm with probability 1, related to the
level of satisfiability of the problem.

124 S. Bistarelli, G. Gosti, and F. Santini

Lemma 2. If function F selects only the domain elements with preference level
greater then α, then the algorithm converges with probability 1, to a solution with
a preference greater than α.

From [3,4] we know that if function F allows a random exploration of the word
domain, then the algorithm converges to the same word, but this word may
not be the optimal one. If we choose F in order to select only words with a
preference greater than α, then the algorithm converges to a solution with a
global preference greater than α.

With Prop. 1 and Prop. 2 we prepare the background for the main theorem
of this section, that is Th. 1. Proposition 1 describes how the global state of
the agents converges, while Prop. 2 states that the algorithm converges with a
probability of 1.

Proposition 1. For round r → +∞, the weight associated to the optimal solu-
tion is equal for all the agents, and it is equal to the minimum preference level
of that word.

Proposition 2. For any probability distribution F the algorithm converges with
a probability of 1.

These two propositions can be derived as proposed in [3,4]. At last, we state that
the presented algorithm always converges to the best solution of a Fuzzy DCSP.

Theorem 1. The algorithm described in Sec. 4.1 always converges to the best
solution of the represented Fuzzy NG, i.e., it converges to the solution with the
highest fuzzy preference.

The proof comes from the fact that, i) according to Prop. 2, the algorithm always
converges, and ii) we choose a proper function F as described in Lemma 2.

5 Solving Fuzzy Distributed Constraint Satisfaction
Problems as Naming Games

In this section we improve the Fuzzy NG algorithm presented in Sec. 4 in order
to solve generic Fuzzy DCSPs instances. To accomplish this, we also consider
binary fuzzy constraints instead of crisp ones only, as in Sec. 4. In our algorithm
we limit ourselves to unary and binary constraints only because any CSP can be
translated to an equivalent one, adopting only unary/binary constraints [14].

As proposed in [18], we assign each variable xi ∈ X of P = 〈X,D,C,A〉 to
an agent ai ∈ A. We assume that each agent knows all the constraints that
concern its variables [18]. Each agent i = 1, 2, . . . , n (where |A| = n) searches
its own variable domain di ∈ D for an assignment that optimizes P . Each agent
has an unary constraint ci, whose support is defined over its managed variable
xi ∈ X ; this unary constraints represent the local agent preference for each
variable assignment di ∈ D. Each agent can interact only with its neighbors:

Solving Fuzzy Distributed CSPs: An Approach with Naming Games 125

we may say that the communication network is determined by the network of
binary constraints, since we suppose that an agent ai ∈ A can communicate only
with an aj ∈ A agent sharing a binary constraint with it, i.e., c{i,j} ∈ C. Any
binary constraint c{i,j} returns a preference value in the [0, 1] interval, which
states the combined preference over the assignment of xi and xj together.

The algorithm is dived into time intervals (we call it a “round”), during which
the agents are able to interact and share information on their variable assign-
ments and the mutual constraints. At each round r, an agent is drawn with
uniform probability to be the speaker as. As in Sec. 4, each speaker has a set of
listeners al, each of them sharing a binary constraint with as. In this algorithm
the agents keep a list of speakers’ proposals up to the last failed interaction, this
list is composed of agent-assignment tuples S = {〈as1 , bs1〉, . . . , 〈asq , bsq 〉}. The
phases of the algorithm are three as in Sec. 4: i) broadcast, ii) feedback and iii)
update.

5.1 Interaction Protocol

Broadcast. The speaker as executes the broadcast protocol. The speaker com-
putes top = {xs|xs = argmaxx[(

⊗
cVsη[s := x]) ⇓s]}, as in the previous case

4.1. Then, it checks if the marked variable assignment b is in top. If the marked
variable assignment is not in top it selects a new variable assignment b with
uniform probability from top, and marks it. Then, the agent recalls the value
u = (

⊗
cVsη[s := b]) ⇓s, and as sends the couple 〈b, u〉 to all its listeners. In

words, the agent composes all the constraints whose scope contains variable s,
that is s ∈ Vs, and it sends its preferred assignment.

Feedback. All the al ∈ A listeners receive the broadcast message 〈b, u〉 from as
(with u =

⊗
cVsη[s := b]). Each listener al adds 〈b, u〉 to

S = {〈as1 , bs1〉, . . . , 〈asq , bsq 〉, 〈as, b〉}.

Then it computes the value vk = (
⊗

cVl
η[s := b1] . . . [s := bq][l := dk]) ⇓l for all

the possible dk values, where dk is any possible assignment for variable l, and cVl

is any constraint with a scope that includes both the speaker s, and the listener
l. Then it computes dmax = argmaxdk

(vk) and vmax = maxdk
(vk). Each listener

sends back to as a feedback message according to the following two cases:

– Failure. If u > vmax we obtain a failure, and the listener may only feedback
Fail〈

⊗
cVl

η[s := b][l := dmax]〉.
– Success. If u ≤ vmax, we obtain a success for this round, and the listener

may feedback Succ to the speaker.

Notice that this computation is different from the one in the same phase of
the algorithm in Sec. 4.1. In this case, the check has to be computed w.r.t. the
composition of all the constraints with variable s in their scope. the reason is
that in Fuzzy DCSPs we have fuzzy binary constraints either.

126 S. Bistarelli, G. Gosti, and F. Santini

Update. As in Sec. 4.1, the feedback of the listeners determines the update of
the listeners and of the speaker itself. When al feedbacks Succ, and if there is
a
⊗

cVl
η[s := b][l := dk] > u, then it sets

⊗
cVl

η[s := b][l := dk] = u. If the
speaker receives only Succ feedback messages from all its listeners, then it does
not need to update and the round ends.

Otherwise, that is if the speaker receives a number h ≥ 1 of Fail〈vj〉 feedback
messages. In this case, the speaker selects the worst fuzzy preference vw, s.t.
∀j, vw ≤ vj . As a consequence, as sends to all its listeners a FailUpdate〈vw〉.

then the speaker sets
⊗

csη[s := b] = vw, as performed in Sec. 4.1. In addition,
each listener al sets its preference for s := b and l := dl to vw, i.e., c{s,l}η[s :=
b][l := dl] = vw. In words, the feedback of the “worst” listener is propagated to
all the listeners of as. Finally, the speaker and the listeners set S = ∅.

6 An Example of Algorithm Execution

In this section we show a sample execution of the algorithm for Fuzzy DCSP
presented in Sec. 5.1. We consider a problem P = 〈X,D,C,A〉 with three agents
(i.e., a1, a2, a3 ∈ A) and both unary and binary constraints, as defined by the
network represented in Fig. 1a. The domain for the variables x1, x2, x3 ∈ X is
D = {$,©}.

When we start executing the algorithm, at round r = 1 (whose final state is
represented in Fig. 1b) we suppose a1 is the first agent to be randomly chosen
as a speaker. It computes the elements with the highest preference over the
constraints cVs , and fills its list top with them (which was previously empty).
Since this is the first interaction among the agents, the speaker has no marked
element, thus it may only draw an element from top with uniform probability.
As already introduced, agent a1 computes

⊗
cVx1

η for all ∀d ∈ D, obtaining
that

⊗
cVx1

η[x1 := $] = 0.1, and
⊗

cVx1
η[x1 := ©] = 0.2. Thus, it marks ©

(marked with an asterisk in Fig. 1b), and choses to broadcast 〈©, 0.2〉 to its
neighbors a2 and a3 (the broadcast is underlined in Fig. 1b).

Listener a2 updates the successful speaker-assignment list S = {(a1,©)},
then it computes vk =

⊗
cVx1,x2

η[x1 := ©][x2 := dk]. For dk = $ it finds
v1 =

⊗
cVx1,x2

η[x1 := ©][x2 := $] = 0.3, and for dk = © it finds v2 =⊗
cVx1,x2

η[x1 := ©][x2 := ©] = 0.7. Thus, a2 returns Succ, since 0.2 ≤
max(0.3, 0.7).

Simultaneously, listener a3 updates the successful speaker-assignment list S =
{(a1,©)}, and computes vk =

⊗
cVx1,x3

η[x1 := ©][x3 := dk]. For dk = $ it
finds v1 =

⊗
cVx1,x3

η[x1 := ©][x3 := $] = 0.5, and for dk = © it finds
v2 =

⊗
cVx1,x3

η[x1 := ©][x3 := ©] = 0.4. Thus, it returns Succ, since 0.2 ≤
max(0.5, 0.4).

In the update phase the listeners a2 and a3 change the preference levels of
all the vk > 0.2 to vk = 0.2, i.e., the value broadcast by a1 in this round (the
changed values are represented in bold in Fig. 1b).

Solving Fuzzy Distributed CSPs: An Approach with Naming Games 127

cx1

�=0.1;
©=0.2.

cx2

�=0.8;
©=0.7.

cx3

�=0.5;
©=0.5.

c{x1,x2}
(�,�)=0.4;
(�,©)=0.1;
(©,�)=0.3;
(©,©)=0.8.

c{x1,x3}
(�,�)=0.3;
(�,©)=0.5;
(©,�)=0.7;
(©,©)=0.4.

c{x2,x3}
(�,�)=0.8;
(�,©)=0.6;
(©,�)=0.6;
(©,©)=0.9.

(a). r=0, initial state

cx1

�=0.1;
©=0.2�.

cx2

�=0.8;
©=0.7.

cx3

�=0.5;
©=0.5.

c{x1,x2}
(�,�)=0.4;
(�,©)=0.1;
(©,�)=0.2;
(©,©)=0.2.

c{x1,x3}
(�,�)=0.3;
(�,©)=0.5;
(©,�)=0.2;
(©,©)=0.2.

c{x2,x3}
(�,�)=0.8;
(�,©)=0.6;
(©,�)=0.6;
(©,©)=0.9.

(b). r=1

cx1

�=0.1;
©=0.2�.

cx2

�=0.8;
©=0.7.

cx3

�=0.5;
©=0.2�.

c{x1,x2}
(�,�)=0.4;
(�,©)=0.1;
(©,�)=0.2;
(©,©)=0.2.

c{x1,x3}
(�,�)=0.3;
(�,©)=0.2;
(©,�)=0.2;
(©,©)=0.2.

c{x2,x3}
(�,�)=0.8;
(�,©)=0.2;
(©,�)=0.6;
(©,©)=0.2.

(c). r=2

cx1

�=0.1;
©=0.2�.

cx2

�=0.2�;
©=0.7.

cx3

�=0.5;
©=0.2�.

c{x1,x2}
(�,�)=0.2;
(�,©)=0.1;
(©,�)=0.2;
(©,©)=0.2.

c{x1,x3}
(�,�)=0.3;
(�,©)=0.2;
(©,�)=0.2;
(©,©)=0.2.

c{x2,x3}
(�,�)=0.2;
(�,©)=0.2;
(©,�)=0.6;
(©,©)=0.2.

(d). r=3

cx1

�=0.1;
©=0.2�.

cx2

�=0.2�;
©=0.7.

cx3

�=0.2�;
©=0.2.

c{x1,x2}
(�,�)=0.2;
(�,©)=0.1;
(©,�)=0.2;
(©,©)=0.2.

c{x1,x3}
(�,�)=0.2;
(�,©)=0.2;
(©,�)=0.2;
(©,©)=0.2.

c{x2,x3}
(�,�)=0.2;
(�,©)=0.2;
(©,�)=0.2;
(©,©)=0.2.

(e). r=4

Fig. 1. Example of algorithm run on simple Fuzzy DCSP problem

At r = 2 (whose final state is represented in Fig. 1c), agent a3 is randomly
selected. It finds that

⊗
cVx3

η[x3 := $] = 0.3, and
⊗

cVx3
η[x3 := ©] = 0.5.

Thus, it marks ©, and it broadcasts 〈©, 0.5〉 to its listeners a1 and a2. Listener
a1 updates the successful speaker-assignment list S = {(a3,©)}, and computes
vk =

⊗
cVx1,x3

η[x3 := ©][x1 := dk]. For dk = $ it finds v1 =
⊗

cVx1,x3
η[x3 :=

©][l := $] = 0.1, and for dk =© it finds v2 =
⊗

cVx1,x3
η[x3 :=©][x1 :=©] =

0.2. Thus, since 0.5 > max(0.1, 0.2), a1 returns Fail〈©, 0.2〉.

128 S. Bistarelli, G. Gosti, and F. Santini

Simultaneously, listener a2 updates the successful speaker-assignment list S =
{(a1,©), (a3,©)}, then computes vk =

⊗
cVx1,x2,x3

η[x1 := ©][x2 := dk][x3 :=
©]. For dk = $ it finds v1 =

⊗
cVx1,x2,x3

η[x1 := $][x2 := $][x3 := ©] = 0.4,
and for dk = © it finds v2 =

⊗
cVx1,x2,x3

η[x1 := ©][x2 := ©]η[x3 := ©] = 0.2.
Thus, since 0.2 ≤ max(0.5, 0.2), a2 feedbacks Succ.

Since a3 receives a failure feedback, it calls FailUpdate(0.2). Then, the
speaker update its preference level, © = 0.2. The listeners a1 and a2 change
their preference levels vk = 0.2 (colored in blue in Fig. 1c). a1, a2, and a3
update their successful speaker-assignment lists S = ∅.

At round r = 3 (whose final state is represented in Fig. 1d), a2 is the third
agent to speak. It finds that

⊗
cVx2

η[x2 := $] = 0.4, and
⊗

cVx2
η[x2 := ©] =

0.2. Thus, it marks $, and it broadcasts 〈$, 0.4〉 to agents a1 and a3. Listener
a1 updates the successful speaker-assignment list S = {(a2,$)}, then computes
vk =

⊗
cVx1,x2

η[x1 := dk][x2 := $]. For dk = $ it finds v1 =
⊗

cVx1,x2
η[x1 :=

$][x2 := $] = 0.1, and for dk = © it finds v2 =
⊗

cVx1,x2
η[x1 := ©][x2 :=

$] = 0.2. Thus, it returns Fail(b,0.2).
Listener a3 updates the successful speaker-assignment list S = {(a2,$)},

then computes vk =
⊗

cVx2,x3
η[x2 := $][x3 := dk]. For dk = $ it finds

v1 =
⊗

cVx2,x3
η[x2 := $][x3 := $] = 0.3, and for dk = © it finds v2 =⊗

cVx2,x3
η[x2 := $][x3 := ©] = 0.2. Thus, it returns Succ. Since a2 receives a

failure feedback, it calls FailUpdate(0.2). Then, the speaker update its pref-
erence level, $ = 0.2, and the listeners a1 and a2 change their preference levels
vk = 0.2.

At round r = 4 (see Fig. 1e), a3 is the fourth agent to speak. It finds that⊗
cVx3

η[x3 := $] = 0.3, and
⊗

cVx3
η[x3 :=©] = 0.2. Thus, it marks $, and it

broadcasts 〈$, 0.3〉 to a1 and a2.
Listener a1 updates the successful speaker-assignment list S = {(a3,$)},

then computes vk =
⊗

cVx1,x3
η[x1 := dk][x3 := $]. For dk = $ it finds

v1 =
⊗

cVx1,x3
η[x1 := $][x3 := $] = 0.1, and for dk = © it finds v2 =⊗

cVx1,x3
η[x1 := ©][x3 := $] = 0.2. Thus, it returns Fail(b,0.2). Listener a2

updates the successful speaker-assignment list S = {(a3,$)}, then computes
vk =

⊗
cVx2,x3

η[x3 := $][x2 := dk]. For dk = $ it finds v1 =
⊗

cVx2,x3
η[x3 :=

$][x2 := $] = 0.2, and for dk =© it finds v2 =
⊗

cVx2,x3
η[x3 := $][x2 :=©] =

0.2. Thus, it returns Fail(b,0.2). Since a3 receives two failure feedbacks, it calls
FailUpdate(0.2). Then, the speaker updates its preference level, $ = 0.2, and
listeners a1 and a2 change their preference levels vk = 0.2.

At round r = 5, a2 is the fifth agent to speak. It finds that
⊗

cVx2
η[x2 :=

$] = 0.2, and
⊗

cVx2
η[x2 := ©] = 0.2, thus, $ is in top. Then a2 broadcasts

〈$, 0.2〉 to a1 and a3. Listener a1 computes vk =
⊗

cVx1,x2
η[x2 := $][x3 :=

dk]. For dk = $ it finds v1 =
⊗

cVx1,x2
η[x2 := $][x3 := $] = 0.1, and for

dk = © it finds v2 =
⊗

cVx1,x2
η[x2 := $][x3 := ©] = 0.2. Thus, it returns

Succ. Listener a3 computes vk =
⊗

cVx2,x3
η[x2 := $][x3 := dk]. For dk = $

it finds v1 =
⊗

cVx2,x3
η[x2 := $][x3 := $] = 0.2, and for dk = © it finds

v2 =
⊗

cVx2,x3
η[x2 := $][x3 := ©] = 0.2. Thus, it returns Succ. Since all

Solving Fuzzy Distributed CSPs: An Approach with Naming Games 129

interactions are successful the speaker calls a success update, the listeners a1
and a3 do not change the preference levels, because vk ≤ 0.2.

From r = 6 the system converges to an absorbing state in which all interac-
tions are success, and the preference levels do not change. This state is also a
solution of the fuzzy DCSP.

7 Experimental Results

7.1 Fuzzy NG Benchmarks

In this subsection we show the performance results related to the algorithm
presented in Sec. 4. To evaluate different executions we define the probability of
a successful interaction at round r, i.e., Pr(succ), given the state of the system
in that turn. Notice that with r we mean the current round of speaker/listener
interaction: if r = 2 it means that we are at the second round. Pr(succ) is
determined by the probability that an agent is a speaker s at round r (i.e.,
P (s = ai)), and by the probability that the agent interaction is successful (i.e.,
Pr(succ | s = ai)). This is computed considering all the n agents participating
to the distributed computation:

Pr(succ) =

n∑
i=1

Pr(succ | s = ai)P (s = ai)

The probability Pr(succ | s = ai) depends on the state of the agent at round r.
In particular, it depends on the variable assignment (or word) b selected. Given
an algorithm execution, at each round r we can compute Pr(succ | s = ai) over
the states of all agents, before that the interaction is performed. Since we have
that P (s = ai) = 1/n, we can compute the probability of being in a successful
state as:

Pr(succ) =
1

n

n∑
i=1

Pr(succ | s = ai)

To set up our benchmark, we generate Random Fuzzy NG instances (RFNGs).
To generate such problems, we assign to each agent the same domain of names
D, and for each agent and each name in the agent’s domain we draw a preference
level in the interval [0, 1], by using an uniform distribution. Moreover, RFNGs
can only have crisp binary equality-constraints (as defined in Sec. 4). Then,
we set the network of agents to be fully connected, in this way, any agent can
speak to any agent. We call this kind of problem as completely connected RFNG
instance, which represents the first set of problems that we use as benchmark.
Clearly, by using a completely connected network, the successful global state
(where the system is stabilized and a solution is found) is reached very quickly,
as it can be seen in Fig. 2a (we discuss this figure in the following).

For the first round of tests, we generate 5 completely connected RFNG in-
stances, with 10 agents and 10 words each (each agent has a word). For each

130 S. Bistarelli, G. Gosti, and F. Santini

one of these instances, we compute the best preference level and the word as-
sociated to this solution, by using a brute-force algorithm. Then, we execute
this algorithm 10 times on each instance. To decide when the algorithm finds
the solution, a graph crawler checks marked word of each agent, and the related
preference value. If all the agents agree on the marked variable, this means they
find an agreement on the name. Then, the graph crawler checks if the shared
word has a preference level equal to the best preference (found through the bru-
tal force initial-phase), in such case we conclude that the algorithm has found
the optimal solution. In Fig. 2a we can see that the average number of rounds
for each of the 5 instances is less than r = 16, i.e., within 16 speaker/listeners
rounds we can solve all the completely connected RFNG instances.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Pr(succ)

r

Run 1
Run 2
Run 3
Run 4
Run 5

(a). Completely connected RFNG.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

Pr(succ)

r

Run 1
Run 2
Run 3
Run 4
Run 5

(b). Path RFNG.

Fig. 2. Evolution of the average Pr(succ) over 5 different completely connected RFNG
instances (2a) and 5 different path RFNG instances (2b). For each instance, we com-
puted the mean Pr(succ) over 10 different runs. We set n = 10, and the number of
words to 10.

As a second round of tests, we change the topology of our agent networks
by defining Path RFNG instances [4], which are RFNG instances where the
constraint network corresponds to a path graph. A path graph (or linear graph) is
a particularly simple example of a tree, which has two terminal vertices (vertices
that have degree 1), while all others (if any) have degree 2.

In Fig. 2b we report the performance in terms of Pr(succ) for such instances.
The instances have been generated following the same guidelines as before: 5
instances with 10 agents and 10 words, and 10 executions for each instance;
each preference value in taken from the interval [0, 1], by using an uniform
distribution.

As for Fig. 2a, even in Fig. 2b when Pr(succ) = 1 the system is in an absorbing
state, which we know is also a solution (see Th. 1). As we can notice in Fig. 2b,
the network topology among agents strongly influences the performance: having
a path graph significantly delays reaching the absorbing state, since we obtain
a solution between 140 and 230 speaker/listeners rounds.

Solving Fuzzy Distributed CSPs: An Approach with Naming Games 131

In Fig. 3 we show how the Mean Number of Messages (MNM) needed to find
a solution scales over different numbers n of variables in path RFNG instance.
For each value n, the MNM is measured over 5 different path RFNG instances.
We notice that the points approximately overlap the function cN1.8.

100

1000

10000

100000

1e+06

1e+07

1e+08

10 100 1000

MNM

N

Path RFNG

♦♦♦♦♦

♦♦
♦♦♦

♦♦♦♦♦

♦
♦♦♦♦

♦♦♦
♦♦

♦
cNa

Fig. 3. Scaling of the MNM needed to the system to find a solution for different
numbers n of variables. For each value n, the MNM is measured over 5 different path
RFNG instances. We notice that the points approximately overlap the function cN1.8.

7.2 Fuzzy CSP Benchmark

For the first fuzzy CSP benchmark, we generate Random Fuzzy CSP instances
(RFCSP). To generate such problems, we consider 10 variables and we assign to
each agent a domain of variables D of size 5, and for each assignment we draw
a preference level in the interval [0, 1], by using an uniform distribution. Then,
we set the binary constraints in such a way that they form a path graph, and
we randomly drawn form a uniform distributions in the interval [0, 1] the all the
possible fuzzy values of each binary constraint. We call instance a path RFCSP
instance. In Fig. 4 we show the evolution of the preference level of the solution
proposals. In this execution, our algorithm found the best solution after 264
rounds. The level of this solution is 0.4135. We are certain that this is the best
solution to the path RFCSP instance because we used a brute-force algorithm
to find all the best solutions in advance. It is important to point out that we
did not have to set a threshold level, and the algorithm found the best solution
autonomously.

For the second fuzzy CSP benchmark we consider the n × (n − 1)-queens
problem. The n × (n − 1)-queens problem [9] is a modification of the n-queens
problem in which our objective is to place n queens on a n× (n− 1) chessboard.
Because, this board misses a row it is impossible to find a configuration of the
queens such that there dos not exist a couple of queens that attack each other.
Therefore, we consider a fuzzy version of this problem in which if two queen
do not attack each other, their constraint returns a fuzzy preference of one.

132 S. Bistarelli, G. Gosti, and F. Santini

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

r

S
ol

(P
)

Fig. 4. This graph shows the evaluation of the value of the current solution proposal
at each round r for a single algorithm run on a path RFCSP problem, where n = 10
and domain size 5

Otherwise, the preference level is proportional to the distance of the queens,
according to the formula:

|i2 − i1| − 1

n− 1
(1)

Where i1 is the column of the first queen and i2 is the column of the second
queen. First, as in [17], we search an assignment of the variables in the n×(n−1)-
queens problem that has a preference level greater then 0.8.

Table 1. Results on n × (n − 1)-queens problem with a threshold of 0.8. The table
shows the mean number of rounds MNR, and the mean number of messages MNM
necessary to solve the n× (n− 1)-queens problem at different values of n.

n MNR MNM

10 756 20,401
20 1,870 106,590
30 2,130 185,310
40 2,300 269,100
50 2,600 382,200

In Tab. 1, we present the mean number of roundsMNR, and the mean number
of messages MNM necessary to find a solution with a threshold of 0.8 to the
n× (n− 1)-queens problem. We notice that the algorithm appears to scale well
with regards to the increase in the instance size.

Next, Fig. 5 shows the evaluation of the proposed solution at each round r
for two algorithms runs on n × (n − 1)-queens problem for n = 8. Where we
did not set a threshold and the algorithm searches for the best possible solution.

Solving Fuzzy Distributed CSPs: An Approach with Naming Games 133

We notice that in both executions the algorithm found optimal solutions greater
then 0.8. Unfortunately, the algorithm fails to settle on this solution, because we
did not set a threshold level and because the algorithm in unable to infer that the
optimal solution is lower the 1. To understand that the n×(n−1)-queens problem
has global solution smaller then one the algorithm would have compute not only
the binary constraint among its variable and its neighbor variable, but also the
combination of the binary constraints among the variables of its neighbors. A
complete version of this algorithm would consider this constraint or find a way
to propagate this constraints as in the Asynchronous Backtracking algorithm
[18]. In future work, we intend to implement such complete version. For now it
is important to notice that it is unclear if similar algorithms that do not share
a variable ordering are able to solve this problem, because in [17] the authors
do not consider this situation. Moreover,it is important to point out that in
undistributed CSPs it is reasonable to consider various runs at different threshold
level to find the best solution. But in a distributed CSP this would require an
other level of coordination among the agent that in some circumstances may
require costly or unnecessary assumptions on the communication network.

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t

S
ol

(P
)

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t

S
ol

(P
)

Fig. 5. These two graphs show the evaluation of value of the current solution proposal
at each round r for two algorithms runs on n× (n− 1)-queens problem with n = 8

8 Conclusions and Future Work

In this paper we have shown two main contributions: first we have extended
the NG problem [15,1,13,10] to take into account fuzzy preferences over words.
Secondly, we have also further extended this algorithm in order to solve a generic
instance of Fuzzy DCSPs [14,18,11,12,17], by allowing the solution of binary
fuzzy constraints.

Our algorithm is based on the random exploration of the system state-space:
our method travels through the possible states until it finds the absorbing state,
where it stabilizes. These goals are achieved through the merging of ideas com-
ing from two different fields, and respectively addressed by statistical physics
(i.e., NGs), and the computational framework posed by constraint solving (i.e.,
DCSPs).

134 S. Bistarelli, G. Gosti, and F. Santini

The algorithm proposed in Sec. 5 positively answers to an important question:
can a distributed uniform probabilistic-algorithm solve general Fuzzy DCSP in-
stances? In other words, we show that a Fuzzy DCSP algorithm may work with-
out a predetermined agent/variable ordering, and it can probabilistically solve
instances by taking into account changes to the problem, e.g. deletion/addition
of agents during the execution.

Moreover, in the real world, a predetermined agent ordering may be a quite
restrictive assumption. For example, we may consider our agents to be corpo-
rations, regions in a nation, states in a federation, or independent government
agencies. In all of these cases, a predetermined order may not be acceptable for
many reasons. Hence, we think it is very important to explore and understand
how such distributed systems may work, and what problems may arise.

In the future, we intend to evaluate in depth an asynchronous version of this
algorithm, and to test it using comparison metrics, such as a communication
cost (number of messages sent) and the Number of Non-Concurrent Constraint
Checks (NCCCs). We would also like to compare our algorithm against other dis-
tributed and asynchronous algorithms, such as the Distributed Stochastic Search
Algorithm (DSA) [8], and the Distributed Breakout Algorithm (DBA) [18]. In
addition, we intend to investigate the “fairness” in the loss of privacy between
algorithms with no pre-agreed agent/variable ordering, and algorithms with pre-
agreed agent/variable ordering. We also plan to develop other functions used to
select the speaker in the broadcast phase, and to study the convergence by com-
paring the performance with the function F used in this paper (see Sec. 4.1).

Finally, we will try to generalise the proposed method to generic semiring-
based CSP instances [2], extending the preference from fuzzy to weighted or
probabilistic schemes.

References

1. Baronchelli, A., Felici, M., Caglioti, E., Loreto, V., Steels, L.: Sharp transition
towards shared vocabularies in multi-agent systems. CoRR, abs/physics/0509075
(2005)

2. Bistarelli, S.: Semirings for Soft Constraint Solving and Programming. LNCS,
vol. 2962. Springer, Heidelberg (2004)

3. Bistarelli, S., Gosti, G.: Solving CSPs with Naming Games. In: Oddi, A., Fages,
F., Rossi, F. (eds.) CSCLP 2008. LNCS, vol. 5655, pp. 16–32. Springer, Heidelberg
(2009)

4. Bistarelli, S., Gosti, G.: Solving distributed CSPs probabilistically. Fundam. In-
form. 105(1-2), 57–78 (2010)

5. Bistarelli, S., Gosti, G., Santini, F.: Solving fuzzy DCSPs with naming games. In:
IEEE 23rd International Conference on Tools with Artificial Intelligence, ICTAI
2011, pp. 930–931 (2011)

6. Collin, Z., Dechter, R., Katz, S.: On the feasibility of distributed constraint satis-
faction. In: IJCAI, pp. 318–324 (1991)

7. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17, 643–644 (1974)

Solving Fuzzy Distributed CSPs: An Approach with Naming Games 135

8. Fitzpatrick, S., Meertens, L.: An Experimental Assessment of a Stochastic, Any-
time, Decentralized, Soft Colourer for Sparse Graphs. In: Steinhöfel, K. (ed.) SAGA
2001. LNCS, vol. 2264, pp. 49–64. Springer, Heidelberg (2001)

9. Guan, Q., Friedrich, G.: Extending Constraint Satisfaction Problem Solving in
Structural Design. In: Belli, F., Radermacher, F.J. (eds.) IEA/AIE 1992. LNCS,
vol. 604, pp. 341–350. Springer, Heidelberg (1992)

10. Komarova, N.L., Jameson, K.A., Narens, L.: Evolutionary models of color cat-
egorization based on discrimination. Journal of Mathematical Psychology 51(6),
359–382 (2007)

11. Luo, X., Jennings, N.R., Shadbolt, N., Leung, H., Lee, J.H.: A fuzzy constraint
based model for bilateral, multi-issue negotiations in semi-competitive environ-
ments. Artif. Intell. 148, 53–102 (2003)

12. Nguyen, X.T., Kowalczyk, R.: On solving distributed fuzzy constraint satisfaction
problems with agents. In: Proceedings of the 2007 IEEE/WIC/ACM International
Conference on Intelligent Agent Technology, IAT 2007, pp. 387–390. IEEE Com-
puter Society, Washington, DC (2007)

13. Nowak, M.A., Plotkin, J.B., Krakauer, D.C.: The evolutionary language game.
Journal of Theoretical Biology 200(2), 147–162 (1999)

14. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming (Foun-
dations of Artificial Intelligence). Elsevier Science Inc., New York (2006)

15. Steels, L.: A self-organizing spatial vocabulary. Artificial Life 2(3), 319–332 (1995)
16. Wong, J., Ng, K., Leung, H.: A Stochastic Approach to Solving Fuzzy Constraint

Satisfaction Problems. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 568–
569. Springer, Heidelberg (1996)

17. Wong, J.H.Y., Leung, H.: Extending GENET to solve fuzzy constraint satisfaction
problems. In: Proceedings of the Fifteenth National/Tenth Conference on Artifi-
cial Intelligence/Innovative Applications of Artificial Intelligence, AAAI 1998 IAAI
1998, Menlo Park, CA, USA, pp. 380–385. American Association for Artificial In-
telligence (1998)

18. Yokoo, M., Hirayama, K.: Algorithms for distributed constraint satisfaction: A
review. Autonomous Agents and Multi-Agent Systems 3, 185–207 (2000)

Commitment Protocol Generation

Akın Günay1,∗, Michael Winikoff2, and Pınar Yolum1

1 Computer Engineering Department, Bogazici University, Istanbul, Turkey
{akin.gunay,pinar.yolum}@boun.edu.tr

2 Department of Information Science, University of Otago, Dunedin, New Zealand
michael.winikoff@otago.ac.nz

Abstract. Multiagent systems contain agents that interact with each other to
carry out their activities. The agents’ interactions are usually regulated with pro-
tocols that are assumed to be defined by designers at design time. However, in
many settings, such protocols may not exist or the available protocols may not
fit the needs of the agents. In such cases, agents need to generate a protocol on
the fly. Accordingly, this paper proposes a method that can be used by an agent
to generate commitment protocols to interact with other agents. The generation
algorithm considers the agent’s own goals and capabilities as well as its beliefs
about other agents’ goals and capabilities. This enables generation of commit-
ments that are more likely to be accepted by other agents. We demonstrate the
workings of the algorithm on a case study.

1 Introduction

Interaction is a key element of many multiagent systems. Agents need to interact for
various reasons such as coordinating their activities, collaborating on tasks, and so on.
These interactions are generally regulated by interaction protocols that define the mes-
sages that can be exchanged among agents. Traditionally, agents are supplied with inter-
action protocols at design time. Hence, they do not need to worry about which protocol
to use at run time and can just use the given protocol as they see fit.

However, in open agent systems, where agents enter and leave, an agent may need
to interact with another agent for which no previous interaction protocol has been de-
signed. For example, a buyer may know of interaction protocols to talk to a seller,
but may not be aware of an interaction protocol to talk to a deliverer. If these two
agents meet, they need to figure out a protocol to complete their dealing. Additionally,
even if there is an existing interaction protocol, the interaction protocols that are de-
signed generically may make false assumptions about agents’ capabilities, which would
make the interaction protocol unusable in a real setting. For example, assume that an
e-commerce protocol specifies that a buyer can pay by credit card upon receiving goods
from a seller. If the buyer does not have the capability to pay by credit card, this protocol
will not achieve its purpose. Even when the capabilities of the agents are aligned with
those expected by the interaction protocol, the current context of the agents may not be
appropriate to engage in the protocol. Following the previous example, an agent who

∗ Akın Günay is partially supported by TÜBİTAK Scholarships 2211 and 2214 and Pınar Yolum
is partially supported by a TÜBİTAK Scholarship 2219.

M. Baldoni et al. (Eds.): DALT 2012, LNAI 7784, pp. 136–152, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Commitment Protocol Generation 137

can pay by credit card might have a current goal of minimizing bank transactions for
that month and thus may find it more preferable to pay cash. That is, based on its cur-
rent goals and existing commitments, the interactions that it is willing to engage in may
differ. Therefore an interaction protocol that is blind to agents’ current needs would not
be applicable in many settings.

Accordingly, we argue that an agent needs to generate appropriate interaction pro-
tocols itself at run time. Since the agent would know its own capabilities, goals, and
commitments precisely, it can generate an interaction protocol that respects these. How-
ever, for the interaction protocol to be successful, it should also take into account the
participating agents’ context.

Many times, even though the goals, commitments, or the capabilities of the other
agents may not be known in full, partial information will exist. For example, agents may
advertise their capabilities especially if they are offering them as services (e.g., selling
goods). Existing commitments of the other agents may be known if the agent itself
is part of those commitments (e.g., the agent has committed to deliver, after payment).
The partial goal set of the participating agents may be known from previous interactions
(e.g., the agent is interested in maximizing cash payments), or from domain knowledge
(e.g. merchants in general have the goal of selling goods and/or services). Hence, the
other agents’ context can be approximated and using this approximate model a set of
possible interaction protocols can be generated.

To realize this, we propose a framework in which agents are represented with their
capabilities, goals, and commitments. The interactions of the agents are represented
using commitments [3,14] and the interaction protocols are modeled as commitment
protocols. Commitments offer agents flexibility in carrying out their interactions and
enable them to reason about them [9,19,21]. An agent that wants to engage in an inter-
action considers its own goals, makes assumptions about the other agents’ goals, and
proposes a set of commitments such that, if accepted by the other agent, will lead the
initial agent to realize its goal. While doing this generation, the agent also considers its
own capabilities, so that it generates commitments that it can realize. Note that even
with a good approximation of the other agent, the proposed protocol may not be ac-
ceptable. For this reason, the agent generates a set of alternative protocols rather than a
single one. The exact protocol that will be used is chosen after deliberations with other
agents. Having alternative protocols is also useful for recoverability. That is, if a pro-
tocol is chosen by the agents, but if one of the agents then violates a commitment, the
goals will not be realized as expected. In this case, agents can switch to an alternative
protocol. This work is novel in that it situates commitment-based protocols in the larger
context of agents by relating commitments to the agents goals, capabilities, and their
knowledge of other agents’ goals and capabilities.

The rest of this paper is organized as follows. Section 2 describes our technical
framework in depth. Section 3 introduces our algorithm for generating commitment
protocols based on agents’ goals and capabilities. Section 4 applies the algorithm to a
case study. Section 5 explains how our approach can be used in a multiagent system.
Finally, Section 6 discusses our work in relation to recent work.

138 A. Günay, M. Winikoff, and P. Yolum

2 Technical Framework

In this section we define formally the necessary concepts: agents which have goals that
they want to fulfill, and certain capabilities (formalized as propositions that they are able
to bring about). We also define the notion of a social commitment between agents (in
line with existing approaches, e.g. [21]). The concepts are captured using the following
syntax, where prop is a proposition, and agent is an agent identifier.

commitment → C(agent, agent, prop, prop)cstate

goal → Gagent(prop, prop, prop)gstate

service → Sagent(prop, prop)
belief → BGagent(agent, prop, prop) | BSagent(agent, prop, prop)
cstate → Null |Requested |Active |Conditional |Violated |Fulfilled |Terminated
gstate → Inactive | Active | Satisfied | Failed

Requested (R) Terminated (T)

Null (N) Conditional (C) Active (A)

Fulfilled (F) Violated (V)

request create

reject

create antecedent

cancel

consequent timeoutconsequent

Fig. 1. Life cycle of a commitment

Commitments. A commitment C(debtor, creditor, antecedent, consequent)state ex-
presses the social contract between the agents debtor and creditor, such that if the
antecedent holds, then the debtor is committed to the creditor to bring about the
consequent. Each commitment has a state that represents the current state of the com-
mitment in its life cycle. The state of a commitment evolves depending on the state of
the antecedent and the consequent and also according to the operations performed by
the debtor and the creditor of the commitment. We show the life cycle of a commitment
in Fig. 1. In this figure, the rectangles represent the states of the commitment and the di-
rected edges represent the transitions between the states. Each transition is labeled with
the name of the triggering event. A commitment is in Null state before it is created. The
create operation is performed by the debtor to create the commitment and the state of
the commitment is set to Conditional. If the antecedent already holds while creating
the commitment, the state of the commitment becomes Active immediately. It is also
possible for the creditor of a commitment in Null state to make a request to the debtor
to create the commitment. In this case, the state of the commitment is Requested. The
debtor is free to create the requested commitment or reject it, which makes the commit-
ment Terminated. A Conditional commitment becomes Active if the antecedent starts

Commitment Protocol Generation 139

to hold, Fulfilled if the consequent starts to hold or Terminated if the debtor cancels
the commitment. An Active commitment becomes Fulfilled if the consequent starts
to hold, Violated if the debtor cancels the commitment or Terminated if the creditor
releases the debtor from its commitment. Fulfilled, Violated and Terminated states are
terminal states (depicted with thicker borders in Fig. 1)

Inactive (I) Active (A)

Failed (F) Satisfied (S)

activate

suspend

achievefail

Fig. 2. Life cycle of a goal

Goals. A goal Gagent(precondition, satisfaction, failure)
state represents an aim

of an agent such that the agent has a goal to achieve satisfaction if precondition
holds and the goal fails if failure occurs (adapted from [20]). The state of the goal is
represented by state. We show the life cycle of a goal in Fig. 2. A goal is in Inactive
state if its precondition does not hold. An inactive goal is not pursued by the agent. A
goal is in Active state if its precondition holds and neither satisfaction nor failure
holds. An active goal is pursued by the agent. A goal is Satisfied, if satisfaction starts
to hold while in the Active state. A goal is Failed, if failure occurs while in the Active
state. An active goal may also be suspended, if the precondition ceases to hold. The
Satisfied and Failed states are terminal states.

Capabilities. A capability Sagent(precondition, proposition) states that an agent has
the capability of performing an action (or actions) that will make proposition true.
However, this is only possible if the precondition holds. Note that we use the terms
“capability” and “service” interchangeably: in a context where an agent does some-
thing for itself “capability” makes more sense, but when an agent acts for another agent,
then “service” is more appropriate.

Beliefs. Agents have their own beliefs about other agents’ goals and capabili-
ties. BGagenti (agentj, condition, satisfaction) represents that agenti believes
agentj has the goal satisfaction if condition holds. Note that beliefs about other
agents’ goals do not include information about the failure conditions. Similarly
BSagenti(agentj , condition, proposition) represents that agenti believes agentj is
able to bring about the proposition, if the condition holds. Beliefs about other agents’
capabilities essentially correspond to services provided by other agents and interpreted
as agenti believes that agentj provides a service to bring about proposition, if
condition is brought about (most probably by an effort of agenti). As discussed in
Section 1, although in general other agents’ goals and capabilities are private, some
information will be available. Although it is possible that advertised services may dif-
fer from the actual capabilities of the agent. For example, certain capabilities may not be

140 A. Günay, M. Winikoff, and P. Yolum

advertised, or some advertised services may in fact be realized by a third party (e.g. a
merchant delegating delivery to a courier).

Agents and Multiagent system. An agent is a four tuple A = 〈G,S, C,B〉, where G
is a set of goals that agent A has, S is a set of services (aka capabilities) that agent A
can provide, C is a set of commitments that agent A is involved in and B is a set of
beliefs that agent A has about other agents. A multiagent system A is a set of agents
{A1, . . . , An}. We write a.X to denote the X component of the agent, e.g. writing a.G
to denote the agent’s goals, a.C to denote its commitments etc.

Protocol. We adopt the definition of commitment protocols [7,21] in which a protocol
P is a set of (conditional) commitments. Hence, we do not have explicit message or-
derings. Each agent can manipulate the commitments as it sees fit. The manipulations
of the commitments lead to state changes in the lifecycles of the commitments as de-
picted in Fig. 1. Unlike traditional approaches to capturing protocols, such as AUML,
this approach, using social commitments, aims to provide minimal constraints on the
process by which the interaction achieves its aims [15]. We emphasise that a set of
commitments is a protocol in the sense that it allows for a range of possible concrete
interactions, unlike the notion of contract used by Alberti et al. [1] which represents a
single specific concrete interaction.

Definition 1 (Proposition Support). Given a set Γ of propositions that hold, and a
proposition p, the agent a = 〈G,S, C,B〉 supports p, denoted as a � p, iff at least one
of the following cases holds:

– base case: Γ |= p, i.e. p already holds
– capability: ∃Sa(pre, prop) ∈ S : {prop → p ∧ a � pre}, i.e. the agent is able

to bring about p (more precisely, a condition prop which implies p) itself, and the
required condition is also supported

– commitment: ∃C(a′, a,�, cond)A ∈ C : {cond → p}, i.e. there is an active com-
mitment from another agent to bring about p

– conditional: ∃C(a′, a, ant, cond)C ∈ C : {cond → p ∧ a � ant}, i.e. there is a
conditional commitment from another agent to bring about p, and the antecedent
of the commitment is supported by agent a

The capability case states that p can be made true by agent a if p is one of the agent’s
capabilities. This is the strongest support for p, since p can be achieved by the agent’s
own capabilities. The commitment case states that the agent has a commitment in which
it expects p to become true (because it is the creditor of an active commitment). Note
that this is weaker than the capability condition since the commitment may be violated
by its debtor. In the conditional case, the agent first needs to realize the antecedent for
p to be achieved.

Definition 2 (Goal Support). A goal g = Ga(pre, sat, fail)
A is supported by the

agent a = 〈G,S, C,B〉, denoted as a � g, if a � sat.

Theorem 1. If a proposition p (respectively goal g) is supported by agent a, then the
agent is able to act in such a way that p (resp. g) eventually becomes true (assuming all
active commitments are eventually fulfilled).

Proof: Induction over the cases in Definition 2 (details omitted).

Commitment Protocol Generation 141

3 Commitment Protocol Generation Algorithm

We present an algorithm that uses the agent’s capabilities, commitments and also be-
liefs about other agents, to generate a set of alternative commitment protocols1 such
that each generated protocol supports the given agent’s set of goals. That is, for each
given goal of the agent, either the agent is able to achieve the goal by using its own
capabilities, or the agent is able to ensure that the goal is achieved by relying appropri-
ately on a commitment from another agent which has the goal’s satisfaction condition
as its consequent. More precisely, if an agent a cannot achieve a desired proposition p
using its own capabilities, then the algorithm generates a proposed commitment such
as C(a′, a, q, p)R (ensuring q is supported by a) to obtain (conditional) proposition
support for p, which implies goal support for goal g ≡ Ga(pre, p, fail).

Note that in general, we can only expect to be able to obtain conditional support (in
terms of Definition 1). Obtaining capability support amounts to extending the agent’s
capabilities, and obtaining commitment support amounts to getting an active commit-
ment C(a′, a,�, q)A which, in general, another agent a′ would not have any reason to
accept. Thus, the algorithm proposes commitments that are likely to be attractive to a′

by considering its beliefs about the goals of a′ and creating a candidate commitment
C(a′, a, q, p)R where q is a proposition that is believed to be desired by a′ (i.e. satisfies
one of its goals). Clearly, there are situations where a given goal cannot be supported
(e.g. if no other agents have the ability to bring it about, or if no suitable q can be found
to make the proposed commitments attractive), and hence the algorithm may not always
generate a protocol.

We divide our algorithm into four separate functions (described below) for clarity:

– generateProtocols takes an agent and the set of proposition that hold in the world
as arguments, and returns a set of possible protocols P = {P1, . . . , Pn}, where
each protocol is a set of proposed commitments (i.e. it returns a set of sets of com-
mitments).

– findSupport takes as arguments an agent, a queue of goals, a set of propositions
that are known to hold, and a set of commitments that are known to exist (initially
empty); and does the actual work of computing the possible protocols, returning a
set of possible protocols P .

– isSupported takes as arguments an agent, a proposition, a set of propositions known
to hold, and a set of commitments known to exist; and determines whether the
proposition is supported, returning a Boolean value.

– updateGoals is an auxiliary function used by the main algorithm, and is explained
below.

The generateProtocols function (see Algorithm 1) is the entry point of the algorithm.
It has as parameters an agent a and a set of propositions Γ that hold in the world. Γ
is meant to capture a’s current world state. The algorithm finds possible, alternative
protocols such that when executed separately, each protocol ensures that all of the goals
of that agent are achievable.

1 In practice, we may want to generate the set incrementally, stopping when a suitable protocol
is found.

142 A. Günay, M. Winikoff, and P. Yolum

Algorithm 1. P generateProtocols(a, Γ)
Require: a, the agent that the algorithm runs for
Require: Γ , set of propositions known to be true
1: queue G′ ← {g|g ∈ a.G ∧ g.state = Active}
2: return findSupport(a,G′, Γ, ∅)

The generateProtocols function copies the agent’s active goals into a queue structure
G′ for further processing and then calls the recursive function findSupport providing
a (the agent), G′ (its currently active goals), Γ (the propositions that currently hold),
and ∅ (initial value for Δ) as arguments. The generateProtocols function returns the
result of findSupport, which is a set of commitment protocols (P), i.e. a set of sets of
commitments. Recall that we use a.G to denote the goals G of agent a, and that for goal
g we use g.state to denote its state.

The main function is findSupport (see Algorithm 2). The function recursively calls
itself to generate alternative commitment protocols which support every given goal of
the agent a. The function takes as arguments an agent a, the queue of the agent’s goals
G′ that need to be supported, a set Γ of propositions that are known to be true, and
a set Δ of commitments that are known to exist. The function first defines sets BG
and BS of (respectively) the beliefs of agent a about the goals and the services of
other agents. It then pops the next goal g from the goal queue G′ (Line 3). If all goals
are considered (i.e. g = Null), then there is no need to generate extra commitments.
Hence, the algorithm simply returns one protocol: the set of the commitments already
proposed. This corresponds to the base case of the recursion (Lines 4–5). If the agent
already supports g (determined by isSupported function, see Algorithm 3), then the
algorithm ignores g and calls itself for the next goal in G′ (Line 8).

Otherwise, the function searches for one or more possible sets of commitments that
will support the goal g. It first initializes the set of alternative protocols P to the empty
set (Line 10). Then the algorithm searches for candidate commitments that will support
g. As a first step it checks whether it has any capabilities that would support this goal
if the precondition of the capability could be achieved through help from other agents
(Line 11). Note that if the preconditions could be achieved by the agent itself then the
algorithm would have detected this earlier in Line 3. Hence, here the specific case being
handled is that the precondition of a capability cannot be achieved by the agent itself,
but if it were achieved through other agents, then the capability would enable the agent
to reach its goal g. For each such capability, we make the precondition pre a new goal
for the agent, add it to the list of goals G′ that it wants to achieve, and recursively call
findSupport to find protocols.

After checking its own capabilities for achieving g, the agent then also starts looking
for another agent with a known service s′ ∈ BS such that s′ achieves the satisfaction
condition of the goal g (Line 14). For any such service s′, we generate a proposed
commitment of the form C(a′, a, sat′, prop)R (Line 16), where a′ is the agent that is
believed to be provide the service s′, a is the agent being considered by the call to the
function (its first argument), prop implies the satisfaction condition of the desired goal
g (i.e. prop → sat), and sat′ is an “attractive condition” to the proposed debtor agent
(a′). The notion of “attractive to agent a′” is defined in line 15: we look for a condition

Commitment Protocol Generation 143

Algorithm 2. P findSupport(a,G′, Γ,Δ)

Require: a, the agent that the algorithm runs for
Require: G′, queue of agent’s (active) goals
Require: Γ , set of propositions known to be true
Require: Δ, set of commitments already generated (initially called with ∅)
1: define BG ≡ {b|b ∈ a.B ∧ b = BGa(a

′, gc, s)}
2: define BS ≡ {b|b ∈ a.B ∧ b = BSa(a

′, c, p)}
3: g ← pop(G′)
4: if g = Null then
5: return {Δ}
6: // else g = Ga(gpre, sat, fail)

A

7: else if isSupported(a, sat, Γ,Δ) then
8: return findSupport(a,G′, Γ,Δ)
9: else

10: P = ∅
11: for all {s | Sa(pre, prop) ∈ a.S ∧ prop → sat} do
12: P ← P ∪ findSupport(a, {Ga(�, pre,⊥)A} ∪ G′, Γ,Δ)
13: end for
14: for all {s′ | BSa(a

′, cond, prop) ∈ BS ∧ prop → sat} do
15: for all {g′ | BGa(a

′, pre′, sat′) ∈ BG ∧ isSupported(a, pre′, Γ,Δ)} do
16: c ← C(a′, a, sat′, prop)R

17: G′′ ← updateGoals(sat′, prop, a.G,G′)
18: if ¬isSupported(a, sat′, Γ,Δ) then
19: G′′ ← {Ga(�, sat′,⊥)A} ∪ G′′

20: end if
21: if ¬ isSupported(a, cond, Γ,Δ) then
22: G′′ ← {Ga(�, cond,⊥)A} ∪ G′′

23: end if
24: P ← P ∪ findSupport(a,G′′, Γ,Δ ∪ {c})
25: end for
26: end for
27: return P
28: end if

sat′ that is believed to be a goal of agent a′. Specifically, we consider the known goals
BG of other agents, and look for a g′ ∈ BG such that g′ = BGa(a

′, pre′, sat′) where
pre′ is already supported by agent a.

Next, having generated a potential commitment C(a′, a, sat′, prop)R where the
debtor, a′, has a service that can achieve the desired condition prop and has a goal
to bring about sat′ (which makes the proposed commitment attractive), we update the
goals of the agent (discussed below) and check whether (1) the promised condition sat′

is supported by agent a, and (2) the precondition cond for realizing prop is supported
by agent a. If they are supported, then a does not need to do anything else. Otherwise,
it adds the respective proposition to the list of goals G′′ (Lines 19 and 22), so that ap-
propriate support for these propositions can be obtained.

Finally, the agent calls the function recursively to deal with the remainder of the
goals in the updated goal queue G′′. When doing this, it adds the currently created

144 A. Günay, M. Winikoff, and P. Yolum

commitment c to the list of already generated commitments Δ. The result of the func-
tion call is added to the existing set of possible protocolsP (line 24). Once the agent has
completed searching for ways of supporting g, it returns the collected set of protocols
P . Note that if the agent is unable to find a way of supporting its goals, then P will be
empty, and the algorithm returns the empty set, indicating that no candidate protocols
could be found.

Algorithm 3. {true | false} isSupported(a, p, Γ , Δ)
Require: a, agent to check for support of p
Require: p, property to check for support
Require: Γ , set of propositions known to be true
Require: Δ, set of commitments already generated
1: if Γ |= p then
2: return true
3: end if
4: for all s = Sa(pre, prop) ∈ a.S do
5: if prop → p ∧ isSupported(a, pre, Γ,Δ) then
6: return true
7: end if
8: end for
9: for all {c | C(a′, a, cond, prop) ∈ (a.C ∪Δ)} do

10: if c.state = Active ∧ prop → p then
11: return true
12: else if (c.state = Conditional ∨ c.state = Requested) ∧ prop → p ∧

isSupported(a, cond, Γ,Δ) then
13: return true
14: end if
15: end for
16: return false

Algorithm 3 defines the isSupported function. This algorithm corresponds to Defi-
nition 1 and returns true if the given proposition p is supported by the given agent a,
and false otherwise. The first case (line 1) checks whether the proposition is known to
be true. The second case checks capability support. That is, whether p is supported by
a capability s of the agent. More precisely, if the proposition prop of s implies p and
the precondition pre of s is supported by the agent (Lines 4-8). The third case checks
commitment support by checking whether a has (or will have) an active commitment c,
in which a is the creditor and the consequent prop implies p (Lines 10-11). In the last
case, the algorithm checks conditional support by checking whether a has (or will have)
a conditional commitment c, in which a is the creditor, the consequent prop implies p
and a supports the antecedent cond (Lines 12-14). If none of the above cases hold, then
the algorithm returns false, indicating that p is not supported by a.

Algorithm 4 defines the updateGoals function. This function is called when a new
commitment is generated to support goal g of agent a. It takes propositions ant and
cons corresponding respectively to the antecedent and consequent of the new commit-
ment. The function also takes as arguments the goals G of agent a, and the queue of

Commitment Protocol Generation 145

Algorithm 4. G′′ updateGoals(ant, cons, G, G′)
Require: ant, the antecedent of the new commitment
Require: cons, the consequent of the new commitment
Require: G, set of agent’s goals
Require: G′, the current queue of (potentially) unsupported goals
1: create new queue G′′

2: G′′ ← copy of G′

3: for all {g | Ga(pre, sat, fail) ∈ G} do
4: if g.state = Inactive ∧ (ant → pre ∨ cons → pre) then
5: g.state ← Active
6: push(G′′, g)
7: end if
8: end for
9: return G′′

currently unsupported goals G′. The algorithm assumes that both ant and cond will
be achieved at some future point due to the generated commitment. Accordingly, the
algorithm assumes that currently inactive goals which have ant or cond as their pre-
condition will be activated at some future point. Hence, these goals also need to be able
to be achieved, i.e. to be supported by agent a. The algorithm thus generates these ad-
ditional goals, and adds them to a (new queue) G′′. The algorithm first creates a new
queue G′′ and copies into it the current contents of G′ (Line 2). Then the goals in G that
are inactive but will be activated are pushed into G′′ as active goals (Lines 3-8). Finally,
G′′ is returned. Instead of pushing the goals that are assumed to be activated directly
into G′, the algorithm creates a new queue. This is done because every recursive call in
line 24 of Algorithm 2 is related to a different commitment, which activates different
goals depending on its antecedent and consequent. Hence each recursive call requires a
different goal queue.

The algorithms presented are sound in the sense of Theorem 1: for any generated
protocol, the agent is able to act in such a way as to ensure that the desired goal
becomes achieved, without making any assumptions about the behaviour of other agents,
other than that they fulfill their active commitments. The algorithms in this section have
been implemented (available from http://mas.cmpe.boun.edu.tr/akin/
cpgen.html), and have been used to generate protocols for a number of case studies,
including the one we present next, which took 0.6 seconds to generate protocols (on a
2.7GHz Intel Core i7 machine with 4 GB RAM running Ubuntu Linux).

4 Case Study

We illustrate our commitment generation algorithm’s progress through an e-commerce
scenario. In this scenario there is a customer (Cus), a merchant (Mer) and a bank
(Bank). The goal of the customer is to buy some product from the merchant. The
customer also has a goal of being refunded by the merchant, if the purchased product is
defective. The customer is capable of making payment orders to the bank to pay to the
merchant. The customer can also use a gift card, instead of payment. The merchant’s

http://mas.cmpe.boun.edu.tr/akin/cpgen.html
http://mas.cmpe.boun.edu.tr/akin/cpgen.html

146 A. Günay, M. Winikoff, and P. Yolum

goal is to be paid or to receive a gift card and the bank’s goal is to get payment orders
to earn commissions. We discuss the scenario from the customer’s point of view, who
runs our algorithm to generate a protocol in order to satisfy her goals. We first describe
the propositions that we use and their meanings:

– Delivered: The purchased product is delivered to the customer.
– Paid: The merchant is paid.
– HasGiftCard: The customer has a gift card.
– GiftCardUsed: The customer uses the gift card.
– Defective: The delivered product is defective.
– Returned: The delivered product is returned to the merchant.
– Refunded: The customer is refunded.
– PaymentOrdered: The bank receives a payment order.

The customer has the following goals and capabilities: g1 states that the goal of the
customer is to have the product be delivered (without any condition) and g2 represents
the goal of the customer to be refunded, if the delivered product is defective, s1 states
that the customer is able to make payment orders (without any condition), and s2 states
that the customer is able to use a gift card (instead of payment), if she has one. Finally,
s3 states that the customer is capable of returning a product, if it is defective.

– g1 = GCus(�, Delivered,¬Delivered)
– g2 = GCus(Defective, Refunded,¬Refunded)
– s1 = SCus(�, PaymentOrdered)
– s2 = SCus(HaveGiftCard,GiftCardUsed)
– s3 = SCus(Defective, Returned)

The customer has the following beliefs about the other agents: b1 and b2 state that
the customer believes that the merchant provides a service to deliver a product, if the
merchant is paid or a gift card is used, respectively. b3 represents the belief that the
merchant will give a refund, if a product is returned, and b4 is the belief about the
service of the bank to perform a money transaction for payment, if the bank receives
such a request. The customer also believes that the goal of the merchant is to be paid
(b5) or to receive a gift card (b6) and refund the customer if a sold product is defective
(b7), in order to ensure customer satisfaction. The goal of the bank is to receive payment
orders (b8), so that it can earn a commission from payment orders.

– b1 = BSCus(Mer, Paid,Delivered)
– b2 = BSCus(Mer,GiftCardUsed,Delivered)
– b3 = BSCus(Mer,Returned,Refunded)
– b4 = BSCus(Bank, PaymentOrdered, Paid)
– b5 = BGCus(Mer,�, Paid)
– b6 = BGCus(Mer,�, GiftCardUsed)
– b7 = BGCus(Mer,Defective, Returned)
– b8 = BGCus(Bank,�, PaymentOrdered)

Commitment Protocol Generation 147

Figure 3 summarises the case study. Ovals are used to denote services, and rectangles
denote propositions. Solid arrows (e.g. between the proposition Paid and the service
Delivered in the Merchant) indicate the preconditions of a service. Dashed arrows
show where a service in one agent is able to bring about a precondition that is desired
by another agent.

Customer

Merchant

Bank

Delivered Refunded
(if Defective)

PaymentOrdered

PaymentOrdered

GiftCardUsed
(if HasGiftCard)

GiftCardUsed

Returned
(if Defective)

Returned
(if Defective)

Paid

Delivered Refunded

Paid

Fig. 3. Case Study

Let us first discuss the states of the merchant’s goals g1 and g2. The algorithm con-
siders both goals as active. g1 is active, since its condition is �. On the other hand,
Defective actually does not hold initially, which means g2 should not be active. How-
ever, the algorithm assumes that Defective holds, since its truth value is not controlled
by any agent and therefore may or may not be true while executing the protocol. Us-
ing this assumption, the algorithm aims to create necessary commitments to capture all
potential future situations during the execution of the protocol.

Let us walk through the protocol generation process. The algorithm starts with g1. To
support Delivered, which is the satisfaction condition of g1, the algorithm generates
the commitment c1 = C(Mer,Cus, Paid,Delivered)R using the belief b1, which is
about the service to provide Delivered and b5, which is the goal of the merchant. How-
ever, the antecedent Paid of c1 is not supported by the customer. Hence, the algorithm
considers Paid as a new goal of the customer and starts to search for support for it. It
finds the belief b4, which indicates that the bank can bring about Paid with a condition
PaymentOrdered, which is also a goal of the bank due to b8. PaymentOrdered is
already supported, since it is a capability of the customer (s1). Hence, the algorithm
generates the commitment c2 = C(Bank,Cus, PaymentOrdered, Paid)R. At this
point, everything is supported to achieve g1. The algorithm continues for g2, which is
achieved, if Refunded holds. Refunded can be achieved by generating the commit-
ment c3 = C(Mer,Cus,Returned,Refunded)R using the service b3 and the goal
b7 of the merchant. The antecedent Returned is a capability of the customer with a
supported condition Defective. Hence, everything is supported to achieve g2 and the
algorithm returns the protocol that contains commitments c1, c2, and c3.

148 A. Günay, M. Winikoff, and P. Yolum

Let us examine the protocol. c1 states that the merchant is committed to deliver the
product if the customer pays for it. However, the customer is not capable of payment
(cannot bring about Paid by itself). c2 handles this situation, since the bank is com-
mitted to make the payment if the customer orders a payment. Finally, c3 guarantees
a refund, if the customer returns the product to the merchant. Note that the customer
returns the product only if it is defective (s2), hence there is no conflict with the goal
(b5) of the merchant.

Although the above protocol supports all the goals of the customer, the algorithm
continues to search for other alternative protocols, since our aim is to generate all pos-
sible protocols to achieve the goals. Hence, it starts to search for alternative protocols
that support the goals of the customer. It finds that it is possible to support g1 also
by using the service b2. Accordingly, the algorithm initiates a new alternative protocol
and generates the commitment c2−1 = C(Mer,Cus,GiftCardUsed,Delivered)R

using the beliefs b2 and b6. However, the antecedent GiftCardUsed of c2−1 is not
supported by the customer, since HasGiftCard, which is the condition of service s2,
does not hold. The algorithm searches for support for HasGiftCard, but it fails, since
neither the customer nor any other agent is able to bring it about.

Note that our algorithm also generates other protocols, which, due to information
about other agents not being complete or correct, may be inappropriate. For instance,
such a protocol may include a commitment such as C(Mer,Cus, Paid,Refunded)R.
This happens because the algorithm considers all believed goals of the other agents
while creating commitments. Specifically, to satisfy her goal Refunded, the customer
considers the known goals of the merchant, and finds three options to offer to the mer-
chant in return: Paid, GiftCardUsed and Returned. Hence the algorithm creates
three alternative commitments using each of these three goals of the merchant and each
commitment is considered as an alternative protocol. Another example of this is a sit-
uation where the merchant actually replaces a defective product instead of refunding
money (i.e. b2 is incorrect). We deal with inappropriate protocols by requiring all in-
volved agents to agree to a proposed protocol (see below). Specifically in this case
when the customer requests the commitment from the merchant, the merchant would
not accept the request.

5 Using Generated Protocols

The algorithm presented in the previous section generates candidate protocols, i.e. pos-
sible sets of proposed commitments that, if accepted, support the achievement of the
desired propositions. In this section we consider the bigger picture and answer the ques-
tion: how are the generated candidate protocols used?

The process is described in Algorithm 5, which uses two variables: the set of candi-
date protocols (P), and the set of commitments (in the current candidate protocol, P)
that agents have already accepted (C). We begin by generating the set of protocols P
(line 1). Next, we need to select one of the protocols2 (line 2). The selected protocol
is removed from P . We then propose each commitment in the protocol to its debtor.

2 For the present we assume that the selection is done based on the simple heuristic that fewer
commitments are preferred.

Commitment Protocol Generation 149

Algorithm 5. generateAndUseProtocols(a, Γ)
Require: a, the agent that the algorithm runs for
Require: Γ , set of propositions known to be true
1: P ← generateProtocols(a,Γ)
2: select P ∈ P
3: P ← P \ {P}
4: C ← ∅
5: for all C(x, y, p, q)R ∈ P such that x �= a do
6: Propose C(x, y, p, q)R to agent x
7: if Agent x declines then
8: for all C(x, y, p, q)R ∈ C do
9: Release agent x from the commitment C(x, y, p, q)R

10: end for
11: Go to line 2
12: else
13: C ← C ∪ {C(x, y, p, q)R}
14: end if
15: end for
16: Execute Protocol P

This is needed because, as noted earlier, domain knowledge about other agents’ goals
may not be entirely correct or up-to-date. If any agent declines the proposed commit-
ment then we cannot use the protocol, and so we clean up by releasing agents from their
commitments in the protocol, and then try an alternative protocol. If all agents accept
the commitments, then the protocol is executed.

Note that, since agents may not always fulfill their active commitments, we need to
monitor the execution (e.g. [10]), and in case a commitment becomes violated, initiate
action to recover. There are a range of possible approaches for recovery including sim-
ply abandoning the protocol and generating new protocols in the new state of the world;
and using compensation [18].

6 Discussion

We developed an approach that enables agents to create commitment protocols that fit
their goals. To achieve this, we proposed to represent agents’ capabilities and commit-
ments in addition to their goals. Agents reason about their goals as well as their beliefs
about other agents’ capabilities and goals to generate commitments. Our experiments
on an existing case study showed that an agent can indeed generate a set of commitment
protocols that can be used among agents. Hence, even agents who do not have any prior
protocols among them can communicate to carry out their interactions.

While we primarily discuss how our approach can be used at runtime, many of the
underlying ideas can be used at design time as well. That is, a system designer who is
aware of some of the goals and capabilities of the agents that will interact at runtime, can
use the algorithm to generate protocols for them. This will enable a principled approach
for designing commitment-based protocols.

150 A. Günay, M. Winikoff, and P. Yolum

Goals and commitments have been both widely studied in the literature. On the goals
side, Thangarajah et al. [17] study relations and conflicts between goals. van Riems-
dijk et al. [13] study different types of goals and propose to represent them in a unify-
ing framework. On the commitments side, El-Menshawy et al. [8] study new semantics
for commitments. Chopra and Singh [5,6] study the interoperability and alignment of
commitments. However, the interaction between goals and commitments has started to
receive attention only recently.

Chopra et al. [4] propose a formalization of the semantic relationship between agents’
goals and commitment protocols. Their aim is to check whether a given commitment
protocol can be used to realize a certain goal. To do this, they define a capability set
for each agent and first check if an agent can indeed carry out the commitments it
participates in. This is important and can be used by agents to choose among possible
commitment protocols. Chopra et al. assume that the commitment protocols are already
available for agents. By contrast, in our work, we are proposing a method for the agents
to generate a commitment protocol that they can use to realize their goals from scratch.

Işıksal [11] studies how an agent can create a single commitment to realize its goal
with the help of other agents’ in the system. She proposes reasoning rules that can
be applied in various situations and she applies these rules on an ambient intelligence
setting. She does not generate a set of alternative protocols and does not consider beliefs
about other agents’ goals as we have done here.

Desai et al. [7] propose Amoeba, a methodology to design commitment based pro-
tocols for cross-organizational business processes. This methodology enables a system
designer to specify business processes through the participating agents’ commitments.
The methodology accommodates useful properties such as composition. Desai et al.
model contextual changes as exceptions and deal with them through metacommitments.
Their commitment-based specification is developed at design time by a human, based
on the roles the agents will play. In this work, on the other hand, we are interested in
agents generating their commitments themselves at run time. This will enable agents to
interact with others even when an appropriate protocol has not been designed at design
time.

Telang et al. [16] develop an operational semantics for goals and commitments. They
specify rules for the evolution of commitments in light of agents’ goals. These practical
rules define when an agent should abandon a commitment, when it should negotiate, and
so on. These rules are especially useful after a commitment protocol has been created
and is in use. In this respect, our work in this paper is a predecessor to the execution
of the approach that is described by Telang et al., that is, after the protocol has been
generated, the agents can execute it as they see fit, based on their current goals.

The work of Marengo et al. [12] is related to this work. Specifically, our notion of
support (Definition 1) is analogous to their notion of control: intuitively, in order for an
agent to consider a proposition to be supported, it needs to be able to ensure that it is
achieved, i.e. be able to control its achievement. However, whereas the aim of their work
is to develop a framework for reasoning about control and safety of given protocols, our
aim is to derive protocols.

Commitment Protocol Generation 151

There are a number of directions for future work:

– A key direction is the development of means for ranking generated alternative pro-
tocols.

– A second direction is to explore how well our algorithms manage to generate ap-
propriate protocols in situations where the agent’s beliefs about other agents’ goals
and capabilities are incomplete or inconsistent.

– When generating protocols, it may be possible to reduce the search space by inter-
leaving protocol generation with checking the acceptability of the protocol. Rather
than waiting until a complete protocol is constructed, whenever a commitment is
proposed, we could check with the proposed debtor whether that commitment is
acceptable. In general, a commitment’s acceptability may depend on the rest of the
protocol, but there may be some commitments that are clearly unacceptable regard-
less of context, and in these cases we can terminate the generation of protocols
including that commitment.

– Our representation of protocols follows the “traditional” approach to commitment-
based protocols. It has been argued that the representation ought to be extended
with the ability to represent regulative temporal constraints [2], and one direction
for future work is to extend our protocol generation framework and algorithm to
support such constraints.

References

1. Alberti, M., Cattafi, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Montali, M., Tor-
roni, P.: A Computational Logic Application Framework for Service Discovery and Con-
tracting. International Journal of Web Services Research (IJWSR) 8(3), 1–25 (2011)

2. Baldoni, M., Baroglio, C., Capuzzimati, F., Marengo, E., Patti, V.: A Generalized Com-
mitment Machine for 2CL Protocols and its Implementation. In: Baldoni, M., Dennis, L.,
Mascardi, V., Vasconcelos, W. (eds.) DALT 2012. LNCS (LNAI), vol. 7784, pp. 96–115.
Springer, Heidelberg (2013)

3. Castelfranchi, C.: Commitments: From Individual Intentions to Groups and Organizations.
In: Lesser, V.R., Gasser, L. (eds.) ICMAS, pp. 41–48. The MIT Press (1995)

4. Chopra, A.K., Dalpiaz, F., Giorgini, P., Mylopoulos, J.: Reasoning about Agents and Proto-
cols via Goals and Commitments. In: International Conference on Autonomous Agents and
Multiagent Systems, AAMAS, pp. 457–464 (2010)

5. Chopra, A.K., Singh, M.P.: Constitutive Interoperability. In: International Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS, pp. 797–804 (2008)

6. Chopra, A.K., Singh, M.P.: Multiagent Commitment Alignment. In: International Confer-
ence on Autonomous Agents and Multiagent Systems, AAMAS, pp. 937–944 (2009)

7. Desai, N., Chopra, A.K., Singh, M.P.: Amoeba: A Methodology for Modeling and Evolving
Cross-organizational Business Processes. ACM Transactions on Software Engineering and
Methodology 19, 6:1–6:45 (2009)

8. El-Menshawy, M., Bentahar, J., Dssouli, R.: A New Semantics of Social Commitments Using
Branching Space-Time Logic. In: WI-IAT 2009: Proceedings of the 2009 IEEE/WIC/ACM
International Joint Conference on Web Intelligence and Intelligent Agent Technology, pp.
492–496 (2009)

9. Fornara, N., Colombetti, M.: Operational Specification of a Commitment-Based Agent Com-
munication Language. In: International Conference on Autonomous Agents and Multiagent
Systems, AAMAS, pp. 536–542 (2002)

152 A. Günay, M. Winikoff, and P. Yolum

10. Günay, A., Yolum, P.: Detecting Conflicts in Commitments. In: Sakama, C., Sardina, S.,
Vasconcelos, W., Winikoff, M. (eds.) DALT 2011. LNCS, vol. 7169, pp. 51–66. Springer,
Heidelberg (2012)

11. Işıksal, A.: Use of Goals for Creating and Enacting Dynamic Contracts in Ambient Intelli-
gence. Master’s thesis, Bogazici University (2012)

12. Marengo, E., Baldoni, M., Baroglio, C., Chopra, A.K., Patti, V., Singh, M.P.: Commitments
with Regulations: Reasoning about Safety and Control in REGULA. In: International Con-
ference on Autonomous Agents and Multiagent Systems, AAMAS, pp. 467–474 (2011)

13. van Riemsdijk, M.B., Dastani, M., Winikoff, M.: Goals in Agent Systems: A Unifying
Framework. In: International Conference on Autonomous Agents and Multiagent Systems,
AAMAS, pp. 713–720 (2008)

14. Singh, M.P.: An Ontology for Commitments in Multiagent Systems. Artificial Intelligence
and Law 7(1), 97–113 (1999)

15. Singh, M.P.: Information-Driven Interaction-Oriented Programming: BSPL, the Blindingly
Simple Protocol Language. In: International Conference on Autonomous Agents and Multi-
agent Systems, AAMAS, pp. 491–498 (2011)

16. Telang, P.R., Yorke-Smith, N., Singh, M.P.: A Coupled Operational Semantics for Goals
and Commitments. In: 9th International Workshop on Programming Multi-Agent Systems,
ProMAS (2011)

17. Thangarajah, J., Padgham, L., Winikoff, M.: Detecting & Avoiding Interference Between
Goals in Intelligent Agents. In: Proceedings of the 18th International Joint Conference on
Artificial Intelligence, pp. 721–726 (2003)

18. Torroni, P., Chesani, F., Mello, P., Montali, M.: Social Commitments in Time: Satisfied or
Compensated. In: Baldoni, M., Bentahar, J., van Riemsdijk, M.B., Lloyd, J. (eds.) DALT
2009. LNCS, vol. 5948, pp. 228–243. Springer, Heidelberg (2010)

19. Winikoff, M., Liu, W., Harland, J.: Enhancing Commitment Machines. In: Leite, J., Omicini,
A., Torroni, P., Yolum, p. (eds.) DALT 2004. LNCS (LNAI), vol. 3476, pp. 198–220.
Springer, Heidelberg (2005)

20. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative & procedural goals in
intelligent agent systems. In: KR, pp. 470–481 (2002)

21. Yolum, P., Singh, M.P.: Flexible Protocol Specification and Execution: Applying Event Cal-
culus Planning using Commitments. In: International Conference on Autonomous Agents
and Multiagent Systems, AAMAS, pp. 527–534 (2002)

Goal-Based Qualitative Preference Systems

Wietske Visser, Koen V. Hindriks, and Catholijn M. Jonker

Interactive Intelligence Group, Delft University of Technology, The Netherlands
{wietske.visser,k.v.hindriks,c.m.jonker}@tudelft.nl

Abstract. Goals are not only used to identify desired states or outcomes, but
may also be used to derive qualitative preferences between outcomes. We show
that Qualitative Preference Systems (QPSs) provide a general, flexible and suc-
cinct way to represent preferences based on goals. If the domain is not Boolean,
preferences are often based on orderings on the possible values of variables. We
show that QPSs that are based on such multi-valued criteria can be translated into
equivalent goal-based QPSs that are just as succinct. Finally, we show that goal-
based QPSs allow for more fine-grained updates than their multi-valued coun-
terparts. These results show that goals are very expressive as a representation of
qualitative preferences and moreover, that there are certain advantages of using
goals instead of multi-valued criteria.

Keywords: Qualitative multi-criteria preferences, goals.

1 Introduction

In planning and decision making, goals are used to identify the desired states or out-
comes. Essentially, goals provide a binary distinction between those states or outcomes
that satisfy the goal and those that do not [1]. Outcomes that satisfy all goals are ac-
ceptable. However, it may happen that such outcomes are not available, but a decision
still has to be made. Or there may be multiple outcomes that satisfy all goals and only
one can be chosen. In these situations, goals provide no guidance to choose between the
available alternatives [1,2].

Instead of using goals in an absolute sense, it would be more convenient to use them
to derive preferences between outcomes. There are multiple approaches to doing this in
the literature, for example comparing the number of goals that are satisfied, or taking
the relative importance of the (un)satisfied goals into account. We show in Section 2
that Qualitative Preference Systems [3] provide a general, flexible and succinct way to
represent preferences based on goals. In this approach goals are modelled as criteria
that can be combined to derive a preference between outcomes. We show that the best-
known qualitative approaches to interpret goals as a representation of preferences are
all expressible in a QPS.

Most goal-based approaches in the literature define outcomes as propositional mod-
els, i.e. all variables are Boolean, either true or false. In real-world applications, not all
variables are Boolean. For example, variables may be numeric (e.g. cost, length, num-
ber, rating, duration, percentage) or nominal (e.g. destination, colour, location). Qual-
itative Preference Systems typically express preferences, in a compact way, based on

M. Baldoni et al. (Eds.): DALT 2012, LNAI 7784, pp. 153–169, 2013.
© Springer-Verlag Berlin Heidelberg 2013

154 W. Visser, K.V. Hindriks, and C.M. Jonker

preference orderings on the possible values of variables. In Section 3 we show that such
QPSs can be translated into equivalent goal-based QPSs, i.e. QPSs that express pref-
erences based solely on goals. Such a translation requires at most polynomially more
space, and hence is just as succinct as the original QPS. This result shows that goals
are very expressive as a representation of qualitative preferences among outcomes. In
[3], we discussed in detail the relation between Qualitative Preference Systems and two
well-known frameworks that are representative for a large number of purely qualitative
approaches to modelling preferences, namely Logical Preference Description language
[4] and CP-nets [5]. We showed that for both of these approaches, a corresponding QPS
can be defined straightforwardly. Since a QPS can be translated to a goal-based QPS,
this result also holds for the goal-based QPSs that are the topic of the current paper.

In Section 4 we show that goal-based criterion trees also have some added value
compared to trees with multi-valued criteria. We introduce basic updates on a QPS and
show that goal-based QPSs allow for more fine-grained updates than their multi-valued
counterparts. This is due to the different structure of goal-based criteria. We suggest
a top-down approach to preference elicitation that starts with coarse updates and only
adapts the criterion structure if more fine-grained updates are needed. Finally, Section
5 concludes the paper.

2 Modelling Goals as Criteria in a QPS

Several approaches to derive preferences over outcomes from goals can be found in the
literature. Goals are commonly defined as some desired property that is either satisfied
or not. As such, it is naturally represented as a propositional formula that can be true
or false. Hence outcomes are often defined as propositional models, i.e. valuations over
a set of Boolean variables p,q,r, Sometimes all theoretically possible models are
considered, sometimes the set of outcomes is restricted by a set of constraints. In the
latter case, it is possible to specify which outcomes are actually available, or to use
auxiliary variables whose values are derived from the values of other variables.

In [3] we introduced a framework for representing qualitative multi-criteria pref-
erences called Qualitative Preference Systems (QPS). With this framework we aim to
provide a generic way to represent qualitative preferences that are based on multiple cri-
teria. A criterion can be seen as a preference from one particular perspective. We first
summarize the general definition of a QPS from [3] in Section 2.1. We then propose
in Section 2.2 that a goal can be straightforwardly modelled as a criterion in a QPS,
thus providing the means to derive preferences over outcomes from multiple goals. In
Section 2.3 we show that QPSs based on goal criteria can express different interpre-
tations of what it means to have a goal p, such as absolute, ceteris paribus, leximin
and discrimin preferences, and provide the possibility to state goals in terms of more
fundamental interests.

2.1 Qualitative Preference Systems

The main aim of a QPS is to determine preferences between outcomes (or alternatives).
An outcome is represented as an assignment of values to a set of relevant variables.

Goal-Based Qualitative Preference Systems 155

Every variable has its own domain of possible values. Constraints on the assignments
of values to variables are expressed in a knowledge base. Outcomes are defined as
variable assignments that respect the constraints in the knowledge base.

The preferences between outcomes are based on multiple criteria. Every criterion
can be seen as a reason for preference, or as a preference from one particular perspec-
tive. A distinction is made between simple and compound criteria. Simple criteria are
based on a single variable. Multiple (simple) criteria can be combined in a compound
criterion to determine an overall preference. There are two kinds of compound criteria:
cardinality criteria and lexicographic criteria. The subcriteria of a cardinality criterion
all have equal importance, and preference is determined by counting the number of
subcriteria that support it. In a lexicographic criterion, the subcriteria are ordered by
priority and preference is determined by the most important subcriteria.

Definition 1. (Qualitative preference system [3]) A qualitative preference system
(QPS) is a tuple ⟨Var,Dom,K,C⟩. Var is a finite set of variables. Every variable X ∈Var
has a domain Dom(X) of possible values. K (a knowledge base) is a set of constraints
on the assignments of values to the variables in Var. A constraint is an equation of the
form X = Expr where X ∈ Var is a variable and Expr is an algebraic expression that
maps to Dom(X). An outcome α is an assignment of a value x ∈ Dom(X) to every
variable X ∈ Var, such that no constraints in K are violated. Ω denotes the set of all
outcomes: Ω ⊆∏X∈Var Dom(X). αX denotes the value of variable X in outcome α . C is
a finite, rooted tree of criteria, where leaf nodes are simple criteria and other nodes are
compound criteria. Child nodes of a compound criterion are called its subcriteria. The
root of the tree is called the top criterion. Weak preference between outcomes by a crite-
rion c is denoted by the relation ⪰c. ≻c denotes the strict subrelation, ≈c the indifference
subrelation.

Definition 2. (Simple criterion [3]) A simple criterion c is a tuple ⟨Xc,
c⟩, where Xc ∈
Var is a variable, and
c, a preference relation on the possible values of Xc, is a preorder
on Dom(Xc). ⋗c is the strict subrelation, ≐c is the indifference subrelation. We call c a
Boolean simple criterion if Xc is Boolean and ⊺ ⋗c �. A simple criterion c = ⟨Xc,
c⟩
weakly prefers an outcome α over an outcome β , denoted α ⪰c β , iff αXc
c βXc .

Definition 3. (Cardinality criterion [3]) A cardinality criterion c is a tuple ⟨Cc⟩ where
Cc is a nonempty set of Boolean simple criteria (the subcriteria of c). A cardinality
criterion c = ⟨Cc⟩ weakly prefers an outcome α over an outcome β , denoted α ⪰c β , iff
∣{s ∈Cc ∣ α ≻s β}∣ ≥ ∣{s ∈Cc ∣ α /⪰s β}∣.

Note that a cardinality criterion can only have Boolean simple subcriteria. This is to
guarantee transitivity of the preference relation induced by a cardinality criterion [3].

Definition 4. (Lexicographic criterion [3]) A lexicographic criterion c is a tuple
⟨Cc,⊳c⟩, where Cc is a nonempty set of criteria (the subcriteria of c) and ⊳c, a pri-
ority relation among subcriteria, is a strict partial order (a transitive and asymmetric
relation) on Cc. A lexicographic criterion c = ⟨Cc,⊳c⟩ weakly prefers an outcome α over
an outcome β , denoted α ⪰c β , iff ∀s ∈Cc(α ⪰s β ∨∃s′ ∈Cc(α ≻s′ β ∧ s′ ⊳c s)).

This definition of preference by a lexicographic criterion is equivalent to the priority
operator as defined by [6]. It generalizes the familiar rule used for alphabetic ordering

156 W. Visser, K.V. Hindriks, and C.M. Jonker

l

DC

400

500

300
·>

·>

R B

P
·>

·= 400

500

300

R B P

a. Criterion tree b. Preference relation

Fig. 1. Qualitative Preference System

of words, such that the priority can be any partial order and the combined preference
relations can be any preorder.

Example 1. To illustrate, we consider a QPS to compare holidays. Holidays (outcomes)
are defined by two variables: C (cost) and D (destination). Dom(C) = {300,400,500}
and Dom(D) = {R,B,P} (Rome, Barcelona and Paris). For the moment, we do not use
any constraints. We use the notation ‘300B’, ‘500R’ etc. to refer to outcomes. Prefer-
ences are determined by a lexicographic criterion l with two simple subcriteria: ⟨C,
C⟩
such that 300 ⋗C 400 ⋗C 500 and ⟨D,
D⟩ such that R ≐D B ⋗D P. We slightly abuse nota-
tion and refer to these criteria by their variable, i.e. C and D. C has higher priority than
D: C ⊳l D. The criterion tree is shown in Figure 1a, the induced preference relation in
Figure 1b. The black dots represent the outcomes, and the arrows represent preferences
(arrows point towards more preferred outcomes). Superfluous arrows (that follow from
reflexivity and transitivity of the preference relation) are left out for readability.

Priority between subcriteria of a lexicographic criterion (⊳) is a strict partial order (a
transitive and asymmetric relation). This means that no two subcriteria can have the
same priority. If two criteria have the same priority, they have to be combined in a
cardinality criterion, which can then be a subcriterion of the lexicographic criterion. To
simplify the representation of such a lexicographic criterion with cardinality subcriteria,
we define the following alternative specification.

Definition 5. (Alternative specification of a lexicographic criterion) A tuple ⟨C′c,⊵
′

c⟩,
where C′c is a set of criteria and ⊵′c is a preorder, specifies a lexicographic criterion
c = ⟨Cc,⊳c⟩ as follows.

– Partition C′c into priority classes based on ⊵′c.
– For every priority class P, define a criterion cP. If P contains only a single criterion

s, then cP = s. Otherwise cP is a cardinality criterion such that for all s ∈ P: s ∈CcP .
– Define c = ⟨Cc,⊳c⟩ such that Cc = {cP ∣ P is a priority class} and cP ⊳c cP′ iff for all

s ∈ P,s′ ∈ P′: s ⊳′s s′.

For example, the specification l = ⟨{g1,g2,g3},⊵⟩ such that g1 ⊵ g2 ≜ g3 is short for
l = ⟨{g1,c},⊳⟩ such that g1 ⊳ c and c = ⟨{g2,g3}⟩.

Goal-Based Qualitative Preference Systems 157

2.2 Goals in a QPS

In general, the variables of a QPS can have any arbitrary domain and simple criteria
can be defined over such variables. Example 1 contains two such multi-valued simple
criteria. In the goal-based case however, we define outcomes as propositonal models,
and hence all variables are Booleans. Goals are defined as Boolean simple criteria, i.e.
simple criteria that prefer the truth of a variable over falsehood.

Definition 6. (Goal) A QPS goal is a Boolean simple criterion ⟨X ,{(⊺,�)}⟩ for some
X ∈ Var. For convenience, we denote such a goal by its variable X.

This is straightforward when goals are atomic, e.g. p. If goals are complex propositional
formulas, e.g. (p∨q)∧¬r, an auxiliary variable s can be defined by the constraint s =
(p∨ q)∧¬r (see [3] for details on auxiliary variables). As this is a purely technical
issue, we will sometimes use the formula instead of the auxiliary variable in order not
to complicate the notation unnecessarily.

Multiple goals can be combined in order to derive an overall preference. If multi-
ple goals are equally important and it is the number of satisfied goals that determines
preference, a cardinality criterion can be used. Actually, every cardinality criterion is
already goal-based, since the subcriteria are restricted to Boolean simple criteria which
are the same as goals. If there is priority between goals (or if goals have incomparable
priority), they can be combined in a goal-based lexicographic criterion. Such a criterion
can also be used to specify priority between sets of equally important goals (goal-based
cardinality criteria).

Definition 7. (Goal-based lexicographic criterion) A goal-based lexicographic cri-
terion is a lexicographic criterion all of whose subcriteria are either goals, goal-based
cardinality criteria, or goal-based lexicographic criteria.

Note that in the goal-based case, multi-valued simple criteria do not occur anywhere
in the criterion tree; that is, all simple criteria are goals. The criterion tree in Figure 1a
is not goal-based. However, we will see later that it can be translated to an equivalent
goal-based criterion tree.

Example 2. Anne is planning to go on holiday with a friend. Her overall preference is
based on three goals: that someone (she or her friend) speaks the language (sl), that
it is sunny (su) and that she has not been there before (¬bb). The set of variables is
Var = {sl,su,bb}. Since every variable is propositional, the domain for each variable is
{⊺,�} and there are eight possible outcomes. For the moment we do not constrain the
outcome space and do not use auxiliary variables (K = ∅). Two goals (sl and su) are
based on atomic propositions, the third (¬bb) on a propositional formula that contains a
negation. The overall preference between outcomes depends on the way that the goals
are combined by compound criteria. In the next section we discuss several alternatives.

2.3 Expressivity of QPS as a Model of Goal-Based Preferences

What does it mean, in terms of preferences between outcomes, to have a goal p? Dif-
ferent interpretations can be found in the literature. We give a short overview of the
best-known ones and show that QPSs can express the same preferences by means of
some small examples.

158 W. Visser, K.V. Hindriks, and C.M. Jonker

l

susl¬bb

¬sl,su,¬bb

sl,¬su,bb¬sl,su,bb¬sl,¬su,¬bb

sl,su,bbsl,¬su,¬bb

sl,su,¬bb

¬sl,¬su,bb

a. Criterion tree b. Preference relation

Fig. 2. Ceteris paribus preference

Ceteris Paribus Preference. One interpretation of having a goal p is that p is preferred
to ¬p ceteris paribus (all other things being equal) [7,1,5]. The main question in this
case is what the ‘other things’ are. Sometimes [5,7], they are the other variables (atomic
propositions) that define the outcomes. Wellman and Doyle [1] define ceteris paribus
preferences relative to framings (a factorisation of the outcome space into a cartesian
product of attributes). The preference relation over all outcomes is taken to be the tran-
sitive closure of the preferences induced by each ceteris paribus preference. So if we
have p and q as ceteris paribus goals, then p∧q is preferred to ¬p∧¬q since p∧q is
preferred to ¬p∧q (by goal p) and ¬p∧q is preferred to ¬p∧¬q (by goal q).

Example 3. Consider a lexicographic criterion l that has the three goals as subcriteria,
and there is no priority between them, i.e. l =⟨{sl,su,¬bb},∅⟩ (Figure 2a). The resulting
preference relation (Figure 2b) is a ceteris paribus preference.

This is a general property of qualitative preference systems: a lexicographic criterion
with only goals as subcriteria and an empty priority relation induces a ceteris paribus
preference, where the other things are defined by the other goals (see also [8]). The
main advantage of the ceteris paribus approach is that it deals with multiple goals in
a natural, intuitive way. However, the resulting preference relation over outcomes is
always partial since there is no way to compare p∧¬q and ¬p∧q. This is why [1] claim
that goals are inadequate as the sole basis for rational action. One way to solve this is
to introduce relative importance between goals, which is done in the prioritized goals
approach.

Prioritized Goals. In e.g. [4], preferences are derived from a set of goals with an as-
sociated priority ordering (a total preorder). That is, there are multiple goals, each with
an associated rank. There may be multiple goals with the same rank. Various strategies
are possible to derive preferences from such prioritized goals. For example, the ⊆ or
discrimin strategy prefers one outcome over another if there is a rank where the first
satisfies a strict superset of the goals that the second satisfies, and for every more im-
portant rank, they satisfy the same goals. The # or leximin strategy prefers one outcome
over another if there is a rank where the first satisfies more goals than the second, and
for every more important rank, they satisfy the same number of goals.

The prioritized goals strategies discrimin and leximin can also be expressed in a
QPS. An exact translation is given in [3]. Here we just illustrate the principle. In the

Goal-Based Qualitative Preference Systems 159

l

susl¬bb

l2l1

¬sl,¬su,¬bb

sl,su,bb

sl,¬su,bb¬sl,su,bb

sl,¬su,¬bb¬sl,su,¬bb

sl,su,¬bb

¬sl,¬su,bb

l

susl¬bb

c2c1

¬sl,¬su,¬bb

sl,su,bb

¬sl,su,bb

¬sl,su,¬bb

sl,su,¬bb

¬sl,¬su,bb

sl,¬su,¬bb

sl,¬su,bb

a. Criterion tree b. Preference relation c. Criterion tree d. Preference relation

Fig. 3. (a, b) Discrimin preference (c, d) Leximin preference

prioritized goals approach, priority between goals is a total preorder, which can be ex-
pressed by assigning a rank to every goal. A QPS can model a discrimin or leximin
preference with a lexicographic criterion that has one subcriterion for every rank. These
subcriteria are compound criteria that contain the goals of the corresponding rank, and
they are ordered by the same priority as the original ranking. For the discrimin strategy,
the subcriteria are lexicographic criteria with no priority ordering between the goals.
The leximin strategy uses the number of satisfied goals on each rank to determine over-
all preference. Therefore, each rank is represented by a cardinality criterion.

Example 4. Suppose that ¬bb has the highest rank, followed by sl and su that have the
same rank. The discrimin criterion tree for the example is shown in Figure 3a, where
l is the top criterion and l1 and l2 the lexicographic criteria corresponding to the two
ranks. The resulting preference relation is shown in Figure 3b. The leximin criterion
tree for the example is shown in Figure 3c, where l is the top criterion and c1 and c2 the
cardinality criteria corresponding to the two ranks. The resulting preference relation is
shown in Figure 3d. The difference is that the outcomes that are incomparable according
to the discrimin strategy are equally preferred according to the leximin strategy.

Preferential Dependence. The above approaches all assume that goals are preferentially
independent, that is, goalhood of a proposition does not depend on the truth value of
other propositions. There are several options if goals are not preferentially independent.
One is to specify conditional goals or preferences, as is done in e.g. [5,2]. Another is to
achieve preferential independence by restructuring the outcome space or expressing the
goal in terms of more fundamental attributes [1,9] or underlying interests [8].

Example 5. Actually, the variables sl and bb that we chose for the example already
relate to some of Anne’s underlying interests. It may have been more obvious to char-
acterize the outcome holidays by the destination (where Anne may or may not have
been before) and the accompanying friend (who may or may not speak the language of
the destination country). In that case we would have had to specify that Anne would
prefer Juan if the destination was Barcelona, but Mario if the destination was Rome.
Instead of specifying several conditional preferences, we can just say that she prefers
to go with someone who speaks the language. In this case, knowledge is used to create

160 W. Visser, K.V. Hindriks, and C.M. Jonker

an abstraction level that allows one to specify more fundamental goals that are only
indirectly related to the most obvious variables with which to specify outcomes [8].

3 Modelling Multi-valued Criteria as Goals

Preferences in a QPS are ultimately based on simple criteria, i.e. preferences over the
values of a single variable. In general, the domain of such a variable may consist of
many possible values. In the goal-based case, simple criteria are based on binary goals.
In this section we show that the goal-based case is very expressive, by showing that
every QPS can be translated into an equivalent goal-based QPS (provided that the do-
mains of the variables used in the original QPS are finite). Moreover, we show that this
translation is just as succinct as the original representation. In order to do this, we must
first formalize the concept of equivalence between QPSs.

3.1 Equivalence

An obvious interpretation of equivalence between criteria is the equivalence of the pref-
erence relations they induce. I.e. two criteria c1 and c2 are equivalent if for all outcomes
α,β , we have α ⪰c1 β iff α ⪰c2 β . However, this definition only works if the criteria are
defined with respect to the same outcome space, i.e. the same set of variables Var, the
same domains Dom and the same constraints K. Since we will make use of auxiliary
variables, we cannot use this definition directly. Fortunately, this is a technical issue that
can be solved in a straightforward way.

Definition 8. (Equivalence of outcomes) Let S1 = ⟨Var1,Dom1,K1,C1⟩ and S2 = ⟨Var2,
Dom2,K2,C2⟩ be two QPSs such that Var1 ⊆ Var2, ∀X ∈ Var1(Dom1(X) ⊆ Dom2(X))
and K1 ⊆ K2. Let Ω1 and Ω2 denote the outcome spaces of S1 and S2, respectively. Two
outcomes α ∈Ω1 and β ∈Ω2 are equivalent, denoted α ≡ β , iff ∀X ∈ Var1 ∶ αX = βX .

In the following, the only variables that are added are auxiliary variables. Such variables
do not increase the outcome space because their value is uniquely determined by the
values of (some of) the existing variables. We use special variable names of the form
‘X = v’ to denote a Boolean variable that is true if and only if the value of variable X is
v. For example, the variable C = 300 is true in outcomes 300R, 300B and 300P, and false
in the other outcomes. When only auxiliary variables are added, every outcome in Ω1

has exactly one equivalent outcome in Ω2. We will represent such equivalent outcomes
with the same identifier.

Definition 9. (Equivalence of criteria) Let S1 = ⟨Var1,Dom1,K1,C1⟩ and S2 = ⟨Var2,
Dom2,K2,C2⟩ be two QPSs such that Var1 ⊆ Var2, ∀X ∈ Var1(Dom1(X) ⊆ Dom2(X))
and K1 ⊆ K2. Let Ω1 and Ω2 denote the outcome spaces of S1 and S2, respectively. Two
criteria c in C1 and c′ in C2 are called equivalent iff ∀α,β ∈Ω1,∀α ′,β ′ ∈Ω2, if α ≡ α ′
and β ≡ β ′, then α ⪰c β iff α ′ ⪰c′ β ′.

Definition 10. (Equivalence of QPSs) Let S1 = ⟨Var1,Dom1,K1,C1⟩ and S2 = ⟨Var2,
Dom2,K2,C2⟩ be two QPSs. S1 and S2 are equivalent if the top criterion of C1 is equiv-
alent to the top criterion of S2.

Goal-Based Qualitative Preference Systems 161

g(l)

C=400 C=500

g(D)g(C)

C=300

D=R D=B

D=Pc

f *(g(l))

C=400 C=500C=300

D=R D=B

D=Pc

a. Goal-based translation of b. The result of flattening
the criterion tree in Figure 1a the criterion in Figure 4a

Fig. 4. Goal-based translation and flattening

3.2 From Simple Criteria to Goals

A simple criterion on a variable with a finite domain can be translated to an equivalent
goal-based criterion in the following way.

Definition 11. (Goal-based translation) Let c = ⟨X ,
⟩ be a simple criterion such that
Dom(X) is finite. The translation of c to a goal-based criterion, denoted g(c), is defined
as follows. If c is already a Boolean simple criterion, then g(c) = c. Otherwise:

– For every x ∈Dom(X), define a goal (Boolean simple criterion) cx on variable X = x
with ⊺
cx �.

– Define a lexicographic criterion g(c) = ⟨Cg(c),⊵g(c)⟩ such that Cg(c) = {cx ∣ x ∈
Dom(x)} and cx ⊵g(c) cx′ iff x
c x′.

Example 6. To illustrate, Figure 4a displays the translation of the criterion tree in Figure
1a. The simple criteria C and D have been replaced by their translations g(C) and g(D).
These lexicographic criteria have a subgoal for every value of C resp. D. The priority
between these goals corresponds to the value preferences of the original simple criteria.

Theorem 1. Let c = ⟨X ,
⟩ be a simple criterion such that Dom(Xc) is finite. The goal-
based translation g(c) of c as defined in Definition 11 is equivalent to c.

Proof. We distinguish five possible cases and show that in every case, c’s preference
between α and β is the same as g(c)’s preference between α and β .

1. If αX = βX then (a) α ≈c β and (b) α ≈g(c) β .
2. If αX ≐c βX but αX ≠ βX then (a) α ≈c β and (b) α ≈g(c) β .
3. If αX ⋗c βX then (a) α ≻c β and (b) α ≻g(c) β .
4. If βX ⋗c αX then (a) β ≻c α and (b) β ≻g(c) α .
5. If αX /
c βX and βX /
c αX then (a) α /⪰c β and β /⪰c α and (b) α /⪰g(c) β and β /⪰g(c) α .

1-5(a). This follows directly from the definition of simple criteria. 1(b). If αX = βX then
∀x ∈Dom(X) ∶ αX=x = βX=x, so also ∀x ∈Dom(X) ∶ α ≈cx β . Hence, by the definition of
a lexicographic criterion: α ≈g(c) β . 2-5(b). If αX ≠ βX then ∀x ∈ Dom(X)/{αX ,βX} ∶
αX=x = βX=x and α ≈g(c) β . Since a subcriterion s of a compound criterion such that
α ≈s β does not influence that compound criterion’s preference between α and β , the

162 W. Visser, K.V. Hindriks, and C.M. Jonker

only criteria that can influence g(c)’s preference between α and β are cαX and cβX
.

Since α ≻cαX
β and β ≻cβX

α , preference between α and β by g(c) is determined by the
priority between cαX and cβX

. 2(b). If αX
c βX then cαX ≜g(c) cβX
, so they are together

in a cardinality criterion and we have α ≈g(c) β . 3(b). If αX ⋗ βX then cαX ⊳g(c) cβX
so

by the definition of a lexicographic criterion α ≻g(c) β . 4(b). Analogous to 3(b). 5(b).
If αX /
c βX and βX /
c αX then cαX /⊳g(c) cβX

and cβX
/⊳g(c) cαX and cαX /≜g(c) cβX

, so by
the definition of a lexicographic criterion α /≻g(c) β and β /≻g(c) α . ⊓⊔

By replacing every simple criterion c in a criterion tree with its goal-based translation
g(c), an equivalent goal-based criterion tree is obtained.

Definition 12. (Relative succinctness) g(c) is at least as succinct as c iff there exists
a polynomial function p such that size(g(c)) ≤ p(size(c)). (Adapted from [10].)

Theorem 2. Let c = ⟨X ,
⟩ be a simple criterion such that Dom(Xc) is finite. The trans-
lation g(c) of c as defined in Definition 11 is just as succinct as c.

Proof. The goal-based translation just replaces variable values with goals, and the pref-
erence relation between them with an identical priority relation between goals, so the
translation is linear. ⊓⊔

The above two theorems are very important as they show that goals are very expressive
as a way to represent qualitative preferences, and moreover, that this representation is
just as succinct as a representation based on multi-valued criteria.

4 Updates in a QPS

In this section we show that goal-based criterion trees also have some added value
compared to trees with multi-valued criteria. We introduce updates on a criterion tree
as changes in the value preference of simple criteria or in the priority of lexicographic
criteria. The number of updates of this kind that are possible depends on the structure
of the tree. In general, the flatter a criterion tree, the more updates are possible. It is
possible to make criterion tree structures flatter, i.e. to reduce the depth of the tree,
by removing intermediate lexicographic criteria. The advantage of goal-based criterion
trees is that they can be flattened to a greater extent than their equivalent non-goal-
based counterparts. We first formalize the concept of flattening a criterion tree. Then
we define what we mean by basic updates in a criterion tree and show the advantages
of flat goal-based QPSs compared to other flat QPSs.

4.1 Flattening

Simple criteria are terminal nodes (leaves) and cannot be flattened. Cardinality criteria
have only Boolean simple subcriteria and cannot be flattened either. Lexicographic cri-
teria can have three kinds of subcriteria: simple, cardinality and lexicographic. They can
be flattened by replacing each lexicographic subcriterion by that criterion’s subcriteria
and adapting the priority accordingly (as defined below).

Goal-Based Qualitative Preference Systems 163

Definition 13. (Removing a lexicographic subcriterion) Let c = ⟨Cc,⊳c⟩ be a lexico-
graphic criterion and d = ⟨Cd ,⊳d⟩ ∈Cc a lexicographic criterion that is a subcriterion of
c. We now define a lexicographic criterion f (c,d) = ⟨Cf(c,d),⊳ f(c,d)⟩ that is equivalent
to c but does not have d as a subcriterion. To this end, we define Cf(c,d) =Cc/{d}∪Cd

and ∀i, j ∈Cf(c,d) ∶ i ⊳ f(c,d) j iff i, j ∈Cc and i ⊳c j, or i, j ∈Cd and i ⊳d j, or i ∈Cc, j ∈Cd

and i ⊳c d, or i ∈Cd, j ∈Cc anf d ⊳c j.

Theorem 3. f (c,d) is equivalent to c, i.e. α ⪰c β iff α ⪰ f(c,d) β .

Proof. ⇒. Suppose α ⪰c β . Then ∀s ∈Cc(α ⪰s β ∨∃s′ ∈Cc(α ≻s′ β ∧ s′ ⊳c s)). We need
to show that also ∀s ∈Cf(c,d)(α ⪰s β ∨∃s′ ∈Cf(c,d)(α ≻s′ β ∧ s′ ⊳ f(c,d) s)). We do this
by showing that α ⪰s β ∨∃s′ ∈Cf(c,d)(α ≻s′ β ∧ s′ ⊳ f(c,d) s) holds for every possible
origin of s ∈Cf(c,d). We have ∀s ∈Cf(c,d), either s ∈Cc/{d} or s ∈Cd .

– If s ∈Cc/{d}, we know that α ⪰s β ∨∃s′ ∈Cc(α ≻s′ β ∧ s′ ⊳c s). If α ⪰s β , trivially
also α ⪰s β ∨∃s′ ∈Cf(c,d)(α ≻s′ β ∧ s′ ⊳ f(c,d) s) and we are done. If ∃s′ ∈Cc(α ≻s′

β ∧ s′ ⊳c s), then either s′ ∈Cc/{d} or s′ = d. If s′ ∈Cc/{d}, then s′ ∈Cf(c,d) and
s′ ⊳ f(c,d) s, so also α ⪰s β ∨∃s′ ∈Cf(c,d)(α ≻s′ β ∧ s′ ⊳ f(c,d) s) and we are done. If
s′ = d, then (since α ≻s′ β) ∃i ∈Cs′ (and hence ∈Cf(c,d))∶ α ≻i β . Since s′ ⊳c s, we
have i ⊳ f(c,d) s and so also α ⪰s β ∨∃i ∈Cf(c,d)(α ≻i β ∧ i ⊳ f(c,d) s) and we are done.

– Now consider the case that s ∈ Cd . Since d ∈ Cc, we know that either α ⪰d β or
∃s′ ∈Cc(α ≻s′ β ∧ s′ ⊳c d). If α ⪰d β , we know α ⪰s β ∨∃s′ ∈Cd(α ≻s′ β ∧ s′ ⊳d s)
and hence α ⪰s β ∨∃s′ ∈ Cf(c,d)(α ≻s′ β ∧ s′ ⊳ f(c,d) s) and we are done. If ∃s′ ∈
Cc(α ≻s′ β ∧ s′ ⊳c d) then ∃s′ ∈Cf(c,d)(α ≻s′ β ∧ s′ ⊳ f(c,d) s) so trivially also α ⪰s

β ∨∃s′ ∈Cf(c,d)(α ≻s′ β ∧ s′ ⊳ f(c,d) s) and we are done.

⇐. Suppose α /⪰c β . Then ∃s ∈Cc(α /⪰s β ∧∀s′ ∈Cc(s′ ⊳c s → α /≻s′ β)). We need to
show that also ∃t ∈Cf(c,d)(α /⪰t β ∧∀t′ ∈Cf(c,d)(t

′ ⊳ f(c,d) t →α /≻t′ β)). Either s ≠ d or
s = d.

– If s ≠ d, then s ∈Cf(c,d) and we know that α /⪰s β and ∀s′ ∈Cf(c,d)/Cd(s
′ ⊳ f(c,d)

s → α /≻s′ β). If d /⊳c s, then ∀s′ ∈Cc∗(s′ ⊳ f(c,d) s → s′ ∈Cf(c,d)/Cd). So we have
∃s ∈Cf(c,d)(α /⪰s β ∧∀s′ ∈Cf(c,d)(s

′ ⊳ f(c,d) s → α /≻s′ β)). Take t = s and we are
done. If d ⊳c s, then α /≻d β , i.e. α /⪰d β or β ⪰d α . If α /⪰d β , then ∃u ∈Cd(α /⪰u

β ∧∀u′ ∈Cd(u
′ ⊳d u → α /⪰u′ β)). Since ∀s′ ∈Cc(s′ ⊳c s → α /≻s′ β) and d ⊳c s, we

also have ∃u ∈Cf(c,d)(α /⪰u β ∧∀u′ ∈Cf(c,d)(u
′ ⊳ f(c,d) u → α /≻u′ β)). Take t = u

and we are done. If β ⪰d α , then ∀v ∈ Cd(β ⪰v α ∨∃v′ ∈ Cd(β ≻v′ α ∧ v′ ⊳d v)).
This means that either ∀u ∈Cd(β ⪰u α) or ∃u ∈Cd(β ≻u α ∧¬∃u′ ∈Cd(u

′ ⊳d u)). If
∀u ∈Cd(β ⪰u α), then ∀u ∈Cd(α /≻u β). Take t = s and we are done. If ∃u ∈Cd(β ≻u

α ∧¬∃u′ ∈Cd(u′ ⊳d u)), then ∃u ∈Cd(α /⪰u β ∧∀u′ ∈Cd(u′ ⊳d u→ α /≻u′ β)). Take
t = u and we are done.

– If s = d, then α /⪰d β , so ∃u ∈ Cd(α /⪰u β ∧∀u′ ∈ Cd(u
′ ⊳d u → α /≻u′ β)). Since

∀s′ ∈Cc(s′ ⊳c d →α ≻s′ β), we have ∀s′ ∈Cc(s′ ⊳c u→ α ≻s′ β). Take t = u and we
are done. ⊓⊔

Theorem 4. f (c,d) is just as succinct as c.

Proof. When a lexicographic subcriterion is removed according to Definition 13, the to-
tal number of criteria decreases with 1: the subcriteria of d become direct subcriteria of

164 W. Visser, K.V. Hindriks, and C.M. Jonker

c and d itself is removed. The priority between the original subcriteria of c (i.e. Cc/{d})
and the priority between the original subcriteria of d (i.e. Cd) remains unaltered. Just
the priority between the subcriteria in Cc/{d} and d is replaced by priority between the
subcriteria in Cc/{d} and the subcriteria in Cd . Since ∣Cd ∣ is finite, the increase in size
is linear. ⊓⊔

Definition 14. (Flat criterion) All simple and cardinality criteria are flat. A lexico-
graphic criterion is flat if all its subcriteria are either simple or cardinality criteria.

Definition 15. (Flattening) The flat version of a non-flat lexicographic criterion c,
denoted f ∗(c), is obtained as follows. For an arbitrary lexicographic subcriterion d ∈
Cc, get f (c,d). If f (c,d) is flat, f ∗(c) = f (c,d). Otherwise, f ∗(c) = f ∗(f (c,d)).

Example 7. (Flattening) The original criterion tree in Figure 1 is already flat. Its goal-
based translation in Figure 4a can be flattened further, as shown in Figure 4b. Here the
lexicographic subcriteria g(C) and g(D) have been removed.

4.2 Updates

Criterion trees can be updated by leaving the basic structure of the tree intact but chang-
ing the priority between subcriteria of a lexicographic criterion (⊵) or the value pref-
erences of a multi-valued simple criterion (
). By performing these basic operations,
the induced preference relation also changes. Therefore, such updates can be used to
‘fine-tune’ a person’s preference representation.

Definition 16. (Update) An update of a criterion tree is a change in (i) the prefer-
ence between values (
) of a multi-valued simple criterion; and/or (ii) the priority (⊵)
between (in)direct subcriteria of a lexicographic criterion (in the alternative specifica-
tion). The changed relations still have to be preorders.

Theorem 5. For every update on a criterion tree c, there exists an equivalent update
on the goal-based translation g(c) and vice versa.

Proof. Every change in a value preference
 between two values x and y corresponds
one-to-one to a change in priority between cx and cy. Every change in priority between
two subcriteria s and s′ corresponds one-to-one to a change in priority between g(s)
and g(s′). ⊓⊔

Example 8. Consider for example the criterion tree in Figure 1a. On the highest level,
there are three possibilities for the priority: C ⊳ D, D ⊳C or incomparable priority. On
the next level, each simple criterion has preferences over three possible values, which
can be ordered in 29 different ways (this is the number of different preorders with three
elements, oeis.org/A000798). So in total there are 3×29×29 = 2523 possible updates
of this tree. For the goal-based translation of this tree (in Figure 4a) this number is the
same. Figure 5 shows one alternative update of the original criterion tree in Figure 1 as
well as its goal-based translation in Figure 4a.

Flattening a criterion tree influences the updates that can be performed; all updates that
are possible on the non-flat tree can also be performed on the flattened version, but not
vice versa. That is, flattening a criterion tree introduces more possible updates.

Goal-Based Qualitative Preference Systems 165

l’

D’ C’

400

500

300
·>

·>

P

B

R
·>

·>

g(l)’

C=400 C=500

g(D)’ g(C)’

C=300D=RD=BD=P

a. Update on the original tree b. Update on the goal-based translation

f *(g(l))’

C=400 C=500C=300D=RD=BD=P

c. Update on the flattened goal-based translation

Fig. 5. Updates on criterion trees

Theorem 6. For every update on a criterion tree c, there exists an equivalent (set of)
update(s) on the flattened criterion tree f ∗(c).

Proof. Since simple criteria are not altered in the flattening process, every change in
a value preference
 between two values x and y can also be applied in the flattened
version. Every change in priority between two subcriteria s and s′ corresponds to a
change in priority between all of the (in)direct subcriteria of s that are flat and all of
the (in)direct subcriteria of s′ that are flat.

Example 9. Figure 5c shows an update on the flat goal-based criterion tree in Figure 4b
that is equivalent to the updates in Figure 5a and 5b.

Theorem 7. If a criterion tree c is not flat, there exist updates on f ∗(c) that do not
have equivalent updates on c.

We show this by means of an example.

Example 10. The goal-based tree in Figure 4a can be flattened to the equivalent flat
tree in Figure 4b. This flattened tree can be updated in 209527 different ways (the
number of different preorders with 6 elements, oeis.org/A000798), thereby allowing
more preference relations to be represented by the same tree structure. Figure 6 shows
an alternative flat goal-based tree that can be obtained from the previous one by updating
it. It is not possible to obtain an equivalent criterion tree by finetuning the original
criterion tree or its goal-based translation. This is because goals relating to different
variables are ‘mixed’: the most important goal is that the cost is 300, the next most
important goal is that the destination is Rome or Barcelona, and only after that is the
cost considered again. This is not possible in a criterion tree that is based on simple
criteria that are defined directly on the variables C and D.

We have seen that the same updates are possible on a multi-valued criterion tree and its
goal-based translation. If, however, both trees are flattened, more updates are possible
on the flattened goal-based tree.

166 W. Visser, K.V. Hindriks, and C.M. Jonker

l’

C=400 C=500C=300

D=R D=B

D=Pc
400

500

300

R B P

a. Criterion tree b. Preference relation

Fig. 6. Alternative flat goal-based tree obtained by updating the tree in Figure 4b

QPS

more updates possible

g

f ∗

GQPS

flat QPS

GQPS flat GQPS

g

f ∗

f ∗

Fig. 7. Effects of goal-based translation and flattening on possible updates

Theorem 8. Let c be a non-goal-based criterion. Then there exist updates on f ∗(g(c))
that do not have equivalent updates on f ∗(c).

In general, the flatter a criterion tree, the more different updates are possible. Since
a goal-based tree can be made flatter than an equivalent criterion tree that is based on
multi-valued simple criteria, the goal-based case allows more updates. This is visualized
in Figure 7.

Example 11. This example shows how goals can be used for compensation between
variables. The subcriteria of a cardinality criterion must be Boolean, to avoid intran-
sitive preferences. So, for example, the criterion in Figure 8a is not allowed. It would
result in 400B≈ 500R and 500R≈ 300B, but 300B≻ 400B. However, the underlying idea
that the variables C and D are equally important is intuitive. Using goals we can cap-
ture it in a different way, as displayed in Figure 8b. This criterion tree results in a total
preorder of preference between outcomes, where for instance 300B ≻ 500R ≻ 400B.

The results above show that every update that can be applied on a criterion tree can also
be applied on its flattened goal-based translation, and that this last criterion tree even
allows more updates. However, if we look at the size of the updates, we can see that
for equivalent updates, more value preference or priority relations have to be changed
when the structure is flatter. For example, a simple inversion of the priority between
g(C) and g(D) in Figure 4a corresponds to the inversion of priority between all of

Goal-Based Qualitative Preference Systems 167

c

D C

400

500

300
·>

·>

R

B

P
·>

·>

l

D=B D=P

c1

D=R C=400C=300 C=500

c3c2

a. Invalid cardinality criterion b. Goal-based compensation

Fig. 8. Preferences where C and D are equally important

Susan

D C

500

700

300
·>

·>

R B

P
·>

·=

Bob

SL

2w

1w
·>

joint

3*

2*

4*
·>

·>

D C

500

700

300
·>

·>

R B

P
·>

·=

SL

2w

1w
·>

joint

3*

2*

4*
·>

·>

D

C=500 C=700C=300

R B

P
·>

·=

L

2w

1w
·>

joint

S=3* S=2*S=4*

c1 c2 c3

a. Initial criterion tree b. First refinement c. Second refinement

Fig. 9. Successive criterion trees for Susan and Bob

C = 300, C = 400 and C = 500 and all of D = R, D = B and D = P in Figure 4b. This sug-
gests the following approach to finetuning a given preference representation during the
preference elicitation process. First, one can fine-tune the current criterion tree as well
as possible using (coarse) updates. If the result does not match the intended preferences
well enough, one can start flattening, which will create more, fine-grained possibilities
to update the tree. If this still does not allow to express the correct preferences, one can
make a goal-based translation and flatten it. This allows for even more possible updates
on an even lower level.

Example 12. Susan and Bob are planning a city trip together. Susan would like to go
to a city that she has not been to before, and hence prefers Rome or Barcelona to Paris.
She also does not want to spend too much money. Bob is a busy businessman who
only has a single week of holiday and would like some luxury, expressed in the number
of stars of the hotel. There is no priority between Susan’s and Bob’s preferences. The
initial criterion tree for Susan and Bob’s joint preferences is displayed in Figure 9a.
Susan and Bob decide that Bob’s criterion on the length of the trip should be the most
important, because he really does not have time to go for two weeks. They also decide
that luxury is less important than the other criteria. In order to update the tree, it is first
flattened by removing the subcriteria of Susan and Bob. The new tree, after flattening
and updating, is shown in Figure 9b. However, Bob feels that luxury can compensate for
cost. To represent this, the criteria for cost and number of stars are translated to goals
and combined into three cardinality criteria, as shown in Figure 9c. At this point, the
travel agent’s website is able to make a good selection of offers to show and recommend
to Susan and Bob.

168 W. Visser, K.V. Hindriks, and C.M. Jonker

5 Conclusion

We have shown that the QPS framework can be used to model preferences between
outcomes based on goals. It has several advantages over other approaches. First, the
QPS framework is general and flexible and can model several interpretations of using
goals to derive preferences between outcomes. This is done by simply adapting the
structure of the criterion tree. It is possible to specify an incomplete preference relation
such as the ceteris paribus relation by using an incomplete priority ordering. But if a
complete preference relation is needed, it is also easy to obtain one by completing the
priority relation between subcriteria of a lexicographic criterion, or using cardinality
criteria. Second, goals do not have to be independent. Multiple goals can be specified
using the same variable. For example, there is no problem in specifying both p and
p∧q as a goal. Third, goals do not have to be consistent. It is not contradictory to have
both p preferred to ¬p (from one perspective) and ¬p preferred to p (from another).
This possibility is also convenient when combining preferences of multiple agents, who
may have different preferences. Preferences of multiple agents can be combined by
just collecting them as subcriteria of a new lexicographic criterion. Fourth, background
knowledge can be used to express constraints and define abstract concepts. This in turn
can be used to specify goals on a more fundamental level.

When the variables that define the outcomes are not Boolean, preferences are usu-
ally based on orderings of the possible values of each variable. We have shown that
such multi-valued criteria can be translated to equivalent goal-based criteria. Such a
translation requires at most polynomially more space, and hence is just as succinct as
the original QPS. This result shows that goals are very expressive as a representation of
qualitative preferences among outcomes.

Goal-based criterion trees also have some added value compared to trees with multi-
valued criteria. We introduced basic updates on a QPS and showed that goal-based QPSs
allow for more fine-grained updates than their multi-valued counterparts. This is due to
the different structure of goal-based criteria. In general, the flatter a criterion tree, the
more updates are possible. It is possible to make criterion tree structures flatter, i.e. to
reduce the depth of the tree, by removing intermediate lexicographic criteria. The ad-
vantage of goal-based criterion trees is that they can be flattened to a greater extent than
their equivalent non-goal-based counterparts, and hence provide more possible updates.

We proposed a procedure to fine-tune a criterion tree during the preference elicitation
process. Essentially, this is a top-down approach where a criterion tree is first updated
as well as possible in its current state, and is only flattened and/or translated to a goal-
based tree if more updates are necessary. This procedure gives rise to a more funda-
mental question. If it is really necessary to take all these steps, then maybe the original
criteria were not chosen well in the first place. It may have been better to choose more
fundamental interests as criteria. This is still an open question that we would like to
address in the future.

Acknowledgements. This research is supported by the Dutch Technology Foundation
STW, applied science division of NWO and the Technology Program of the Ministry of
Economic Affairs. It is part of the Pocket Negotiator project with grant number VICI-
project 08075.

Goal-Based Qualitative Preference Systems 169

References

1. Wellman, M.P., Doyle, J.: Preferential semantics for goals. In: Proc. AAAI, pp. 698–703
(1991)

2. Boutilier, C.: Toward a logic for qualitative decision theory. In: Proc. KR, pp. 75–86 (1994)
3. Visser, W., Aydoğan, R., Hindriks, K.V., Jonker, C.M.: A framework for qualitative multi-

criteria preferences. In: Proc. ICAART (2012)
4. Brewka, G.: A rank based description language for qualitative preferences. In: Proc. ECAI,

pp. 303–307 (2004)
5. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: A tool for rep-

resenting and reasoning with conditional ceteris paribus preference statements. Journal of
Artificial Intelligence Research 21, 135–191 (2004)

6. Andréka, H., Ryan, M., Schobbens, P.Y.: Operators and laws for combining preference rela-
tions. Journal of Logic and Computation 12(1), 13–53 (2002)

7. Von Wright, G.H.: The Logic of Preference: An Essay. Edinburgh University Press (1963)
8. Visser, W., Hindriks, K.V., Jonker, C.M.: Interest-based preference reasoning. In: Proc.

ICAART, pp. 79–88 (2011)
9. Keeney, R.L.: Analysis of preference dependencies among objectives. Operations Re-

search 29(6), 1105–1120 (1981)
10. Chevaleyre, Y., Endriss, U., Lang, J.: Expressive power of weighted propositional formulas

for cardinal preference modelling. In: Proc. KR (2006)

SAT-Based BMC for Deontic Metric Temporal Logic
and Deontic Interleaved Interpreted Systems�

Bożena Woźna-Szcześniak and Andrzej Zbrzezny

IMCS, Jan Długosz University
Al. Armii Krajowej 13/15, 42-200 Czȩstochowa, Poland

{b.wozna,a.zbrzezny}@ajd.czest.pl

Abstract. We consider multi-agent systems’ (MASs) modelled by deontic in-
terleaved interpreted systems and we provide a new SAT-based bounded model
checking (BMC) method for these systems. The properties of MASs are ex-
pressed by means of the metric temporal logic with discrete semantics and ex-
tended to include epistemic and deontic operators. The proposed BMC approach
is based on the state of the art solutions to BMC. We test our results on a typical
MASs scenario: train controller problem with faults.

1 Introduction

By agents we usually mean rational, independent, intelligent and high-tech entities that
act autonomously on behalf of their users, across open and distributed environments,
to solve a growing number of complex problems. A multi-agent system (MAS) [27]
is a system composed of multiple interacting (communicating, coordinating, cooperat-
ing, etc.) agents which can be used to solve problems that are beyond the individual
capacities or knowledge of a single agent.

Deontic interpreted systems (DISs) [18] are models of MASs that make possible
reasoning about epistemic and correct functioning behaviour of MASs. They provide a
computationally grounded semantics on which it is possible to interpret theOiα modal-
ity, representing the fact “in all correct functioning executions of agent i, α holds”,
as well as a traditional epistemic modalities and temporal operators. By deontic in-
terleaved interpreted systems (DIISs) we mean a restriction of DISs that enforce the
executions of agents to be interleaved. Thus we assume that agents act as network of
synchronised automata; note that one can see DIISs as a deontic extension of the for-
malism of interleaved interpreted systems [17]. We consider DIISs since they allow for
the distinction between correct (or ideal, normative, etc.) and incorrect states, and they
enable more efficient verification of MASs, the behaviour of which is as the behaviour
of synchronised automata. Note that although our method is described for DIISs, it can
be applied to DISs [10] as well; as it will be clear below the main difference between
DIISs and DISs is in the definition of the global evolution function. Thus, to apply
our method to DISs it is enough to change the definition a propositional formula that
encodes the transition relation. However, only DIISs can be combined with partial or-
der reductions allowing for more efficient verification of MASs that are not so loosely
coupled.
� Partly supported by National Science Center under the grant No. 2011/01/B/ST6/05317.

M. Baldoni et al. (Eds.): DALT 2012, LNAI 7784, pp. 170–189, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

SAT-Based BMC for Deontic Metric Temporal Logic and DIISs 171

Model checking [6,24] has been developed as a method for automatic verification of
finite state concurrent systems, and impressive strides have been made on this problem
over the past thirty years. The main aim of model checking is to provide an algorithm
determining whether an abstract model - representing, for example, a software project
- satisfies a formal specification expressed as a modal formula. Moreover, if the prop-
erty does not hold, the method discovers a counterexample execution that shows the
source of the problem. The practical applicability of model checking in MASs set-
tings requires the development of algorithms hacking the state explosion problem. In
particular, to avoid this problem the following approaches have been developed: BDD-
based bounded [13,19,20] and unbounded [26,25] model checking, SAT-based bounded
[22,23,29,31,30] and unbounded [14] model checking.

To express the requirements of MASs, various extensions of temporal [9] or real time
[2] temporal logics with epistemic (to represent knowledge) [10], doxastic (to represent
beliefs) [16], and deontic (to represent norms and prescriptions) [18,3] components
have been proposed. In this paper we consider a deontic and epistemic extension of
Metric Temporal Logic (MTL) [15], which we call MTLKD, and interpret over discrete-
time models; note that over the adopted discrete-time model, MTL is simply LTL, but
with an exponentially succinct encoding [11]. MTLKD allows for the representation
of the quantitative temporal evolution of epistemic states of the agents, as well as their
correct and incorrect functioning behaviour. It can express multiple timing constraints
on computations, which is really interesting for writing specifications. For example,
MTLKD allows to express property asserting that whenever the system finds itself in a
p-state, then agent c knows that the system will be in a q-state precisely one time unit
later; note that this can be specified by the formula G[0,∞)(p⇒ KcF[1,1]q).

In our past research we have provided a theoretical underpinnings of a preliminary
bounded model checking (BMC) algorithm for DIS and an existential part of a com-
putation tree logic extended to include an epistemic and deontic modalities (ECTLKD)
[29]. However, the method have not been implemented and experimentally evaluated.
Moreover, it was not tailored to the DIISs settings, and it was not based on the state-
of-the art BMC method for an existential part of a computation tree logic (ECTL) [32],
which uses a reduced number of paths, what results in significantly smaller and less
complicated propositional formulae that encode the ECTLKD properties. In [30] we
have defined and experimentally evaluated a BMC algorithm for the existential part
of an epistemic and deontic extension of real time CTL (RTCTLKD) [8] by means
of which we can automatically verify not only epistemic and temporal properties but
also deontic and quantitative temporal properties that express compliance of a MAS,
modelled by DIIS, with respect to specifications.

The main contributions of the paper are as follows. First, we introduce the MTLKD
language. Second, we propose a SAT-based BMC technique for DIISs and the existen-
tial part of MTLKD. This is the first time when the BMC method for linear time epis-
temic (and deontic) logics uses a reduced number of paths to evaluate epistemic and
deontic components what results in significantly smaller and less complicated propo-
sitional formulae that encode the MTLKD properties. Third, we implement the pro-
posed BMC method and evaluate it experimentally. To the best of our knowledge, this

172 B. Woźna-Szcześniak and A. Zbrzezny

is the first work which provides a practical (bounded) model checking algorithm for the
MTLKD language, and the MTL itself.

The structure of the paper is the following. In Section 2 we shortly introduce DIISs
and the MTLKD language. In Section 3 we define a bounded semantics for EMTLKD
(the existential part of MTLKD) and prove that there is a bound such that both bounded
and unbounded semantics for EMTLKD are equivalent. In Section 4 we define a BMC
method for MTLKD. In Section 5 we present performance evaluation of our newly
developed SAT-based BMC algorithm. In Section 6 we conclude the paper.

2 Preliminaries

DIIS. We assume that a MAS consists of n agents, and by Ag = {1, . . . , n} we denote
the non-empty set of agents; note that we do not consider the environment component
because this may be added with no technical difficulty at the price of heavier notation.
We assume that each agent c ∈ Ag is in some particular local state at a given point
in time, and that a set Lc of local states for agent c ∈ Ag is non-empty and finite
(this is required by the model checking algorithms). We assume that for each agent
c ∈ Ag, its set Lc can be partitioned into faultless (green) and faulty (red) states. For
n agents and n mutually disjoint and non-empty sets G1, . . . ,Gn we define the set S of
all possible global states as the Cartesian product

∏n
c=1Lc , such that Lc ⊇ Gc . The set

Gc represents the set of green states for agent c. The complement of Gc with respect to
Lc (denoted by Rc) represents the set of red states for agent c. Note that for any agent
c, Lc = Gc ∪Rc . Further, by lc(s) we denote the local component of agent c ∈ Ag in
a global state s = (�1, . . . , �n).

With each agent c ∈ Ag we associate a finite set of possible actions Actc such that
a special “null” action (εc) belongs to Actc ; as it will be clear below the local state of
agent c remains the same, if the null action is performed. We do not assume that the sets
Actc (for all c ∈ Ag) are disjoint. Next, with each agent c ∈ Ag we associate a protocol
that defines rules, according to which actions may be performed in each local state. The
protocol for agent c ∈ Ag is a function Pc : Lc → 2Actc such that εc ∈ Pc(�) for
any � ∈ Lc , i.e., we insist on the null action to be enabled at every local state. For each
agent c, there is a (partial) evolution function tc : Lc × Actc → Lc such that for each
� ∈ Lc and for each a ∈ Pc(�) there exists �′ ∈ Lc such that tc(�, a) = �′; moreover,
tc(�, εc) = l for each � ∈ Lc . Note that the local evolution function considered here
differs from the standard one (see [10]) by having the local action instead of the join
action as the parameter. Further, we define the following sets Act =

⋃
c∈Ag Actc and

Agent(a) = {c ∈ Ag | a ∈ Actc}.
The global interleaved evolution function t : S ×

∏n
i=1 Acti → S is defined as

follows: t(s, a1, . . . , an) = s′ iff there exists an action a ∈ Act\ {ε1, . . . , εn} such that
for all c ∈ Agent(a), ac = a and tc(lc(s), a) = lc(s

′), and for all c ∈ Ag \Agent(a),
ac = εc and tc(lc(s), ac) = lc(s). In brief we write the above as s

a−→ s′.
Note that similarly to blocking synchronisation in automata, the above insists on all

agents performing the same non-null action in a global transition; additionally, note that
if an agent has the action being performed in its repertoire, it must be performed, for the
global transition to be allowed. This assumes that the local protocols are defined to per-
mit this; if a local protocol does not allow it, then the local action cannot be performed

SAT-Based BMC for Deontic Metric Temporal Logic and DIISs 173

and therefore the global transition does not comply with the definition of interleaving
above. As we formally clarify below, we only consider interleaved transitions here.

Now, for a given set of agents Ag and a set of propositional variablesPV we define a
deontic interleaved interpreted systemDIISas a tuple (ι, {Lc,Gc , Actc , Pc , tc}c∈Ag,V),
where ι ∈ S is an initial global state, and V : S → 2PV is a valuation function. With
such a DIIS we associate a Kripke model M = (ι, S, T, {∼c}c∈Ag, {��c}c∈Ag,V),
where ι is the initial global state; S is the set of global states; T ⊆ S × S is a
global transition (temporal) relation defined by: (s, s′) ∈ T iff there exists an action
a ∈ Act \ {ε1, . . . , εn} such that s

a−→ s′ (we assume that the relation is total, i.e.,
for any s ∈ S there exists an a ∈ Act \ {ε1, . . . , εn} such that s

a−→ s′ for some
s′ ∈ S); ∼c⊆ S × S is an indistinguishability relation for agent c defined by: s ∼c s′

iff lc(s′) = lc(s); ��c⊆ S × S is a deontic relation for agent c defined by: s ��c s′ iff
lc(s

′) ∈ Gc ; V : S → 2PV is the valuation function of DIIS. V assigns to each state a
set of propositional variables that are assumed to be true at that state.

Syntax of MTLKD. Let p ∈ PV, c, d ∈ Ag, Γ ⊆ Ag, and I be an interval in IN =
{0, 1, 2, . . .} of the form: [a, b) and [a,∞), for a, b ∈ IN and a �= b; note that the
remaining forms of intervals (i.e., [a, a], [a, b], (a, b), (a, b], and (a,∞)) can be defined
by means of [a, b) and [a,∞). Hereafter, let left(I) denote the left end of the interval I
(i.e., left(I) = a), and right(I) the right end of the interval I (i.e., right([a, b)) = b−1
and right([a,∞)) =∞). The MTLKD formulae are defined by the following grammar:

α:= true | false | p | ¬α | α ∧ α | α ∨ α | Xα | αUIα |
GIα | Kcα | DΓα | EΓα | CΓα | Ocα | K̂

d

cα

The derived basic modalities are defined as follows: αRIβ
def
= βUI(α ∧ β) ∨ GIβ,

FIα
def
= trueUIα, Ocα

def
= ¬Oc¬α, Kcα

def
= ¬Kc¬α, K̂d

cα
def
= ¬K̂

d

c¬α, DΓα
def
=

¬DΓ¬α, EΓα
def
= ¬EΓ¬α, CΓα

def
= ¬CΓ¬α, where c, d ∈ AG, and Γ ⊆ AG.

Intuitively, X, UI and GI are the operators, respectively, for “neXt time”, “bounded
until”, and “bounded always”. Xα is true in a computation if α is true at the second state
of the computation, αUIβ is true in a computation if β is true in the interval I at least
in one state and always earlier α holds, and GIα is true in a computation if α is true
at all the states of the computation that are in the interval I . Kc is the operator dual for
the standard epistemic modality Kc (“agent c knows”), so Kcα is read as “agent c does
not know whether or not α holds”. Similarly, the modalities DΓ ,EΓ ,CΓ are the dual
operators for DΓ ,EΓ ,CΓ representing distributed knowledge in the group Γ , everyone
in Γ knows, and common knowledge among agents in Γ . Further, we use the (double)

indexed modal operators Oc , Oc , K̂d
c and K̂

d

c to represent the correctly functioning
circumstances of agent c. The formula Ocα stands for “for all the states where agent
c is functioning correctly, α holds”. The formula Ocα can be read as ”there is a state
where agent c is functioning correctly, and in which α holds”. The formula K̂d

cα is read
as “agent c knows that α under the assumption that agent d is functioning correctly”.

K̂
d

c is the operator dual for the modality K̂d
c . We refer to [18] for a discussion of this

notion; note that the operatorOc is there referred to as Pc .

174 B. Woźna-Szcześniak and A. Zbrzezny

The existential fragment of MTLKD (denoted by EMTLKD) is defined by the fol-
lowing grammar:

α := true | false | p | ¬p | α ∧ α | α ∨ α | Xα | αUIα |
GIα | Kcα | DΓα | EΓα | CΓα | Ocα | K̂

d

cα

Semantics of MTLKD. Let M = (ι, S, T, {∼c}c∈Ag, {��c}c∈Ag,V) be a model for
DIIS. A path inM is an infinite sequenceπ = (s0, s1, . . .) of states such that (sm, sm+1)
∈ T for each m ∈ IN. For a path π and m ∈ IN, we take π(m) = sm. Moreover, the
m-th suffix of the path π is defined in the standard way: πm = (sm, sm+1, . . .), and
the m-th prefix of π is also defined in the standard way: π[. .m] = (s0, s1, . . . , sm).
By Π(s) we denote the set of all the paths starting at s ∈ S. For the group epistemic

modalities we define the following. If Γ ⊆ Ag, then ∼E
Γ

def
=

⋃
c∈Γ ∼c , ∼C

Γ

def
= (∼E

Γ)
+

(the transitive closure of ∼E
Γ), and ∼D

Γ

def
=

⋂
c∈Γ ∼c . Given the above, the semantics

of MTLKD is the following.

Definition 1. Let I be an interval in IN of the form: [a, b) or [a,∞) for a, b ∈ IN, and

m ∈ IN. Then, I + m
df
= [a + m, b + m) if I = [a, b), and I + m

df
= [a + m,∞)

if I = [a,∞). A MTLKD formula ϕ is true (valid) along the path π (in symbols
M,π |= ϕ) iff M,π0 |= ϕ, where
M,πm |= true, M,πm �|= false,
M,πm |= p iff p ∈ V(π(m)), M,πm |= ¬α iff M,πm �|= α,
M,πm |= α ∧ β iff M,πm |= α and M,πm |= β,
M,πm |= α ∨ β iff M,πm |= α or M,πm |= β,
M,πm |= Xα iff M,πm+1 |= α,
M,πm |= αUIβ iff (∃i�m)[i∈I+m and M,πi |= β and (∀m � j < i)M,πj |= α],
M,πm |= GIα iff (∀i ∈ I +m)[M,πi |= α],
M,πm |= Kcα iff (∃π′ ∈ Π(ι))(∃i � 0)[π(m) ∼c π′(i) and M,π′i |= α],
M,πm |= Ocα iff (∃π′ ∈ Π(ι))(∃i � 0)[π(m) ��c π′(i) and M,π′i |= α],

M,πm |= K̂
d

cα iff (∃π′ ∈ Π(ι))(∃i � 0)[π(m) ∼c π′(i) and π(m) ��d π′(i) and
M,π′i |= α],

M,πm |= Y Γα iff (∃π′ ∈ Π(ι))(∃i � 0)[π(m) ∼Y
Γ π′(i) and M,π′i |= α],

where Y ∈ {D,E,C}.

A MTLKD formula ϕ holds in the model M (denoted M |= ϕ) iff M,π |= ϕ for all
the paths π ∈ Π(ι). An EMTLKD formula ϕ holds in the model M , denoted M |=∃ ϕ,
iff M,π |= ϕ for some path π ∈ Π(ι). The existential model checking problem asks
whether M |=∃ ϕ.

3 Bounded Semantics for EMTLKD

The proposed bounded semantics is the backbone of the SAT-based BMC method for
EMTLKD, which is presented in the next section. The temporal part of this semantics
is based on the bounded semantics presented in [28,33]. As usual, we start by defining
k-paths and loops.

Let M = (ι, S, T, {∼c}c∈Ag, {��c}c∈Ag, V) be a model for DIIS, k ∈ IN, and
0 � l � k. A k-path πl is a pair (π, l), where π is a finite sequence π = (s0, . . . , sk) of

SAT-Based BMC for Deontic Metric Temporal Logic and DIISs 175

states such that (sj , sj+1) ∈ T for each 0 � j < k. A k-path πl is a loop if l < k and
π(k) = π(l). Note that if a k-path πl is a loop, then it represents the infinite path of the
form uvω, where u = (π(0), . . . , π(l)) and v = (π(l + 1), . . . , π(k)). We denote this
unique path by �(πl). Note that for each j ∈ IN, �(πl)

l+j = �(πl)
k+j . By Πk(s) we

denote the set of all the k-paths starting at s in M .
Let k ∈ IN be a bound, 0 � m � k, 0 � l � k, and ϕ an EMTLKD formula. As in

the definition of semantics we need to define the satisfiability relation on suffixes of k-
paths, we denote by πm

l the pair (πl,m), i.e., the k-path πl together with the designated
starting point m. Further, M,πm

l |=k ϕ denotes that the formula ϕ is k-true along the
suffix (π(m), . . . , π(k)) of π.

Definition 2. An EMTLKD formula ϕ is k-true along the k−path πl (in symbols
M,πl |=k ϕ) iff M,π0

l |=k ϕ, where
M,πm

l |=k true, M,πm
l �|=k false,

M,πm
l |=k p iff p ∈ V(π(m)), M,πm

l |=k ¬p iff p �∈ V(π(m)),
M,πm

l |=k α ∧ β iff M,πm
l |=k α and M,πm

l |=k β,
M,πm

l |=k α ∨ β iff M,πm
l |=k α or M,πm

l |=k β,
M,πm

l |=k Xα iff (m < k and M,πm+1
l |=k α) or

(m = k and l < k and π(k) = π(l) and M,πl+1
l |=k α),

M,πm
l |=k αUIβ iff (∃m � j � k)(j ∈ I+m and M,πj

l |=k β and (∀m � i < j)
M,πi

l |=k α) or (l < m and π(k) = π(l) and (∃l < j < m)

(j+k−l ∈ I+m and M,πj
l |=k β and (∀l < i < j)M,πi

l |= α
and (∀m � i � k)M,πi

l |=k α)),
M,πm

l |=k GIα iff (k � right(I+m) and (∀j ∈ I +m) (M,πj
l |=k α)) or

(k < right(I+m) and π(k) = π(l) and (∀max � j < k)

M,πj
l |=k α and (∀l � j < max) (j + k − l ∈ I +m implies

M,πj
l |=k α)), where max = max(left(I +m),m),

M,πm
l |=k Kcα iff (∃π′

l′ ∈ Πk(ι))(∃0 � j � k) (M,π′
l′
j |=k α and π(m) ∼c π′(j)),

M,πm
l |=k Y Γα iff (∃π′

l′ ∈ Πk(ι)) (∃0 � j � k) (M,π′
l′
j |=k α and π(m) ∼Y

Γ π′(j)),
M,πm

l |=k Ocα iff (∃π′
l′ ∈ Πk(ι)) (∃0 � j � k) (M,π′

l′
j |=k α and π(m) ��c π′(j)),

M,πm
l |=k K̂

d

cα iff (∃π′
l′ ∈ Πk(ι)) (∃0 � j � k) (M,π′

l′
j |=k α and π(m) ∼c π′(j)

and π(m) ��d π′(j)).

Let M be a model, and ϕ an EMTLKD formula. We use the following notations: M |=∃
k

ϕ iff M,πl |=k ϕ for some πl ∈ Πk(ι). The bounded model checking problem asks
whether there exists k ∈ IN such that M |=∃

k ϕ.

Equivalence of the Bounded and Unbounded Semantics. Now, we show that for
some particular bound the bounded and unbounded semantics are equivalent.

Lemma 1. Let M be a model, ϕ an EMTLKD formula, k � 0 a bound, πl a k-path in
M , and 0 � m � k. Then, M,πm

l |=k ϕ implies
1. if πl is not a loop, then M,ρm |= ϕ for each path ρ ∈M such that ρ[..k] = π.
2. if πl is a loop, then M,�(πl)

m |= ϕ.

Proof. (Induction on the length of ϕ) The lemma follows directly for the propositional
variables and their negations. Assume that M,πm

l |=k ϕ and consider the following
cases:

176 B. Woźna-Szcześniak and A. Zbrzezny

1. ϕ = α ∧ β | α ∨ β | Xα. See the proof of Lemma 2.1 of [33].
2. ϕ = αUIβ. Assume that πl is not a loop. Then (∃m � j � k)(j ∈ I + m and

M,πj
l |=k β and (∀m � i < j)(M,πi

l |=k α). By inductive hypothesis, for every
path ρ in M such that ρ[..k] = π, (∃m � j � k)(j ∈ I + m and M,ρj |= β
and (∀m � i < j)M,ρi |= α). Thus, for every path ρ in M such that ρ[..k] = π,
M,ρm |= ϕ.
Now assume that πl is a loop. Then l < m and π(k) = π(l) and (∃l < j < m)
(j+k−l ∈ I+m and M,πj

l |=k β and (∀l < i < j)M,πi
l |= α and (∀m � i � k)

M,πi
l |=k α). By inductive hypothesis, (∃l < j < m)(j + k − l ∈ I + m and

M,�(πl)
j |= β and (∀l < i < j) M,�(πl)

i |= α and (∀m � i � k) M,�(πl)
i |=

α). Since for each n ∈ IN, �(πl)
l+n = �(πl)

k+n, it follows that M,�(πl)
j+k−l |=

β and (∀k < i < j+ k− l) (M,�(πl)
i |= α) and (∀m � i � k) (M,�(πl)

i |= α).
Hence, �(πl)

j+k−l |= β and (∀m � i < j + k − l) (M,�(πl)
i |= α). Thus,

M,�(πl)
m |= ϕ.

3. ϕ = GIα. Assume that πl is not a loop. Then k ≥ right(I+m) and (∀j ∈ I +m)
(M,πj

l |=k α). By inductive hypothesis, for every path ρ in M such that ρ[..k] = π,
(∀j ∈ I +m)(M,ρj |= α). Thus, for every path ρ in M such that ρ[..k] = π,
M,ρm |= ϕ.
Now assume that πl is a loop, and max = max(left(I + m),m). Then, k <
right(I + m) and π(k) = π(l) and (∀max � j < k) M,πj

l |=k α and (∀l �
j < max) (j + k − l ∈ I + m implies M,πj

l |=k α). By inductive hypothesis,
(∀max � j < k) M,�(πl)

j |= α and (∀l � j < max) (j + k − l ∈ I + m
implies M,�(πl)

j |= α). Since for each n ∈ IN, �(πl)
l+n = �(πl)

k+n, it follows
that (∀n ∈ IN) (∀j � l + n) (j + k − l ∈ I +m implies M,�(πl)

j |= α). Thus,
M,�(πl)

m |= ϕ.
4. ϕ = Kcα. From M,πm

l |=k ϕ it follows that (∃π′
l′ ∈ Πk(ι))(∃0 � j � k)

(M,π′
l′
j |=k α and π(m) ∼c π′(j)). Assume that both πl and π′

l′ are not loops. By
inductive hypothesis, for every path ρ′ in M such that ρ′[..k] = π′, (∃0 � j � k)

(M,ρ′j |= α and π(m) ∼c ρ′(j)). Further, for every path ρ in M such that
ρ[..k] = π, we have that ρ(m) ∼c ρ′(j)). Thus, for every path ρ in M such that
ρ[..k] = π, M,ρm |= ϕ.
Now assume that π′

l′ is not a loop, and πl is a loop. By inductive hypothesis, for
every path ρ′ in M such that ρ′[..k] = π′, (∃0 � j � k)(M,ρ′j |= α and π(m) ∼c

ρ′(j)). Further, observe that �(πl)(m) = π(m), thus M,�(πl)
m |= ϕ.

Now assume that both πl and π′
l′ are loops. By inductive hypothesis, (∃0 � j � k)

(M,�(π′
l′)

j |= α and π(m) ∼c �(π′
l′)(j)). Further, observe that �(πl)(m) =

π(m), thus M,�(πl)
m |= ϕ.

Now assume that π′
l′ is a loop, and πl is not a loop. By inductive hypothesis,

(∃0 � j � k) (M,�(π′
l′)

j |= α and π(m) ∼c �(π′
l′)(j)). Further, for every path ρ

in M such that ρ[..k] = π, we have that ρ(m) ∼c �(π′
l′)(j)). Thus, for every path

ρ in M such that ρ[..k] = π, M,ρm |= ϕ.

5. Let ϕ = Y Γα, where Y ∈ {D,E,C}, or ϕ = Ocα, or ϕ = K̂
d

cα. These cases can
be proven analogously to the case 4.

SAT-Based BMC for Deontic Metric Temporal Logic and DIISs 177

Lemma 2. (Theorem 3.1 of [4]) Let M be a model, α an LTL formula, and π a path.
Then, the following implication holds: M,π |= α implies that for some k � 0 and
0 � l � k, M,ρl |=k α with π[. . k] = ρ.

Since MTL is simply LTL with an exponentially succinct encoding ([11]), every MTL
formula γ can be translated into an LTL formula αγ . Thus, by Lemma 2 we have that
the following lemma holds:

Lemma 3. Let M be a model, α an MTL formula, and π a path. Then, the following
implication holds: M,π |= α implies that for some k � 0 and 0 � l � k, M,ρl |=k α
with π[. . k] = ρ.

Lemma 4. Let M be a model, α an MTL formula, Y ∈ {Kc ,DΓ ,EΓ ,CΓ ,Oc, K̂
d

c},
and π a path. Then, the following implication holds: M,π |= Y α implies that for some
k � 0 and 0 � l � k, M,ρl |=k Y α with π[. . k] = ρ.

Proof. Let Xj denote the neXt time operator applied j times, i.e., Xj = X . . .X︸ ︷︷ ︸
j

.

1. Let Y = Kc . Then M,π |= Kcα iff M,π0 |= Kcα iff (∃π′ ∈ Π(ι)) (∃j �
0)[π′(j) ∼c π(0) and M,π′j |= α]. Since π′(j) is reachable from the initial state
of M , the checking of M,π′j |= α is equivalent to the checking of M,π′0 |= Xjα.
Now since Xjα is a pure MTL formula, by Lemma 3 we have that for some k � 0
and 0 � l � k, M,ρ′0l |=k Xjα with π′[. . k] = ρ′. This implies that M,ρ′jl |=k α
with π′[. . k] = ρ′, for some k � 0 and 0 � l � k. Now, since π′(j) ∼c π(0), we
have ρ′(j) ∼c ρ(0). Thus, by the bounded semantics we have that for some k � 0
and 0 � l � k, M,ρl |=k Kcα with π[. . k] = ρ.

2. Let Y = DΓ . Then M,π |= DΓα iff M,π0 |= DΓα iff (∃π′ ∈ Π(ι))(∃j �
0)[π′(j) ∼D

Γ π(0) and M,π′j |= α]. Since π′(j) is reachable from the initial state
of M , the checking of M,π′j |= α is equivalent to the checking of M,π′0 |= Xjα.
Now since Xjα is a pure MTL formula, by Lemma 3 we have that for some k � 0
and 0 � l � k, M,ρ′0l |=k Xjα with π′[. . k] = ρ′. This implies that M,ρ′jl |=k α
with π′[. . k] = ρ′, for some k � 0 and 0 � l � k. Now, since π′(j) ∼D

Γ π(0), we
have ρ′(j) ∼D

Γ ρ(0). Thus, by the bounded semantics we have that for some k � 0
and 0 � l � k, M,ρl |=k DΓα with π[. . k] = ρ.

3. Let Y = EΓ . Since EΓα =
∨

c∈Γ Kcα, the lemma follows from the case 1.
4. Let Y = CΓ . Since CΓα =

∨n
i=1(EΓ)

iα, where n is the size of the model M , the
lemma follows from the case 3.

5. Let Y = Oc . Then M,π |= Ocα iff M,π0 |= Ocα iff (∃π′ ∈ Π(ι)) (∃j �
0)[π(0) ��c π′(j) and M,π′j |= α]. Since π′(j) is reachable from the initial state
of M , the checking of M,π′j |= α is equivalent to the checking of M,π′0 |= Xjα.
Now since Xjα is a pure MTL formula, by Lemma 3 we have that for some k � 0
and 0 � l � k, M,ρ′0l |=k Xjα with π′[. . k] = ρ′. This implies that M,ρ′jl |=k α
with π′[. . k] = ρ′, for some k � 0 and 0 � l � k. Now, since π(0) ��c π′(j), we
have ρ(0) ��c ρ′(j) Thus, by the bounded semantics we have that for some k � 0
and 0 � l � k, M,ρl |=k Ocα with π[. . k] = ρ.

6. Let Y = K̂
d

c . This case can be proven analogously to the case 1 and 5.

178 B. Woźna-Szcześniak and A. Zbrzezny

Lemma 5. Let M be a model, ϕ an EMTLKD formula, and π a path. The following
implication holds: M,π |= ϕ implies that there exists k � 0 and 0 � l � k such that
M,ρl |=k ϕ with ρ[. . k] = π.

Proof. (Induction on the length of ϕ) The lemma follows directly for the propositional
variables and their negations. Assume that the hypothesis holds for all the proper sub-
formulas of ϕ and consider ϕ to be of the following form:

1. ϕ = ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | Xψ | ψ1UIψ2 | GIψ. Straightforward by the induction
hypothesis and Lemma 3.

2. Let ϕ = Y α, and Y, Y1, . . . , Yn, Z ∈ {Kc , DΓ , EΓ , CΓ , Oc , K̂
d

c}. Moreover, let
Y1α1, . . . , Ynαn be the list of all ”top level” proper Y -subformulas of α (i.e., each
Yiαi is a subformula of Y α, but it is not a subformula of any subformula Zβ of Y α,
where Zβ is different from Y α and from Y αi for i = 1, . . . , n).
If this list is empty, then α is a ”pure” MTL formula with no nested epistemic modal-
ities. Hence, by Lemma 4 we have M,π |= ϕ implies that there exists k � 0 and
0 � l � k such that M,ρl |=k ϕ with ρ[. . k] = π.
Otherwise, introduce for each Yiαi a new proposition qi, where i = 1, . . . , n. Using
first a translation of MTL formulae to LTL formulae, and then a symbolic state
labelling algorithm presented in [7] (for LTL modalities) and [26] (for epistemic
and deontic modalities), we can augment with qi the labelling of each state s of
M initialising some run along which the epistemic formula Yiαi holds, and then
translate the formula α to the formula α′, which instead of each subformula Yiαi

contains adequate propositions qi. Therefore, we obtain ”pure” LTL formula. Hence,
by Lemma 4 we have M,π |= ϕ implies that there exists k � 0 and 0 � l � k such
that M,ρl |=k ϕ with ρ[. . k] = π.

The following theorem, whose proof follows directly from Lemma 1 and Lemma 5,
states that for a given model and an EMTLKD formula there exists a bound k such that
the model checking problem (M |=∃ ϕ) can be reduced to the bounded model checking
problem (M |=∃

k ϕ).

Theorem 1. Let M be a model andϕ an EMTLKD formula. Then, the following equiv-
alence holds: M |=∃ ϕ iff there exists k � 0 such that M |=∃

k ϕ.

Further, by straightforward induction on the length of an EMTLKD formula ϕ, we can
show that ϕ is k-true in M if and only if ϕ is k-true in M with a number of k-paths
reduced to fk(ϕ), where the function fk : EMTLKD → IN gives a bound on the number
of k-paths, which are sufficient to validate a given EMTLKD formula.

In the definition of fk we assume that each EMTLKD formula is preceded by the
“path” quantifier E with the meaning “there exists a path in Πk(ι)”; this assumption
is only technical and it makes the definition of fk easy to implement. Note that in the
BMC method we deal with the existential validity (|=∃) only, so the above assumption
is just another way to express this fact. More precisely, let ϕ be an EMTLKD formula.
To calculate the value of fk(ϕ), we first extend the formula ϕ to the formula ϕ′ = Eϕ.
Next, we calculate the value of fk for ϕ′ in the following way: fk(Eϕ) = fk(ϕ) + 1;
fk(true) = fk(false) = 0; fk(p) = fk(¬p) = 0 for p ∈ PV; fk(α ∧ β) = fk(α) +
fk(β); fk(α ∨ β) = max{fk(α), fk(β)}; fk(Xα) = fk(α); fk(αUIβ) = k · fk(α) +

SAT-Based BMC for Deontic Metric Temporal Logic and DIISs 179

fk(β); fk(GIα) = (k + 1) · fk(α); fk(CΓα) = fk(α) + k; fk(Y α) = fk(α) + 1 for

Y ∈ {Kc ,Oc , K̂
d

c ,DΓ ,EΓ }.

4 SAT-Based BMC for EMTLKD

Let M = (ι, S, T, {∼c}c∈Ag, {��c}c∈Ag,V) be a model, ϕ an EMTLKD formula, and
k � 0 a bound. The proposed BMC method is based on the BMC encoding presented
in [33], and it consists in translating the problem of checking whether M |=∃

k ϕ holds,
to the problem of checking the satisfiability of the propositional formula

[M,ϕ]k := [Mϕ,ι]k ∧ [ϕ]M,k

The formula [Mϕ,ι]k encodes sets of k-paths of M , whose size equals to fk(ϕ), and in
which at least one path starts at the initial state of the model M . The formula [ϕ]M,k

encodes a number of constraints that must be satisfied on these sets of k-paths for ϕ to
be satisfied. Note that our translation, like the translation from [33], does not require
that either all the k-paths used in the translation are loops or none is a loop. Once this
translation is defined, checking satisfiability of an EMTLKD formula can be done by
means of a SAT-solver.

In order to define the formula [M,ϕ]k we proceed as follows. We begin with an
encoding of states of the given model M . Since the set of states of M is finite, each state
s ofM can be encoded by a bit-vector, whose length r depends on the number of agents’
local states. Thus, each state s of M can be represented by a vector w = (w1, . . . , wr)
(called a symbolic state) of propositional variables (called state variables). The set of
all the propositional state variables we denote by SV .

Since any k-path (π, l) is a pair consisting of a finite sequence of states of length k
and a number l � k, to encode it by propositional formula, it suffices to take a finite se-
quence of symbolic states of length k and a formula that encodes the position l � k. The
designated position l can be encoded as a bit vector of the length t = max(1, 'log2(k+
1)(). Thus, the position l can be represented by a valuation of a vector u = (u1, . . . , ut)
(called a symbolic number) of propositional variables (called propositional natural vari-
ables), which not appear among propositional state variables. The set of all the proposi-
tional natural variables we denote by NV , and we assume that SV ∩NV = ∅. Given the
above we can define a symbolic k-path as a pair ((w0, . . . , wk), u) consisting of a finite
sequence of symbolic states of length k and a symbolic number. Since in general we
may need to consider more than one symbolic k-path, therefore we introduce a notion
of the j-th symbolic k-path πj = ((w0,j , . . . , wk,j), uj), wherewi,j are symbolic states
for 0 � j < fk(ϕ) and 0 � i � k, and uj is a symbolic number for 0 � j < fk(ϕ).
Note that the exact number of symbolic k-paths depends on the checked formula ϕ, and
it can be calculated by means of the function fk.

Let PV = SV ∪ NV , and V : PV → {0, 1} be a valuation of propositional vari-
ables (a valuation for short). Each valuation induces the functions S : SV r → {0, 1}r
and J : NV t → IN defined in the following way: S((w1, . . . , wr)) = (V (w1), . . . ,
V (wr)), J((u1, . . . , ut)) =

∑t
i=1 V (ui) · 2i−1. Moreover, for a symbolic state w and a

symbolic number u, by SV (w) and NV (u) we denote, respectively, the set of all the
state variables occurring in w, and the set of all the natural variables occurring in u.

180 B. Woźna-Szcześniak and A. Zbrzezny

Next, let w and w′ be two symbolic states such that SV (w) ∩ SV (w′) = ∅, and u be a
symbolic number. We define the following auxiliary propositional formulae:

• Is(w) is a formula over SV (w) that is true for a valuation V iff S(w) = s.
• p(w) is a formula over SV (w) that is true for a valuation V iff p ∈ V(S(w)) (encodes

a set of states of M in which p ∈ PV holds).
• H(w,w′) is a formula over SV (w)∪SV (w′) that is true for a valuation V iff S(w) =

S(w′) (encodes equality of two global states).
• Hc(w,w

′) is a formula over SV (w) ∪ SV (w′) that is true for a valuation V iff
lc(S(w)) = lc(S(w)) (encodes equality of local states of agent c).

• HOc(w,w
′) is a formula over SV (w) ∪ SV (w′) that is true for a valuation V iff

lc(S(w′)) ∈ Gc (encodes an accessibility of a global state in which agent c is func-
tioning correctly).

• Ĥd
c (w,w

′) := Hc(w,w
′) ∧HOd(w,w

′).
• T (w,w′) is a formula over SV (w) ∪ SV (w′) that is true for a valuation V iff
(S(w), S(w′)) ∈ T (encodes the transition relation of M).

• B∼

j (u) is a formula over NV (u) that is true for a valuation V iff j ∼ J(u), where
∼∈ {<,�,=,�, >}.

• Ll
k(πj) := B>

k (uj) ∧H(wk,j , wl,j).

Moreover, let j ∈ IN, and I be an interval. Then,

In(j, I) =

{
true, if j ∈ I
false, if j �∈ I

Let W = {SV (wi,j) | 0 ≤ i ≤ k and 0 � j < fk(ϕ)} ∪ {NV (uj) | 0 � j < fk(ϕ)}
be a set of propositional variables. The propositional formula [Mϕ,ι]k is defined over
the set W in the following way:

[Mϕ,ι]k := Iι(w0,0) ∧
fk(ϕ)−1∧

j=0

k−1∧
i=0

T (wi,j , wi+1,j) ∧
fk(ϕ)−1∧

j=0

k∨
l=0

B=
l (uj).

The next step of the reduction to SAT is the transformation of an EMTLKD formula
ϕ into a propositional formula [ϕ]M,k := [ϕ]

[0,0,Fk(ϕ)]
k , where Fk(ϕ) = {j ∈ IN | 0 �

j < fk(ϕ)}, and [ϕ]
[m,n,A]
k denotes the translation of ϕ along the symbolic path πm,n

with starting point m by using the set A.
For every EMTLKD formula ϕ the function fk determines how many symbolic k-

paths are needed for translating the formula ϕ. Given a formula ϕ and a set A of k-
paths such that |A| = fk(ϕ), we divide the set A into subsets needed for translating the
subformulae of ϕ. To accomplish this goal we need some auxiliary functions that were
defined in [33]. We recall the definitions of these functions.

The relation ≺ is defined on the power set of IN as follows: A ≺ B iff for all natural
numbers x and y, if x ∈ A and y ∈ B, then x < y.

Now, let A ⊂ IN be a finite nonempty set, and n, d ∈ IN, where d � |A|. Then,

• gl(A, d) denotes the subset B of A such that |B| = d and B ≺ A \B.
• gr(A, d) denotes the subset C of A such that |C| = d and A \ C ≺ C.
• gs(A) denotes the set A \ {min(A)}.

SAT-Based BMC for Deontic Metric Temporal Logic and DIISs 181

• if n divides |A| − d, then hp(A, d, n) denotes the sequence (B0, . . . , Bn) of subsets
of A such that

⋃n
j=0 Bj = A, |B0| = . . . = |Bn−1|, |Bn| = d, and Bi ≺ Bj for

every 0 � i < j � n.

Now let hU
k (A, d)

df
= hp(A, d, k) and hG

k (A)
df
= hp(A, 0, k). Note that if hU

k (A, d) =
(B0, . . . , Bk), then hU

k (A, d)(j) denotes the set Bj , for every 0 � j � k. Similarly, if
hG
k (A) = (B0, . . . , Bk), then hG

k (A)(j) denotes the set Bj , for every 0 � j � k.
The functions gl and gr are used in the translation of the formulae with the main

connective being either conjunction or disjunction. For a given EMTLKD formulaα∧β,
if a set A is used to translate this formula, then the set gl(A, fk(α)) is used to translate
the subformula α and the set gr(A, fk(β)) is used to translate the subformula β; for
a given EMTLKD formula α ∨ β, if a set A is used to translate this formula, then the
set gl(A, fk(α)) is used to translate the subformula α and the set gl(A, fk(β)) is used
to translate the subformula β.

The function gs is used in the translation of the formulae with the main connective

Q ∈ {Kc, K̂
j

c, Oc , DΓ , EΓ }. For a given EMTLKD formula Qα, if a set A is used
to translate this formula, then the path of the number min(A) is used to translate the
operator Q and the set gs(A) is used to translate the subformula α.

The function hU
k is used in the translation of subformulae of the form αUIβ. If a set

A is used to translate the subformula αUIβ at the symbolic k-path πn (with starting
point m), then for every j such that m � j � k, the set hU

k (A, fk(β))(k) is used to
translate the formula β along the symbolic path πn with starting point j; moreover, for
every i such that m � i < j, the set hU

k (A, fk(β))(i) is used to translate the formula α
along the symbolic path πn with starting point i. Notice that if k does not divide |A|−d,
then hU

k (A, d) is undefined. However, for every set A such that |A| = fk(αUIβ), it is
clear from the definition of fk that k divides |A| − fk(β).

The function hG
k is used in the translation of subformulae of the form GIα. If a set

A is used to translate the subformula GIα along a symbolic k-path πn (with starting
point m), then for every j such that m � j � k and j ∈ I , the set hG

k (A)(j), is used to
translate the formula α along the symbolic paths πn with starting point j; Notice that if
k+ 1 does not divide |A|, then hG

k (A) is undefined. However, for every set A such that
|A| = fk(GIα), it is clear from the definition of fk that k + 1 divides |A|.

Let ϕ be an EMTLKD formula, and k � 0 a bound. We can define inductively the
translation of ϕ over path number n ∈ Fk(ϕ) starting at symbolic state wm,n as shown
below. Let A′ = min(A), hU

k = hU
k (A, fk(β)) and hG

k = hG
k (A), then:

[true]
[m,n,A]
k := true, [false][m,n,A]

k := false,

[p]
[m,n,A]
k := p(wm,n), [¬p][m,n,A]

k := ¬p(wm,n),

[α ∧ β]
[m,n,A]
k := [α]

[m,n,gl(A,fk(α))]
k ∧ [β]

[m,n,gr(A,fk(β))]
k ,

[α ∨ β]
[m,n,A]
k := [α]

[m,n,gl(A,fk(α))]
k ∨ [β]

[m,n,gl(A,fk(β))]
k ,

[Xα]
[m,n,A]
k := [α]

[m+1,n,A]
k , if m < k∨k−1

l=0 (Ll
k(πn) ∧ [α]

[l+1,n,A]
k), if m = k

[αUIβ]
[m,n,A]
k :=

∨k
j=m(In(j, I +m) ∧ [β]

[j,n,hU
k (k)]

k ∧
∧j−1

i=m[α]
[i,n,hU

k (i)]
k)∨

(
∨m−1

l=0 (Ll
k(πn)) ∧

∨m−1
j=0 (B>

j (un) ∧ [β]
[j,n,hU

k (k)]
k ∧

(
∨m−1

l=0 (B=
l (un) ∧ In(j + k − l, I +m)))∧

182 B. Woźna-Szcześniak and A. Zbrzezny

∧j−1
i=0 (B>

i (un)→ [α]
[i,n,hU

k (i)]
k) ∧

∧k
i=m[α]

[i,n,hU
k (i)]

k)),

[GIα]
[m,n,A]
k := if right(I +m) � k, then

∧right(I+m)
j=max [α]

[j,n,hG
k (j)]

k ,

if right(I +m) > k, then
∨k−1

l=0 (Ll
k(πn)) ∧

∧k−1
j=max[α]

[j,n,hG
k (j)]

k ∧∧max−1
j=0 ((B�

j (un) ∧ (
∨max−1

l=0 (B=
l (un)∧ In(j + k − l, I +m))))

→ [α]
[j,n,hG

k (j)]
k), where max = max(left(I +m),m)

[Kcα]
[m,n,A]

k := Iι(w0,A′) ∧
∨k

j=0([α]
[j,A′,gs(A)]
k ∧Hc(wm,n, wj,A′)),

[Ocα]
[m,n,A]

k := Iι(w0,A′) ∧
∨k

j=0([α]
[j,A′,gs(A)]
k ∧HOc(wm,n, wj,A′)),

[K̂
d

cα]
[m,n,A]

k := Iι(w0,A′) ∧
∨k

j=0([α]
[j,A′,gs(A)]
k ∧ Ĥd

c (wm,n, wj,A′)),

[DΓα]
[m,n,A]

k := Iι(w0,A′) ∧
∨k

j=0([α]
[j,A′,gs(A)]
k ∧

∧
c∈Γ Hc(wm,n, wj,A′)),

[EΓα]
[m,n,A]

k := Iι(w0,A′) ∧
∨k

j=0([α]
[j,A′,gs(A)]
k ∧

∨
c∈Γ Hc(wm,n, wj,A′)),

[CΓα]
[m,n,A]

k := [
∨k

j=1(EΓ)
jα]

[m,n,A]
k .

Now, let α be an EMTLKD formula. For every subformula ϕ of α, we denote by
[ϕ]

[α,m,n,A]
k the propositional formula [M]

Fk(α)
k ∧ [ϕ]

[m,n,A]
k , where [M]

Fk(α)
k =∧fk(α)−1

j=0

∧k−1
i=0 T (wi,j , wi+1,j) ∧

∧fk(α)−1
j=0

∨k
l=0 B

=
l (uj). We write V � ξ to mean

that the valuation V satisfies the propositional formula ξ. Moreover, we write si,j in-
stead of S(wi,j), and lj instead of J(uj).

The lemmas below state the correctness and the completeness of the presented trans-
lation respectively.

Lemma 6. Correctness of the translation Let M be a model, α an EMTLKD formula,
and k ∈ IN. For every subformula ϕ of the formula α, every (m,n) ∈ {0, . . . , k} ×
Fk(α), every A ⊆ Fk(α) \ {n} such that |A| = fk(ϕ), and every valuation V , the

following condition holds: V � [ϕ]
[α,m,n,A]
k implies M, ((s0,n, . . . , sk,n), ln)

m |=k ϕ.

Proof. Let n ∈ Fk(α), A be a set such that A ⊆ Fk(α) \ {n} and |A| = fk(ϕ), m be

a natural number such that 0 � m � k and V a valuation. Suppose that V � [ϕ]
[α,m,n,A]
k

and consider the following cases:

1. Let ϕ = p | ¬p | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | Xψ with p ∈ PV. See Lemma 3.1. of [33].
2. ϕ = ψ1UIψ2. Denote by A1 the propositional formula

∨k
j=m

(
In(j, I + m) ∧

[ψ2]
[j,n,hU

k (A,fk(ψ2))(k)]
k ∧

∧j−1
i=m[ψ1]

[i,n,hU
k (A,fk(ψ2))(i)]

k

)
, and by A2 the proposi-

tional formula
∨m−1

l=0 (Ll
k(πn)) ∧

∨m−1
j=0

(
B>
j (un) ∧ [β]

[j,n,hU
k (A,fk(β))(k)]

k ∧
(
∨m−1

l=0 (B=
l (un)∧In(j+k−l, I+m)))∧

∧j−1
i=0 (B>

i (un)→ [α]
[i,n,hU

k (A,fk(β))(i)]
k)∧∧k

i=m[α]
[i,n,hU

k (A,fk(β))(i)]
k

)
. Observe that V � [ψ1UIψ2]

[α,m,n,A]
k iff V � A1 ∨A2

iff V � A1 or V � A2. Let us denote by πl the k-path ((s0,n, . . . , sk,n), ln), and
consider two cases:
(a) V � A1. From this we get: (∃m � j � k)

(
j ∈ I +m and M,πj

l |=k ψ2 and
(∀m � i < j)M,πi

l |=k ψ1

)
. Hence M,πm

l |=k ψ1UIψ2.
(b) V � A2. From this we get: l < m and π(k) = π(l) and (∀m � i � k)M,πi

l |=k

ψ1 and (∃l<j<m)(j+k−l ∈ I+m and M,πj
l |=k ψ2 and (∀l<i<j)M,πi

l |=
ψ1). Hence M,πm

l |=k ψ1UIψ2.

SAT-Based BMC for Deontic Metric Temporal Logic and DIISs 183

3. ϕ = GIψ. If right(I + m) � k, then by B1 we denote the propositional formula:∧right(I+m)
j=max(left(I+m),m)[ψ]

[j,n,hG
k (A)(j)]

k . If right(I + m) > k, then by B2 we denote

the propositional formula:
∨k−1

l=0 (Ll
k(πn))∧

∧k−1
j=max(left(I+m),m)[ψ]

[j,n,hG
k (A)(j)]

k ∧∧max(left(I+m),m)−1
j=0

((
B�
j (un)∧(

∨max(left(I+m),m)−1
l=0 (B=

l (un)∧In(j+k−l, I+

m)))
)
→ [ψ]

[j,n,hG
k (A)(j)]

k

)
. Observe that V � [GIψ]

[α,m,n,A]
k iff V � B1 ∨ B2 iff

V � B1 or V � B2. Let us denote by πl the k-path ((s0,n, . . . , sk,n), ln), and con-
sider two cases:

(a) V � B1. From this we get: k � right(I+m) and (∀j ∈ I +m)(M,πj
l |=k ψ).

Thus M,πm
l |=k GIψ.

(b) V � B2. From this we get: k < right(I +m) and π(k) = π(l) and (∀max �
j < k) M,πj

l |=k ψ and (∀l � j < max)(j + k − l ∈ I + m implies
M,πj

l |=k ψ), where max = max(left(I +m),m). Thus M,πm
l |=k GIψ.

4. Let ϕ = Kcψ. Let n′ = min(A), and π̃l′ denotes the k-path ((g0,n′ , . . . , gk,n′), ln′).

By the definition of the translation we haveV � [Kcψ]
[α,m,n,A]
k implies V �Iι(w0,n′)

∧
∨k

j=0([ψ]
[α,j,n′,gs(A)]
k ∧Hc(wm,n, wj,n′)). Since V � Hc(wm,n, wj,n′) holds, we

have gm,n ∼c g′j,n′ , for some j ∈ {0, . . . , k}. Therefore, by inductive hypothe-

ses we get (∃0 � j � k)(M, π̃j
l′ |=k ψ and gm,n ∼c g′j,n′). Thus we have

M, ((g0,n, . . . , gk,n), ln)
m |=k Kcψ.

5. Let ϕ = Y Γψ, where Y ∈ {D,E,C}, or ϕ = Ocψ, or ϕ = K̂
d

cψ. These can be
proven analogously to Case 4.

Let B and C be two finite sets of indices. Then, by V ar(B) we denote the set of all the
state variables appearing in all the symbolic states of all the symbolic k-paths whose
indices are taken from the set B. Moreover, for every valuation V and every set of
indices B, by V ↑ B we denote the restriction of the valuation V to the set V ar(B).
Notice that if B ∩ C = ∅, then V ar(B) ∩ V ar(C) = ∅. This property is used in the
proof of the following lemma.

Lemma 7. Completeness of the translation Let M be a model, k ∈ IN, and α an
EMTLKD formula such that fk(α) > 0. For every subformulaϕ of the formulaα, every
(m,n) ∈ {(0, 0)}∪{0, . . . , k}×Fk(α), every A ⊆ Fk(α)\{n} such that |A| = fk(ϕ),
and every k-path πl, the following condition holds: M,πm

l |=k ϕ implies that there ex-

ists a valuation V such that πl = ((s0,n, . . . , sk,n), ln) and V � [ϕ]
[α,m,n,A]
k .

Proof. First, note that given an EMTLKD formula α, and natural numbers k, m, n with
0 � m � k and n ∈ Fk(α), there exists a valuation V such V � [M]

Fk(α)
k . This is

because M has no terminal states. Now we proceed by induction on the complexity
of ϕ. Let n ∈ Fk(α), A be a set such that A ⊆ Fk(α) \ {n} and |A| = fk(ϕ), ρl
be a k-path in M , and m be a natural number such that 0 � m � k. Suppose that
M,πm

l |=k ϕ and consider the following cases:

1. Let ϕ = p | ¬p | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | Xψ with p ∈ PV. See the proof of Lemma
3.3. of [33].

2. ϕ = ψ1UIψ2. Let Aj = hU
k (A, fk(ψ2))(j), for each 0 � j � k. We have to consider

two cases:

184 B. Woźna-Szcześniak and A. Zbrzezny

(a) (∃m� j�k)
(
j∈I+m and M,πj

l |=k ψ2 and (∀m� i<j)M,πi
l |=k ψ1

)
. By

inductive hypothesis, there exist valuations V0, V1, . . . , Vk , such that (∃m �
j � k)

(
Vk � [ψ2]

[α,j,n,Ak]
k and (∀m � i < j)Vi � [ψ2]

[α,i,n,Ai]
k

)
. Since the

family of sets {Aj}0�j�k is pairwise disjoint and the formula In(j, I +m) has
always a constant value equal to true or false, then there exists a valuation
V such that (∃m � j � k)

(
V � In(j, I+m) ∧ [ψ2]

[α,j,n,Ak]
k and (∀m � i <

j)V � [ψ2]
[α,i,n,Ai]
k

)
. From this we get that (∃m � j � k)

(
V � In(j, I +

m)∧[ψ2]
[α,j,n,Ak]
k andV �

∧j−1
i=m[ψ1]

[α,i,n,Ai]
k

)
. Hence,V �

∨k
j=m(In(j, I+

m) ∧ [ψ2]
[α,j,n,Ak]
k ∧

∧j−1
i=m[ψ2]

[α,i,n,Ai]
k). Thus, V � [ψ1UIψ2]

[α,m,n,A]
k .

(b) (∃l<j<m)(j+k−l∈I+m and M,πj
l |=k ψ2 and (∀l < i < j)M,πi

l |= ψ1)
and (∀m � i � k)M,πi

l |=k ψ1 and l < m and π(k) = π(l). By in-
ductive hypothesis, there exist valuations V0, V1, . . . , Vk , such that (∃l < j <

m)(Vk � [ψ2]
[α,j,n,Ak]
k and (∀m � i < j)Vi � [ψ2]

[α,i,n,Ai]
k) and (∀m � i �

k)Vi � [ψ2]
[α,i,n,Ai]
k . Since the family of sets {Aj}0�j�k is pairwise disjoint,

and the formula In(j+ k− l, I+m) has always a constant value equal to true
or false, there exists a valuation V such that (∃l < j < m)(V � In(j + k −
l, I +m) ∧ [ψ2]

[α,j,n,Ak]
k and (∀l < i < j)V � [ψ2]

[α,i,n,Ai]
k) and (∀m � i �

k)V � [ψ2]
[α,i,n,Ai]
k . Moreover, V � Ll

k(πn). From this we get: V �
∨m−1

j=0

(B>
j (un)∧ [ψ2]

[j,n,hU
k (A,fk(ψ2))(k)]

k ∧(
∨m−1

l=0 (B=
l (un)∧In(j + k− l, I +m)))

∧
∧j−1

i=0 (B>
i (un) → [ψ1]

[i,n,hU
k (A,fk(ψ2))(i)]

k) ∧
∧k

i=m[ψ1]
[i,n,hU

k (A,fk(ψ2))(i)]
k)

and V �
∨m−1

l=0 Ll
k(πn). Hence, V � [ψ1UIψ2]

[α,m,n,A]
k .

3. ϕ = GIψ. Let Aj = hG
k (A)(j), for each 0 � j � k. We have to consider two cases:

(a) k ≥ right(I +m) and (∀j ∈ I +m)(M,πj
l |=k α). By inductive hypothesis,

there exist valuations V0, V1, . . . , Vk, such that (∀j ∈ I+m)Vj � [ψ]
[α,j,n,Aj]
k .

Since the family of sets {Aj}0�j�k is pairwise disjoint, there exists a valu-

ation V such that (∀j ∈ I + m)V � [ψ]
[α,j,n,Aj]
k . From this we get: V �∧right(I+m)

j=max(left(I+m),m)[α]
[j,n,hG

k (A)(j)]
k . Hence, V � [GIψ]

[α,m,n,A]
k .

(b) k < right(I + m) and π(k) = π(l) and (∀max � j < k) M,πj
l |=k α

and (∀l � j < max)(j + k − l ∈ I + m implies M,πj
l |=k α), where

max = max(left(I + m),m). By inductive hypothesis, there exist valua-

tions V0, V1, . . . , Vk, such that (∀max � j < k)Vj � [ψ]
[α,j,n,Aj]
k and (∀l �

j < max)(j + k − l ∈ I + m implies Vj � [ψ]
[α,j,n,Aj]
k). Since the fam-

ily of sets {Aj}0�j�k is pairwise disjoint, there exists a valuation V such

that (∀max � j < k)V � [ψ]
[α,j,n,Aj]
k and (∀l � j < max)(j + k −

l ∈ I + m implies V � [ψ]
[α,j,n,Aj]
k). Moreover, V � Ll

k(πn). From this we

get: V �
∨k−1

l=0 (Ll
k(πn)) ∧

∧k−1
j=max[ψ]

[j,n,hG
k (A)(j)]

k ∧
∧max−1

j=0 ((B�
j (un) ∧

(
∨max−1

l=0 (B=
l (un)∧ In(j + k − l, I + m)))) → [ψ]

[j,n,hG
k (A)(j)]

k). Hence,

V � [GIψ]
[α,m,n,A]
k .

SAT-Based BMC for Deontic Metric Temporal Logic and DIISs 185

4. Let ϕ = Kcψ. Since M,πm
l |=k Kcψ, we have that (∃π′

l′ ∈ Πk(ι))(∃0 � j � k)

(M,π′j
l′ |=k ψ and π(m) ∼c π′(j)). Let n′ = min(A) and B = gs(A). By

the inductive hypothesis and the definition of the formula Hc , there exists a valu-

ation V ′ such that V ′ � [M]
Fk(α)
k and V ′ � [ψ]

[j,n′,B]
k ∧Hc(wm,n, wj,n′) for some

j ∈ {0, . . . , k}. Hence we have V ′ �
∨k

j=0([ψ]
[j,n′,B]
k ∧ Hc(wm,n, wj,n′)). Fur-

ther, since π′
l′ ∈ Πk(ι), π′

l′(0) = ι. Thus, by the definition of the formula I ,

we get that V ′ � Iι(w0,n′). Therefore we have V ′ � Iι(w0,n′)∧
∨k

j=0([ψ]
[j,n′,B]
k ∧

Hc(wm,n, wj,n′)), which implies that V ′ � [Kcψ]
[m,n,A]

k . Since n′ /∈ B and n /∈ A,

there exists a valuation V such that V ↑B = V ′ ↑B and moreover V � [M]
Fk(α)
k

and V � [Kcψ]
[m,n,A]

k . Therefore we get V � [Kcψ]
[α,m,n,A]
k .

5. Let ϕ = Y Γψ, where Y ∈ {D,E,C}, or ϕ = Ocψ, or ϕ = K̂
d

cψ. These can be
proven analogously to Case 4.

Theorem 2. Let M be a model, and ϕ an EMTLKD formula. Then for every k ∈ IN,
M |=∃

k ϕ if, and only if, the propositional formula [M,ϕ]k is satisfiable.

Proof. (=⇒) Let k ∈ IN and M,πl |=k ϕ for some πl ∈ Πk(ι). By Lemma 7 it follows
that there exists a valuation V such that πl = ((s0,0, . . . , sk,0), l0) with S(w0,0) =

s0,0 = ι and V � [ϕ]
[ϕ,0,0,Fk(ϕ)]
k . Hence, V � I(w0,0) ∧ [M]

Fk(ϕ)
k ∧ [ϕ]

[0,0,Fk(ϕ)]
k .

Thus V � [M,ϕ]k.
(⇐=) Let k ∈ IN and [M,ϕ]k is satisfiable. It means that there exists a valuation V

such that V � [M,ϕ]k. So, V � I(w0,0) and V � [M]
Fk(ϕ)
k ∧ [ϕ]

[0,0,Fk(ϕ)]
k . Hence, by

Lemma 6 it follows that M, ((s0,0, . . . , sk,0), l0) |=k ϕ and S(w0,0) = s0,0 = ι. Thus
M |=∃

k ϕ.

Now, from Theorems 1 and 2 we get the following.

Corollary 1. Let M be a model, and ϕ an EMTLKD formula. Then, M |=∃ ϕ if, and
only if, there exists k ∈ IN such that the propositional formula [M,ϕ]k is satisfiable.

5 Experimental Results

Our SAT-base BMC method for EMTLKD is, to our best knowledge, the first one for-
mally presented in the literature, and moreover there is no any other model checking
technique for the considered EMTLKD language. Further, our implementation of the
presented BMC method uses Reduced Boolean Circuits (RBC) [1] to represent the
propositional formula [M,ϕ]k. An RBC represents subformulae of [M,ϕ]k by fresh
propositions such that each two identical subformulae correspond to the same propo-
sition1. For the tests we have used a computer with Intel Core i3-2125 processor,

1 Following van der Meyden at al. [12], instead of using RBCs, we could directly encode
[M,ϕ]k in such a way that each subformula ψ of [M,ϕ]k occurring within a scope of a k-
element disjunction or conjunction is replaced with a propositional variable pψ and the re-
duced formula [M,ϕ]k is conjuncted with the implication pψ ⇒ ψ. However, in this case our
method, as the one proposed in [12], would not be complete.

186 B. Woźna-Szcześniak and A. Zbrzezny

8 GB of RAM, and running Linux 2.6. We set the timeout to 5400 seconds, and memory
limit to 8GB, and we used the state of the art SAT-solver MiniSat 2. The specifications
for the described benchmark are given in the universal form, for which we verify the
corresponding counterexample formula, i.e., the formula which is negated and inter-
preted existentially.

W

T

A

W

T

A

G

R

F

in1 in1

out1

out1in2 in2

ap1 ap2

out2

out2

in1

in1

in2

in2

out1out2

Fig. 1. An DIIS of FTC for two trains. Null ac-
tions are omitted.

To evaluate our technique, we have
analysed a scalable multi-agent system,
which is a faulty train controller system
(FTC). Figure 1 presents a DIIS com-
posed of three agents: a controller and
two trains, but in general the system con-
sists of a controller, and n trains (for n �
2) that use their own circular tracks for
travelling in one direction (states Away
(A)). At one point, all trains have to pass
through a tunnel (states Tunnel ’T’), but
because there is only one track in the tun-
nel, trains arriving from each direction
cannot use it simultaneously. There are colour light signals on both sides of the tunnel,
which can be either red (state ’R’) or green (state ’G’). All trains notify the controller
when they request entry to the tunnel or when they leave the tunnel. The controller con-
trols the colour of the colour light signals, however it can be faulty (state ’F’), i.e., a
faulty traffic light remains green when a train enters the tunnel, and thereby it does not
serve its purpose. In the figure, the initial states of the controller and the trains are ’G’
and ’W’ (Waiting in front of the tunnel) respectively, and the transitions with the same
label are synchronised.

Let PV = {inT1, . . . inTn, Red} be a set of propositional variables, which we find
useful in analysis of the scenario of the FTC system. A valuation function V : S → 2PV

is defined as follows. Let Ag = {Train1 (T 1), . . . , T rainN (TN), Controller (C)}.
Then, inTc ∈ V(s) if lc(s) = T and c ∈ Ag \ {C}; Red ∈ V(s) if lC(s) = R. The
specifications are the following:

ϕ1 = G[0,∞] OC(
∧n−1

i=1

∧n
j=i+1 ¬(InTi ∧ InTj)). “Always when Controller is func-

tioning correctly, trains have exclusive access to the tunnel”.
ϕ2 = G[0,∞](inT1 ⇒ K̂C

T1(
∧n

i=2(¬inTi))). “Always when Train1 is in the tunnel, it
knows under assumption that Controller is functioning correctly that none of the
other trains is in the tunnel”.

ϕ3 = G[0,∞](inT1 ⇒ K̂C
T1(Red)). “Always when Train1 is in the tunnel, it knows

under assumption that Controller is functioning correctly that the colour of the light
signal for other trains is red”.

ϕ4 = G[0,∞](InT1 ⇒ KT1(F[1,n+1](
∨n

i=1 InTi))). “Always when Train1 is in the
tunnel, it knows that either it or other train will be in the tunnel during the next
n+ 1 time units”.

ϕ5 = G[0,∞](InT1 ⇒ KT1(G[3m−2,3m−2]InT1 ∨ F[1,n+1](
∨n

i=2 InTi))), where m �
2. “Always when Train1 is in the tunnel, it knows that either he is in the tunnel every
3m−2 time units or other train will be in the tunnel during the nextn+1 time units”.

SAT-Based BMC for Deontic Metric Temporal Logic and DIISs 187

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 500 1000 1500 2000 2500 3000

M
em

or
y

in
 M

B

Number of Trains

Memory usage for FTC

Formula 1
Formula 2
Formula 3

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500 3000

T
im

e
in

 s
ec

.

Number of Trains

Total time usage for FTC

Formula 1
Formula 2
Formula 3

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25

M
em

or
y

in
 M

B

Number of Trains

Memory usage for FTC

Formula 4
Formula 5

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5 10 15 20 25

T
im

e
in

 s
ec

.

Number of Trains

Total time usage for FTC

Formula 4
Formula 5

All the above properties are false in our DIIS model of the FTC system. Since there is no
model checker that supports the EMTLKD properties, we were not able to compare our
results with others for the above formulae; McMAS [25] is the only model checker that
supports deontic modalities, however it is designated for branching time logics only.
Thus, we present results of our method only. An evaluation is given by means of the
running time and the memory used, and it is presented on the included line-charts. It
can be observed that for ϕ1, ϕ2, ϕ3, ϕ4 and ϕ5 we managed to compute the results for
130, 1300, 2900, 8, and 22 trains, respectively, in the time of 5400 seconds. The exact
data for the mentioned maximal number of trains are the following:

ϕ1: k = 4, fk(ϕ1) = 2, bmcT is 5.44, bmcM is 14.00, satT is 483.61, satM is 632.00,
bmcT+satT is 489.05, max(bmcM,satM) is 632.00;

ϕ2: k = 4, fk(ϕ2) = 2, bmcT is 148.02, bmcM is 909.00, satT is 3850.09, satM
1511.00, bmcT+satT is 3998.11, max(bmcM,satM) is 1511.00;

ϕ3: k = 1, fk(ϕ3) = 2, bmcT is 98.89, bmcM is 1114.00, satT is 9.69, satM 1869.00,
bmcT+satT is 108.58, max(bmcM,satM) is 1869.00;

ϕ4: k = 24, fk(ϕ4) = 2, bmcT is 2.00, bmcM is 3.57, satT is 1401.24, satM 93.00,
bmcT+satT is 1403.24, max(bmcM,satM) is 93.00;

ϕ5: k = 65, fk(ϕ5) = 2, bmcT is 281.50, bmcM is 18.13, satT is 149.59, satM 249.00,
bmcT+satT is 431.10, max(bmcM,satM) is 249.00,

where k is the bound, fk(ϕ) is the number of symbolic paths, bmcT is the encoding
time, bmcM is memory use for encoding, satT is satisfiability checking time, satM is
memory use for satisfiability checking.

The formulae ϕ1, ϕ2 and ϕ3 corroborates the efficiency of the SAT-based BMC
methods when the length of the counterexamples does not grow with the number of
agents (trains). On the other hand the formulae ϕ4 and ϕ5 demonstrate that SAT-based

188 B. Woźna-Szcześniak and A. Zbrzezny

BMC becomes inefficient when the the length of the counterexamples grows with the
number of agents (trains).

6 Conclusions

We have proposed, implemented, and experimentally evaluated a BMC method for
EMTLKD interpreted over deontic interleaved interpreted systems. The experimental
results show that the method is very promising.

In [21] it has been shown that the BDD- and SAT-based BMC approaches for ELTLK
(an existential part of LTL that is extended with epistemic operators) are complemen-
tary. This result is consistent with comparisons for pure temporal logics [5]. Thus, in
the future we are going to check whether the same results we can get for DIIS and
EMTLKD. Therefore, we are going to define and implement a BDD-based BMC algo-
rithm for EMTLKD, and compare it with the method presented in this paper.

In [20] the semantics of interpreted systems (IS) and interleaved interpreted sys-
tems (IIS) were experimentally evaluated by means of the BDD-based bounded model
checking method for LTLK. IIS restrict IS by enforcing asynchronous semantics. The
paper shows that the modelling approach has a very strong impact on the efficiency of
verification by means of BMC. Thus, our future work will involve an implementation
of the method for deontic interpreted systems and a comparison of the SAT-based BMC
for DIS with the method presented in this paper.

References

1. Abdulla, P.A., Bjesse, P., Eén, N.: Symbolic Reachability Analysis Based on SAT-Solvers.
In: Graf, S. (ed.) TACAS 2000. LNCS, vol. 1785, pp. 411–425. Springer, Heidelberg (2000)

2. Alur, R., Henzinger, T.A.: Logics and Models of Real Time: A Survey. In: Huizing, C., de
Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, pp. 74–106.
Springer, Heidelberg (1992)

3. Aqvist, L.: Deontic logic. In: Handbook of Philosophical Logic. Extensions of Classical
Logic, vol. II, pp. 605–714. Reidel, Dordrecht (1984)

4. Biere, A., Heljanko, K., Junttila, T., Latvala, T., Schuppan, V.: Linear encodings of bounded
LTL model checking. Logical Methods in Computer Science 2(5:5), 1–64 (2006)

5. Cabodi, G., Camurati, P., Quer, S.: Can BDD compete with SAT solvers on bounded model
checking? In: Proceedings of DAC 2002, pp. 117–122 (2002)

6. Clarke, E.M., Allen Emerson, E.: Design and Synthesis of Synchronization Skeletons for
Branching-Time Temporal Logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS,
vol. 131, pp. 52–71. Springer, Heidelberg (1982)

7. Clarke, E., Grumberg, O., Hamaguchi, K.: Another Look at LTL Model Checking. In: Dill,
D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 415–427. Springer, Heidelberg (1994)

8. Sistla, A.P., Emerson, E.A., Mok, A.K., Srinivasan, J.: Quantitative temporal reasoning. Real-
Time Systems 4(4), 331–352 (1992)

9. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer Science,
vol. B, ch. 16, pp. 996–1071. Elsevier Science Publishers (1990)

10. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press,
Cambridge (1995)

11. Furia, C.A., Spoletini, P.: Tomorrow and All our Yesterdays: MTL Satisfiability over the
Integers. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS,
vol. 5160, pp. 126–140. Springer, Heidelberg (2008)

SAT-Based BMC for Deontic Metric Temporal Logic and DIISs 189

12. Huang, X., Luo, C., van der Meyden, R.: Improved Bounded Model Checking for a Fair
Branching-Time Temporal Epistemic Logic. In: van der Meyden, R., Smaus, J.-G. (eds.)
MoChArt 2010. LNCS, vol. 6572, pp. 95–111. Springer, Heidelberg (2011)

13. Jones, A., Lomuscio, A.: A BDD-based BMC approach for the verification of multi-agent
systems. In: Proceedings of CS&P 2009, vol. 1, pp. 253–264. Warsaw University (2009)

14. Kacprzak, M., Lomuscio, A., Lasica, T., Penczek, W., Szreter, M.: Verifying Multi-agent
Systems via Unbounded Model Checking. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F.,
Rouff, C.A. (eds.) FAABS 2004. LNCS (LNAI), vol. 3228, pp. 189–212. Springer, Heidel-
berg (2004)

15. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Sys-
tems 2(4), 255–299 (1990)

16. Levesque, H.: A logic of implicit and explicit belief. In: Proceedings of the 6th National
Conference of the AAAI, pp. 198–202. Morgan Kaufman (1984)

17. Lomuscio, A., Penczek, W., Qu, H.: Partial order reduction for model checking interleaved
multi-agent systems. In: AAMAS, pp. 659–666. IFAAMAS Press (2010)

18. Lomuscio, A., Sergot, M.: Deontic interpreted systems. Studia Logica 75(1), 63–92 (2003)
19. Mȩski, A., Penczek, W., Szreter, M.: Bounded model checking linear time and knowledge

using decision diagrams. In: Proceedings of CS&P 2011, pp. 363–375 (2011)
20. Mȩski, A., Penczek, W., Szreter, M.: BDD-based Bounded Model Checking for LTLK over

Two Variants of Interpreted Systems. In: Proceedings of LAM 2012, pp. 35–50 (2012)
21. M ↪eski, A., Penczek, W., Szreter, M., Woźna-Szcześniak, B., Zbrzezny, A.: Two Approaches

to Bounded Model Checking for Linear Time Logic with Knowledge. In: Jezic, G., Kusek,
M., Nguyen, N.-T., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2012. LNCS, vol. 7327, pp.
514–523. Springer, Heidelberg (2012)

22. Penczek, W., Lomuscio, A.: Verifying epistemic properties of multi-agent systems via
bounded model checking. In: Proceedings of AAMAS 2003, pp. 209–216. ACM (2003)

23. Penczek, W., Woźna-Szcześniak, B., Zbrzezny, A.: Towards SAT-based BMC for LTLK over
interleaved interpreted systems. Fundamenta Informaticae 119(3-4), 373–392 (2012)

24. Quielle, J.P., Sifakis, J.: Specification and Verification of Concurrent Systems in CESAR.
In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS, vol. 137, pp.
337–351. Springer, Heidelberg (1982)

25. Raimondi, F., Lomuscio, A.: Automatic Verification of Deontic Properties of Multi-agent
Systems. In: Lomuscio, A., Nute, D. (eds.) DEON 2004. LNCS (LNAI), vol. 3065, pp. 228–
242. Springer, Heidelberg (2004)

26. Raimondi, F., Lomuscio, A.: Automatic verification of multi-agent systems by model check-
ing via OBDDs. Journal of Applied Logic 5(2), 235–251 (2005)

27. Wooldridge, M.: An introduction to multi-agent systems. John Wiley, England (2002)
28. Woźna, B.: Bounded Model Checking for the universal fragment of CTL*. Fundamenta In-

formaticae 63(1), 65–87 (2004)
29. Woźna, B., Lomuscio, A., Penczek, W.: Bounded model checking for deontic interpreted

systems. In: Proceedings of LCMAS 2004. ENTCS, vol. 126, pp. 93–114. Elsevier (2005)
30. Woźna-Szcześniak, B., Zbrzezny, A.: SAT-Based Bounded Model Checking for Deontic In-

terleaved Interpreted Systems. In: Jezic, G., Kusek, M., Nguyen, N.-T., Howlett, R.J., Jain,
L.C. (eds.) KES-AMSTA 2012. LNCS, vol. 7327, pp. 494–503. Springer, Heidelberg (2012)

31. Woźna-Szcześniak, B., Zbrzezny, A., Zbrzezny, A.: The BMC Method for the Existential
Part of RTCTLK and Interleaved Interpreted Systems. In: Antunes, L., Pinto, H.S. (eds.)
EPIA 2011. LNCS, vol. 7026, pp. 551–565. Springer, Heidelberg (2011)

32. Zbrzezny, A.: Improving the translation from ECTL to SAT. Fundamenta Informaticae 85(1-
4), 513–531 (2008)

33. Zbrzezny, A.: A new translation from ECTL∗ to SAT. Fundamenta Informaticae 120(3-4),
377–397 (2012)

Some Thoughts about Commitment Protocols

(Position Paper)

Matteo Baldoni and Cristina Baroglio

Università degli Studi di Torino
Dipartimento di Informatica

c.so Svizzera 185, I-10149 Torino, Italy
{matteo.baldoni,cristina.baroglio}@unito.it

Abstract. From the seminal paper by Singh [22], commitment protocols
have been raising a lot of attention. The key feature of commitment
protocols is their declarative nature, which allows specifying them in a
way which abstracts away from any reference to the actual behavior of
the agents. By doing so, commitment protocols respect the autonomy of
agents. After more than ten years from the introduction of commitments,
it is time to ask (i) if a “commitment to do something” is the only kind
of regulative norm, that we need in order to give a social semantics to
a physical action, and (ii) if they realize what they promised. In this
position paper we discuss these points.

1 Introduction

Practical commitments lie at the level of regulative (or preservative) norms that,
in turn, impact on the agents’ behavior, creating social expectations, that should
not be frustrated. By a practical commitment, in fact, an actor (debtor) is com-
mitted towards another actor (creditor) to bring about something [9,20], i.e. to
act either directly or by persuading others so as to make a condition of interest
become true. Due to their social nature, practical commitments are a powerful
tool that helps to overcome the controversial assumptions of the mentalistic ap-
proach that mental states are verifiable and that agents are sincere. Moreover,
they support an observational semantics for communication that allows verifying
an agent’s compliance with its commitments based on observable behavior.

From the seminal paper by Singh [22], commitment protocols have been rais-
ing a lot of attention, see for instance [27,17,25,12,24,14,6]. The key feature of
commitment protocols is their declarative nature, which allows specifying them
in a way which abstracts away from any reference to the actual behavior of the
agents, thus avoiding to impose useless execution constraints [28]. By doing so,
commitment-based protocols respect the autonomy of agents because whatever
action they decide to perform is fine as long as they accomplished their com-
mitments, satisfying each others’ expectations. Now, after more than ten years
from the introduction of commitments, it is time to ask (i) if a “commitment
to do something” is the only kind of regulative norm, that we need in order to
give a social semantics to a physical action, and (ii) if they realize what they

M. Baldoni et al. (Eds.): DALT 2012, LNAI 7784, pp. 190–196, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Some Thoughts about Commitment Protocols 191

Fig. 1. The four considered intertwined aspects

promised. To this aim, we think that there are four intertwined aspects to be
considered (see Figure 1):

1. Agent Coordination: how to account for coordination patterns?
2. Infrastructure for Execution: which is the reference execution infrastructure?
3. Observability of Events : are events really observable by all agents?
4. Composition of Coordination Patterns : is composition influenced by the pre-

vious aspects?

2 Agent Coordination

Commitment protocols leave the choice of which action to execute and when,
totally up to the single agents. From a more general perspective, they do not
impose constraints on the possible evolutions of the social state. However, in
many practical cases there is the need to capture regulative aspects of agent
coordination. For instance, a customer and a merchant may agree that payment
should be done before shipping but how to represent this socially agreed con-
straint in commitment protocols? When a similar coordination is desired by the
parties, one feels the lack of the means for capturing them as regulations inside
the protocol. Notice that the desired coordination patterns, though restricting
the choices up to the agents, would not prevent flexibility because, for instance,
it is not mandatory that payment and shipping are one next to the other. What
matters is their relative order. More importantly, an agreed coordination pat-
tern establishes the boundaries within which each party can exercise his/her own
autonomy without compromising the aims for which the agreement was taken.
Citing Dwight Eisenhower (State of the Union Address, Feb. 2, 1953) “To be
true to one’s own freedom is, in essence, to honor and respect the freedom of all
others.” As long as agents respect such constraints, they are free to customize
the execution at their will, e.g. by interleaving the two actions with others (like
sending a receipt or asking a quote for another item). This need is felt by the
research community, see [4,5,6] for an overview.

When regulations are expressed, agents can individually check whether their
behavior conforms to the specification [2]. But in order to guarantee to the oth-
ers that one will act in a way that conforms to the regulation, an agent should

192 M. Baldoni and C. Baroglio

formally bind its behavior to the regulation itself. The proposal in [3,6], for
instance, allows the representation of temporal regulations imposed on the evo-
lution of the social state, however, it does not supply a deontic semantics to the
constraints. Therefore the agents’ behavior is not formally bound to them. On
the other hand, the Regula framework [19] uses precedence logic to express
temporal patterns that can be used as antecedent (or consequent) conditions
inside commitments. Since patterns may involve various parties, the framework
also introduces a notion of condition control and of commitment safety, in order
to allow agents to reason about the advisability of taking a commitment. How-
ever, patterns are not generally expressed on the evolution of the social state
but are limited to events.

3 Infrastructure for Execution and Observability of
Events

Commitments were introduced to support run-time verification in contrast to
the mentalistic approach but despite this, they still lack of a reference infras-
tructure that practically enables such a verification. Verification is supported
by proposals like [1,10], although the authors do not draft an infrastructure,
while commitment machines [28,25,23] have mainly been used to provide an
operational semantics. Normative approaches, e.g. institutions [16,17], provide
an answer but with some limitations. Indeed, they tend to implicitly assume a
centralized vision, often realized by introducing a new actor, whose task is to
monitor the interaction: the institution itself. This assumption is coherent with
the fact that commitment protocols tend to assume that events are uniformly
observed by all the agents although in the real world this seldom happens; for
instance, communications tend to be point-to-point. For instance, consider an e-
commerce seller, a supplier, and a client: the seller communicates with both the
supplier and the client, who do not interact with one another. In other words,
the interaction between each pair of actors is point-to-point and cannot be ob-
served by the third party. We need the infrastructure to support this kind of
interaction and to monitor, in this context, the on-going enactment, checking
whether it respects all the regulative aspects – that the designer identified as
relevant or that the agents agreed.

Chopra and Singh [11] addressed the issue of realizing an architecture that
relaxes the centralization constraint by incorporating the notion of commitment
alignment. In this way it becomes possible to answer questions like “how to decide
whether agents are acting in a way that complies to the regulations or not?”,
“How to know that an agent satisfied one of its commitments?” in contexts where
events are not uniformly observable. Nevertheless, they relegated commitment
alignment to the middleware, shielding the issue of observability of events from
the agents and from the designer. Our claim is that this is a limitation and that
in many real-world situations it is more desirable to have the means of making
clear who can access what information and who is accountable for reporting
what event. This is especially true when the protocol allows the representation

Some Thoughts about Commitment Protocols 193

of coordination patterns: there is the need of mechanisms for expressing who
can observe what, tracking which part of a pattern was already followed, which
is left to be performed, who is in charge of the next moves, and so on. As a
consequence, we think that the specification of the coordination patterns and
the design of the infrastructure cannot leave out the observability of events,
which plays a fundamental role at the level of the protocol specification and, for
this reason, it should be captured by first-class abstractions and appropriate
regulations. Such abstractions/regulations should be represented in a way that
makes them directly manipulable by the agents [7].

4 Composition of Coordination Patterns

Most of the works concerning software engineering aspects of commitment proto-
col specification focus on the formal verification to help the protocol designer to
get rid of or to enforce given behaviors, [26,18,8,15,14]. An aspect that is not to
be underestimated is the realization of a development methodology for commit-
ment protocols. The most relevant representative is the Amoeba methodology
[13], which allows the design of commitment protocols and their composition into
complex business processes. With respect to the aspects that we are discussing,
this methodology, however, has two main limits. On the one hand, when two or
more protocols are composed, the designer is requested to define a set of tempo-
ral constraints among events and of data flow constraints to combine the various
parts. However, such constraints have neither a regulatory flavor nor a deontic
characterization. On the other hand, since a wider number of roles are involved,
which among actors of one protocol is entitled to (and physically can) observe
events generated inside another protocol? The methodology does not explicitly
account for this problem in the description of the various steps that compose
it. For instance, suppose of composing a protocol that allows a merchant and a
supplier to interact with one that allows the same merchant to interact with a
customer. It is unrealistic to suppose that the client can observe events involving
the supplier, even though after the composition both actors will play in the same
protocol. Actually, it would be useful to incorporate in the protocol the means
for letting the merchant tell the client that it received items from the supplier
in a way that makes it accountable for its declarations.

5 Conclusive Remarks

Commitments [21] are a powerful tool for creating communication and interac-
tion standards with a solid and verifiable semantics, which is extremely impor-
tant for dealing with open worlds, but to this aim there is the need of solving
the issues that we have discussed.

1. Agent Coordination: how to account for coordination patterns? We claim
that for accounting for coordination patterns there is the need of enriching
the language for expressing commitment conditions (both antecedents and

194 M. Baldoni and C. Baroglio

consequents) with temporal expressions in a way that shapes the desired
interactions.

2. Infrastructure for Execution: which is the reference execution infrastructure?
In our opinion, there is the need of reifying interaction protocols as first-class
elements that can be manipulated and inspected by agents, rather than
relegating them to the middleware.

3. Observability of Events: are events really observable by all agents? In the
real world events are not uniformly observable by all the interacting parties.
The seller-shipper-client example shows this fact in practice and proves that
inside commitment protocols there is the need of specifying and managing
objects like claims, assertions, declarations, statements, so typical in every
day life as well as in programming languages. Indeed, by stating something
about a state of things that the client cannot observe directly, the seller
took a commitment, though not a practical one. A crucial limitation of the
interaction protocols literature is that here the used commitments are always
practical, meaning that they describe what the roles involved would bring
about (e.g. a buyer commits to paying for some item). Practical commitments
are limited to the debtor’s own capabilities and powers (including persuading
others), however, real scenarios often require the account of some event,
without delegating the burden of making it happen to the agent who gives
the account.

4. Composition of Coordination Patterns: is composition influenced by the pre-
vious aspects? All the above aspects should be supported by appropriate
software engineering methodologies. This will have a positive impact on the
acceptance of declarative approaches inside industrial settings.

References

1. Alberti, M., Gavanelli, M., Lamma, E., Chesani, F., Mello, P., Torroni, P.: Compli-
ance verification of agent interaction: a logic-based software tool. Applied Artificial
Intelligence 20(2-4), 133–157 (2006)

2. Baldoni, M., Baroglio, C., Chopra, A.K., Desai, N., Patti, V., Singh, M.P.: Choice,
Interoperability, and Conformance in Interaction Protocols and Service Choreogra-
phies. In: Proc. of AAMAS 2009, pp. 843–850. IFAAMAS (2009)

3. Baldoni, M., Baroglio, C., Marengo, E.: Behavior-Oriented Commitment-based
Protocols. In: Proc. of ECAI, pp. 137–142. IOS Press (2010)

4. Baldoni, M., Baroglio, C., Marengo, E.: Constraints among Commitments: Regu-
lative Specification of Interaction Protocols. In: Proc. of Int. Workshop on Agent
Communication, AC 2010, Toronto, Canada, pp. 2–18 (May 2010)

5. Baldoni, M., Baroglio, C., Marengo, E.: Commitment-Based Protocols with Be-
havioral Rules and Correctness Properties of MAS. In: Omicini, A., Sardina, S.,
Vasconcelos, W. (eds.) DALT 2010. LNCS (LNAI), vol. 6619, pp. 60–77. Springer,
Heidelberg (2011)

6. Baldoni, M., Baroglio, C., Marengo, E., Patti, V.: Constitutive and Regulative
Specifications of Commitment Protocols: a Decoupled Approach. ACM TIST, Spec.
Iss. on Agent Communication 4(2) (2013)

Some Thoughts about Commitment Protocols 195

7. Baldoni, M., Baroglio, C., Marengo, E., Patti, V., Ricci, A.: Back to the future:
An interaction-oriented framework for social computing. In: First Int. Workshop
on Req. Eng. for Social Computing, RESC, pp. 2–5. IEEE (2011)

8. Bentahar, J., Meyer, J.-J.C., Wan, W.: Model checking communicative agent-based
systems. Knowl.-Based Syst. 22(3), 142–159 (2009)

9. Castelfranchi, C.: Commitments: From Individual Intentions to Groups and Orga-
nizations. In: Proc. of ICMAS, pp. 41–48 (1995)

10. Chesani, F., Mello, P., Montali, M., Torroni, P.: Commitment Tracking via the
Reactive Event Calculus. In: Proc. of IJCAI, pp. 91–96 (2009)

11. Chopra, A.K., Singh, M.P.: An Architecture for Multiagent Systems: An Approach
Based on Commitments. In: Proc. of ProMAS. LNCS (LNAI), vol. 5919, pp. 148–
162. Springer, Heidelberg (2009)

12. Chopra, A.K.: Commitment Alignment: Semantics, Patterns, and Decision Proce-
dures for Distributed Computing. PhD thesis, NCSU, Raleigh, NC (2009)

13. Desai, N., Chopra, A.K., Singh, M.P.: Amoeba: A methodology for modeling and
evolving cross-organizational business processes. ACM TSEM 19(2) (2009)

14. El-Menshawy, M., Bentahar, J., Dssouli, R.: Verifiable Semantic Model for Agent
Interactions Using Social Commitments. In: Dastani, M., El Fallah Segrouchni, A.,
Leite, J., Torroni, P. (eds.) LADS 2009. LNCS, vol. 6039, pp. 128–152. Springer,
Heidelberg (2010)

15. El-Menshawy, M., Bentahar, J., Dssouli, R.: Symbolic Model Checking Commit-
ment Protocols Using Reduction. In: Omicini, A., Sardina, S., Vasconcelos, W.
(eds.) DALT 2010. LNCS (LNAI), vol. 6619, pp. 185–203. Springer, Heidelberg
(2011)

16. Fornara, N.: Interaction and Communication among Autonomous Agents in Mul-
tiagent Systems. PhD thesis, Univ. della Svizzera italiana (June 2003)

17. Fornara, N., Colombetti, M.: Defining Interaction Protocols using a Commitment-
based Agent Communication Language. In: Proc. of AAMAS, pp. 520–527. ACM
(2003)

18. Mallya, A., Singh, M.: An algebra for commitment protocols. Autonomous Agents
and Multi-Agent Systems 14(2), 143–163 (2007)

19. Marengo, E., Baldoni, M., Baroglio, C., Chopra, A.K., Patti, V., Singh, M.P.:
Commitments with Regulations: Reasoning about Safety and Control in REGULA.
In: Proc. of AAMAS, pp. 467–474 (2011)

20. Singh, M.P.: An Ontology for Commitments in Multiagent Systems. Artificial In-
telligence and Law 7(1), 97–113 (1999)

21. Singh, M.P.: Community Standards for Agent Communication. Unpublished Draft
(July 2010), http://www.csc.ncsu.edu/faculty/mpsingh/papers/
drafts/Singh-AC-Manifesto.pdf

22. Singh, M.P.: Agent communication languages: Rethinking the principles. IEEE
Computer 31(12), 40–47 (1998)

23. Singh, M.P.: Formalizing Communication Protocols for Multiagent Systems. In:
Proc. of IJCAI, pp. 1519–1524 (2007)

24. Torroni, P., Chesani, F., Mello, P., Montali, M.: Social Commitments in Time: Sat-
isfied or Compensated. In: Baldoni, M., Bentahar, J., van Riemsdijk, M.B., Lloyd,
J. (eds.) DALT 2009. LNCS (LNAI), vol. 5948, pp. 228–243. Springer, Heidelberg
(2010)

http://www.csc.ncsu.edu/faculty/mpsingh/papers/drafts/Singh-AC-Manifesto.pdf
http://www.csc.ncsu.edu/faculty/mpsingh/papers/drafts/Singh-AC-Manifesto.pdf

196 M. Baldoni and C. Baroglio

25. Winikoff, M., Liu, W., Harland, J.: Enhancing Commitment Machines. In: Leite,
J., Omicini, A., Torroni, P., Yolum, P. (eds.) DALT 2004. LNCS (LNAI), vol. 3476,
pp. 198–220. Springer, Heidelberg (2005)

26. Yolum, P.: Design time analysis of multiagent protocols. Data Knowl. Eng. 63(1),
137–154 (2007)

27. Yolum, P., Singh, M.P.: Designing and Executing Protocols Using the Event Cal-
culus. In: Agents, pp. 27–28. ACM, New York (2001)

28. Yolum, p., Singh, M.P.: Commitment Machines. In: Meyer, J.-J.C., Tambe, M.
(eds.) ATAL 2001. LNCS (LNAI), vol. 2333, pp. 235–247. Springer, Heidelberg
(2002)

Semantic Web and Declarative Agent Languages

and Technologies: Current and Future Trends�

(Position Paper)

Viviana Mascardi1, James Hendler2, and Laura Papaleo3

1 DIBRIS, University of Genova, Italy
viviana.mascardi@unige.it

2 Rensselaer Polytechnic Institute, Troy, NY, USA
hendler@cs.rpi.edu

3 ICT Department, Provincia di Genova, Genova, Italy
laura.papaleo@gmail.com

1 Introduction

One of the first discussions about a Web enriched with semantics and its re-
lationships with artificial intelligence (and hence, with intelligent agents) dates
back to 1998 [3], but it was only ten years ago that the idea of a Semantic Web on
top of which agent-based computing would have allowed computer programs to
interact with non-local web-based resources, became familiar to a wide audience
of scientists [4,18].

Whereas in the beginning the Semantic Web was conceived as something that
inevitably required some extra effort from the final users, it became soon clear
that the exploitation of semantic features should have been less intrusive as
possible, making semantic markup a by-product of normal computer use.

Agents and ontologies are recognized as the right tools for managing infor-
mation on the Web both by academic researchers [17], and by experts from the
industry [27], and agent-based applications have been successfully deployed on
top of the Semantic Web in many domains including multi-site software deve-
lopment [40], health care [39], cultural heritage, education and learning1.

The integration of Semantic Web concepts as first class entities inside agent
languages, technologies, and engineering methodologies has different levels of
maturity: many AOSE methodologies [20],[23],[22],[38], organizational models
[10],[12],[16],[24],[37] and MAS architectures (for example the FIPA Ontology
Service Specification, www.fipa.org/specs/fipa00086/) seamlessly integrate
them, but few languages do.

In this position paper we review the state of the art in the integration of se-
mantic web concepts in declarative agent languages and technologies and outline
what we expect to be the future trends of this research topic.

� The work of the first author has been partially supported by the “Indiana MAS and
the Digital Preservation of Rock Carvings” FIRB 2010 project, funded by the Italian
Ministry of Education, Universities and Research.

1 Applications developed by the Finnish Semantic Computing Research Group (SeCo),
http://www.seco.tkk.fi/.

M. Baldoni et al. (Eds.): DALT 2012, LNAI 7784, pp. 197–202, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

www.fipa.org/specs/fipa00086/
http://www.seco.tkk.fi/

198 V. Mascardi, J. Hendler, and L. Papaleo

2 State of the Art

Agent Communication Languages (ACLs). In agent communication, the assump-
tion that ontologies should be used to ensure interoperability had been made
since the very beginning of the work on ontologies, even before they made the
basis for the Semantic Web effort. Both KQML [31] and FIPA-ACL [14] allow
agents to specify the ontology they are using, although none of them forces that.
ACLs were born with the Semantic Web in mind, and the exploitation of Se-
mantic Web languages to represent both the content of an ACL message and the
meaning of the whole message is still a topical research issue [13], [36].

Differently from ACLs, agent programming languages started only recently to
address ontologies as first class objects, thus demonstrating how the two research
fields need a strong integration and cross-fertilization.

Agent Programming Languages. AgentSpeak [34] underwent many extensions
over time. However, what was considered only with the work [32] discussing
AgentSpeak-DL, is that ontological reasoning could facilitate the development of
AgentSpeak agents. The implementation of AgentSpeak-DL concepts is given in
JASDL [25]. CooL-AgentSpeak [30], the “Cooperative Description-Logic Agent-
Speak” language integrating Coo-BDI [1] and AgentSpeak-DL and enhancing
them with ontology matching capabilities [11] is a further effort on this subject.

In CooL-AgentSpeak, the search for a plan takes place not only in the agent’s
local plan library but also in the other agents’ libraries, according to the coop-
eration strategy as in Coo-BDI. However, handling an event is more flexible as
it is not based solely on unification and on the subsumption relation between
concepts as in AgentSpeak-DL, but also on ontology matching. Belief querying
and updating take advantage of ontological matching as well. The paper [15]
stems from [32] and proposes the core of a logic agent-oriented programming
language based on DL-Lite [6], taking efficiency issues into account.

The authors of [7] and [8] explore the use of a formal ontology as a constraining
framework for the belief store of a rational agent and show the implementation of
their proposal in the Go! multi-threaded logic programming language [7]. That
work mainly aims at defining a mapping between OWL-Lite constructs and
labeled theories in the Go! language, losing references to the external ontologies
which define the agents’ vocabulary. On the contrary, the works in [32] and
[30] implicitly assume that ontologies exist outside the agents’ “mind”, which
is more in line with the Semantic Web philosophy. As far as ontology matching
capabilities which characterize the CooL-AgentSpeak language are concerned,
neither [15] nor [7,8] take them into account as a means for inferring “cross-
ontological knowledge” and none of them consider “cross-ontological reasoning”
for exchanging behavioral knowledge.

The support natively given by Jadex [33] and 2APL [9] to ontologies consists in
boosting agent communication by allowing messages to refer to concepts defined
in the agents’ ontologies. This support is hence due to the respect of FIPA-
ACL specifications, and not to a true integration of Semantic Web elements into
the languages. In a recent paper [28], the implementation of an ontology-based

Semantic Web and Declarative Agent Languages and Technologies 199

BDI agent engine able to interpret an ontology describing the agent operations,
implemented on top of Jadex, is discussed. Finally, an extension to 3APL [19]
to support ontology-based communication is discussed on [29].

Proof and Trust in MASs. Even if the Semantic Web is often incorrectly reduced
to reasoning on semantic markups, it actually goes far beyond that, coping with
proof and trust as well. Both these topics are extremely hot within the agent com-
munity, and on the DALT’s one in particular. In the literature we can find dozens
of works on trust and reputation in agent societies, and research on formally
proving that an agent can enter an organization without damaging it has already
produced many valuable results. Model checking declarative agent languages has
a long tradition too (see for example the “MCAPL: Model Checking Agent Pro-
gramming Languages” project,http://cgi.csc.liv.ac.uk/MCAPL/index.php/
Main Page , and [21]). Since these works are well known inside the DALT com-
munity, we do not enter into the details here and we limit ourselves to point out
that proof and trust are extremely relevant issues both in the agent and in the
Semantic Web communities, and that results achieved here, should be timely
transferred there and vice-versa.

3 Future Trends

There are many promising directions that the research on integration of Semantic
Web technologies and DALTs could take.

Semantic-Web based Proof and Trust. Although the maturity level of the aspects
concerned with proof and trust in DALTs is satisfactory, mechanisms that give
the developer the real power or putting all together are still missing. For example,
to design and build MASs where agents can trust each other, the consistency
of the agents’ beliefs represented as ontologies should be always preserved, and
formally demonstrated if required by the application.

Semantic-Web based Mediation. In [2], a semantic mediation going beyond the
integration of ontologies within traditional message-based communication was
envisaged. Mediation should occur at the level that characterizes the social ap-
proach where it is required to bind the semantics of the agent actions with their
meaning in social terms (ontology-driven count-as rules).

Semantic Representation of the Environment. Although not yet formalized in
published papers, the A&A model [35] is moving towards integrating semantic
web concepts as first class objects for semantically representing the environment
and the artifacts available to the agents2. This line of research should be pursued
by other declarative approaches as well, where the environments is explicitly
represented. Formally proving the consistency of the “Environment Ontology”
should be possible, as well as evolving it, and learning it from sources of semi-
structured information.
2 Private communication of one of the authors of this paper with the authors of the
A&A model.

http://cgi.csc.liv.ac.uk/MCAPL/index.php/Main_Page
http://cgi.csc.liv.ac.uk/MCAPL/index.php/Main_Page

200 V. Mascardi, J. Hendler, and L. Papaleo

Adoption of Semantic-Web enriched DALTs for Real Applications. Many real
applications involve scenarios where procedural rules for achieving a goal are
expressed in an informal and fully declarative way, may require to achieve sub-
goals, and the domain knowledge is hard-wired within the rules themselves,
making them barely re-usable in other domains, even if they could. Think of
the rules for getting a new identity card issued by Genova Municipality, which
are declaratively defined by conditions to be met [5], other documents to be
obtained before, and exactly the same as those for obtaining the document in
another municipality, but nevertheless would be hard to compare. Expressing
procedural rules of this kind using declarative agent languages fully integrated
with semantic web concepts might help comparing and composing them in an
automatic way, moving a step forward the automation of many services that are
still completely performed by human agents.

Discussion. The first problem that the Semantic Web and Declarative Agent
Languages and Technologies communities should struggle to solve together, is
bringing usability to the world. Forthcoming technologies should be not only
secure, efficient, self-*, etc. It is mandatory that they will be usable by average
computer scientists, average professionals and even average users. “Making intel-
ligent software agents both powerful and easy to construct, manage, and maintain
will require a very rich semantic infrastructure” [26], and the rich semantic in-
frastructure seething with agents, must be there for anyone. In a few years, it
must become a commodity, clearing the boundaries of academic research once
and for all.

References

1. Ancona, D., Mascardi, V.: Coo-BDI: Extending the BDI Model with Cooperativity.
In: Leite, J., Omicini, A., Sterling, L., Torroni, P. (eds.) DALT 2003. LNCS (LNAI),
vol. 2990, pp. 109–134. Springer, Heidelberg (2004)

2. Baldoni, M., Baroglio, C., Bergenti, F., Marengo, E., Mascardi, V., Patti, V.,
Ricci, A., Santi, A.: An Interaction-Oriented Agent Framework for Open Envi-
ronments. In: Pirrone, R., Sorbello, F. (eds.) AI*IA 2011. LNCS, vol. 6934, pp.
68–79. Springer, Heidelberg (2011)

3. Berners-Lee, T.: An parenthetical discussion to the web architecture at 50,000 feet
and the semantic web roadmap (1998), www.w3.org/DesignIssues/RDFnot.html
(accessed on November 20, 2012)

4. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American,
29–37 (May 2001)

5. Bozzano, M., Briola, D., Leone, D., Locoro, A., Marasso, L., Mascardi, V.: MUSE:
MUltilinguality and SEmantics for the Citizens of the World. In: Fortino, G., Bad-
ica, C., Malgeri, M., Unland, R. (eds.) Intelligent Distributed Computing VI. SCI,
vol. 446, pp. 97–102. Springer, Heidelberg (2013)

6. Calvanese, D., De Giacomo, G., Lemho, D., Lenzerini, M., Rosati, R.: DL-Lite:
tractable description logics for ontologies. In: Proc. of Nat. Conf. on Artificial
Intelligence, vol. 2, pp. 602–607. AAAI Press (2005)

www.w3.org/DesignIssues/RDFnot.html

Semantic Web and Declarative Agent Languages and Technologies 201

7. Clark, K.L., McCabe, F.G.: Go! a multi-paradigm programming language for im-
plementing multi-threaded agents. Ann. Math. Artif. Intell. 41, 171–206 (2004)

8. Clark, K.L., McCabe, F.G.: Ontology schema for an agent belief store. Int. J.
Hum.-Comput. Stud. 65, 640–658 (2007)

9. Dastani, M.: 2APL: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems 16(3), 214–248 (2008)

10. Dignum, V.: Ontology support for agent-based simulation of organizations. Multi-
agent and Grid Systems 6(2), 191–208 (2010)

11. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer (2007)
12. Fornara, N., Colombetti, M.: Representation and monitoring of commitments and

norms using OWL. AI Commun. 23(4), 341–356 (2010)
13. Fornara, N., Okouya, D., Colombetti, M.: Using OWL 2 DL for Expressing ACL

Content and Semantics. In: Cossentino, M., Kaisers, M., Tuyls, K., Weiss, G. (eds.)
EUMAS 2011. LNCS, vol. 7541, pp. 97–113. Springer, Heidelberg (2012)

14. Foundation for Intelligent Physical Agents. FIPA ACL message structure specifi-
cation. Approved for standard (December 6, 2002)

15. Fuzitaki, C., Moreira, Á., Vieira, R.: Ontology Reasoning in Agent-Oriented Pro-
gramming. In: da Rocha Costa, A.C., Vicari, R.M., Tonidandel, F. (eds.) SBIA
2010. LNCS, vol. 6404, pp. 21–30. Springer, Heidelberg (2010)

16. Grossi, D., Aldewereld, H., Vázquez-Salceda, J., Dignum, F.: Ontological aspects of
the implementation of norms in agent-based electronic institutions. Computational
& Mathematical Organization Theory 12(2-3), 251–275 (2006)

17. Hadzic, M., Wongthongtham, P., Dillon, T., Chang, E.: Ontology-Based Multi-
Agent Systems. SCI, vol. 219. Springer, Heidelberg (2009)

18. Hendler, J.A.: Agents and the semantic web. IEEE Intelligent Systems 16(2), 30–37
(2001)

19. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J.C.: Agent program-
ming in 3APL. Autonomous Agents and Multi-Agent Systems 2(4), 357–401 (1999)

20. Jeroudaih, L.M., Hajji, M.S.: Extensions to some AOSE methodologies. World
Academy of Science, Engineering and Technology 64, 383–388 (2010)

21. Jongmans, S.-S.T.Q., Hindriks, K.V., van Riemsdijk, M.B.: Model Checking Agent
Programs by Using the Program Interpreter. In: Dix, J., Leite, J., Governatori, G.,
Jamroga, W. (eds.) CLIMA XI. LNCS, vol. 6245, pp. 219–237. Springer, Heidelberg
(2010)

22. Kardas, G., Göknil, A., Dikenelli, O., Topaloglu, N.Y.: Metamodeling of semantic
web enabled multiagent systems. In: Multiagent Systems and Software Architec-
ture, the Special Track at Net.ObjectDays, pp. 79–86 (2006)

23. Kardas, G., Goknil, A., Dikenelli, O., Topaloglu, N.Y.: Model Transformation
for Model Driven Development of Semantic Web Enabled Multi-Agent Systems.
In: Petta, P., Müller, J.P., Klusch, M., Georgeff, M. (eds.) MATES 2007. LNCS
(LNAI), vol. 4687, pp. 13–24. Springer, Heidelberg (2007)

24. Katasonov, A., Terziyan, V.Y.: Semantic approach to dynamic coordination in
autonomous systems. In: Proc. of the 5th Int. Conf. on Autonomic and Autonomous
Systems, pp. 321–329. IEEE Computer Society (2009)

25. Klapiscak, T., Bordini, R.H.: JASDL: A Practical Programming Approach Com-
bining Agent and Semantic Web Technologies. In: Baldoni, M., Son, T.C., van
Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2008. LNCS (LNAI), vol. 5397, pp.
91–110. Springer, Heidelberg (2009)

202 V. Mascardi, J. Hendler, and L. Papaleo

26. Krupansky, J.: Richness of semantic infrastructure (2011),
http://semanticabyss.blogspot.com/2011/06/

richness-of-semantic-infrastructure.html

(accessed on November 20, 2012)
27. Lewis, D.J.: Semantic web – developing an intelligent web (2008),

www.ibm.com/developerworks/web/library/wa-intelligentage/ (accessed on
November 20, 2012)

28. Liu, C.-H., Chen, J.J.-Y.: Using ontology-based BDI agent to dynamically cus-
tomize workflow and bind semantic web service. JSW 7(4), 884–894 (2012)

29. Liu, C.-H., Lin, Y.-F., Chen, J.J.-Y.: Using agent to coordinate web services. In:
Proc. of the 2008 Int. Conference on Software Engineering Research & Practice,
pp. 317–322. CSREA Press (2008)

30. Mascardi, V., Ancona, D., Bordini, R.H., Ricci, A.: CooL-AgentSpeak: Enhancing
AgentSpeak-DL agents with plan exchange and ontology services. In: Proc. of the
Int. Conf. on Intelligent Agent Technology, pp. 109–116. IEEE Computer Society
(2011)

31. Mayfield, J., Labrou, Y., Finin, T.: Evaluation of KQML as an Agent Communi-
cation Language. In: Tambe, M., Müller, J., Wooldridge, M.J. (eds.) IJCAI-WS
1995 and ATAL 1995. LNCS, vol. 1037, pp. 347–360. Springer, Heidelberg (1996)

32. Moreira, Á.F., Vieira, R., Bordini, R.H., Hübner, J.F.: Agent-Oriented Pro-
gramming with Underlying Ontological Reasoning. In: Baldoni, M., Endriss, U.,
Omicini, A., Torroni, P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904, pp. 155–170.
Springer, Heidelberg (2006)

33. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI reasoning engine. In:
Multi-Agent Programming: Languages, Platforms and Applications. Multiagent
Systems, Artificial Societies, and Simulated Organizations, vol. 15, pp. 149–174.
Springer (2005)

34. Rao, A.S.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Lan-
guage. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS (LNAI),
vol. 1038, pp. 42–55. Springer, Heidelberg (1996)

35. Ricci, A., Viroli, M., Omicini, A.: Programming MAS with Artifacts. In: Bordini,
R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) PROMAS 2005. LNCS
(LNAI), vol. 3862, pp. 206–221. Springer, Heidelberg (2006)

36. Schiemann, B., Schreiber, U.: OWL-DL as a FIPA-ACL content language. In: Proc.
of the Int. Workshop on Formal Ontology for Communicating Agents (2006)

37. Smith, B.L., Tamma, V.A.M., Wooldridge, M.: An ontology for coordination. Ap-
plied Artificial Intelligence 25(3), 235–265 (2011)

38. Tran, Q.-N.N., Low, G.: Mobmas: A methodology for ontology-based multi-agent
systems development. Information & Software Technology 50(7-8), 697–722 (2008)

39. Wang, M.-H., Lee, C.-S., Hsieh, K.-L., Hsu, C.-Y., Acampora, G., Chang, C.-
C.: Ontology-based multi-agents for intelligent healthcare applications. Journal on
Ambient Intelligence and Humanized Computing 1(2), 111–131 (2010)

40. Wongthongtham, P., Chang, E., Dillon, T.: Ontology-based multi-agent system
to multi-site software development. In: Proc. of the Workshop on Quantitative
Techniques for Software Agile Process, pp. 66–75. ACM Press (2004)

http://semanticabyss.blogspot.com/2011/06/richness-of-semantic-infrastructure.html
http://semanticabyss.blogspot.com/2011/06/richness-of-semantic-infrastructure.html
www.ibm.com/developerworks/web/library/wa-intelligentage/

Designing and Implementing a Framework
for BDI-Style Communicating Agents in Haskell

(Position Paper)

Alessandro Solimando� and Riccardo Traverso�

Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi,
Università di Genova, Italy

{alessandro.solimando,riccardo.traverso}@unige.it

Abstract. In this position paper we present the design and prototypical
implementation of a framework for BDI-style agents defined as Haskell
functions, supporting both the explicit representation of beliefs and back-
tracking (at the level of individual agents), and asynchronous communi-
cation via message passing. The communication layer is separated from
the layers implementing the features of individual agents through dif-
ferent stacked monads, while beliefs are represented through atomic or
structured values depending on the user’s needs. Our long-term goal is
to develop a framework for purely functional BDI agents, which is cur-
rently missing, in order to take advantage of the features of the functional
paradigm, combined with the flexibility of an agent-oriented approach.

1 Introduction

The Belief-Desire-Intention (BDI) model is a well-known software model for pro-
gramming intelligent rational agents [11]. Only a few frameworks that implement
the BDI approach are developed directly on top of logical languages [7], while
most of them are built using imperative or object oriented languages. For ex-
ample, Jason [2] is developed in Java and exploits inheritance and overriding to
define selection functions and the environment in a convenient and flexible way.
The drawback is that many features natively available in the logic programming
paradigm have to be re-implemented from scratch, resulting in a more onerous
mixed-paradigm code. For instance, in Jason, unification is needed to find plans
relevant to a triggering event, and to resolve logical goals in order to verify that
the plan context is a logical consequence of the belief base. BDI-style agents are
usually described in a declarative way, no matter how the language interpreter is
implemented. The functional paradigm supports pattern matching for free and
gives all the advantages of declarativeness; moreover, the use of types for typ-
ing communication channels may provide great benefits to guarantee correctness
properties both a priori, and during the execution. Nevertheless, to the best of
our knowledge no functional frameworks for BDI-style communicating agents
have been proposed so far.
� Both authors of this paper are Ph. D. students at the University of Genova, Italy.

M. Baldoni et al. (Eds.): DALT 2012, LNAI 7784, pp. 203–207, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

204 A. Solimando and R. Traverso

In order to fill this gap, we propose a framework for functional agents tak-
ing inspiration from the BDI model (although not implementing all of its fea-
tures), and supporting communication and backtracking. A generic and easily
composable architecture should partition the agents’ functionalities into several
well-separated layers, and in functional programming monads are a powerful ab-
straction to satisfy these needs. Intuitively, in our solution agents are monadic
actions provided with local backtracking features and point-to-point message
passing primitives. Their local belief base is stored within variables that are
passed down through execution steps. Goals are defined with functions from be-
liefs to booleans. When it comes to monadic computations, Haskell [3], being
strongly based on them, is the best fit. However, even though we focus on a spe-
cific architecture, our purpose is not to propose a definitive implementation, but
rather to show that this kind of integration is indeed possible without sacrificing
or reimplementing fundamental features of different programming paradigms.

Our work is a generalization of [12], where the authors describe a single-agent
monadic BDI implementation relying on CHR [6]; we share with [12] the idea of
a BDI architecture based on monads, but instead of relying on CHR to represent
beliefs and their evolution, the aim of our work is to provide a better integration
with the language by handling them directly as Haskell values and expressions.

In [14] agents executing abstract actions relative to deontic specifications (pro-
hibition, permission, and obligation) are simulated in Haskell. Although close to
our approach up to some extent, that work does not take the BDI model into
account. We are not aware of other proposals using functional languages to rep-
resent BDI-style agents.

2 Preliminaries: Haskell

In this section we provide a very brief overview of Haskell’s syntax [9], to allow
the reader to understand our design choices.

The keyword data is used to declare new, possibly polymorphic, data types. A
new generic type may be, e.g., data MyType a b = MyType a a b: a and b are two
type variables, and the constructor for new values takes (in the order) two a ar-
guments and one b. A concrete type for MyType could be, e.g., MyType Int String.
A type signature for f is written f :: a, where a is a type expression; an arrow
→ is a right-associative infix operator for defining domain and codomain of
functions. A type class is a sort of interface or abstract class that data types
may support by declaring an instance for it. A special type (), called unit, acts
as a tuple with arity 0; its only value is also written ().

Further information on Haskell and monads can be found in [4,8,3] and in the
freely available book [9].

3 Our Framework

In our framework, we split the definition of the capabilities of the agents in
different layers by means of monads. The innermost one, Agent, provides support

Designing and Implementing a Framework for BDI-Style 205

for the reasoning that an agent may accomplish in isolation from the rest of the
system, that is without any need to communicate. On top of it we build another
monad CAgent for communicating agents that provides basic message-passing
features.

data Agent s a = Agent (s → (s,a))
instance Monad (Agent s) where {- omitted -}

The declaration of Agent follows the definition of the well-known state monad
[4]. It is parameterized on two types: the state s of the agent, containing its
current beliefs, and the return type a of the action in the monad. Each action is
a function from the current state to the (possibly modified) new one, together
with the return value.

At this layer it is safe to introduce goal-directed backtracking support, because
computations are local to the agent and no interaction is involved. In Haskell,
one could provide a basic backtracking mechanism for a monad m by defining
an instance of the MonadPlus type class. MonadPlus m instances must define two
methods, mzero :: m a and mplus :: m a → m a → m a, that respectively rep-
resent failure and choice. Infinite computations, i.e. with an infinite number of
solutions, can not be safely combined within MonadPlus because the program
could diverge. In order to address this problem the authors of [5] propose a sim-
ilar type class – along with a comparison between different implementations –
where its operators behave fairly, e.g. solutions from different choices are selected
with a round robin policy. In our work we plan to exploit their solutions to give
Agent the possibility to handle backtracking even in such scenarios. Goals can
be defined as predicates pred :: Agent s Bool to be used in guards that may
stop the computation returning mzero whenever the current state does not sat-
isfy pred. It is worth noting how this concept of goals fits well into Haskell: such
guards are the standard, natural way to use MonadPlus.

type AgentId = String
data Message a = Message AgentId AgentId a
data AgentChan a = {- omitted -}

Another building block for our MAS architecture is the FIFO channel AgentChan.
We omit the full definition for the sake of brevity: it is sufficient to know that
messages have headers identifying sender and receiver agents and a payload of
arbitrary type a.

data CAgentState a = CAgentState AgentId (AgentChan a)
data CAgent s a b = CAgent (CAgentState a → Agent s (CAgentState a, b))
instance Monad (CAgent s a) where {- omitted -}

A CAgent is, just like before, defined by means of a state monad. It only needs
to know its unique identifier and the communication channel to be used for
interacting with other agents. This is why, unlike before, the type that holds
the state is fixed as CAgentState. The function wrapped by CAgent, thanks to its
codomain Agent s (CAgentState a, b), is able to merge an agent computation
within a communicating agent. Intuitively, a CAgent can be executed by taking in
input the initial CAgentState and beliefs base s, producing at each intermediate

206 A. Solimando and R. Traverso

step a value b and the new CAgent and Agent states. The execution flow of
a CAgent may use functionalities from Agent; once the computation moves to
the inner monad we gain access to the beliefs base, goals, and backtracking,
but all the interaction capabilities are lost until the execution reaches CAgent
again. Both monads may be concisely defined through the use of the Monad
Transformer Library [4], thus many type class instances and utility functions
are already given.

A CAgent may interact using point-to-point message exchange. The commu-
nication interface is summarized below; all functions are blocking and asyn-
chronous, with the exception of tryRecvMsg that is non-blocking.

myId :: CAgent s a AgentId
sendMsg :: AgentId → a → CAgent s a ()
recvMsg :: CAgent s a (Message a)
tryRecvMsg :: CAgent s a (Maybe (Message a))

Given a set of communicating agents, it is straightforward to define a simple
module that manages the threads and the synchronization between them.

4 Conclusion and Future Work

We presented a basic architecture based on monads for MAS composed of Haskell
agents. Similarly to other solutions, our system provides backtracking capabili-
ties, even if they are limited to the decisions taken between two communication
acts.

We have been able to show how the concepts behind MAS can be naturally
instantiated in a purely functional language without any particular influence
from other paradigms or solutions that may undermine the integration of the
framework with the Haskell standard library.

This is still a preliminary work, as the architecture may change to better ad-
dress the objectives and the prototype of this framework needs to be developed
further in order to provide full support for all the described features. Some ideas
for future extensions are (1) integrating the backtracking capabilities described
in [5], (2) supporting event-based selection of plans, (3) adding communica-
tion primitives (e.g. broadcast, multicast), and (4) enriching the communication
model with session types [13] in order to check the correctness of ongoing com-
munication along the lines of [1] and [10].

References

1. Ancona, D., Drossopoulou, S., Mascardi, V.: Automatic Generation of Self-
Monitoring MASs from Multiparty Global Session Types in Jason. In: Baldoni,
M., Dennis, L., Mascardi, V., Vasconcelos, W. (eds.) DALT 2012. LNCS (LNAI),
vol. 7784, pp. 76–95. Springer, Heidelberg (2013)

2. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems
in AgentSpeak using Jason, vol. 8. Wiley-Interscience (2008)

Designing and Implementing a Framework for BDI-Style 207

3. Hudak, P., Hughes, J., Jones, S.P., Wadler, P.: A history of Haskell: being lazy
with class. In: HOPL III: Proceedings of the Third ACM SIGPLAN Conference on
History of Programming Languages, pp. 12-1–12-55 (2007)

4. Jones, M.: Functional Programming with Overloading and Higher-Order Polymor-
phism. In: Jeuring, J., Meijer, E. (eds.) AFP 1995. LNCS, vol. 925, pp. 97–136.
Springer, Heidelberg (1995)

5. Kiselyov, O., Shan, C., Friedman, D.P., Sabry, A.: Backtracking, interleaving, and
terminating monad transformers (functional pearl). In: Proceedings of the Tenth
ACM SIGPLAN International Conference on Functional Programming, ICFP 2005,
pp. 192–203. ACM, New York (2005)

6. Lam, E.S.L., Sulzmann, M.: Towards agent programming in CHR. CHR 6, 17–31
(2006)

7. Mascardi, V., Demergasso, D., Ancona, D.: Languages for programming BDI-style
agents: an overview. In: Proceedings of WOA 2005, pp. 9–15. Pitagora Editrice
Bologna (2005)

8. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991)
9. O’Sullivan, B., Stewart, D.B., Goerzen, J.: Real World Haskell. O’Reilly Media

(2009)
10. Pucella, R., Tov, J.A.: Haskell session types with (almost) no class. In: Haskell, pp.

25–36 (2008)
11. Rao, A.S.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Lan-

guage. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038,
pp. 42–55. Springer, Heidelberg (1996)

12. Sulzmann, M., Lam, E.S.L.: Specifying and Controlling Agents in Haskell
13. Takeuchi, K., Honda, K., Kubo, M.: An Interaction-based Language and its Typ-

ing System. In: Halatsis, C., Philokyprou, G., Maritsas, D., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994)

14. Wyner, A.Z.: A Functional Program for Agents, Actions, and Deontic Specifica-
tions. In: Baldoni, M., Endriss, U. (eds.) DALT 2006. LNCS (LNAI), vol. 4327,
pp. 239–256. Springer, Heidelberg (2006)

Author Index

Ancona, Davide 76
Athakravi, Duangtida 1

Baldoni, Matteo 96, 190
Baroglio, Cristina 96, 190
Bergenti, Federico 20
Bistarelli, Stefano 116

Caire, Giovanni 20
Capuzzimati, Federico 96
Corapi, Domenico 1

De Vos, Marina 1
Drossopoulou, Sophia 76

Gosti, Giorgio 116
Gotta, Danilo 20
Günay, Akın 136

Harland, James 57
Hendler, James 197
Hindriks, Koen V. 153

Jonker, Catholijn M. 153

Marengo, Elisa 96
Mascardi, Viviana 76, 197

Padget, Julian 1
Papaleo, Laura 197
Pardo, Pere 37
Patti, Viviana 96

Russo, Alessandra 1

Sadrzadeh, Mehrnoosh 37
Santini, Francesco 116
Satoh, Ken 1
Solimando, Alessandro 203

Thangarajah, John 57
Traverso, Riccardo 203
Trodd, Luke 57

Visser, Wietske 153

Winikoff, Michael 136
Woźna-Szcześniak, Bożena 170

Yolum, Pınar 136

Zbrzezny, Andrzej 170

	Cover
	Title
	Preface
	Organization
	Table of Contents
	Invited Papers
	Handling Change in Normative Specifications
	Introduction
	Normative Framework
	The Formal Model
	Computational Model

	Revising Normative Rules
	Handling Change
	Test Generation
	The Approach

	Case Study
	Generating Relevant Literals
	Scoring the Relevant Literals

	Related Work
	Conclusions
	References

	Latest Developments of WADE to Support User-Centric Business Processes
	Introduction
	Agent-Based BPM
	WADE as a BPM Platform
	Aims and Scope of WADE
	BPM-Oriented Evolutions of WADE

	WADE User-Centric Workflows
	A Model of Interactions
	Available Visualizers

	Conclusions
	References

	Strong Planning in the Logics of Communication and Change
	Introduction
	Related Work
	Preliminaries: The Logics of Communication and Change
	Epistemic PDL
	Action Models U,e
	Logics of Communication and Change

	Backward Deterministic Planning in LCC
	An Extension of LCC with Action Composition and Choice
	Update with the Product of n Actions in Un
	Update with the Produce of n Actions in Un
	The Logic LCCn of the Action Model Un
	LCCn: Choice and Non-deterministic Actions

	Non-deterministic Plans in LCC
	A Search Algorithm for Non-deterministic Planning in LCC
	Conclusions and Future Work
	References

	Agent Deliberation via Forward and Backward Chaining in Linear Logic
	Introduction
	Background
	Linear Logic
	Lygon
	Inference and Abduction

	Agents in Lygon
	Actions
	The >> Operator
	Reasoning about Agents
	Vacuum Example

	BDI Deliberation Cycle
	Features
	Detailed Rules
	Execution
	Reactive Rules

	Conclusions and Further Work
	References

	Contributed Papers
	Automatic Generation of Self-monitoring MASs from Multiparty Global Session Types in Jason
	Introduction
	A Gentle Introduction to Global Session Types for Agents
	A Jason Implementation of a Monitor for Checking Global Session Types
	Monitor
	Participants
	Discussion

	The Framework at Work
	Running the Example

	Related and Future Work
	References

	A Generalized Commitment Machine for 2CL Protocols and Its Implementation
	Introduction and Motivation
	Background: 2CL Interaction Protocols
	2CL Generalized Commitment Machine
	Path of a 2CL-GCM

	Implementation of the 2CL Commitment Machine
	Generation of the Labeled Graph and Its Soundness

	2CL Tool for Protocol Design and Analysis
	Related Work and Conclusions
	References

	Solving Fuzzy Distributed CSPs: An Approach with Naming Games
	Introduction
	Background
	Distributed Constraint Satisfaction Problem (DCSP)
	Introduction to Naming Games
	Self-stabilizing Algorithms

	Related Work
	An Algorithm for Fuzzy Naming Games
	Interaction Protocol
	Theorems

	Solving Fuzzy Distributed Constraint Satisfaction Problems as Naming Games
	Interaction Protocol

	An Example of Algorithm Execution
	Experimental Results
	Fuzzy NG Benchmarks
	Fuzzy CSP Benchmark

	Conclusions and Future Work
	References

	Commitment Protocol Generation
	Introduction
	Technical Framework
	Commitment Protocol Generation Algorithm
	Case Study
	Using Generated Protocols
	Discussion
	References

	Goal-Based Qualitative Preference Systems
	Introduction
	Modelling Goals as Criteria in a QPS
	Qualitative Preference Systems
	Goals in a QPS
	Expressivity of QPS as a Model of Goal-Based Preferences

	Modelling Multi-valued Criteria as Goals
	Equivalence
	From Simple Criteria to Goals

	Updates in a QPS
	Flattening
	Updates

	Conclusion
	References

	SAT-Based BMC for Deontic Metric Temporal Logic and Deontic Interleaved Interpreted Systems
	Introduction
	Preliminaries
	Bounded Semantics for EMTLKD
	SAT-Based BMC for EMTLKD
	Experimental Results
	Conclusions
	References

	Position Papers
	Some Thoughts about Commitment Protocols
	Introduction
	Agent Coordination
	Infrastructure for Execution and Observability of Events
	Composition of Coordination Patterns
	Conclusive Remarks
	References

	Semantic Web and Declarative Agent Languages and Technologies: Current and Future Trends
	Introduction
	State of the Art
	Future Trends
	References

	Designing and Implementing a Framework for BDI-Style Communicating Agents in Haskell
	Introduction
	Preliminaries: Haskell
	Our Framework
	Conclusion and Future Work
	References

	Author Index

