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Preface

The development of sophisticated, state-of-the-art, signal processing algorithms and
their suitable applications has evolved and remained a research activity of primary
interest for more than 40 years now with special emphasis on the domains of com-
munication, control theory, estimation, pattern recognition, design of electrical and
electronic systems, mechanical systems, etc. Both one dimensional signal process-
ing and multidimensional signal processing, namely image and video processing,
have received tremendous research attention in recent years. Although the original
focus was to develop traditional algorithms, perform in-depth analysis and then try
to improve upon their performance from different perspectives, in recent times there
has been a significant interest in applying heuristic based methods in solving signal
processing problems.

This book makes a humble attempt in offering a collection of notable works that
have recently contributed in the domain of heuristic signal processing, both in de-
veloping suitable general purpose algorithms and also in solving specialized appli-
cation problems. Special emphasis was put on collecting several works that attempt
to propose several heuristic, iterative optimization methods, essentially employing
modern evolutionary and swarm intelligence based optimization techniques, spe-
cially employed for solving several relevant signal and image processing problems.
Many of these problems under consideration originate from several important do-
mains like the fields of communication engineering, estimation and tracking prob-
lems, the evergreen digital filter design problems, wireless sensor network problems,
bioelectric signal classification problems, image denoising, image feature tracking
problems, etc. We do hope that the sheer variety of the problems discussed in this
book along with different techniques employed in solving them will arouse great
interest among a large section of signal and image processing researchers all over
the world.

Chapter 1 by Ling, Ho, and Teo shows how a two-channel linear phase FIR
quadrature mirror filter bank minimax design problem can be formulated in terms of
a nonconvex optimization problem. This optimization problem attempts to minimize
a weighted sum of several performance indices like the maximum amplitude distor-
tion of the filter bank, the maximum passband ripple magnitude, and the maximum

v
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stopband ripple magnitude of the prototype filter. The chapter discusses in great de-
tail how a joint norm relaxed sequential quadratic programming and filled function
method can be utilized for finding the global minimum of the nonconvex optimiza-
tion problem. The authors show the effectiveness and utility of the proposed method
using several suitable case studies.

Chapter 2 by de Lamare focuses on developing robust reduced-rank linearly con-
strained minimum variance (LCMV) beamforming algorithms, utilizing the notion
of the joint iterative optimization of parameters. The author utilizes the concept
of constrained robust joint iterative optimization of parameters based on the mini-
mum variance criterion. He shows how this optimization procedure can be suitably
utilized to adjust the parameters of a rank-reduction matrix, a reduced-rank beam-
former, and the diagonal loading in an alternating manner. de Lamare also demon-
strates how stochastic gradient and recursive least-squares adaptive algorithms can
be devised for suitable implementation of this optimization technique based robust
beamforming methodology.

In Chap. 3, Sen, Tang, and Nehorai propose a multi-objective optimization based
methodology that can be used to design an orthogonal frequency division multi-
plexing (OFDM) radar signal, used for detection of a moving target in the presence
of multipath reflections. They discuss in detail the development of a parametric
OFDM measurement model for a particular range cell under test, and how it can be
converted to an equivalent sparse-model by considering the target returns over all
the possible signal paths and target velocities. They utilize the multi-objective opti-
mization procedure for designing the spectral-parameters of the transmitting OFDM
waveform by simultaneously optimizing three objective functions: (i) maximizing
the Mahalanobis distance, (ii) minimizing the weighted trace of the Cramer–Rao
bound matrix for the unknown parameters, and (iii) minimizing the upper bound on
the sparse recovery error.

Chapter 4 by Kwolek demonstrates the utilization of the particle swarm optimiza-
tion (PSO) algorithm for multi-target tracking problems. Here PSO is employed to
track the local mode of the similarity measure and a suitable objective function is
developed utilizing the region covariance matrix and multi-patch based object rep-
resentation. In this process, the target locations and velocities are determined and
thereafter they are employed in a PSO based procedure for further refinements of the
extracted trajectories. In the last stage, the algorithm utilizes a conjugate method for
the final optimization, and the suitability of the proposed algorithm is aptly demon-
strated by evaluating performance on publicly available datasets.

Chapter 5 by Boussaïd, Chatterjee, Siarry, and Ahmed-Nacer studies the perfor-
mance of a wireless sensor network in the context of binary detection of a determin-
istic signal. This work considers a decentralized organization of spatially distributed
sensor nodes and considers the development of an optimal power allocation scheme
that will minimize the total power spent by the whole sensor network under a desired
detection error probability. The chapter considers two scenarios for the fusion of bi-
nary decisions, depending on whether the observations are independent and identi-
cally distributed or correlated. This work shows how this problem can be solved uti-
lizing different variations of biogeography-based optimization algorithms and com-
pares their performances vis-à-vis similar problems solved using GA and PSO.
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In Chap. 6, Aslan and Saranlı focus on the problem of detection threshold op-
timization in a tracker-aware manner so that a feedback from the tracker to the
detector is established, in a bid to maximize the overall system performance. This
chapter puts high emphasis on the development of optimization schemes for the
probabilistic data association filter utilizing the modified Riccati equation (MRE)
and the hybrid conditional averaging (HYCA) algorithm. The chapter also proposes
a closed-form solution for the MRE-based dynamic threshold optimization problem.

Chapter 7 by Luitel and Venayagamoorthy introduces the iterative design of fi-
nite impulse response filters using PSO with the quantum infusion (PSO-QI) algo-
rithm. The design specification utilizes two methods for calculating performance
indices: (i) minimizing the mean-squared error between the actual and the ideal fil-
ter response and (ii) minimizing the mean-squared error between the ripples in the
passband and the stopband of the designed filter and the desired filter specification.
The chapter shows performance comparisons vis-à-vis the constrained least-squares
method of filter design.

Chapter 8 by Sengupta, Chakraborti, and Konar introduces Invasive Weed Op-
timization (IWO) based algorithms for solving two-dimensional IIR digital filter
design problems. The authors develop an improved variant of IWO by introducing
a constriction factor in the seed dispersal phase. The design algorithm is developed
using temporal difference Q-Learning and it falls under the category of special types
of adaptive Memetic Algorithms.

Chapter 9 by Castella, Moreau, and Zarzoso discusses a survey of kurtosis opti-
mization schemes employed for MISO source separation and equalization problems.
The chapter provides an in-depth review of some of the most widely employed it-
erative algorithms utilizing kurtosis for MISO source separation and equalization.
These methods include gradient and Newton search based methods, algorithms with
optimal step-size selection, and also algorithms based on reference signals. The au-
thors show the efficacy of these algorithms by presenting the performance evaluation
for case studies chosen from the fields of digital communications and biomedical
signal processing.

Chapter 10 by Nobahari, Sharifı, and MohammadKarimi proposes a new class of
filters, based on swarm intelligence, for the purpose of nonlinear systems state esti-
mation. The authors show how such swarm filters can be formulated for a nonlinear
system state estimation problem as a stochastic dynamic optimization problem. The
chapter shows how successfully PSO and ant colony optimization can be utilized
for this estimation purpose and how they perform vis-à-vis other popular nonlinear
filters such as the unscented Kalman filter, etc.

In Chap. 11, Pan and Chang demonstrate how the design of multiplier-less digital
filters can be carried out utilizing Canonic Signed Digit (CSD) code. The chapter
solves the optimum design problem for digital filters utilizing GA. This chapter
introduces the concept of CSD coded GA which can effectively reduce the time
consumed in the process of the evolution and thus can accelerate the training speed.
This chapter also introduces a new hybrid code for the filter coefficients that can
be instrumental in improving the precision of the coefficients of a digital filter. The
chapter examines the design of both Finite-Impulse Response and Infinite-Impulse
Response Filters in this context.
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Chapter 12 by Dutta, Chatterjee, and Munshi presents a thorough discussion on
the development of robust algorithms for pathological classification of human gait
signals. The chapter shows how cross-correlograms can be utilized for feature ex-
traction and how both time and frequency domain based features can be extracted
from cross-correlation procedures. These features are used as inputs for Elman’s
recurrent neural network (ERNN) based classifiers for automatic identification of
healthy subjects and those with neurological disorder, and also the type of disor-
der, e.g., people suffering from Parkinson’s disease (PD) or Huntington’s disease
(HD), or Amyotrophic Lateral Sclerosis (ALS). The chapter discusses how modular
ERNNs can be utilized to develop composite classifiers to improve classification
accuracy. The performances of such systems developed are compared with similar
systems developed utilizing back propagation neural network (BPNN), learning vec-
tor quantization (LVQ), and least-squares support vector machine (LS-SVM) based
classification algorithms.

In Chap. 13, Abdeldjalil Ouahabi presents a detailed review of image denoising
techniques using wavelets which are specifically aimed at medical imaging applica-
tions. He specifically considers medical ultrasound and magnetic resonance images
and discusses the denoising performances using the well known indices of SNR (or
PSNR) and visual aspects of image quality. In the process, he highlights an impor-
tant fact that image denoising using wavelet-based multi-resolution analysis requires
employment of a judicious compromise between noise reduction and preserving sig-
nificant image details. Hence, the author emphasizes the importance of employing
heuristics to supplement theory and making it simpler for practical applications to
involve less complexity.

Chapter 14 by Guo and Ruan presents a sparse representation method for single-
channel signal separation with a priori knowledge. The key features of the proposed
method include dictionary constructions and pursuit algorithms for finding sparse
representations. The chapter also presents an overview of popular schemes that are
commonly employed to achieve these two key features. The performance evaluation
shows that the proposed method can efficiently separate the overlapping resonances
and the baseline.

Chapter 15 by Raphael, Philippe, and Christine performs a detailed review of
different approaches to the introduction of a color monogenic wavelet transform,
that offer a geometric representation of grayscale images through an AM/FM model
that facilitates invariance of coefficients to translations and rotations. The authors
start from the grayscale monogenic wavelets together with a color extension of the
monogenic signal based on geometric algebra and move on by giving a step-by-step
description.

Chapter 16 by Pissaloux, Maybank, and Velázquez gives a vivid description of
the state-of-the-art in image and feature matching, both in 2D and 3D, specifically
aimed at the embedded or wearable real-time system implementations. The chap-
ter first discusses relaxation, maximal clique, tree search, region growing, and dy-
namic programming based methods. This is followed by a discussion on the popu-
lar correlation-based methods, with a fixed size or adaptive sized window, pyrami-
dal methods, the iterative closest point (ICP) algorithm, and probability (saliency)-
based approaches.
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In the end, we, the editors of this volume, would like to thank everyone who has
contributed directly or indirectly in making this project happen. We would specially
like to thank all chapter contributors who have made notable contributions in their
own ways by writing their chapters and enriching this book. Their timely contri-
butions and active cooperation helped the process to be smooth. Now we sincerely
hope that the final product will satisfy our readers all over the world and will be
useful, in a small way, in further enriching their subject knowledge and will help
them to be better equipped in their future research endeavors.

Amitava Chatterjee
Hadi Nobahari
Patrick Siarry

Kolkata, India
Tehran, Iran
Paris, France
November 2012
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Chapter 1
Nonconvex Optimization via Joint Norm
Relaxed SQP and Filled Function Method
with Application to Minimax Two-Channel
Linear Phase FIR QMF Bank Design

Bingo Wing-Kuen Ling, Charlotte Yuk-Fan Ho, and Kok-Lay Teo

Abstract In this chapter, a two-channel linear phase finite impulse response (FIR)
quadrature mirror filter (QMF) bank minimax design problem is formulated as a
nonconvex optimization problem so that a weighted sum of the maximum ampli-
tude distortion of the filter bank, the maximum passband ripple magnitude, and the
maximum stopband ripple magnitude of the prototype filter is minimized subject to
specifications on these performances. A joint norm relaxed sequential quadratic pro-
gramming and filled function method is proposed for finding the global minimum
of the nonconvex optimization problem. Computer numerical simulations show that
our proposed design method is efficient and effective.

1.1 Introduction

Filters are fundamental building blocks of many engineering systems, such as in
multimedia [13] and communication [1] systems. Hence, developing efficient and
effective filter design methods are essential. There are many filter design techniques
such as the window design method. However, these design methods have some lim-
itations. For example, it is necessary to find a closed form of the impulse responses
of the filters. Also, the bandwidths of the transition bands and the ripples of differ-
ent frequency bands are approximately the same. Because of these limitations, it is
required to develop new methodologies for designing filters [8–11, 14, 28].
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On the other hand, there are many advantages of minimax two-channel linear
phase FIR QMF banks. Since transition bandwidths of the filters in two-channel
filter banks are usually larger than those in multi-channel filter banks, lengths of
the filters in two-channel filter banks are usually shorter than those in multi-channel
filter banks. Moreover, as only a single prototype filter is required for the design
of a QMF bank and all other filters are derived from the prototype filter, the total
number of filter coefficients required for the design of a QMF bank is usually smaller
than those in general filter banks. Furthermore, as the linear phase property of the
filters guarantees no phase distortion of the filter bank and the FIR property of the
filters guarantees the bounded input bounded output (BIBO) stability of the filter
bank, two-channel linear phase FIR QMF banks find many applications in image
and video signal processing [22].

However, there are different considerations for two-channel linear phase FIR
QMF bank designs compared to other filter bank designs [5–7, 12]. For exam-
ple, unlike a multi-channel QMF bank [24, 26], a two-channel QMF bank cannot
achieve the exact perfect reconstruction with the prototype filter having very good
frequency selectivity [23]. Hence, it is useful to design a two-channel QMF bank
so that a weighted sum of the maximum amplitude distortion of the filter bank, the
maximum passband ripple magnitude and the maximum stopband ripple magnitude
of the prototype filter is minimized subject to specifications on these performances.
Nevertheless, this QMF bank minimax design problem is a nonconvex optimization
problem subject to many nonlinear constraints. Since there are many nonlinear con-
straints, the corresponding dual problem consists of many Lagrange multipliers and
the objective function of the dual problem is a nonlinear function of many variables.
It is very difficult to find a locally optimal solution of the dual problem. Moreover,
as nonconvex optimization problems usually consist of many local minima [32], it
is usually stuck at these local minima. Hence, it is very difficult to find the global
minima.

Gradient descent based methods are the most common approaches for finding
locally optimal solutions of optimization problems. Due to the convergence issues,
adaptive step sizes are used. However, when the step sizes are changed adaptively,
in general it is not guaranteed to reach locally optimal solutions. There are mainly
two different approaches for finding the global minima of nonconvex optimization
problems. The first type of the approaches is nongradient based approaches, such as
evolutionary algorithm based approaches [27, 29]. These approaches keep gener-
ating evaluation points randomly. Those evaluation points with better performances
are kept, while those evaluation points with poor performances are ignored. How-
ever, these nongradient based approaches are not efficient. This is because most of
the evaluation points are ignored and computational efforts are wasted. The sec-
ond type of the approaches is filled function approaches [3, 4, 25, 30, 31, 33]. The
working principles of the filled function methods are to find a sequence of locally
optimal solutions and guarantee that their objective functional values are monotonic
decreasing. For those optimization problems with a finite number of local minima,
this method guarantees to reach globally optimal solutions. As the objective func-
tional values of the locally optimal solutions are monotonic decreasing, better solu-
tions are guaranteed for next iterations. Hence, this method is very efficient.
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In this chapter, a joint norm relaxed sequential quadratic programming and filled
function method is proposed for finding the global minimum of a two-channel linear
phase FIR QMF bank minimax design problem. A locally optimal solution of the
optimization problem in each iteration of the filled function method is found by the
norm relaxed sequence quadratic programming method [2, 15–21, 34]. The globally
optimal solution of the original optimization problem is found by the filled function
method. The outline of this chapter is as follows. In Sect. 1.2, a two-channel linear
phase FIR QMF bank minimax design problem is formulated as a nonconvex op-
timization problem. In Sect. 1.3, the globally optimal solution of the optimization
problem is found by a joint norm relaxed sequential quadratic programming and
filled function method. In Sect. 1.4, computer numerical simulations are presented.
Finally, conclusions are drawn in Sect. 1.5.

1.2 Problem Formulation

Let us denote the transpose operator, the conjugate operator, and the conjugate trans-
pose operator by the superscripts T , ∗ and+, respectively, and the modulus operator
as | · |. Let the transfer functions of the lowpass and the highpass analysis filters of
a two-channel linear phase FIR QMF bank be H0(z) and H1(z), respectively, and
those of the synthesis filters of the filter bank be F0(z) and F1(z), respectively.
Here,H0(z) is the transfer function of the prototype filter. Let us denote the impulse
response of the prototype filter as h(n), the passband and the stopband of the pro-
totype filter as Bp and Bs , respectively, the length of the prototype filter as N , the
maximum passband ripple magnitude and the maximum stopband ripple magnitude
of the prototype filter as δp and δs , respectively, the specifications on the acceptable
bounds on the maximum passband ripple magnitude and the maximum stopband
ripple magnitude of the prototype filter as εp and εs , respectively, and the desired
magnitude response of the prototype filter asD(ω). In this chapter, it is assumed that
the prototype filter is of even length and symmetric. Let the polyphase components
of H0(z) be E0(z

2) and E1(z
2), that is,

H0(z)≡E0
(
z2)+ z−1E1

(
z2). (1.1)

Let us denote the transfer function of the filter bank as T (z), the maximum am-
plitude distortion of the filter bank as δa , and the specification on the acceptable
bound on the maximum amplitude distortion of the filter bank as εa . Let the vector
containing these distortions and the even-time index filter coefficients be x

¯
, that is,

x
¯
≡ [δa, δp, δs, h(0), h(2), . . . , h(N − 2)

]T
. (1.2)

In order to achieve both the aliasing-free condition and the QMF pairs condition,
the relationships among the analysis filters and the synthesis filters are governed by

H1(z)=H0(−z), (1.3)
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F0(z)= 2H0(z), (1.4)

and

F1(z)=−2H0(−z). (1.5)

As the prototype filter is of even length and symmetric, we have

H0(z)=
N
2 −1∑

n=0

h(2n)z−2n + z−1

N
2 −1∑

n=0

h(2n)z−(N−2−2n), (1.6)

E0(z)=
N
2 −1∑

n=0

h(2n)z−n, (1.7)

E1(z)=
N
2 −1∑

n=0

h(2n)z−(
N
2 −1−n) = z−( N2 −1)E0

(
z−1), (1.8)

and

T (z)= 4z−1E0
(
z2)E1

(
z2)= 4z−(N−1)E0

(
z2)E0

(
z−2). (1.9)

Let us denote

η(ω)≡ [0,0,0,1, e−jω, . . . , e−j ( N2 −1)ω]T , (1.10)

then

T (ω)= 4e−jω(N−1)x
¯
T
(
η(2ω)

)∗(
η(2ω)

)T x
¯
. (1.11)

Obviously, the filter bank does not suffer from the phase distortion, and the ampli-
tude distortion of the filter bank can be expressed as |4x

¯
T (η(2ω))∗(η(2ω))T x

¯
− 1|.

Let us denote

Q
¯
(ω)= 8

(
η(2ω)

)∗(
η(2ω)

)T
, (1.12)

then the amplitude distortion of the filter bank can be expressed as | 1
2 x

¯
TQ

¯
(ω)x

¯
− 1|.

Let us denote

ιa ≡ [1,0, . . . ,0]T , (1.13)

then the constraint on the maximum amplitude distortion of the filter bank can be
expressed as

1

2
x
¯
TQ

¯
(ω)x

¯
− ιTa x

¯
− 1≤ 0 (1.14)

and

−1

2
x
¯
TQ

¯
(ω)x

¯
− ιTa x

¯
+ 1≤ 0 ∀ω ∈ [−π,π]. (1.15)
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Let us denote

κ(ω)≡ 2

[
0,0,0, cos

(
N − 1

2
ω

)
, cos

(
N − 5

2
ω

)
, . . . , cos

(
3−N

2
ω

)]T
, (1.16)

then

H0(ω)=
(
η(2ω)

)T
x
¯
+ e−jω(N−1)(η(2ω)

)+
x
¯
, (1.17)

therefore

H0(ω)= e−jω N−1
2 × ([0,0,0, ejω N−1

2 , ejω
N−5

2 , . . . , e−jω
N−3

2
]
x
¯

+ [0,0,0, e−jω N−1
2 , e−jω

N−5
2 , . . . , ejω

N−3
2
]
x
¯

)
. (1.18)

Finally,

H0(ω)= e−jω N−1
2
(
κ(ω)

)T x
¯
, (1.19)

and the passband ripple magnitude of the prototype filter can be expressed as
|(κ(ω))T x

¯
−D(ω)| ∀ω ∈ Bp . Let us define

ιp ≡ [0,1,0, . . . ,0]T , (1.20)

then the constraint on the maximum passband ripple magnitude of the prototype
filter can be expressed as

∣∣(κ(ω)
)T x

¯
−D(ω)∣∣≤ ιTpx

¯
∀ω ∈ Bp. (1.21)

Let us define

A
¯ p
(ω)≡ [κ(ω)− ιp,−κ(ω)− ιp

]T (1.22)

and

c
¯p
(ω)≡ [D(ω),−D(ω)]T , (1.23)

then the constraint on the maximum passband ripple magnitude of the prototype
filter can be further expressed as

A
¯ p
(ω)x

¯
− c

¯p
(ω)≤ 0

¯
∀ω ∈ Bp. (1.24)

Similarly, let us define

ιs ≡ [0,0,1,0, . . . ,0]T , (1.25)

A
¯ s
(ω)≡ [κ(ω)− ιs ,−κ(ω)− ιs

]T
, (1.26)

and

c
¯s
(ω)≡ [D(ω),−D(ω)]T , (1.27)
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then the constraint on the maximum stopband ripple magnitude of the prototype
filter can be expressed as

A
¯ s
(ω)x

¯
− c

¯s
(ω)≤ 0

¯
∀ω ∈ Bs. (1.28)

Let us define

A
¯ b
≡ [I

¯
,0

¯
] (1.29)

and

c
¯b
≡ [εa, εp, εs]T , (1.30)

in which I
¯

is the 3 × 3 identity matrix, then the specifications on the acceptable
bounds on the maximum amplitude distortion of the filter bank, the maximum pass-
band ripple magnitude, and the maximum stopband ripple magnitude of the proto-
type filter can be expressed as

A
¯ b

x
¯
− c

¯b
≤ 0

¯
. (1.31)

In order to minimize a weighted sum of the maximum amplitude distortion of the
filter bank, the maximum passband ripple magnitude, and the maximum stopband
ripple magnitude of the prototype filter subject to the specifications on these perfor-
mances, the filter bank design problem is formulated as the following optimization
problem:

Problem (P
¯
)

min
x
¯
f (x

¯
)≡ (αιa + βιp + γ ιs)T x

¯
, (1.32)

subject to

g1(x
¯
,ω)≡ 1

2
x
¯
TQ

¯
(ω)x

¯
− ιTa x

¯
− 1≤ 0 ∀ω ∈ [−π,π], (1.33)

g2(x
¯
,ω)≡−1

2
x
¯
TQ

¯
(ω)x

¯
− ιTa x

¯
+ 1≤ 0 ∀ω ∈ [−π,π], (1.34)

g3(x
¯
,ω)≡A

¯ p
(ω)x

¯
− c

¯p
(ω)≤ 0

¯
∀ω ∈ Bp, (1.35)

g4(x
¯
,ω)≡A

¯ s
(ω)x

¯
− c

¯s
(ω)≤ 0

¯
∀ω ∈ Bs, (1.36)

and

g5(x
¯
)≡A

¯ b
x
¯
− c

¯b
≤ 0

¯
, (1.37)

where α, β , and γ are the weights of different criteria for formulating the objective
function, f (x

¯
) is the objective function, and g1(x

¯
,ω), g2(x

¯
,ω), g3(x

¯
,ω), g4(x

¯
,ω),

and g5(x
¯
) are the constraint functions of the optimization problem.

As the set of the filter coefficients satisfying the constraints (1.33) and (1.34)
is nonconvex, the optimization problem is a nonconvex optimization problem. In
general, it is difficult to find the global minimum of the nonconvex optimization
problem.
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1.3 Joint Norm Relaxed Sequential Quadratic Programming
and Filled Function Method

A joint norm relaxed sequential quadratic programming and the filled function
method is proposed for finding the globally optimal solution of Problem (P

¯
). The

details of the proposed method are discussed below.

1.3.1 Filled Function Method

Some terminologies related to filled functions are discussed below. Notably, a basin
of a function is defined as the subset of the domain of the optimization variables
such that any points in this subset will yield the same local minimum of the function
via conventional gradient based optimization methods. A hill of a function is defined
as the subset of the domain of the optimization variables such that any points in this
subset will yield the same local maximum of the function via conventional gradient
based optimization methods. A higher basin of a function is a basin of the function
with the objective functional value of the local minimum of the basin being higher
than that of the current basin of the function. A lower basin of a function is a basin
of the function with the objective functional value of the local minimum of the basin
being lower than that of the current basin of the function.

A filled function is a function satisfying the following properties: (a) the current
local minimum of the original objective function is the current local maximum of the
filled function; (b) the whole current basin of the original objective function is a part
of the current hill of the filled function; (c) the filled function has no stationary point
in any higher basins of the original objective function; and (d) there exists a local
minimum of the filled function which is in a lower basin of the original objective
function.

The working principles of the filled function method are as follows. Due to prop-
erty (a), by evaluating the filled function at a point slightly deviated from the current
local minimum of the original objective function, a lower functional value will be
obtained. Hence, the filled function could kick out from the current local minimum
of the original objective function. Due to properties (b)–(d), the current local min-
imum of the filled function is neither in the current basin nor in any higher basins
of the original objective function. Hence, the current local minimum of the filled
function is in a lower basin of the original objective function. As a result, by finding
the next local minimum of the original objective function via conventional gradient
based methods with the initial point being the current local minimum of the filled
function, a better local minimum of the original objective function can be obtained.
Following these procedures, if the original objective function contains a finite num-
ber of local minima, then the global minimum of the original objective function will
be eventually reached.

Based on the above working principles, the algorithm is summarized below.
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Algorithm 1
Step 1: Initialize a minimum improvement factor ε, an acceptable error ε′, an

initial search point x̃
¯1, a positive definite matrix R

¯
, and an iteration index k = 1.

Step 2: Find a local minimum of the following optimization Problem (P
¯f

) using
the norm relaxed sequential quadratic programming method with the initial search
point x̃

¯k
.

Problem (P
¯f

)

min
x
¯
f (x

¯
)= (αιa + βιp + γ ιs)T x

¯
, (1.38)

subject to

g1(x
¯
,ω)= 1

2
x
¯
TQ

¯
(ω)x

¯
− ιTa x

¯
− 1≤ 0 ∀ω ∈ [−π,π], (1.39)

g2(x
¯
,ω)=−1

2
x
¯
TQ

¯
(ω)x

¯
− ιTa x

¯
+ 1≤ 0 ∀ω ∈ [−π,π], (1.40)

g3(x
¯
,ω)=A

¯ p
(ω)x

¯
− c

¯p
(ω)≤ 0

¯
∀ω ∈ Bp, (1.41)

g4(x
¯
,ω)=A

¯ s
(ω)x

¯
− c

¯s
(ω)≤ 0

¯
∀ω ∈ Bs, (1.42)

g5(x
¯
)=A

¯ b
x
¯
− c

¯b
≤ 0

¯
, (1.43)

g6(x
¯
)≡ ιTa

(
x
¯
− (1− ε)x̃

¯k
)≤ 0

¯
, (1.44)

g7(x
¯
)≡ ιTp

(
x
¯
− (1− ε)x̃

¯k
)≤ 0

¯
, (1.45)

and

g8(x
¯
)≡ ιTs

(
x
¯
− (1− ε)x̃

¯k
)≤ 0

¯
, (1.46)

where g6(x
¯
), g7(x

¯
), and g8(x

¯
) are the constraint functions we imposed. Let us de-

note the obtained local minimum as x
¯
∗
k .

Step 3: Find a local minimum of the following optimization Problem ( P
¯H

) using
the norm relaxed sequential quadratic programming method with the initial search
point x

¯
∗
k .

Problem (P
¯H

)

min
x
¯
H(x

¯
)≡ (αιa + βιp + γ ιs)T x

¯
+ 1

(x
¯
− x

¯
∗
k)
TR

¯
(x
¯
− x

¯
∗
k)
, (1.47)

subject to

g1(x
¯
,ω)= 1

2
x
¯
TQ

¯
(ω)x

¯
− ιTa x

¯
− 1≤ 0 ∀ω ∈ [−π,π], (1.48)

g2(x
¯
,ω)=−1

2
x
¯
TQ

¯
(ω)x

¯
− ιTa x

¯
+ 1≤ 0 ∀ω ∈ [−π,π], (1.49)

g3(x
¯
,ω)=A

¯ p
(ω)x

¯
− c

¯p
(ω)≤ 0

¯
∀ω ∈ Bp, (1.50)
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g4(x
¯
,ω)=A

¯ s
(ω)x

¯
− c

¯s
(ω)≤ 0

¯
∀ω ∈ Bs, (1.51)

g5(x
¯
)=A

¯ b
x
¯
− c

¯b
≤ 0

¯
, (1.52)

g′6(x¯
)≡ ιTa

(
x
¯
− (1− ε)x

¯
∗
k

)≤ 0
¯
, (1.53)

g′7(x¯
)≡ ιTp

(
x
¯
− (1− ε)x

¯
∗
k

)≤ 0
¯
, (1.54)

and

g′8(x¯
)≡ ιTs

(
x
¯
− (1− ε)x

¯
∗
k

)≤ 0
¯
, (1.55)

where H(x
¯
) is the filled function we defined, g′6(x¯

), g′7(x¯
), and g′8(x¯

) are the con-
straint functions we imposed. Let us denote the obtained local minimum as x̃

¯k+1.
Increment the value of k.

Step 4: Iterate Step 2 and Step 3 until
∥∥(αιa + βιp + γ ιs)T

(
x
¯
∗
k − x

¯
∗
k+1

)∥∥≤ ε′. (1.56)

Take the final vector of x
¯
∗
k as the global minimum of the original optimization prob-

lem.

Step 1 is an initialization of the proposed algorithm. In order not to terminate the
algorithm when the convergence of the algorithm is slow and to have a high accu-
racy of the solution, both ε and ε′ should be chosen as small values. Also, as x̃

¯1 is
an initial search point of the optimization algorithm, this initial search point should
be in the feasible set. However, in general it is difficult to guarantee that x̃

¯1 is in the
feasible set, so it is chosen in such a way that most of the constraints are satisfied.
Moreover, as R

¯
is a positive definite matrix, it controls the spread of the hill ofH(x

¯
)

at x
¯
∗
k . If R

¯
is a diagonal matrix with all diagonal elements being the same and posi-

tive, then small values of these diagonal elements will result to a wide spread of the
hill of H(x

¯
) at x

¯
∗
k and vice versa. Since the local minima of nonconvex optimization

problems could be located far away from each other, the spread of the hill ofH(x
¯
) at

x
¯
∗
k should be large and the diagonal elements of R

¯
should be chosen as small positive

numbers. Step 2 is to find a local minimum of f (x
¯
). As the constraints g6(x

¯
), g7(x

¯
),

and g8(x
¯
) are imposed on the Problem (P

¯f
), the maximum amplitude distortion of

the filter bank, the maximum ripple magnitude, and the maximum stopband ripple
magnitude of the prototype filter corresponding to the new obtained local minimum
are guaranteed to be lower than those corresponding to x̃

¯k
. Similarly, Step 3 is to

find a local minimum of H(x
¯
). As the constraints g′6(x¯

), g′7(x¯
), and g′8(x¯

) are im-
posed on the Problem (P

¯H
), the maximum amplitude distortion of the filter bank,

the maximum ripple magnitude, and the maximum stopband ripple magnitude of the
prototype filter are guaranteed to be lower than those corresponding to x

¯
∗
k . Step 4 is

a termination test procedure. If the difference of the weighted performance between
two consecutive iterations is smaller than a certain bound ε′, then the algorithm is
terminated.

It has been discussed above that conventional filled function methods require that
(a) the current local minimum of the original objective function be the current local
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maximum of the filled function; (b) the whole current basin of the original objective
function be a part of the current hill of the filled function; (c) the filled function
have no stationary point in any higher basins of the original objective function; and
(d) there exist a local minimum of the filled function which is in a lower basin of
the original objective function. As R

¯
is a positive definite matrix and x

¯
∗
k is in the

denominator of H(x
¯
), H(x

¯
)→+∞ as x

¯
→ x

¯
∗
k . Hence, x

¯
∗
k is the global maximum

of H(x
¯
) and property (a) is guaranteed to be satisfied. As the constraints g′6(x¯

),
g′7(x¯

), and g′8(x¯
) are imposed on the Problem (P

¯H
), when a new local minimum of

H(x
¯
) is found, this new local minimum of H(x

¯
) will not be located at x

¯
∗
k and the

original objective value evaluated at x̃
¯k+1 will guarantee to be lower than that at x

¯
∗
k .

Hence, properties (b)–(d) are guaranteed to be satisfied. As a result, the proposed
algorithm is guaranteed to reach the global minimum of the nonconvex optimization
problem.

As the efficiency of general nonconvex optimization algorithms would depend
on the initial search points, the total number of local minima of the optimization
problems, and the stopping criteria of the optimization algorithms, there is always a
tradeoff between the accuracy of the obtained solutions and the efficiency of the op-
timization algorithms. For nongradient based approaches, as most of the evaluation
points are ignored, the effectiveness of these algorithms is low. On the other hand,
our proposed method is guaranteed to obtain a local minimum in each iteration, the
effectiveness of our proposed algorithm is high. Hence, for the same period of time,
our proposed method will obtain a better solution than those of nongradient based
approaches.

1.3.2 Norm Relaxed Sequential Quadratic Programming

To find locally optimal solutions of both Problem (P
¯f

) and Problem (P
¯H

), the norm
relaxed sequential quadratic programming method is employed. This method is
based on the assumptions that the initial point is in the feasible set of the opti-
mization problem and both the objective function and the constraint functions are
smooth. The working principles of the norm relaxed sequential quadratic program-
ming method are to find directions of descents via solving quadratic programming
problems and to construct a set of new points based on the obtained directions of
descents, where the new points are in the feasible set of the original optimization
problem and the objective functional values of these new points are monotonic de-
creasing.

Based on the above working principles, the algorithm is summarized below.

Algorithm 2
Step 1: Denote the initial searching vector for the norm relaxed sequential

quadratic programming method obtained from Algorithm 1 as x
¯0, initialize con-

stants δ1 > 0, δ2 > 0, β−1 > 0, σ ∈ (0,1), α ∈ (0,1), and P > 0, as well as define a
symmetric positive definite matrix B

¯ 0. Set k = 0. By using the integration approach,
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the functional inequality constraints can be converted to conventional inequality
constraints. Let us define

f (x
¯
)≡ f (x

¯
) for Problem (P

¯f
), (1.57)

f (x
¯
)≡H(x

¯
) for Problem (P

¯H
), (1.58)

gj (x¯
)≡
∫ (

max
(
gj (x

¯
,ω),0

))2
dω for j = 1, . . . ,4, (1.59)

g5(x¯
)≡ g5(x

¯
), (1.60)

gj (x¯
)≡ gj (x

¯
) for j = 6,7,8, and for Problem (P

¯f
), (1.61)

gj (x¯
)≡ g′j (x¯) for j = 6,7,8, and for Problem (P

¯H
), (1.62)

P(x
¯
)≡max

(
0, g1(x¯

), . . . , g8(x¯
)
)
, (1.63)

and

I0(x
¯
)≡ {j ∈ {1, . . . ,8} such that gj (x¯

)= P(x
¯
)
}
. (1.64)

Step 2: Solve the following quadratic programming problem:
Problem (Q

¯
P
¯ k

)

min
(d,z)

z+ 1

2
d
¯
TB

¯ k
d
¯
, (1.65)

subject to

∇f (x
¯k
)T d

¯
≤ z (1.66)

and

gj (x¯k
)+∇gj (x¯k)

T d
¯
≤ z, for j = 1, . . . ,8. (1.67)

Let us denote the obtained solution as (d
¯k
, zk). If d

¯k
= 0

¯
, then the algorithm termi-

nates.
Step 3: Let us define

�k ≡ 2P(x
¯k
)− d

¯
T
k B

¯ k
d
¯k

d
¯
T
k B

¯ k
d
¯k

+ δ1, (1.68)

βk = βk−1 for βk−1 ≥�k, (1.69)

βk =�k + δ2 for βk−1 <�k, (1.70)

ψβk (x¯
)≡ f (x

¯
)+ βkP (x

¯
), (1.71)

P ′(x
¯k
,d

¯k
)≡max

(∇gj (x¯k)
T d

¯k
for j ∈ I0(x

¯k
),0
)

for P(x
¯k
)= 0, (1.72)

P ′(x
¯k
,d

¯k
)≡max

(∇gj (x¯k)
T d

¯k
for j ∈ I0(x

¯k
)
)

for P(x
¯k
) > 0, (1.73)
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and

ψ ′
βk
(x
¯k
,d

¯k
)≡∇f (x

¯k
)T d

¯k
+ βkP ′(x

¯k
,d

¯k
). (1.74)

Find the step size tk which is defined as the first value in the sequence {1, σ, σ 2, . . .}
such that:

if P(x
¯k
)≤ P , then

ψβk (x¯k
+ tkd

¯k
)≤ψβk (x¯k)+ αtkψ

′
βk
(x
¯k
,d

¯k
), (1.75)

if P(x
¯k
) > P , then

ψβk (x¯k
+ tkd

¯k
)≤ψβk (x¯k)+ αtkψ

′
βk
(x
¯k
,d

¯k
), (1.76)

and

P(x
¯k
+ tkd

¯k
)≤ P(x

¯k
). (1.77)

Step 4: Find a new symmetric positive definite matrix B
¯ k+1 using existing algo-

rithms. Set

x
¯k+1 = x

¯k
+ tkd

¯k
. (1.78)

Increment the value of k and go back to Step 2.

Step 1 is an initialization of the norm relaxed sequential quadratic programming
method. Step 2 is to find the directions of descents via solving quadratic program-
ming problems. The constraints imposed in Problem (Q

¯
P
¯ k

) guarantee that the objec-
tive functional values of the obtained solutions are monotonic decreasing and within
the feasible set of the original optimization problem. As a result, the converged so-
lution of the quadratic programming problems is guaranteed to be a locally optimal
solution of the original optimization problem.

As the quadratic programming problems are only subject to linear constraints,
the corresponding dual problems only involve simple functions of these Lagrange
multipliers. Hence, the quadratic programming problems can be solved via efficient
algorithms such as interior point methods. As a result, the proposed method is very
efficient and effective for finding locally optimal solutions of the optimization prob-
lems in each iteration of the filled function method.

1.4 Computer Numerical Simulation Results

In order to have a fair comparison, the performance of the QMF banks designed
via our proposed method is compared to that designed via existing minimax ap-
proaches [23]. We choose the same passband, stopband, filter length, maximum
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passband ripple magnitude, maximum stopband ripple magnitude, and desirable
magnitude response of the prototype filter as that in [23], that is,

Bp = [−0.4π,0.4π], (1.79)

Bs = [0.6π,π] ∪ [−π,−0.6π], (1.80)

N = 36, (1.81)

εp =−50 dB, (1.82)

εs =−50 dB, (1.83)

D(ω)= 1 for ω ∈ Bp, (1.84)

and

D(ω)= 0 for ω ∈ Bs. (1.85)

In order to guarantee that the performance of the QMF bank designed via our pro-
posed method is better than that in [23], the specification on the maximum ampli-
tude distortion of the filter bank is chosen as εa =−58 dB, which is better than that
in [23] (εa = 0.003=−50.4576 dB). In order not to have any bias among the max-
imum amplitude distortion of the filter bank, the maximum passband ripple mag-
nitude, and the maximum stopband ripple magnitude of the prototype filter, all the
weights in the objective function are chosen to be the same, that is, α = β = γ = 1.
In this chapter, ε = ε′ = 10−6 are chosen, which is small enough for most applica-
tions. x̃

¯1 is chosen as the filter coefficients obtained via the Remez exchange algo-
rithm, which is guaranteed to satisfy the specifications on the maximum passband
ripple magnitude and the maximum stopband ripple magnitude of the prototype fil-
ter. R

¯
is chosen as the diagonal matrix with all diagonal elements equal to 10−3,

which is small enough for most applications.
To compare the efficiency of the designed method, our proposed method only

takes three iterations to converge and the total time required for the computer nu-
merical simulations is 0.8 seconds. On the other hand, the method discussed in [23]
takes 68 iterations to converge and the total time required for the computer numeri-
cal simulations is 80 seconds. Hence, it can be concluded that the method discussed
in [23] requires more computational efforts than our proposed method and our pro-
posed method is more efficient than that discussed in [23]. The magnitude responses
of the filter banks as well as the magnitude responses of the prototype filters in both
the passband and the stopband designed via our proposed method are shown in
Figs. 1.1, 1.2, 1.3. It can be seen from these figures that the prototype filter designed
by our proposed method can achieve δp = −64.2416 dB and δs = −50.3625 dB,
and the QMF bank could achieve δa =−58.1557 dB. It can be checked easily that
the QMF bank designed via our proposed method achieves better performance with
respect to the maximum amplitude distortion of the filter bank, the maximum pass-
band ripple magnitude, and the maximum stopband ripple magnitude ripple of the
prototype filter than that designed by the method discussed in [23]. This is because
the QMF bank designed by the method discussed in [23] is not the global minimum,
while that designed by our proposed method is the global minimum.
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Fig. 1.1 Magnitude response
of the filter bank

Fig. 1.2 Magnitude response
of the prototype filter in the
passband

Fig. 1.3 Magnitude response
of the prototype filter in the
stopband

1.5 Conclusions

This chapter proposes a joint norm relaxed sequential quadratic programming and
filled function method for the design of a two-channel linear phase FIR QMF bank
so that a weighted sum of the maximum amplitude distortion of the filter bank, the
maximum passband ripple magnitude, and the maximum stopband ripple magnitude
of the prototype filter is minimized. In particular, a locally optimal solution of the
optimization problem in each iteration of the filled function method is found by
the norm relaxed sequence quadratic programming method. The globally optimal
solution of the original optimization problem is found by the filled function method.
Computer numerical simulation results show that the proposed method can find the
global minimum of the nonconvex optimization problem efficiently.
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Chapter 2
Robust Reduced-Rank Adaptive LCMV
Beamforming Algorithms Based on Joint
Iterative Optimization of Parameters

Rodrigo C. de Lamare

Abstract This chapter presents robust reduced-rank linearly constrained minimum
variance (LCMV) beamforming algorithms based on the concept of joint iterative
optimization of parameters. The proposed robust reduced-rank scheme is based on
a constrained robust joint iterative optimization (RJIO) of parameters according to
the minimum variance criterion. The robust optimization procedure adjusts the pa-
rameters of a rank-reduction matrix, a reduced-rank beamformer, and the diagonal
loading in an alternating manner. LCMV expressions are developed for the design
of the rank-reduction matrix and the reduced-rank beamformer. Stochastic gradient
and recursive least-squares adaptive algorithms are then devised for an efficient im-
plementation of the RJIO robust beamforming technique. Simulations for a beam-
forming application in the presence of uncertainties show that the RJIO scheme
and algorithms outperform existing algorithms in convergence and tracking perfor-
mances while they require a comparable computational complexity.

2.1 Introduction

In the last decade, adaptive beamforming techniques have attracted significant inter-
est from researchers and engineers, and found applications in radar, sonar, wireless
communications, and seismology [1, 2]. The optimal linearly constrained minimum
variance (LCMV) beamformer is designed in such a way that it minimizes the array
output power while maintaining a constant response in the direction of a signal of in-
terest (SoI) [1–3]. However, this technique requires the computation of the inverse
of the input data covariance matrix and the knowledge of the array steering vec-
tor. Adaptive versions of the LCMV beamformer were subsequently reported with
stochastic gradient (SG) [4, 5] and recursive least-squares (RLS) [6] algorithms.
A key problem with adaptive beamforming techniques is the impact of uncertainties
which can result in a considerable performance degradation. These mismatches are
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caused by local scattering, imperfectly calibrated arrays, insufficient training, and
imprecisely known wave field propagation conditions [2].

In the last decades, a number of robust approaches have been reported that ad-
dress this problem [7–30]. These techniques can be classified according to the ap-
proach adopted to deal with the mismatches: techniques based on diagonal load-
ing [7, 9, 12, 13], methods that estimate the mismatch or, equivalently, the ac-
tual steering vector [10, 11, 14], and techniques that exploit properties such as the
constant modulus of the signals [15–17] and the low-rank of the interference sub-
space [8, 18–30]. Furthermore, beamforming algorithms usually have a trade-off be-
tween performance and computational complexity which depends on the designer’s
choice of the adaptation algorithm [3, 31]. A number of robust designs can be cast
as optimization problems which end up in the so-called second-order cone (SOC)
program, which can be solved with interior point methods and have a computational
cost that is super-cubic in the number of parameters of the beamformer. This poses
a problem for beamforming systems that have a large number of parameters and
operate in time-varying scenarios, which requires the beamformer to be recomputed
periodically.

A robust technique for short-data record scenarios is reduced-rank signal pro-
cessing [18–30], which is very well suited for systems with a large number of pa-
rameters. These algorithms are robust against short data records, have the ability
to exploit the low-rank nature of the signals encountered in beamforming applica-
tions, and can resist moderate steering vector mismatches. These methods include
the computationally expensive eigen-decomposition techniques [18, 19] to alterna-
tive approaches such as the Auxiliary Vector Filter (AVF) [20, 25], the Multi-stage
Wiener Filter (MSWF) [21, 23, 24] which are based on the Krylov subspace, and
joint iterative optimization (JIO) approaches [22, 26–29]. The JIO techniques re-
ported in [26, 27, 29] outperform the eigen-decomposition- and Krylov-based meth-
ods and are amenable to efficient adaptive implementations. However, robust ver-
sions of JIO methods have not been considered so far.

In this chapter, robust LCMV reduced-rank beamforming algorithms based on
constrained robust joint iterative optimization (RJIO) of parameters are developed.
The basic idea of the RJIO approach is to design a bank of robust adaptive beam-
formers which is responsible for performing dimensionality reduction, whereas the
robust reduced-rank beamformer effectively forms the beam in the direction of the
SoI and takes into account the uncertainty. Robust LCMV expressions for the design
of the rank reduction matrix and the reduced-rank beamformer are proposed that can
appropriately deal with array steering vector mismatches. SG and RLS algorithms
for efficiently implementing the method are then devised. An automatic rank adap-
tation algorithm for determining the most adequate rank for the RJIO algorithms is
described. A simulation study of the proposed RJIO algorithms and existing tech-
niques is considered.

This chapter is organized as follows. The system and signals models are de-
scribed in Sect. 2.2. The full-rank and the reduced-rank LCMV filtering problems
are formulated in Sect. 2.3. Section 2.4 is dedicated to the RJIO method, whereas
Sect. 2.5 is devoted to the derivation of the adaptive SG and RLS algorithms, the
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Fig. 2.1 Block diagram of a sensor-array array system with interfering signals

analysis of the computational complexity, and the rank adaptation technique. Sec-
tion 2.6 presents and discusses the simulation results and Sect. 2.7 gives the con-
cluding remarks.

2.2 System Model

Let us consider a sensor-array system equipped with a uniform linear array (ULA)
of M elements, as shown in Fig. 2.1. Assuming that the sources are in the far field
of the array, the signals of K narrowband sources impinge on the array (K < M)
with unknown directions of arrival (DOA) θl for l = 1,2, . . . ,K .

The input data from the antenna array can be organized in an M × 1 vector
expressed by

r(i)=A(θ)s(i)+ n(i), (2.1)

where

A(θ)= [a(θ1), . . . ,a(θK)
]

is theM ×K matrix of signal steering vectors. TheM × 1 signal steering vector is
defined as

a(θl)=
[
1, e−2πj ds

λc
cos θl , . . . , e

−2πj (M−1) ds
λc

cos θl
]T (2.2)
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for a signal impinging at angle θl , l = 1,2, . . . ,K , where ds = λc/2 is the inter-
element spacing, λc is the wavelength and (·)T denotes the transpose operation. The
vector n(i) denotes the complex vector of sensor noise, which is assumed to be
zero-mean and Gaussian with covariance matrix σ 2I .

2.3 Problem Statement and Design of Adaptive Beamformers

In this section, the problem of designing robust beamforming algorithms against
steering vector mismatches is stated. The design of robust full-rank and reduced-
rank LCMV beamformers is introduced along with the modeling of steering vector
mismatches. The presumed array steering vector for the kth desired signal is given
by ap(θk)= a(θk)+e, where e is theM×1 mismatch vector and a(θk) is the actual
array steering vector which is unknown for the system. By using the presumed array
steering vector ap(θk), the performance of a conventional LCMV beamformer can
be degraded significantly. The problem of interest is how to design a beamformer
that can deal with the mismatch and minimize the performance loss due to the un-
certainty.

2.3.1 Adaptive LCMV Beamformers

In order to perform beamforming with a full-rank LCMV beamformer, we linearly
combine the data vector r(i) = [r(i)1 r

(i)
2 . . . r

(i)
M ]T with the full-rank beamformer

w = [w1 w2 . . . wM ]T to yield

x(i)=wH r(i). (2.3)

The optimal LCMV beamformer is described by the M × 1 vector w, which is
designed to solve the following optimization problem

minimize E
[∣∣wH r(i)

∣∣2]=wHRw

subject to wHa(θk)= 1.
(2.4)

The solution to the problem in (2.4) is given by [3, 4]

wopt = R−1a(θk)

aH (θk)R
−1a(θk)

, (2.5)

where a(θk) is the steering vector of the SoI, r(i) is the received data, the covariance
matrix of r(i) is described by R =E[r(i)rH (i)], (·)H denotes Hermitian transpose
and E[·] stands for the expected value. The beamformer w(i) can be estimated via
SG or RLS algorithms [3]. However, the laws that govern their convergence and
tracking behaviors imply that they depend onM and on the eigenvalue spread of R.
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A reduced-rank algorithm must extract the most important features of the pro-
cessed data by performing dimensionality reduction. This mapping is carried out by
aM ×D rank-reduction matrix SD on the received data as given by

r̄(i)= SHD r(i), (2.6)

where, in what follows, all D-dimensional quantities are denoted with a “bar”. The
resulting projected received vector r̄(i) is the input to a beamformer represented by
the D × 1 vector w̄ = [w̄1 w̄2 . . . w̄D]T . The filter output is

x̄(i)= w̄H r̄(i). (2.7)

In order to design a reduced-rank beamformer w̄ we consider the following opti-
mization problem

minimize E
[∣∣w̄H r̄(i)

∣∣2]= w̄H R̄w̄

subject to w̄H ā(θk)= 1.
(2.8)

The solution to the above problem is

w̄opt = R̄
−1

ā(θk)

āH (θk)R̄
−1

ā(θk)

= (SHDRSD)
−1SHDa(θk)

aHSD(θk)(S
H
DRSD)−1SHDa(θk)

, (2.9)

where the reduced-rank covariance matrix is R̄ =E[r̄(i)r̄H (i)] = SHDRSD and the
reduced-rank steering vector is ā(θk) = SHDa(θk). The above development shows
that the choice of SD to perform dimensionality reduction on r(i) is very impor-
tant, and can lead to an improved convergence and tracking performance over the
full-rank beamformer. A key problem with the full-rank and the reduced-rank beam-
formers described in (2.5) and (2.9), respectively, is that their performance is dete-
riorated when they employ the presumed array steering vector ap(θk). In these sit-
uations, it is fundamental to employ a robust technique that can mitigate the effects
of the mismatches between the actual and the presumed steering vector.

2.3.2 Robust Adaptive LCMV Beamformers

An effective technique for robust beamforming is the use of diagonal loading strate-
gies [7, 9, 12, 13]. In what follows, robust full-rank and reduced-rank LCMV beam-
forming designs are described. A general approach based on diagonal loading is
employed for both full-rank and reduced-rank designs.
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A robust full-rank LCMV beamformer represented by anM × 1 vector w can be
designed by solving the following optimization problem

minimize E
[∣∣wH r(i)

∣∣2]+ ε2‖w‖2 =wHRw+ ε2wHw

subject to wHa(θk)= 1,
(2.10)

where ε2 is a constant that needs to be chosen by the designer. The solution to the
problem in (2.10) is given by

wopt = (R+ ε2IM)
−1ap(θk)

aHp (θk)(R + ε2IM)−1ap(θk)
, (2.11)

where ap(θk) is the presumed steering vector of the SoI and ID is anM-dimensional
identity matrix. It turns out that the adjustment of ε2 needs to be obtained numeri-
cally by an optimization algorithm.

In order to design a robust reduced-rank LCMV beamformer w̄, we follow a sim-
ilar approach to the full-rank case and consider the following optimization problem

minimize E
[∣∣w̄HSHD r(i)

∣∣2]+ ε2‖SDw̄‖2 = w̄HSHDRSDw̄

+ ε2w̄HSHDSDw̄

subject to w̄HSHDap(θk)= 1.

(2.12)

The solution to the above problem is

w̄opt = (SHDRSD + ε2ID)
−1SHDap(θk)

aHp SD(θk)(S
H
DRSD + ε2ID)−1SHDap(θk)

, (2.13)

where the tuning of ε2 requires an algorithmic approach as there is no closed-form
solution and ID is a D-dimensional identity matrix.

2.4 Robust Reduced-Rank Beamforming Based on Joint
Iterative Optimization of Parameters

In this section, the principles of the robust reduced-rank beamforming scheme based
on joint iterative optimization of parameters, termed RJIO, are introduced. The RJIO
scheme, depicted in Fig. 2.2, employs a rank-reduction matrix SD(i) with dimen-
sionsM×D to perform dimensionality reduction on a data vector r(i) with dimen-
sionsM × 1. The reduced-rank beamformer w̄(i) with dimensions D× 1 processes
the reduced-rank data vector r̄(i) in order to yield a scalar estimate x̄(i). The rank-
reduction matrix SD(i) and the reduced-rank beamformer w̄(i) are jointly optimized
in the RJIO scheme according to the MV criterion subject to a robust constraint that
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Fig. 2.2 Block diagram of
the RJIO scheme

ensures that the beamforming algorithm is robust against steering vector mismatches
and short data records.

In order to describe the RJIO method, let us first consider the structure of the
M ×D rank-reduction matrix

SD(i)=
[
s1(i) | s2(i) | . . . |sD(i)

]
, (2.14)

where the columns sd(i) for d = 1, . . . ,D constitute a bank of D robust beamform-
ers with dimensionsM × 1 as given by

sd(i)=
[
s1,d (i) s2,d (i) . . . sM,d(i)

]T
.

The output x̄(i) of the RJIO scheme can be expressed as a function of the input
vector r(i), the matrix SD(i) and the reduced-rank beamformer w̄(i):

x̄(i)= w̄H (i)SHD(i)r(i)= w̄H (i)r̄(i). (2.15)

It is interesting to note that for D = 1, the RJIO scheme becomes a robust full-rank
LCMV beamforming scheme with an additional weight parameter wD that provides
an amplitude gain. ForD > 1, the signal processing tasks are changed and the robust
full-rank LCMV beamformers compute a subspace projection and the reduced-rank
beamformer provides a unity gain in the direction of the SoI. This rationale is funda-
mental to the exploitation of the low-rank nature of signals in typical beamforming
scenarios.

The robust LCMV expressions for SD(i) and w̄(i) can be computed via the fol-
lowing optimization problem

minimize E
[∣∣w̄H (i)SHD(i)r(i)

∣∣2]+ ε2
∥∥SD(i)w̄(i)

∥∥2

= w̄H (i)SHD(i)RSD(i)w̄(i)+ ε2w̄H (i)SHD(i)SD(i)w̄(i)

subject to w̄H (i)SHD(i)ap(θk)= 1.

(2.16)

In order to solve the above problem, we resort to the method of Lagrange mul-
tipliers [3] and transform the constrained optimization into an unconstrained one
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expressed by the Lagrangian

L
(
SD(i), w̄(i), ε

2(i)
)=E[∣∣w̄H (i)SHD(i)r(i)

∣∣2]

+ ε2(i)w̄H (i)SHD(i)SD(i)w̄(i)

+ [λ(w̄H (i)SHD(i)ap(θk)− 1
]
, (2.17)

where λ is a scalar Lagrange multiplier, ∗ denotes complex conjugate. By fixing
w̄(i), minimizing (2.17) with respect to SD(i), and solving for λ, we get

SD(i)= (R + ε2(i)IM)
−1ap(θk)w̄

H (i)R̄
−1
w̄

w̄H (i)R̄
−1
w̄ w̄(i)aHp (θk)(R(i)+ ε2(i)IM)−1ap(θk)

, (2.18)

where R = E[r(i)rH (i)] and R̄w̄ = E[w̄(i)w̄H (i)]. By fixing SD(i), minimizing
(2.17) with respect to w̄(i), and solving for λ, we arrive at the expression

w̄(i)= (R̄(i)+ ε2(i)SHD(i)IDSD(i))
−1āp(θk)

āHp (θk)(R̄(i)+ ε2(i)SHD(i)IDSD(i))−1āp(θk)
, (2.19)

where R̄(i) = E[SHD(i)r(i)rH (i)SD(i)] = E[r̄(i)r̄H (i)], āp(θk) = SHD(i)ap(θk).
Note that the filter expressions in (2.18) and (2.19) are not closed-form solutions
for w̄(i) and SD(i) since (2.18) is a function of w̄(i) and (2.19) depends on SD(i).
Thus, it is necessary to iterate (2.18) and (2.19) with initial values to obtain a solu-
tion [32]. The key strategy lies in the robust joint optimization of the beamformers.
The rank D and the diagonal loading parameter ε2(i) must be adjusted by the de-
signer to ensure appropriate performance or can be estimated via another algorithm.
In the next section, iterative solutions via adaptive algorithms are sought for the ro-
bust computation of SD(i), w̄(i), the diagonal loading ε(i), and the rank adaptation.

2.5 Adaptive Algorithms

In this section, adaptive SG and RLS versions of the RJIO scheme are developed
for an efficient implementation. The important issue of determining the rank of the
scheme with an adaptation technique is considered. The computational complexity
in arithmetic operations of the RJIO-based algorithms is then detailed.

2.5.1 Stochastic Gradient Algorithm

In this part, we present a low-complexity SG adaptive reduced-rank algorithm for an
efficient implementation of the RJIO method. The basic idea is to employ an alter-
nating optimization strategy to update SD(i), w̄(i), and the diagonal loading ε2(i).
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By computing the instantaneous gradient terms of (2.17) with respect to SD(i),
w̄(i), and ε2(i), we obtain

∇LMV S∗D(i) = x̄∗(i)r(i)w̄H (i)+ ε2(i)SD(i)w̄(i)w̄
H (i)+ 2λ∗ap(θk)w̄H (i),

∇LMV w̄∗(i) = x̄∗(i)SHD(i)r(i)+ ε2(i)SHD(i)SD(i)w̄(i)+ 2λ∗SHD(i)ap(θk),

∇LMV ε2(i) = 2ε(i)wH (i)SHD(i)SD(i)w̄(i).
(2.20)

By introducing the positive step sizes μs , μw , and με , using the gradient rules
SD(i + 1) = SD(i) − μs∇LMV S∗D(i), w̄(i + 1) = w̄(i) − μw∇LMV w̄∗(i) and
ε(i + 1)= ε(i)− μw∇LMV ε(i), enforcing the constraint and solving the resulting
equations, we obtain

SD(i + 1)= SD(i)−μs
[
x̄∗(i)r(i)w̄H (i)+ ε(i)SD(i)w̄(i)w̄H (i)

− (aHp (θk)ap(θk)
)−1

ap(θk)w̄
H (i)
(
x̄∗(i)aHp (θk)r(i)+ ε(i)

)]
,

(2.21)

w̄(i + 1)= w̄(i)−μw
(
x̄∗(i)SHD(i)r(i)+ ε(i)SHD(i)SD(i)w̄(i)

+ (aHp (θk)ap(θk)
)−1(

x̄∗(i)rH (i)SD(i)SHD(i)ap(θk)

+ ε(i)wH (i)SHD(i)SD(i)SHD(i)ap(θk)
))
, (2.22)

ε(i + 1)= ε(i)−μεw̄H (i)SHD(i)SD(i)w̄(i), (2.23)

where x̄(i)= w̄H (i)SHD(i)r(i). The RJIO scheme trades-off a full-rank beamformer
against one rank-reduction matrix SD(i), one reduced-rank beamformer w̄(i), and
one adaptive loading recursion operating in an alternating fashion and exchanging
information.

2.5.2 Recursive Least-Squares Algorithms

Here, an RLS algorithm is devised for an efficient implementation of the RJIO
method. To this end, let us first consider the Lagrangian

LLS
(
SD(i), w̄(i), ε(i)

)=
i∑

l=1

αi−l
∣∣w̄H (i)SHD(i)r(l)

∣∣2

+ ε2(i)w̄H (i)SHD(i)SD(i)w̄(i)

+ λ(w̄H (i)SHD(i)ap(θk)− 1
)
, (2.24)

where α is the forgetting factor chosen as a positive constant close to, but less than 1.
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Fixing w̄(i), computing the gradient of (2.24) with respect to SD(i), equating the
gradient terms to zero, and solving for λ, we obtain

SD(i)=
P (i)ap(θk)a

H
p (θk)SD(i − 1)

aHp (θk)P (i)ap(θk)
, (2.25)

where we defined the inverse covariance matrix P (i)=R−1(i) for convenience of
presentation. Employing the matrix inversion lemma [3], we obtain

k(i)= α−1P (i − 1)r(i)

1+ α−1rH (i)P (i − 1)r(i)
, (2.26)

P (i)= α−1P (i − 1)− α−1k(i)rH (i)P (i − 1)+ ε2(i)IM, (2.27)

where k(i) is theM × 1 Kalman gain vector. We set P (0)= δIM to start the recur-
sion of (2.27), where δ is a positive constant.

Assuming SD(i) is known and taking the gradient of (2.24) with respect to w̄(i),
equating the terms to a null vector, and solving for λ, we obtain the D× 1 reduced-
rank beamformer

w̄(i)= P̄ (i)SHD(i)ap(θk)

aHp (θk)SD(i)P̄ (i)S
H
D(i)ap(θk)

, (2.28)

where P̄ (i) = R̄
−1
(i) and R̄(i) =∑i

l=1 α
i−l r̄(l)r̄H (l) is the reduced-rank input

covariance matrix. In order to estimate P̄ (i), we use the matrix inversion lemma [3]
as follows:

k̄(i)= α−1P̄ (i − 1)r̄(i)

1+ α−1r̄H (i)P̄ (i − 1)r̄(i)
, (2.29)

P̄ (i)= α−1P̄ (i − 1)− α−1k̄(i)r̄H (i)P̄ (i − 1)+ ε2(i)ID, (2.30)

where k̄(i) is theD×1 reduced-rank gain vector and P̄ (i)= R̄
−1
(i) is referred to as

the reduced-rank inverse covariance matrix. Hence, the covariance matrix inversion
R̄
−1
(i) is replaced at each step by the recursive processes (2.29) and (2.30) for

reducing the complexity. The recursion of (2.30) is initialized by choosing P̄ (0)=
δ̄ID , where δ̄ is a positive constant. The last recursion adjusts the diagonal loading
according to the following update equation

ε(i + 1)= ε(i)−μεw̄H (i)SHD(i)SD(i)w̄(i). (2.31)

The RJIO-RLS algorithm trades-off a full-rank beamformer with M coefficients
against one matrix recursion to compute SD(i), given in (2.25)–(2.27), one D × 1
reduced-rank adaptive beamformer w̄(i), given in (2.28)–(2.30), and one recursion
to adjust the diagonal loading described in (2.31) in an alternating manner and ex-
changing information.
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Table 2.1 Computational complexity of LCMV algorithms

Algorithm Additions Multiplications

LCMV-SG [4] 3M + 1 3M + 2

LCMV-RLS [6] 3M2 − 2M + 3 6M2 + 2M + 2

RJIO-SG 3DM + 4M + 2D − 2 5DM + 2M + 5D + 2

RJIO-RLS 3M2 −M + 3+ 3D2 − 7D + 3 7M2 + 3M + 7D2 + 10D

SMI [23] 2/3M3 + 3M2 2/3M3 + 5M2

Fig. 2.3 Computational complexity in terms of arithmetic operations againstM

2.5.3 Complexity of RJIO Algorithms

Here, we evaluate the computational complexity of the RJIO and analyzed LCMV
algorithms. The complexity expressed in terms of additions and multiplications is
depicted in Table 2.1. We can verify that the RJIO-SG algorithm has a complex-
ity that grows linearly with DM , which is about D times higher than the full-
rank LCMV-SG algorithm and significantly lower than the remaining techniques.
If D�M (as we will see later) then the additional complexity can be acceptable
provided the gains in performance justify them. In the case of the RJIO-RLS algo-
rithm, the complexity is quadratic withM2 andD2. This corresponds to a complex-
ity slightly higher than the one observed for the full-rank LCMV-RLS algorithm,
provided D is significantly less than M , and lower than the robust beamforming
algorithms WC-SOC [9] and WC-ME [10].

In order to illustrate the main trends in what concerns the complexity of the
proposed and analyzed algorithms, we show in Fig. 2.3 the complexity in terms of
additions and multiplications versus the number of input samples M . The curves
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indicate that the RJIO-RLS algorithm has a complexity lower than the WC-ME [10]
and the WC-SOC [9], whereas it remains at the same level of the full-rank LCMV-
RLS algorithm. The RJIO-SG algorithm has a complexity that is situated between
the full-rank LCMV-RLS and the full-rank LCMV-SG algorithms.

2.5.4 Rank Adaptation

The performance of the algorithms described in the previous subsections depends on
the rankD. This motivates the development of methods to automatically adjustD on
the basis of the cost function. Different from existing methods for rank adaptation
which use MSWF-based algorithms [23] or AVF-based recursions [25], we focus
on an approach that jointly determines D based on the LS criterion computed by
the filters SD(i) and w̄D(i), where the subscript D denotes the rank used for the
adaptation. In particular, we present a method for automatically selecting the ranks
of the algorithms based on the exponentially weighted a posteriori least-squares type
cost function described by

C
(
SD(i − 1), w̄D(i − 1)

)=
i∑

l=1

αi−l
∣∣w̄HD(i − 1)SD(i − 1)r(l)

∣∣2, (2.32)

where α is the forgetting factor and w̄D(i − 1) is the reduced-rank beamformer
with rank D. For each time interval i, we can select the rank Dopt which minimizes
C (SD(i − 1), w̄D(i − 1)), and the exponential weighting factor α is required as
the optimal rank varies as a function of the data record. The key quantities to be
updated are the rank-reduction matrix SD(i), the reduced-rank beamformer w̄D(i),
the associated presumed reduced-rank steering vector āp(θk), and the inverse of the
reduced-rank covariance matrix P̄ (i) (for the RJIO-RLS algorithm). To this end,
we define the following extended rank-reduction matrix SD(i) and the extended
reduced-rank beamformer weight vector w̄D(i) as follows:

SD(i)=
⎡

⎢
⎣

s1,1 s1,2 . . . s1,Dmin . . . s1,Dmax
...

...
...

...
. . .

...

sM,1 sM,2 . . . sM,Dmin . . . sM,Dmax

⎤

⎥
⎦ and

w̄D(i)=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

w1
w2
...

wDmin
...

wDmax

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

(2.33)

The extended rank-reduction matrix SD(i) and the extended reduced-rank beam-
former weight vector w̄D(i) are updated along with the associated quantities ā(θk)
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and P̄ (i) (only for the RLS) for the maximum allowed rank Dmax and then the rank
adaptation algorithm determines the rank that is best for each time instant i using
the cost function in (2.32). The rank adaptation algorithm is then given by

Dopt = arg min
Dmin≤d≤Dmax

C
(
SD(i − 1), w̄D(i − 1)

)
, (2.34)

where d is an integer,Dmin andDmax are the minimum and maximum ranks allowed
for the reduced-rank beamformer, respectively. Note that a smaller rank may provide
faster adaptation during the initial stages of the estimation procedure and a greater
rank usually yields a better steady-state performance. Our studies reveal that the
range for which the rank D of the proposed algorithms has a positive impact on the
performance of the algorithms is limited, being from Dmin = 3 to Dmax = 8 for the
reduced-rank beamformer recursions. These values are rather insensitive to the sys-
tem load (number of users) and the number of array elements, and work very well for
all scenarios and algorithms examined. The additional complexity of the proposed
rank adaptation algorithm is that it requires the update of all involved quantities with
the maximum allowed rankDmax and the computation of the cost function in (2.32).
This procedure can significantly improve the convergence performance and can be
relaxed (the rank can be made fixed) once the algorithm reaches steady state. Choos-
ing an inadequate rank for adaptation may lead to performance degradation, which
gradually increases as the adaptation rank deviates from the optimal rank.

2.6 Simulations

In this section, the performance of the RJIO and some existing beamforming algo-
rithms is assessed using computer simulations. A sensor-array system with a ULA
equipped with M sensor elements is considered for assessing the beamforming al-
gorithms. In particular, the performance of the RJIO scheme with SG and RLS al-
gorithms is compared with existing techniques, namely, the full-rank LCMV-SG [4]
and LCMV-RLS [6], and the robust techniques reported in [9], termed WC-SOC,
and [10], called Robust-ME, and the optimal linear beamformer that assumes the
knowledge of the covariance matrix and the actual steering vector [2]. In particular,
the algorithms are compared in terms of the signal-to-interference-plus-noise ratio
(SINR), which is defined for the reduced-rank schemes as

SINR(i)= w̄H (i)SHD(i)RsSD(i)w̄(i)

w̄H (i)SHD(i)RISD(i)w̄(i)
, (2.35)

where Rs is the covariance matrix of the desired signal and RI is the covariance
matrix of the interference and noise in the environment. Note that for the full-rank
schemes the SINR(i) assumes SHD(i) = IM . For each scenario, 200 runs are used
to obtain the curves. In all simulations, the desired signal power is σ 2

d = 1, and
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Fig. 2.4 SINR performance of LCMV algorithms against rank (D) with M = 32, SNR = 15 dB,
N = 250 snapshots

the signal-to-noise ratio (SNR) is defined as SNR = σ 2
d

σ 2 . The beamformers are ini-

tialized as w̄(0) = [1 0 . . . 0] and SD(0) = [ITD 0TD×(M−D)], where 0D×M−D is a
D× (M −D) matrix with zeros in all experiments.

In order to assess the performance of the RJIO and other existing algorithms in
the presence of uncertainties, we consider that the array steering vector is corrupted
by local coherent scattering

ap(θk)= a(θk)+
4∑

k=1

ejΦkasc(θk), (2.36)

where Φk is uniformly distributed between zero and 2π and θk is uniformly dis-
tributed with a standard deviation of 2 degrees with the assumed direction as the
mean. The mismatch changes for every realization and is fixed over the snapshots
of each simulation trial. In the first two experiments, we consider a scenario with
7 interferers at −60◦, −45◦, 30◦ −15◦, 0◦, 45◦, 60◦ with powers following a log-
normal distribution with associated standard deviation 3 dB around the SoI’s power
level. The SoI impinges on the array at 30◦. The parameters of the algorithms are
optimized.

We first evaluate the SINR performance of the analyzed algorithms against
the rank D using optimized parameters (μs , μw , and forgetting factors λ) for all
schemes and N = 250 snapshots. The results in Fig. 2.4 indicate that the best rank
for the RJIO scheme is D = 4 (which will be used in the second scenario) and it is
very close to the optimal full-rank LCMV beamformer that has knowledge about the
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Fig. 2.5 SINR performance of robust LCMV algorithms against snapshots with M = 32,
SNR= 15 dB

actual steering vector. An examination of systems with different sizes has shown that
D is relatively invariant to the system size, which brings considerable computational
savings. In practice, the rank D can be adapted in order to obtain fast convergence
and ensure good steady-state performance and tracking after convergence.

We display another scenario in Fig. 2.5 where the robust adaptive LCMV beam-
formers are set to converge to the same level of SINR. The parameters used to obtain
these curves are also shown. The curves show an excellent performance for the RJIO
scheme which converges much faster than the full-rank-SG algorithm, and is also
better than the more complex WC-SOC [9] and Robust-ME [10] schemes.

In the next example, we consider the design of the RJIO-SG and RJIO-RLS al-
gorithms equipped with the rank adaptation method described in Sect. 2.5.4. We
consider 5 interferers at −60◦, −30◦, 0◦, 45◦, 60◦ with equal powers to the SoI,
which impinges on the array at 15◦. Specifically, we evaluate the rank adaptation
algorithms against the use of fixed ranks, namely, D = 3 and D = 8 for both SG
and RLS algorithms. The results show that the rank adaptation method is capa-
ble of ensuring an excellent trade-off between convergence speed and steady-state
performance, as illustrated in Fig. 2.6. In particular, the algorithm can achieve a sig-
nificantly faster convergence performance than the scheme with fixed rank D = 8,
whereas it attains the same steady state performance.

In the last experiment, we consider a nonstationary scenario where the system
has 6 users with equal power and the environment experiences a sudden change
at time i = 800. The 5 interferers impinge on the ULA at −60◦, −30◦, 0◦, 45◦,
60◦ with equal powers to the SoI, which impinges on the array at 15◦. At time
instant i = 800 we have 3 interferers with 5 dB above the SoI’s power level entering
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Fig. 2.6 SINR performance of RJIO-LCMV (a) SG and (b) RLS algorithms against snapshots
withM = 24, SNR= 12 dB with rank adaptation

the system with DoAs −45◦, −15◦ and 30◦, whereas one interferer with DoA 45◦
and a power level equal to the SoI exits the system. The RJIO and other analyzed
adaptive beamforming algorithms are equipped with rank adaptation techniques and
have to adjust their parameters in order to suppress the interferers. We optimize the
step sizes and the forgetting factors of all the algorithms in order to ensure that
they converge as fast as they can to the same value of SINR. The results of this
experiment are depicted in Fig. 2.7. The curves show that the RJIO algorithms have
a superior performance to the existing algorithms considered in this study.

2.7 Conclusions

We have investigated robust reduced-rank LCMV beamforming algorithms based on
robust joint iterative optimization of beamformers. The RJIO reduced-rank scheme
is based on a robust constrained joint iterative optimization of beamformers accord-
ing to the minimum variance criterion. We derived robust LCMV expressions for
the design of the rank-reduction matrix and the reduced-rank beamformer and de-
veloped SG and RLS adaptive algorithms for their efficient implementation along
with a rank adaptation technique. The numerical results for an adaptive beamform-
ing application with a ULA have shown that the RJIO scheme and algorithms out-
perform in convergence, steady state and tracking the existing robust full-rank and
reduced-rank algorithms at comparable complexity. The proposed algorithms can
be extended to other array geometries and applications.
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Fig. 2.7 SINR performance of robust LCMV algorithms against the number of snapshots with
M = 24, SNR= 12 dB in a nonstationary scenario
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Chapter 3
Designing OFDM Radar Waveform for Target
Detection Using Multi-objective Optimization

Satyabrata Sen, Gongguo Tang, and Arye Nehorai

Abstract We propose a multi-objective optimization (MOO) technique to design
an orthogonal frequency division multiplexing (OFDM) radar signal for detecting a
moving target in the presence of multipath reflections. We employ an OFDM sig-
nal to increase the frequency diversity of the system, as different scattering cen-
ters of a target resonate variably at different frequencies. Moreover, the multipath
propagation increases the spatial diversity by providing extra “looks” at the target.
First, we develop a parametric OFDM measurement model for a particular range
cell under test, and convert it to an equivalent sparse-model by considering the tar-
get returns over all the possible signal paths and target velocities. Then, we propose
a constrained MOO problem to design the spectral-parameters of the transmitting
OFDM waveform by simultaneously optimizing three objective functions: maximiz-
ing the Mahalanobis distance to improve the detection performance, minimizing the
weighted trace of the Cramér–Rao bound matrix for the unknown parameters to
increase the estimation accuracy, and minimizing the upper bound on the sparse-
recovery error to improve the performance of the equivalent sparse-estimation ap-
proach.
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3.1 Introduction

The problem of adaptive waveform design is becoming increasingly relevant and
challenging to modern state-of-the-art radar systems. For many years, conventional
radars have transmitted a fixed waveform on every pulse, and the research efforts
have been primarily devoted to optimally process the corresponding received sig-
nals [50]. However, with the recent technological advancements in the fields of
flexible waveform generators and high-speed signal processing hardware, it is now
possible to generate and transmit sophisticated radar waveforms that are dynam-
ically adapted to the sensing environments on a periodic basis (potentially on a
pulse-by-pulse basis) [7, 23, 35, 55, 56]. Such adaptation can lead to a significant
performance gain over the classical (non-adaptive) radar waveforms, particularly in
the defense applications involving fast-changing scenarios.

A comprehensive survey on different waveform-design techniques can be found
in [38, Chap. 1.2] and references therein; here we briefly discuss some of the salient
research work on this topic. Earlier attempts of radar waveform design were to
compute parameters of the radar waveform (amplitude, phase, etc.) and the asso-
ciated receiver response in order to improve the target-detection performance in
the presence of clutter and interference [19, 42, 43, 51, 53]. The target-matched
illumination techniques are proposed in [22, 25, 41] to optimally design the com-
bination of transmit-waveform and receive-filter for the identification and charac-
terization of targets with known responses. In [5, 29, 44], the information-theoretic
optimization criteria, based on the mutual information between the transmit/receive
waveform and target response, are considered to design the optimal waveforms for
detection, estimation, and tracking problems. Several waveform-optimization algo-
rithms based on the properties of the Cramér–Rao bound (CRB) matrix are pre-
sented in [24, 31, 49] for the purpose of target-tracking and parameter estimation.
Recently, various constrained waveform-design methodologies are studied to obtain
more practical radar waveforms, such as constraining the optimal waveform to have
a constant modulus [39], to have a bounded peak-to-average power ratio [14], and
to be similar to another waveform that has the desired autocorrelation function or
ambiguity profile [12, 13, 30, 40].

The waveform-design problems become further intriguing when one needs to si-
multaneously satisfy two or more optimality criteria, particularly in a multi-mission
radar system [4, 21]. Often, the desirable optimization functions are very different
and even conflicting to each other, which give rise to dissimilar parameter values
for the optimal waveform. To tackle this quandary, the multi-objective optimization
(MOO) procedures are employed that concurrently optimize the various objective
functions in a Pareto-sense [1, 2, 15, 16, 48]. This type of optimality was origi-
nally introduced by Francis Ysidro Edgeworth in 1881 [20] and later generalized by
Vilfredo Pareto in 1896 [37].

In this work (see also [47, 48]), we consider a Pareto-optimal waveform-design
approach for an orthogonal frequency division multiplexing (OFDM) radar signal
to detect a moving target in the presence of multipath reflections, which exist, for
example, in urban environments as shown in Fig. 3.1. In [45, 46], we showed that
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Fig. 3.1 Principle of adaptive waveform design in a radar operating in the multipath scenarios

the target-detection capability can be significantly improved by exploiting multi-
ple Doppler shifts corresponding to the projections of the target velocity on each
of the multipath components. Furthermore, the multipath propagations increase
the spatial diversity of the radar system by providing extra “looks” at the tar-
get and thus enabling target detection and tracking even beyond the line-of-sight
(LOS) [28]. To resolve and exploit the multipath components it is common to use
short pulse, multi-carrier wideband radar signals. We consider OFDM signaling
scheme [34, 36], which is one way to use several subcarriers simultaneously. The
use of an OFDM signal mitigates possible fading, resolves multipath reflections,
and provides additional frequency diversity as different scattering centers of a target
resonate at different frequencies [27, 54].

First, we develop a parametric OFDM measurement model for a particular range
cell, to detect a far-field target moving in a multipath-rich environment. We assume
that the radar has the complete knowledge of the first-order (or single bounce) spec-
ularly reflected multipath signals. Using such knowledge of the geometry, we can
determine all the possible paths, be they LOS or reflected, from the range cell un-
der test. However, in practice the target responses reach the radar only via a limited
number of paths depending on the position of the target within the range cell. There-
fore, considering all the possible signal paths and target velocities, which represent
themselves as varying Doppler shifts at the radar receiver, we convert the OFDM
measurement model to an equivalent sparse model. The nonzero components of the
sparse vector in this model correspond to the scattering coefficients of the target at
the true signal paths and target velocity.

The formulation of a sparse-measurement model transforms a target-detection
problem into a task of estimating the nonzero coefficients of a sparse signal. To
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estimate the sparse vector, we propose a sparse-recovery algorithm based on the
Dantzig selector (DS) approach [8]. The DS approach belongs to the class of convex
relaxation methods in which the �0 norm is replaced by the �1 norm that remains
a measure of sparsity while being a convex function. However, instead of using the
standard DS, in this work we employ a collection of multiple small DS that exploits
more prior structures of the sparse vector and provides improved performances both
in terms of computational-time and estimation-accuracy [48].

Next, we propose to optimally design the spectral-parameters of the transmit-
ting OFDM waveform for the next coherent processing interval in order to im-
prove the system performance. We formulate and solve a constrained MOO prob-
lem [11, 17, 33, 57] that simultaneously optimizes three objective functions. The
maximization of the Mahalanobis distance [3, 32] is considered as the first of the
three objective functions. This is because the Mahalanobis distance provides a stan-
dard measure to quantify the distance between two distributions associated with two
hypotheses of a detection problem. However, to compute the Mahalanobis distance
in practice, we need to estimate the target scattering-coefficients, velocity, and noise
covariance matrix. We characterize the accuracy of such estimations by calculating
the CRBs for the unknown parameters, because CRB is a universal lower bound
on the variance of all unbiased estimators of a set of parameters [26, Chap. 3].
Therefore, our second objective function tries to minimize a weighted trace of the
resultant CRB matrix. Additionally, if we solve the equivalent sparse-estimation
problem, then we analyze the reconstruction-performance by evaluating an upper
bound on the sparse-estimation error in terms of the �1-constrained minimal singu-
lar value (�1-CMSV) of the sparse-measurement matrix [52]. Compared with the
traditional restricted isometry constant (RIC) [9, 10], which is extremely difficult to
compute for an arbitrarily given matrix, the �1-CMSV is an easily computable mea-
sure and provides more intuition on the stability of sparse-signal recovery. Hence,
as the third objective function, we propose to minimize the upper bound on the
sparse-estimation error for improving the performance of sparse-recovery.

To solve the MOO problem, we apply the well-known nondominated sorting ge-
netic algorithm II (NSGA-II) [18], which belongs to the class of evolutionary algo-
rithms (EAs) and provides a set of solutions known as Pareto-optimal solutions [17].
All the solutions residing on the Pareto-front are considered to be superior to any
other solution in the search space when all objectives are considered. The idea of
finding as many Pareto-optimal solutions as possible motivates the use of EAs that
generate several solutions in a single run. Alternatively, we avoid using the scalar-
ization technique, that transforms a MOO problem into a single-objective one by
pre-multiplying each objective with a scalar weight (as done in [15, 16]), primarily
for two reasons [17, Chaps. 2, 3]: (i) the optimal solution of a scalarization tech-
nique can be very subjective in nature, as it is heavily sensitive to the pre-defined
scalar weights used in forming the single-objective function; and (ii) all the Pareto-
optimal solutions may not be found by a scalarization approach for the nonlinear
and nonconvex optimization problems.

We demonstrate the performance improvement due to the adaptive OFDM-
waveform design with several numerical examples. We observe that the Pareto-
optimal solutions provide a set of compromised solutions that varies in between
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Fig. 3.2 A schematic
representation of the
multipath scenario

two extrema that are approximately equal to the individual solutions of the objec-
tive functions when solved separately. We found that all the Pareto-optimal solu-
tions produce better performances than the fixed waveform, in terms of the Maha-
lanobis distance and weighted trace of CRB matrix; whereas only a smaller set of
the Pareto-optimal solutions has improved performance with respect to the upper
bound on sparse-error. Assuming that the noise powers over different subcarriers
are the same, we infer that the solution of the Pareto-optimal design redistributes
the energy of the transmitted signal by putting the most energy to that particular
subcarrier along which the signal-to-noise ratio is the strongest.

The rest of the chapter is organized as follows. In Sect. 3.2, we first develop a
parametric OFDM measurement model by incorporating the effects of first-order
multipath reflections. Then, in Sect. 3.3, we convert the detection problem to one of
sparse-estimation and present a decomposed DS-based sparse-recovery algorithm.
In Sect. 3.4, we propose the adaptive OFDM-waveform design algorithm based on
the MOO approach. Numerical examples and conclusions are presented in Sects. 3.5
and 3.6, respectively.

3.2 Problem Description and Modeling

Figure 3.2 presents a schematic representation of the problem scenario. We consider
a far-field target in a multipath-rich environment, moving with a constant relative
velocity v with respect to the radar. At the operating frequency, we assume that the
reflecting surfaces produce only specular reflections of the radar signal, and for sim-
plicity we consider only the first-order reflections. We further assume that the radar
has complete knowledge of the environment under surveillance because nowadays
accurate information about the city and building layouts can be obtained from lidar
imaging systems, blueprints at the city hall, and even public tools such as Google
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Maps. Hence, for a particular range cell (the region within the two successive iso-
range contours of Fig. 3.2) the radar knows the specific paths, through which the tar-
get information reaches the radar receiver, in terms of its direction-of-arrival (DOA)
unit-vectors (up,p = 1,2, . . . ,P ). Under this scenario, our goal here is to decide
whether a target is present or not in the range cell under test.

In the following, we first develop a parametric OFDM-measurement model that
includes the effects of multipath reflections in between the radar and target. Then,
we discuss our statistical assumptions on the clutter and noise.

3.2.1 OFDM Signal Model

We consider a wideband OFDM signaling system with L active subcarriers, a band-
width of B Hz, and pulse width of Tp seconds. Let a= [a0, a1, . . . , aL−1]T represent
the complex weights transmitted over the L subcarriers, and satisfy

∑L−1
l=0 |al |2 = 1.

Then, the complex envelope of the transmitted signal in a single pulse can be repre-
sented as

s(t)=
L−1∑

l=0

ale
j2πlΔf t , for 0≤ t ≤ Tp, (3.1)

where the subcarrier spacing is denoted by Δf = B/(L+ 1)= 1/Tp. Let fc be the
carrier frequency of operation; then a coherent burst ofN transmitted pulses is given
by

s̃(t)= 2 Re

{
N−1∑

n=0

s(t − nT )ej2πfct

}

, (3.2)

where T is the pulse repetition interval (PRI). We point out here that in Sect. 3.4
while designing the adaptive waveform we choose the spectral-parameters of the
OFDM waveform, als, in order to improve the system performance.

3.2.2 Measurement Model

For a single-pulse, single-carrier transmitted signal s̃l (t) = 2 Re{alej2πfl t }, where
fl = fc + lΔf is the lth subcarrier frequency, the received signal along the pth path
(represented by the DOA unit-vector up) and at the same carrier-frequency fl can
be written as

ỹlp(t)= xlps̃l
(
γp(t − τp)

)+ ẽlp(t), (3.3)

where xlp is a complex quantity representing the scattering coefficient of the target
along the lth subchannel and pth path; γp = 1 + βp where βp = 2〈v,up〉/c is the
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relative Doppler shift along the pth path and c is the speed of propagation; τp is the
roundtrip delay between the radar and target along the pth path; ẽlp represents the
clutter and measurement noise along the lth subcarrier and pth path. Therefore, the
received signal over all P paths due to an L-carrier OFDM signal is given by

ỹ(t) =
L−1∑

l=0

P∑

p=1

ỹlp(t)= 2 Re

{
L−1∑

l=0

P∑

p=1

alxlpe
j2πflγp(t−τp)

}

+ ẽ(t),

= 2 Re

{
L−1∑

l=0

P∑

p=1

alxlpe
−j2πflγpτpej2πflβpt ej2πfl t

}

+ ẽ(t), (3.4)

and hence the corresponding complex envelope at the output of the lth subchannel
is

yl(t)=
P∑

p=1

alxlpe
−j2πflγpτpej2πflβpt + el(t). (3.5)

Next, we assume that the relative time gaps between any two multipath signals
are very small in comparison to the actual roundtrip delays, i.e., τp ≈ τ0 for p =
1,2, . . . ,P . This assumption holds true when the path lengths of multipath arrivals
differ little (e.g., in a narrow urban canyon where the down-range is much greater
than the width). Further, we consider that the temporal measurements from a specific
range gate (denoted by the roundtrip delay τ0) are collected at every t = τ0 + nT
instants. Therefore, corresponding to a specific range cell containing the target, the
complex envelope of the received signal at the output of the lth subchannel is

yl(n)=
P∑

p=1

alxlpe
−j2πflγpτ0ej2πflβp(τ0+nT ) + el(n). (3.6)

Defining

φlp(n)� e−j2πflτ0ej2πflβpnT , (3.7)

we can rewrite (3.6) as

yl(n)= alφl (n)T xl + el(n), (3.8)

where φl (n) = [φl1(n),φl2(n), . . . , φlP (n)]T and xl = [xl1, xl2, . . . , xlP ]T are two
P × 1 vectors respectively containing the Doppler information and the scattering
coefficients of the target at the lth subchannel over all P multipath.

Then, stacking the measurements of all L subchannels into one column vector of
dimension L× 1, we get

y(n)=A�(n)x+ e(n), (3.9)

where
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• y(n)= [y0(n), y1(n), . . . , yL−1(n)]T ;
• A = diag(a) is an L× L complex diagonal matrix that contains the transmitted

weights a;
• �(n)= blkdiag(φ0(n)

T ,φ1(n)
T , . . . ,φL−1(n)

T ) is an L×LP complex rectan-
gular block-diagonal matrix;

• x= [xT0 ,xT1 , . . . ,xTL−1]T is an LP × 1 complex vector;
• e(n) = [e0(n), e1(n), . . . , eL−1(n)]T is an L × 1 vector of clutter returns, mea-

surement noise, and co-channel interference.

Finally, concatenating all the temporal data columnwise into an LN × 1 vector, we
obtain the OFDM-measurement model as follows:

y=�x+ e, (3.10)

where

• y= [y(0)T ,y(1)T , . . . ,y(N − 1)T ]T ;
• � = [(A�(0))T . . . (A�(N − 1))T ]T is an LN × LP matrix containing the

Doppler information of the target;
• e = [e(0)T , e(1)T , . . . , e(N − 1)T ]T is an LN × 1 vector comprising clutter re-

turns, noise, and interference.

3.2.3 Statistical Assumptions

In our problem, the clutter could be the contribution of undesired reflections from
the environment surrounding or behind the target, or random multipath reflections
from the irregularities on the reflecting surface (e.g., windows and balconies of the
buildings in an urban scenario), that cannot be modeled as specular components.
In (3.9), the noise vector e(n) models the clutter returns, measurement noise, and
co-channel interference at the output of L subchannels. We assume that e(n) is
a temporally white and circularly symmetric zero-mean complex Gaussian vector,
correlated between different subchannels with positive definite covariance matrix �.
This assumption implies that the OFDM measurements in (3.10) are distributed as

y∼CNLN(�x, IN ⊗�). (3.11)

3.3 Sparse-Estimation Approach

In this section, we reformulate the detection problem of the previous section to a
sparsity-based estimation task. Using our knowledge of the geometry, we can deter-
mine all the possible signal paths in between the radar and the range cell under test,
and subsequently can understand the possible extent of the Doppler variations at the
radar receiver. In general, depending on the problem-scenario and target-velocity, a
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set of such Doppler shifts could be very large. However, restricting our operation to
a narrow region of interest (e.g., an urban canyon where the range is much greater
than the width) and a few classes of targets that have comparable velocities (e.g.,
cars/trucks within a city environment), we can limit the extent of viable Doppler
shifts to a smaller quantity.

In the following, we first convert the OFDM-measurement model of (3.10) to a
sparse model that accounts for a set of finely discretized Doppler shifts. Then, we
present an efficient sparse-recovery approach that employs a collection of multiple
small DS in order to utilize more prior structures of the sparse vector.

3.3.1 Sparse Model

Suppose we discretize the extent of feasible Doppler shifts into Nβ grid points as
{βi, i = 0,1, . . . ,Nβ − 1}. Then, we can remodel (3.8) as

yl(n)= alφ̃l(n)T ζ l + el(n), (3.12)

where

• φ̃l (n) = [φl0(n),φl1(n), . . . , φl(Nβ−1)(n)]T represents an equivalent sparsity-
based modeling of φl(n);

• ζ l = [ζl0, ζl1, . . . , ζl(Nβ−1)]T is an Nβ × 1 sparse vector, having P(� Nβ)

nonzero entries corresponding to the true target scattering coefficients, i.e.,

ζli =
{
xlp if i = p,
0 otherwise.

(3.13)

Using the formulation of (3.12) and following the approach presented in Sect. 3.2.2
to obtain (3.10) from (3.8), we deduce a sparse-measurement model as

y= �̃ζ + e, (3.14)

where

• �̃ = [(A�̃(0))T . . . (A�̃(N − 1))T ]T is an LN × LNβ sparse-measurement
matrix containing all the viable Doppler information in terms of the L × LNβ
dimensional matrices �̃(n)= blkdiag(φ̃0(n)

T , φ̃1(n)
T , . . . , φ̃L−1(n)

T );
• ζ = [ζ T0 , ζ T1 , . . . , ζ TL−1]T is an LNβ × 1 sparse-vector that has LP nonzero en-

tries representing the scattering coefficients of the target along all the P received
paths and L subcarriers.

3.3.2 Sparse Recovery

The goal of a sparse-reconstruction algorithm is to estimate the vector ζ from the
noisy measurement y of (3.14) by exploiting the sparsity. One of the most popular
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approaches of sparse-signal recovery is the Dantzig selector [8], which provides an
estimate of ζ as a solution to the following �1-regularization problem:

min
z∈CLNβ

‖z‖1 subject to
∥∥�̃H (y− �̃z)

∥∥∞ ≤ λ · σ, (3.15)

where λ = √2 log(LNβ) is a control parameter that ensures that the residual
(y− �̃z) is within the noise level and σ =√

tr(�)/L.
However, from the construction of ζ in (3.14), i.e., from ζ = [ζ T0 , ζ T1 , . . . , ζ TL−1]T

we observe that each ζ l , l = 0,1, . . . ,L − 1, is sparse with sparsity level P . Fur-
thermore, the system matrix �̃ in (3.14) can be expressed as

�̃ = [�̃0 �̃1 . . . �̃L−1], (3.16)

where each block-matrix of dimension LN ×Nβ is orthogonal to any other block-

matrix, i.e., �̃
H
l1

�̃ l2 = 0 for l1 �= l2.
To exploit this additional structure in the sparse-recovery algorithm, we propose

a concentrated estimate ζ̂ = [̂ζ T0 , ζ̂ T1 , . . . , ζ̂ TL−1]T which is obtained from the indi-
vidual solutions, ζ̂ ls, of the L small Dantzig selectors:

min
zl∈CNβ

‖zl‖1 subject to
∥∥�̃Hl (y− �̃ lzl)

∥∥∞ ≤ λl · σ for l = 0,1, . . . ,L− 1,

(3.17)
where λl =

√
2 log(Nβ). As (3.17) exploits more prior structures of the sparse vec-

tor, it provides improved performances over (3.15) both in terms of computational-
time and estimation-accuracy [48].

3.4 Adaptive Waveform Design

In this section, we develop an adaptive waveform design technique based on a multi-
objective optimization (MOO) approach. To improve the detection performance,
we propose to maximize the Mahalanobis distance which quantifies the distance
between two distributions involved in the detection problem. However, in prac-
tice, the computation of the Mahalanobis distance requires estimations of the tar-
get scattering-response, target velocity, and noise covariance matrix. So, in addi-
tion to maximizing the Mahalanobis distance, we intend to increase the estimation-
accuracy by minimizing a weighted trace of the CRB matrix computed for the un-
known parameters. Furthermore, the formulation of sparse-measurement model al-
lows us to construct and solve another optimization problem that minimizes the
upper bound on the sparse-estimation error for improving the efficiency of sparse-
recovery. In the following, we first present in detail these three single-objective func-
tions and then describe the MOO problem.



3 Designing OFDM Radar Waveform Using Multi-objective Optimization 45

3.4.1 Maximizing the Mahalanobis Distance

To decide whether a target is present or not in the range cell under test, the standard
procedure is to construct a decision problem that chooses between two possible hy-
potheses: the null hypothesis H0 (target-free hypothesis) or the alternate hypothesis
H1 (target-present hypothesis). The problem can be expressed as

{
H0 : y= e,
H1 : y=�x+ e,

(3.18)

and the measurement y is distributed as CNLN(0, IN ⊗�) or CNLN(�x, IN ⊗�).
To distinguish between these two distributions, one standard measure is the squared
Mahalanobis distance, defined as

d2 = xH�H (IN ⊗�)−1�x

=
N−1∑

n=0

xH�(n)HAH�−1A�(n)x. (3.19)

Then, to maximize the detection performance, we can formulate an optimization
problem as

a(1) = arg max
a∈CL

[
N−1∑

n=0

xH�(n)HAH�−1A�(n)x

]

subject to aHa= 1. (3.20)

After some algebraic manipulations (see [48, App. C]) we can rewrite this problem
as

a(1) = arg max
a∈CL

aH
[
N−1∑

n=0

(
�(n)xxH�(n)H

)T ��−1

]

a subject to aHa= 1.

(3.21)
Hence, the optimization problem reduces to a simple eigenvalue-eigenvector prob-
lem, and the solution of (3.21) is the eigenvector corresponding to the largest eigen-
value of

[
N−1∑

n=0

(
�(n)xxH�(n)H

)T ��−1

]

.

However in practical scenarios, to obtain a(1) by solving (3.21), we need to estimate
the values of v, x, and �.

3.4.2 Minimizing the Weighted Trace of CRB Matrix

To characterize the accuracy of the estimation process, we compute the CRBs on
the target velocity, v, and scattering-parameters, x. For mathematical simplicity, we
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assume here that the noise covariance matrix, �, is known. The motivation behind
considering the CRB as the performance measure is that it represents a universal
lower bound on the variance of all unbiased estimators of a set of parameters. If
an estimator is unbiased and attains the CRB, then it is said to be efficient in us-
ing the measured data. Alternatively, even if there is no unbiased estimator that
attains the CRB, finding this lower bound provides a useful theoretical benchmark
against which we can compare the performance of any other unbiased estimator [26,
Chap. 3].

Considering a ground-moving target with v = vx î + vyĵ , we define two sets of
vectors gl(n)s and hl(n)s, for l = 0, . . . ,L− 1, n= 0, . . . ,N − 1, respectively as

gl(n) = (j4πflnT /c)[ux,1, ux,2, . . . , ux,P ]T ,
hl(n) = (j4πflnT /c)[uy,1, uy,2, . . . , uy,P ]T ,

where {ux,p, uy,p} are the components of up , i.e., up = ux,pî + uy,pĵ for p =
1,2, . . . ,P . Then, denoting the unknown parameter-vector as θ = [ηT ,xT ]T , where
η= [vx, vy]T , we get the partial-derivative matrices as

Dη � ∂(�x)
∂η

=
[
∂�

∂vx
x
∂�

∂vy
x
]
, (3.22)

Dx �
∂(�x)
∂x

=�, (3.23)

where

∂�

∂vx
=
[(

A
∂�(0)

∂vx

)T
. . .

(
A
∂�(N − 1)

∂vx

)T ]T
,

∂�(n)

∂vx
= blkdiag

((
φ0(n)� g0(n)

)T
, . . . ,

(
φL−1(n)� gL−1(n)

)T )
,

(3.24)

and

∂�

∂vy
=
[(

A
∂�(0)

∂vy

)T
. . .

(
A
∂�(N − 1)

∂vy

)T ]T
,

∂�(n)

∂vy
= blkdiag

((
φ0(n)� h0(n)

)T
, . . . ,

(
φL−1(n)� hL−1(n)

)T )
.

(3.25)

Subsequently, we calculate the CRB on θ as

CRB(θ)=
[

CRBηη CRBηx
CRBxη CRBxx

]
=
[

Jηη Jηx
Jxη Jxx

]−1

, (3.26)

where the elements of the Fisher information matrix (FIM) are expressed as
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Jηη = 2 Re
{
DHη (IN ⊗�)−1Dη

}

=
N−1∑

n=0

2 Re

{[
∂�(n)

∂vx
x
∂�(n)

∂vy
x
]H

AH�−1A
[
∂�(n)

∂vx
x
∂�(n)

∂vy
x
]}
, (3.27)

Jηx = 2 Re
{
DHη (IN ⊗�)−1Dx

}

=
N−1∑

n=0

2 Re

{[
∂�(n)

∂vx
x
∂�(n)

∂vy
x
]H

AH�−1A�(n)

}
, (3.28)

Jxη = 2 Re
{
DHx (IN ⊗�)−1Dη

}

=
N−1∑

n=0

2 Re

{
�(n)HAH�−1A

[
∂�(n)

∂vx
x
∂�(n)

∂vy
x
]}
, (3.29)

Jxx = 2 Re
{
DHx (IN ⊗�)−1Dx

}=
N−1∑

n=0

2 Re
{
�(n)HAH�−1A�(n)

}
. (3.30)

Now, to obtain a scalar objective function that summarizes the CRB matrix, several
optimality criteria can be considered. For example, A-optimality criterion employs
the trace, D-optimality uses the determinant, and E-optimality computes the maxi-
mum eigenvalue of the CRB matrix [6, Chap. 7.5.2]. However, due to the different
physical characteristics of η and x, the variances of their estimators may differ in
several orders of magnitude and units. Therefore, we construct an objective function
to design the OFDM spectral-parameters that minimizes a weighted summation of
the traces of individual CRBs on η and x as

a(2) = arg min
a∈CL

cη tr(CRBηη)+ cx tr(CRBxx) subject to aHa= 1, (3.31)

where cη and cx are the weighting parameters.

3.4.3 Minimizing the Upper Bound on Sparse Error

Many functions of the system matrix �̃ have been proposed to analyze the perfor-
mance of methods used to recover ζ from y, the most popular measure being the
restricted isometry constant (RIC). However, for a given arbitrary matrix, the com-
putation of RIC is extremely difficult. Therefore, in [52] we proposed a new, easily
computable measure, �1-constrained minimal singular value (�1-CMSV) of �̃ , to
assess the reconstruction performance of an �1-based algorithm. According to [52,
Def. 3], we define the �1-CMSV of �̃ as

ρs(�̃)= min
ζ �=0,s1(ζ )≤s

‖�̃ζ‖2

‖ζ‖2
, for any s ∈ [1,LNβ ], (3.32)
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and

s1(ζ )�
‖ζ‖2

1

‖ζ‖2
2

≤ ‖ζ‖0. (3.33)

Then, the performance of our decomposed Dantzig selector (DS) approach in (3.17)
is given by the following theorem:

Theorem 3.1 [48] Suppose ζ ∈C
LNβ is an LP -sparse vector having an additional

structure as presented in (3.14), with each ζ l ∈ C
Nβ being a P -sparse vector, and

(3.14) is the measurement model. Then, with high probability, the concentrated so-
lution ζ̂ = [̂ζ T0 , ζ̂ T1 , . . . , ζ̂ TL−1]T of (3.17) satisfies

‖̂ζ − ζ‖2 ≤ 4

√√√√
L−1∑

l=0

λ2
l P σ

2

a4
l ρ

4
4P (�̃l )

, (3.34)

where �̃l is related with �̃ l of (3.16) as �̃ l = al�̃l . More specifically, if λl =√
2(1+ q) log(Nβ) for each q ≥ 0 is used in (3.17), then the bound holds with

probability greater than 1−L(√π(1+ q) log(Nβ) · (Nβ)q)−1.

Proof See [48]. �

To minimize the upper bound on the sparse-estimation error, we formulate an
optimization problem as

a(3) = arg min
a∈CL

L−1∑

l=0

λ2
l P σ

2

a4
l ρ

4
4P (�̃l )

subject to aHa= 1. (3.35)

Using the Lagrange-multiplier approach, we can easily obtain the solution of (3.35)
as

a
(3)
l =

√
(2αl)1/3

∑L−1
l=0 (2αl)

1/3
, where αl = λ2

l P σ
2

ρ4
4P (�̃l )

, (3.36)

for l = 0,1, . . . ,L− 1.
However, the computation of ρ4P (�̃l ) is difficult with the complex variables.

Therefore, we use a computable lower bound on ρ4P (�̃l ), defined as

ρ8P (	l )≤ ρ4P (�̃l ), (3.37)

where

	Tl 	l =
[
	T1 	1 +	T2 	2 0

0 	T1 	1 +	T2 	2

]
, 	1 = Re �̃l ,	2 = Im �̃l . (3.38)
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Then, similar to (3.36), we can obtain the optimal OFDM spectral-parameters as

a
(3)
l =

√
(2α̃l)1/3

∑L−1
l=0 (2α̃l)

1/3
, where α̃l = λ2

l P σ
2

ρ4
8P (	l )

, (3.39)

for l = 0,1, . . . ,L− 1.

3.4.4 Multi-objective Optimization

From the discussion of the previous subsections, we notice that if the solution of
(3.21) is used we would get an improved detection performance provided that we
know a-priori the values of the target velocity, scattering-response, and noise covari-
ance matrix. Alternatively, by solving (3.31), we could improve the performances
of the underlying estimation problems for the target response and velocity. Further-
more, if we were to use the solution of (3.39), we would achieve an efficient sparse-
recovery result when we address the detection problem from a sparse-estimation
perspective. Hence, based on these arguments, we device a constrained MOO prob-
lem to design the spectral parameters of the OFDM waveform such that simultane-
ously (i) the squared Mahalanobis distance of the detection problem is maximized,
(ii) the weighted summation of the traces of CRB matrices for η and x is mini-
mized, and (iii) the upper bound on the sparse-estimation error of the equivalent
sparse-recovery approach is minimized. Mathematically, this is represented as

aopt =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

arg maxa∈CL aH [∑N−1
n=0 (�̃(n)ζζH �̃(n)H )T ��−1]a,

arg mina∈CL cη tr(CRBηη)+ cx tr(CRBxx),

arg mina∈CL
∑L−1
l=0

λ2
l P σ

2

a4
l ρ

4
8P (	l )

,

(3.40)

subject to aHa= 1.
We employ the standard nondominated sorting genetic algorithm II (NSGA-II)

to solve our MOO problem, after modifying it to incorporate the constraint aHa= 1
that needs to be imposed upon the solutions.

3.5 Numerical Results

In this section, we present the results of several numerical examples to discuss the
solutions of the MOO problem and to demonstrate the performance improvement
due to the adaptive OFDM-waveform design technique. For simplicity, we consider
a 2D scenario, as shown in Fig. 3.3, where both the radar and target are in the same
plane. Our analyses can easily be extended to 3D scenarios. First, we provide a
description of the simulation setup and then discuss different numerical results.
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Fig. 3.3 A schematic
representation of the
multipath scenario considered
in the numerical examples

• Target and multipath parameters:

– Throughout a given coherent processing interval (CPI), the target remained
within a particular range cell. We simulated the situation of a range cell that is
at a distance of 3 km from the radar (positioned at the origin).

– The target was 13.5 m east from the center line, moving with velocity v =
(35/

√
2)(î + ĵ ) m/s.

– There were two different paths between the target and radar: one direct and
one reflected, subtending angles of 0.26◦ and 0.51◦, respectively, with re-
spect to the radar. Hence, the target manifests two relative speeds of 〈v,up〉 =
24.86 and 24.53 m/s at the radar receiver.

– The scattering coefficients of the target, x, were varied to simulate two scenar-
ios having different energy-distributions across different subchannels. For ex-
ample, Scenario I had the strongest target-reflectivity on the second subcarrier
with x(1)l,d = [2,4,1]T and x(1)l,r = [1,2,0.5]T representing the scattering coeffi-
cients along the direct and reflected paths, respectively. On the other hand, in
Scenario II we considered the strongest target-reflectivity along the first sub-
carrier with x(1)l,d = [3,1,2]T and x(1)l,r = [1.5,0.5,1]T .

However, for the purpose of a fair comparison, we scaled the target-
scattering coefficients to ensure a constant signal-to-noise ratio (SNR), defined
as

SNR= ‖x‖2

tr(�)
. (3.41)

Hence, a stronger target-reflectivity along a certain subcarrier implied that there
would be some other subcarriers with very poor target-reflectivities.
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• Radar parameters:

– Carrier frequency fc = 1 GHz;
– Available bandwidth B = 10 MHz;
– Number of OFDM subcarriers L= 3;
– Subcarrier spacing of Δf = B/(L+ 1)= 2.5 MHz;
– Pulse width TP = 1/Δf = 400 ns;
– Pulse repetition interval T = 4 ms;
– Number of coherent pulses N = 20;
– All the transmit OFDM weights were equal, i.e., al = 1/

√
L ∀l.

• Simulation parameters:
To apply a sparse estimation, we partitioned the viable relative speeds from
24.5 to 25 m/s with steps of 0.05 m/s. We generated the noise samples from a
CNLN(0, IN ⊗ �) distribution with � = [1,0.1,0.01;0.1,1,0.1;0.01,0.1,1].
Hence, for all the results presented in this section we ensured a constant noise-
power distribution among all the subchannels.

To solve the MOO problem (3.40), we employed the NSGA-II with the follow-
ing parameters: population size = 1000, number of generations = 100, crossover
probability = 0.9, and mutation probability = 0.1. The initial population of 1000
different values of a were generated randomly, but ensuring that the total-energy
constraint aHa = 1 was satisfied. Furthermore, at each generation of the NSGA-
II, we imposed the total-energy constraint on the children-chromosomes by intro-
ducing an ‘if-statement’ in the ‘genetic-operator’ portion of the NSGA-II code.
However, satisfying the hard-equality constraint aHa = 1 was difficult to simu-
late due to the numerical precision errors. That is why we relaxed it with a softer
constraint by considering 0.999≤ aHa≤ 1.001.

3.5.1 Results of the MOO Problem

The results of the MOO problem are depicted in Figs. 3.4, 3.5 and Figs. 3.6, 3.7 for
the target Scenarios I and II, respectively. We maintained a fixed SNR of 0 dB for
these simulations. The initial population of 1000 different values of a were gener-
ated randomly. Considering a Cartesian coordinate system with |a1opt |, |a2opt |, and
|a3opt | as the axes, the initial population is represented on the surface of a sphere
restricted to the first octant, as shown by circles in Figs. 3.4(a) and 3.6(a) for the
two different target scenarios. The values of the associated objective functions are
also indicated by circles respectively in Figs. 3.4(b) and 3.6(b), whose coordinate
systems are constructed with the three objective functions representing the axes on
the logarithmic scales.

We represent the Pareto-optimal solutions by squares in Figs. 3.4(a) and 3.6(a)
and the associated Pareto-optimal objective values by squares in Figs. 3.4(b)
and 3.6(b), for the Scenarios I and II, respectively. In Scenario I, when the target
had the strongest reflectivity along the second subcarrier, we got the optimal so-
lutions varying from |aopt| = [0.6189,0.6691,0.4119]T to |aopt| = [0,1,0]T on an
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Fig. 3.4 Results of the
NSGA-II in Scenario I:
(a) optimal solutions and
(b) values of the objective
functions at the zeroth and
100th generations are
respectively represented by
circles and squares

Fig. 3.5 Convergence of the
objective functions to the
Pareto-optimal values in
Scenario I

approximately straight-line locus subtended on the surface of a sphere. It is impor-
tant to note here that if we had solved only (3.39) to minimize the upper bound on the
sparse-error, then the solution would have been |a(3)| = [0.6261,0.6578,0.4187]T ;
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Fig. 3.6 Results of the
NSGA-II in Scenario II:
(a) optimal solutions and
(b) values of the objective
functions at the zeroth and
100th generations are
respectively represented by
circles and squares

whereas an effort to obtain the solution of only (3.21) would result in |a(1)| =
[0.0652,0.9975,0.0262]T . This implies that Pareto-optimal solutions provide a set
of compromised solutions varying in between two extrema that are approximately
equal to the individual solutions of the objective functions when solved separately.

Similarly, for the Scenario II which had the strongest target-reflectivity along
the first subcarrier, we found that the MOO-solutions lied on an approximately
straight-line locus drawn on the surface of a sphere and varied from |aopt| =
[0.6339,0.6510,0.4182]T to |aopt| = [1,0,0]T . Comparing with the individual so-
lutions of the objective functions in Scenario II, we noticed that (3.21) resulted
in |a(1)| = [0.9992,0.0374,0.0015]T ; whereas the solution of (3.39) still produced
|a(3)| = [0.6261,0.6578,0.4187]T because it was a function of the system matrix
�̃ only.

In addition, to assess the speed of convergence to these Pareto-optimal solutions,
in Figs. 3.5 and 3.7 we depict the relative change in values of the three objective
functions at different generation indices for both the target scenarios under con-
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Fig. 3.7 Convergence of the
objective functions to the
Pareto-optimal values in
Scenario II

sideration. If oj (k − 1) and oj (k), for j = 1,2,3, k = 2,3, . . . ,100, denote two
vectors of objective-functions respectively computed at the (k − 1)th and kth gen-
erations over the entire population, then their relative changes were calculated as
‖oj (k) − oj (k − 1)‖/‖oj (k)‖. It is quiet evident from these plots that the Pareto-
optimal solutions were reached very quickly even within the tenth generation, par-
ticularly for the first two objective functions (3.21) and (3.31).

3.5.2 Improvement in Detection and Estimation Performance

We demonstrate the performance improvement due to the adaptive waveform de-
sign at several SNR values in terms of the squared Mahalanobis distance, weighted
trace of CRB matrix, and squared upper bound on sparse-error. These results are
shown in Figs. 3.8 and 3.9 for the target Scenarios I and II, respectively. As we
expect, the Mahalanobis-distance measure improved as we increased the SNR val-
ues, but the trace of CRB matrix decreased and the upper bound on the sparse-
estimation error remained unchanged. In each figure, the red-colored lines (in to-
tal 1000 of them) represent the variations of the objective-functions, associated
with the entire population of 1000 solutions; whereas the blue-colored line shows
their counterparts corresponding to the fixed (nonadaptive) waveform a= 1/

√
L=

[0.5774,0.5774,0.5774]T . In both the target scenarios, we found that all the Pareto-
optimal solutions produced better performances, in terms of the Mahalanobis dis-
tance and trace of CRB matrix, when compared to those with the fixed waveform.
However, with respect to the squared upper bound on sparse-error, only a subset
of the Pareto-optimal solutions was found to show improved performance than that
with the fixed waveform.
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Fig. 3.8 Comparison of performances due to the fixed and adaptive waveforms in Scenario I in
terms of the (a) squared Mahalanobis distance, (b) weighted trace of Cramér–Rao bound matrix,
and (c) squared upper bound on sparse-error, respectively

3.5.3 Redistributions of Signal and Target Energies

To understand the reason behind the performance improvement due to the adap-
tive waveform design, we looked into the energy-distribution of the transmitted sig-
nal and effective target-return across different subchannels both before and after
the waveform design. We used the subset of Pareto-optimal solutions that satis-
fied all the three objective functions at 0 dB to exemplify the results on energy-
redistribution for both the target scenarios in Fig. 3.10.

We represent the effective transmit-signal energy at different subchannels as

εS,l = |al |2, for l = 0,1, . . . ,L− 1. (3.42)

On the other hand, the effective target-returns across different subchannels are con-
sidered as
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Fig. 3.9 Comparison of performances due to the fixed and adaptive waveforms in Scenario II in
terms of the (a) squared Mahalanobis distance, (b) weighted trace of Cramér–Rao bound matrix,
and (c) squared upper bound on sparse-error, respectively

εT,l =
∣∣∣
∣∣

1

N

N−1∑

n=0

alφl(n)
T xl

∣∣∣
∣∣

2

, for l = 0,1, . . . ,L− 1. (3.43)

Due to the adaptive design of als, the set of values of {εS,l } and {εT,l } were different
before and after the optimization process, as both of these quantities depend on the
transmitted signal parameters.

In Fig. 3.10(a), we plot the values of {εS,l } and {εT,l /(
∑L−1
l=0 εT,l )} for the tar-

get Scenario I. Noticing the two left-most vertical bars, we observe that the MOO-
approach boosted up the transmitted-signal energy on the second subchannel along
which the target-reflectivity was the strongest. Additionally, we found a consider-
able amount of energy redistribution among different subchannels for the effec-
tive target-returns, as shown in the two right-most vertical bars. With the fixed
waveform, we had {εT,l } = {0.1527,0.7868,0.0605} before the waveform design;
whereas after we obtained the Pareto-optimal solution, the normalized values of
{εT,l } changed to {0.1075,0.8752,0.0173}. Hence, we conclude that the MOO-
based optimal waveform design puts more signal-energy into that particular sub-
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Fig. 3.10 The normalized
energy distributions of the
transmit-signal and effective
target-returns across different
subchannels in (a) Scenario I
and (b) Scenario II

carrier at which the target response is stronger, and thus makes the effective
target-return more prominent along that subcarrier.

As a further confirmation, we did a similar analysis with values of {εS,l } and

{εT,l /(
∑L−1
l=0 εT,l )} for Scenario II. Results are shown in Fig. 3.10(b). Observing the

two left-most vertical bars, we again notice that the transmitted-signal energy was
amplified along the first subchannel after the waveform design. The two right-most
vertical bars indicate a noticeable redistribution of the effective target-energies
among the different subchannels. After the adaptive waveform design, we found
that the normalized values of {εT,l } changed from {0.5414,0.0775,0.3811} to
{0.7447,0.0775,0.1779}. This reconfirms our conclusion that the Pareto-optimal
waveform design tries to further enhance the stronger target-returns. Moreover,
since we kept the noise-energy fixed and varied only the target-energy over dif-
ferent subchannels, we can extend our conclusion to assert that the solution of the
Pareto-optimal design redistributes the energy of the transmitted signal by putting
the most energy to that particular subcarrier in which the signal-to-noise ratio is the
strongest.



58 S. Sen et al.

3.6 Conclusions

In this chapter, we proposed a multi-objective optimization (MOO) technique to
design the spectral parameters of an orthogonal frequency division multiplexing
(OFDM) radar signal for detecting a moving target in the presence of multipath
reflections. The use of an OFDM signal increased the frequency diversity of our
system, as different scattering centers of a target resonate variably at different fre-
quencies. We first developed a parametric OFDM measurement model for a partic-
ular range cell under test, and then converted it to a sparse model that accounted for
the target returns over all possible signal paths and target velocities. In our model,
the nonzero components of the sparse vector were equal to the scattering coeffi-
cients of the target at the true signal paths and target velocity. To estimate the sparse
vector, we employed a collection of multiple small Dantzig selectors that utilized
more prior structures of the sparse vector. In addition, we proposed a criterion to
optimally design the OFDM spectral parameters for the next coherent processing
interval based on the MOO approach. We applied the nondominated sorting ge-
netic algorithm II (NSGA-II) to solve a constrained MOO problem that simultane-
ously optimizes three objective functions: maximizes the Mahalanobis distance to
improve the detection performance, minimizes the weighted trace of the Cramér–
Rao bound matrix for the unknown parameters to increase the estimation accuracy,
and minimizes the upper bound on the sparse-error to improve the efficiency of the
equivalent sparse-estimation approach.

We presented several numerical examples to discuss the solutions of the MOO
problem and to demonstrate the achieved performance improvement due to the
adaptive OFDM-waveform design. As expected, we noticed that the solutions re-
siding on the Pareto-front were compromisable in nature and they varied in between
two extrema that were approximately equal to the individual solutions of the objec-
tive functions when solved independently. We found that only a subset of the Pareto-
optimal solutions produced better performance than a fixed waveform with respect
to the all three objective functions. When the noise powers over different subcar-
riers were the same, we further inferred that the Pareto-optimal solutions put the
most transmitted signal-energy to that particular subcarrier along which the signal-
to-noise ratio is the strongest.

In our future work, we will extend our model to incorporate more realistic phys-
ical effects, such as diffractions and refractions, which exist, for example, due to
sharp edges and corners of the buildings or rooftops in an urban environment. We
will incorporate other waveform design criteria, e.g., ambiguity function and simi-
larity constraint, into the MOO algorithm. In addition, we will validate the perfor-
mance of our proposed adaptive waveform design technique with real data.
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Chapter 4
Multi-object Tracking Using Particle Swarm
Optimization on Target Interactions

Bogdan Kwolek

Abstract In this work, a particle swarm optimization based algorithm for multi-
target tracking is presented. At the beginning of each frame, the objects are tracked
individually using highly discriminative appearance models among different tar-
gets. The task of object tracking is considered as a numerical optimization problem,
where a particle swarm optimization is used to track the local mode of the similarity
measure. The objective function is built on the region covariance matrix and multi-
patch based object representation. The target locations and velocities that are deter-
mined in such a way are further employed in a particle swarm optimization based
algorithm, which refines the trajectories extracted in the first phase. Afterwards,
a conjugate method is used in the final optimization. Thus, the particle swarm algo-
rithm is utilized to seek good local minima and the conjugate gradient is used to find
the local minimum accurately. At this stage, we optimize complex energy functions
which represent the presence, movement and interaction of all targets in sequence of
recent frames within a temporal window. The algorithm has been evaluated on pub-
licly available datasets. The experimental results show performance improvement
over relevant algorithms.

4.1 Introduction

Visual tracking of multiple objects is a challenging problem. The aim is to infer the
states of all targets in the scene and to maintain their identity over time. Despite sig-
nificant progress in this area, reliable tracking of multiple targets is still a great chal-
lenge, particularly in crowded scenes. Many different methods [2, 6, 10, 17, 22, 23]
have been proposed in the last decade. One solution to multiple object tracking is the
use of multiple trackers, where each tracker is responsible for tracking one object.
The so-called tracking-by-detection algorithms [8] gained considerable attention in
this area of the research. A widely used approach to multi-target tracking consists in
exploiting a joint state-space representation, which concatenates all of the targets’
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states together [23], or inferring this joint data association problem by estimating all
possible associations between the targets and the observations [17, 24]. In contrast
to the above mentioned approaches, in order to achieve multi-target tracking, the
multiple parallel filters where a single filter per target has its own state space were
proposed in [9]. However, when the interactions among the moving targets take
place, difficulties in maintaining the correct object identities might arise. Therefore,
modeling the interactions among targets and occlusion reasoning play an incredi-
bly important role in multi-target tracking. Khan et al. [17] use a Markov Random
Field (MRF) motion prior to modeling the interactions among targets. Andriyenko
et al. [2] propose a model for global occlusion reasoning. In an approach that is
based on particle swarm optimization [30], the object interactions are modeled as
species competition and repulsion. Particle Swarm Optimization (PSO) is a popu-
lation based stochastic optimization technique [16] which shares many similarities
with evolutionary computation techniques. It has been shown to perform well on
many nonlinear and multimodal optimization problems.

Visual object tracking is an important ingredient of any multi-object tracking
algorithm. Particle filters [13] are one of the most efficient techniques for object
tracking. They were successfully applied in many visual tracking applications [28],
including multi-object tracking [8, 23]. The task of object tracking can be considered
as a numerical optimization problem, where a local optimization is used to track the
local mode of the similarity measure in a parameter space of translation, rotation,
and scale. In [29], it was shown that, in tasks consisting in tracking a face or a
human, a particle swarm optimization-based tracker outperforms a tracker built on
a particle filter in terms of accuracy.

Visual object tracking using particle swarm optimization has been an active re-
search area for several years [18, 19]. Recently, particle swarm optimization was
proposed to achieve full body motion tracking [14, 20, 31]. The particle swarm
optimization, which is a population-based searching technique, has high search effi-
ciency by combining a local search (using self-experience) and a global one (using
neighbor experience). In particular, a few simple rules result in high effectiveness of
exploration of a high-dimensional search space. In contrast, in a particle filter, the
samples do not exchange information and do not communicate with each other, and
thus they have reduced capability of exploring huge search spaces.

In this work, we present a PSO based algorithm for multi-target tracking. At
the beginning of each frame, the targets are tracked individually using highly dis-
criminative appearance models among different targets. Each of them is tracked on
the basis of separate particle swarm optimizations. The target locations and veloci-
ties that are determined by independent trackers are further employed in a particle
swarm optimization based algorithm which refines the trajectories extracted in the
first phase. Afterwards, a conjugate method is used in the final optimization. At this
stage, we utilize a complex energy function which represents the presence, move-
ment, and interaction of all targets within a temporal window consisting of the recent
frames.
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4.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) [16] is a global optimization algorithm to find
the minimum of a numerical function. PSO is a derivative-free, stochastic and
population-based computational method often used to optimize functions in rather
unfriendly non-convex, non-continuous search spaces. It maintains a swarm of par-
ticles, where each one represents a candidate solution. Particles are placed in the
search space and move through such a space according to rules which take into ac-
count each particle’s personal knowledge and the global knowledge of the swarm.
Every particle moves with its own velocity in the multidimensional search space, de-
termines its own position, and calculates its fitness using an objective function f (x).
Each particle follows simple position and velocity update equations; yet, as particles
interact, the collective behavior arises, and the interactions between particles lead to
the emergence of global and collective search capabilities, which allow the particles
to gravitate towards the global extremum.

At the beginning of the optimization, each individual is initialized with a random
position and velocity. While seeking for the best fitness, every individual is attracted
towards a position which is affected by the best position pi found so far by itself and
the global best position g found by the whole swarm. In every iteration k, each par-
ticle’s velocity is first updated based on the particle’s current velocity, the particle’s
local information, and global swarm information. Then, each particle’s position is
updated using this velocity. The position and velocity of particle i are calculated as
follows:

v(i,k+1) = ωv(i,k) + c1r1
(
p(i) − x(i,k))+ c2r2

(
g − x(i,k)), (4.1)

x(i,k+1) = x(i,k) + v(i,k+1), (4.2)

where the constants c1 and c2 are used to balance the influence of the individual’s
knowledge and that of the group, respectively, r1 and r2 are uniformly distributed
random numbers, x(i) is position of the ith particle, p(i) is the local best position of
particle i, whereas g stands for the global best position, and ω is an inertia constant.
The swarm stops the search when a termination criterion is met.

Particles can be attached to each other by any kind of neighborhood topology
represented by a graph. In the fully connected neighborhood topology, which is
represented by a fully connected graph, all particles in the swarm are connected to
one another. Each particle in a swarm represents a candidate solution of the problem.
With respect to a fitness function, the best location that has been visited thus far by
a particle is stored in the particle’s memory. The fitness values corresponding to
such best positions are also stored. Additionally, the particles have access to the
best location of the whole swarm, i.e., a position that yielded the highest fitness
value. A particle therefore employs the best position encountered by itself and the
best position of the swarm to move itself toward the optimal value of the objective
function.



66 B. Kwolek

4.3 PSO-Based Object Tracking

The visual object tracking can be perceived as a dynamic optimization problem. In
the PSO-based tracking, in each frame, the object’s state is determined using a fit-
ness function expressing the object’s appearance. In order to cover possible state
changes between consecutive images, the particles are propagated according to a
weak transition model. In this section, we show how single object tracking can be ac-
complished by PSO. We present the fitness function as well as the re-diversification
of the swarm to cover the object state changes between the consecutive images.

4.3.1 Multi-patch Based Object Tracking Using Region
Covariance

The fitness function is based on the region covariance matrix (RC). The object is rep-
resented by an image template consisting in several non-overlapping image patches.
For every pixel i in such a patch of sizeM ×N , we calculate a feature vector bi

bi = (x y R G B Ix Iy)
T (4.3)

where x, y represent the Cartesian coordinates of pixel i, whereas R,G,B stand for
color components, and Ix, Iy are image derivatives. The RC descriptor is given by:

C = 1

MN − 1

MN∑

i=1

(bi − b)(bi − b)T (4.4)

where b denotes the vector of means of the corresponding features for the pixels in
the template. The region covariance descriptor has many advantages. In particular,
RC indicates both spatial and statistical properties of the objects, it allows combin-
ing multiple modalities and features, and last but not least, it is capable of relating
regions of different sizes. This descriptor is also robust to the variations in illumi-
nation conditions, pose, and view. Although the covariance matrices are positive
semi-definite in general, in practice they should be regularized by adding a small
constant multiple of the identity matrix, making them strictly positive.

In [5], a Log-Euclidean Riemannian metric has been introduced to obtain statis-
tics on symmetric positive definite matrices. The Singular Value Decomposition
(SVD) of a symmetric matrix A of size n × n is UΣUT , where U is an or-
thonormal matrix, and Σ = diag(λ1, . . . , λn) is diagonal matrix with nonnega-
tive eigenvalues. The matrix exponential exp(A) of a symmetric matrix is given
by: exp(A) = U · diag(exp(λ1), . . . , exp(λn)) · UT ; conversely, the matrix loga-
rithm of a symmetric positive definite matrix is calculated according to: log(A) =
U ·diag(log(λ1), . . . , log(λn)) ·UT . Each symmetric matrix is associated to a tensor
by the exponential, conversely, a tensor has a unique symmetric matrix logarithm.
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Fig. 4.1 PSO based tracking using multi-patch object representation. Frames #431, 441, 453, 455,
460, 461, and the probability image of the target in frame #431

The distance between two symmetric positive definite matrices X and Y under the
Log-Euclidean Riemannian metric can be expressed as follows:

dist(X,Y )= ∥∥log(X)− log(Y )
∥∥

2. (4.5)

The Riemannian mean of several elements is an arithmetic mean of matrix elements.
Using the Log-Euclidean metric, the algorithm [25] for the incremental subspace
update can be employed directly.

In object tracking, we should seek in each frame a location for which the covari-
ance matrix within the object template is most similar to the covariance matrix of the
model template. Hence, we should find an object location x∗ for which the distance
dist(·, ·) between the corresponding covariance matrix X and model covariance ma-
trix X assumes the minimal value, i.e., we have to minimize

x∗ = arg min
x

dist(Xx,X). (4.6)

This is a nonlinear optimization problem that is solved using the PSO algorithm,
which in each frame seeks for the best match.

Figure 4.1 depicts some tracking results that were obtained using the multi-patch
object representation and a PSO consisting of 10 particles and executing 10 itera-
tions. The tracking of a woman’s face was done on color images of size 128× 96.1

We employed both horizontal and vertical patches. The horizontal patches were con-
structed through dividing vertically the object template into two adjoining patches.
Then such patches were divided into 10 horizontally oriented patches, in fives in
each of the two vertically oriented patches. The vertical patches were created anal-
ogously. The right most image depicts the probability image of the target in frame
#431. The detection of outliers is achieved through sorting the scores of the patches
and then omitting the poorest ones. The fitness function fg(x) is the average of K
such best matches between the patches of the template at the location x∗ and the
corresponding patches of the model template.

A tracking algorithm built on the covariance score and with multi-patch object
representation can recover after substantial temporal occlusions or large movements.
Figure 4.2 illustrates some tracking results that were obtained on the image sequence
‘S2L1_View_1’ from PETS 2009 database [12], see also Fig. 4.3. As we can ob-
serve, the walking woman is successfully tracked despite considerable and multiple
temporal occlusions with the static road sign and the pedestrians.

1Sequence obtained from http://robotics.stanford.edu/birch/headtracker.

http://robotics.stanford.edu/birch/headtracker
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Fig. 4.2 Sub-images with object undergoing tracking in frames #129, 130, 131, 149, 150, 151,
152, 153, 154, 155

Fig. 4.3 Input image (a), reference image (b), NCC-based probability image between the refer-
ence image and the input image (c), color ratios between reference and current image (d), and
image foreground (e)

4.3.2 Foreground Prior

In multiple object tracking, the targets usually become completely or partially oc-
cluded. This results in the lack of evidence consisting in non-observability of an
occluded target in the image data. In PETS 2009 datasets, some occlusions by the
road sign (see images in Fig. 4.2) are relatively long-lasting. As a consequence, the
above presented tracker was unable to successfully track some targets in the whole
time span, i.e., from entering the scene until exiting the tracking area. Moreover, in
a few cases, after loosing the target, the tracker concentrated by mistake on some
background areas. In order to cope with such undesirable effects and to decrease the
probability of concentrating of the tracker on some non-target areas, we extended
the feature vector bi by a term expressing the object prior. The seventh element of
the extended feature vector expresses the object probability which is determined by
a foreground segmentation algorithm.

4.3.3 Foreground Segmentation

Our foreground segmentation algorithm is based on a color reference image, which
is foreground-free and is extracted automatically in advance, given a sequence of
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images with moving targets. Afterwards we employ both region and pixel cues
which handle the illumination variations. In addition, we accommodate online the
reference image against the illumination and scene changes. The reference image is
extracted on the basis of the median of pixel values in some temporal widow. For
the ‘S2L1_View_1’ sequence, the number of images that were needed to extract
the foreground free images was equal to 40. Figure 4.3(b) depicts the reference im-
age which was extracted using pixel intensities and the above mentioned number of
images.

The normalized cross-correlation NCC was used to extract brightness and con-
trast invariant similarity between the reference image and the current image. It was
computed very efficiently using integral images. The NCC was used to generate
the probability images between the reference images and the current image, see
Fig. 4.3(c).

We construct an image of color ratios between the reference image and the cur-
rent image, where the value of each pixel at location x1 is given by [4]:

[
arctan

(
Rcx1

Rrx1

)
arctan

(
Gcx1

Grx1

)
arctan

(
Bcx1

Brx1

)]T
(4.7)

where c and r denote the current and reference image, respectively, whereasR,G, B
stand for color components of the RGB color space. Such color ratios are indepen-
dent of the illumination, change in viewpoint, and object geometry. Figure 4.3(d)
depicts an example image of color ratios. We can observe that for the pixels be-
longing to the background the color assumes gray values. This happens because the
color channels in the RGB color space are highly correlated. Moreover, the color ra-
tios are far smaller in comparison to the ratios between foreground and background.
However, as we might observe in the color ratio image there are noisy pixels. The
majority of such noisy pixels can be excluded from the image using the probability
images, extracted by the normalized cross-correlation.

In our algorithm, we compute online the reference image using the running me-
dian. Afterwards, given such an image, we compute the difference image. The dif-
ference image is then employed in a simple rule-based classifier, which extracts the
foreground objects and shadowed areas. In the classifier, we utilize also the probabil-
ity image extracted via normalized cross-correlation, as well as the color ratios. The
classifier makes decision if pixel is from the background, shadow, or foreground.
For shadowed pixels the normalized cross-correlation assumes values near to one.
The output of the classifier is the enhanced object probability image. Optionally, in
the final stage, we employ the graph-cut optimization algorithm [7] in order to fill
small holes in the foreground objects.

4.3.4 Re-diversification of the Swarm

At the beginning of each frame, in some surrounding of the swarm’s best location
gt the algorithm selects possible object candidates. Such object candidates are de-
lineated using the foreground blobs. A simple heuristics, which is based on blob
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Fig. 4.4 Sub-images with object being tracked in frames #106, 107, 109, 112, 130, 140, and the
binary sub-image in frame #112

areas and height-to-width ratios in connection to location of the object at the ground
plane, is carried out to select the object candidates. For the videos that were recorded
using the calibrated cameras, we project the person locations on the ground onto 3D
world coordinates. Such 3D person’s location is calculated on the basis of the center
of the bottom edge belonging to the bounding box of the blob. Then we employed
such information, together with the projected blob sizes, to enhance the delineation
of the target candidates as well as to determine the occlusions and splits of the blobs
representing the pedestrians into multiple blobs. Afterwards, the particles are ini-
tially placed in the gravity centers of the object candidates selected in such a way.
The positions of the remaining particles of the swarm are initialized on the basis of
the normal distribution which is concentrated around the state estimate at time t−1:

x
(i)
t ←N (gt−1,Σ) (4.8)

where gt−1 denotes the location of the best particle that was determined in the
previous frame at time t − 1 and Σ denotes the covariance matrix of the Gaus-
sian distribution whose diagonal elements are proportional to the predicted velocity
vt = gt−1 − gt−2.

In Fig. 4.4, we can observe the behavior of the tracker with such a swarm re-
diversification. As one can notice, the tracking temporally failed in frame #109.
Thanks to placing the particles at both candidate objects (see the rightmost image on
Fig. 4.4), the tracker correctly recovered the identity of the person in frame #112. It
is worth noting that, owing to the object prior in the covariance matrix, the bounding
box was placed on the person undergoing tracking and not on the background areas,
see frame #109. In order to enhance the object candidate selection, we employed
also a person detector [11]. Overall, the person detector found 4550 objects in the
‘S2L1_ View_1’ dataset. To further enhance the re-diversification of the swarm, the
particles were initially placed on the locations determined by the person detector.

4.4 Multiple Object Tracking

The ordinary PSO is not well suited to achieve multiple object tracking. One pos-
sible approach to tackle such a problem might be to utilize a PSO that is built on
highly discriminative appearance models among different targets, for instance, like
those in [10], together with an association framework to achieve better maintaining
the identities over time. However, in practice, complex interactions between targets
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often lead to difficulties in resolving ambiguities between them. In general, it is rel-
atively easy to track the distinctive objects, but it is much more difficult to achieve
reliable tracking when occlusion happens, particularly when the targets have similar
appearances. Another approach to this problem might be to represent the positions
of feature points by individual particles and to track them using spatial constraints
like the maximum distance between feature points together with the maximum dis-
tance to the best particle, as it was done in the seminal work [19] (that introduced
the PSO for object tracking), and then to select the reliable trajectories on the basis
of forward–backward errors [15]. Taking into account the high effectiveness of the
PSO when seeking in high-dimensional spaces the problem of multi-object track-
ing might be formulated as optimization of an energy function, for instance, like
those in [3], and estimating the joint state. Recently, the power of the PSO has been
fully exploited in multi-object tracking [30], where species-based trackers are em-
ployed and each of them tracks one object. In the approach mentioned above, the
object interactions are modeled as species competition and repulsion. The occlusion
is implicitly inferred using the power of each species and the image observations.
Our approach to multiple object tracking is also based on multiple particle swarms.
Each object is tracked by a separate swarm. Given the initial tracklets that were
determined by the swarms, the refinement of the object’s trajectories is done by
a PSO-based optimization algorithm. In contrast to [2], which starts an optimiza-
tion of the energy function from relatively good initial object trajectories and then
maintains the identities through the global optimization, in our approach a local
optimization takes place in a moving time window. The initial tracklets, which are
determined by the swarms, are further distilled in the PSO-based optimization stage
that in turn resolves between-object interactions. In the energy function, all target
locations belonging to the current time window are considered.

4.4.1 Multiple Object Tracking by Multiple Particle Swarms

In the first phase, the targets are tracked individually. The between-object interac-
tions are initially determined on the basis of our foreground extraction algorithm
and a blob analysis. Given the location of a blob in the image as well as the size
of its bounding box in relation to the area of the connected component, we decide
if a blob represents a single target. In general, a single blob may include multiple
objects, while one object may split into multiple blobs. In case of occlusions, two or
more swarms responsible for tracking different objects compete for the same target
or cluster at the same location. After the end of the occlusion, the swarms should
recognize the object identities and continue tracking the objects.

Assuming that in the considered test sequences the people walk on a known
ground plane, the location of a candidate target on the ground plane is utilized in
evaluation of the expected object area as well as its height and width. This informa-
tion helps us to decide if the considered target is occluded or if eventually the con-
sidered blob is fragmented into several blobs. During the decision making process,
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we examine also the distance between the edges of the corresponding rectangles that
model the locations and sizes of the objects. Two or more objects are considered as
possibly occluded if the distance between the closest edges of the boxes is below a
threshold, which in turn depends on the location of the objects on the ground plane.
The larger the distance of the object from the camera, the smaller the threshold.
At this stage we take into account the distance between the locations of the global
best particles in the previous frame, too. The information about the matching of
individual patches composing the object templates with the reference templates is
considered in the decision process mentioned above and helps us to decide which
object or objects are occluded and which are occluding. The search space of the
particle swarm with the smaller fitness value is gradually expanded to allow the re-
covery of the target after occlusion. In scenes with a layout like a corridor with a
long vertical passage, with many pairs of pedestrians, etc., where a probability of
long term occlusion and the lack of evidence in a longer period of time is consid-
erable, we extract the targets that are close to each other and have similar motion
directions. In case of such long term occlusions, we estimate the location (motion)
of the occluded object on the basis of the location of the occluder.

As we already mentioned, at this stage the targets are tracked individually.
A swarm responsible for tracking a single person is created at the moment of en-
tering the tracked area. The swarm finishes the tracking if the person leaves the
tracking scene. Such a scenario greatly simplifies the resolving of interactions, as in
each time instant we known the number of the targets. In the presented approach,
the position of the target is always defined.

The object tracking is done using the algorithm discussed in Sect. 4.3. In contrast
to a typical approach for object tracking, where a model of the object appearance is
accommodated over time, in our approach we maintain a pool of models expressing
the object appearance at various poses or in different camera views. The object lo-
cation is determined on the basis of the most similar object model from such a pool
of the object models. Each target maintains a constant number of the models in the
pool. If the target is not occluded, i.e., the area of the blob as well as the size of the
surrounding blob is consistent with the location of the target on the ground-plane,
the person detector successfully sought a person in the proximity of the considered
person location, the value of the objective function is above an assumed thresh-
old, we replace the pre-selected in advance model by a model determined at the
best object location. At the end of the occlusion, or optionally when a target leaves
the pre-specified area surrounding the road sign in the ‘S2L1_View_1’ sequence,
we perform the object back-tracking using the above-mentioned pool of the object
models. If the back-tracker arrives to a different object, on the basis of the pool
of the object model we calculate the sum of the fitness values on both trajectories
and choose the trajectory with better fitness. The size of the template modeling the
object is determined with regard to its location on the ground-plane.
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4.4.2 Refinement of the Tracklets by Particle Swarm Optimization

Particle swarm optimization demonstrated to be an efficient global search method
for nonlinear complex systems without a priori knowledge about the system struc-
ture. Here, we employ its potential in the optimization of the complex energy func-
tion which represents the presence, movement, and interaction of all targets in a
sequence of last frames within a temporal window. If the calibration data are avail-
able, the tracking is done in the world coordinates. This means that object locations
at the ground-plane that were determined by individual trackers are projected to 3D.

Our energy function consists of three terms expressing the pedestrian presence,
priors for the pedestrian motion, and mutual exclusion:

E(X)= αEl + βEv + γEc. (4.9)

The vector X consists of the ground-plane coordinates of all targets being in the
scene from current time t to time t − T . This means that the energy is minimized in
a temporal window comprising the last T frames.

The energy should be smaller for the trajectories going around regions of high
pedestrian likelihood. Thus, the term expressing the pedestrian presence is given by:

El(X)=−
t−T∑

τ=t

P∑

id=1

exp

(

−σ 2
l

H(t)∑

h=1

∥∥x(id)τ − d(h)τ
∥∥2

)

(4.10)

where t stands for the current time, P is the number of the targets, whereas H(t)
denotes the number of the detections in frame τ , and the d(h)τ is the location of
the detection h in frame τ . The term expressing the motion of the target favors
movement with a constant velocity:

Ev(X)=
t−T∑

τ=t

P∑

id=1

∥∥v(id)τ − v(id)τ−1

∥∥2
. (4.11)

The term expressing the mutual exclusion should penalize the trajectory configura-
tions if two targets approach each other. It assumes the following form:

Ec(X)=
t−T∑

τ=t

∑

idi �=idj

sc

‖x(idi )τ − x(idj )τ ‖2
(4.12)

where sc is a scale factor.
The deterministic optimization algorithms like gradient descent converge rapidly,

but may get stuck in local minima of multimodal functions. In the vicinity of a
local optimum, the deterministic algorithms converge faster than stochastic search
algorithms because stochastic search algorithms waste computational time doing a
random search. On the other hand, the PSO may avoid becoming trapped in local
optima and find the global optimum. Therefore, in our algorithm the energy function
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is first optimized by a PSO and then by a conjugate gradient algorithm [26]. The
search area of the PSO is sufficiently large to cover promising configurations. In
the PSO, we employ 40 particles, and the maximum number of the iterations is set
to 300. The locations determined by the individual person trackers are employed
to initialize the PSO, whereas the output of the PSO is used as starting trajectory
of the conjugate gradient optimization algorithm which is responsible for the final
refinement of the trajectories. Thus, the particle swarm algorithm is utilized to seek
good local minima and the conjugate gradient is used to find the local minimum
accurately. The optimization is done using person coordinates and velocities from a
sequence of the last frames. Thus, the state vector X consists of the person locations
determined in the current frame by individual trackers and the refined locations of
all persons in a sequence of the last frames.

We achieved considerable improvement of the results by running the optimiza-
tion on only last 20 frames. For each person entering the tracking area, the opti-
mization starts in the seventh frame. In the eight frame, the optimization algorithm
runs on the current locations determined by individual trackers and the refined lo-
cations from frames #2–7, etc. Substantial improvement of the tracking accuracy
was observed in scenarios with considerable temporal occlusions. In such scenarios,
the blobs representing the pedestrians are frequently fragmented, the trackers tem-
porally loose the tracks, making uncoordinated jumps from one object to another.
Owing to the energy optimization which considers the interactions of all targets in a
sequence of the last frames, the trajectories are far smoother, and most importantly,
they pass through regions of high pedestrian likelihood.

4.5 Experiments

The algorithm was evaluated on two publicly available video sequences. The
performance of our PSO-based algorithm for multi-object tracking was com-
pared with the performance of the available PSO-based algorithm [30] for track-
ing multiple objects. In this recently proposed algorithm, species-based trackers
are employed and each tracking one object. The object interactions are mod-
eled as species competition and repulsion, whereas the occlusion is implicitly
inferred using the power of each species and the image observations. The dis-
cussed method has been evaluated on a video sequence from the PETS 2004
database which is an open database for research on visual surveillance, available
at http://homepages.inf.ed.ac.uk/rbf/CAVIAR/. The tracking performance of our al-
gorithm was compared with the performance of the algorithm mentioned above on
an image sequence that is called ‘ThreePastShop2cor’, which consists of color RGB
images of size 384 × 288, recorded with 25 frames per second. Figure 4.5 depicts
some key frames, where three pedestrians are tracked through occlusion. All three
persons were correctly tracked in 108 frames. Thanks to patch-based representation
of the object template, the algorithm is able to select the occluding object.

The algorithm was compared with state-of-the-art algorithms for multi-object
tracking by analyses carried out both through qualitative visual evaluations as well

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
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Fig. 4.5 Tracking three persons undergoing occlusions. Frames #422, 455, 465, 480, 488, 518

Fig. 4.6 Tracking results on the PETS 2009 S2L1_View_1 dataset with trajectory refinement using
PSO. Frames #70, 130, 320

Table 4.1 Quantitative comparison of our method with state-of-the-art methods on the
S2L1_View_1 sequence from PETS 2009 data set

Metric [6] [3] [2] Current work

MOTA 79.0 % 81.4 % 88.3 % 90.4 %

MOTP 59.0 % 76.1 % 75.7 % 85.2 %

MT – 82.6 % 87.0 % 91.3 %

ML – 0.0 % 4.4 % 4.4 %

as quantitatively using the latest VS-PETS benchmark from 2009 [12]. The experi-
ments were carried out on the sequence ‘S2L1_View_ 1’, which was recorded at 7
frames per second and contains 795 color images of size 768× 576.

The algorithm was evaluated using CLEAR metrics [27]. The Multi-Object
Tracking Accuracy (MOTA) counts all missed targets, false positives, and identity
mismatches. It is normalized to tracking all targets such that 100 % means no er-
rors. The Multi-Object Tracking Precision (MOTP) expresses the normalized dis-
tance between the ground truth location and the estimated location. Mostly Tracked
(MT) accounts for the percentage of ground-truth trajectories that are covered by the
tracker for more than 80 % in length, whereas Mostly Lost (ML) is the percentage
of the ground-truth trajectories that are covered by the tracker for less than 20 %
in length [21]. Table 4.1 illustrates the accuracy and precision, as well as the num-
ber of mostly tracked and mostly lost trajectories. The accuracy is a bit higher than
90 %. When no optimization was used, the accuracy was somewhat below 75 %.
The percentage of mostly tracked trajectories is nearly 4.5 % higher in comparison
to the best reported results.

Figure 4.6 depicts some tracking results. It also shows ground-plane trajectories.
As we can observe, the trajectories are far longer in comparison to trajectories that
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Fig. 4.7 Tracking results on the PETS 2009 S2L1_View_1 dataset. Frames #70, 130, 330

Fig. 4.8 The trajectories
without optimization (top
row) and with the
optimization (bottom row).
Sub-images from frames
#135, 320, and 320

are depicted on relevant images in [2]. In almost 40 occlusions like those in frames
129–131 of Fig. 4.2, where the targets undergo temporal occlusion and then split
into separate blobs, or the target is occluded by the road sign like in frames 106–112
of Fig. 4.4, the algorithm properly recognized the identities of the targets, avoided
clustering on a single target, despite some temporal errors in location or identity
estimation.

Figure 4.7 illustrates some tracking results that were obtained using only individ-
ual tracking. As we can observe, the trajectories are not so smooth in comparison
to the trajectories obtained through the optimization. In particular, one can observe
considerable jitters in the trajectories as a result of temporal switches of the identi-
ties, see, for instance, a jump close to the road sign in frame #70 of Fig. 4.7.

Our results demonstrate that in multi-object tracking, considerable improvement
of the tracking accuracy can be obtained through the use of an optimization al-
gorithm for the refinement of the results obtained by individual trackers, even if
they are built on highly discriminative appearance models among different targets.
Through formulating an energy function that operates on all targets that are present
in a sequence of last frames within a temporal window, and thus takes into account
all interactions between them, it is possible to considerably refine the trajectories
obtained by individual trackers, see Fig. 4.8.

In our algorithm, in contrast to [3], the joint state is optimized only in some
moving temporal widow, which moves forward as the time elapses. The state vector
consists of the states determined by the individual trackers in the current frame and
the states that were progressively refined in previous frames. In contrast to the algo-
rithm mentioned above, no sophisticated initialization of the optimization algorithm
in the form of the pre-calculated trajectories by an Extended Kalman Filter (EKF)
or globally optimal discrete tracker based on linear programming [1] is needed. We
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also demonstrated that the PSO algorithm is an effective tool for solving such non-
linear and nonconvex energy functions. Since the PSO does not rely on any gradient
information, smoothness, or continuity properties, it is possible to employ in the ob-
jective functions the terms that employ information, for instance, about the nearest
neighbors, identity switches, etc. The PSO-algorithm has also demonstrated great
usefulness in single object tracking where swarms consisting of 20 particles and
in 10 iterations are able to follow objects, even in case of considerable temporal
occlusions. The discussed algorithms were implemented in MATLAB/C.

4.6 Conclusions

We demonstrated that in multi-object tracking, considerable improvement of the
tracking accuracy can be obtained through the use of an optimization algorithm for
the refinement of the results obtained by individual trackers, even if they are built
on highly discriminative appearance models. In the presented algorithm, the joint
state is optimized in some moving temporal widow. The state vector consists of the
states determined by the individual trackers in the current frame and the states that
were progressively refined in the previous frames. We demonstrated that the particle
swarm optimization is an effective tool for solving such nonlinear and nonconvex
energy functions. Individual object tracking was considered as a numerical opti-
mization problem, where a particle swarm optimization was utilized in searching
for the best local mode of the similarity measure.

References

1. Andriyenko, A., Schindler, K.: Globally optimal multi-target tracking on a hexagonal lattice.
In: Proc. of the 11th European Conf. on Computer Vision: Part I, pp. 466–479 (2010)

2. Andriyenko, A., Schindler, K.: An analytical formulation of global occlusion reasoning for
multi-target tracking. In: IEEE Int. Workshop on Visual Surveillance, pp. 1839–1846 (2011)

3. Andriyenko, A., Schindler, K.: Multi-target tracking by continuous energy minimization. In:
IEEE Int. Conf. on CVPR, pp. 1265–1272 (2011)

4. Arsic, D., Lyutskanov, A., Rigoll, G., Kwolek, B.: Multi-camera person tracking applying a
graph-cuts based foreground segmentation in a homography framework. In: IEEE Int. Work-
shop on Performance Evaluation of Tracking and Surveillance, pp. 30–37 (2009)

5. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple
calculus on diffusion tensors. Magn. Reson. Med. 56, 411–421 (2006)

6. Berclaz, E.T.J., Fleuret, F., Fua, P.: Multiple object tracking using k-shortest paths optimiza-
tion. IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 1806–1819 (2011)

7. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts.
IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

8. Breitenstein, M.D., Reichlin, F., Leibe, B., Koller-Meier, E., Van Gool, L.J.: Robust tracking-
by-detection using a detector confidence particle filter. In: ICCV’09, pp. 1515–1522 (2009)

9. Cai, Y., de Freitas, N., Little, J.J.: Robust visual tracking for multiple targets. In: ECCV,
vol. IV, pp. 107–118 (2006)

10. Cheng-Hao, K., Huang, C., Nevatia, R.: Multi-target tracking by on-line learned discriminative
appearance models. In: IEEE Int. Conf. on CVPR, pp. 685–692 (2010)



78 B. Kwolek

11. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Int.
Conf. on CVPR, vol. 1, pp. 886–893 (2005)

12. Ferryman, J., Shahrokni, A.: PETS2009: dataset and challenge. In: IEEE Int. Workshop on
Performance Evaluation of Tracking and Surveillance, pp. 1–6 (2009)

13. Isard, M., Blake, A.: Condensation—conditional density propagation for visual tracking. Int.
J. Comput. Vis. 29, 5–28 (2006)

14. John, V., Trucco, E., Ivekovic, S.: Markerless human articulated tracking using hierarchical
particle swarm optimisation. Image Vis. Comput. 28(11), 1530–1547 (2010)

15. Kalal, Z., Mikolajczyk, K., Matas, J.: Forward–backward error: automatic detection of track-
ing failures. In: Int. Conf. on Pattern Rec., pp. 2756–2759 (2010)

16. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. of IEEE Int. Conf. on Neural
Networks, pp. 1942–1948 (1995)

17. Khan, Z., Balch, T., Dellaert, F.: MCMC-based particle filtering for tracking a variable number
of interacting targets. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1805–1918 (2005)

18. Koelsch, M., Turk, M.: Flocks of features for tracking articulated objects. In: Kisacanin,
T.H.B., Pavlovic, V. (eds.) Real-Time Vision for Human–Computer Interaction. Springer,
Berlin (2005). Chap. 9

19. Koelsch, M., Turk, M.: Hand tracking with flocks of features. In: IEEE Int. Conf. on CVPR,
vol. 2, p. 1187 (2005)

20. Kwolek, B., Krzeszowski, T., Wojciechowski, K.: Real-time multi-view human motion track-
ing using 3D model and latency tolerant parallel particle swarm optimization. In: 5th Int. Conf.
MIRAGE, pp. 169–180. Springer, Berlin (2011)

21. Li, Y., Huang, C., Nevatia, R.: Learning to associate: hybridboosted multi-target tracker for
crowded scene. In: IEEE Int. Conf. on CVPR, pp. 2953–2960 (2009)

22. Li, Y., Huang, C., Nevatia, R.: Stable multi-target tracking in real-time surveillance video. In:
CVPR, pp. 2953–2960 (2009)

23. Okuma, K., Taleghani, A., De Freitas, N., Little, J.J., Lowe, D.G.: A boosted particle filter:
multi-target detection and tracking. In: ECCV, pp. 28–39 (2004)

24. Rasmussen, C., Hager, G.D.: Probabilistic data association methods for tracking complex vi-
sual objects. IEEE Trans. Pattern Anal. Mach. Intell. 23, 560–576 (2001)

25. Ross, D.A., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking.
Int. J. Comput. Vis. 77(1–3), 125–141 (2008)

26. Steihaug, T.: The conjugate gradient method and trust regions in large-scale optimization.
SIAM J. Numer. Anal. 20, 626–637 (1983)

27. Stiefelhagen, R., Bernardin, K., Bowers, R., Garofolo, J.S., Mostefa, D., Soundararajan, P.:
The CLEAR 2006 evaluation. In: CLEAR. LNCS, vol. 4122, pp. 1–44. Springer, Berlin
(2006)

28. Yang, H., Shao, L., Zheng, F., Wang, L., Song, Z.: Recent advances and trends in visual track-
ing: a review. Neurocomputing 74(18), 3823–3831 (2011)

29. Zhang, X., Hu, W., Maybank, S., Li, X., Zhu, M.: Sequential particle swarm optimization for
visual tracking. In: IEEE Int. Conf. on CVPR, pp. 1–8 (2008)

30. Zhang, X., Hu, W., Qu, W., Maybank, S.: Multiple object tracking via species-based particle
swarm optimization. IEEE Trans. Circuits Syst. Video Technol. 20(11), 1590–1602 (2010)

31. Zhang, X., Hu, W., Wang, X., Kong, Y., Xie, N., Wang, H., Ling, H., Maybank, S.: A swarm
intelligence based searching strategy for articulated 3D human body tracking. In: IEEE Work-
shop on 3D Information Extraction for Video Analysis and Mining, pp. 45–50. IEEE, New
York (2010)



Chapter 5
A Comparative Study of Modified BBO Variants
and Other Metaheuristics for Optimal Power
Allocation in Wireless Sensor Networks

Ilhem Boussaïd, Amitava Chatterjee, Patrick Siarry,
and Mohamed Ahmed-Nacer

Abstract This chapter studies the performance of a wireless sensor network in the
context of binary detection of a deterministic signal. The work considers a decen-
tralized organization of spatially distributed sensor nodes, deployed close to the
phenomena under monitoring. Each sensor receives a sequence of observations and
transmits a summary of its information, over fading channel, to a data gathering
node, called fusion center, where a global decision is made. Because of hard en-
ergy limitations, the objective is to develop optimal power allocation schemes that
minimize the total power spent by the whole sensor network under a desired per-
formance criterion, specified as the detection error probability. The fusion of bi-
nary decisions is studied in this chapter by considering two scenarios depending on
whether the observations are independent and identically distributed (i.i.d.) or cor-
related. The present work aims at developing a numerical solution for the optimal
power allocation scheme via variations of the biogeography-based optimization al-
gorithm. The proposed algorithms have been tested for several case studies, and their
performances are compared with constrained versions of the differential evolution
algorithm, the genetic algorithm, and the particle swarm optimization algorithm.
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5.1 Introduction

Wireless Sensor Network (WSN) is a system of spatially distributed sensor nodes
with the abilities of sensing, computing, and communicating through wireless chan-
nels. Development of WSNs is motivated by many applications such as environment
monitoring, security, and detection of remote parameters [2].

In a distributed detection system (also called decentralized detection system)
[24], every sensor node performs some preliminary processing of data in a dis-
tributed manner and transmits a local decision to central node (called a sink or a
fusion center). In turn, the fusion center processes the received data and selects one
of a few hypotheses for the final decision-making. The main difference between
this approach and the classical centralized decision system is that the fusion center
has no access to the raw observation made at each sensor. Evidently, a distributed
sensor system is suboptimal compared to a centralized system in which the fusion
center has access to the observations from all sensors without distortion. However,
the distributed schemes offer the possibility for drastic reductions in communication
requirements and energy required to obtain an accurate estimate, at the expense of
some performance degradation [26].

Because of strict limitations on resources such as energy, bandwidth, and compu-
tational complexity, the standard problem in decentralized detection is to optimize
the performance of the system with respect to a desired performance criterion, spec-
ified as the detection error probability at the fusion center. The decision rule at the
fusion center and the local sensor decision rules need to be jointly designed to op-
timize the specified performance criterion. So the question is: How to combine the
local sensor observations, within bandwidth and power constraints, while keeping
the fusion error probability under a required threshold?

This chapter aims at developing a numerical solution for the optimal power
scheduling in WSN for correlated observations [4]. Three constrained variants of
the Biogeography-based Optimization (BBO) algorithm have been proposed to ad-
dress this issue. They are named as Constrained BBO (CBBO), CBBO-DE, which
incorporates the mutation procedure inherited from Differential Evolution (DE) [22]
to replace the BBO-based mutation, and 2-Stage-CBBO-DE where the population
is updated by applying, alternately from one iteration to the next, the BBO and DE
updating methods [5]. Constrained versions of DE, Genetic Algorithm (GA), and
Particle Swarm Optimization (PSO) algorithms are also developed in order to com-
pare the result with the three algorithms mentioned above.

The rest of this chapter is organized as follows: Sect. 5.2 provides a formulation
of the distributed detection problem [27]. The problem is described considering the
special case of binary hypothesis testing problem, where the optimal decision rule
is expressed in terms of the Likelihood Ratio (LR) statistic. In Sect. 5.3, the optimal
power allocation problem is considered under the assumption of correlated and i.i.d.
observations. Section 5.4 briefly describes the conventional BBO algorithm and its
constrained variants designed for the problem at hand. The experimental results and
detailed performance analysis are given in Sect. 5.5. Finally, the conclusions are
presented in Sect. 5.6.
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5.2 Problem Statement

The detection problems can usually be cast as binary or M-ary hypothesis testing
problems. For example, in a radar, one has to decide whether a target is present or
not, based on a noisy return signal that may or may not contain the reflection of
a probing pulse. Similarly, in digital communications, over each signaling interval
[0, T ], a pulse s(t,X) is transmitted which encodes the information about a sym-
bol X taking a discrete set of values. When X takes only two values, this decision
gives rise to a binary hypothesis testing problem. But, when X takes M = 2k val-
ues with k > 1, the decision problem takes the form of anM-ary hypothesis testing
problem [14].

In the standard decentralized problem, a set of dispersed sensor nodes receives
information about the state of nature H (there areM hypothesis on the state of the
environment). Based on its observation, sensor node � selects one of D� possible
messages and sends it to the fusion center via a dedicated channel.1 Based on the
received data, the fusion center solves a classical hypothesis testing problem and
decides on one of the possible hypotheses [26].

For the simple binary hypothesis testing problem, the objective of the detector is
to distinguish between two hypotheses H0 and H1 based on the observation of a
random vector X. The Bayesian formulation of the binary hypothesis testing prob-
lem is based on the philosophy that all uncertainties are quantifiable, and that the
costs and benefits of all outcomes can be measured. This means that the hypothe-
ses H0 and H1 possess a priori probabilities π0 =P(H0) and π1 =P(H1), and
π0 +π1 = 1. One possible performance criterion in the Bayes formulation is to find
a detector that minimizes the probability of error Pe . The performance of a test
will be evaluated in terms of three quantities: the probability of detection PD , the
probability of a miss (PM = 1−PD), and the probability of false alarm PF .

Alternatively, one can use the Neyman–Pearson formulation of the binary hy-
pothesis testing problem [17], where only the probability distribution of the ob-
servations under each hypothesis is known. The goal is to determine the optimum
decision rules at the sensors and the fusion center that minimize the probability PM

of a miss (or equivalently, maximize the probability of detection PD) while ensur-
ing that the probability of false alarm PF is less than or equal to a number α (upper
bound on the probability of false alarm).

For simplicity, we consider the Bayesian formulation based on a known prior
probability distribution with the objective to minimize the probability of error at the
fusion center rather than Neyman–Pearson formulation which solves the constrained
optimization problem that minimizes the probability of a miss (false negative), sub-
ject to a constraint on the probability of a false alarm (false positive) [12, 18, 25].

1The number of sensor nodes and the number of distinct messages are fixed beforehand. This
implicitly limits the amount of data available at the fusion center. The quantity of information
provided to the fusion center by a network of L sensors, each sending one ofD� possible messages,
does not exceed

∑L
�=1�log2(D�)� bits per channel use [23].
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Fig. 5.1 Decentralized
binary hypothesis detection
problem

This section provides a precise formulation of the decision fusion problem by
designing the local and the global decision rules. The local decisions are transmitted
over a wireless communication channel prone to attenuation and fading, so that
they may not be correctly received at the fusion center. Based on the received data,
the fusion center solves a classical hypothesis testing problem and decides on one
of the possible hypotheses [26]. However, a question which arises here is: How to
effectively combine, in an optimum way, the information from all sensor nodes in the
network to ensure that the final decision is reached with a high degree of reliability?

Fusion rules with i.i.d. and correlated observations have been investigated and a
Bayesian approach has been adopted to address this issue. The approach for decen-
tralized detection, proposed in this chapter, is based on the work of Wimalajeewa et
al. [27].

5.2.1 Fusion Problem Formulation

Consider a network with a set (S1, . . . , SL) of L spatially distributed transceiver
nodes and a fusion center, as illustrated in Fig. 5.1. Each sensor node observes a
single component of the L-dimensional vector X = [X1, . . . ,XL]T , testing two sta-
tistical hypotheses, H0 (no signal) and H1 (signal present), with the prior probabil-
ities denoted as π0 =P(H0) and π1 =P(H1), respectively.

Let us consider the problem of detecting a constant signal embedded in additive
Gaussian noise. The local observation Y�, obtained at sensor �, under each of the
two hypotheses testing, is given by:

H0 : Y� = V�, �= 1,2, . . . ,L,

H1 : Y� =X� + V�, �= 1,2, . . . ,L.
(5.1)
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The additive observation noise, denoted by V�, is assumed to be Gaussian with
zero mean and variance σ 2

v . The signal to be detected X� is a known constant (i.e.,
X� =m for �= 1,2, . . . ,L, where m (> 0) indicates the deterministic signal).

We can write the observations in vector form as Y = X + V, where V =
[V1,V2, . . . , VL]T is a zero-mean Gaussian L-vector of noise samples with covari-
ance matrix �v .2 X = [X1,X2, . . . ,XL]T is the observed signal vector, T means
transpose. We refer to γ0 = m2/σ 2

v as the local observation signal-to-noise ratio
(SNR).

5.2.2 Node Decision Rules

Each node processes its own observation to produce a local decision U�(Y�) and
sends it to the fusion sensor. For simplicity, we consider a special class of sensor
nodes where each node retransmits an amplified version of its own observation to the
fusion center. This class of sensor was shown to perform well when the observations
at the sensor nodes are corrupted by additive noise [7]. In this setup, a sensor node
acts as an analog relay amplifier with a transmission function given by :

U�(Y�)=G�Y�, �= 1,2, . . . ,L, (5.2)

where G� is the amplifier gain at node �.

5.2.3 Transmission of Local Decisions

Each local decision U� is transmitted over a wireless communication channel which
is prone to attenuation and fading. The information R� reaching the fusion center
from the �th sensor under each hypothesis Hj , j = 0,1 is given by:

H0 :R� =N�, �= 1,2, . . . ,L,

H1 :R� =H�G�X� +N�, �= 1,2, . . . ,L,
(5.3)

where H� is the channel fading coefficient and N� is the effective noise vector at the
fusion center with mean zero and covariance matrix �n =H�G��vG�H� +�w .
Here, �w is the receiver noise covariance. Moreover, N� = H�G�V� + W�, W�
is the receiver noise, assumed to be a sequence of i.i.d. Gaussian components
with zero mean and variance σ 2

w . In vector notation, we write R = AX + N
where A = diag(H1G1,H2G2, . . . ,HLGL), R = [R1,R2, . . . ,RL]T is the re-
ceived information, X = [X1,X2, . . . ,XL]T is the observed signal vector and
N = [N1,N2, . . . ,NL]T is noise. The noise covariance matrix at the fusion center
�n can be rewritten as

�n =AT�vA+Σw. (5.4)

2In general, �v is not a diagonal matrix unless the observation noise is independent and identically
distributed (i.i.d.).
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5.2.4 The Decision Fusion Problem

The received observations R = [R1, . . . ,RL]T at the fusion center are distributed
as:

H0 :R∼N (0,�n),

H1 :R∼N (AM,�n),
(5.5)

where N denotes a Gaussian distribution, M = me and e is the L-length vector
with all ones. The objective of the system is to decide which of the two possible
signals is present. The optimal procedure for deciding between the two hypotheses
is a threshold rule on the log-likelihood ratio (LLR) of the observation vector [18].
Let us consider the threshold τ (assuming minimum probability of error Bayesian
fusion [27]): τ = π0/π1. The LLR T (R) for the detection problem can be written
as:

T (R)=meTA�−1
n R− 1

2
m2eTA�−1

n Ae. (5.6)

Then the optimum Bayesian decision rule can be rewritten as:

δ(R)=
{

1 if T (R)≥ ln τ ,

0 if T (R) < ln τ .
(5.7)

The LLR has the following distribution under the two hypotheses:

H0 : T (R)∼N

(
−1

2
m2eTA�−1

n Ae,m2eTA�−1
n Ae

)
,

H1 : T (R)∼N

(
1

2
m2eTA�−1

n Ae,m2eTA�−1
n Ae

)
.

(5.8)

If we further assume that the two hypotheses are equally likely, then the optimal
decision threshold at the fusion center is τ = 1. The performance of this threshold
test on T (R) is characterized by the probability of the fusion error Pe (i.e., the
probability that the fusion center chooses hypothesis H1 when H0 is true) which is
expressed as

Pe = PFπ0 + (1− PD)π1

=Q

(
1

2

√
m2eTA�−1

n Ae
)
, (5.9)

where πj is the prior probability of hypothesis Hj , PF is the false alarm proba-
bility of the optimal detector at the fusion center if j = 0, PD is the probability of
detection if j = 1, and Q(·) is the complementary Gaussian cumulative distribution
function:

Q(x)=
∫ ∞

x

1√
2π
e
−ξ2

2 dξ. (5.10)
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5.3 Optimal Power Allocation

Power allocation plays a key role in improving the system performance. In this sec-
tion, the optimal power allocation among the sensors in the distributed detection
system is considered. The objective is to minimize the total power spent by the
whole sensor network to achieve a desired detection performance. As it was dis-
cussed in the previous paragraphs, the distributed nature of observations coupled
with bandwidth and power constraints requires a means of combining local sensor
observations while keeping the fusion error as small as possible.

The main question that one seeks to answer is: What is the optimal power al-
location, for a given threshold, at the fusion center? The problem of finding the
optimal power allocation scheme can be posed as follows: Find a set of sensor
gains (G1, . . . ,G�, . . . ,GL) which solves the following constrained optimization
problem:

⎧
⎪⎪⎨

⎪⎪⎩

min
∑L
�=1G

2
�

subject to Pe =Q( 1
2

√
m2eTA�−1

n Ae)≤ ε,
G� ≥ 0, �= 1,2, . . . ,L.

(5.11)

The objective is to minimize the total power while keeping the fusion error prob-
ability under a required threshold ε. We consider two situations: (i) where the local
observations are i.i.d., and (ii) where the observations of different nodes are cor-
related. For both cases, we determine the optimum power allocation schemes that
minimize the total power required to satisfy a certain performance level. In situation
(i), the optimal solution to the gain allocation is analytically derived. In situation
(ii), an approximate analytical solution to the power allocation problem that mini-
mizes the fusion error probability bound in (5.24) is derived for small correlations. It
is also shown that, under arbitrary correlated observations, the numerical approach
becomes suitable to find the optimal power allocation, since it gets difficult to solve
this problem analytically.

5.3.1 Independent Observations

In the special case when local observations and the receiver noise are both i.i.d.,
�v = σ 2

v I and �w = σ 2
wI, where I is the L × L identity matrix, the mean-square

error (MSE) based on the received signal (5.3) is given by:

MSE =
(
L∑

�=1

H 2
� G

2
�

σ 2
v H

2
� G

2
� + σ 2

w

)−1

. (5.12)
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Let us assume that the fusion center is equipped with the knowledge of channel
fading coefficients.3 Then, the probability of the fusion error (5.9) is simplified to:

Pe =Q

(
m

2

√√√√
L∑

�=1

H 2
� G

2
�

σ 2
v H

2
� G

2
� + σ 2

w

)

. (5.13)

It is interesting to note that the probability of error at the fusion center has a

performance floor of Q(
√
Lγ0
2 ) when G2

� tends to infinity (�= 1,2, . . . ,L), i.e.,

lim
G�→∞

L∑

�=1

H 2
� G

2
�

σ 2
v H

2
� G

2
� + σ 2

w

= L

σ 2
v

,

lim
G�→∞Pe =Q

(√
Lγ0

2

)
.

(5.14)

Intuitively, (5.14) says that, for a fixed L, the performance attained is determined
mainly by the observation quality at local sensor nodes regardless of the quality of
the wireless channel.

Using the fusion error probability given in (5.13), when the local observations
are i.i.d., the first inequality in (5.11) can be expressed as

β ≤
√√√√

L∑

�=1

H 2
� G

2
�

σ 2
v H

2
� G

2
� + σ 2

w

(5.15)

where

β = 2

m
Q−1(ε). (5.16)

Then, the optimization problem can be stated as:
⎧
⎪⎪⎨

⎪⎪⎩

min
∑L
�=1G

2
�

subject to β2 −∑L
�=1

H 2
� G

2
�

σ 2
v H

2
� G

2
�+σ 2

w

≤ 0,

G� ≥ 0, �= 1,2, . . . ,L.

(5.17)

The Lagrangian cost function is given by

L(G,λ0,μk)=
L∑

k=1

G2
k + λ0

[

β2 −
L∑

k=1

H 2
� G

2
�

σ 2
v H

2
� G

∗2
� + σ 2

w

]

+
L∑

k=1

μk(−Gk) (5.18)

3The assumption that the transmission is idealized, i.e., the information sent from local sensors
is assumed to be received intact at the fusion center may be reasonable for some applications,
but it may not be realistic for many WSNs where the transmitted information has to endure both
channel fading and noise/interference. Acquiring channel state information may be too costly for a
resource-constrained sensor network. It may also be impossible to accurately estimate the quality
of a fast-changing channel. Hence, it can be argued to be reasonable to assume that this information
is available at the fusion center.
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where λ0 ≥ 0 and μk ≥ 0 for k = 0, . . . ,L are the Lagrange multipliers associated
with the inequality constraints.

Given that both the objective function and the constraints are convex, the Karush–
Kuhn–Tucker (KKT) conditions are valid [13]. The optimal solution is derived as:

G2
k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ 2
w

H 2
k σ

2
v

[Hk
∑K1
j=1

1
Hj

(K1−β2σ 2
v )

− 1
]

if k ≤K1 and L> β2σ 2
v ,

0 if k >K1 and L> β2σ 2
v ,

infeasible if L< β2σ 2
v

(5.19)

whereK1 is found such that f (K1) < 1 and f (K1+1)≥ 1 for 1≤K1 ≤ L, f (k)=
(k−β2σ 2

v )

Hk
∑k
j=1

1
Hj

. The proof of the uniqueness of such a K1 and the global optimality of

the solution (5.19) for the optimization problem (5.17) are given in [27].
Statistically, we model the fading coefficients H� (� = 1, . . . ,L) as unit mean

Rayleigh random variables and, without loss of generality, they are assumed to be
ranked in the descending order such that H1 ≥H2 ≥ · · · ≥HL.

The solution given in (5.19) is feasible only ifL> β2σ 2
v , i.e., γ0 >

4
L
(Q−1(Pe))

2,

this implies that the probability of error Pe is lower-bounded by Q(
√
Lγ0
2 ), which is

consistent with (5.14).

5.3.2 Correlated Observations

While the popular assumption that the observations at the sensors are independent
is convenient for analysis, it does not necessarily hold for arbitrary sensor systems.
In practice, it is likely that the sensor observations are spatially correlated leading
to a nondiagonal covariance matrix �v .

We consider here that the sensor nodes are equally spaced, along a straight line,
at a distance d and correlation between observations at node i and j is proportional
to ρd|i−j |, where 0 < |ρ| ≤ 1.4 The observation noise covariance matrix �v can
be written as a symmetric Hermitian Toeplitz matrix, referred to as Kac–Murdock–
Szegö matrix [11]:

�v = σ 2
v

⎛

⎜⎜⎜⎜
⎜
⎝

1 ρd . . . ρd(L−2) ρd(L−1)

ρd 1 . . . ρd(L−3) ρd(L−2)

...
...

. . .
. . .

...

ρd(L−1) ρd(L−2) . . . ρd 1

⎞

⎟⎟⎟⎟
⎟
⎠
. (5.20)

4Correlation degree ρ = 1 means that two observations are perfectly correlated. Correlation degree
0 < ρ < 1 indicates that two observations are partially correlated (i.e., spatial correlation), while
ρ = 0 implies that two observations are independent of each other.
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The covariance matrix �v of the observation noise is not diagonal. Consequently,
it is difficult to evaluate �−1

n in closed form in (5.9) for a general �v . One answer
to this problem is the tridiagonal approximation of �v for sufficiently small ρ, this
corresponds to the case where only adjacent node observations are correlated.

Following a similar procedure as in [27], we present the upper bound on the
probability of error at the fusion center using the tridiagonal approximation matrix
as well as Bergstrom’s inequality [1] and finally considering the case where the
correlation coefficients are sufficiently small.

According to Bergstrom’s inequality, for any positive definite matrices P and Q:

eT P−1e≥ (e
T (P+Q)−1e)(eTQ−1e)

eTQ−1e− eT (P+Q)−1e
. (5.21)

From Eqs. (5.4) and (5.9), m2eTA�−1
n Ae = m2eT (Σv + σ 2

wA−2)−1e. Let P =
(Σv + σ 2

wA−2) and consider the matrix Q given by:

Q= σ 2
v

⎛

⎜
⎜⎜
⎝

1 −ρd . . . −ρd(L−2) −ρd(L−1)

−ρd 1 . . . −ρd(L−3) −ρd(L−2)

...
...

. . .
. . .

...

−ρd(L−1) −ρd(L−2) . . . −ρd 1

⎞

⎟
⎟⎟
⎠
. (5.22)

From (5.21) it can be shown that

eT
(
�v + σ 2

wA−2)−1e≥
(

1
∑L
�=1

H 2
� G

2
�

2σ 2
v H

2
� G

2
�+σ 2

w

− 1

D

)−1

(5.23)

where D = eTQ−1e. Therefore, from (5.9) and (5.23), the fusion error probability
can be bounded from above by:

Pe ≤Q

(
m

2

(
1

∑L
�=1

H 2
� G

2
�

2σ 2
v H

2
� G

2
�+σ 2

w

− 1

D

)− 1
2
)
. (5.24)

When ρ = 0, D = L/σ 2
v , we get

lim
G�→∞

(
1

∑L
�=1

H 2
� G

2
�

2σ 2
v H

2
� G

2
�+σ 2

w

− 1

D

)
= L

σ 2
v

. (5.25)

For the correlated observations, the optimization problem (5.11) can be reformu-
lated to the following equivalent statement:

⎧
⎪⎪⎨

⎪⎪⎩

min
∑L
�=1G

2
�

subject to β2 − eT AΣ−1
n Ae ≤ 0,

G� ≥ 0, �= 1,2, . . . ,L.

(5.26)

Since it is difficult to obtain an analytical closed form of the power allocation
problem, as it was explained in Sect. 5.3.1, it is useful to have an analytical approx-
imation of the problem that minimizes the fusion error probability bound (5.24).
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To analytically approximate the optimal power allocation problem, the following
optimization problem is considered:

⎧
⎪⎪⎨

⎪⎪⎩

min
∑L
�=1G

2
�

subject to q −∑L
�=1

H 2
� G

2
�

2σ 2
v H

2
� G

2
�+σ 2

w

≤ 0,

G� ≥ 0, �= 1,2, . . . ,L

(5.27)

where q = ( 1
β2 + 1

D
)−1. Thus, the optimal power allocated to the sensor nodes can be

derived following the same procedure as in Sect. 5.3.1. The corresponding optimal
solution to the problem (5.27) is given by:

G2
k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ 2
w

2H 2
k σ

2
v

[Hk
∑N1
j=1

1
Hj

(N1−2σ 2
v q)

− 1
]

if k ≤N1 and L> 2σ 2
v q,

0 if k > N1 and L> 2σ 2
v q,

infeasible if L< 2σ 2
v q

(5.28)

where N1 is unique and is defined such that f̃ (N1) < 1 and f̃ (N1 + 1) ≥ 1 for

1≤N1≤ L. f̃ (k)= (k−2σ 2
v q)

Hk
∑k
j=1

1
Hj

.

In the optimal solution, the number of active sensors should be greater than 2σ 2
v q

in order to satisfy the required fusion error probability at the fusion center. This
solution suggests also that some sensors should remain inactive in order to minimize
the total power consumption.

Next, we propose a numerical approach to find the optimal power allocation
when local observation are arbitrary correlated. The solution proposed in this work
is based on the variation of the BBO algorithm.

5.4 Constrained BBO for Optimal Power Allocation

This section details the description of the basic Biogeography-Based Optimization
algorithm, adapted from [21], in a nutshell. A brief description of the constrained op-
timization problem and a review of several popular constraint-handling approaches
are presented, followed by a detailed description of the algorithms proposed in this
work.

5.4.1 Standard Unconstrained Biogeography-Based Optimization
(BBO)

The Biogeography-based optimization (BBO) algorithm, developed by Dan Simon
[21], was strongly influenced by the equilibrium theory of island biogeography [15].
The basic premise of this theory is that the rate of change in the number of species on
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an island depends critically on the balance between the immigration of new species
onto the island and the emigration of established species.

The BBO algorithm operates upon a population of individuals called islands (or
habitats). Each island represents a possible solution to the problem in hand. The
fitness of each island is determined by its Habitat Suitability Index (HSI), a metric
which determines the goodness of a candidate solution, and each island feature is
called a Suitability Index Variable (SIV). Good solutions may have a larger number
of species, which represents an island with a low HSI, compared to poor solutions.

The number of species present on the island is determined by a balance between
the rate at which the new species arrive and the rate at which the old species become
extinct on the island. In BBO, each individual has its own immigration rate (λ) and
emigration rate (μ). These parameters are affected by the number of species (S) in
an island and are used to probabilistically share information between islands. Islands
with smaller populations are more vulnerable to extinction (i.e., the immigration rate
is high). But as more species inhabit the island, the immigration rate reduces and the
emigration rate increases. In BBO, good solutions (i.e., islands with many species)
tend to share their features with poor solutions (i.e., islands with few species), and
poor solutions accept a lot of new features from good solutions.

But how might immigration and emigration work on an island? The migration
pattern is determined by the immigration rate (λ) at which new species immigrate
to the island. The rate of immigration (λ) will decline with the number of species
(S) present on the island. The maximum immigration rate (I ) occurs when island
is empty and decreases as more species are added. Once all potential colonists are
on the island, then S = Smax (maximum number of species the island can support)
and immigration rate must be equal to zero. The immigration rate, when there are S
species in the island, is given by

λS = I
(

1− S

Smax

)
. (5.29)

The emigration rate (μ), at which populations of established species emigrate,
will increase with the number of species (S). The maximum emigration rate (E)
occurs when all possible species are present on the island (when S = Smax), and
must be zero when no species are present. The emigration rate, when there are S
species in the island, is given by

μS =E
(
S

Smax

)
. (5.30)

Figure 5.2 graphically represents the relationships between the number of species
(S), emigration rate (μ), and immigration rate (λ). Over time, the countervailing
forces of emigration and immigration result in an equilibrium level of species rich-
ness. The equilibrium value (S∗) is the point at which the rate of arrival of species
(λ) is exactly matched by the rate of emigration (μ). We have assumed that μ and λ
are constant linear relationships, but different mathematical models of biogeography
that included more complex variables are presented in [15].
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Fig. 5.2 Linear migration
model—the relationship of
fitness of islands (number of
species), emigration rate μ
and immigration rate λ

We now consider the probability PS that the island contains exactly S species.
The number of species will change from time t to time t +Δt as follows:

PS(t +Δt)= PS(t)(1− λSΔt −μSΔt)+ PS−1λS−1Δt + PS+1μS+1Δt, (5.31)

which states that the number of species on the island in one time step is based on the
total number of current species on the island, the new immigrants, and the number
of species which leave during the time period. We assume here that Δt is small
enough so that the probability of more than one immigration or emigration can be
ignored. In order to have S species at time t +Δt , one of the following conditions
must hold:

• There were S species at time t , and no immigration or emigration occurred be-
tween t and t +Δt ;

• One species immigrated onto an island already occupied by S − 1 species at
time t .

• One species emigrated from an island occupied by S + 1 species at time t .

The limit of (5.31) as Δt→ 0 is given by Eq. (5.32):

ṖS =

⎧
⎪⎨

⎪⎩

−(λS +μS)PS +μS+1PS+1 if S = 0,

−(λS +μS)PS + λS−1PS−1 +μS+1PS+1 if 1≤ S ≤ Smax − 1,

−(λS +μS)PS + λS−1PS−1 if S = Smax.

(5.32)

Equation (5.32) can be arranged into a single matrix form:

⎡

⎢
⎢⎢
⎣

Ṗ0
Ṗ1
...

Ṗn

⎤

⎥
⎥⎥
⎦
=

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

−(λ0 +μ0) μ1 0 . . . 0

λ0 −(λ1 +μ1) μ2 . . .
...

...
. . .

. . .
. . .

...
...

. . . λn−2 −(λn−1 +μn−1) μn
0 . . . 0 λn−1 −(λn +μn)

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

P0
P1
...
Pn

⎤

⎥
⎥
⎦ .

(5.33)
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For notational brevity, we simply write n= Smax.
The BBO algorithm can be overall described with Algorithm 1. The two basic

operators which govern the working of BBO are the migration and mutation.
Migration is used to modify existing islands by mixing features within the popu-

lation. The immigration rate (λ) and the emigration rate (μ) of each island are used
to probabilistically share information between islands, rand(0,1) is a uniformly dis-
tributed random number in the interval [0,1] and Xi,j is the j th SIV of the solution
Xi . The BBO migration strategy is similar to the global recombination approach of
evolutionary strategies (ES) [3], in which many parents can contribute to a single
offspring. The main difference is that recombination is used to create new solutions,
while in BBO migration is used to change existing solutions.

An island’s HSI can change suddenly due to apparently random events (unusually
large flotsam arriving from a neighboring island, disease, natural catastrophes, etc.).
BBO models this phenomena as SIV mutation, and uses species count probabilities
to determine mutation rates. Mutation is used to enhance diversity of the population,
thereby preventing the search from stagnating. The likelihood that a given solution
S was expected a priori to exist as a solution for the given problem is indicated by
the species count probability PS . If an island S is selected to execute the mutation
operation, then a chosen variable SIV is randomly modified based on its associated
probability PS . In this context, it should be remarked that very high HSI solutions
and very low HSI solutions are both equally improbable. Medium HSI solutions are
relatively probable. If a given solution has a low probability, then it is likely to be
mutated to some other solution. Conversely, a solution with high probability is less
likely to be mutated. The mutation ratem(S) is inversely proportional to the solution
probability:

m(S)=mmax

(
1− PS

Pmax

)
(5.34)

where mmax is a user-defined parameter, and Pmax = maxS PS,S = 1, . . . , Smax. If
an island is selected for mutation, then a randomly chosen SIV in the island is simply
replaced with a new randomly generated variable from its range.

On the other hand, elitism (copying some of the fittest individuals to the next
generation) is applied.

5.4.2 Constrained Optimization

In many optimization scenarios, inequality constraints and equality constraints may
be imposed in addition to the objective functions. The standard form of a constrained
optimization problem is formulated as follows:

⎧
⎪⎨

⎪⎩

Find x which optimizes f (x)

subject to gi(x)≤ 0, i = 1,2, . . . , p,

hj (x)= 0, j = 1,2, . . . , q

(5.35)
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Algorithm 1: BBO

1 Initialize a set of solutions (islands) to a problem

2 while Termination condition not met do
3 Evaluate the fitness (HSI) for each solution

4 Compute S, λ and μ for each solution

5 Migration:

6 for i = 1 to N do
7 Use λi to probabilistically decide whether to immigrate to Xi

8 if rand(0,1) < λi then
9 for j = 1 to N do

10 Select the emigrating island Xj with probability ∝ μj
11 if rand(0,1) < μj then
12 Replace a randomly selected decision variable (SIV) of Xi

with its corresponding variable in Xj

13 end

14 end

15 end

16 end

17 Mutation:

18 for i = 1 to N do
19 Compute the probability Pi using λi and μi

20 Use the probability Pi to compute the mutation rate mi

21 for j = 1 to D do
22 Select a variable (SIV) Xi,j with probability ∝ Pi
23 if rand(0,1) < mi then
24 Replace Xi,j with a randomly generated variable from its

range

25 end

26 end

27 end

28 Implement elitism to retain the best solutions in the population from one
generation to the next.

29 end
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where f (x) is an objective function, x denotes the decision solution vector, p is
the number of inequality constraints, and q is the number of equality constraints
(in both cases, constraints could be linear or nonlinear). Feasible individuals satisfy
all constraints while infeasible individuals do not satisfy at least one constraint.
Then, a solution candidate x is feasible if and only if gi(x) ≤ 0 ∀i = 1,2, . . . , p
and hj (x)= 0 ∀j = 1,2, . . . , q holds. Obviously, only a feasible individual can be
a solution, i.e., an optimum, for a given optimization problem.

A number of approaches have been proposed by incorporating constraint-
handling techniques into evolutionary algorithms to solve constrained optimization
problems. Comprehensive surveys about such approaches can be found in [8, 16].
Most of the evolutionary constraint handling methods can be broadly classified
into five categories [16]: (i) methods based on preserving feasibility of solutions,
(ii) methods based on penalty functions, (iii) methods making distinction between
feasible and infeasible solutions, (iv) methods based on decoders, and (v) hybrid
methods.

The penalty function method is widely regarded as the most popular constraint-
handling technique due to its simple principle and ease of implementation. In this
approach, the constraints are incorporated into the objective function so that the
original constrained problem is transformed into unconstrained one by adding (or
subtracting) a penalty term to (or from) the objective function for points not lying
in the feasible set and thus violating some of the constraints. This method typically
generates a sequence of infeasible points, approaching optimal solutions to the orig-
inal problem from the outside (exterior) of the feasible set. The general formulation
of the exterior penalty approach is:

φ(x)= f (x)±
[
p∑

i=1

ri × ζi +
q∑

j=1

cj × ϑj
]

. (5.36)

Here, the constraints are combined with the objective function f (x), resulting in
a new (expanded) objective function φ(x) which is then actually optimized. ζi and
ϑj are functions of the constraints gi(x) and hj (x), respectively, and ri and cj are
positive constants, called “penalty factors”.

The general formulation of ζi and ϑj is:

ζi =
(
max
{
0, gi(x)

})α
,

ϑj =
∣∣hj (x)

∣∣β
(5.37)

where α and β are normally 1 or 2.
If an inequality constraint is satisfied, then gi(x) ≤ 0 and max{0, gi(x)} will

return 0, and therefore that constraint will not contribute anything to the function φ.
If a constraint is violated, i.e., gi(x) > 0 or hj (x) �= 0, a large term will get added
to φ such that the solution is pushed back towards the feasible region.

Another approach for handling constraints would be to consider the objective
function and the constraints separately. The constraint handling method described
by Deb [9] proposes using a binary tournament selection operator and applies the
following rules to compare two individuals:
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1. Any feasible solution is preferred to any infeasible solution.
2. Among two feasible solutions, the one having better objective function value is

preferred.
3. Among two infeasible solutions, the one having smaller constraint violation is

preferred.

Deb’s approach does not require a penalty factor because in any of the above
three scenarios, solutions are never compared in terms of both objective function
value and constraint violation information. Of the three tournament cases mentioned
above, in the first case, neither the objective function value nor the constraint viola-
tion information is used, simply the feasible solution is preferred. In the second case,
solutions are compared in terms of the objective function values alone and, in the
third case, solutions are compared in terms of the constraint violation information
alone.

5.4.3 Description of the Proposed Algorithms

In this chapter, three constrained versions of BBO algorithm, which are improve-
ments over the BBO algorithm, are proposed to numerically find the optimal power
scheduling in WSN. These constrained variants, namely CBBO, CBBO-DE, and
2-Stage-CBBO-DE, implement different strategies for updating the population in
subsequent generations, along with some adaptations to solve the constrained opti-
mization problem under consideration. The other steps given in this section are the
same for all proposed algorithms.

For the first constrained version, named as CBBO for Constrained BBO, the pop-
ulation is updated using the conventional BBO-based operators [4]. The migration
process is followed by the BBO-based mutation, in an iterative fashion. The second
variation, named as CBBO-DE, introduces the DE mutation [6] to replace the BBO-
based mutation. Unlike CBBO, CBBO-DE first generates new parameter vectors,
by using the DE mutation operation, and then the BBO-based migration operator
is applied for the resultant mutant vectors. In the 2-Stage-CBBO-DE variant, the
integration of DE and BBO is achieved by employing a collaboration that consists
of activating each technique in an alternate fashion. The different population update
strategies are described in Sect. 5.4.3.6.

5.4.3.1 Solution Representation

A solution for the optimal power allocation problem is encoded by a L-dimensional
vector G= [G1,G2, . . . ,GL]. Each decision variableG� (�= 1, . . . ,L), which de-
notes the amplifier gain at sensor node �, is directly coded as a real value. Figure 5.3
illustrates the solution representation.
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Fig. 5.3 Solution
representation for the optimal
power allocation problem

5.4.3.2 Objective Function

The objective is to determine the optimum power allocation where optimality is
defined as minimizing the power spent by the network to achieve the desired perfor-
mance at the fusion center. The problem of finding the optimal solution to the gain
allocation is posed in Sect. 5.3 for both i.i.d. (Eq. (5.17)) and correlated observations
(Eq. (5.27)).

5.4.3.3 Constraint Handling Approach

In the proposed algorithms, the constraints have been introduced into the objec-
tive function using a penalty function [8]. The introduction of the penalty term en-
ables us to transform a constrained optimization problem into an unconstrained one
(Eq. (5.38)). Only inequality constraints are considered in this work. The new ob-
jective function for the minimization problem is formulated as

F(G)=
{
f (G) if ψj (G)≤ 0,

f (G)+Φ(ψ+(G)) otherwise,
(5.38)

where f (G)=∑L
�=1G

2
� , ψ1(G)= β2 −∑L

�=1
H 2
� G

2
�

σ 2
v H

2
� G

2
�+σ 2

w

when the observations

are i.i.d. and ψ1(G) = β2 − eT AΣ−1
n Ae when the observations are correlated.

ψ�+1(G)=−G� for �= 1,2, . . . ,L, G= [G1,G2, . . . ,GL]T .
In Eq. (5.38), Φ(ψ+(G)) =∑p

j=1(max{0,ψ+
j (G)})2 is the penalty function

and ψ+(G) = [ψ+
1 (G),ψ

+
2 (G), . . . ,ψ

+
p (G)] are the constraint violations (i.e.,

ψ+
i (G)=max{0,ψj (G)}, i = 1, . . . , p) and p = L+ 1 is the number of inequality

constraints.

5.4.3.4 Individual Initialization

A random initial population of NP L-dimensional search variable vectors (or is-
lands) is generated. Since the islands are likely to be changed over different gen-
erations, the following notation is adopted for representing the ith island of the
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Algorithm 2: Stochastic ranking algorithm

1 Ij = j ∀j ∈ 1, . . . ,NP

2 for i = 1 to N do
3 for j = 1 to NP− 1 do
4 sample u ∈ rand(0,1) (uniform random number generator)

5 if (Φ(GIj )=Φ(GIj+1)= 0) or (u < Pf ) then
6 if (f (GIj ) > f (GIj+1)) then
7 Swap (Ij , Ij+1)

8 else
9 if (Φ(GIj ) > Φ(GIj+1)) then

10 Swap (Ij , Ij+1)

11 end

12 end

13 end

14 end

15 if no Swap done then
16 break

17 end

18 end

population at the current generation g: Gi,g = (Gi,1,g,Gi,2,g,Gi,j,g, . . . ,Gi,L,g),
where i = 1, . . . ,NP; j = 1, . . . ,L, and Gi,j,g is the j th SIV of the island Gi at
generation g.

5.4.3.5 Individual Stochastic Ranking

To deal with the constraints, the stochastic ranking algorithm was employed (see
Algorithm 2) [20]. Thus, each island in the population is ranked based on both
fitness value and constraints violation amount. Migration is based on this ranking
to share information between islands. The highest ranking islands have high species
emigration rates (μ) and are more likely to share information with other less fit
solutions based on their immigration rates (λ).

Here N denotes the number of sweeps going through the whole population, NP
stands for the size of the population. Pf is the probability of using only the objective
function for comparing islands in the infeasible region of the search space and for
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which a value of 0.4<Pf < 0.5 was reported as the most appropriate. f (Gi) is the
fitness value of the island Gi and Φ(Gi) its constraints violation degree, such that

Φ(Gi )=
p∑

j=1

(
max
{
0,ψj (Gi )

})2 (5.39)

where ψj denotes the constraint violation for the j th constraint.

5.4.3.6 Population Update Strategy

It has already been mentioned that the proposed algorithms adopt different mecha-
nisms for updating the population. The operating principles of the CBBO, CBBO-
DE, and 2-Stage-CBBO-DE updating strategies are described as follows:

1. CBBO: In the CBBO algorithm, the population is updated by successively apply-
ing the migration procedure followed by the mutation procedure in an iterative
fashion, similar to the philosophy employed in original BBO (see Algorithm 1).

2. CBBO-DE: This variant incorporates the mutation procedure inherited from DE
algorithm [19, 22], to replace the existing mutation procedure in BBO. Unlike
CBBO, CBBO-DE first generates new parameter vectors, by using the DE mu-
tation operation, and then the BBO-based migration operator is applied for the
resultant mutated vectors [6].

(a) DE Mutation
The mutation is performed by calculating weighted vector differences be-
tween other randomly selected individuals of the same population. A muta-
tion scale factor F is used to control the amplification of the differential vari-
ation. The mutation operation constructs, for each population vector Gi,g , a
mutant vector Vi,g .

Different mutation schemes are suggested by Price et al. [19]. The gen-
eral convention used to name the different DE variants is DE/x/y/z. HereDE
stands for differential evolution, x represents a string that denotes the base
vector, i.e., the vector being perturbed (whether it is randomly selected or it
is the best vector in the population with respect to fitness value and constraint
violation), y is the number of difference vectors, considered for perturbation
of x, and z denotes the crossover scheme which may be binomial or expo-
nential. The mutation is performed following the DE/rand/1/bin-variant, also
known as the classical version of DE, which is the most frequently used mu-
tation strategy. This mutation scheme uses a randomly selected base vector
Gr1,g and only one weighted difference vector F(Gr2,g − Gr3,g) is used to
perturb it:

Vi,g =Gr1,g + F(Gr2,g −Gr3,g), (5.40)
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where the indices r1, r2, r3 are randomly chosen over the interval [1,NP]
and should be mutually different from the running index i and F is a real
constant scaling factor within the range [0,2], usually chosen less than 1.

(b) Migration
The DE mutation produces new vectors Vi,g (i = 1, . . . ,NP), which are up-
dated by the BBO-based migration operator. The migration operator is the
same as what was employed in original BBO, except that it is applied to the
newly modified individuals Vi,g . This operation produces new population
vectors Mi,g as follows:

Mi,j,g =
{
Vk,j,g if rand(0,1) < λi ,

Vi,j,g otherwise,
(5.41)

where i = 1,2, . . . ,N , j = 1, . . . ,D and Vk,j,g is the j th decision variable
of a randomly selected individual Vk,g among the transformed population in
generation g. Vk,g is selected with a probability based on its emigration rate
μk and λi is the immigration rate of the individual Mi,g .

3. 2-Stage-CBBO-DE
The population update strategy of the 2-Stage-CBBO-DE algorithm is similar to
the one described in [5]. The population is updated by applying, alternately from
one iteration of the algorithm to the next, the BBO and DE updating methods, as
described bellow.

• BBO updating method
The BBO updating method consists of applying the migration and the mutation
operators. The migration operator reproduces a new population vector Mi,g as
follows:

Mi,j,g =
{
Gk,j,g if rand(0,1) < λi ,

Gi,j,g otherwise,
(5.42)

where i = 1,2, . . . ,NP, j = 1, . . . ,L andGk,j,g is the j th decision variable of
a randomly selected individual Gk,g . Gk,g is selected with a probability based
on μk .

The mutation is performed for the whole population by perturbing the
newly migrant individualsMi,g as follows:

Mi,j,g =
{

rand(lj , uj ) if rand(0,1) < m(i),

Mi,j,g otherwise,
(5.43)

where i = 1,2, . . . ,NP, j = 1, . . . ,L, m(i) is the mutation rate given by
Eq. (5.34) and rand(lj , uj ) is a random number (uniformly distributed) be-
tween lower and upper bounds lj and uj .

• DE updating method
DE employs the mutation operation to produce a mutant vector with respect to
each individual, the so-called target vector, in the current population. For the
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proposed algorithm, the mutation is performed using the DE/rand/1 mutation
strategy as follows:

Vi,g =Gr1,g + F(Gr2,g −Gr3,g)

where Gr1,g , Gr2,g , and Gr3,g are three individual vectors chosen at random
and mutually different.

After the mutation phase, a crossover operation is applied to each pair of
the target vector Gi,g and its corresponding mutant vector Vi,g to generate a
trial vector Mi,g :

Mi,j,g =
{
Vi,j,g if rand(0,1)≤ CR or j = jrand,

Gi,j,g otherwise,
(5.44)

i = 1,2, . . . ,NP and j = 1,2, . . . ,L.

The crossover factor CR is randomly taken from the interval [0,1] and
presents the probability of creating parameters for trial vector from a mutant
vector. Index jrand is a randomly chosen integer within the range [1,NP]. It
is responsible for the trial vector containing at least one parameter from the
mutant vector. rand(0,1) is a uniform random number in the range [0,1].

5.4.3.7 Selection

We adopt the binary tournament selection, described in [9]. Hence, the island Gi,g
will be replaced by its newly mutated and migrant island Mi,g , to survive as a mem-
ber for the next generation g+ 1, under any of the following conditions:

• Gi,g is infeasible, but Mi,g is feasible,
• Both Gi,g and Mi,g are feasible, but f (Mi,g) < f (Gi,g),
• Both Gi,g and Mi,g are infeasible, but Viol(Mi,g) <Viol(Gi,g) (the island having

smaller constraint violation is preferred).

In order to impose the same degree of importance to all constraints, the maximum
violation value for each constraint in the whole population is used to normalize each
violated constraint calculated in (5.45):

Viol(Gi,g)=
p∑

j=1

ψ+
j (Gi,g)

ψmax(j)
(5.45)

where ψmax(j) is the greatest violation value for the constraint j .
The selection procedure is shown in Algorithm 3.

5.4.3.8 Elitism

To prevent the loss of the best islands, elitism is implemented as follows: the nelit
worst islands of the current generation are replaced by the nelit elite islands from the
previous generation (nelit is the elitism parameter).
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Algorithm 3: Selection

1 Compare Gi,g with the corresponding Mi,g vector

2 if (Viol(Gi,g)=Viol(Mi,g)= 0)) then
3 if (f (Mi,g) < f (Gi,g)) then
4 Gi,g+1 =Mi,g

5 else
6 Gi,g+1 =Gi,g

7 end

8 else
9 if Gi,g is feasible and Mi,g is infeasible then

10 Gi,g+1 =Gi,g

11 else
12 if both Gi,g and Mi,g are infeasible then
13 if (Viol(Mi,g) <Viol(Gi,g)) then
14 Gi,g+1 =Mi,g

15 else
16 Gi,g+1 =Gi,g

17 end

18 end

19 end

20 end

5.5 Experimental Results and Analysis

We compared the results of our methods with a constrained version of DE, GA, and
PSO algorithms, developed for the purpose of this study. The constraint handling
approach is the same as that used in the constrained versions of BBO (Sect. 5.4.3.3).

The constrained DE, called CDE, proceeds exactly as the original algorithm pre-
sented in [19], but the selection operator is replaced by the binary tournament selec-
tion described in Sect. 5.4.3.7.

An adaptation of the Standard PSO (SPSO 075) to the constrained optimization
problem is also implemented. In the initialization phase, the positions and velocities
of all individuals are randomly generated. At each iteration, particle i adjusts its
position Gi and velocity Vi along each dimension � of the search space, based on
the best position it has encountered so far in its flight (also called the personal best

5http://www.particleswarm.info/Programs.html.

http://www.particleswarm.info/Programs.html
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“pbest” for the particle) and the best position found by any other particle in its topo-
logical neighborhood (global best “gbest”). Suppose that Pi,g represents pbest of
the ith particle at generation g and Gi,g+1 represents the newly generated position
of the ith particle at generation g+ 1. In the standard PSO, Pi,g+1 =Gi,g+1 only if
f (Gi,g+1) < f (Pi,g). While in CPSO, pair-wise solutions are compared based on
feasibility rules described in [9]. That is, Pi,g will be replaced by Gi,g+1 under any
of the following conditions: (i) Pi,g is infeasible, but Gi,g+1 is feasible, (ii) both
Pi,g and Gi,g+1 are feasible, but f (Gi,g+1) < f (Pi,g), (iii) both Pi,g and Gi,g+1
are infeasible, but Viol(Gi,g+1) < Viol(Pi,g) where Viol(·) is the constraint viola-
tion value of an infeasible solution, described in Eq. (5.45).The global best gbest is
updated, in a similar way.

The constrained real-coded GA (CGA) creates new offspring from the members
of the population using the genetic operators (crossover and mutation) and places
these individuals in a new population. The replacement strategy used takes into con-
sideration both the fitness and the constraint violation, as described in Sect. 5.4.3.7.

5.5.1 Parameter Configuration

A population size of 100 individuals was used for each of the algorithms on each
of the test problems, except for the CPSO algorithm, where the population size was
set to (10 + 2 ∗ L2), as for the standard PSO (SPSO 07), where L is the problem
dimension (number of sensors).

For the CBBO-DE, 2-Stage-CBBO-DE, and CDE algorithms, the mutation scale
factor F = 0.5 and the crossover control parameter CR = 0.9 were chosen, as rec-
ommended in [22]. These algorithms use the DE/rand/1/bin mutation schema. For
CBBO algorithm, we used the same parameter setting as in [21], the only excep-
tion being the population size set at 100 and the mutation applied with a probabil-
ity of 0.01. For the CGA, the Simulated Binary Crossover Operator (SBX) vari-
ant [10] was used with a crossover rate of 0.9. Individuals for producing offspring
were chosen using a binary tournament selection strategy after evaluating the fit-
ness value and the constraint violation of each individual in the selection pool (q.v.
Section 5.4.3.7). For the mutation, a rate of 0.05 was used.

Each algorithm was run 30 times. The algorithms stopped when the maximum
number of evaluations, fixed at 25,000, had been exhausted. For the stochastic rank-
ing algorithm, the recommended parameter settings [20] was retained.

Simulations have been carried out for various values of parameters: fusion er-
ror probability (ε), correlation degree (ρ), and number of sensors (L), and the
performances of the different algorithms are shown for different combinations:
ρ = {0,0.01,0.1,0.5}. ρ = 0 represents the uncorrelated case. The fusion error
threshold ε takes its values in {0.1,0.05,0.01,0.001}. The observation signal-to-
noise ratio (SNR) γ0 was set at 10 dB. The channel fading coefficients Hi followed
an exponential distribution (i.e., Rayleigh fading) with a unit mean. Without loss of
generality, the channel fading coefficients were ranked in the descending order such
that H1 ≥H2 ≥ · · · ≥HL.
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5.5.2 Numerical Results

The statistical features (best, mean, and standard deviation values) of the best fea-
sible solutions obtained after 30 independent runs for each case study are used to
evaluate the performance of the competing algorithms.

Table 5.1 shows a comparison of the performances of the competing algorithms
for different values of ε and L in the uncorrelated case (ρ = 0). We can see that the
CBBO-DE algorithm emerged the best candidate algorithm for L= 10 and L= 50
sensors in terms of the best “mean” results. For the 20 sensors case, the 2-Stage-
CBBO-DE produces the best “mean” results. In terms of the “best” fitness function
values, it can be inferred that the CBBO-DE algorithm outperformed the other com-
peting algorithms in the case of a large number of sensors for the different values of
error probability at the fusion center. For L = 20, better “best” results were found
by CPSO in two cases and by CGA in one case.

Table 5.2 shows a comparison of the numerical results of the competing algo-
rithms when the observations are correlated in the case of L= 10 sensors for differ-
ent values of the fusion error probability ε and the degree of correlation ρ. As illus-
trated in this table, CBBO-DE is found to be the best performing algorithm since it
produced better “mean” results in 7 cases out of a total of 12. In terms of the “best”
fitness function value, out of these 12 test cases, the CGA algorithm could achieve
the best results in 5 cases, while the CBBO-DE, 2-Stage-CBBO-DE, and CPSO al-
gorithms obtained the “best” fitness function value in 2 cases and the CBBO-DE in
3 cases. In the case of small probability of error at the fusion center (ε = 0.001), the
CGA algorithm emerged as the best performer for the different values of ρ.

For L= 20 sensors, as shown in Table 5.3, CBBO-DE emerged as the best per-
former in terms of the best “mean” and the “best” fitness function values.

The results for L = 50 sensors, in the case of correlated observations, are pre-
sented in Table 5.4. The CBBO algorithm has emerged as the best performer since
it obtained the best “mean” results in 10 cases out of a total of 12.

From these sets of performance evaluations, it can be generally concluded that,
when the observations are correlated (Tables 5.2, 5.3, and 5.4), the performance
improvement for the CBBO-DE algorithm, compared to the other competing algo-
rithms, was larger for L = 10 and L = 20 sensors than for L = 50 sensors, where
the solution quality of CBBO is superior.

Table 5.5 shows the amplifier gain allocated to each sensor for L= 10 sensors.
The second column of this table gives the analytical optimal schedule for i.i.d. obser-
vations (ρ = 0), where 0 means a node should remain inactive in order to provide
significant system power savings. These analytical results are obtained using the
method of Lagrange multipliers [27]. From these results, one can observe that more
power is distributed to sensors with good channel fading coefficients and less power
is allocated to sensors with poor channels. Consequently, one can decide whether a
sensor is in transmit mode or in silent mode.
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Table 5.1 Numerical results when the observations are i.i.d. (ρ = 0): L = {10,20,50} sensors,
γ0 = 10 dB, and ε = {0.1,0.05,0.01,0.001}
ε CBBO CBBO-DE 2-Stage-CBBO-DE CDE CGA CPSO

L= 10

0.1 Mean 3.17935E+00 3.17263E+00 3.17271E+00 3.17320E+00 3.21051E+00 3.24232E+00

Std. 4.57E–03 2.00E–04 2.65E–04 6.51E–04 2.84E–02 1.14E–01

Best 3.17249E+00 3.17233E+00 3.17239E+00 3.17241E+00 3.17971E+00 3.17230E+00

0.05 Mean 5.98759E+00 5.97219E+00 5.97222E+00 5.97237E+00 5.99619E+00 6.04440E+00

Std. 9.55E–03 1.21E–05 3.35E–05 1.06E–04 5.88E–02 1.57E–01

Best 5.97339E+00 5.97218E+00 5.97218E+00 5.97221E+00 5.69023E+00 5.97221E+00

0.01 Mean 1.51470E+01 1.51303E+01 1.51303E+01 1.51304E+01 1.51400E+01 1.53088E+01

Std. 7.95E–03 3.97E–05 2.93E–05 8.73E–05 1.14E–01 2.33E–01

Best 1.51315E+01 1.51303E+01 1.51303E+01 1.51303E+01 1.45632E+01 1.51303E+01

0.001 Mean 4.00000E+01 4.00000E+01 4.00000E+01 4.00000E+01 3.99942E+01 4.00000E+01

Std. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.09E–02 0.00E+00

Best 4.00000E+01 4.00000E+01 4.00000E+01 4.00000E+01 3.98277E+01 4.00000E+01

L= 20

0.1 Mean 1.94366E+00 1.93989E+00 1.93780E+00 1.93974E+00 1.96652E+00 2.30705E+00

Std. 5.71E–03 8.72E–03 3.51E–03 3.19E–03 1.65E–02 6.06E–01

Best 1.93454E+00 1.93265E+00 1.93325E+00 1.93487E+00 1.94606E+00 1.93249E+00

0.05 Mean 3.65694E+00 3.65123E+00 3.64836E+00 3.65344E+00 3.68518E+00 3.88634E+00

Std. 1.03E–02 9.77E–03 3.00E–03 5.18E–03 1.16E–02 2.44E–01

Best 3.64379E+00 3.64179E+00 3.64406E+00 3.64553E+00 3.66486E+00 3.64469E+00

0.01 Mean 9.12602E+00 9.12339E+00 9.11030E+00 9.12452E+00 9.18365E+00 9.24245E+00

Std. 1.35E–02 1.55E–02 6.17E–03 1.01E–02 3.74E–02 2.11E–01

Best 9.10347E+00 9.10605E+00 9.10173E+00 9.10742E+00 9.09650E+00 9.09706E+00

0.001 Mean 2.16507E+01 2.16480E+01 2.16406E+01 2.16622E+01 2.17666E+01 2.25538E+01

Std. 1.87E–02 2.95E–02 1.37E–02 2.11E–02 4.37E–02 1.27E+00

Best 2.16205E+01 2.16116E+01 2.16250E+01 2.16340E+01 2.17037E+01 2.15973E+01

L= 50

0.1 Mean 9.05946E–01 8.73121E–01 1.00626E+00 1.05196E+00 9.40606E–01 1.67135E+00

Std. 1.30E–02 8.70E–03 3.97E–02 5.69E–02 1.83E–02 1.40E+00

Best 8.84219E–01 8.67229E–01 9.38443E–01 9.68506E–01 9.15533E–01 8.80470E–01

0.05 Mean 1.71838E+00 1.67661E+00 1.84009E+00 1.91955E+00 1.77156E+00 3.12401E+00

Std. 1.38E–02 6.22E–03 3.58E–02 7.73E–02 2.51E–02 1.65E+00

Best 1.69353E+00 1.66688E+00 1.76722E+00 1.79779E+00 1.72290E+00 1.85115E+00

0.01 Mean 4.41536E+00 4.38484E+00 4.63694E+00 4.74516E+00 4.53181E+00 5.69718E+00

Std. 2.80E–02 4.76E–02 6.48E–02 9.81E–02 4.15E–02 1.05E+00

Best 4.37703E+00 4.34752E+00 4.53116E+00 4.58753E+00 4.46010E+00 4.46465E+00

0.001 Mean 1.00421E+01 1.00120E+01 1.04841E+01 1.06984E+01 1.03002E+01 1.11533E+01

Std. 3.72E–02 4.17E–02 1.04E–01 1.11E–01 6.43E–02 1.25E+00

Best 9.96900E+00 9.91934E+00 1.02832E+01 1.05173E+01 1.02028E+01 9.97487E+00
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Table 5.2 Comparison of numerical results when the observations are correlated: ρ =
{0.01,0.1,0.5}, L= 10 sensors, γ0 = 10 dB, and ε = {0.1,0.05,0.01,0.001}
ε CBBO CBBO-DE 2-Stage-CBBO-DE CDE CGA CPSO

ρ = 0.01

0.1 Mean 3.19130E+00 3.18336E+00 3.18356E+00 3.18470E+00 3.21675E+00 3.26267E+00

Std. 5.02E–03 5.02E–03 3.94E–04 6.74E–04 1.72E–02 1.28E–01

Best 3.18434E+00 3.18305E+00 3.18307E+00 3.18322E+00 3.18874E+00 3.18300E+00

0.05 Mean 6.01119E+00 5.99738E+00 5.99740E+00 5.99758E+00 6.00321E+00 6.10566E+00

Std. 1.06E–02 1.89E–05 4.78E–05 1.40E–04 1.18E–01 2.23E–01

Best 5.99912E+00 5.99736E+00 5.99758E+00 5.99742E+00 5.37139E+00 5.99748E+00

0.01 Mean 1.52741E+01 1.52553E+01 1.52553E+01 1.52554E+01 1.53046E+01 1.54702E+01

Std. 8.98E–03 9.41E–05 4.00E–05 7.17E–05 2.89E–02 3.62E–01

Best 1.52588E+01 1.52553E+01 1.52553E+01 1.52553E+01 1.52680E+01 1.52553E+01

0.001 Mean 4.00000E+01 4.00000E+01 4.00000E+01 4.00000E+01 3.99859E+01 4.00000E+01

Std. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.00E–02 0.00E+00

Best 4.00000E+01 4.00000E+01 4.00000E+01 4.00000E+01 3.96102E+01 4.00000E+01

ρ = 0.1

0.1 Mean 3.29369E+00 3.28340E+00 3.28385E+00 3.28434E+00 3.31745E+00 3.32138E+00

Std. 6.64E–03 1.12E–04 2.99E–04 7.08E–04 2.33E–02 8.00E–02

Best 3.28524E+00 3.28325E+00 3.28329E+00 3.28352E+00 3.29679E+00 3.28321E+00

0.05 Mean 6.25118E+00 6.23910E+00 6.23901E+00 6.23930E+00 6.27467E+00 6.28582E+00

Std. 5.71E–03 3.85E–05 1.76E–05 3.13E–04 2.15E–02 5.08E–02

Best 6.24318E+00 6.23900E+00 6.23898E+00 6.23910E+00 6.24694E+00 6.23913E+00

0.01 Mean 1.65806E+01 1.65620E+01 1.65624E+01 1.65625E+01 1.65821E+01 1.68063E+01

Std. 1.03E–02 3.56E–09 1.08E–04 1.99E–04 6.88E–02 4.75E–01

Best 1.65677E+01 1.65620E+01 1.65623E+01 1.65623E+01 1.62204E+01 1.65623E+01

0.001 Mean 4.00000E+01 4.90770E+01 4.00000E+01 4.00000E+01 3.99607E+01 4.00000E+01

Std. 4.77E–07 7.81E–04 0.00E+00 0.00E+00 2.08E–01 0.00E+00

Best 4.00000E+01 4.90210E+01 4.00000E+01 4.00000E+01 3.88388E+01 4.00000E+01

ρ = 0.5

0.1 Mean 3.87091E+00 3.85830E+00 3.85885E+00 3.85995E+00 3.90135E+00 3.90053E+00

Std. 6.49E–03 2.32E–04 4.53E–04 9.29E–04 2.64E–02 4.11E–02

Best 3.86102E+00 3.85800E+00 3.85827E+00 3.85840E+00 3.86301E+00 3.85817E+00

0.05 Mean 8.16317E+00 8.13610E+00 8.13608E+00 8.13644E+00 8.18067E+00 8.18731E+00

Std. 1.81E–02 8.04E–05 9.41E–05 3.28E–04 2.16E–02 9.29E–02

Best 8.13971E+00 8.13600E+00 8.13596E+00 8.13604E+00 8.14816E+00 8.13605E+00

0.01 Mean 3.49787E+01 3.43490E+01 3.49497E+01 3.49508E+01 3.50209E+01 3.51627E+01

Std. 1.89E–02 8.08E–07 4.45E–04 9.72E–04 4.67E–02 1.43E–01

Best 3.49545E+01 3.43480E+01 3.49490E+01 3.49492E+01 3.48397E+01 3.49499E+01

0.001 Mean 4.00000E+01 4.00000E+01 4.00000E+01 4.00000E+01 3.99640E+01 4.00000E+01

Std. 0.00E+00 0.00E+00 0.00E+00 8.26E–07 1.32E–01 0.00E+00

Best 4.00000E+01 4.00000E+01 4.00000E+01 4.00000E+01 3.92740E+01 4.00000E+01
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Table 5.3 Comparison of numerical results when the observations are correlated: ρ =
{0.01,0.1,0.5}, L= 20 sensors, γ0 = 10 dB, and ε = {0.1,0.05,0.01,0.001}
ε CBBO CBBO-DE 2-Stage-CBBO-DE CDE CGA CPSO

ρ = 0.01

0.1 Mean 1.94926E+00 1.93960E+00 1.94247E+00 2.01270E+00 1.96992E+00 2.19232E+00

Std. 9.26E-03 2.14E–03 2.14E–03 1.51E–02 1.24E–02 2.45E–01

Best 1.94131E+00 1.93760E+00 1.93938E+00 1.98330E+00 1.95234E+00 1.93730E+00

0.05 Mean 3.67103E+00 3.65590E+00 3.66186E+00 3.68830E+00 3.70072E+00 3.88189E+00

Std. 7.16E–03 9.74E–04 3.08E–03 3.05E–02 1.70E–02 2.47E–01

Best 3.66106E+00 3.65480E+00 3.65729E+00 3.65620E+00 3.67640E+00 3.65888E+00

0.01 Mean 9.19023E+00 9.16070E+00 9.17459E+00 9.18835E+00 9.22620E+00 9.41124E+00

Std. 1.18E–02 8.98E–04 4.59E–03 9.41E–03 1.25E–01 4.45E–01

Best 9.17263E+00 9.15980E+00 9.16595E+00 9.17181E+00 8.57142E+00 9.15913E+00

0.001 Mean 2.18956E+01 2.18420E+01 2.18784E+01 2.19148E+01 2.20025E+01 2.22904E+01

Std. 2.17E–02 3.99E–03 9.98E–03 2.30E–02 4.00E–02 8.45E–01

Best 2.18605E+01 2.18400E+01 2.18591E+01 2.18677E+01 2.19378E+01 2.18406E+01

ρ = 0.1

0.1 Mean 2.00287E+00 1.99050E+00 1.99530E+00 1.99980E+00 2.02247E+00 2.26079E+00

Std. 1.03E–02 1.32E–03 2.06E–03 5.18E–03 1.52E–02 2.22E–01

Best 1.99094E+00 1.98930E+00 1.99199E+00 1.99325E+00 1.99851E+00 1.99635E+00

0.05 Mean 3.81559E+00 3.79580E+00 3.80405E+00 3.80747E+00 3.84429E+00 4.07500E+00

Std. 8.52E–03 1.89E–03 3.07E–03 6.88E–03 1.62E–02 2.79E–01

Best 3.80046E+00 3.79400E+00 3.79833E+00 3.79842E+00 3.82339E+00 3.79367E+00

0.01 Mean 9.82097E+00 9.78940E+00 9.80599E+00 9.81877E+00 9.87166E+00 9.93990E+00

Std. 1.74E–02 9.19E–04 6.07E–03 9.16E–03 2.32E–02 2.00E–01

Best 9.79300E+00 9.78840E+00 9.79575E+00 9.80198E+00 9.82768E+00 9.78741E+00

0.001 Mean 2.43796E+01 2.43240E+01 2.43596E+01 2.43919E+01 2.45121E+01 2.51887E+01

Std. 2.30E–02 1.96E–03 1.02E–02 1.77E–02 5.04E–02 1.13E+00

Best 2.43481E+01 2.43230E+01 2.43418E+01 2.43649E+01 2.43882E+01 2.43241E+01

ρ = 0.5

0.1 Mean 2.31219E+00 2.30260E+00 2.31333E+00 2.31651E+00 2.33887E+00 2.49607E+00

Std. 6.19E–03 2.19E–03 4.87E–03 6.61E–03 1.41E–02 2.50E–01

Best 2.30151E+00 2.30070E+00 2.30616E+00 2.30666E+00 2.31180E+00 2.30100E+00

0.05 Mean 4.86493E+00 4.83570E+00 4.86189E+00 4.87636E+00 4.91358E+00 5.13300E+00

Std. 1.74E–02 2.71E–03 1.27E–02 1.04E–02 1.91E–02 3.81E–01

Best 4.84294E+00 4.83300E+00 4.84199E+00 4.85172E+00 4.87008E+00 4.83300E+00

0.01 Mean 1.59311E+01 1.58650E+01 1.59416E+01 1.59902E+01 1.59949E+01 1.60754E+01

Std. 2.17E–02 3.27E–03 2.47E–02 3.43E–02 1.41E–01 1.82E–01

Best 1.59008E+01 1.58620E+01 1.59021E+01 1.59305E+01 1.55192E+01 1.58611E+01

0.001 Mean 6.16194E+01 6.06850E+01 6.16165E+01 6.16119E+01 6.16867E+01 6.59741E+01

Std. 1.47E–02 6.51E–02 1.77E–02 8.82E–03 1.98E–01 2.93E+00

Best 6.15896E+01 6.05660E+01 6.15852E+01 6.15966E+01 6.06504E+01 6.17442E+01
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Table 5.4 Comparison of numerical results when the observations are correlated: ρ =
{0.01,0.1,0.5}, L= 50 sensors, γ0 = 10 dB, and ε = {0.1,0.05,0.01,0.001}
ε CBBO CBBO-DE 2-Stage-CBBO-DE CDE CGA CPSO

ρ = 0.01

0.1 Mean 9.02118E–01 1.48094E+00 9.96784E–01 1.04841E+00 9.44415E–01 1.87671E+00

Std. 7.89E–03 4.68E–01 3.22E–02 4.42E–02 1.88E–02 1.36E+00

Best 8.88871E–01 8.79589E–01 9.42663E–01 9.62202E–01 9.14747E–01 8.76651E–01

0.05 Mean 1.72662E+00 2.86366E+00 1.84437E+00 1.92668E+00 1.78391E+00 3.44436E+00

Std. 1.63E–02 8.37E–01 3.30E–02 7.91E–02 2.36E–02 1.75E+00

Best 1.69629E+00 1.69376E+00 1.77337E+00 1.78682E+00 1.74011E+00 1.68829E+00

0.01 Mean 4.44819E+00 6.05320E+00 4.67165E+00 4.79533E+00 4.57978E+00 5.69284E+00

Std. 2.27E–02 7.98E–01 5.41E–02 1.04E–01 3.94E–02 9.10E–01

Best 4.40527E+00 4.39060E+00 4.55601E+00 4.63914E+00 4.46567E+00 4.39809E+00

0.001 Mean 1.01404E+01 1.07460E+01 1.05199E+01 1.07251E+01 1.03588E+01 1.12213E+01

Std. 3.91E–02 3.31E–01 6.85E–02 1.35E–01 6.17E–02 1.41E+00

Best 1.00660E+01 1.01680E+01 1.03465E+01 1.04958E+01 1.02185E+01 1.00242E+01

ρ = 0.1

0.1 Mean 9.34620E–01 3.08130E+00 1.03799E+00 1.08992E+00 9.80039E-01 1.74470E+00

Std. 1.14E–02 4.30E–01 3.06E–02 5.93E–02 1.76E–02 1.08E+00

Best 9.15381E–01 2.43080E+00 1.11310E+00 9.97765E–01 9.35467E–01 9.80038E–01

0.05 Mean 1.80867E+00 4.37700E+00 1.94203E+00 2.01247E+00 1.88165E+00 2.88210E+00

Std. 1.06E–02 6.28E–01 3.55E–02 7.45E–02 2.94E–02 1.15E+00

Best 1.78997E+00 3.37890E+00 1.86992E+00 1.88792E+00 1.83228E+00 1.79232E+00

0.01 Mean 4.75915E+00 6.65320E+00 4.98549E+00 5.10913E+00 4.89356E+00 5.96645E+00

Std. 2.04E–02 1.01E+00 6.12E–02 7.77E–02 4.51E–02 1.17E+00

Best 4.71623E+00 5.49050E+00 4.82053E+00 4.98578E+00 4.80740E+00 4.89258E+00

0.001 Mean 1.09317E+01 1.16690E+01 1.14322E+01 1.16480E+01 1.12121E+01 1.16309E+01

Std. 3.99E–02 5.81E–01 1.15E–01 1.56E–01 7.61E–02 8.29E–01

Best 1.08731E+01 1.10910E+01 1.12102E+01 1.14085E+01 1.09675E+01 1.07873E+01

ρ = 0.5

0.1 Mean 1.62230E+00 1.67224E+00 1.23836E+00 1.60562E+00 1.55067E+00 2.00899E+00

Std. 1.80E–01 3.81E–01 3.62E–02 3.35E–01 4.21E–01 1.57E+00

Best 1.38950E+00 1.11521E+00 1.19164E+00 1.17440E+00 1.10691E+00 1.10187E+00

0.05 Mean 2.77030E+00 3.24208E+00 2.52436E+00 3.12709E+00 3.03643E+00 3.18564E+00

Std. 1.51E–01 6.00E–01 3.95E–02 5.28E–01 6.66E–01 1.33E+00

Best 2.56400E+00 2.36221E+00 2.45759E+00 2.48189E+00 2.35095E+00 2.38701E+00

0.01 Mean 7.19150E+00 7.42100E+00 7.22594E+00 8.20864E+00 8.03350E+00 7.80258E+00

Std. 1.50E–01 3.24E–01 6.71E–02 9.17E–01 1.20E+00 1.04E+00

Best 6.96500E+00 6.91000E+00 7.02768E+00 7.17023E+00 6.78723E+00 6.77276E+00

0.001 Mean 1.88410E+01 1.84490E+01 1.92334E+01 2.05440E+01 2.02199E+01 1.91415E+01

Std. 1.20E–01 3.68E–02 1.68E–01 1.12E+00 1.73E+00 4.94E–01

Best 1.86090E+01 1.83800E+01 1.89643E+01 1.92448E+01 1.84280E+01 1.84879E+01
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Table 5.5 The analytical and numerical optimal solutions to the gain allocation when the obser-
vations are i.i.d. (ρ = 0) and when the observations are correlated: ρ = {0.01.0.1.0.5}, L = 10
sensors, γ0 = 10 dB, and ε = 0.1

Sensors Analytical CBBO CBBO-DE 2-Stage-CBBO-DE CDE CGA CPSO

ρ = 0

S1 1.0362 1.0461 1.0379 1.0362 1.0376 0.9988 1.036

S2 0.9972 0.9995 0.9967 0.9992 0.9982 0.9612 0.9976

S3 0.8834 0.8833 0.8842 0.8879 0.8819 0.9542 0.8829

S4 0.4823 0.4784 0.4781 0.4783 0.4819 0.4735 0.4805

S5 0.3021 0.2641 0.3009 0.2866 0.2968 0.3077 0.3053

S6 0 0.0196 0.0252 0.0258 0.0301 0.1352 0.0033

S7 0 0.0044 0.0131 0 0.0085 0.0985 0.0127

S8 0 1.11E–08 0.0035 0.0025 0 0.009 0

S9 0 9.11E–04 3.90E–05 0 0.0096 5.22E–04 4.45E–04

S10 0 0.0035 0.0017 0.0036 0.0019 0.023 3.25E–04

Poptimal 3.1723 3.1725 3.1723 3.1723 3.1724 3.1797 3.1723

ρ = 0.01

S1 1.0170 1.0387 1.0355 1.0389 1.0047 1.0381

S2 0.9884 0.9959 0.9916 0.9894 1.0346 0.9905

S3 0.9079 0.8833 0.8908 0.8824 0.8842 0.8843

S4 0.4842 0.4816 0.4877 0.4732 0.5196 0.4842

S5 0.3191 0.3146 0.3093 0.3483 0.1860 0.3283

S6 0.0368 0.0359 0.0082 0.0270 0.0154 0.0026

S7 0.1062 0.0038 0.0169 0.0206 0.1470 0.0058

S8 1.46E–08 0.0043 4.52E–04 0.0088 0.0114 2.04E–04

S9 4.02E–10 0.0030 0 9.91E–04 0.0216 1.73E–04

S10 1.04E–08 0.0018 0.0021 0 0.0041 0.0019

Poptimal 3.1843 3.1830 3.1831 3.1832 3.1887 3.1830

ρ = 0.1

S1 1.0470 1.0422 1.0439 1.0460 1.0909 1.0460

S2 0.9783 1.0422 0.9635 0.9566 0.9850 0.9625

S3 0.8558 0.8781 0.8784 0.8774 0.7900 0.8754

S4 0.4833 0.5156 0.5090 0.5207 0.4292 0.5088

S5 0.4087 0.4474 0.4564 0.4583 0.4104 0.4494

S6 0.1606 0.1652 0.1589 0.1207 0.3136 0.1883

S7 0.2704 0.0155 0.0297 0.0933 0.2444 9.12E–05

S8 1.46E–08 1.95E–07 5.75E–04 0 0.0328 0

S9 3.34E–09 2.92E–09 4.69E–04 0 0.0086 3.56E–05

S10 2.83E–09 0 0.0051 0 0.0199 0

Poptimal 3.2852 3.2832 3.2833 3.2835 3.2968 3.2832
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Table 5.5 (Continued)

Sensors Analytical CBBO CBBO-DE 2-Stage-CBBO-DE CDE CGA CPSO

ρ = 0.5

S1 1.1575 1.1331 1.1346 1.1309 1.0956 1.1332

S2 0.8641 0.8202 0.8218 0.8375 0.7977 0.8334

S3 0.7925 0.8655 0.8579 0.8633 0.8290 0.8456

S4 0.7110 0.1630 0.2273 0.1443 0.0462 0.2466

S5 0.6426 0.6246 0.6178 0.6078 0.8519 0.5773

S6 0.4774 0.4436 0.4932 0.4826 0.2903 0.5087

S7 8.99E–09 0.7289 0.6948 0.7138 0.7070 0.7152

S8 1.53E–09 0 0.0093 0.0057 0.0027 2.32E–05

S9 4.51E–09 4.98E–04 0.0062 0.0064 0.0874 6.46E–04

S10 3.95E–09 0 0.0172 0 0.1389 0.0018

Poptimal 3.8610 3.8580 3.8583 3.8584 3.8630 3.8582

5.6 Conclusion

The present work has considered the problem of optimal power scheduling for the
decentralized detection of a deterministic signal in a WSN with power and band-
width constrained distributed nodes. An efficient optimal power allocation scheme
has the potential of suitably turning off the nodes with poor channels and providing
significant system power savings. In this work, three variants of the BBO algorithm
have been proposed for the optimal power allocation in WSNs. These algorithms
have been compared with three other competing algorithms, i.e., three separately
developed constrained versions of the DE, GA, and PSO algorithms. It has been
shown that the CBBO-DE algorithm has outperformed the other competing algo-
rithms for several types of simulation case studies, including both independent local
observation cases and correlated observation cases. It has also been observed that,
in the case of a large number of sensors, CBBO emerged as the best performer.

Finally, in this work, the fusion center is given the information on channel condi-
tion, assumed to obey Rayleigh fading. For the situation where the channel condition
is changing rapidly, the power allocation needs to be updated dynamically to ensure
an optimum performance. However, if the changes are reasonably slow, there will
be enough time to properly update the power allocation. It can be argued that for ap-
plications operating in a dynamic environment, there are other potential alternatives
using methods for dynamic optimization.
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Chapter 6
Joint Optimization of Detection and Tracking
in Adaptive Radar Systems

Murat Şamil Aslan and Afşar Saranlı

Abstract A promising line of research attempts to bridge the gap between a de-
tector and a tracker by means of considering jointly optimal parameter settings for
both of these subsystems. Along this fruitful path, this chapter focuses on the prob-
lem of detection threshold optimization in a tracker-aware manner so that a feed-
back from the tracker to the detector is established to maximize the overall system
performance. Special emphasis is given to the optimization schemes based on two
non-simulation performance prediction techniques for the probabilistic data associ-
ation filter, namely, the modified Riccati equation (MRE) and the hybrid conditional
averaging algorithm. The possible improvements are presented in non-maneuvering
target tracking where a number of algorithmic and experimental evaluation gaps
are identified and newly proposed methods are compared with the existing ones
in a unified theoretical and experimental framework. Furthermore, for the MRE-
based dynamic threshold optimization problem, a closed-form solution is proposed.
This solution brings a theoretical lower bound on the operating signal-to-noise ratio
concerning when the tracking system should be switched to the track-before-detect
mode.

6.1 Introduction

Radar systems are one of the most important remote sensing equipments available
today. They are used everywhere including civilian, military, and space applications,
and being all-weather they are indispensable for long-range surveillance.

Radar systems typically radiate a pulse of electromagnetic energy and capture
the returning echo for the purpose of determining the location, velocity, and other
state information of a “target” of interest. To achieve this goal, the captured electro-
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magnetic echo is first converted to an electrical signal and passed through a signal
processing stage which includes signal conditioning1 [57] and detection. This is
usually followed by a tracking (also called information processing [6] or data pro-
cessing [12, 57]) stage as illustrated in Fig. 6.1.

With this traditional treatment of viewing the overall radar system as a concate-
nation of two subsystems, the radar research has been conducted along two distinct
paths, namely “detection theory” and “tracking theory” with not much interaction
between them. The tracking literature mostly assumed that the detection (or signal
processing) stage is a prior and isolated process, providing measurements for the
tracking stage. Given a set of such measurements, most of the studies aim to opti-
mize the tracking filter based on either the minimum mean square error (MMSE) or
the maximum a posteriori (MAP) criterion [9]. Similarly, researchers in radar sig-
nal processing literature usually assumed no incoming information from the down-
stream tracking algorithms. Their common optimization approach in the detection
phase is first to specify a desired (or acceptable) false alarm probability (PdFA) for
the detector and then maximize the probability of detection (PD) with this con-
straint [65]. The value of PdFA is usually selected in view of the radar processor’s
computational capacity in handling the maximum number of false alarms. Although
this seems a reasonable criterion, it is only a heuristic one. It neither accounts for
the properties of the downstream tracker, nor it cares for an overall performance
objective.

A reasonable and challenging question is whether parameter decisions made for
the detector and tracker subsystems are optimal for the combined performance of the
overall radar system. Intuitively, one can easily see that thresholding in the detection
phase might have significant influence on downstream tracking performance. In one
extreme case where no thresholding is applied, targets are detected perfectly but
together with lots of false alarms. In the other extreme where the threshold is set
very high, false alarms are greatly reduced but together with a high probability of
missing the targets.

Another equally important question is whether these subsystem level parame-
ters have to be statically optimized or should they rather be adaptive in space and
time. One strongly feels that some adaptation is necessary since the motion of the
target changes both the spatial context and the Signal-to-Noise Ratio (SNR). Yet
another important concern in adaptive optimization of these subsystem level param-
eters might be the operating regime (i.e., transient or steady-state) of the tracking
filter. Depending on how far from its steady-state operating region it is, the filter
could, for example, be fed with more or less false alarms and missed detections.

In this chapter, we focus on answers to these exciting questions. In particular,
we consider the interaction between the detector and the tracker subsystems and
focus on how we can optimally select the operating PFA value2 of the detector in

1This includes the processing blocks prior to detection such as analog-to-digital (A/D) conversion,
beamforming, pulse compression, clutter filtering, and Doppler processing [57].
2This in turn determines the detector operating point (PFA,PD) for a given SNR and hence the
detection threshold.
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a tracker-aware manner so that the performance of the downstream tracker, hence
of the combined target state estimation system, is maximized. This structure con-
stitutes a form of feedback from the downstream tracker to the upstream detector
as illustrated in Fig. 6.1. We strongly believe that this is an important subarea of
the research consisting of steps that are necessary for the ultimate goal of cognitive
radar [25] which also includes the upper feedback path in Fig. 6.1, i.e., adaptive
waveform optimization.

6.1.1 Related Work

The covariance of the filter’s estimation error is one of the most important per-
formance measures for the downstream tracking. So, as a good starting point, re-
searchers first attempted to form an objective function which links their optimization
variables3 to a scalar function of this covariance, e.g., its trace or determinant. How-
ever, the problem with the tracking filters operating under clutter (or measurement
origin uncertainty [10]) is that their covariance expressions depend on the measure-
ments they received, hence are related to the optimization variables through stochas-
tic recursions. This makes finding a solution to the concerned optimization prob-
lem difficult in two aspects. First, it makes difficult to apply classical optimization
tools to the problem due to the stochastic nature of the objective function. Second,
from the causality point of view, optimizing the variables through measurement-
dependent objective functions makes the resulting solution impractical as this opti-
mal setting of parameters are supposed to produce these measurements again. These
two reasons motivated researchers to seek possibly approximate but measurement-
independent (i.e., deterministic) covariance recursions for these filters. Finding a
deterministic covariance recursion can also be viewed as making a non-simulation
performance prediction (NSPP) for the filter under concern, as such a recursion
helps evaluating (approximately) the performance of the filter without recourse to
time-consuming Monte Carlo runs.

The line of study devoted to the optimization of the radar detector by minimiz-
ing a cost function based on such a deterministic covariance recursion has been
pioneered by Fortmann et al. [20] where they considered the Probabilistic Data As-
sociation Filter (PDAF) [10] as a tracking filter. The main contributions of [20] are
the so-called Modified Riccati Equation (MRE), which provides an approximate
deterministic covariance recursion for the PDAF, and tracker operating character-
istic (TOC) curves, which are by-product of the steady-state solution of the MRE.
Fortmann et al. have shown that for a given SNR, one can determine the optimal
detector operating point by finding the tangential intersection point between TOC
curves of the tracking filter and the corresponding receiver operating characteristic

3In this chapter, we consider only the detection threshold as our optimization variable. A more
general set including also the transmitting waveform as in the case of cognitive radar [25] is out
of the scope of the present chapter.
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Fig. 6.2 The algorithmic space of NSPP-based tracker-aware detector threshold optimization
schemes for tracking a nonmaneuvering target with the PDAF. Here, the abbreviations TOC, LUT,
LS, and CF correspond to the “tracker operating characteristic”, “look-up table”, “line search”, and
“closed-form”, respectively [2]

(ROC) curve of the detector. The introduced MRE provides a steady-state NSPP
for the PDAF in clutter, very similar to how the standard Riccati equation (SRE)
does for the Kalman filter in clutter-free environments. We call this approach to
tracker-aware detector threshold optimization as NSPP-based static [2] approach
(called STATIC-MRE-TOC in Fig. 6.2). Belonging to the same category is a set
of studies by Li et al. [46] where they have improved the idea in [20] by intro-
ducing a different deterministic covariance recursion (an NSPP tool) for the PDAF,
called the Hybrid Conditional Averaging (HYCA) algorithm. Interestingly its ap-
plication to optimization of detection thresholds using a look-up-table procedure
(called STATIC-HYCA-LUT in Fig. 6.2) has made limited use of the results [48].
A neat comparison of MRE-based and HYCA-based static threshold optimization
using TOC curves has been recently made in [2].

When the steady-state analysis is inappropriate, such as in time-varying or non-
linear systems, a suggested solution is to apply the same methodology by iterating
the MRE or HYCA not to their steady-state but for n steps into the future. In the
case of n= 1, this leads to a dynamic [2] (also called adaptive [22]) threshold op-
timization scheme. In [22], Gelfand et al. proposed two such problems, namely,
prior and posterior threshold optimization, where they minimize the mean-square
state estimation error over detection thresholds, based on the measurements up to
the previous (prior) and current (posterior) time steps, respectively. It was further
shown that for the prior case the problem reduces into a single line search [22]
(DYNAMIC-MRE-LS in Fig. 6.2). Due to the claimed mathematical intractability
of obtaining a full closed-form solution, in [22] this problem was solved using iter-
ative numerical optimization techniques, such as the Golden-Section and Fibonacci
Search methods [11]. In [5], the same problem is solved in an approximate closed-
form (DYNAMIC-MRE-CF in Fig. 6.2). The solution was applicable for a special
case of Neyman–Pearson (NP) detector and based on a functional approximation in-
troduced by [40]. It was shown that this approximate closed-form solution leads to
considerable reduction in computational complexity without any notable loss in per-
formance [4, 5]. A comparison of aforementioned NSPP-based detector threshold
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optimization schemes given in Fig. 6.2 has been presented in [2]. Apart from a com-
prehensive experimental survey, the primary contribution of [2] was the establish-
ment of a unified experimental and theoretical framework to categorize and compare
these schemes as static or dynamic threshold optimization as given in Fig. 6.2.

It is worth noting that another fundamentally different approach to the detection
threshold optimization problem has been considered in the literature by Willett et
al. [68]. This method, while being a perfectly valid alternative approach, differs
from all NSPP-based approaches in that it is based on an optimal Bayesian detector
framework where the prior hypothesis probabilities required by the detector are fed
back from the posterior information state4 of the PDAF.

In all aforementioned studies, which are the NSPP-based methods in Fig. 6.2,
i.e., [2, 5, 20, 22, 48], and the one presented in [68], it is implicitly assumed that the
model describing the target motion dynamics is fairly well known to the filter (non-
maneuvering target assumption). This assumption has been relaxed in [3] where a
threshold optimization problem is formulated and solved for tracking maneuvering
targets by extending the previous ideas applicable to the PDAF to multiple model
filtering structures which use PDAFs as modules. A recent study on the same line
has been presented by Wang et al. in [66] where instead of a Gaussian mixture as in
[3], a moment-matched single Gaussian has been used in the cost function.

A line of recent articles [17, 23, 26, 27] show the growing interest into the con-
cept of cognitive radar [24, 25], which aims to make a radar system smarter and
more adaptive by dynamically optimizing the “transmitter” as well. We should note,
however, that steps towards this goal are not entirely new. In the context of overall
system optimization, the optimization of transmitter waveforms was first introduced
in [39] and applied to the PDAF in [41]. Another study was [32] where the design of
the waveform and detection threshold for range and range-rate tracking in clutter is
formulated and numerically solved as a finite horizon optimization problem. A good
summary of waveform optimization for tracking is given in [67].

6.1.2 Chapter Outline

In the present chapter, we consider these exciting theoretical and experimental steps
towards the goal of spatially and temporally adaptive radar. In particular, we focus
on the interaction between the detector and the tracker subsystems and consider the
problem of tracker-aware optimization of detector threshold per target track and per
resolution cell. We build on two important NSPP techniques for the PDAF, namely,
MRE of Fortmann [20] and HYCA of Li [46]. There are two common properties
of the optimization problems that we consider: First, they all aim at maximizing
the performance of a tracking filter over detection thresholds.5 Second, the cost

4See, e.g., [9, pp. 373].
5This in essence results in a feedback from the tracker to the detector as illustrated in Fig. 6.1.
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(or objective) functions of the optimization problems are all based on an offline
approximation of the filter’s covariance, which is obtained by either MRE or HYCA.
Therefore, in Sect. 6.2, we briefly present these two important NSPP techniques for
the PDAF. Based on that, in Sect. 6.3, tracker-aware detector threshold optimization
problems are defined and their solution methodologies are explained. In Sect. 6.4,
these algorithms are compared through a number of simulation experiments. Finally,
in Sect. 6.5, the important results of the chapter are summarized and possible future
studies from the present point are discussed.

6.2 Offline Performance Evaluation of Tracking Algorithms

Involving both continuous and discrete uncertainties,6 real-world tracking is a hy-
brid [45] estimation problem. Tracking algorithms which operate under these un-
certainties are necessarily stochastic. As the performance of these algorithms can-
not be evaluated confidently with a single run, the common practice for performance
evaluation is to run an extensive number of Monte Carlo simulations and take the
ensemble average of a performance measure over the runs.

Although this methodology is very simple and straightforward, it might be very
time-consuming and costly in some cases. More importantly, if a design, an opti-
mization,7 or sensitivity analysis of a tracking algorithm is of interest, Monte Carlo
simulations based approach does not give much insight into the problem. In that
case, analytical expressions and deterministic tools are much more useful. So, the
techniques for performance evaluation that do not require expensive stochastic sim-
ulations are needed. There are numerous works done in this context in the literature.
However, the available tools for offline evaluation of the performance can roughly
be classified into three categories [49]:

• Error Bounding Techniques: These techniques are the most popular offline per-
formance evaluation tools. They provide Cramér–Rao like bounds on the perfor-
mance. There are lots of works done under different titles (possibly having much
in common), such as nonlinear filtering [19, 38, 63, 64], filtering with intermittent
observations [14, 15, 19, 28, 56, 61], tracking in clutter [29, 34, 70], bearing-only
tracking [16, 34, 69], multitarget tracking [18, 33, 43, 58], and maneuvering target
tracking [30, 69]. Rather than predicting the filter performance, these techniques
put some best-achievable borders for the problem at hand. The tightness of such

6Examples of continuous uncertainties are the inaccuracy in the measurements and “small” per-
turbations in the target motion which are usually modeled as an additive measurement noise and
process noise, respectively. These types of uncertainties are well-understood and solved in the lit-
erature over the past four decades under the title of classical state estimation [1, 9, 42]. However,
major challenges of tracking arise from two discrete-valued uncertainties: measurement origin
uncertainty, which is, in the words of Li and Bar-Shalom [46], the crux of tracking, and target
maneuver which appears as an abrupt and “large” deviation in the target motion.
7In this chapter, we consider this aspect, i.e., tracker-aware optimization of detection thresholds.
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bounds is usually not known and questionable. In this aspect, they can provide at
most semi-quantitative measures for offline performance evaluation of a tracking
filter.

• Analytic Model Approach: The second class of tools is referred to as the analytic
model approach [49]. In this methodology, the aim is to establish some (possibly
approximate) analytic relationships between the performance measure and some
“key” parameters of the algorithm (see, e.g., [8, 51, 59]). Although these tech-
niques provide analytically useful expressions, they are obtained under several
assumptions and approximations due to complexity of the big picture. Therefore,
their accuracy is still not as good as of the performance prediction approach.

• Performance Prediction Approach: This is an algorithmic approach. It aims at
obtaining an offline (or a deterministic) algorithm for calculation of one of the
performance measures of the tracking filter, usually the estimation error covari-
ance. Developing such a deterministic algorithm for the covariance propagation
is in general a hard task. However, this methodology is proven to produce much
more accurate results compared to the previous two techniques mentioned above
(see, for example, [20, 46], and [47]).

In this section (and also in the entire chapter), our focus will be on the perfor-
mance prediction category which we refer to as non-simulation performance pre-
diction (NSPP) techniques. The key point in NSPP techniques is to obtain a de-
terministic recursion for the estimation error covariance, which then can be used
to quantify the filter’s performance offline. In the simplest case, when there is no
clutter and no variation in target dynamics (i.e., no “target maneuver” in tracking
terminology), the Kalman filter [37] already has a deterministic covariance recur-
sion in the form of a (matrix) Riccati equation [1]. However, for the more complex
situations in which there is clutter or the target dynamics is time-varying, the error
covariance calculation of the filter under concern is no longer deterministic. This is
due to the presence of discrete type uncertainties introduced into the problem, which
makes the covariance calculation dependent on the measurements received, hence
stochastic.

To be able to make an NSPP for the filters in these situations, there are two main
methodologies proposed so far. The first methodology, which also pioneered the
NSPP topic, is the work of Fortmann et al. [20] where both types of uncertainties
(discrete and continuous) in the problem are globally averaged out. In this pioneer-
ing work [20], the authors applied this methodology for the Probabilistic Data As-
sociation Filter (PDAF) [7] and obtained a Riccati-like recursion for the determin-
istic calculation of its covariance. This recursion was named as the Modified Riccati
Equation (MRE) [20]. The MRE approach is further extended to multi-sensor case
(Multisensor PDAF—MSPDAF) by Frei [21], and recently studied in the context of
NSPP for Kalman filtering with intermittent observations [14, 15, 61].

Inspired by the work of Fortmann et al., the second methodology was proposed
by Li et al. in [46] where only the continuous uncertainties are averaged, while the
discrete uncertainties are retained in the propagation of the covariance. Similar to
Fortmann et al, in the proposal paper of their algorithm [46], they first derive it for
the PDAF and name it as the Hybrid Conditional Averaging (HYCA) algorithm.
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However, they also note and show that rather than being applicable only for the
PDAF, HYCA is actually a methodology that can be applied for NSPP of various
hybrid filters, such as the Interacting Multiple Model (IMM) filter [47], MSPDAF
[21], the Nearest Neighbor Filter (NNF) [50], and the Strongest Neighbor Filter
(SNF) [44].

In the following subsections, we will first construct our state-space representation
of target dynamics and measurement system, then we briefly explain the two NSPP
approaches for the PDAF, namely, MRE [20] and HYCA [46].

6.2.1 Target and Measurement Models

We assume the following models for the target motion and measurement process:

• The state of the target of interest, of dimension nx , is assumed to make its transi-
tion in time according to the equation

x(k + 1)= F(k)x(k)+G(k)v(k), k = 0,1, . . . , (6.1)

where {v(k)}, called process noise, is a white sequence with v(k)∼N (0,Q(k)).8

The linear system dynamics represented by the state transition matrix F(k)
and process noise gain matrix G(k) are assumed to be known for all k (non-
maneuvering target assumption). The initial state x(0), which is generally un-
known, is modeled as x(0)∼N (x̂(0|0),P (0|0)) where the mean x̂(0|0) and the
covariance P(0|0) are assumed to be known.

• The true (i.e., target originated) measurement, of dimension nz, is given by

z(k)=Hx(k)+w(k), k = 1,2, . . . , (6.2)

where {w(k)}, called the measurement noise, is a white sequence with w(k) ∼
N (0,R(k)) and H , assumed constant, is the measurement matrix linking the
state and the measurement vectors.

• The two noise sequences {v(k)} and {w(k)} and the initial state x(0) are assumed
to be mutually uncorrelated for all k.

• At each time step k, the true measurement defined in (6.2) is available with a
known detection probability possibly less than unity, i.e., PD(k)≤ 1.

• False alarm or clutter lead to false measurements. The locations of these mea-
surements are modeled as random variables which are independent identically
distributed (i.i.d.) with uniform spatial distribution over the validation gate,
which is a hyper-ellipsoid in the measurement space, defined by [6, pp. 95]

VG(k, γG)�
{
z(k) : [z(k)− ẑ(k|k − 1)

]T
S−1(k)

[
z(k)− ẑ(k|k − 1)

]≤ γG
}

(6.3)

8The common notation x ∼ N (x̄,Σ) means that “the random variable x is normally (Gaussian)
distributed with mean x̄ and covariance Σ .”
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Fig. 6.3 Block diagrams of two offline covariance recursion algorithms for the PDAF: HYCA
[46] and MRE [20]. The corresponding output of each algorithm, denoted by P̄HYCA(k|k) and
P̄MRE(k|k), is a deterministic approximation to the filter calculated covariance, P (k|k) of the
PDAF

where γG is the gate threshold. Here, ẑ(k|k− 1) is the measurement predicted by
the tracking filtering algorithm, which is in our case the PDAF, and S(k) is the co-
variance associated with the difference z(k)− ẑ(k|k− 1), which is the innovation
corresponding to the target-originated measurement.

• Assuming that λ(k) and V (k) are the spatial clutter density and the volume of the
validation gate at time step k, respectively, the number of false measurements at
any time step k, denoted bymFk , is modeled as a random variable with probability
mass function (pmf) μF (mFk ;λ(k)V (k)) where μF (m; m̄) denotes the Poisson
pmf for the dummy variable m with mean m̄, i.e.,

μF (m; m̄)� e
−m̄m̄m

m! . (6.4)

6.2.2 NSPP Techniques for the PDAF

There exist two NSPP algorithms proposed so far for the PDAF, namely, MRE [20]
and HYCA [46]. The block diagrams of these offline covariance recursion algo-
rithms are given in Fig. 6.3. The steps of each algorithm are briefly summarized in
the following subsections.
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6.2.3 The Modified Riccati Equation (MRE)

Given P̄ (k|k − 1) at time step k − 1, one step recursion of MRE algorithm
produces P̄ (k + 1|k) at time step k. The recursion is initialized with P̄ (1|0) �
F(0)P (0|0)F T (0) + G(0)Q(0)GT (0). The algorithm consists of two main parts,
whose derivation details can be found in [20]:

(i) Covariance Update:

S̄(k)=HP̄ (k|k − 1)HT +R(k), (6.5)

W̄ (k)= P̄ (k|k − 1)HT S̄−1(k), (6.6)

V̄ (k)= cnzgnz
∣∣S̄(k)

∣∣1/2, (6.7)

q2(k)=QLUT
2

(
λV̄ (k),PD

)
, (6.8)

P̄ (k|k)= P̄ (k|k − 1)− q2(k)W̄ (k)S̄(k)W̄
T (k)� P̄MRE(k|k), (6.9)

(ii) Covariance Prediction:

P̄ (k + 1|k)= F(k)P̄ (k|k)FT (k)+G(k)Q(k)GT (k). (6.10)

Here, the output of the algorithm P̄ (k|k) � P̄MRE(k|k) is a deterministic approx-
imation to the filter calculated covariance P(k|k) of the PDAF, i.e., P̄MRE(k|k) ≈
E[P(k|k)|Zk−1]. At each time step k, the value of q2(k) can be obtained from a two
dimensional (2D) LUT, QLUT

2 (·, ·) via interpolation where QLUT
2 (·, ·) is prepared

offline and only once from the Information Reduction Factor (IRF) given in (6.11):

q2
(
λV̄ (k),PD

)
� PD

cnz

(2π)nz/2

∞∑

mk=1

e−λV̄ (k)(λV̄ (k))mk−1

(mk − 1)!
(
nz

gnz

)mk−1

× I2
(
λV̄ (k),PD,mk

)
(6.11)

with

I2
(
λV̄ (k),PD,mk

)
�
∫ g

0
· · ·
∫ g

0

exp(−r2
1 )r

2
1

b(λV̄ (k),PD)+∑mk
j=1 exp(−r2

j /2)

× (r1r2 · · · rmk )nz−1 dr1 dr2 · · ·drmk , (6.12)

b
(
λV̄ (k),PD

)
� (2π)nz/2 λV̄ (k)

cnzg
nz

(1− PDPG)
PD

(6.13)

where cnz � πnz/2/Γ (nz/2+1), with Γ (·) being the gamma function, is the volume
of the nz-dimensional unit hypersphere (c1 = 2, c2 = π, c3 = 4π/3, etc.), and g �√
γG is referred to as “number of sigmas” (standard deviations) of the gate and
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linked to the gate probability9 via chi-square tables. The relationship between λ
and the probability of false alarm (PFA) is given by λ � PFA/VC where VC is the
resolution (or detection) cell volume.

6.2.4 The Hybrid Conditional Averaging (HYCA) Algorithm

The block diagram of the HYCA (see Fig. 6.3) contains two delay elements cor-
responding to two main recursions in the algorithm: the recursion of the predic-
tion covariances {P̄ (k|k − 1,mk−1)}Nmk−1=0 and that of the marginal probabilities

{Pr{mk−1}}Nmk−1=0. Therefore, given these two at time step k− 1, one step recursion

of HYCA produces {P̄ (k + 1|k,mk)}Nmk=0 and {Pr{mk}}Nmk=0 at time step k. The

recursions are initialized with P̄ (1|0,m0)� F(0)P (0|0)F T (0)+G(0)Q(0)GT (0)
and Pr{m0}� 1/(N + 1) for m0 = 0,1, . . . ,N . The algorithm consists of four main
parts, whose derivation details can be found in [46]:

(i) Covariance Update: For each mk−1 = 0,1, . . . ,N , and for each mk =
0,1, . . . ,N ,

S̄(k,mk−1) = HP̄ (k|k − 1,mk−1)H
T +R(k), (6.14)

W̄ (k,mk−1) = P̄ (k|k − 1,mk−1)H
T S̄−1(k,mk−1), (6.15)

V̄ (k,mk−1) = cnzgnz
∣∣S̄(k,mk−1)

∣∣1/2, (6.16)

u2(k,mk) = ULUT
2

(
λV̄ (k,mk−1),PD,mk

)
, (6.17)

P̄ (k|k,mk−1,mk) =
(
P̄ (k|k − 1,mk−1)

− u2(k,mk)W̄ (k,mk−1)S̄(k,mk−1)W̄
T (k,mk−1)

)
,

(6.18)

Pr{mk|mk−1} =
[

1+ PDPG
(

mk

λV̄ (k,mk−1)
− 1

)]

×μF
(
mk;λV̄ (k,mk−1)

)
, (6.19)

where μF (·; ·) is the Poisson pmf defined previously in (6.4). At each time
step k, the value of u2(k,mk) can be obtained from a three dimensional (3D)
LUT,ULUT

2 (·, ·, ·) via interpolation whereULUT
2 (·, ·, ·) is needed to be prepared

offline and only once from the IRF given in (6.20) (which is given in [31] after

9The gate probability (PG) is defined as the probability that the target-originated measurement falls
inside the validation gate given that the target is detected.
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some manipulations on the original form introduced in [46])

u2
(
λV̄ (k,mk−1),PD,mk

)= mk

b(λV̄ (k,mk−1),PD)+ 1
cnz
( 2π
g2 )

nz/2PGmk

× 1

nz

(
nz

gnz

)mk
I2
(
λV̄ (k,mk−1),PD,mk

)

(6.20)

where I2(·, ·, ·) and b(·, ·) are defined in (6.12) and (6.13), respectively.
(ii) Covariance Lumping:

Pr{mk} =
N∑

mk−1=0

Pr{mk|mk−1}Pr{mk−1}, (6.21)

Pr{mk−1|mk} = Pr{mk−1}Pr{mk|mk−1}
Pr{mk} , (6.22)

P̄ (k|k,mk)=
N∑

mk−1=0

P̄ (k|k,mk−1,mk)Pr{mk−1|mk}. (6.23)

(iii) Covariance Prediction:

P̄ (k + 1|k,mk)= F(k)P̄ (k|k,mk)FT (k)+G(k)Q(k)GT (k). (6.24)

(iv) Output Covariance Calculation: This is an optional part in the sense that it is
only for output purposes—it is not a part of the algorithm recursions:

P̄HYCA(k|k)=
N∑

mk=0

P̄ (k|k,mk)Pr{mk}. (6.25)

Similar to the MRE case, here, the output of the algorithm P̄HYCA(k|k) is a
deterministic approximation to the filter calculated covariance P(k|k) of the
PDAF.

6.3 NSPP-Based Detector Threshold Optimization

The NSPP techniques mentioned in the previous section have found several im-
portant application areas in the literature such as detector threshold optimization
[20, 22, 48], waveform optimization [32, 39, 41, 53, 62], multisensor tracking (as a
sensor selection criterion) [52, 54, 55], multitarget tracking (for the occlusion prob-
lem) [36], and multifunction radar resource allocation [35]. In this section, we focus
on the area of detector threshold optimization. We consider specifically the PDAF
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as a tracking filter. The NSPP-based detector threshold optimization for the PDAF
case appeared in the works [5, 20, 22, 48], and [2] which are all given in Fig. 6.2. In
this section, we define the underlying optimization problems of these approaches.
The presentation is given as in Fig. 6.2, i.e., in two parts, static and dynamic opti-
mization schemes. The section ends with a comparison of these approaches via a
simulation scenario.

6.3.1 Static Threshold Optimization (STOP)

The NSPP-based static threshold optimization problem is [2] to determine the opti-
mal P ∗FA value such that

P ∗FA = arg min
PFA

{
fS[P̄NSPP]

}

subject to PD = fROC(PFA, ζ ) and 0≤ PFA ≤ 1,
(6.26)

where fS : Rnx×nx → R is an appropriate scalar measure deduced from a matrix
(such as trace, determinant, or a matrix norm) and P̄NSPP is the steady-state covari-
ance matrix obtained by propagating one of the NSPP recursions to its steady-state,
i.e.,

P̄NSPP � lim
k→∞ P̄NSPP(k|k), (6.27)

where P̄NSPP(k|k) corresponds to the output of either the HYCA or the MRE algo-
rithm at time step k. The equality constraint of the optimization problem is nothing
but an ROC curve relation which links PD to PFA, or vice-versa, through current
SNR (ζ ), and the inequality constraint ensures that the resultant operating false
alarm value is a valid probability.

Remark 6.1 Note that this optimization is performed offline. The MRE and
HYCA recursions are initialized as explained in the Sects. 6.2.3 and 6.2.4. In
the practical implementation, one cannot iterate the recursion given in (6.27)
indefinitely. One should check whether the value of a suitably chosen norm of
the difference matrix between two consecutive covariance matrices is below
a chosen threshold to conclude that the recursion is converged, or whether a
maximum number of iterations is reached to conclude on its divergence.

The optimization problem given in (6.26) is a line search. Provided that the cost
function is unimodal, the global optimum point can be found directly applying well-
known numerical techniques, such as the Golden-Section or Fibonacci Search meth-
ods [11]. For each function evaluation at an arbitrary point P iFA, one needs to obtain
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Fig. 6.4 The flow of static threshold optimization (STOP) for graphical (TOC-curve) approach.
The procedure given in this figure is repeated for different SNR values to obtain the optimum
operating curve in the PFA–PD plane. Then, this optimal operating curve is used together with
ROC curve relation to find the STOP curve which is the ultimate goal of STOP. The STOP curve
provides an SNR-dependent optimum PFA setting which makes the threshold optimization online
possible under varying SNR conditions. A numerical example is given in Sect. 6.4.1

the steady-state covariance matrix P̄NSPP from (6.27) for the (P iFA,P
i
D) pair where

P iD � fROC(P
i
FA, ζ ).

Another alternative is to utilize a graphical (i.e., TOC-curve) approach. In this
case, we first construct the scalar performance measure surface fS(PFA,PD) by
evaluating the cost function at each point of a sufficiently fine mesh grid on the
PFA–PD plane. Then, we obtain the contours of this surface, which constitute the
TOC curves [20]. Finally, for the current SNR value, we find the tangential point
of the corresponding operating ROC curve to the TOC curves. This point is the
optimal (P ∗FA,P

∗
D) pair satisfying the ROC curve relation, hence the solution to the

constraint optimization problem defined in (6.26). The procedure is summarized in
Fig. 6.4.

Although this graphical technique is computationally more expensive, from the
practical applicability point of view, it is not a problem since we make the optimiza-
tion offline and only once. Furthermore, the graphical approach is more preferable
compared to the direct utilization of the line search algorithms, as it allows easier
interpretation and better insight into the problem. For both approaches, however, at
some points in the PFA–PD plane, cost function evaluation may be problematic due
to non-existence of the limit given in (6.27). This causes an instability region [20]
in the PFA–PD plane.

The TOC-curve approach was first used in [20] for solving the static threshold
optimization based on MRE, leading to the threshold optimization scheme STATIC-
MRE-TOC in Fig. 6.2. The same approach is applied to the HYCA case in [2]
which results in the optimization scheme STATIC-HYCA-TOC. A numerical ex-
ample comparing these two approaches is given in Sect. 6.4.1.
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6.3.2 Dynamic Threshold Optimization (DTOP)

A general form of NSPP-based dynamic threshold optimization problem is defined
as [2]

P ∗FA(k)= arg min
PFA

{
fS
[
P̄NSPP(k|k)

]}

subject to PD(k)= fROC
(
PFA(k), ζ(k)

)
and 0≤ PFA(k)≤ 1.

(6.28)

Note that the dynamic threshold optimization differs only from its static counterpart
in making the optimization not in the steady-state, but at every time step k. This
optimization is performed online. Different from the static threshold optimization,
now, the MRE and HYCA recursions are initialized at every time step with the
online-calculated covariance of the PDAF.

6.3.2.1 MRE-Based Dynamic Threshold Optimization

The problem formulation based on the MRE approach was first proposed in [22] as
the so-called prior detector threshold optimization:

P ∗FA(k)= arg min
PFA

{
E
[∥∥x(k)− x̂(k|k)∥∥2∣∣Zk−1]}

subject to PD(k)= fROC
(
PFA(k), ζ(k)

)
and 0≤ PFA(k)≤ 1,

(6.29)

where x̂(k|k) is the state estimated by the PDAF at time step k and Zk−1 is the
cumulative set of validated measurements10 up to k− 1 (i.e., prior to k).

Lemma 6.1 The optimization problem given in (6.29) is equivalent to the one given
in (6.30) with the choices of fS[·] = tr{·} and P̄NSPP(k|k)= P̄MRE(k|k) where tr{·}
is the trace operator. Furthermore, it can be reduced to the equivalent optimization
problem of the form:

P ∗FA(k)= arg max
PFA

q2
(
λ(k)V (k),PD(k)

)

subject to PD(k)= fROC
(
PFA(k), ζ(k)

)
and 0≤ PFA(k)≤ 1,

(6.30)

where q2(·, ·) is the IRF given in (6.11), λ(k) � PFA(k)/VC is the clutter density,
and V (k)� cnzgnz |S(k)|1/2 is the online-calculated (validation) gate volume of the
PDAF at time step k.

10The measurement z(k) is said to be a validated measurement, if it is inside a validation gate
defined in (6.3).
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Proof The cost function given in (6.29) can be rewritten as

J (k,PFA)= E
[
tr
{∥∥x(k)− x̂(k|k)∥∥2}∣∣Zk−1]

= E
[
tr
{(
x(k)− x̂(k|k))T (x(k)− x̂(k|k))}∣∣Zk−1]

= E
[
tr
{(
x(k)− x̂(k|k))(x(k)− x̂(k|k))T }∣∣Zk−1]

= tr
{
E
[(
x(k)− x̂(k|k))(x(k)− x̂(k|k))T ∣∣Zk−1]}

= tr
{
E
[
E
[(
x(k)− x̂(k|k))(x(k)− x̂(k|k))T ∣∣Zk]∣∣Zk−1]}

= tr
{
E
[
P(k|k)|Zk−1]}

≈ tr
{
P̄MRE(k|k)

}

= tr
{
P(k|k − 1)

}− q2
(
λ(k)V (k),PD

)
tr
{
W(k)S(k)WT (k)

}
,

where the first equality is due to the property that the trace of a scalar is itself, the
third one is due the property that tr{AB} = tr{BA}, the fourth one is due to linearity
of tr{·} and E[·] operators, and the fifth one follows from the smoothing property [9]
of expectations. Note that W(k)S(k)WT (k) ≥ 0 implies tr{W(k)S(k)WT (k)} ≥ 0,
and q2(λ(k)V (k),PD) is the only term that depends on PFA. Hence the minimiza-
tion of J (k,PFA) can be achieved by maximizing q2(λ(k)V (k),PD) over PFA,
which completes the proof. �

Remark 6.2 We experimentally observe that choosing any other scalar mea-
sures for the function fS[·] from the set {| · |,‖ ·‖1,‖ ·‖2,‖ ·‖∞,‖ ·‖F } results
in the same optimization problem given in (6.30) where the elements of the
set are the determinant, 1-norm (the largest column sum), 2-norm (the largest
singular value), ∞-norm (the largest row sum) and Frobenius-norm of a ma-
trix, respectively.

Due to mathematical intractability, the problem given in (6.30) was solved by uti-
lizing some line search algorithms that require only the evaluation of the cost func-
tion (e.g., Golden-Section or Fibonacci Search methods) [22]. We call this scheme
as DYNAMIC-MRE-LS in Fig. 6.2.

Lemma 6.2 (A Closed-Form Solution [5]) An approximate closed-form solution
for the MRE-based dynamic threshold optimization can be found for a special type
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of Neyman–Pearson detector under HOGSQL
I assumption11 as

P ∗FA(k)=
{ [0.37NC(k)(ζ − 1.57)](1+ζ )/(0.57−ζ ) if ζ ≥ 1.57+ 1/[0.37NC(k)],

1 otherwise,
(6.31)

where NC(k)� V (k)/VC is the number of resolution cells enclosed by the valida-
tion gate at time k of the PDAF.

Proof A functional approximation for the IRF in (6.11) was proposed in [40] as

q2
(
λV̄ (k),PD

)≈ q̂2
(
λV̄ (k),PD

)= 0.997PD

1+ 0.37P−1.57
D λV̄ (k)

. (6.32)

The ROC curve relation for the Neyman–Pearson (NP) detector under HOGSQL
I is

given by [65]

PD = P 1/(1+ζ )
FA . (6.33)

Using (6.32) and (6.33) in solving the constraint optimization problem defined in
(6.30), after some elaboration, results in the closed-form solution given in (6.31).
A more detailed explanation can be found in [5]. �

We refer to this closed-form solution given in (6.31) as DYNAMIC-MRE-CF in
Fig. 6.2. This expression gives some useful insights into dynamic detection thresh-
old optimization. Consider, e.g., the plot of the optimal PFA surface as a function of
ζ and NC which is illustrated in Fig. 6.5(a) where the third data dimension (opti-
mal PFA values) are represented by colors. Note that the optimization consistently
suggests increasing PFA when the SNR decreases or the filter goes from its tran-
sient operation to its steady-state operation.12 Note also that, considering a practical
operating region, where SNR values are below 20 dB, the optimization suggests
considerably higher PFA values than the ones used commonly in practice (i.e., be-
tween 10−8 and 10−4 [57]). Similar values like 10−8 are only suggested when the
SNR is very high (>60 dB) and the gate volume is large, i.e., in the transient phase
of the filter. This clearly shows that the practically chosen PFA values are far from an
optimal setting in terms of the overall radar system tracking performance. The main

11This covers homogeneous and Gaussian background detector noise, a Swerling-I target fluctu-
ation and square-law detection scheme. In the radar detection theory, such assumptions are made
frequently when obtaining the ROC curves for a specific detector [65]. We refer to this joint as-
sumption shortly as HOGSQL

I .
12It can be argued that a decreasing value of NC , namely decreasing the number of resolution
cells falling inside a validation gate, suggests that the gate volume (hence the Gaussian hyper-
ellipse suggested by the filter covariance) is diminishing. This in turn suggests the convergence of
the filter to its steady-state although this may not be guaranteed to be the correct state estimate.
Conversely, by the same argument, a large value of NC suggests a large gate volume, which in turn
suggests that the filter is comparatively in its transient phase.
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Fig. 6.5 (a) The surface of optimal PFA values as a function of ζ and NC , (b) PFA contours in the
practical operating region. Note that the shaded area in (b) corresponds to applying no thresholding
at all, where the whole system operates in track-before-detect (TBD) mode

reason for choosing considerably low PFA values in practice is the computational
limitations of the radar data processor in handling large numbers of false alarms.
Although this may still be of considerable concern today, it is our belief that dimin-
ishing silicon prices and increasing computational power will enable performance
optimal algorithms to be the choice over heuristic approaches. At low SNR values,
the tracking performance gain of operating at these high but optimal false alarm
values may be substantial as illustrated by the experimental results that follow.

A very interesting result of the proposed closed-form expression can also be
observed from Fig. 6.5. Namely, the solution can be viewed as a generalization of
the track-before-detect (TBD) approach suggested in the literature for very low SNR
scenarios [13, 60]. Note that in some portion of the NC–ζ plane PFA is set to 1. This
means that the optimal solution applies no thresholding on the raw radar signals,
effectively making a seamless and automatic transition to the TBD approach, which
is a degenerate case of the optimal setting given in (6.31).

6.3.2.2 HYCA-Based Dynamic Threshold Optimization

Inspired from the formulation for the MRE case by Gelfand [22], the dynamic
threshold optimization problem for HYCA case is formulated in [2] as

P ∗FA(k)= arg min
PFA

{
tr
{
P̄HYCA(k|k)

}}

subject to PD(k)= fROC
(
PFA(k), ζ(k)

)
and 0≤ PFA(k)≤ 1.

(6.34)

Lemma 6.3 The optimization problem given in (6.34), which is equivalent to the
one given in (6.28) with the choices of fS[·] = tr{·} and P̄NSPP(k|k)= P̄HYCA(k|k),
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can be reduced to

P ∗FA(k)= arg max
PFA

{
N∑

mk=0

u2
(
λ(k)V (k),PD(k),mk

)
π(mk)

}

subject to PD(k)= fROC
(
PFA(k), ζ(k)

)
and 0≤ PFA(k)≤ 1,

(6.35)

i.e., maximization of a weighted sum of information reduction factors for each pos-
sible values of mk with weights

π(mk)�
[

1+ PD(k)PG
(

mk

λ(k)V (k)
− 1

)]
μF
(
mk;λ(k)V (k)

)
(6.36)

where u2(·, ·, ·) and μF (·; ·) are the IRF given in (6.20) and the Poisson pmf defined
in (6.4), respectively.

Proof The proof is skipped. �

The optimization problem given in (6.35) is solved using line search algorithms,
e.g., the Fibonacci Search method in [2], which results in the scheme DYNAMIC-
HYCA-LS in Fig. 6.2.

6.4 Simulations

We consider the problem of tracking a single target in clutter using a 2D radar. The
target state vector is composed of the position and velocity components in East (ξ )
and North (η) directions:

x(k)�
[
ξ(k) ξ̇ (k) η(k) η̇(k)

]T
. (6.37)

The target performs a coordinated turn [9, pp. 467] with a constant and known turn
rate:

F =

⎡

⎢⎢
⎣

1 sin(ΩT )
Ω

0 − 1−cos(ΩT )
Ω

0 cos(ΩT ) 0 − sin(ΩT )
0 1−cos(ΩT )

Ω
1 sin(ΩT )

Ω
0 sin(ΩT ) 0 cos(ΩT )

⎤

⎥⎥
⎦ , G=

⎡

⎢⎢
⎣

T 2/2 0
T 0
0 T 2/2
0 T

⎤

⎥⎥
⎦ , (6.38)

where the turn rate is selected as Ω = 1 deg/s and the sampling period is T = 1 s.
Since we do not estimate the turn rate in the state vector, the state dynamics is
linear. This is adopted to decouple the maneuver problem from the clutter problem
on which our focus is. The process noise v(k)� [ vξ (k) vη(k) ]T is a zero-mean white
Gaussian random vector sequence with covariance matrix Q = I2×2q

2 where q =
0.1 m/s2 for all k and I2×2 denotes the 2× 2 identity matrix.
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Fig. 6.6 Scenario geometry: Assumed constant SNR target trajectories and location of the radar.
Measurements are taken from a radar located at the center of the target motion and assumed to
consist of the position values in East and North directions, i.e., z(k)� [ξm(k), ηm(k)]T . Note that
such a geometry ensures the range of the target to be constant during the simulation

Scenario geometry is shown in Fig. 6.6. Such an artificial scenario is selected to
have a constant SNR during the simulation, assuming that the SNR depends only on
range as ζ(r) = Cζ /r4 where Cζ is a constant representing all the other factors in
the SNR equation and r is the range to the target. To determine Cζ , ζ is assumed to
be 50 for 5 km, which yields Cζ = 3.125× 1016 m4.

Measurements are assumed to be in rectangular13 coordinates. The measurement
noise w(k)� [wξ (k) wη(k) ]T is a zero-mean white Gaussian random vector sequence
with covariance matrix

R =
[
(Δrξ /

√
12)2 0

0 (Δrη/
√

12)2

]
(6.39)

for all k, where Δrξ and Δrη are the range resolutions in East and North directions,
respectively and taken as Δrξ = Δrη = 50 m, which results in a resolution cell
volume of VC = 2500 m2. Note that the covariance matrix given in (6.39) is the
result of the assumption that the true measurement is uniformly distributed in the
resolution cell [6, pp. 472]. The a priori information about the state, i.e., the mean
x̂(0|0) and the covariance P(0|0) of the initial state x(0), is obtained by two point
differencing [9, pp. 247].

6.4.1 Static Threshold Optimization Based on MRE and HYCA
Algorithms

To apply static threshold optimization, TOC curves are first obtained for both MRE
and HYCA algorithms, as illustrated in the flow diagram in Fig. 6.4. The parameter

13Normally, a 2D radar provides polar measurements. A rectangular resolution cell is adopted to
have a linear measurement model.
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Fig. 6.7 STOP using TOC curves: (a) MRE case and (b) HYCA case. Note that the instability
region for the HYCA case has a slightly larger area than that of MRE. One can fit a line equation
for the optimum operating curves in both approaches. Then this equation, together with the ROC
curve relation, determines the STOP curve which can be used to find the optimum operating point
for an arbitrary SNR value

N of the HYCA algorithm is taken as 15. We run both recursions on a 500 × 500
regular PFA–PD grid. The borders of the grid are from 0 to 0.1 for PFA and from 0
to 1 for PD . Both recursions are run over each point in this grid until convergence.
As mentioned before, the recursions do not converge to a steady-state covariance
for some of the grid points, due to non-existence of the limit given in (6.27). This
causes an instability region [20] as illustrated in Fig. 6.7.

We define the scalar performance function (fS[·]) as the steady-state position
estimation error, i.e.,

fS[P̄NSPP]� σ ssPOS =
√
P̄ 11

NSPP + P̄ 33
NSPP (6.40)

where P̄ iiNSPP is the ith diagonal element of P̄NSPP. The TOC curves are obtained as
the contours of the corresponding performance measure surface. The superimposi-
tion of these curves onto the ROC curves is shown in Fig. 6.7 where the functional
form of the ROC curves is given by14

PD = P 1/(1+ζ )
FA . (6.41)

Note that the collection of optimum operating points for different SNR values, con-
sisting of the tangential points of TOC and ROC curves, are well-behaved. A line
fitting works quite well and results in approximations

PD =−9.523PFA + 1.002 for MRE, (6.42)

PD =−5.943PFA + 0.979 for HYCA. (6.43)

14This is valid for a special case of a NP detector under HOGSQL
I assumption.
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Fig. 6.8 STOP curves for
MRE and HYCA approaches.
Note that for a practical range
of operating SNR values, the
HYCA based approach
consistently suggests a higher
PFA. Note that the STOP
curves suggest that the
desired false alarm
probability of the detector
should be readjusted
according to SNR variations.
This is different from the
conventional approach in
which the desired false alarm
probabilities are fixed

Each of these optimum operating line equations can be combined with the ROC
curve relation given in (6.41) to obtain a relation between PFA and ζ as

P
1/(1+ζ )
FA + 9.523PFA − 1.002= 0 for MRE, (6.44)

P
1/(1+ζ )
FA + 5.943PFA − 0.979= 0 for HYCA. (6.45)

The numerical solution of these equations constitutes the static threshold optimiza-
tion (STOP) curves given in Fig. 6.8. The resulting overall system target tracking
performance corresponding to the two static methods is also of interest and is in-
vestigated in detail in subsequent experimental sections. At this point, however, it
can be observed that for a practical range of operating SNR values, HYCA-based
optimization consistently suggests a higher PFA, and therefore results in more false
detections for the radar processor to handle.15

6.4.2 Experiment 1: Comparison with Heuristic Approaches

In this experiment, we compare the tracking systems given in Table 6.1, each con-
sisting of a PDA tracking filter and a Neyman–Pearson (NP) front-end detector.

In the first three systems, the detectors use conventional (i.e., heuristically se-
lected) constant desired false alarm probabilities of PFA = 10−8, PFA = 10−6, and
PFA = 10−4, which are the typical values used in practice [57]. On the other hand,
the other systems utilize tracker-aware detectors for which the desired false alarm

15This is an important practical problem in the radar. Under excessive number of false detections,
the radar may initiate lots of false tracks. This causes the radar to allocate its resources, e.g., dwell
time, transmission power, unnecessarily and inefficiently.
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Table 6.1 Compared tracking systems

System Name Desired False Alarm Probability, PdFA

PDAKF-HEURISTIC-E8 PFA(k)= 10−8

PDAKF-HEURISTIC-E6 PFA(k)= 10−6

PDAKF-HEURISTIC-E4 PFA(k)= 10−4

PDAKF-STATIC-MRE [20] PFA(k) is set as given in Eq. (6.44)

PDAKF-STATIC-HYCA [2] PFA(k) is set as given in Eq. (6.45)

PDAKF-DYNAMIC-MRE [22] PFA(k) is set as given in Eq. (6.30)

PDAKF-DYNAMIC-HYCA [2] PFA(k) is set as given in Eq. (6.35)

probabilities are determined using MRE/HYCA-based static/dynamic threshold op-
timization. The dynamic optimizations given in (6.30) and (6.35) are solved us-
ing Fibonacci Search where we take the initial interval of uncertainty for PFA as
IPFA � [10−6,10−1] and the maximum error tolerance16 as ΔPFA � 10−7.

We choose four different constant SNR scenarios of 5, 10, 15 and 20 dB. In each
scenario, the target follows the corresponding constant SNR trajectory for 200 time
steps as illustrated in Fig. 6.6. That is, SNR is time-invariant for each scenario, but
from scenario to scenario we considered different constant SNR values. We have
conducted 500 Monte Carlo runs for each scenario and compared the algorithms
on a special performance plane where we consider two measures: the percentage of
lost tracks (a transient performance indicator) and steady-state RMS position error
(a steady-state performance indicator). The Track Loss Percentage (TLP) measure
is defined as TLP � NTL/NMC × 100 where NTL is the number of Monte Carlo
runs that result in track loss17 and NMC is the total number of Monte Carlo runs
performed. The other measure, steady-state RMS position error, is obtained by en-
semble averaging over only the “track-loss free” runs. The algorithm performances
on this plane are given in Fig. 6.9 for each SNR scenario considered. In these plots,
the lower left corner represents the ultimate performance, i.e., low TLP and low
steady-state RMS position error. Note that the points (algorithm performances) get
closer and eventually converge to the performance of the Kalman filter with perfect
data association, when SNR increases. We may conclude that threshold optimization
is less critical when the SNR is high, e.g., between 15 and 20 dB. On the other hand,

16Given an initial interval of uncertainty, [a, b] and the number of function evaluations, N , the
Fibonacci Search algorithm reduces the length of the uncertainty interval to (b− a)/FN+1, where
FN+1 is the (N+1)th number in the Fibonacci sequence {1,1,2, . . .}. Therefore, given the number
N , the length of the final uncertainty interval, so the maximum error in finding the extremum point,
is determined. Here, we do the other way around. That is, we specify the maximum error tolerance
that we are required to have at the end of the algorithm which in turn determines the minimum
required number of function evaluations, N .
17We accept that the track is lost for the ith Monte Carlo run if εiPOS > ρ where ρ �

√
tr{R} is the

measurement error level and εiPOS is the average position estimation error for the ith run.
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Fig. 6.9 Algorithms on the performance plane: The steady-state RMS position error versus TLP.
Here, the prefixes “H”, “S”, and “D” correspond to “heuristic”, “static”, and “dynamic” ap-
proaches, respectively. Note that, as SNR increases, the performance of the algorithms gets closer
to the best achievable performance point, the Kalman filter with perfect data association

in the lowest SNR case (see Fig. 6.9(a)), threshold optimization greatly improves the
performance.

If we zoom in this most critical lowest SNR case and consider other possi-
ble heuristic approaches whose desired false alarm probabilities are ranging from
PFA = 10−8 to PFA = 10−1, we get the whole performance trajectory shown in
Fig. 6.10. As shown, the DTOP schemes are the only algorithms whose perfor-
mances are located nearly at the lower left corner of the trade-off plane. Although
the static schemes have low steady-state RMS position error level, they may not
provide low TLP as shown in the figure. The dynamic optimization schemes have
better transient characteristic as compared to static ones. This is an important aspect
of DTOP schemes and leads to improved track loss performance. From the practical
point of view, it can be argued that having a lower low track loss percentage is more
critical than having a lower steady-state position error. So in that respect, DTOP
schemes seem to be more viable solutions in practice.
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Fig. 6.10 The performance
of the algorithms in 5 dB
case. At some portions of the
performance trajectory of
heuristic approaches, there
are sharp bends, resulting in a
significant change in the
performance. Therefore, in
general one cannot guarantee
a reliable performance with a
heuristic approach

Initial motivation to formulate the static and dynamic optimization methods
based on HYCA is due to its promise in modeling and therefore improving tran-
sient behavior of the overall system better than MRE. In experimental results, how-
ever, we could not observe this improvement to the extent hoped for. Formulating
and solving the detector threshold optimization problem based on either MRE or
HYCA does not result in a big difference in system performance.

The variation of the average operating PFA values suggested by the algorithms
over the considered SNR range is shown in Fig. 6.11. A common observation is that,
on the average, optimization algorithm suggested PFA values are all decreased when
SNR increases. This is consistent with the expectation and with the track-before-

Fig. 6.11 (a) The average operating PFA values suggested by the static and dynamic optimization
schemes and (b) those of the DTOP schemes as a function of SNR
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Table 6.2 Compared tracking systems

System Name Desired False Alarm Probability, PdFA

PDAF-OP-GOL [22] PFA(k)= arg maxPFA q2(λV (k),PD) (Golden-Section Search)

PDAF-OP-FIB [22] PFA(k)= arg maxPFA q2(λV (k),PD) (Fibonacci Search)

PDAF-OP PFA(k) is set as given in Eq. (6.31)

detect (TBD) literature which proposes using no thresholding under very low SNR
[13, 60].

An important aspect of practical applicability of DTOP schemes is their com-
putational complexities. The dynamic approaches are computationally much more
expensive than STOP approaches. This is mainly due to the iterative line search
algorithm involved. In the next experiment, we consider, in particular, MRE-based
dynamic threshold optimization problem and compare the line search based algo-
rithms proposed in [22] with the approximate closed-form solution of [5].

6.4.3 Experiment 2: Comparison of MRE-Based DTOP Schemes

The objective of this second experiment is to now make a comparison between on-
line optimal threshold selection methods only, in particular between the iterative
line-search based methods used in [22] and the approximate closed-form solution
proposed in [5].

We compare both the overall tracking performance and the computational com-
plexity of three optimal tracking systems given in Table 6.2. Each tracking system
consists of a PDA tracking filter and an NP front-end detector. In each system, the
optimal PFA value found by threshold optimization is fed to the detector at every
time step. The main differences between these tracking systems are their solution
methodology in solving the optimization problem defined in (6.30). For example,
PDAF-OP-GOL [22] and PDAF-OP-FIB [22] solve this problem using the Golden-
Section and Fibonacci Search methods, respectively. On the other hand, PDAF-OP
[5] solves the problem approximately in closed-form as given in (6.31). An example
comparative variation of the true cost function q2(λV (k),PD), where λ� PFA/VC ,
and its functional approximation q̂2(λV (k),PD) with respect to PFA is illustrated
in Fig. 6.12. Here, both cost functions are evaluated on the NP detector ROC curve
given in (6.41) and for V = 10VC and ζ = 10 dB values. Note that the true cost
function q2(λV (k),PD) is unimodal in the PFA range shown in Fig. 6.12. There-
fore, both line search algorithms converge to the global optimum of this function.
Note also that the global optimum found by the closed-form solution slightly differs
from the one of the actual function. At this point, we seek answers to the following
two questions:

• Is there any notable loss of tracking performance by solving the approximate
optimization problem rather than the original one?
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Fig. 6.12 Variation of the IRF q2(PFANC(k),PD) and its functional approximation
q̂2(PFANC(k),PD) over a NP detector ROC curve for NC = 10 and ζ = 10 dB case

• If no such loss is observed, what is the amount of computational gain obtained
by using a closed-form solution to the approximated problem as compared to
iterative solution of the original problem?

To answer these questions, we configure an experiment that is described in this
section. First, we note that the variation of both cost functions given in Fig. 6.12 is
best viewed in log-scale for the PFA axis. The use of a linear scale in PFA squeezes
the global optimum peaks in a very small interval so that they cannot be observed.
The same effect would also slow down the line search algorithms, hence resulting
in an unfair evaluation. This observation leads us to operate the two line search
algorithms not in linear but in logarithmic scale. That is, it is much more efficient
to search for the global optimum over the exponent term of PFA. Therefore, for
the iterative methods based on the Golden Section and Fibonacci Search, we take
the initial interval of uncertainty for the exponent of PFA as Ie = [−8,0] and the
tolerance of the search stop condition on the exponent as Δe = 0.01. We consider
5 constant SNR scenarios of 5,8,11,14,17 dB and perform 500 Monte Carlo runs
for each scenario. The simulation results are given in Fig. 6.13. Considering RMS
position errors, which are obtained from the track-loss free Monte Carlo runs, all the
filters exhibit similar performance. In terms of TLP, the performances are again very
close. Hence, as an answer to the first question mentioned above, we conclude that
the proposed closed-form solution does not imply a tracking performance penalty.
The superiority of PDAF-OP becomes obvious when we consider the execution
times (all simulations being run on the same hardware with all auxiliary processes
killed) given in Fig. 6.13(d). Note that PDAF-OP, which uses closed-form adaptation
scheme in detector threshold optimization, clearly outperforms PDAF-OP-GOL and
PDAF-OP-FIB approaches, which use one dimensional search algorithms for the
same task. The computational gains are significant.
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Fig. 6.13 Comparison of the tracking systems for Ie = [−8,0] and Δe = 0.01. Although there
is no notable difference in terms of RMS position error and TLP, the closed-form approach
(PDAF-OP) is computationally much more efficient than the iterative approaches

For the iterative search methods, the computation time critically depends on num-
ber of function evaluations which is determined by Ie and Δe . For this particular
selection of these parameters, the gain in terms of computational power is (approx-
imately) as much as 115 times. To obtain a fairer comparison, we attempted to
observe the trade-off between the tracking performance and computation times by
changing the stopping tolerance parameter. Since we have already observed that the
proper setting of PFA becomes more crucial for low SNR conditions, a very low
SNR scenario of (5 dB) is chosen for this comparison and the same experiment is
repeated for Ie = [−8,0] and stopping tolerance values of Δe = {0.1,1,2,3,4}.
The corresponding computational gains are approximately {85,66,64} times for
Δe = {0.1,1,2}. For the other tolerance values Δe = {3,4}, the line search algo-
rithms produce unacceptable results and the optimization fails. Therefore, we con-
clude that even for the crude tolerance case of Δe = 2, the closed-form solution is
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approximately 64 times more efficient than the iterative search algorithms. Note that
a very crude stopping tolerance usually obtains an arbitrary point near the mid-point
of the initial search interval rather than the true maximum point. This behavior can
be expected to impact performance especially when the maximum lies close to the
interval boundaries, such as the one illustrated in Fig. 6.12.

6.5 Conclusion and Future Directions

In this chapter, a theoretical and experimental framework has been presented for
joint optimization of detector and tracker subsystems. This exciting problem, which
can be considered within the context of a more general topic of cognitive radar, is
called tracker-aware detection threshold optimization by the authors.

The problem and possible improvements are presented in non-maneuvering tar-
get tracking domain, particularly for the PDAF case. There were some prior attempts
[20, 22, 48] to this problem, but a comparison of these solution schemes in a uni-
fied framework was not available in the literature until [2]. After categorizing these
attempts as static and dynamic optimization schemes, a comprehensive compari-
son of these schemes is presented in a unified experimental and theoretical frame-
work. Contrary to expectations, the results concluded that only marginal gains can
be achieved by HYCA-based approaches as compared to MRE-based ones. More-
over, it is observed that there exists a trade-off between having low track loss per-
centage (TLP) and having low steady-state tracking error.18 The dynamic schemes
are found to be well-located in this trade-off by providing considerably low TLP
and low level of steady-state estimation error. The cost paid for this achievement
is the computational complexity. An approximate closed-form solution proposed in
[5] partially overcomes this issue for the MRE-based dynamic optimization scheme.
Although the solution is given only for the Neyman–Pearson detector case, in au-
thors’ opinion, it can be applied for other practically used detection systems, which
mimic asymptotically the NP detector, such as the Cell Averaging Constant False
Alarm Rate (CA-CFAR) system. Apart from its computational efficiency, the pro-
posed closed-form solution also gives some useful insights into the problem. The
most important implication is that it provides a theoretical lower bound on the de-
tection SNR concerning when the whole tracking system should be switched to the
track before detect (TBD) mode.

For the future research directions, the NSPP algorithms for other tracking filters,
such as NNF or SNF, which are already available in the literature can be applied to
the detection threshold optimization problem. Furthermore, new NSPP algorithms
can also be proposed. Especially, the one for the IMM-PDAF for tracking maneu-
vering targets deserve some attention.

An interesting and also a challenging research direction is for the case of tracking
multiple targets. When two tracks corresponding to two targets overlap, optimal
determination of the detection threshold seems to be a challenging problem.

18These measures can be seen also as transient vs. steady-state performance, respectively.
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Another important point to note is the problem of an unknown SNR situation.
In all the detection optimization schemes, SNR is assumed to be known, but this is
clearly not the case in practice. Therefore, SNR should be estimated. In this case, the
threshold optimization problem is coupled with the online SNR estimation which
brings extra challenges to the problem.
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Chapter 7
Iterative Design of FIR Filters

Bipul Luitel and Ganesh Kumar Venayagamoorthy

Abstract This chapter presents the iterative design of finite impulse response (FIR)
filters using particle swarm optimization with a quantum infusion (PSO-QI) algo-
rithm. Filter design, in this work, is formulated as a parameter optimization problem
using population-based stochastic methods; and hence, it is iterative. PSO-QI is a
hybrid algorithm combining PSO and quantum-behaved PSO. PSO-QI combines
the best features of these individual algorithms. Therefore, the design specification
for FIR filters can be satisfied more accurately. Two methods of evaluating the per-
formance of the algorithm (cost function) are implemented. Minimizing the mean
squared error between the actual and the ideal filter response is one approach to per-
formance evaluation. The second approach involves minimizing the mean squared
error between the ripples in the passband and the stopband of the designed filter
and the desired filter specification. The results presented show that filters designed
using PSO-QI most closely match the design specification, and their performance is
more consistent when compared with other evolutionary algorithms. The results are
compared with the constrained least squares method of filter design.

7.1 Introduction

Digital filters suppress the unwanted parts of a signal, such as noise, and extract the
important parts, such as underlying components within a frequency range. Conse-
quently, they have been applied in communication for noise reduction, audio/video
signal enhancement, etc. Digital filters are an important component of digital sig-
nal processing and are used in a wide range of modern applications including, but
not limited to, telecommunications, acoustics, biometrics, biomedical science, and
speech and image processing.

Traditionally, techniques such as the tables method [7], windowing method [1],
frequency sampling method, and best uniform approximation method have been
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used for the design of digital filters [6]. The simplest of these is the windowing
method [1]. In this method, the ideal impulse response is multiplied with a win-
dow function. Various kinds of window functions (Butterworth, Chebyshev, Kaiser,
etc.) can be used depending on the requirements of the ripples on the passband and
stopband, the stopband attenuation and the transition width. These various windows
limit the infinite length impulse response of the ideal filter into a finite window to
design an actual response. However, windowing methods do not allow sufficient
control of the frequency response in the various frequency bands and other filter pa-
rameters, such as transition width. The designer always has to compromise on one
or the other of the design specifications. In [20], a mixed integer linear program-
ming (MILP)-based approach for designing linear phase FIR filters is described.
However, the solution time in MILP-based algorithms increases exponentially as
the order of the filter increases. A branch-and-bound approach for designing hard-
ware platform-efficient FIR filters is described in [2]. Traditional design techniques
have design time and/or design parameter limitations. Many recent studies have
investigated different techniques for designing digital filters [3, 11, 12, 16, 17]. Be-
cause population-based stochastic search methods have proved effective in multidi-
mensional nonlinear environments, computational intelligence techniques, such as
neural networks [8], genetic algorithms (GAs) [1, 7], immune algorithms [7], dif-
ferential evolution (DE) [9, 18], and Particle Swarm Optimization (PSO) [7, 10],
have been applied in the design of digital filters. Hybrid algorithms, which com-
bine features of different algorithms, or modified and mutation-based PSO algo-
rithms, which perform better than classical PSO, such as Quantum-behaved PSO
(QPSO) [5, 6], Differential Evolution PSO (DEPSO) [13], and craziness-based
PSO [15], have also been applied for better parameter control and better approx-
imation to the ideal filter [6]. These algorithms, because they are multidimensional
optimization methods, can effectively consider the different constraints during filter
design. Finite Impulse Response (FIR) filters do not have feedback as do Infinite
Impulse Response (IIR) filters and hence are inherently stable. They can be easily
designed as linear phase filters. However, they require more memory and computa-
tional complexity than IIR filters to achieve the same performance.

Many modern applications already demand high computational speed and robust
solutions. Hence, traditional techniques and many computational intelligence algo-
rithms will also fail to meet future design requirements, which will prove even more
stringent. It is important to reduce the number of coefficients and still try to meet
other design requirements when it comes to implementing the digital filter in hard-
ware. Therefore, algorithms that have better convergence, that can perform more
consistently, and that can design filters with better frequency responses for fewer
coefficients are more likely to be applied in resource-constrained and performance-
critical applications. This chapter presents the application of PSO-QI [14], which
shows such a potential, for digital FIR filter design. Population based optimization
algorithms such as PSO-QI are probabilistic and not deterministic, so they require
multiple iterations for convergence. Digital filter design, as explained in this chap-
ter, is also a form of a parameter (coefficients) optimization process and hence is
iterative. The major contributions of this work are as follows:
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• Iterative design of lowpass, highpass, bandpass, and bandstop FIR filters using
swarm, evolutionary, and quantum-infused hybrid algorithms.

• Comparison of the performance of PSO-QI against other methods using two types
of cost functions.

7.2 Particle Swarm Optimization with Quantum Infusion

PSO-QI is a hybrid algorithm that uses the quantum principle from QPSO to create
a new offspring in PSO. After the positions and velocities of the particles are up-
dated using standard PSO equations, a randomly-chosen particle from PSO’s pbest
(the previous particle position giving the best fitness value) population is utilized to
carry out the quantum operation, thus creating offspring by mutating the gbest (the
best particle among all the particles in the swarm). The fitness of the offspring is
evaluated, and the offspring replaces the gbest only if its fitness is better. This en-
sures that the fitness of the gbest is equal to or better than its fitness in the previous
iteration. Thus, it is improved and nears the best solution over iterations.

According to the uncertainty principle, the position and velocity of a particle
in the quantum world cannot be determined simultaneously. Thus, QPSO differs
from standard PSO mainly because exact values of x and v cannot be determined.
Hence, the probability of finding a particle at a particular position in the quantum
search space is mapped into its actual position in the solution space by a technique
called “collapsing.” In Quantum Delta-Potential-Well-based PSO (QDPSO) [19], a
delta potential well-based probability density function is used to avoid explosion
and help the particles converge. By using Monte Carlo Simulation [19], the position
equation in QDPSO is given by (7.1):

x(k)= J (k)± L(k)
2

ln(1/u) (7.1)

where u is a uniform random number in the interval [0,1]. The particle’s local at-
tractor point J has coordinates given by the following equation:

Jd(k)= α1Pgd(k)+ α2Pid(k) (7.2)

where Pid is the ith pbest particle in the d th dimension, and Pgd is the d th dimen-
sion of the gbest particle obtained from PSO. L is length of the potential field given
by:

L(k)= 2β
∣∣J (k)− x(k)∣∣. (7.3)

The parameter β is the only parameter of the algorithm. It is called the creativity
coefficient and is responsible for the convergence speed of the particle.

The mean best position, mbest, is defined as:

mbest(k)= 1

S

S∑

i=0

Pi(k)=
(

1

S

S∑

i=0

Pi1(k), . . . ,
1

S

S∑

i=0

PiD(k)

)

(7.4)
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where S is the size of the population, D is the number of dimensions, and Pi is
the pbest position of each particle. In QPSO, J in (7.3) is replaced by mbest to
form (7.5).

L(k)= 2β
∣∣mbest(k)− x(k)∣∣. (7.5)

Using (7.2), this can also be written as follows to show the mutation of gbest, where
the addition or subtraction is carried out with 50 % probability:

x(k + 1)= α1Pgd(k)+ α2Pid(k)± β
∣∣mbest(k)− x(k)∣∣ ln(1/u). (7.6)

In PSO-QI, the position update equation (7.6) has been used to mutate the gbest
particle obtained from PSO. The pseudocode for the PSO-QI algorithm is as fol-
lows:

Initialize position x, velocity v, and let pbest = x
repeat

for i = 1 to populationsize do
Evaluate fitness
if fitness (i) < fitness (pbest) then

pbest = x and gbest =min(pbest)
end if
Update v and x using standard PSO equations

end for
Calculate mbest using (7.4)
Select a random particle r
for d from 1 to dimensionsize do
α1, α2 = rand(0,1)
J = (α1 ∗ Prd + α2 ∗ Pgd)/(α1 + α2)

L= 2β ∗ |mbest− xrd | using (7.5)
if rand(0,1) > 0.5 then

using (7.1)
offspring= J − L

2 ∗ ln(1/u)
else

offspring= J + L
2 ∗ ln(1/u)

end if
if fitness (offspring) < fitness(gbest) then

gbest = offspring
end if

end for
until termination criterion is met.

7.3 Digital FIR Filter

When the output of the filter at any given time depends only on the current inputs,
that filter is called a non-recursive or FIR filter. FIR filters have only zeros in their
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transfer function. Because the poles of FIR filters are located at the origin and lie
within the unit circle, they are inherently stable. Also, FIR filters can be designed
as linear phase filters, which makes them a better choice in phase-sensitive applica-
tions. FIR filters whose phase response is linear with respect to frequency are said to
be linear phase. An FIR filter is linear phase if its coefficients are symmetric around
the center coefficient. Delay through such filters is constant at all frequencies; hence,
they do not cause phase distortion.

An FIR filter can be described by the transfer function:

H(z)=
N∑

i=0

aiz
−i . (7.7)

The parameters a0, a1, a2, . . . , aN appearing in (7.7) are called filter coefficients,
and they determine the characteristics of a filter. Filter specifications, which are im-
portant in a filter design process, include the passband and stopband normalized
frequencies (ωp , ωs ), passband and stopband ripple (δp) and (δs ), stopband attenu-
ation and transition width. These specifications are satisfied by the filter coefficients
in (7.7). In any filter design problem, some of these specifications are fixed while
others are determined. In this chapter, swarm, evolutionary, quantum, and hybrid
optimization algorithms are applied in order to obtain an actual filter response that
comes as close as possible to the ideal response.

7.4 FIR Filter Design Using PSO-QI

From (7.7), the transfer function of the FIR filter can also be represented as:

H(z)= a0 + a1z
−1 + a2z

−2 + · · · + aNz−N. (7.8)

For (7.8), the numerator coefficient vector a0, a1, a2, . . . , aN is represented in N
dimensions. In PSO-like algorithms, each particle is distributed in a D-dimensional
search space, where D = N for the FIR filter. The position of each particle in this
D-dimensional search space represents the coefficients of the FIR filter’s transfer
function. During each iteration, these particles find a new position, which is the
new set of coefficients. Using the new values of the coefficients, the performance of
each particle is evaluated based on some predefined fitness function. The fitness is
then used to improve the search during each iteration, and the result obtained after a
certain number of iterations or after the error falls below a certain limit is considered
the final result. The error between the filter response of the desired and approximate
filters is given by (7.9):

E(ω)=G(ω)[Hd
(
ejω
)−H (ejω)] (7.9)

where G(ω) is the weighting function used to provide different weights for the ap-
proximate errors in different frequency bands,Hd(ejω) is the frequency response of
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the desired filter, andH(ejω) is the frequency response of the approximate filter [7].
In this chapter, the first fitness function considers an ideal filter as the desired filter,
and hence, Hd(ejω)= 1 for the passband and Hd(ejω)= 0 for the stopband. Now,
the Mean Squared Error (MSE) between the desired (ideal) filter and the approxi-
mate filter is defined as I1 (7.10):

I1 = 1

T

[
T∑

k=1

(
1− ∣∣H (ejωk )∣∣)2

ω∈Fp +
T∑

k=1

(∣∣H
(
ejωk
)∣∣)2
ω∈Fs

]

(7.10)

where T is the number of samples used to calculate the error, Fp is the set of pass-
band frequencies, and Fs is the set of stopband frequencies. For a lowpass filter,
0<Fp < ωp and ωs < Fs < 1; for a highpass filter, 0<Fs < ωp and ωs < Fp < 1;
for a bandpass filter, ωl < Fp < ωu and Fs = (0 < F < ωl) ∪ (ωu < F < 1); and
for a bandstop filter, ωl < Fs < ωu and Fp = (0< F < ωl)∪ (ωu < F < 1), where
ωp and ωs are passband and stopband normalized cutoff frequencies for the low-
pass and highpass filters, and ωl and ωu are the lower and upper normalized cutoff
frequencies for the bandpass and bandstop filters.

In another case study, a desired filter with a specified magnitude of ripples on
the passband and the stopband is considered. For this case, the MSE between the
difference in the desired and the approximate frequency response is considered and
is defined as (7.11):

I2 = 1

T

[
T∑

k=1

(∣∣E(ωk)ω∈Fp
∣∣− δp

)2 +
T∑

k=1

(∣∣E(ωk)ω∈Fs
∣∣− δs

)
]

(7.11)

where δp and δs are the ripples in the passband and stopband, respectively. The algo-
rithms try to minimize this error and thus increase the fitness of the filter designed
using the swarm, evolutionary and quantum algorithms. A flowchart showing the
design of the FIR filter using PSO-QI is shown in Fig. 7.1.

7.5 Studies and Results

Two main cases have been studied for FIR filter design. Cases I and II represent
the design of FIR filters using fitness functions given by (7.10) and (7.11), respec-
tively. In each case, lowpass (LP), highpass (HP), bandpass (BP), and bandstop (BS)
FIR filters are designed. The results are compared with the constrained least squares
(CLS) method of filter design (using the ‘fircls’ function of MATLAB). Various pa-
rameters of the algorithms are shown in Table 7.1. The specifications of the filters
are provided in Table 7.2. In these studies, the performance of PSO-QI is compared
with PSO and DEPSO. The PSO parameters used here are based on the best param-
eters as reported in the literature [4]. Alternative values of PSO parameters are also
tested for research purposes. However, an analysis of these results with respect to
the PSO parameters is beyond the scope of this chapter.
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Fig. 7.1 Flowchart showing
the design of an FIR filter
using PSO-QI

Different kinds of FIR filters of order 20 are designed. Each algorithm is run 50
times with 5000 iterations. The minimum (Min), maximum (Max), average (Avg),
and standard deviation (Std) of the MSEs observed at 200, 500, 2000, and 5000 it-
erations are presented in Tables 7.3, 7.4, 7.5, 7.6. The MSE values for Cases I and II
are different because of different fitness functions, so the filter designed using I2 in
Case II is also evaluated using I1 from Case I in order to perform a one-one compar-
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Table 7.1 Algorithm specifications

Parameter Symbol Value

Population size S 25

Number of iterations 5000

Number of trials 50

Inertia w linearly decreasing from 0.9 to 0.4

Cognitive constant c1 2

Social constant c2 2

Creativity coefficient β linearly increasing from 0.5 to 1

Crossover rate 0.5

Table 7.2 Filter specifications

Filter Parameter Symbol Value

LP, HP Passband normalized cutoff frequency ωp 0.3

LP, HP Stopband normalized cutoff frequency ωs 0.35

BP, BS Normalized lower cutoff frequency ωl 0.3

BP, BS Normalized upper cutoff frequency ωu 0.7

LP, HP, BP, BS Passband ripple δp 0.1

LP, HP, BP, BS Stopband ripple δp 0.01

LP, HP, BP, BS Number of coefficients N 21

LP, HP, BP, BS Number of samples T 256

LP, HP, BP, BS Weighting vector G 1

ison of the MSEs obtained by the two approaches. This is shown in the row labeled
“Avg Case I” (italicized) under the columns for Case II. This comparison of the two
cases shows that lower values of MSE are obtained when using I1. This suggests
that trying to approximate a filter to the ideal filter results is better than trying to ap-
proximate it to a given design specification. The filters designed by the CLS method
are also evaluated using fitness functions of both cases (shown in columns ‘I1’ and
‘I2’). The comparison of these MSEs with those obtained with CLS also confirms
that using PSO-QI in Case I achieves better results. The lowest MSE values for Case
I, and the lowest standard deviations values for Cases I and II, are shown in bold for
different iterations. The consistent performance of the PSO-QI algorithm is demon-
strated in the results by the lower standard deviation values obtained in the final
iteration. The maximum ripples in the passband and stopband obtained for different
filters are also presented.

These show that none of the design approaches could meet the specification ex-
actly. This is mainly because the algorithms compromised on transition width in
order to best meet the other requirements for designing an FIR filter of a given or-
der. Evolutionary algorithms are still able to design filters with narrower transition
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Table 7.3 Comparison of results for lowpass FIR filters

Case I Case II CLS

PSO DEPSO PSO-QI PSO DEPSO PSO-QI I1 I2

Avg Time (s) 61.00296 63.51265 63.84031 63.80519 66.25460 67.14100 <0.05

Iterations: 200

Avg 2.309090 1.367769 1.696142 2.217716 1.290407 1.582336

Min 0.918869 0.542448 0.839119 0.828234 0.398866 0.780351

Max 5.857412 3.868421 2.652464 4.590857 2.214809 3.848432

Std 0.885853 0.516622 0.447363 0.732349 0.420632 0.536772

Iterations: 500

Avg 1.353529 0.647617 0.950669 1.203629 0.647285 0.957092

Min 0.491010 0.196000 0.447505 0.493261 0.291929 0.536816

Max 4.034052 3.035559 1.509080 3.417326 1.074832 3.396342

Std 0.698160 0.408098 0.233942 0.494053 0.182853 0.409753

Iterations: 2000

Avg 0.172948 0.073314 0.019102 0.064034 0.015196 0.015353

Min 0.007040 0.004527 0.004621 0.003499 0.002368 0.002583

Max 2.572305 2.569120 0.056903 2.458580 0.047153 0.048897

Std 0.610465 0.360470 0.011947 0.345662 0.009839 0.011033

Iterations: 5000

Avg 0.154615 0.052767 0.001628 0.049444 0.000559 0.000508 0.001790

Avg Case Ia 0.154615 0.052767 0.001628 0.054134 0.002973 0.002867 0.003577

Min 0.001465 0.001465 0.001466 0.000338 0.000338 0.000338

Max 2.556164 2.558192 0.002145 2.447605 0.000939 0.000991

Std 0.611835 0.361552 0.000171 0.346073 0.000130 0.000137

Maximum passband ripple (PBR)

Avg 0.352552 0.248751 0.207626 0.290292 0.245822 0.240912 0.280047

Min 0.171267 0.157795 0.158447 0.214734 0.206672 0.210183

Max 2.752903 2.512941 0.248144 2.609865 0.288430 0.273903

Std 0.584106 0.327469 0.023396 0.334947 0.015451 0.011410

Maximum stopband ripple (SBR)

Avg 0.400418 0.287675 0.228088 0.224103 0.172175 0.166285 0.294372

Min 0.208338 0.208427 0.208663 0.141762 0.141850 0.141765

Max 3.152688 3.087697 0.265057 3.089060 0.206332 0.215424

Std 0.697131 0.404287 0.011508 0.413732 0.016193 0.016907

a Case II evaluated using I1 for comparison
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Table 7.4 Comparison of results for highpass FIR filters

Case I Case II CLS

PSO DEPSO PSO-QI PSO DEPSO PSO-QI I1 I2

Avg Time (s) 62.24904 64.89828 65.58133 63.55418 66.17452 67.029559 <0.05

Iterations: 200

Avg 1.581663 0.808356 1.076798 1.537441 0.841425 0.916861

Min 0.772375 0.360826 0.338438 0.610639 0.193175 0.279725

Max 3.203546 2.202218 1.841334 3.703361 2.972754 1.561778

Std 0.533546 0.312968 0.312228 0.653536 0.473965 0.267402

Iterations: 500

Avg 0.840090 0.357080 0.560789 0.793403 0.328740 0.451516

Min 0.291398 0.201776 0.232625 0.297373 0.104778 0.118738

Max 2.661553 0.600713 1.066141 3.052292 1.479729 0.860819

Std 0.435271 0.101233 0.164376 0.557034 0.207237 0.177360

Iterations: 2000

Avg 0.052417 0.021758 0.020838 0.042570 0.013654 0.009659

Min 0.006056 0.006115 0.005003 0.001894 0.001562 0.001810

Max 1.599131 0.058461 0.058322 1.441952 0.038430 0.037950

Std 0.223447 0.011439 0.012320 0.202313 0.009904 0.006886

Iterations: 5000

Avg 0.033264 0.001372 0.001392 0.028917 0.000395 0.000390 0.001191

Avg Case Ia 0.033264 0.001372 0.001392 0.035859 0.004065 0.004125 0.003010

Min 0.001139 0.001111 0.001098 0.000283 0.000277 0.000283

Max 1.594575 0.002066 0.001932 1.426712 0.001024 0.000590

Std 0.225309 0.000206 0.000212 0.201712 0.000106 0.000068

PBR

Avg 0.243249 0.204076 0.208505 0.262383 0.224378 0.227248 0.282123

Min 0.169534 0.160837 0.171776 0.206175 0.193702 0.202260

Max 2.009299 0.242780 0.236678 2.035581 0.252572 0.262238

Std 0.255295 0.020422 0.016280 0.256075 0.012594 0.011951

SBR

Avg 0.258005 0.209504 0.209503 0.199337 0.155278 0.153901 0.250586

Min 0.187816 0.189222 0.192309 0.135176 0.136969 0.135751

Max 2.594075 0.253945 0.243862 2.391242 0.227605 0.186739

Std 0.337364 0.013087 0.012443 0.316451 0.013554 0.010365

a Case II evaluated using I1 for comparison
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Table 7.5 Comparison of results for bandpass FIR filters

Case I Case II CLS

PSO DEPSO PSO-QI PSO DEPSO PSO-QI I1 I2

Avg Time (s) 63.58043 66.26156 66.67736 65.81591 68.68277 69.082577 <0.05

Iterations: 200

Avg 2.313546 1.179951 1.554501 1.982181 1.170335 1.586532

Min 1.172316 0.596113 0.734473 1.062480 0.426690 0.777035

Max 5.305936 2.400848 3.782131 5.406325 4.640706 3.857878

Std 0.818909 0.389749 0.553299 0.705846 0.592620 0.522986

Iterations: 500

Avg 1.279520 0.569743 0.946342 1.123554 0.577790 0.893920

Min 0.531468 0.305807 0.496780 0.339226 0.259503 0.346511

Max 3.662125 1.199284 3.478458 4.336395 3.292193 3.598533

Std 0.481833 0.198388 0.433324 0.564460 0.417246 0.457655

Iterations: 2000

Avg 0.028687 0.031538 0.036194 0.073863 0.026110 0.026231

Min 0.018695 0.018111 0.020022 0.014262 0.012300 0.012841

Max 0.043332 0.074883 0.095605 2.440620 0.058284 0.071384

Std 0.006733 0.011413 0.014509 0.341638 0.009765 0.013427

Iterations: 5000

Avg 0.016428 0.016461 0.016384 0.058796 0.010273 0.010180 0.014942

Avg Case Ia 0.016428 0.016461 0.016384 0.069030 0.017737 0.017593 0.022408

Min 0.016131 0.016137 0.016126 0.009753 0.009745 0.009748

Max 0.018635 0.018114 0.017252 2.434750 0.012572 0.011388

Std 0.000368 0.000382 0.000262 0.342869 0.000616 0.000456

Maximum passband ripple (PBR)

Avg 0.479268 0.482948 0.479261 0.547783 0.523475 0.524352 0.522534

Min 0.439810 0.442510 0.430079 0.503902 0.501465 0.504393

Max 0.501762 0.504366 0.500726 1.756379 0.537421 0.537750

Std 0.017339 0.017040 0.017466 0.174703 0.010566 0.010480

Maximum stopband ripple (SBR)

Avg 0.481411 0.478034 0.480510 0.465866 0.433212 0.432359 0.444855

Min 0.451668 0.455327 0.455083 0.412330 0.411028 0.411814

Max 0.518466 0.518381 0.524113 2.060793 0.460651 0.462116

Std 0.019935 0.019943 0.020896 0.230634 0.014247 0.013644

a Case II evaluated using I1 for comparison
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Table 7.6 Comparison of results for bandstop FIR filters

Case I Case II CLS

PSO DEPSO PSO-QI PSO DEPSO PSO-QI I1 I2

Avg Time (s) 64.15355 66.95550 67.30056 65.97979 68.81981 69.174664 <0.05

Iterations: 200

Avg 1.764650 1.069331 1.230915 1.581259 0.884914 1.095112

Min 0.755631 0.392187 0.492116 0.394064 0.299558 0.377232

Max 4.355703 3.311367 2.881854 2.732023 1.561214 2.018252

Std 0.630130 0.615877 0.447678 0.531293 0.301292 0.392611

Iterations: 500

Avg 0.938503 0.501911 0.689372 0.835579 0.385321 0.593301

Min 0.334030 0.269786 0.316557 0.192995 0.167570 0.273839

Max 3.677116 2.991282 2.748155 1.613370 0.673929 0.986046

Std 0.495277 0.475637 0.340402 0.310986 0.143453 0.176029

Iterations: 2000

Avg 0.075912 0.075032 0.037216 0.022549 0.022663 0.023310

Min 0.021493 0.018992 0.019132 0.013481 0.010508 0.011030

Max 2.083948 1.997408 0.100823 0.044540 0.043413 0.077686

Std 0.290045 0.277730 0.013211 0.006871 0.008525 0.011572

Iterations: 5000

Avg 0.056783 0.055084 0.015453 0.009954 0.010155 0.010056 0.015682

Avg Case Ia 0.056783 0.055084 0.015453 0.018135 0.018273 0.018130 0.023026

Min 0.015190 0.015191 0.015190 0.009181 0.009214 0.009183

Max 2.073480 1.990370 0.016199 0.010547 0.011016 0.010629

Std 0.291025 0.279277 0.000242 0.000404 0.000357 0.000356

Maximum passband ripple (PBR)

Avg 0.482101 0.485566 0.466093 0.514832 0.513667 0.512387 0.489694

Min 0.429418 0.443209 0.438536 0.497235 0.493062 0.495210

Max 1.313270 1.509979 0.496024 0.534771 0.546941 0.541161

Std 0.120814 0.148465 0.013660 0.011329 0.012043 0.010907

Maximum stopband ripple (SBR)

Avg 0.522783 0.522197 0.490307 0.436772 0.440931 0.440415 0.478088

Min 0.469555 0.463607 0.461629 0.411035 0.414722 0.411434

Max 1.925307 1.897104 0.522759 0.456460 0.460227 0.456801

Std 0.202776 0.198756 0.013233 0.012244 0.009701 0.009885

a Case II evaluated using I1 for comparison
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Fig. 7.2 Error plot for the design of LP FIR filter in Case I

widths than those designed using the CLS method. The average design times for
5000 iterations, as observed on an Intel Core 2 CPU 2.13 GHz desktop computer
with 2 GB of RAM, are also listed. DEPSO and PSO-QI take slightly longer than
PSO, as is evident from the fact that for a population size of P , PSO takes P while
DEPSO and PSO-QI take P + 1 fitness evaluations per iteration.

Figures 7.2, 7.3, 7.4, 7.5 show the convergence curves for the different algorithms
used to design the LP, HP, BP, and BS FIR filters, respectively, using the fitness
function from Case I. These graphs show the quick convergence behavior of DEPSO
over several iterations.

The magnitude plots of the LP FIR filters designed in Case I are shown in
Fig. 7.6. Similar plots for Case II are shown in Fig. 7.7. Similarly, the magnitude
plots of the HP FIR filter for Cases I and II are shown in Figs. 7.8 and 7.9. In
Figs. 7.10, 7.11, 7.12, 7.13, similar plots are shown for the BP FIR and BS FIR
filters, respectively.

All of these frequency response diagrams show the ability of the evolutionary al-
gorithms to design different kinds of FIR filters successfully. The figures show that
the CLS method of filter design is able to meet the passband and stopband ripple
requirement for most frequency bands, except around the cutoff frequencies (i.e.,
with a wider transition width). These results suggest that based on the given fil-
ter specification, deviations in one or the other design parameters is unavoidable.
The filter designed using evolutionary algorithms is hence the most “optimal” in
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Fig. 7.3 Error plot for the design of HP FIR filter in Case I

Fig. 7.4 Error plot for the design of BP FIR filter in Case I
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Fig. 7.5 Error plot for the design of BS FIR filter in Case I

Fig. 7.6 Magnitude plot of the LP FIR filter designed in Case I
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Fig. 7.7 Magnitude plot of the LP FIR filter designed in Case II

Fig. 7.8 Magnitude plot of the HP FIR filter designed in Case I
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Fig. 7.9 Magnitude plot of the HP FIR filter designed in Case II

Fig. 7.10 Magnitude plot of the BP FIR filter designed in Case I
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Fig. 7.11 Magnitude plot of the BP FIR filter designed in Case II

Fig. 7.12 Magnitude plot of the BS FIR filter designed in Case I
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Fig. 7.13 Magnitude plot of the BS FIR filter designed in Case II

the sense that its response is closer to the ideal filter, and its deviation from the de-
sign specification is minimal. The proposed PSO-QI algorithm is the most suitable
design approach among the three algorithms because of its minimum average er-
ror and consistent performance, as evidenced by the lower standard deviation. The
following observations are made based on the results:

• Maximum ripples in the passband and stopband are obtained around the cutoff
frequencies.

• Filters designed using fitness function in Case I deviate less towards the passband
cutoff frequency, and hence, have lower maximum passband ripple values.

• Filters designed using the fitness function in Case II deviate less towards the stop-
band cutoff frequency, and hence, have lower maximum stopband ripple values.

• However, the passband ripples are higher throughout the frequency bands (as seen
in Figs. 7.6 through 7.13) using fitness function in Case II than in Case I.

• For most of the filters designed, lower standard deviations are found for Case II.
This implies that the fitness function in Case II has more consistent performance.

• DEPSO has better convergence for fewer iterations (up to 2000), while PSO-QI
outperforms other algorithms for 5000 iterations.

Table 7.7 shows the coefficients for the different types of FIR filters obtained
using the PSO-QI algorithm.
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Table 7.7 Coefficients of the various FIR filters designed using PSO-QI

Lowpass Highpass Bandpass Bandstop

I1 I2 I1 I2 I1 I2 I1 I2

a0 0.0362 −0.0232 0.0893 0.1036 0.0168 0.1080 −0.1794 0.1395

a1 0.0442 −0.0732 −0.0704 −0.0880 0.1245 −0.0201 −0.2121 0.0667

a2 0.0106 −0.1134 −0.0030 −0.0623 −0.0600 −0.2810 −0.2064 0.1124

a3 −0.0554 −0.1292 −0.0604 0.0890 −0.2996 0.0373 −0.4590 −0.0157

a4 −0.1098 −0.1058 0.0901 −0.0749 0.0965 0.3819 0.0970 −0.0391

a5 −0.0982 −0.0731 −0.0530 0.1438 0.3772 −0.0408 −0.3437 −0.3051

a6 4.8e–4 −0.0635 0.0943 −0.2070 −0.0923 −0.3069 0.2825 0.0315

a7 0.1513 −0.1088 −0.1030 0.3764 −0.2702 0.0220 −0.0054 −0.3814

a8 0.2776 −0.1771 0.2299 −0.4208 0.0455 0.0921 0.0745 0.2527

a9 0.3141 −0.2272 −0.5143 −0.0578 0.0497 0.0036 0.0817 −0.0332

a10 0.2479 −0.1976 0.2716 0.3628 0.0097 0.1000 −0.1100 0.2147

a11 0.1267 −0.0850 0.3287 0.0402 0.1146 −0.0178 −0.0510 0.2834

a12 0.0233 0.0623 −0.2660 −0.2403 −0.0334 −0.1378 0.0011 −2.1e–4

a13 −0.0160 0.1751 −0.0971 −0.0390 −0.1168 0.0110 −0.0493 0.2135

a14 0.0036 0.1910 −0.0346 0.0033 0.0177 0.0325 0.0805 0.0222

a15 0.0391 0.1200 0.1323 0.1498 0.0067 0.0044 0.0471 0.0450

a16 0.0482 0.0091 0.0644 0.0647 0.0105 0.0847 −0.0233 0.1907

a17 0.0227 −0.0784 −0.0230 −0.1411 0.0788 −0.0139 0.0184 0.0546

a18 −0.0150 −0.1030 −0.0885 −0.0706 −0.0206 −0.1079 −0.0520 0.1564

a19 −0.0354 −0.0774 −0.0343 0.0953 −0.0643 0.0090 −0.0414 0.0810

a20 −0.0276 −0.0309 0.0783 0.0063 0.0082 0.0428 0.0308 0.0076

7.6 Conclusion

This chapter presented the iterative design of FIR filters using population-based
swarm (PSO), hybrid swarm-evolutionary (DEPSO), and swarm-quantum (PSO-
QI) stochastic algorithms. Different types of FIR filters were designed using the
mean squared error as the fitness function formulated in two ways. All three of the
algorithms were able to approximate the filter coefficients over a number of itera-
tions, but PSO-QI always performed the best, given enough iterations. The results
show that PSO-QI is more consistent in its performance. In comparison to the con-
strained least squares method of FIR filter design, filters designed iteratively using
evolutionary algorithms had better frequency response. However, none of the ap-
proaches confirmed to the given design specification. Hence, there is more potential
for research in this area. A multi-objective optimization problem may be formulated
with relative weighting placed on different objectives in order to simultaneously
optimize various filter parameters. The results indicated that different algorithms
perform differently in various frequency bands, and while one criterion is satisfied,
another is violated. Hence, the best advantage of iterative-designed digital filters
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over traditional techniques comes from the algorithms’ ability to find multiple so-
lutions so that designers can choose a solution based on their requirements. This
can be achieved using a Pareto optimization technique, which is a potential area of
research in the iterative design of digital filters.
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Chapter 8
A Metaheuristic Approach to Two Dimensional
Recursive Digital Filter Design

Abhronil Sengupta, Tathagata Chakraborti, and Amit Konar

Abstract The two dimensional IIR digital filter design problem has received in-
creased attention over the past few years. Recently, several metaheuristic algorithms
have been employed in this domain and have produced promising results. Invasive
Weed Optimization is one of the latest population-based metaheuristic algorithms
that mimics the colonizing action of weeds. In this chapter, an improvement to the
classical weed optimization algorithm has been proposed by introducing a constric-
tion factor in the seed dispersal phase. Temporal Difference Q-Learning has been
employed to adapt this parameter for different population members through the
successive generations. Such hybridization falls under a special class of adaptive
Memetic Algorithms. The proposed memetic realization, called Intelligent Invasive
Weed Optimization (IIWO), has been applied to the two-dimensional recursive digi-
tal filter design problem and it has outperformed several competitive algorithms that
have been applied in this research field in the past.

8.1 Introduction

Digital filters can be classified into two broad categories, namely, finite impulse
response (FIR) filters and infinite impulse response (IIR) filters. FIR filters are easier
to implement as they are non-recursive and are always stable. However, IIR filters
are much more efficient in comparison to FIR filters as they are capable of producing
very sharp and accurate frequency responses [4]. Since the design of IIR filters is
more challenging than its FIR counterpart, we have selected 2D IIR filter design as
the fundamental problem of this chapter.
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The most popular design procedures of 2D IIR filters fall under two main cate-
gories [4, 8, 16, 18]:

– Those based on appropriate transformation of one dimensional (1D) filters [14,
26];

– Those based on appropriate optimization techniques such as linear programming,
Remez exchange algorithm, etc. [3, 10, 13, 15, 23, 29].

However, the majority of these algorithms result in an unstable filter. Although
various methods have been proposed to tackle the instability problem, yet their prac-
tical implementation suffers from a very small stability margin [18]. The applica-
tions of evolutionary computation techniques to the design of digital IIR filters have
been investigated in [4, 8, 16, 18]. The results reported in [4, 8, 16, 18] suggest
that modern search heuristics are more efficient in the filter design problem. In [18]
and [16], the authors propose a Neural Network (NN) and Genetic Algorithm (GA)
approach to the recursive filter design. However, the computer language GENET-
ICA [8] was able to outperform the above mentioned algorithms. Recently Das et
al. [4] formulated a new variant of Particle Swarm Optimization (MEPSO) for the
purpose. In this chapter, we focus on the application of an improved version of a
recently proposed metaheuristic, namely, Invasive Weed Optimization (IWO).

IWO [17] is a derivative-free optimization technique that mimics the ecological
behavior of weeds. This metaheuristic algorithm has attracted researchers because
of its reduced computational cost and efficiency in tackling real world optimiza-
tion problems. However, it is not free from the problems of stagnation and pre-
convergence. Here, we attempt to improve the performance of the traditional IWO
algorithm by incorporating a learning strategy in the weed population to efficiently
disperse seeds throughout the problem space during the reproduction phase. Such a
memetic learning technique helps in balancing the exploration and exploitation ca-
pabilities of the weeds which is necessary for providing precise solutions to global
optimization problems.

The concept of Memetic Algorithm (MA) [5] falls in a broad category of popula-
tion based metaheuristics that incorporate strategies for individual learning. Evolu-
tionary Algorithms (EAs) determine the global optima in a given search landscape
in ways inspired by natural evolution and the Darwinian principles of the struggle
for existence and survival of the fittest. Traditional EAs fail to exploit local infor-
mation and generally become impractical due to excessively large time required to
locate a more or less accurate solution. However, cultural evolution is capable of
local refinement. Thus, MA captures the power of global search by its evolutionary
component and local search by its cultural component, and has successfully outper-
formed conventional EAs in several fields of science and engineering [12, 19, 20].

The earliest research regarding Memetic Algorithms can be traced back to the
work of Moscato [19]. Our research falls in the domain of Adaptive Memetic Al-
gorithms (AMAs) which involve adaptive selection of memes from the meme pool.
This adaptive selection is controlled by the ability of the meme to perform improve-
ment in fitness value. Several variants of AMAs are found in the literature [2].

The AMA to be proposed, named Intelligent Invasive Weed Optimization
(IIWO), includes an Invasive Weed Optimization (IWO) algorithm for global search
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and a Temporal Difference Q-Learning (TDQL) [27, 28] for local refinement. A con-
striction factor has been included in the expression for standard deviation for dis-
persal of seeds. It is important to mention here that the constriction factors for all
members of the population should not be equal for the best performance. A mem-
ber with a good fitness should search in the local neighborhood, whereas a poor
performing member should participate in the global search. A good member thus
should have small constriction factors, while worse members should have relatively
large constriction factors. The selection of constriction factors from the meme pool
is governed by the TDQL learning policy.

8.2 The Design Problem Formulation

The general prototype transfer function of an N dimensional recursive IIR digital
filter is represented by the following expression:

H(z1, z2)=H0

∑N
i=0
∑N
j=0 pij z

i
1z
j

2
∏N
k=1(1+ qkz1 + rkz2 + skz1z2)

, p00 = 1. (8.1)

The variables z1 and z2 represent the complex indeterminants in the discrete
Laplace Transform and are related to the Fourier domain frequency terms ω1 and
ω2 by the relationship z1 = e−jω1 and z2 = e−jω2 (where ω1,ω2 ∈ [−π,π]).

Let us assume that the user-specified amplitude response of the filter is desig-
nated by Md(ω1,ω2). The design task reduces to finding an appropriate transfer
function H(z1, z2) such that M(ω1,ω2)=H(e−jω1 , e−jω2) follows the desired re-
sponse Md(ω1,ω2) as closely as possible. The approximation can be achieved by
minimizing [4, 8, 16, 18],

J (pij , qk, rk, sk,H0)=
N1∑

n1=0

N2∑

n2=0

[∣∣M(ω1,ω2)
∣∣−Md(ω1,ω2)

]b (8.2)

where ω1 = (π/N1)n1, ω2 = (π/N2)n2, and b is a positive integer (usually b =
1,2,4, or 8).

Here the prime objective is to reduce the error between the desired and actual
amplitude responses of the filter at N1N2 points. Since the denominator consists of
only first degree factors, we assert the stability conditions following [14, 26] as:

|qk + rk| − 1< sk < 1− |qk − rk|, (8.3)

where k = 1,2, . . . ,N .
Thus the design of a 2D recursive filter is equivalent to the following constrained

optimization problem:
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Minimize

J =
N1∑

n1=0

N2∑

n2=0

[∣∣∣∣M
(
πn1

N1
,
πn2

N2

)∣∣∣∣−Md
(
πn1

N1
,
πn2

N2

)]b
(8.4)

subject to the constraints

|qk + rk| − 1< sk, k = 1,2, . . . ,N, (8.5)

sk < 1− |qk − rk|, k = 1,2, . . . ,N (8.6)

where N1, N2, and N are positive integers.
Without loss of generality, we consider the case of N = 2. Thus H(z1, z2) in

(8.1) can be simplified as shown in (8.7):

H(z1, z2) = H0
(
p00 + p01z2 + p02z

2
2 + p10z1 + p20z

2
1 + p11z1z2 + p12z1z

2
2

+ p21z
2
1z2 + p22z

2
1z

2
2

)
/
[
(1+ q1z1 + r1z2 + s1z1z2)(1+ q2z1

+ r2z2 + s2z1z2)
]
. (8.7)

Now, transforming the variables z1 and z2 to the frequency domain terms ω1 and
ω2, we obtain the following expression forM(ω1,ω2) as shown in (8.8):

M(ω1,ω2) = H0
[{p00 + p01f01 + p02f02 + p10f10 + p20f20 + p11f11

+ p12f12 + p21f21 + p22f22}/D − j{p01g01 + p02g02 + p10g10

+ p20g20 + p11g11 + p12g12 + p21g21 + p22g22}/D
]

(8.8)

where

D = [(1+ q1f10 + r1f01 + s1f11)− j (q1g10 + r1g01 + s1g11)
] · [(1+ q2f10

+ r2f01 + s2f11)− j (q2g10 + r2g01 + s2g11)
]
, (8.9)

fxy(ω1,ω2)= cos(xω1 + yω2), (8.10)

gxy(ω1,ω2)= sin(xω1 + yω2), x, y = 0,1,2. (8.11)

In a more compact form,M(ω1,ω2) can be expressed as follows:

M(ω1,ω2)=H0
AR − jAI

(B1R − jB1I )(B2R − jB2I )
(8.12)

where

AR = p00 + p01f01 + p02f02 + p10f10 + p20f20 + p11f11 + p12f12 + p21f21

+ p22f22, (8.13)
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AI = p01g01 + p02g02 + p10g10 + p20g20 + p11g11 + p12g12 + p21g21 + p22g22,

(8.14)

B1R = 1+ q1f10 + r1f01 + s1f11, (8.15)

B1I = q1g10 + r1g01 + s1g11, (8.16)

B2R = 1+ q2f10 + r2f01 + s2f11, (8.17)

B2I = q2g10 + r2g01 + s2g11. (8.18)

Thus, the constrained minimization task becomes:
Minimize

J =
N1∑

n1=0

N2∑

n2=0

[∣∣∣∣M
(
πn1

N1
,
πn2

N2

)∣∣∣∣−Md
(
πn1

N1
,
πn2

N2

)]b
(8.19)

subject to the constraints imposed by (8.5)–(8.6) with k = 1,2. The corresponding
fitness function is defined as f = 1/(J + eps) such that maximization of f results
in minimization of J ; eps is a small bias term having value 0.001.

8.3 An Outline of IWO Algorithm

Invasive Weed Optimization is a metaheuristic that is inspired by the colonizing ac-
tions of weeds. The biological processes used to model the ecological behavior of
the weed population are mainly divided into the Initialization, Reproduction, Seed
Dispersal, and Competitive Exclusion phases. They are briefly described in the fol-
lowing subsections.

8.3.1 Generation of an Initial Population

IWO starts with a population of NP D-dimensional parameter vectors, or weeds,
representing the candidate solutions. We shall denote subsequent generations in
IWO by G = 0,1, . . . ,Gmax. We represent the ith vector of the population at the
current generation as Xi,G = [x1,i,G, x2,i,G, . . . , xD,i,G].

The population members are initialized according to a uniform random distribu-
tion along every dimension, subject to the minimum and maximum bounds:

Xmin = {x1,min, x2,min, . . . , xD,min} and

Xmax = {x1,max, x2,max, . . . , xD,max}.
(8.20)

This ensures that for a reasonable number of vectors, the initial population at
G = 0 covers the entire search space uniformly. Hence we may initialize the j th
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component of the ith vector as

xj,i,0 = xj,min + randi,j (0,1)(xj,max − xj,min) (8.21)

where randi,j (0,1) is a uniformly distributed random number lying between 0 and 1
and is instantiated independently for each component of the ith vector. The follow-
ing steps are taken next: Reproduction, Seed Dispersal, and Competitive Exclusion
(in that order), which are explained in the following subsections.

8.3.2 Reproduction

The plants will produce seeds depending on their relative fitness which will be
spread out over the problem space. Each seed, in turn, will grow into a flowering
plant. Thus, if Smax and Smin denote the number of seeds produced by plants with
the best and the worst fitness, respectively, then seed count of plants will increase
linearly from Smin to Smax depending on their corresponding fitness values. The
number of seeds produced by the ith weed Xi,G is therefore given by

si,G =
⌊
Fmax,G − f (Xi,G)
Fmax,G − Fmin,G

(Smax − Smin)

⌋
(8.22)

where Fmax,G and Fmin,G are the maximum and minimum fitness values at the Gth
generation of the weed colony.

8.3.3 Dispersal of Seeds Through the Search Space

The produced seeds are randomly distributed over the D-dimensional search space
by random numbers drawn from a normal distribution with zero mean but with a
varying variance. However, the standard deviation (SD), σ , of the normal distribu-
tion decreases over the generations from an initial value, σmax, to a value, σmin, and
is determined by the following equation,

σ =
(
Gmax −G
Gmax

)n
(σmax − σmin)+ σmin (8.23)

where σ is the SD at the current generation and Gmax is the maximum number of
iterations while n is the nonlinear modulation index. This is the adaptation property
of the algorithm.

8.3.4 Competitive Exclusion

If a plant does not reproduce, it will become extinct. Hence this leads to the require-
ment of a competitive exclusion in order to eliminate plants with low fitness values.
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This is done to limit the maximum number of plants in the colony. Initially, fast
reproduction of plants take place, and all the plants are included in the colony. The
fitter plants reproduce more than the undesirable ones. The elimination mechanism
is activated when the population exceeds a stipulated NPmax. The plants and pro-
duced seeds are ranked together as a colony and plants with lower fitness values are
eliminated to limit the population count to NPmax. This is the selection property of
the algorithm. The above steps are repeated until maximum number of iterations is
reached.

8.4 Differential Q-Learning

Let us consider a given agent A. Let S1, S2, . . . , Sn be n possible states that can
be exhibited by agent A. Each possible state is characterized by m possible actions
a1, a2, . . ., am. At a particular state–action pair, the specific reward that the agent
can achieve is denoted by r(Si, aj ) and is referred to as “immediate reward” that
the agent receives for executing action aj at state Si . The basic goal of classical Q-
Learning is to choose the next action by a learning policy such that the cumulative
reward that may be acquired by the agent during subsequent transition of states from
its next state is maximized. The learning policy is achieved by updatingQ-values at
each state–action pair. The higher the Q-value, the higher will be the probability of
selection of a particular action for an agent at a specified state.

Let the agent be in state Si and is executing action aj . Then the Q-value at state
Si due to action of aj is updated by

Q(Si, aj )= r(Si, aj )+ γ max
a′
Q
(
δ(Si, aj ), a

′) (8.24)

where 0< γ < 1 and δ(Si, aj ) denotes the next state due to the selection of action
aj at state Si . Let the next state selected be Sk .

However, several improvements to the classicalQ-Learning algorithm have been
proposed. Differential Q-learning is a modified version of Q-learning [27, 28]. In
this approach, the Q-table update policy has the ability to remember the effect of
past Q value of a particular state–action pair while updating the corresponding Q
value. The modified Q update equation is given by

Q(Si, aj )← (1− α)Q(Si, aj )+ α
(
r(Si, aj )+ γ max

a′
Q
(
δ(Sk, aj ), a

′)). (8.25)

In this case, the Q-value Q(Si, aj ) is incremented when the action aj led to a
state δ(Si, aj ) in which there exists an action a′, such that the best possibleQ-value
Q(δ(Si, aj ), a

′) in the next time step plus the achieved reward r(Si, aj ) is greater
than the current value of Q(Si, aj ). α is called the “learning rate”. A setting of
α = 0 would result in a trivial scenario where no learning behavior is exhibited by
the agent, while α = 1 would make the agent extremely greedy in terms of learning
behavior, thereby providing emphasis only on the most recent information. The im-
portance of future rewards is determined by the discount factor γ . Smaller values of
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γ make the agent “opportunistic” while larger values make it strive for a long-term
high reward.

8.5 IIWO: The Proposed Approach

The modified algorithm is based on the concept that fitter individuals should be in-
volved in local search while the remaining plants should search the problem space
globally at a particular generation. The classical IWO algorithm neglects this fact
by assuming the same standard deviation σ for all the weeds in the seed dispersal
stage. Although σ is made to decay through the successive generations, there is yet
no provision for σ to attain low values for fitter individuals at a particular gener-
ation to enable the local search procedure. Local search is initiated only when the
generation count has increased to a large value to ensure a low value of σ . Thus
in classical IWO, all the weeds undergo a gradual behavioral transformation from
an explorative to an exploitive one. In our proposed algorithm, we state that fitter
individuals should behave in an exploitative manner through successive generations
from the initialization of the weed colony and not wait for the standard deviation to
reduce to low values. Following this concept, we introduce a constriction factor, η,
in Eq. (8.23) as follows:

σ = η
((
Gmax −G
Gmax

)n
(σmax − σmin)+ σmin

)
(8.26)

where η ∈ (0,1]. The proper choice of parameter η for different population mem-
bers will help balance the explorative and exploitive capabilities of the individuals
resulting in local refinement.

We employ a synergy of IWO and TDQL to realize an Adaptive Memetic Algo-
rithm (AMA) for achieving superior performance in the filter design problem. Each
evolutionary step is followed by a performance-based evaluation of the members.
The individual population members receive reward/penalty based on their fitness
and the Q-table is updated using the TDQL learning rule. A meme pool for pa-
rameter η is maintained from where the control parameters for individual members
of the population are selected. The adaptive selection of memes is performed by a
Roulette-Wheel selection from the meme pool. Selection of η from the meme pool,
followed by one step of IWO and updating of the Q-table, is continued until the
condition for convergence of the AMA is satisfied.

The row indices of the Q-table represent states of the population obtained from
the last iteration of the IWO algorithm, where a member is allocated to a par-
ticular state using a fitness function based rank evaluation. The column indices
correspond to the actions performed by the members at a particular state. They
represent uniform quantized values of the control parameter in the range (0,1].
For example, if the parameter under consideration be η with possible quantized
values {η1, η2, . . . , η10}. Then Q(Si, ηj ) represents the total reward given to a
member at state Si for selecting η = ηj . The Roulette-Choice strategy is used
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to select a particular value of η from the meme pool {η1, η2, . . ., η10} using the
Q(Si, ηj ), j = 1,2, . . . ,10 for the individual member located at state Si .

The adaptation of Q(Si, ηj ) is done through the reward/penalty mechanism of
classical TDQL. If a member of the population at state Si on selecting η= ηj moves
to a new state Sk causing an improvement in its fitness measure, then Q(Si, ηj ) is
given a positive reward following the TDQL algorithm. Otherwise a penalty is given
to Q(Si, ηj ) by introducing a decrease in Q-value.

The basic algorithm is outlined in the following sections.

8.5.1 Initialization

The algorithm employs a population of NP D-dimensional parameter vectors rep-
resenting the candidate solutions. Thus the j th component of the ith population
member is initialized according to (8.21) as mentioned in Sect. 8.3. The entries for
the Q-table are initialized as small values. For instance, if the maximum Q-value
attainable is 100, then we initialize the Q-values of all entries in the Q-table as 1.

8.5.2 Adaptive Selection of Memes

The proper choice of the Reinforcement Learning Scheme facilitates the adaptive
selection of memes from the meme pool. We employ Fitness Proportional selec-
tion, also known as the Roulette-Wheel selection, for the selection of potentially
useful memes. A basic advantage of this selection mechanism is that diversity of
the meme population can be maintained. Although fitter memes would enjoy much
higher probability of selection, the memes with poorer fitness do manage to survive
and may contribute some components as evolution continues. Mathematically, the
selection commences by the selection of a random number in the range [0,1] for
each population member. Let us consider the selection from the η meme pool for a
member of state Si . The next step involves the selection of ηj such that the cumula-
tive probability of selection of η= η1 through ηj−1 is greater than r . Symbolically,

j−1∑

m=1

p(Si, η= ηm) < r <
10∑

m=j
p(Si, η= ηm). (8.27)

The probability of selection of η = ηj from the meme pool {η1, η2, . . . , η10} is
given by

p(Si, η= ηj )= Q(Si, ηj )
∑10
k=1Q(Si, ηk)

. (8.28)
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8.5.3 Invasive Weed Optimization

The IWO algorithm used here employs reproduction, seed dispersal, and compet-
itive exclusion as introduced in Sect. 8.3. The basic difference of the current real-
ization is the selection of constriction factor η from the meme pool adaptively by
Step 8.5.2 before invoking the IWO process.

8.5.4 State Assignment

The population members are now ranked in increasing order of fitness and assigned
corresponding states. For example, a member of rank k is assigned the state Sk .

8.5.5 Updating the Q-table

Let a member at state Si on selection of ηj move to a new state Sk . The update
equation for Q(Si, ηj ) is given by

Q(Si, ηj )← (1− α)Q(Si, ηj )+ α
(
r(Si, ηj )+ γ max

η′
Q
(
δ(Sk, ηj ), η

′)). (8.29)

The choice of the reward function is critical to the proper operation of the Q-
learning mechanism. In case the seeds produced by a particular weed experience
greater fitness in comparison to the parent weed, r(Si, ηj ) is set to the absolute
difference of fitness of the parent weed and the fittest seed. Otherwise a penalty of
−K is applied, however small.

The next step involves the determination of the factor maxη′Q(δ(Sk, ηj ), η′).
A particular weed may enter the next generation along with multiple seeds or it may
be completely eliminated. In case of multiple state acquisition in the next genera-
tion, the factor is set equal to the maximum of maxη′Q(δ(Sk, ηj ), η′) for all Sk’s.
Otherwise it is set equal to 0 in case of plant exclusion.

Sections 8.5.2–8.5.5 are repeated till the maximum number of iterations is
reached.

8.6 The Filter Design Experiments and Results

Let us consider a specific example of the design problem [4], where the user-
specification for the desired circular symmetric low-pass filter response is given
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Fig. 8.1 Desired amplitude
response of the 2D filter

by

Md = 1 if
√
ω2

1 +ω2
2 < 0.04π,

0.5 if 0.04π <
√
ω2

1 +ω2
2 < 0.08π,

0 otherwise.

(8.30)

The desired amplitude response of the 2D filter is shown in Fig. 8.1. For our
experiment we choose N1 = 100 and N2 = 100. Results have been reported for
b = 1,2,4, and 8. The efficiency of our approach to the filter design problem is
demonstrated through comparisons of our results with state-of-the-art methodolo-
gies, namely MEPSO, G3 with PCX, and DE reported in [4]. The parameter settings
for our proposed IIWO algorithm have been tabulated below in Table 8.1. They were
set after a set of tuning experiments and were left unaltered for the entire simulation.
The amplitude responses of the filters obtained by the above mentioned algorithms
are shown in Fig. 8.2.

The problem constraints are handled using the method outlined in [6] as follows:

– Any feasible solution is preferred to any infeasible solution;
– Between two feasible solutions, the one with better fitness is preferred;
– Between two infeasible solutions, the one with a smaller constraint violation is

preferred.

In order to test the accuracy of the IIWO algorithm, we ran it along with the com-
petitor algorithms for 50,000 function evaluations. Each algorithm was executed for
30 independent runs. The mean of the objective function values Jb (where b denotes
the value of the exponent) of the 30 independent runs are reported in Table 8.2. The
best objective filter coefficients obtained with exponent b= 2 after 50,000 function
evaluations for all the competitor algorithms have been presented in Table 8.3.

Finally, as an illustration of the performance of the designed low pass filters we
demonstrate an image denoising experiment on the 256 × 256 gray scale image
of Lenna. Denoising of digital images is one generic application of the lowpass
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Fig. 8.2 Amplitude responses of the filters obtained by the various competitive algorithms

Table 8.1 Parameter settings
for the IIWO algorithm Parameters Value

Initial Population 40

Maximum population 40

Maximum no. of seeds 10

Minimum no. of seeds 0

Std. dev. for seed dispersal 0.1–0.001

Reward parameter, α 0.25

Penalty parameter, γ 0.8

2D filters [9, 21, 22]. The original image is first corrupted with Gaussian noise of
mean zero and variance 0.005. Then the image is transformed into the frequency
domain using Fast Fourier Transform (FFT) and multiplied with the filter transfer
function. The filtered image is then obtained by taking the inverse FFT (IFFT). The
image processing techniques are performed using the MATLAB image processing
toolbox. The results of image denoising by the filters designed by the competitive
algorithms are shown in Fig. 8.3.
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Fig. 8.3 Result of filtering with the designed filter: (A) original image “Lenna”, (B) image cor-
rupted with Gaussian noise, (C) filtering with G3 with PCX-based method, (D) filtering with DE
based method, (E) filtering with the MEPSO-based method, (F) filtering with IIWO method
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Table 8.2 Mean value of J with exponent p = 1,2,4,8 after 50,000 FEs

Values of J for different exponents MEPSO G3 with PCX DE IIWO

J1 60.3923 95.7113 98.5513 42.5227

J2 9.0005 10.4252 11.9078 6.4371

J3 0.5039 0.5732 2.9613 0.3786

J4 0.0058 0.0178 0.2903 0.0034

Table 8.3 Filter coefficients obtained with exponent p = 2 after 50,000 FEs

Filter Coefficients MEPSO G3 with PCX DE IIWO

p01 0.3061 −0.3016 −0.2426 −0.1652

p02 0.9949 2.9023 2.4827 −0.7623

p10 0.3935 −0.3435 −0.3484 2.7677

p11 −0.0338 −2.0490 −2.0898 2.9921

p12 0.6481 0.0387 0.0323 −1.6530

p20 1.2345 2.4932 2.4915 −1.1049

p21 0.5030 0.1975 0.1613 1.7266

p22 0.4481 0.7493 0.7563 1.4750

q1 −1.0239 −0.4738 −0.9113 −0.3247

q2 0.0342 −0.0843 −0.0255 −0.3656

r1 −0.9605 2.9493 2.9613 −0.3232

r2 −0.0371 −0.0376 −0.0344 −0.1629

s1 0.9523 0.8874 0.8674 −0.2719

s2 −0.9056 −0.8476 −0.8075 −0.3672

H0 0.00034 0.0784 0.0012 −0.0017

8.7 Conclusions

The chapter proposes a new method to the design problem of a zero-phase IIR digital
filter. The proposed algorithm uses a synergy of Temporal Difference Q-Learning
and Invasive Weed Optimization to realize an Adaptive Memetic Algorithm (AMA)
that statistically outperformed the most recent and popular methods outlined in the
existing literature [4, 8, 16, 18] in terms of performance accuracy and solution qual-
ity. Further, the superior quality of the recovered image as compared to the other
competitive algorithms demonstrates how the designed 2D filter lends itself to well-
known 2D IIR filter applications like image denoising.

Integration of such reinforcement learning schemes in the evolutionary platform
is a completely new field of research [1, 24, 25], and further studies will involve
comparative analysis of performance of the proposed memetic algorithm using other
popular reinforcement learning schemes.
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Chapter 9
A Survey of Kurtosis Optimization Schemes
for MISO Source Separation and Equalization

Marc Castella, Eric Moreau, and Vicente Zarzoso

Abstract Blind source separation and equalization aim at recovering a set of un-
known source signals from their linearly distorted mixtures observed at a sensor
array output, with little or no prior knowledge about the sources or the distorting
channel. This fundamental signal processing problem arises in a broad range of ap-
plications such as multiuser digital communications, biomedical data analysis, and
seismic exploration. Put forward over three decades ago, the normalized fourth-
order cumulant, also known as kurtosis, has arguably become one of the most pop-
ular blind source separation and equalization criteria. Using multiple-input single-
output (MISO) filter structures for single source extraction combined with suitable
deflation procedures, the kurtosis contrast yields separation algorithms free of spuri-
ous extrema in ideal system conditions. The lack of closed-form solutions, however,
calls for numerical optimization schemes. The present chapter reviews some of the
iterative algorithms most widely used for MISO source separation and equalization
based on kurtosis. These include gradient and Newton search methods, algorithms
with optimal step-size selection, as well as techniques based on reference signals.
Their main features are briefly summarized and their performance is illustrated by
some numerical experiments in digital communications and biomedical signal pro-
cessing.
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9.1 Introduction

In this section, we first present the blind channel equalization and source separation
problems and make a point about the important practical use of kurtosis as a source
extraction criterion. A brief historical overview follows together with the chapter
outline and notations.

9.1.1 Channel Equalization and Source Separation

Numerous signal processing applications involve extracting signals of interest from
their observed mixtures, possibly corrupted by propagation effects and additive
noise. Instances of this problem abound in array signal processing, where a receiver
sensor array may capture contributions from multiple sources of simultaneous ac-
tivity originating from different space locations. The source signals are generally
unknown and so is the mixing physical system. The estimation of the source sig-
nals with no prior knowledge of the mixing system parameters or the source signals
themselves (e.g., pilot sequences in communications) is the so-called blind source
separation (BSS) problem [22].

From a signals and systems perspective, the observations can be considered as
the output of a multiple-input multiple-output (MIMO) filter, which is assumed to
be linear throughout this chapter. Two important cases can be distinguished. In in-
stantaneous mixtures, propagation effects mainly reduce to amplitude attenuation,
but otherwise the sources do not suffer any significant distortion prior to mixing.
This scenario occurs in narrowband propagation conditions, where time delays are
negligible or can just be approximated by phase shifts. In convolutive mixtures,
the sources undergo temporal distortions that can often be represented by the con-
volution with the channel impulse response, assumed to behave as a linear time
invariant (LTI) filter. Convolution can be regarded as a mixture of the source with
time-delayed replicas of itself. This case models more severe effects such as multi-
path propagation and limited channel bandwidth in wideband source environments.
Disentangling convolutive mixtures requires the time equalization of the source con-
tributions in addition to their spatial separation. In either case, instantaneous or con-
volutive, the goal of BSS is inverting the MIMO channel to recover the sources. The
related objective of identifying the channel is sometimes useful in certain applica-
tions, but will not be addressed in the sequel.

BSS is an important problem in wireless digital communications, where signals
emitted from different mobile users have to be equalized at the base station both tem-
porally and spatially in order to eliminate inter-symbol interference and co-channel
user interference. Blind processing spares the transmission of training sequences,
with the consequent benefits in spectral efficiency. Source separation is also of rele-
vance in biomedical applications, where sources of physiological information (e.g.,
firing patterns) appear mixed at the electrode output in electromyogram and elec-
troencephalogram recordings. Likewise, the separation of cardiac activity sources
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that mix together in the electrocardiogram can provide useful information about a
patient’s heart condition. Applications related to source separation extend far be-
yond signal processing to encompass domains as diverse as factor analysis, me-
chanical system diagnosis, or financial forecast, among others.

The separation process can be mainly carried out in two fashions. In joint or
symmetric separation schemes, the sources are estimated simultaneously with a
MIMO separation filter having the observed mixtures as inputs and the estimated
sources as outputs. This approach usually leads to rather elaborate separation al-
gorithms, whose convergence properties are difficult to study. In deflationary sepa-
ration, by contrast, one source is extracted at a time using a multiple-input single-
output (MISO) filter. This separation scheme requires an additional processing stage
called deflation to avoid extracting the same source several times. The deflation ap-
proach, however, leads to simpler separating algorithms easier to analyze theoret-
ically and presenting nice convergence properties. Such is the case of the source
extraction methods studied in this chapter.

Source signals can be classified as random (stochastic) or deterministic, and are
characterized accordingly using different tools. Random sources require statistical
characterizations, often by means of moments or cumulants, the latter correspond-
ing to specific nonlinear combinations of the former [60]. Based on these statistical
properties, a large diversity of separation principles or contrast functions have been
proposed in the literature, whereby the separation is achieved by the filters max-
imizing such contrasts [10, 12, 15–17, 22, 31]. The case of mutually independent
sources has drawn considerable interest, since statistical independence is a plausible
assumption in many practical applications. The normalized fourth-order cumulant,
or kurtosis, constitutes one of the most widespread contrasts for the extraction of
independent sources in linear mixtures, as reviewed in the remaining of this chapter.

9.1.2 Why Kurtosis?

Higher-order statistics (i.e., moments and cumulants with orders higher than two)
have extensively been used for the separation of mutually independent non-Gaussian
sources. Their success in performing BSS in this scenario hinges heavily on the con-
cepts of statistical independence and non-Gaussianity, linked by the Central Limit
Theorem, and their ability to measure both. The Central Limit Theorem states that
a linear mixture of independent non-Gaussian random variables is more Gaussian
than the original variables; accordingly, one should proceed in the opposite direc-
tion, i.e., increasing non-Gaussianity, to undo the mixture and separate the variables.
Since the higher-order marginal cumulants of a Gaussian variable are null, maxi-
mizing their absolute value leads to sensible principles for separating spatial and/or
temporal mixtures, of which kurtosis is a leading example. Indeed, MISO extraction
filters can be found by optimizing the kurtosis contrast function.

Despite its potential lack of robustness to outliers [34], kurtosis has been widely
employed for source separation and equalization for many years. Though also pro-
posed as part of joint separation criteria [19, 23, 40, 42–47, 51, 61], this contrast
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becomes particularly interesting when used for MISO processing. Its most attrac-
tive feature in this context—which may probably explain the interest it has aroused
over more than two decades—lies in the absence of spurious local extrema under
ideal model conditions. As a result, global convergence to right source extraction
solutions is guaranteed even by means of local optimization algorithms. This highly
desirable property was first proven in [58] in the context of blind single-channel
equalization, and later in [26] for BSS in real-valued instantaneous mixtures after
prewhitening. The proof was finally extended to the more general convolutive com-
plex mixture case in [59, 64]; see also [27] for the instantaneous scenario. The good
convergence properties of later algorithms such as the multiuser kurtosis optimiza-
tion of [50] are actually inherited from the decoupling of the MIMO criterion into
a set of MISO extraction criteria through a deflation approach. As reviewed in the
chapter, a good number of cost-effective iterative algorithms are available for kurto-
sis maximization.

Besides its mathematical tractability and computational convenience, kurtosis
proves more robust to finite sample effects than related criteria such as the fourth-
order moment or the fourth-order cumulant [5, 6]. This interesting property is espe-
cially useful when processing short data records.

9.1.3 Historical Overview

Originally proposed by Wiggins [66] and Donoho [28] for single-channel decon-
volution in the context of seismic exploration, the use of kurtosis for interference
cancelation and signal recovery quickly spread to other application domains such as
digital communications, biomedical signal processing, image denoising, and speech
enhancement, as well as more involved signal models. Its application in digital
channel equalization dates back to the work of Shalvi and Weinstein [58], who
proved its validity as a blind deconvolution criterion for the non-Gaussian distri-
butions typically encountered in communications and proposed gradient algorithms
for kurtosis maximization based on spectral prewhitening. Extensions to multi-
channel models soon followed. The criterion was proposed for BSS by Delfosse–
Loubaton [26] and Papadias [50] using second-order sphering or prewhitening, and
by Tugnait [64] even without prewhitening. Connections with the popular constant
modulus criterion for blind equalization, which had been developed a few years ear-
lier in [33, 57, 63], were realized by Comon [20, 21] and Regalia [53]; see also [77].
In its original definition, Hyvärinen’s popular FastICA algorithm for BSS based on
independent component analysis also relied on the kurtosis criterion [36]; the algo-
rithm was independently developed by Moreau in [40]. More recent developments
include monotonically convergent algorithms optimizing quadratic contrasts based
on reference signals [10, 12, 13, 16] as well as parameter-free iterative algorithms
with algebraic optimal step-size selection [74].
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9.1.4 Chapter Outline

This chapter summarizes the basic concepts behind the use of kurtosis as an MISO
source separation and equalization criterion, and reviews some practical numeri-
cal algorithms proposed in the literature for kurtosis optimization. Our focus is on
the deflationary separation of statistically independent sources in linear mixtures,
which are assumed noiseless for the sake of simplicity. Although adaptive (online,
recursive, sample-by-sample) algorithms have also been devised, our interest lies
primarily in batch (offline, windowed, block) algorithms that reuse a whole set of
observed signal samples at each iteration. As stated in [1], batch processing leads to
statistically more efficient implementations, from which adaptive versions can often
be obtained with simple changes.

After presenting the BSS signal model and assumptions in Sect. 9.2, the gen-
eral deflation procedure based on the kurtosis criterion is introduced in Sect. 9.3.
Section 9.4, the core of the chapter, reviews a number of iterative algorithms for
kurtosis contrast maximization. A few experimental results illustrating the perfor-
mance of such methods are reported in Sect. 9.5. Finally, Sect. 9.6 summarizes the
main results of the chapter and points out some possible avenues of further research.

9.1.5 Mathematical Notations

Before beginning the exposition, defining some mathematical notations will be use-
ful. Throughout the chapter, unless otherwise stated, signals can be complex- or
real-valued. The letter n stands for a generic integer, n ∈ Z. Lightface (x, X), bold-
face lowercase (x), and boldface uppercase (X) characters denote scalar, vector, and
matrix quantities, respectively. The transpose and Hermitian (conjugate-transpose)
operators are denoted by superscripts (·)T and (·)H. The cumulant of a set of random
variables is represented by Cum{·}. In particular, the fourth-order marginal cumulant
of a zero-mean random variable y is given by:

C{y}� Cum
{
y, y∗, y, y∗

}= E
{|y|4}− 2E

{|y|2}2 − ∣∣E{y2}∣∣2 (9.1)

where E{·} represents the mathematical expectation. Finally, symbols � and · stand
for, respectively, the convolution operator and the scalar product.

9.2 Blind Source Separation: Model and Assumptions

In this section, we introduce the different mixing models considered in this chapter.
The assumptions used to perform BSS are also given.
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9.2.1 Convolutive Mixtures

We consider an observed Q-dimensional (Q ∈ N, Q≥ 2) discrete-time signal x(n)
following the linear model

x(n)� M(n) � s(n)=
∑

p∈Z
M(p)s(n− p). (9.2)

Hence, the observed data x(n) are the output of the convolutive MIMO channel rep-
resented by the (Q × N ) matrix impulse response M(n) excited by the unknown
N -dimensional (N ∈ N, N ≥ 2, N ≤ Q) source input s(n). The (i, j)th entry of
the matrix M(n), denoted mij (n), represents the scalar channel transforming source
sj (n) before adding its contribution to mixture yi(n). The above model is assumed
noise-free. The objective of BSS is to restore the sources by exploiting the obser-
vations alone, without any knowledge of the MIMO channel M(n) and the sources
s(n). Clearly, some further assumptions are necessary to prevent this problem from
being ill-posed.

A first type of assumptions concerns the convolutive mixing system M(n). We
assume that it admits a left inverse or MIMO separating filter W(n) such that

y(n)� W(n) � x(n)=
∑

p∈Z
W(p)x(n− p) (9.3)

recovers all sources in the separator output y(n). Since the source ordering and spec-
tral profiles cannot be identified by using criteria based on statistical independence
only, the separation is considered successful whenever the global system

G(n)� W(n) �M(n)=
∑

p∈Z
W(p)M(n− p) (9.4)

is of the form

G(n)=D(n)P (9.5)

where D(n) is an invertible diagonal convolutive MIMO system modeling the
source spectral ambiguity, and P a permutation matrix modeling the source order-
ing ambiguity. Remark that these ambiguities are inherent to blind processing and
are acceptable in most applications. When the sources are independent and iden-
tically distributed (i.i.d.), the scalar filtering represented by the diagonal entries
of D(n) reduces to a simple delay ni ∈ Z with a possible scale factor dii ∈ C,
and so dii(n) = diiδn−ni , where δn denotes Dirac’s discrete delta function; see,
e.g., [16, 17, 22, 59] for more details.

Another set of assumptions concerns the source signals:

A1. For all i, the source sequence si(n) is stationary and zero-mean. In addition,
the fourth-order cumulants, C{si}, exist and are assumed to be nonzero.



9 A Survey of Kurtosis Optimization Schemes 189

A2. The source processes si(n), i ∈ {1, . . . ,N}, are mutually statistically inde-
pendent.

These assumptions allow the separation of independent non-Gaussian sources using
kurtosis.

In all the following, we will focus on the MISO approach to BSS, which con-
sists in extracting one source after another. This is done by estimating one row of
W(n), denoted by w(n), in such a way that the extractor output y(n)=w(n) � x(n)
corresponds to one source up to a possible scalar filtering; this step is detailed in
Sect. 9.3.1. If a full separation is to be accomplished, a deflation stage has to be
applied before searching for a new source, as will be described in Sect. 9.3.2.

9.2.2 Instantaneous Mixtures

In the instantaneous mixture case, channel effects reduce to scale factors without
time delays, so that the MIMO channel is given by M(n) = Mδn. As a result, the
LTI systems in Eqs. (9.2)–(9.4) reduce to constant matrices, and the respective con-
volution operations become matrix products:

x(n)=Ms(n), y(n)=Wx(n), G=WM.

Similarly, when dealing with MISO separation, the extracted source output reads
y(n) = wx(n), where w is a constant row vector corresponding to one row of ma-
trix W.

A similar matrix model holds when considering finite impulse response (FIR)
equalizers, a practical setting to deal with convolutive mixtures. If the separating
filter W(n) is represented by an order-R causal FIR MIMO filter, the summation
index in separation equation (9.3) extends from 0 to R. Hence, the convolution can
be expressed as the matrix product:

y(n)= [W(0),W(1), . . . ,W(R)]xR+1(n)

where vector xR+1(n) is obtained by stacking (R + 1) consecutive delays of the
observed vector x(n): xR+1(n) � [x(n)T,x(n − 1)T, . . . ,x(n − R)T]T. Thanks to
the equivalent matrix model enabled by the stacking device, results presented later
in the chapter for the instantaneous case can readily be extended to the convolutive
case with FIR equalizers. More details can be found, e.g., in [13, 14, 16].

9.3 Deflationary Source Separation

This section introduces the general methodology of the deflation-based BSS ap-
proach considered in this chapter. The approach iterates between the following two
fundamental steps:
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Fig. 9.1 Schematic diagram of the signal model considered in this chapter

Extraction aims at estimating one source from the observed mixture by using a
MISO filter maximizing a suitable contrast function, as detailed in
Sect. 9.3.1.

Deflation aims at canceling out the contribution of the source estimated in the
previous step, so that the number of sources contributing to the mixture
decreases by one. Section 9.3.2 explains how to perform this step.

Using the deflated mixture obtained in the second step, the algorithm goes back to
the first step to search for another source, and so forth. The procedure is repeated
until all sources have been estimated (full separation) or the source of interest has
been recovered.

9.3.1 Source Extraction with MISO Contrast Functions

The MISO source extraction problem consists in estimating one row of the separat-
ing filter W(n) in Eq. (9.3). The entries of this row vector, called vector equalizer
and denoted w(n), represent a bank of Q scalar LTI filters with impulse responses
{wi(n)}Qi=1. The output of the separation procedure is the scalar signal

y(n)=w(n) � x(n)=
Q∑

i=1

wi(n) � xi(n). (9.6)

Defining the global LTI vector filter g(n) � w(n) �M(n), with impulse response
g(n)=∑p∈Z w(p)M(n− p), we then have

y(n)= g(n) � s(n)=
N∑

i=1

gi(n) � si(n). (9.7)

Vector g(n) is a row of the global matrix defined in Eq. (9.4). These notations are
summed up in Fig. 9.1. According to the ambiguities described in Sect. 9.2.1, a
successful extraction restores one of the source components si(n), i ∈ {1, . . . ,N},
possibly up to scalar filtering: y(n)= dii(n) � si(n). The global filter g(n) thus con-
tains a single nonzero entry, gi(n)= dii(n), gj (n)= 0, j �= i, and is actually a row
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of global matrix (9.5) modeling ideal separation conditions. Vectors g(n) with such
a structure are referred to as trivial filters.

The MISO separating filter w(n) can be obtained by maximizing specific criteria
called contrast functions. By definition, the contrast attains its maximum value when
w(n) is a separating filter or, equivalently, when the global vector g(n) is a trivial
filter. More detailed explanations on the properties that define contrast functions can
be found in [41]. The extractor output kurtosis is defined as the normalized fourth-
order cumulant

J (w)� C{y(n)}
E{|y(n)|2}2 (9.8)

where the dependence of J on w(n) is through Eq. (9.6). Note that we have used
the shorthand notation w to represent the coefficients of vector filter w(n). Then we
have the following fundamental results:

Proposition 1 (Kurtosis contrast) Under assumptions A1–A2, the absolute kurtosis
function

Jκ(w)�
∣∣J (w)

∣∣ (9.9)

is a contrast for MISO source extraction in the model defined by Eqs. (9.2) and (9.6).
Similarly, under the same conditions, the function

Jε(w)� εJ (w) (9.10)

is a contrast for the extraction of a source with kurtosis sign ε.

The proof of these results is omitted here for reasons of space, as our focus is
on the optimization algorithms of Sect. 9.4. Suffice it to say that the validity of this
contrast has been proved in several scenarios, including the i.i.d. context [64] and
the non-i.i.d. context [59]; the instantaneous case has specifically been addressed
in [26, 27, 50]; see [22] for other references. As introduced in Sect. 9.1.2, one of the
major interests of MISO contrasts as the above is that they are free of local spurious
maxima. More precisely, any local maximum corresponds to a valid separating filter.

Remark 1 Due to the normalizing term in Eq. (9.8), the kurtosis contrast is scale
invariant, i.e., J (αw) = J (w), ∀α ∈ C\{0}. In other words, the function J is
homogeneous of degree zero. This means that J is unaffected by a possible am-
plitude scaling of y(n). However, due to the source scale ambiguity (Sect. 9.2), we
are free to impose the unit power constraint E{|y(n)|2} = 1, which is equivalent to
a unit norm constraint on the global filter g(n):

∑
i

∑
n |gi(n)|2 = 1.

Remark 2 Alternatively to the unconstrained optimization of the kurtosis contrast,
one could maximize the fourth-order cumulant in the numerator of (9.8) under the
constraint E{|y(n)|2} = 1 (see, e.g., [14]; also [58] in the single-channel case). How-
ever, as will be explained in Sect. 9.4, optimizing the normalized contrast with si-
multaneous unit power scaling is actually a requirement in practical numerical im-
plementations.
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9.3.2 Deflation Procedure

This section briefly describes the deflation method proposed in [39]; the alternative
deflation scheme of [26] will be presented in Sect. 9.4.3. We assume that a possi-
bly filtered version of source sp(n) has been recovered in extractor output y(n) by
means of a suitable MISO approach (Sect. 9.3.1). We show here that one can then
subtract the contribution of sp(n) to the observations and, in doing so, the origi-
nal mixture of N sources simplifies to a smaller mixture of (N − 1) sources. More
precisely, we have the following result:

Proposition 2 (Deflation criterion) Consider the linear mixture model (9.2), which,
with evident definitions, can be expressed as

x(n)=
N∑

i=1

mi (n) � si(n).

For a given p ∈ {1, . . . ,N}, let y(n)= gp(n) � sp(n) be a scalar filtering of source
sp(n). Define the following adjusting filter:

t�(n)= arg min
t(n)

E
{∥∥x(n)− t(n) � y(n)

∥∥2}
. (9.11)

Then

x(n)− t�(n) � y(n)=
∑

i �=p
mi (n) � si(n). (9.12)

Proof We can write

x(n)− t(n) � y(n)=
N∑

i=1

mi (n) � si(n)− t(n) � y(n)

= [mp(n)− t(n) � gp(n)
]
� sp(n)+

∑

i �=p
mi (n) � si(n).

Exploiting the source independence assumption A2 and the linearity of the expecta-
tion operator, we have

E
{∥∥x(n)− t(n) � y(n)

∥∥2}

= E
{∥∥[mp(n)− t(n) � gp(n)

]
� sp(n)

∥∥2}+
∑

i �=p
E
{∥∥mi (n) � si(n)

∥∥2}
.

The filter t(n) minimizing the above expression cancels out [mp(n)− t(n) � gp(n)],
and result (9.12) readily follows. �
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According to the above proposition, replacing the original observations with
x(n)− t�(n)�y(n) reduces the mixture ofN sources to a mixture of (N−1) sources
only. For this result to hold, y(n) is required to contain a filtered version of a source
signal, which can be obtained by maximizing a MISO contrast as shown in the pre-
vious section. Combining these two ideas yields the following generic deflationary
source separation algorithm:

General algorithm for deflationary source separation

• Set x(1)(n)= x(n).
• For p = 1,2, . . . , (N − 1), do:

1. Extraction: From the observations x(p)(n), determine an estimate yp(n)
of one source signal up to admissible ambiguities using a suitable MISO
contrast such as (9.9)–(9.10).

2. Deflation: Deflate the observations by removing the contribution of the
estimated source:

(a) Find a column vector filter t�p(n) satisfying

t�p(n)= arg min
t(n)

E
{∥∥x(p)(n)− t(n) � yp(n)

∥∥2}
.

(b) Define the deflated observations x(p+1)(n) as follows:

x(p+1)(n)= x(p)(n)− t�p(n) � yp(n).

• Estimate the last source as an arbitrary MISO filtered version of x(N)(n).

In practice, one often deals with FIR filters and the above problem amounts to
the least squares solution of a linear system. Remark that in practical settings such
as noisy or short sample size scenarios, the sources can only be estimated with
some inaccuracies, and then the error term to be minimized in step (9.11) cannot be
perfectly canceled. As a result, estimation errors accumulate through successive de-
flation iterations [14]. This error propagation is probably the main drawback of the
deflation approach. In the remaining of the chapter, we turn our attention to prac-
tical algorithms for optimizing the kurtosis contrast in Step 1 of the above general
algorithm.

9.4 Optimization Methods

As seen in Sect. 9.3.1, MISO source extraction can be accomplished by finding the
extraction filters maximizing the kurtosis contrast. This problem lacks closed-form
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solutions and, as a consequence, it requires iterative numerical algorithms. This sec-
tion provides a survey of iterative techniques for kurtosis maximization proposed in
the literature. These include gradient-based algorithms (Sect. 9.4.1) possibly includ-
ing some form of projection (Sect. 9.4.2) or parametrization of the separation sys-
tem (Sect. 9.4.3). Newton search is also considered, the popular FastICA algorithm
with cubic nonlinearity being arguably the most popular example (Sect. 9.4.4). The
kurtosis-based FastICA can actually be recast as a gradient algorithm with constant
step size, which motivates the development of more elaborate algorithms with op-
timal selection of the step-size parameter (Sect. 9.4.5). Our review concludes with
techniques based on reference signals leading to quadratic criteria that can be opti-
mized by algorithms with monotonic convergence (Sect. 9.4.6).

The contrasts under study depend on the MISO filter w(n), but can also be con-
sidered as functions of the global MISO filter g(n) = w(n) � M(n). For ease of
notation, the corresponding filters will just be denoted in the sequel without refer-
ence to time index n. We focus on the maximization of the absolute kurtosis contrast
Jκ (Eq. (9.9)), the treatment of Jε (Eq. (9.10)) being totally analogous.

9.4.1 Gradient Search Algorithms

Since the seminal works establishing kurtosis as a deconvolution criterion [28, 58,
66], a wide variety of blind separation and equalization methods based on this con-
trast have been put forward using gradient optimization [40, 50, 53, 58, 64, 74]. The
idea consists in taking small steps in the direction of the gradient:

w+ =w+μ∇Jκ(w) (9.13)

where w+ is the updated extracting vector and symbol ∇ denotes the nabla, or gra-
dient vector, operator of first-order partial derivatives with entries [∇Jκ (w)]i =
∂Jκ (w)/∂wi . From the first-order Taylor expansion of Jκ around w, and taking
into account update (9.13), we have:

Jκ

(
w+)≈Jκ(w)+∇Jκ(w)T

(
w+ −w

)=Jκ(w)+μ
∥∥∇Jκ(w)

∥∥2
.

Hence, a finite sufficiently small positive value of μ guarantees Jκ(w+)≥Jκ (w),
with equality if and only if ∇Jκ(w) = 0, i.e., when the algorithm has reached a
stationary point of Jκ . Likewise, a negative μ would allow the local minimization
of the contrast. In the instantaneous case, the absolute kurtosis gradient is given by

∇Jκ(w)= 4 sign(J (w))
E2{|y|2}

{
E
{|y|2y∗x

}− E{yx}E{y∗2}

− (E{|y|
4} − |E{y2}|2)E{y∗x}

E{|y|2}
}
. (9.14)

This leads to the following algorithm:
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Gradient algorithm for kurtosis optimization

• Set an initial value w(0) for the extracting vector.
• For k = 1,2, . . . , kmax, do:

1. Compute the gradient direction d(k−1) =∇Jκ(w(k−1)) from Eq. (9.14).
2. Compute an appropriate step size μ and update w(k) = w(k−1) +
μd(k−1).

The real-valued parameter μ is known as the learning rate, step size, or adapta-
tion coefficient, and is assumed to be constant in classical gradient algorithms. The
optimal selection of this parameter will be the subject of Sect. 9.4.5.

9.4.2 Projected Gradient Search

Let us consider the kurtosis contrast (9.9) as a function of the global filter g, which
we can express as

Jκ(g)= C (g)
‖g‖4

where C (g)= |C{y(n)}| is the absolute fourth-order cumulant of the extractor out-
put in the numerator of (9.8), considered as a function of g. The function C is homo-
geneous of degree four, i.e., C (αg)= α4C (g), ∀α > 0. From Euler’s homogeneous
function theorem, it follows that g · ∇C (g)= 4C (g), ∀g, which proves that the gra-
dient of C has a nonzero radial component. In the vicinity of a local maximum
of C , according to the Karush–Kuhn–Tucker conditions, the tangent component of
∇C (g) tends to zero and the ratio of the radial to the tangent part of ∇C (g) tends to
infinity. For numerical reasons, this is not acceptable in an iterative algorithm. Re-
call indeed that, due to the scale ambiguity (Sect. 9.2), one can impose a unit norm
constraint on the global filter g, and hence only the tangent part of ∇C (g) is of im-
portance. If this tangent part is too small with respect to the radial part, it appears as
a numerical error. This justifies that, although the maximization of Jκ is theoreti-
cally equivalent to the constrained maximization of C (as noted in Remark 2), the
former must be used in practice (see, e.g., [14, 16, 17, 59]).

The optimization of Jκ , however, must be carried out with some care. As noted
in Remark 1, the contrast Jκ is scale invariant, or homogeneous of degree zero.
Using Euler’s homogeneous function theorem again, we have wT∇Jκ(w)= 0, i.e.,
the gradient of Jκ at w is orthogonal to w. Since the unit ball ‖w‖ ≤ 1 is a convex
set, a step in direction of the gradient vector will always yield a point outside the
unit ball. As a result, the extracting vector norm will monotonically increase at each
iteration of any gradient algorithm: ‖w+‖ ≥ ‖w‖, where the equality will hold at
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Fig. 9.2 Schematic
comparison of the successive
points obtained with gradient
and projected gradient
algorithms. For k = 0,1,2,3,
the sequence uk is generated
by a gradient algorithm,
whereas w̃k is generated by a
projected gradient update
before renormalization.
Sequence wk is generated by
a projected gradient iteration

convergence. This drift is illustrated by Fig. 9.2, and may become unacceptable due
to numerical overflow whenever a great number of gradient iterations are required.
This undesired phenomenon can be prevented by a normalizing step after the gradi-
ent update, e.g., by projecting the extracting vector on the unit sphere, thus yielding
the so-called projected gradient algorithm summarized below:

Projected gradient algorithm for kurtosis optimization

• Set an initial value w(0) for the extracting vector.
• For k = 1,2, . . . , kmax, do:

1. Compute the gradient direction d(k−1) =∇J (w(k−1)) from Eq. (9.14).
2. Compute an appropriate step size μ and update w̃=w(k−1) +μd(k−1).
3. Project the update as w(k) = w̃/‖w̃‖, or any other suitable form of nor-

malization.

It is important to remark that, thanks to the contrast’s scale invariance, the nor-
malization step does not affect the contrast function value attained at the gradient
update step.

9.4.3 Gradient Algorithm with Filter Parametrization

In the instantaneous case, the rank of the observation covariance matrix decreases
by one after each deflation step and, consequently, the dimension of the observation
space can be reduced without losing information. By performing dimensionality
reduction, the search for the next source can be carried out in a lower-dimensional
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parameter space, thus leading to computational savings and faster convergence. One
of the early kurtosis maximization algorithms for instantaneous BSS in real-valued
mixtures is based on an ingenious parametrization of the separating matrix allow-
ing dimensionality reduction at the deflation step [26], and can be summarized as
follows.

The method relies on a preliminary prewhitening step leading to linearly trans-
formed observations z(n) ∈ R

N with identity covariance matrix. Under the source
independence and unit-variance assumption, one can easily see that the whitened
observations are linked to the sources through an unknown orthogonal transforma-
tion Q ∈R

N×N , resulting in the observation model

z=Qs. (9.15)

Source separation is then achieved from the whitened observations through a par-
ticular deflation approach. This approach relies on the decomposition of matrix Q
in terms of Givens planar rotations Q̄i,j (θ), defined as an identity matrix except for
entries (i, i), (i, j), (j, i), and (j, j), 1≤ i < j ≤N , which are given by

[
cos θ sin θ

− sin θ cos θ

]
.

More precisely, Q is decomposed as

Q(θ)=QN−1(θN−1)QN−2(θN−2) · · ·Q1(θ1)

where θ = [θ1, θ2, . . . , θN−1]T, with θi ∈ ]−π/2,π/2[, 1 ≤ i ≤ (N − 1), and
Qi (θi)= Q̄i,N (θi). Matrix Q can be further split into two terms:

Q(θ)= [Q̃(θ) q(θ)
]

in which Q̃(θ) ∈R
N×(N−1) and

q(θ)= [ sin θ1, cos θ1 sin θ2, . . . ,

cos θ1 · · · cos θN−2 sin θN−1, cos θ1 · · · cos θN−2 cos θN−1]T ∈R
N

represents the extracting vector for the source currently targeted as

y = qTz. (9.16)

Angular parameters θ are estimated through a gradient update, much like those sum-
marized in the previous sections. More importantly, by the structure of the mixing
matrix after prewhitening, the extracting vector q(θ) lies orthogonal to all columns
of matrix Q̃(θ), ∀θ . As a result, the vector z̃ � Q̃T(θ)z ∈R

N−1 is uncorrelated with
y, the source extracted by q(θ). Hence, to extract the next source, the algorithm can
be repeated using z̃ instead of z and reducing the dimensions of θ accordingly. The
uncorrelation of z̃ and y prevents the same source from being extracted again. This
dimensionality reduction, achieved by the particular parametrization of the orthog-
onal mixing matrix after prewhitening in the real-valued case, reduces the computa-
tional cost after each deflation stage.
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9.4.4 Approximate Newton Search: The FastICA Algorithm

One of the most popular methods for kurtosis optimization is the FastICA algo-
rithm [35, 36], see also [40], which is based on Newton rather than gradient up-
dates. After deriving the algorithm in Sect. 9.4.4.1, we provide an interpretation as
a gradient-like method in Sect. 9.4.4.2.

9.4.4.1 Derivation of the Algorithm

Newton methods are based on the second-order Taylor approximation of the contrast
around the current point w:

Jκ

(
w+)≈Jκ(w)+∇Jκ (w)T

(
w+ −w

)+ 1

2

(
w+ −w

)TH(w)
(
w+ −w

)
(9.17)

where H(w) represents the Hessian matrix of the second-order derivatives, with
elements [H(w)]ij = ∂2Jκ(w)/∂wi∂wj . The Newton update selects the vector w+
that cancels out the gradient of the second-order approximation on the left-hand side
of Eq. (9.17), yielding

w+ =w−H(w)−1∇Jκ(w). (9.18)

As compared to gradient update (9.13), no parameter needs to be fine-tuned here but,
in exchange, the Hessian matrix needs to be inverted at each iteration, which can be
costly and may introduce numerical instabilities. Hessian inversion is probably the
main drawback of Newton methods.

Matrix inversion can sometimes be avoided, and Newton methods consequently
simplified, by approximating the Hessian matrix, as is the case with FastICA. The
algorithm considers the real-valued mixture scenario after prewhitening, with ob-
servation model (9.15) and extraction equation (9.16), as in the method described in
the previous section. By constraining the extracting vector to lie on the unit sphere,
‖q‖ = 1, the extractor output is guaranteed to fulfill the unit-variance normalization
convention, E{y2} = 1. Under such assumptions, the absolute kurtosis contrast (9.9)
simplifies into J̃κ (q)= |Jf (q)− 3|, where

Jf (q)= E
{
y4} (9.19)

is the fourth-order moment of the extractor output; similar contrasts based on the
fourth-order moment had also been proposed in [9, 26]. The gradient and Hessian
of this simplified contrast are given, respectively, by the expressions:

∇J̃κ(q)= 4 sign
(
J (q)

)
E
{
y3z
}
, (9.20)

H̃(q)= 12 sign
(
J (q)

)
E
{
y2zzT}. (9.21)
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The sign terms in the above equations can be omitted since they cancel out when
combined in a Newton update like (9.18). The Hessian is further approximated as
follows. At a valid extraction solution, say q∗, the extractor output equals a source
component, y ≈ si . The Hessian at that point is then H̃(q∗) = 12E{s2

i zzT} (up
to an irrelevant sign) and, by virtue of the prewhitening assumption, E{s2

i zzT} =
QE{s2

i ssT}QT, where Q is the unitary transformation linking the sources to the
whitened observations in Eq. (9.15). The final simplification assumes that

E
{
s2
i ssT}≈ E

{
s2
i

}
E
{
ssT}= I. (9.22)

As a result, the Hessian reduces to an identity matrix. In combination with
Eq. (9.18), these simplifications lead to the approximate Newton update

q+ = q− 1

3
E
{
y3z
}
. (9.23)

This is followed by normalization of the extracting vector (projection on the unit
sphere):

q+ ← q+/
∥∥q+
∥∥ (9.24)

which is necessary to fulfill the assumption ‖q‖ = 1 imposed by prewhitening. The
orthogonality of the extracting vectors in the whitened observation subspace (see
Eq. (9.15)) enables a simplified deflation method, the so-called deflationary orthog-
onalization [35, 40]. In this alternative procedure, the updated extracting vector is
projected onto the orthogonal complement of the subspace spanned by the already
estimated extracting vectors, as in Gram–Schmidt orthogonalization. In that case,
the deflation method described in Sect. 9.3.2 is no longer necessary. The kurtosis-
based FastICA algorithm is summarized in the table below.

FastICA algorithm for kurtosis optimization

• Sphere the observed signals to obtain the whitened observations z.
• Set an initial value q(0) for the extracting vector in the whitened space.
• For k = 1,2, . . . , kmax, do:

1. Update: q̃= E{(y(k−1))3z} − 3q(k−1), with y(k−1) = (q(k−1))Tz.
2. Normalize: q(k) = q̃/‖̃q‖.

Whitening can be performed by a number of techniques, including the singular
value decomposition (SVD) of the observed data matrix or the eigenvalue decom-
position (EVD) of the covariance matrix. Note that the update used in the above
algorithm description is equivalent to Eq. (9.23), due to the source sign indetermi-
nacy and the normalization step.
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A very attractive property of FastICA is its cubic global convergence under ideal
system conditions (noiseless infinite sample observations perfectly fulfilling the in-
stantaneous linear model) [36, 40]. This desirable feature, which helps to explain
the method’s success, is revisited next.

9.4.4.2 FastICA as a Constant Step-Size Gradient Algorithm

As a parameter-free technique, the Newton approach has the potential to avoid the
convergence problems that may result from an unfortunate choice of step-size in
gradient algorithms. In fact, comparing Eq. (9.13), (9.20), and (9.23), we realize
that the approximate Newton update can be regarded as a gradient-descent iteration
to minimize the fourth-order moment Jf (q) (Eq. (9.19)). Moreover, this implicit
gradient iteration uses a fixed step size μ=−1/12.

Although this specific value for the step-size parameter may seem arbitrary, it is
actually instrumental in endowing FastICA with the desirable cubic global conver-
gence property under ideal system conditions. To prove this claim, let us consider
an update of the form (9.23) with a generic but otherwise constant step size, say ν,
rather than the value −1/3 used in FastICA’s iteration. First recall that the global fil-
ter g = QTq links the extractor output with the sources as y = gTs, where ‖g‖ = 1,
since ‖q‖ = 1 due to prewhitening (Sect. 9.4.4.1). In terms of g, the resulting update
would read:

g+ = g+ νE
{
y3s
}= [I+ νE

{(
gTs
)2ssT}]g. (9.25)

The second equality stems from the fact that E{y3s} = E{y2s(sTg)} = E{y2ssT}g.
The crucial step to prove FastICA’s cubic global convergence is showing that the
updates induced in the entries of g by the above equation are uncoupled from each
other and have a cubic-only dependence, i.e., that

g+i = αig3
i (9.26)

for all entries i = 1,2, . . . ,N of vector g, with at least one of the coefficients αi
different from zero. Focusing on a generic entry gi , Eq. (9.25) yields:

g+i = gi + ν
N∑

j=1

hij gj (9.27)

where hij � E{y2sisj } is the (i, j)th element of matrix E{y2ssT}, which can be
expressed as the quadratic form hij = gTE{sisj ssT}g. Under the source statistical
independence assumption A2, we can easily show that

hij =
{∑

k �=i g2
k + (κi + 3)g2

i , i = j,
2gigj , i �= j, (9.28)
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where κi represents the kurtosis of the ith source. Inserting this expression into
Eq. (9.27), and after some algebraic manipulations keeping in mind that ‖g‖ = 1,
we easily arrive at

g+i = (1+ 3ν)gi + νκig3
i . (9.29)

Hence, a relationship of the form (9.26), and thus FastICA’s cubic convergence,
can be achieved only if ν = −1/3, which corresponds precisely to the coefficient
used in update rule (9.23) obtained by the simplified Newton iteration with iden-
tity Hessian matrix. Besides the specific step size value used in its update equa-
tion, another key ingredient of FastICA’s excellent convergence properties is the
apparently trivial normalization step (9.24). It is indeed this step that allows the
global filter to fulfill ‖g‖ = 1 after each iteration, thus allowing the simplification of
Eq. (9.27) through Eq. (9.28) into Eq. (9.29). Remark, however, that the objective
function (9.19) implicitly optimized by FastICA is a valid contrast for real-valued
sources and mixtures under prewhitening. The use of prewhitening imposes some
performance bounds on further higher-order processing, as analyzed in [8].

The desirable convergence properties of FastICA only hold asymptotically, i.e.,
under infinite sample size conditions, when the noiseless observation model is per-
fectly satisfied [29, 36]. Nevertheless, when processing short observation windows
the fourth-order contrast presents higher sample variance than the kurtosis for a
range of source distributions (including sub- and super-Gaussian), leading to sep-
aration estimates farther from the optimal solution [5, 6]. A simple numerical ex-
ample helps to illustrate this limitation. Figure 9.3 plots the contrast function val-
ues against angle Δθ parametrizing the global filter g = [cos(Δθ), sin(Δθ)]T for
an instantaneous orthogonal mixture of two zero-mean unit-variance uniformly dis-
tributed sources, with an observation window of just T = 50 samples. Separation so-
lutions are defined by integer multiples of π/2 rad, recovering the sources up to the
sign and permutation ambiguities inherent to blind processing (Sect. 9.2). Clearly,
the local minima of the sample fourth-order moment (dashed line) lie farther away
from the separation solutions than the maxima of the sample absolute kurtosis (solid
line); in addition, the minima near 0 and ±π rad become saddle points, which tend
to slow down the algorithm’s convergence. Comparing panels (a) and (b) shows
that FastICA converges to different solutions depending on the initial value of the
extracting vector, requiring in each case nearly 30 iterations [74]. The theoretical
large-sample performance of FastICA has been analyzed in [62], including a solu-
tion to prevent the detrimental effects of saddle points. This solution, however, is
only valid in the version of the algorithm designed for joint or simultaneous source
separation rather than single source extraction.

The version of the FastICA algorithm reviewed above is designed for real-valued
sources and mixtures only. An extension to complex signals was carried out in [7],
and was later shown to inherit the cubic global convergence property of its real-
valued counterpart [56]. Such an extension, however, is valid only for sources sat-
isfying the second-order circularity condition E{s2

i } = 0. The non-circular source
scenario is specifically addressed in [30, 38, 48, 49], all under the prewhitening
assumption. Interestingly, the alternative version of the algorithm independently de-
veloped a decade earlier in [40] comprised the complex non-circular case, too.
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Fig. 9.3 Kurtosis-based
MISO contrast function
values and iterative algorithm
trajectories. Instantaneous
orthogonal mixture
realization of two uniformly
distributed sources composed
of T = 50 samples. Dashed
lines: fourth-order moment
contrast (9.19) implicitly
minimized by FastICA
(Sect. 9.4.4.1). Solid lines:
absolute kurtosis
contrast (9.9) maximized by
RobustICA (Sect. 9.4.5.2).
Triangle markers and upward
arrows: initial positions.
Cross markers: algorithms’
solutions after each iteration.
Round markers and
downward arrows: final
solutions. Vertical dotted
lines: satisfactory separation
solutions up to sign and
permutation. Panels (a)–(b)
correspond to two different
extracting vector
initializations over the same
mixture realization

9.4.5 Algorithms with Optimal Step-Size Selection

In this section, we present how the step size for the above gradient algorithms can
be derived in an optimal way.

9.4.5.1 Step-Size Optimization

The step-size parameter μ used in gradient updates (see, e.g., Eq. (9.13)) sets a diffi-
cult trade-off between the convergence speed and accuracy of the resulting iterative
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algorithm. A very small absolute value ofμ theoretically guarantees monotonic con-
vergence to a local stationary point of the contrast, but convergence may be too slow
since the update also takes very small steps in the gradient direction. To speed up
the algorithm, μmay be increased, but then the algorithm may oscillate around a lo-
cal extremum without settling down, a phenomenon known as misadjustment [37],
or even risk divergence. This speed–quality trade-off is common to both batch (op-
erating over a signal block) and adaptive (stochastic, recursive, sample-by-sample)
implementations of gradient-based optimization algorithms [1, 2, 4].

Many works in the literature have been devoted to making an optimal, or at least
judicious, choice of the step size, aiming at fast convergence with low misadjust-
ment. A classical approach consists in starting the iterations with a large value of μ
and then decreasing it progressively as the algorithm converges. However, detecting
whether the algorithm approaches the right solution is a problem far from trivial,
which often hinders the performance of this simple idea. Newton updates are in the-
ory parameter-free, yet, as seen earlier in the chapter for the FastICA algorithm, they
can actually reduce to constant step-size gradient iterations. A fact long unnoticed
but pointed out in [20, 21] was recently developed in [71, 74, 76]: the shape of the
kurtosis contrast enables the closed-form computation of the optimal step-size value
at each extracting vector update. The resulting algorithm is described next.

9.4.5.2 Algebraic Exact Line Search: The RobustICA Algorithm

A simple approach to addressing the trade-off set by the learning coefficient in gra-
dient algorithms is exact line search. This optimization technique aims at the step
size leading to the global optimum of the contrast along the current search direction:

μopt = arg max
μ

Jκ(w+μd) (9.30)

where d typically represents the gradient vector at w, or any other suitably chosen
direction. In most cases, this one-dimensional optimization is costly, as it usually
requires iterative numerical methods [52]. However, when the contrast is a ratio-
nal function or a polynomial, the search for the optimal step size can be notably
simplified [20, 21].

Although this property is satisfied by most functions based on fourth-order statis-
tics, using the full version of the kurtosis contrast (9.9) presents some attractive
advantages relative to simplified versions such as the fourth-order moment [74]:

• The kurtosis is a valid source extraction contrast even if prewhitening is not
performed [64]. Avoiding prewhitening prevents the performance limitations im-
posed by this second-order processing step [8].

• The kurtosis is a valid contrast in both real- and complex-valued mixture sce-
narios, so that both cases can be treated without any modification. Both types of
sources can appear simultaneously in a given mixture, and the mixing matrix en-
tries can also be real or complex. Complex sources do need not to be circularly
distributed.
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• The kurtosis shows a reduced sample variance in comparison with other contrasts
of the same order [5, 6]. This property translates into an increased numerical
stability in short sample scenarios.

In addition to these properties intrinsic to the kurtosis contrast, the optimal step-size
iterative maximization technique described below presents the following computa-
tional advantages:

• By construction, the algorithm offers the possibility of avoiding saddle points and
spurious local extrema that may arise when processing short observation win-
dows.

• The algorithm presents a high convergence speed, as measured in terms of source
extraction quality achieved for a given number of operations. In the basic real-
valued two-source case, the algorithm converges in just a single iteration, even
without prewhitening.

• With simple modifications allowing the maximization of contrast Jε (9.10), the
method can be designed to target sub-Gaussian (ε < 1) or super-Gaussian (ε > 1)
sources, as defined by the kurtosis sign. This feature may spare the cost of a full
separation in scenarios where only a specific source or set of sources is actually
of interest.

To derive the optimal step-size iterative maximization of the absolute kurtosis
contrast (9.9), we first notice that its stationary points are the same as those of J
in Eq. (9.8). Also, J evaluated at w+μd, with fixed w and d, depends on μ only,
and is given by the rational function:

J (μ)= E{|y+|4} − |E{(y+)2}|2
E2{|y+|2} − 2= P(μ)

Q2(μ)
− 2 (9.31)

where y+ = y + μd , y = wHx, d = dHx, P(μ) = P1(μ) − |P2(μ)|2, P1(μ) =
E{|y+|4}, P2(μ) = E{(y+)2}, and Q(μ) = E{|y+|2}. For convenience in the fol-
lowing development, we denote

a = y2, b= d2, c= yd, e=Re
(
yd∗
)
. (9.32)

After some manipulations, the above polynomials can be expressed as:

P(μ)=
4∑

k=0

hkμ
k, Q(μ)=

2∑

k=0

ikμ
k (9.33)

where

h0 = E
{|a|2}− ∣∣E{a}∣∣2, h1 = 4E

{|a|e}− 4Re
(
E{a}E{c∗}),

h2 = 4E
{
e2}+ 2E

{|a||b|}− 4
∣
∣E{c}∣∣2 − 2Re

(
E{a}E{b∗}),

h3 = 4E
{|b|e}− 4Re

(
E{b}E{c∗}), h4 = E

{|b|2}− ∣∣E{b}∣∣2,
(9.34)
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i0 = E
{|a|}, i1 = 2E{e}, i2 = E

{|b|}. (9.35)

Hence, the derivative of J (w+μg) with respect to μ is given by

J ′(μ)= P
′(μ)Q(μ)− 2P(μ)Q′(μ)

Q3(μ)
= p(μ)

Q3(μ)
. (9.36)

Combining Eqs. (9.33)–(9.36), p(μ) is given by the fourth-degree polynomial
(quartic)

p(μ)=
4∑

n=0

anμ
n (9.37)

with

a0 =−2h0i1 + h1i0, a1 =−4h0i2 − h1i1 + 2h2i0,

a2 =−3h1i2 + 3h3i0, a3 =−2h2i2 + h3i1 + 4h4i0,

a4 =−h3i2 + 2h4i1.

The real parts of the roots of this polynomial are the step-size candidates. To deter-
mine the optimal step size μopt, the roots are plugged back into Eqs. (9.31)–(9.33)
to check which candidate maximizes Jκ(w+μd)= |J (w+μd)|; if aiming at a
source with kurtosis sign ε, one should check Jε(w+μd)= εJ (w+μd) instead.
The extracting vector is then updated as w+ =w+μoptd. Since the kurtosis is scale
invariant, the extracting vector can be normalized after updating, as in Eq. (9.24). It
should be remarked that this normalization is not forced by prewhitening—an op-
tional step when using kurtosis, as we saw before—but just performed by numerical
convenience (Sect. 9.4.2). As a suitable search direction, one can use the gradient
of the full version of kurtosis, given by Eq. (9.14), which can be normalized for
increased numerical stability. This optimal step-size algorithm for iterative kurto-
sis maximization is referred to as RobustICA [71, 74, 76]. In the context of blind
single-channel equalization, the method had been suggested without details a few
years earlier under the name of optimal step-size kurtosis maximization algorithm
(OS-KMA) [69]. A very similar optimization idea holds for other source separation
and equalization principles, both in blind and semi-blind operating modes, such as
the constant power [68] and the constant modulus criterion [69, 70, 72]

RobustICA algorithm for kurtosis optimization with optimal step size

• Set an initial value w(0) for the extracting vector.
• For k = 1,2, . . . , kmax, do:
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1. Compute the gradient direction d(k−1) =∇Jκ(w(k−1)) from Eq. (9.14).
2. Obtain the optimal step size μopt as described above (Eqs. (9.31)–

(9.37)).
3. Update: w̃=w(k−1) +μoptd(k−1).
4. Normalize: w(k) = w̃/‖w̃‖.

To quickly illustrate the benefits of RobustICA, we take up the simulation ex-
ample introduced at the end of Sect. 9.4.4.2. Recall that the solid lines in Fig. 9.3
plot the kurtosis contrast as a function of the global filter angle Δθ for the ob-
served instantaneous orthogonal mixture of two sources. Despite the short obser-
vation window (just 50 samples), the kurtosis local maxima lie quite close to the
valid extraction solutions, thus yielding improved source estimates. Moreover, the
algorithm converges in just a single iteration whatever the initialization employed
(panels (a)–(b)).

Finally, let us point out that the optimal step-size cencept can also be used in the
context of monotonically convergent algorithms presented in the next section. The
basic idea is similar to RobustICA’s, and the reader is referred to [13] for details.

9.4.6 Algorithms Based on Reference Signals

As justified in Sect. 9.1.2, many contrast functions are based on higher-order cu-
mulants. A common example studied throughout this chapter is the kurtosis (9.8)
giving rise to contrasts (9.9)–(9.10), which is a normalized marginal cumulant of
the extractor output. In this section, we introduce contrast functions based on cross-
cumulants. The advantage of these alternative contrasts is that they can be expressed
as quadratic functions (Sect. 9.4.6.1) and, as such, their optimization is highly fa-
cilitated. Indeed, we will see that they can be considered as a starting point for
developing monotonically convergent algorithms (Sect. 9.4.6.2).

9.4.6.1 Quadratic Contrast Functions

Crucial to the development of quadratic contrasts is the assumption that a reference
signal, denoted by z(n), is available. The reference signal is defined as the output of
a MISO reference filter v(n):

z(n)= v(n) � x(n)= t(n) � s(n)

with t(n) = v(n) �M(n). At first sight, one could think of z(n) as a kind of prior
information about the source being targeted by the extraction procedure. In this
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Fig. 9.4 Schematic diagram of the system setup and notations used by algorithms based on refer-
ence signals

respect, the resulting method can be considered as semi-blind [12]. The above nota-
tions are graphically summarized in Fig. 9.4.

Now, given a reference signal z(n) we can define the following criterion:

Jr (w,v)�
|Cz{y}|

E{|y(n)|2}E{|z(n)|2} (9.38)

where

Cz{y}� Cum
{
y(n), y(n)∗, z(n), z(n)∗

}

is a fourth-order cross-cumulant defined for any jointly stationary signals z(n)
and y(n). The first interesting property of criterion (9.38) is that it is a contrast
function for almost any fixed reference signal z(n). Precise conditions for the va-
lidity of such a contrast are derived in [10, 12, 16]. Essentially, the reference z(n)
should be ‘close’ enough to one particular source signal so as not to contain identical
power contributions from two (or more) sources. This assumption is generally sat-
isfied in practice even if the reference filter is chosen randomly. More interestingly,
function (9.38) can be expressed as

Jr (w,v)= |wHCvw|
(wHRw)(vHRv)

. (9.39)

In the above equation, R and Cv are a covariance and a cumulant matrix which, in
the case of an instantaneous mixture, are given by:

R= E
{
x(n)x(n)H

}
, [Cv]ij = Cum

{
xi(n), xj (n)

∗, z(n), z(n)∗
}
.

Replacing x(n) by a vector stacking the consecutive delayed values of the observa-
tion as in Sect. 9.2.2, a similar definition holds in the convolutive case (see [13, 16]
for details).
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For fixed v, the term vHRv is just an irrelevant constant factor, and Eq. (9.39) be-
comes essentially a Rayleigh quotient in the extracting vector w. The maximization
of this quotient is a well-known problem in array signal processing and matrix alge-
bra that can be solved, e.g., via the generalized EVD of matrix pencil (Cv,R) and
accepts an SVD-based solution [16]. Despite these interesting features, it has been
observed that using this contrast function within a deflation procedure is not robust,
since the rank of R decreases when performing deflation, as noted in Sect. 9.4.3. As
a consequence of the unknown rank of R, the performance of the SVD-based opti-
mization seriously degrades as more sources are recovered. The following section
details an alternative method avoiding this drawback.

9.4.6.2 Monotonically Convergent Algorithms Based on Quadratic Contrasts

As mentioned above, the SVD-based optimization of the quadratic contrast (9.38)–
(9.39) is not robust and not recommended in the case where R is of unknown and
non maximal rank, which always occurs in a deflation scenario. As a first alternative,
maximizing Jr (w,v) by a gradient algorithm has been proposed in [11] at the cost
of an increased computational burden. In this section, we show that an intermediate
approach is possible.

One can note that criteria (9.9) and (9.38) are linked by Jκ(w) = Jr (w,w).
Based on this fact and on the symmetry property Jr (w,v) = Jr (v,w), an alter-
native algorithm has recently been proposed in [13] for the optimization of Jκ (w).
The idea is to perform the iterative maximization of Jr with respect to the extract-
ing filter after initializing this latter with a given reference filter. The reference filter
is then updated with the extracting filter obtained after maximization, and so forth.
In the summary given below, the gradient operator with respect to the first argument
of Jr is denoted by ∇1Jr .

Algorithm for kurtosis maximization based on reference signals

• Initialize the reference filter v0(n) and compute the corresponding refer-
ence signal z0(n)= v0(n) � x(n).

• For k = 0,1, . . . , (kmax − 1), initialize the extracting filter as w0 = vk and
do:

– For �= 0,1,2, . . . , (�max − 1), do exact line search along w-dimension:

1. Compute gradient direction d� =∇1Jr (w�,vk)
2. Compute the optimal step size μopt = arg maxμJr (w� +μd�,vk).
3. Update: w̃=w� +μoptd�.
4. Normalize: w�+1 = w̃

(E{|w̃(n)�x(n)|2})1/2 .

– Update the reference filter: vk+1 =w�max .
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The convergence of a simpler version of the above algorithm has been proved
in [13] when the sources have identical cumulant sign. More precisely, with kmax

infinite and for any initialization point, the algorithm converges to a stationary point
of the criterion Jκ , which in practice can only be a maximum, hence corresponding
to a separating filter.

Let us add a few remarks about the above algorithm, which are all detailed
in [13]:

• The method can be considered as a hybrid approach between kurtosis and
reference-based contrast function maximization.

• Depending on kmax and �max, a compromise can be made between computa-
tional time and performance. Generally speaking, an appropriate choice can sig-
nificantly reduce the computational load compared to a gradient optimization of
contrast Jκ .

• A link can be established with the Expectation Maximization (EM) method and
generalizations of it referred to as Minimization–Maximization (MM) algorithms.
In particular, it can be shown that the above algorithm maximizes at each step a
lower-bound of the kurtosis.

• Similar to RobustICA (Sect. 9.4.5.2), the optimal step size in the exact line search
step of the algorithm can be obtained algebraically by finding the roots of a poly-
nomial of degree two.

9.5 Illustrative Results

This section presents some illustrative experimental results of the kurtosis-based
techniques reviewed in this chapter. For the sake of conciseness, our attention is
restricted to the areas of digital communications (Sect. 9.5.1) and biomedical signal
processing (Sect. 9.5.2).

9.5.1 Source Separation and Equalization in Digital
Communications

As mentioned in Sect. 9.1.1, digital communications is one of the application do-
mains where blind source separation and equalization techniques have proven most
useful. In this area, the source signals and other system parameters can be specifi-
cally designed according to the features of the propagation channel and separation
criteria being employed. The MIMO signal model of Sect. 9.2 is indeed a key in-
gredient of recent developments such as space-time coding for increasing the per-
formance of wireless communication systems [32]. Also, most digital modulations
verify non-Gaussianity assumption A1, and thus naturally lend themselves to the
kurtosis-based blind source extraction algorithms considered in the chapter.
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Fig. 9.5 Kurtosis-based
blind source separation in a
simulated MIMO wireless
digital communication system
transmitting BPSK sources.
Source extraction quality
against computational cost
(measured in floating point
operations, flops) for different
mixture sizes N . Signal
blocks composed of T = 150
samples. Solid lines: N = 5.
Dashed lines: N = 10. Dotted
lines: N = 20. In the legend,
‘pw’ denotes prewhitening.
Reproduced from [74] with
permission

A flat-fading (frequency-nonselective) MIMO wireless channel accepts the in-
stantaneous linear mixture model of Sect. 9.2.2. A simulation scenario composed
of N independent BPSK-modulated sources transmitted through one such chan-
nel will serve to illustrate the improved convergence and short-sample robust-
ness of kurtosis compared with related fourth-order contrasts. Figure 9.5 plots
the average reconstructed signal mean square error (SMSE) in random orthogo-
nal mixtures for the RobustICA algorithm directly optimizing the kurtosis con-
trast (Sect. 9.4.5.2) and the FastICA algorithm based on the simplified fourth-
order moment (Sect. 9.4.4.1). For the kind of sources considered in this experi-
ment, FastICA’s Hessian simplification in Eq. (9.22) is not an approximation but
actually holds true. Yet the benefits—enabled by the use of kurtosis—of avoiding
prewhitening can be remarked, as RobustICA without this second-order processing
step presents the best quality–cost trade-off, overcoming the performance flooring
shown by the other implementations except for a high number of sources. Extensive
experimental results comparing RobustICA with other kurtosis-maximization meth-
ods in both real- and complex-valued scenarios are reported in [71, 74, 76]. Optimal
step-size algorithms for iterative optimization of other source separation and equal-
ization principles are evaluated in [68–70, 72]. A comparison between algorithms
based on reference signals (Sect. 9.4.6) and the gradient optimization of kurtosis
can be found in [13, 16].

9.5.2 Artifact Rejection in Biomedical Recordings

Another application domain where the kurtosis and related fourth-order criteria have
proven their interest is artifact rejection in signals of biomedical origin. The biomed-
ical domain poses hard separation problems, as the sources of physiological activity
are often difficult to model, may show strong inter- and intra-patient variability and,
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unlike digital communications, cannot be designed to suit the specific properties of
the propagation environment and source separation criteria being considered.

In cardiac signal processing, the classical problem of fetal electrocardiogram
(ECG) extraction from maternal abdominal recordings was first approached from
the perspective of BSS based on higher-order statistics in [24, 25]. In [75], this ap-
proach was later shown to outperform traditional techniques for array processing
such as Widrow’s multireference adaptive noise canceling [65].

More recently, kurtosis-based methods have been applied to the analysis of Atrial
Fibrillation (AF), the most common sustained cardiac arrhythmia encountered in
clinical practice, yet still not fully understood by cardiologists. This disease is mani-
fested by a disorganized propagation of electrical activity across the atria, the heart’s
upper chambers. As a result, atrial activity becomes uncoupled from the ventricular
beats and results in an inefficient atrial contraction; in turn, impaired mechanical
function increases the risk of blood-clot formation and stroke. In the ECG, the elec-
trical activity originating in the atria during AF manifests as the absence of the P
wave, which is replaced by rapid oscillations, called f-waves. This can be observed
in the top plot of Fig. 9.6, which displays the ECG signal recorded in chest lead V1
from an AF patient.1 Ventricular activity corresponds to the large amplitude peaks
(the so-called QRST complex) occurring quasi-periodically, whereas atrial activity
is visible between consecutive ventricular beats. The frequency spectrum of atrial
fibrillatory activity, typically narrowband with a dominant peak between 3 and 9 Hz,
is also masked by the broader ventricular spectrum, as observed in the top panel
of Fig. 9.7.

To accurately analyze AF from noninvasive recordings, one first needs to cancel
out the ventricular artifact that interferes with the continuous atrial activity signal.
Atrial source extraction techniques based on higher-order statistics were first pro-
posed for this purpose in [54, 55] based on the statistical independence between
atrial and ventricular signal components. Unfortunately, the signal of interest tends
to become Gaussian as the disease evolves into chronic forms, rendering these tech-
niques ineffective because assumption A1 no longer holds. To surmount this dif-
ficulty, the time coherence or narrowband spectrum of the atrial signal can be ex-
ploited through a refinement based on the second-order blind identification (SOBI)
technique of [3], giving rise to the FastICA-SOBI method of [18]. Interestingly,
kurtosis maximization in the frequency domain [73, 74] allows the simultaneous
exploitation of both the statistical independence between atrial and ventricular ac-
tivities and the atrial signal’s time coherence in a single processing stage, while
achieving improved extraction performance. This is illustrated in the middle and
bottom plots of Figs. 9.6–9.7, which show the atrial activity reconstructed in lead
V1 by processing the AF patient’s 12-lead ECG. RobustICA applied in the fre-
quency domain (RobustICA-f ) achieves a neater atrial signal estimate than the hy-
brid FastICA-SOBI technique of [18], as perceived by visual inspection especially

1Recording kindly provided by the Hemodynamics Department, Clinical University Hospital, Uni-
versity of Valencia, Spain, and ITACA-Bioingenieria, Polytechnic University of Valencia, Spain.
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Fig. 9.6 Atrial activity extraction in atrial fibrillation ECGs based on kurtosis optimization. Top: a
5-second segment of ECG lead V1 from an atrial fibrillation patient. Middle: atrial signal contribu-
tion to lead V1 estimated by the combined FastICA-SOBI technique [18] from the 12-lead ECG.
Bottom: atrial signal contribution to lead V1 estimated by RobustICA-f from the 12-lead ECG. For
reference, gray lines in the background show the original signal recorded in lead V1. Amplitudes
are in mV. The corresponding frequency spectra are shown in Fig. 9.7

in the frequency domain (Fig. 9.7). Visual results are validated by quantitative per-
formance measures such as spectral concentration, an atrial signal quality index
proposed in [18]. Results on a whole AF ECG database confirm RobustICA-f’s im-
proved atrial signal estimation performance [73, 74]. Source extraction techniques
for artifact suppression in ECG recordings are discussed at length in [67].

9.6 Conclusions

Over the last two decades, kurtosis has become one of the most popular con-
trasts for blind source separation and equalization in linear channels. In combina-
tion with MISO filtering structures for single-source extraction and suitable defla-
tion schemes, local optimizers of kurtosis lead to satisfactory source estimation in
ideal model conditions. Despite the lack of closed-form solutions, its mathematical
tractability and computational convenience have spurred the development of a rich
variety of cost-efficient iterative methods for optimizing this contrast, mostly based
on gradient and Newton updates. Some of the most representative of these algo-
rithms have been reviewed in this chapter. A selection of ready-to-use MATLABTM

implementations can be found in the “Online Material” section below.
Space limitations have precluded the treatment of important issues such as filter-

order selection, more elaborate deflation strategies, in-depth analysis of finite sam-
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Fig. 9.7 Atrial activity extraction in atrial fibrillation ECGs based on kurtosis optimization. Power
spectral densities of the time courses shown in Fig. 9.6. Top: power spectral density of ECG lead V1
from an atrial fibrillation patient. Middle: power spectral density of atrial signal contribution to
lead V1 estimated by the combined FastICA-SOBI technique [18] from the 12-lead ECG. Bottom:
power spectral density of atrial signal contribution to lead V1 estimated by RobustICA-f from
the 12-lead ECG. For reference, the frequency spectrum of lead V1 is plotted in gray lines. fp
denotes the estimated dominant peak frequency. SC denotes spectral concentration, an objective
performance index quantifying the atrial signal relative power around fp . Dashed lines: dominant
frequency location. Dash-dotted lines: bounds used in the computation of spectral concentration.
In the y-axes, only relative amplitudes are important

ple effects, or the separation of mixtures composed of fewer sensors than sources
(underdetermined case), a scenario of great practical impact. These open questions
are currently very active research topics in signal processing.

Online Material

Most methods described in this chapter are available online at
http://www-public.it-sudparis.eu/~castella/toolbox/.

The RobustICA technique described in Sect. 9.4.5.2 can be found at
http://www.i3s.unice.fr/~zarzoso/robustica.html.
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Chapter 10
Swarm Intelligence Techniques Applied
to Nonlinear Systems State Estimation

Hadi Nobahari, Alireza Sharifi, and Hamed MohammadKarimi

Abstract In this chapter, a new class of filters based on swarm intelligence is intro-
duced for nonlinear systems state estimation. As a subset of heuristic filters, swarm
filters formulate a nonlinear system state estimation problem as a stochastic dy-
namic optimization problem and utilize swarm intelligence techniques such as par-
ticle swarm optimization and ant colony optimization to find and track the best es-
timate. As a subset of nonlinear filters, swarm filters can successfully compete with
well-known nonlinear filters such as unscented Kalman filter, etc.

10.1 Introduction

In many engineering applications, one needs to estimate the states of a dynamic
system. A state estimation problem is defined as follows: given the mathematical
model of a dynamic system, it is desired to estimate the time-varying states us-
ing a noisy measurement. Estimation problems are often categorized as prediction,
filtering, and smoothing, depending on intended objectives and the available obser-
vations [1]. Here, the domain of focus is filtering, which is usually referred to as
the extraction of true signal from the observations. Filters are usually minimizing
a given objective function, while they are working. Such filters are called optimal
filters [2].

Optimal filters are categorized to recursive and batch filters [1, 3]. A batch filter,
e.g., least squares filter, uses the complete history of measurements to estimate un-
known states. A recursive filter, in comparison, has the ability to receive and process
the measurements sequentially. Recursive filters consist of two essentially stages:
prediction and update [3]. Prediction uses the estimated states of the previous time
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step to produce an initial estimate of the current step. This stage is also known as the
prior state estimation because it does not use the observations. In the update stage,
the prior state estimate is combined with the current observation to refine the state
estimate. This improved estimation is also termed as the posterior state estimation.
The dynamic states can be estimated using the posterior Probability Distribution
Function (PDF), obtained based on the received measurement. If either the system
or measurement model is nonlinear, the posterior PDF will not be Gaussian, even if
the measurement and the process noises are assumed to be Gaussian.

Several recursive filters can be found within the literature, the most well-known
of which are the Kalman Filter (KF) [4], Extended Kalman Filter (EKF) [5], Un-
scented Kalman Filter (UKF) [6], Particle Filter (PF) [7], etc.

Recursive filters can also be categorized to linear and nonlinear filters [1, 3].
In a linear filter, such as KF, both system and measurement models are linear. KF
assumes the posterior PDF to be Gaussian, which is characterized by a mean and
a covariance. In the opposite, a nonlinear filter, such as EKF, UKF and PF, is used
to estimate the states of a nonlinear dynamic system when either the system or the
measurement model is nonlinear.

Analytical approximation and states sampling are two common approaches in
nonlinear filtering. In the first approach, the nonlinear functions of the mathemati-
cal model are linearized and then a linear filter such as KF is utilized as well. EKF is
an example of filters working based on an analytical approximation. Unlike to EKF,
UKF is a sample based filter. It does not approximate the nonlinear mathematical
model. Instead, it approximates the posterior PDF by a set of deterministically cho-
sen samples. UKF is also referred to as a linear regression Kalman filter because it
is based on statistical linearization rather than analytical ones [3].

The sample based filters can be categorized to mathematical and heuristic ap-
proaches [8]. UKF can be taken as a mathematical sample based filter since it uses a
deterministic sampling process, the general estimation mathematics, and the math-
ematical operators such as unscented transform. In comparison, there are several
sample based filters that utilize heuristic algorithms to sample the particles and to
improve the position of them. These filters can be called heuristic filters [8]. PF is an
example of heuristic filters. It works based on point mass (or particle) representation
of the probability densities [9]. Unlike the UKF, PF represents the required posterior
PDF by a set of random samples instead of deterministic ones. Also, it uses a resam-
pling procedure to reduce the degeneracy of particle set. In another work, Genetic
Algorithm (GA) has been combined with PF to increase the diversity of samples af-
ter resampling [10, 11]. Simulated Annealing (SA) has also been introduced into PF
to improve its performance [12]. Moreover, a local search method has been inserted
into PF to reduce the sample size and improve the efficiency [13].

The state estimation problem can be formulated as a stochastic dynamic opti-
mization problem. Therefore, different ideas of heuristic optimization can be ex-
tended and modified to solve this problem. A new class of heuristic filters utilizes
swarm intelligence techniques to solve the state estimation problem [8, 14–17]. The
authors call these filters as swarm filters. These filters are introduced below.

This chapter is organized as follows: A state estimation problem is formulated in
Sect. 10.2. PF is introduced in Sect. 10.3, where the limitations of this filter are also
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Fig. 10.1 Process and
measurement models of a
dynamic system

addressed. Section 10.4 is devoted to a detailed review of swarm filters. Finally, a
conclusion is made in Sect. 10.5.

10.2 Estimation Problem Formulation

The problem is to estimate the states of a nonlinear dynamic system. Discrete-time
state space approach is utilized to model the evolution of the system and the noisy
measurements. The states are assumed to be evolving according to the following
stochastic model:

xk = fk(xk−1,ωk−1) (10.1)

where fk is a known, possibly nonlinear function of the state vector xk−1, ωk−1

represents the process noise, and k is the time counter. The objective of a nonlinear
filter is to recursively estimate xk from the available measurements, zk . In a state
estimation problem, the measurements are related to the states via the measurement
equation:

zk = hk(xk, νk) (10.2)

where hk is a known, possibly nonlinear function and νk is the measurement noise.
The noise sequences, ωk and νk , are mutually independent and are assumed to have
uniform or multimodal distribution with known covariance Qk and Rk , respectively.
A graphical illustration of the evolution and the measurement models is depicted in
Fig. 10.1. The evolution and measurement models of a dynamic system can also
be represented by the prior and likelihood probability densities p(xk|xk−1) and
p(zk|xk), respectively.

The prior density uses the states of the previous time step, xk−1, to obtain a prior
estimate of the current states, xk . Also, the likelihood density uses the states at an
instant k to estimate the current observation, zk . The initial state, x0, is assumed to
have a known PDF, p(x0), and to be independent of the noise sequences. Moreover,
the estimation problem computes the posterior density, p(xk|zk).
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Fig. 10.2 Generic Particle
Filter (GPF) algorithm

10.3 Generic Particle Filter and Limitations

The Particle Filter is a sequential Monte Carlo method for Bayesian state estimation
in nonlinear systems [9]. The basic idea of PF is to approximate a posterior distri-
bution based on a set of random particles with associated weights. PF has several
variants with different sampling and resampling procedures. All sampling proce-
dures utilized in PF can be derived from the Sequential Importance Sampling (SIS)
algorithm. When the SIS is associated with a resampling procedure, it will be called
Generic PF (GPF) [3]. Figure 10.2 shows the general iterative structure of GPF.
A high level description of the sequential steps is shown in this figure. A more ex-
tensive introduction to PF can also be found in [9, 18, 19].

PF has a main loop. At first, the position of particles is propagated with their
initial distribution. Then the outputs, estimated using each particle, are made. Later,
each particle is weighted and the weights are normalized. In a resampling procedure,
the particles with small and large weights are eliminated and replicated, respectively.
Finally, the current state is estimated using some statistical properties. Figure 10.3
shows the process of PF. In the following subsections, these steps are discussed in
detail.
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Fig. 10.3 A graphical illustration of particle filter

10.3.1 Initialization

PF has some control parameters that must be set before the execution of the al-
gorithm. Moreover, the initial position of particles (i.e., xj0 for j = 1, . . . ,N ) is
initialized using a uniform random generator.

10.3.2 Propagation of Particles’ Location

The position of particle j at time k−1, defined as xjk−1, is propagated by importance
sampling as follows:
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xjk = fk
(
xjk−1,ω

j

k−1

)
. (10.3)

The prior probability density of the current states is expressed as p(xjk |xjk−1, zk).

10.3.3 Weight Computation and Normalization

The current output, zjk , estimated by particle j at time k, is calculated as follows:

zjk = hk
(
xjk
)
. (10.4)

The observation likelihood for each particle is expressed as p(zjk |xjk). After ter-
mination of the measurement update, the weight of particle j at time k will be
assigned recursively as follows [9]:

wjk =wjk−1

p(xjk |xjk−1)p(z
j
k |xjk )

q(xjk |xjk−1, zk)
. (10.5)

The PDF q(xjk |xjk−1, zk) is referred to as the importance, or proposal, density.
The choice of the importance density is one of the most critical issues in the design
of GPF. The optimal importance density, such as Gaussian distribution, minimizes
the variance of weights [20]. Also, the weight of particle j at time k is normalized
as follows:

w̄jk =
wjk

∑N
j=1 wjk

. (10.6)

10.3.4 Resampling

After a few iterations, most particles will have negligible weights. Computational
effort for updating particles with small weight is bulky. This problem is called the
degeneracy phenomenon. To avoid the degeneration of particles, a resampling pro-
cedure is necessary. The degeneration can be measured in terms of the effective
sample size which can be estimated via [21]:

Neff = 1
∑N
j=1 (w̄

j
k )

2
. (10.7)

It is straightforward to verify that 1 ≤Neff ≤N with the following two extreme
cases: (i) if the weights are distributed uniformly (i.e., w̄jk = 1/N for j = 1, . . . ,N )
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Fig. 10.4 Illustration of a
resampling process in PF [3]

then Neff =N, and (ii) if severe degeneracy occurs, then Neff = 1 (see [3]). Resam-
pling is a strategy to overcome degeneracy of samples in SIS. The idea of resam-
pling is to eliminate particles with small weights and copy those with large weights.
During this procedure, samples {xjk , w̄jk} are replaced with samples {x̃jk ,1/N}.

Resampling was first proposed by Gordon, Salmond, and Smith [22], which is
illustrated in Fig. 10.4 [3], where CSW stands for the cumulative sum of particles
weight,

∑N
j=1 w̄jk , and the random variable, rj , is uniformly distributed within the

interval [0, 1]. For example, if rj = 0.4, then the first particle for which
∑N
j=1 w̄jk ≥

rj is the third particle. Therefore, a particle with large weight will have a good
chance of being resampled several times.

10.3.5 State Estimation

In the final step, the posterior density at time k will be approximated as a discrete
density given by [9]:

p
(
x̂k|zk

)≈
N∑

j=1

w̄jkδ
(
xk − x̃jk

)
(10.8)

where the normalized weights w̄jk are updated according to Eq. (10.6) and δ is the
Dirac Delta-function. Therefore, the approximation of the posterior density can be
formulated using some statistical properties (mean, median, confidence intervals,
etc.), based on the weight of particles. For example, the states can be estimated
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Fig. 10.5 Particle impoverishment due to narrowness of the maximum-likelihood region [14]

based on the average position of particles as follows:

x̂k = 1

N

N∑

j=1

x̃jk . (10.9)

It can also be shown that as N→∞ the above approximation approaches the true
posterior density [9].

10.3.6 Limitations

Some versions of PF adapt the SIS algorithm to calculate the posterior distribution
using the importance sampling density such as Sampling Importance Resampling
(SIR) filter [22, 23] and Auxiliary Sampling Importance Resampling (ASIR) fil-
ter [24]. Since PF algorithms are suboptimal estimators, they have some accuracy
problems. In the following subsections, these problems are discussed in detail.

10.3.6.1 Particle Impoverishment

Particle impoverishment happens when the likelihood is so narrow that the overlap-
ping region of likelihood and prior distribution is quite small [3, 25] and no particle
lies within the region of likelihood probability. Thus, many particles are wasted in
the low likelihood region, as depicted in Fig. 10.5, and few particles are located in
the high likelihood region. Therefore, the weights of most particles become rela-
tively small and their efficiency is decreased; the result of this is the degradation of
the estimation accuracy.
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Fig. 10.6 Particle
impoverishment when the
maximum-likelihood region
lies in the tail of the prior
distribution [14]

Another reason that causes particle impoverishment is that the new measure-
ments (i.e., the likelihood) appear in the tail of the prior distribution [9, 26] as de-
picted in Fig. 10.6. This problem happens when the prior distribution is not accurate.
In such a case, particles may be distributed far from the maximum-likelihood region,
and therefore most particles may have small weights.

Duo to particle impoverishment, only a few particles would have significant
weights. Thus, the sample set will contain a few dissimilar particles and sometimes
it will drop to a single sample after several iterations. As a result, important samples
may be lost.

10.3.6.2 Sample Size Dependency

The sample size has a great effect on the performance of PF. If the sample size
is relatively small, then the proper distribution of particles around the true states
may not occur. If the sample size is large enough, the whole state space will be
covered and the true states will be estimated successfully, but the computational
cost is massively increased and the real-time implementation may be impossible.

10.4 Swarm Filters

There have been some systematic approaches proposed recently to solve the lim-
itations of PF. The first approach improves the resampling, similar to binary
search [22], systematic resampling [27], and residual resampling [9]. However, these
methods are not ideal because the particles with large weights are statistically se-
lected many times. This gradually leads to many repeated points, and consequently
the diversity among the particles is lost [3]. The second approach improves the
prior distribution with modified PF algorithms such as Extended Kalman Particle
Filters (EKPF) [27] and Unscented Particle Filters (UPF) [28]. Another approach,
adopted recently, uses swarm intelligence techniques to improve the sampling pro-
cess. Several swarm filters are found in the literature, such as Particle Swarm Op-
timized Particle Filter (PSOPF) [14], Ant Colony Optimization Assisted Particle
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Filter (PFACO) [15], Particle Filter with Ant Colony for Continuous Domains [17],
and Continuous Ant Colony Filter (CACF) [8]. A detailed description of the swarm
filters is discussed in the following subsections.

10.4.1 Particle Swarm Optimized Particle Filter (PSOPF)

The Particle Swarm Optimization (PSO) is a robust stochastic optimization tech-
nique based on the movement and intelligence of swarms. It was developed in 1995
by James Kennedy and Russell Eberhart [29]. Individuals interact with each other
while they are learning from the swarm experiences and gradually move towards
the goal. PSOPF merges PSO into PF to optimize the sampling step of GPF. Fig-
ure 10.7 shows the general iterative structure of PSOPF. A high level description of
the sequential steps is shown in this figure.

PSOPF has two loops. The main outer loop iterates every time a new measure-
ment is entered. The inner loop iterates to find the best estimates of the current
states, corresponding to the entered measurement. At first, the inner loop propagates
the initial distribution of particles. Then the output, estimated using each particle, is
made. The estimated outputs are compared with the real measurement and the cost
of each particle is evaluated using a Gaussian function. Particles use local and global
experiences to update their position and velocity in the state space. The inner loop
is terminated after the cost function reaches a certain threshold. Then, particles are
weighted and normalized. To eliminate the particles with small weights and repli-
cate the ones with large weights, a resampling step is executed. Finally, the current
state is estimated. In the following subsections, these steps are discussed in detail.

10.4.1.1 Computation of Cost Function

The cost function of each particle is evaluated using a Gaussian distribution of the
difference between the estimated output, zjk , and the real measurement, zk . There-
fore, the cost assigned to particle j at time k, is calculated as follows:

f
j
k = exp

[−1

2

(
zk − zjk

)TR−1
k

(
zk − zjk

)]
(10.10)

where Rk is the observation covariance.

10.4.1.2 Local Best and Global Best Update

PSOPF utilizes a set of moving particles to perform an intelligent search in the state
space, looking for the best estimate. Each particle keeps track of its coordinates
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Fig. 10.7 Particle Swarm Optimized Particle Filter (PSOPF) algorithm

corresponding to the best fitness achieved so far. This state is shown by ppbest. It is
the best value met by particle j from entering the current measurement up to now.
Another interesting state for the particles is the best value met by all particles in
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the population. This state is shown by pgbest. The logic of PSOPF is to change the
velocity of each particle toward the local best ppbest and the global best pgbest at
each time step. It will be discussed in the next section.

10.4.1.3 Velocity and Position Update Rules

In PSOPF, the velocity and position of each particle is updated continuously, as in
PSO. The new velocity of particles is calculated using ppbest and pgbest as follows:

vjk = r1
(
ppbest − xjk

)+ r2
(
pgbest − xjk

)
(10.11)

where r1 and r2 are positive random numbers with Gaussian probability distribution,
i.e., abs[N(0,1)]. The position vector will simply be updated as follows:

xjk+1 = xjk + vjk . (10.12)

In PSOPF, the velocity may become very large and the performance may be
degraded. So, the velocity should be limited to an interval [−vmax,vmax].

10.4.1.4 Weight Computation and Normalization

After the termination of the inner loop, each particle is weighted according to
Eq. (10.5). In this equation, the most popular suboptimal choice of the proposal
density is the transitional prior as follows:

q
(
xjk
∣∣xjk−1, z

j
k

)= p(xjk
∣∣xjk−1

)
. (10.13)

Therefore, the weight of particle j at time k will be assigned recursively as fol-
lows:

wjk =wjk−1p
(
zjk
∣∣xjk
)
. (10.14)

Finally, the weighted particles are normalized according to Eq. (10.6).

10.4.1.5 Stopping Condition

PSOPF has two loops, each with its own specific stopping condition. The inner loop
stops when the cost of the global best estimation (pgbest) reaches a certain threshold
(ε). The outer loop terminates when the measurements are ended.
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10.4.2 Ant Colony Optimization Assisted Particle Filter (PFACO)

The Ant Colony Optimization (ACO) is a stochastic optimization algorithm based
on the swarm intelligence of ant colonies. Each ant navigates from the nest to the
food sources to find a solution and then communicates with other ants by leaving a
pheromone trail within the environment. PFACO incorporates ACO into PF to opti-
mize the sampling step of GPF. Figure 10.8 shows the general iterative structure of
PFACO.

PFACO has two loops. The main outer loop iterates every time a new measure-
ment is entered. At first, the initial distribution of ants is propagated. Then, the
outputs are estimated by the ants, and consequently each ant is weighted. The inner
loop iterates to find the best estimates of the states, corresponding to the entered
measurement. In this loop, the threshold parameter, explained in Sect. 10.4.2.4, is
computed for each ant. The threshold is used to define a neighborhood around the
ant. The next movement of each ant is selected based on a probability function such
that it coincides with one of its elite (low cost function) neighbors. The probabil-
ity function is utilized to model the pheromone distribution over the discrete search
space. Each ant is assigned a weight which is proportional to its cost. Moreover,
ants use their experience to update the pheromone distribution. The inner loop is
stopped when the estimation error reaches the predefined threshold. Then, ants are
weighted again, normalized, and resampled. Finally, the current state is estimated.
In the following subsections, these steps are discussed in detail.

10.4.2.1 Computation of Probability Function

Each ant chooses its direction using a probability function, defined on the basis of
the quality of other ants within the neighborhood. The probability that the ant i
selects ant j is expressed as follows:

pij (t)= [τij (t)]α[ηij (t)]β∑
s∈N(i) [τis(t)]α[ηis(t)]β

(10.15)

where N(i) is the set of all ants which are in the neighborhood of ant i, τij (t) is the
pheromone density of the link between ants i and j , as introduced in Sect. 10.4.2.3,
and η is a heuristic function, defined as:

ηij (t)= 1

dij
(10.16)

where dij is the distance between ants i and j . If pij = 1, then ant i moves toward
ant j . When convergence occurs, it means that most of the ants have moved to a
high likelihood region. The parameters α and β determine the relative influence of
pheromone trails and the heuristic information, respectively.
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Fig. 10.8 Ant Colony Optimization Assisted Particle Filter (PFACO) algorithm

10.4.2.2 Movement of the Ants

During the iterations, ants use the current pheromone distribution to move from their
current positions to their destinations. The velocity of ant i toward ant j is defined
as a random number between zero and dij .
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10.4.2.3 Update Pheromone Distribution

When ant i selects ant j , τij (t) is updated as follows:

τij (t + 1)= (1− ρ)τij (t)+Δτij (t) (10.17)

where 0< ρ ≤ 1 is the pheromone evaporation rate and Δτ is a constant value that
simulates the pheromone deposition over the visited links. Also, when ant j is not
chosen by ant i, τij (t) is evaporated as follows:

τij (t + 1)= (1− ρ)τij (t). (10.18)

The initial pheromone distribution, τij (0), has been proposed to be a function of
ants weight [15].

10.4.2.4 Stopping Condition

PFACO has two loops, each with its own specific stopping conditions. The inner loop
stops when the distance between ants i and j becomes less than a certain threshold:

εj = c|r|(1− w̄jk
)

(10.19)

where w̄jk is the normalized weight of ant j , r is a normal random number, and c is
a constant value; or the number of iterations exceeds a maximum value. The other
loop is terminated when the measurements are finished.

10.4.3 Particle Filter with Ant Colony for Continuous Domains

The fundamental idea in continuous ant colony algorithms is to define a contin-
uous pheromone model [30]. The Continuous Ant Colony System (CACS) uti-
lizes a Gaussian PDF to model pheromone distribution over the continuous search
space [30]. The Ant Colony Optimization for continuous domains (ACOR) [31, 32]
utilizes a weighted sum of several Gaussian PDF instead of a single one. The Parti-
cle Filter with Ant Colony for Continuous Domains incorporates ACOR into PF to
optimize the sampling process of PF. Figure 10.9 shows the general iterative struc-
ture of this method.

The Particle Filter with Ant Colony for Continuous Domains has two loops. The
outer loop iterates every time a new measurement is entered. Here, the distribution
of samples is propagated. The inner loop iterates to find the best estimation. In this
loop, the output, estimated using each sample, is made. The estimated outputs are
compared with the real measurement and the cost of each sample is evaluated. In this
algorithm, the propagated samples and the corresponding cost functions are stored
in an external archive to represent the pheromone, as in ACOR. The Gaussian PDFs
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Fig. 10.9 Particle filter with
ant colony for continuous
domains

are utilized to model the pheromone distribution over the continuous state space.
Ants use this pheromone distribution to move from their current position toward
the minimum cost destinations. This loop is terminated after a predefined number
of iterations. Finally, the remained samples are weighted and the current state is
estimated based on the weighted mean. In the following subsections, these steps are
discussed in detail.

10.4.3.1 Initialization

At the start of the algorithm, the position of N samples within the archive is initial-
ized by uniform random sampling.
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Fig. 10.10 The structure of
the external archive [32]

10.4.3.2 Computation of Cost Function

After the propagation and measurement update, the cost function, f jk , is calculated
as the square error between the real measurement, zk , and the j th estimated output,
zjk . Therefore, the cost assigned to sample j at time k is defined as follows:

f
j
k =
∣∣zk − zjk

∣∣T ∣∣zk − zjk
∣∣. (10.20)

The propagated samples in the archive are sorted according to their cost in as-
cending order, i.e., f 1

k ≤ f 2
k ≤ · · · ≤ f Nk .

10.4.3.3 External Archive Update

In this method, N best solutions are stored in an external archive. The structure of
this archive is shown in Fig. 10.10. During any iteration of the inner loop at time k,
M new solutions (i.e., xjk , j = 1, . . . ,M) found by ants will be added to the archive.
Therefore, there will beM +N ants within the archive. To limit the archive length,
M worst solutions from the total M + N solutions are then removed and N top
solutions are retained.

10.4.3.4 Pheromone Update

Each ant uses d PDFs to perform d selections (corresponding to dimensions 1 to
d) to make a complete solution xmk . Each PDF is defined using a weighted sum of
several Gaussian PDFs, defined as follows [32]:

Gi(x)=
N∑

j=1

ξj
1

σ
j
i

√
2π

exp

(
− (x −μ

j
i )

2

2(σ ji )
2

)
, −∞≤ x ≤+∞ (10.21)
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where ξj is the weight of particle j and is calculated according to:

ξj = 1

γN
√

2π
exp

(
− (j − 1)2

2γ 2N2

)
. (10.22)

In the above equation, γ is a parameter of the algorithm. When γ is small, the
best solutions are strongly preferred, and when it is large, the PDF becomes more
uniform. Moreover, μji denotes the ith position component of sample j within the

archive and σ ji is the average distance of other solutions from sample j , defined as:

σ
j
i =

λ

N − 1

N∑

n=1

∣∣xni − xji
∣∣ (10.23)

where λ is a parameter of the algorithm; the lower it is, the higher convergence
speed of the algorithm is achieved.

10.4.3.5 Movement of the Ants

During any iteration of the inner loop, ants choose their destinations according to a
state transition strategy similar to ACOR.

10.4.3.6 Computation of Weights

After termination of the inner loop, sample j of the archive is assigned a weight as
follows:

w
j
k =

1

(f
j
k −minNj=1 f

j
k + ε)β

(10.24)

where 0≤ ε ≤ 1 is a threshold, β > 1 is a parameter of the algorithm, and f jk is the
cost function of sample j at time k.

10.4.3.7 State Estimation

In this algorithm, the states are estimated based on the weighted mean of archived
ants as follows:

x̂k =
N∑

j=1

w
j
kxjk . (10.25)
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Fig. 10.11 Continuous Ant
Colony Filter (CACF)
algorithm

10.4.4 Continuous Ant Colony Filter (CACF)

CACF is a heuristic filter, based on the previously developed metaheuristic algo-
rithm known as CACS [30]. It utilizes a colony of moving ants, the average posi-
tions of which is returned as the current estimation. Figure 10.11 shows the general
iterative structure of CACF. A high level description of the sequential steps is shown
in this figure.1

1CACF code is available at http://ae.sharif.ir/Faculty-Resume/Nobahari.php.

http://ae.sharif.ir/Faculty-Resume/Nobahari.php
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CACF has two loops: a main outer loop, iterating every time a new measurement
is entered, and an inner loop, which iterates to find the best estimates of the current
states corresponding to the entered measurement. The inner loop propagates the
initial distribution of ants, at first. Then, the output, estimated using each ant, is
made. The estimated outputs are compared with the real measurement and each ant
is assigned a cost based on the quality of its position. Ants use their experience to
update the state space pheromone distribution. As in CACS [30], a Gaussian PDF
is utilized to model the pheromone distribution over the continuous state space.
Ants use this pheromone distribution to move from their current position toward the
minimum cost destinations. The destinations are chosen using a normal PDF. The
inner loop is terminated after a predefined number of iterations. Finally, the current
state estimation is made using a mean operator. In the following subsections, these
steps are discussed in detail.

10.4.4.1 Initialization

This algorithm has some control parameters that should be set before the execution
of the algorithm. Moreover, the initial position of ants is initialized using a uniform
random generator.

10.4.4.2 Computation of Cost Function

Each ant is assigned a cost based on the quality of its current position. The cost
function is defined as the square error between the estimated output, zjk , and the real
measurement, zk . Therefore, the cost, assigned to ant j at time k, is calculated as
follows:

f
j
k =
∣∣zjk − zk

∣∣T ∣∣zjk − zk
∣∣. (10.26)

In this way, the cost function is calculated at different points of the state space
and some knowledge about the problem is acquired, which will be used to update
the pheromone distribution.

10.4.4.3 Updating Pheromone Distribution

CACF utilizes the same pheromone model and pheromone updating rule as in
CACS [30]. During any iteration, pheromone distribution will be updated using the
acquired knowledge from the evaluated points by the ants. Pheromone updating rule
of CACF can be stated as follows: during any iteration, the cost is calculated for the
new points, explored by the ants. Then, the best point , at time k − 1, is assigned to
xk−1,min.

Also, the standard deviation of the pheromone distribution, σk−1, is updated
based on the cost of the evaluated points and the aggregation of those points around
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xk−1,min. To simultaneously satisfy the fitness and aggregation criteria, the concept
of weighted variance, proposed in [30], is defined for each dimension as follows:

σ 2
k−1 =

∑N
j=1

1
f
j
k−1−fk−1,min

(x
j

k−1 − xk−1,min)
2

∑N
j=1

1
f
j
k−1−fk−1,min

. (10.27)

Here m is the number of ants. This strategy means that the center of region,
discovered during the subsequent iterations, is the last best point and the narrowness
of its width depends on the aggregation of the other competitors around the best
point [30]. It should be noted that after the termination of the inner loop, the standard
deviation of the pheromone distribution is increased by an Expansion Factor (EF) to
increase the exploration of the filter when the new measurement is entered.

10.4.4.4 Movement of Ants

During any iteration, ants move from their current position to their destination us-
ing the current pheromone distribution. Pheromone distribution is modeled using a
normal PDF, the center of which is the best point (xk−1,min) found from the first iter-
ation and its variance depends on the aggregation of other ants around the best one.
Normal PDF permits all points of the continuous state space to be chosen, either
close to or far from the best point. As stated in Sect. 10.4.4.1, in the first iteration,
the position of ants is initialized using a uniform random generator, whereas for all
subsequent iterations, ants choose their destination using the updated pheromone
distribution, based on Eq. (10.27).

10.4.4.5 State Estimation

After the termination of the inner loop, the states are estimated based on the average
position of top ants:

x̂k = 1

Nt

Nt∑

j=1

xjk (10.28)

where Nt denotes the number of top ants.

10.5 Conclusion

In this chapter, a new class of filters was introduced for nonlinear system state esti-
mation. The presented filters, called swarm filters, model the state estimation prob-
lem as a stochastic dynamic optimization problem and utilize swarm intelligence
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techniques such as ACO and PSO to solve this problem. Swarm filters can be con-
sidered as a subset of a more general class of filters, called heuristic filters, where
the heuristic optimization algorithms are utilized to dynamically solve the state es-
timation problem. Although many heuristic optimization algorithms have been de-
veloped by now, the field of heuristic filtering is still in its first days of development
and a huge amount of work is left to be performed.
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Chapter 11
Heuristic Optimal Design of Multiplier-less
Digital Filter

Shing-Tai Pan and Cheng-Yuan Chang

Abstract This chapter introduces the design of multiplier-less digital filter based
on Canonic Signed Digit (CSD) code. The well-known genetic algorithm (GA) is
used to optimal design of the digital filter. Through the CSD coding of the filter
parameters, the times of multiplication in the filtering process of a signal can be sig-
nificantly reduced and then the calculation speed is increased. Among the existing
heuristic algorithms, such as Particle Swarm Optimization (PSO), Differential Evo-
lution (DE), Simulated Annealing (SA), etc., GA is the most suitable to CSD design
due to its gene-wise crossover property. However, the CSD structure cannot be guar-
anteed by a general GA after the evolution of chromosomes. Thus in this chapter, a
CSD-coded GA is introduced. The CSD-coded GA can reduce the time wasted by
trials and errors during the evolution and then accelerate the training speed. Besides,
a new hybrid code for the filter coefficients is proposed to improve the precision of
the coefficients of a digital filter. Moreover, the design of both finite-impulse re-
sponse (FIR) filter and infinite-impulse response (IIR) filter are examined. For the
IIR filter, the stability problem is very important. Hence, a robust stability criterion
is introduced in this chapter for the design of IIR filter.

11.1 Introduction

Recently, the Canonic Signed Digit (CSD) code has been applied to the circuit de-
sign [1–5]. This is because the CSD coded design can achieve the reduction of
adders/subtractors and shift registers in the circuits, and it can also accelerate the
operation of the designed circuit. In implementation of a digital filter, the number
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of shift registers and adders must be reduced in order to reduce the complexity and
to accelerate the operation speed of the filter. This goal can be achieved by design-
ing the parameters of the circuit with CSD. In recent years, many researches have
adopted the CSD code to design the systems’ parameters. CSD is coded on the bi-
nary numeral system. Traditionally, the design of CSD coded systems is performed
by designing the real-number codes for the system parameters and then transform-
ing these codes to CSD counterpart. However, this method will lose the accuracy
of the designed systems, since an approximation of the designed parameters will
be obtained during the transformation. Hence, in this chapter, we will introduce a
heuristic method by using the genetic algorithm (GA) to get a better design of CSD
coded systems.

The GA was proposed by John Holland in 1960. GA is based on Darwin’s the-
ory of evolution: “Survival of The Fittest”. It is an evolutionary algorithm which is
most widely applied for solving optimization problems. The algorithm claims that
the nature of biological evolution is in the genes. Biological characteristics of each
species are passed down through gene sequencing from previous generations. “Sur-
vival of the Fittest” means that the current generation genes are superior compared
to its previous generation, and it is more likely for the current generation to survive
in the environment. GA solves problems through gene encoding using a set of pa-
rameters while simulating the natural evolution process: selection, crossover, and
mutation to find an optimal solution. Based on the characteristic of GA which is
similar to natural human evolution, natural crossover and mutation, we can create a
new generation in which the performance of each offspring is better than that of the
preceding generation. Hence, the optimization and convergence performance of the
solution can be obtained [6, 7].

There are many evolutionary algorithms for the heuristic design of the digital fil-
ter, for example, Particle Swarm Optimization (PSO), Differential Evolution (DE),
and Simulated Annealing (SE), etc. GA is adopted in this chapter for the design of
CSD coded digital filters due to the advantage that each gene in the chromosome
of GA can be dealt with individually and can be designed to keep the CSD struc-
ture. The other algorithms, such as Particle Swarm Optimization (PSO), Differential
Evolution (DE), and Steepest Descent Method (SDM), will find it hard to keep the
CSD structure during the evolution of each generation. So far, the research on CSD
coded filters has focused on the design of FIR filters. Examples can be found in
[8–11]. In those papers, the GA based on the CSD code structure was studied for
the design of FIR filters. There were two types of design methods. The first method
was to check the CSD structure after each evolution of GA. The second method was
to transform all filter coefficients to the binary code first, and then transform the
designed binary code into a CSD structure code. However, since the CSD structure
code can only be an approximation of the binary code, errors are then unavoidable
during the transformation.

In this chapter, GA was used to search for the optimum digital filter coefficient
with the CSD code. Since the CSD code structure may be destroyed during the GA
evolution process, this chapter introduces a CSD-based evolution which completely
follows the CSD rule during the evolution and concurrently searches for the opti-
mum filter coefficient with the CSD structure. Besides, since CSD is coded by the
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Fig. 11.1 Structure of the
hybrid code

binary numerical system, in order to implement the filter in a digital hardware plat-
form, such as FPGA, the hybrid coded method [9–11] is adopted. In this chapter,
a new hybrid coded method, called Accumulated Hybrid Code (AHC), was intro-
duced to improve the precision of the optimal design.

This chapter explores the CSD coded design for FIR and IIR filters. The orga-
nization of this chapter is as follows: Sect. 11.2 introduces the AHC. Then, the
CSD-coded GA is introduced in Sect. 11.3. Based on the methods in Sect. 11.2 and
Sect. 11.3, Sect. 11.4 shows the design process and numerical example for an FIR
filter. Subsequently, Sect. 11.5 introduces the design process and numerical example
for an IIR filter.

11.2 The Accumulated Hybrid Code (AHC)

In this chapter, based on the structure of a power-of-two code [9–11], a hybrid code
is used for the coding of the coefficients in digital filters. In order to reduce design
error and obtain a solution which is closer to the optimal solution, a new hybrid
coded method with better precision is proposed. In this section, the traditional hybrid
code is first introduced, and then a new hybrid code, named Accumulation Hybrid
Code (AHC), is revealed.

11.2.1 The Traditional Hybrid Code Method

The hybrid code is a coding method which improves the signed binary code. It is
similar to the signed binary algorithm. For the signed binary code, the most signifi-
cant bit (MSB) is a sign bit. A positive number is represented with a sign bit ‘0’ and
a negative number is with a sign bit ‘1’. The structure of the hybrid code is different
to that of a signed binary code. A hybrid code is a composition of several signed
binary codes. Figure 11.1 shows the structure of the hybrid code which comprises
m signed binary codes [9].

In the hybrid code, ki, i = 1,2, . . . ,m, are binary codes with n bits; bij , j =
0,1,2, . . . , n, denotes the j th bit of ki , and Ski is the sign bit of ki . The magnitude
of ki is calculated as:

ki =
n∑

j=0

bij × 2j , i ∈ 1,2, . . . ,m. (11.1)
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Fig. 11.2 Hybrid code of the
real number 0.125

The value of a real number with the structure of the hybrid code in Fig. 11.1 can
then be derived as:

C =
m∑

i=1

Ski × 2−ki (11.2)

where C represents the value of the hybrid-coded coefficients of a system. A simple
example of the hybrid code is shown as follows. A real number 0.125 is coded by
the hybrid code and is decoded as 0.125= 2−2 − 2−3. Figure 11.2 shows the hybrid
code of this example.

11.2.2 New Hybrid Code Method

The disadvantage of a binary coding parameter is that the truncation error exists
between the original value and the binary coding value. This will cause the design
parameters to be far from the optimal solution. This problem, of course, can be im-
proved by increasing the bit length of the binary code. However, this will waste more
memory space. In this section, a more precise hybrid code method, Accumulation
Hybrid Code (AHC), is introduced without increasing the bit length of the binary
code. Hence, a closer to the optimal solution for the designed parameters can be
obtained without occupying more memory space. The main feature of AHC is that
the exponent in (11.2) is calculated by accumulating the prior ki and is derived by
the following Eq. (11.3) [4]:

ai =
i∑

l=1

kl, (11.3)

C =
m∑

j=1

Skj × 2−aj . (11.4)

According to the example in Fig. 11.2, the value of C can be calculated by using
AHC as 2−2 − 2−5 = 0.21875. Comparing this value to the value obtained by the
traditional hybrid code method, we can see that the precision of the proposed AHC
is about 10−5 while that of the traditional hybrid code method is about 10−3. So,
a more precise result can be expected when AHC is used for designing the system
parameters. As a result, a solution closer to the optimal solution can be found.
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11.3 CSD-Based Genetic Algorithm

In CSD format, two consecutive digits of a binary coded number cannot be ‘1’
simultaneously. In other words, the product of every two consecutive digits must be
zero, i.e., bn×bn+1. With this feature, fewer bits of nonzero values will appear in the
CSD-coded parameters of a system, and hence fewer shifting and adding operations
are required for the computation of the system output. Therefore, the CSD coding of
system parameters can accelerate the operation speed [9]. Since the CSD format of
a parameter is destroyed when it is evolved by GA, in the past research, examining
after each evolution whether the CSD format remained or not was necessary. A new
evolution process will be active, if the CSD format is destroyed by the previous
evolution. However, this method will waste much evolution time. Therefore, in this
section, in order to decrease the evolution time of GA, a CSD-based crossover and
a CSD-based mutation are introduced to keep the CSD code structure during the
evolution process of GA.

11.3.1 Definition of the Fitness Function

In order to identify the quality of a chromosome in GA, the fitness function is usually
used to evaluate each chromosome. Different fitness functions are used for different
environments. It is important to define the fitness function for a chromosome. In this
chapter, the fitness function for the digital filter design is defined as follows. First,
the error function is defined as:

Ep =
∑
Ω |H(Ω)−HI (Ω)|2

Ns
, 0≤Ω ≤ π (11.5)

in which HI (Ω) is the desired frequency response and NS is the sampling point,
Ω = 2π f

fs
is the digital frequency, f is the analog frequency, fs is the sampling

frequency. The fitness function for a chromosome p is then defined as:

fitness(p)= 1

E2
p + 1

. (11.6)

11.3.2 CSD-Based Crossover

Concerning the crossover of the chromosomes with the CSD code format, the CSD
structure should be retained after the crossover. Usually, crossover will result in a
non-CSD structure and then a renewal of the chromosome is required. In the past
research, one had to examine the structure of the chromosome after crossover. If a
non-CSD structure had been found, the chromosome was renewed. If the bit length
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of a chromosome was long, it took a lot of time to examine the chromosome for-
mat. Consequently, it wasted enormous computation time to renew a chromosome.
Therefore, this chapter introduces a new method for the crossover which does not
waste time to renew a chromosome. However, the introduced method must be per-
formed only when the parent chromosomes are already in the CSD format. Then,
the offspring will be permanently maintained in the CSD format. The CSD-based
crossover is introduced as follows.

1. If CP1
N1

&CP2
N1−1 = 1 then CP2

N1−1 = CP2
N1−1.

2. If CP1
N2

&CP2
N2+1 = 1 then CP1

N2
= CP1

N2
.

3. If CP2
N1

&CP1
N1−1 = 1 then CP1

N1−1 = CP1
N1−1.

4. If CP2
N2

&CP1
N2+1 = 1 then CP2

N2
= CP2

N2
.

5. Proceed to the crossover process of the two points P1 and P2 with N1 and N2.

The notations CPiNi , i = 1,2, represent the Ni th bit of the Pi th chromosome, and

C̄ represents the complement number of C. The symbol “&” represents the logical
and operation.

11.3.3 CSD-Based Mutation

A mutation for a binary coded chromosome always simply changes 0 to 1, or vice
versa. However, for a CSD structure, a mutation will destroy the CSD format. In
this chapter, we introduce a method for the mutation so that the CSD format is
maintained after mutation.

The CSD structure will be affected only when a mutation for a bit from 0 to 1
occurs. The CSD structure is not affected by the transform for a bit from 1 to 0. That
is, the CSD structure might be destroyed only when the new value of the mutation
point is 1. Consequently, for retaining the CSD format, we may only focus on the
bit of mutation and its two neighbor bits. Based on this idea, the following steps are
performed for the CSD-based mutation.

Step 1: Inspect the value of the point of mutation. As mentioned before, if the value
of the bit selected for mutation is ‘1’, the structure will not be influenced after
mutation. Nothing should be done except for mutation. However, if it is ‘0’, the
mutation will transform the bit from ‘0’ to ‘1’ and hence may destroy the CSD
structure.

Step 2: Examine the value of the bits adjacent to the mutation bit. If the value of
any of them is ‘1’, suitable changes are required. If the values are both ‘0’, we
don’t need to change them.

Step 3: If any change is necessary in Step 2, find the last significant bit in a series
of ‘1’s and change it to zero. Repeat this step until the CSD format is retained.
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Fig. 11.3 The structure of an
FIR

By following the above three steps for mutation, we can retain the CSD structure
for the chromosomes. Therefore, the CSD format will be maintained after crossover
and mutation. Consequently, re-inspection or renewal of the chromosomes in the
offspring is unnecessary. With this method, the evolution time of GA can be reduced.

11.4 CSD-Based Design of FIR Filter

In this section, an FIR filter is designed by using CSD-based GA. As mentioned
before, the designed FIR filter with CSD-coded coefficients saves multipliers and
adders during the filtering process. The organization of this section is as follows.
We will first review the structure of an FIR filter. And then, a method for calculating
the order of an FIR filter will be introduced. A design example will be shown at the
end of this section.

11.4.1 Overview of Finite-Impulse Response (FIR) Filter

An FIR filter is a non-recursive structural filter with the block diagram shown in
Fig. 11.3 [12]. The governing equation of the FIR filter is described as follows:

y[n] = b0x[n] + b1x[n− 1] + b2x[n− 2] + · · · + bMx[n−M] (11.7)

in which bi, i = 0,1,2, . . . ,M are the coefficients to be designed. The above equa-
tion can be written compactly as:

y[n] =
M∑

k=0

bkx[n− k]. (11.8)



250 S.-T. Pan and C.-Y. Chang

If the input signal is an impulse function, δ(t), Eq. (11.8) can be rewritten as a
pulse response equation shown below:

h[n] =
M∑

k=0

bkδ[n− k]. (11.9)

Using the z transform of Z{x[n−k]} = z−kX(z), we can get the z transformation
of y[n] from Eq. (11.8) as follows:

Y [z] =
M∑

k=0

bkz
−kX[z]. (11.10)

Therefore, the transfer function H(z) is derived as:

H(z)= Y(z)

X(z)
=

M∑

k=0

bkz
−k = b0 + b1z

−1 + b2z
−2 +· · ·+ bM−1z

−(M−1)+ bMz−M.
(11.11)

Multiplying both sides of Eq. (11.11) by zM , we can then obtain the following
transfer function:

H(z)= b0z
M + b1z

M−1 + b2z
M−2 + · · · + bM−1z+ bM
zM

. (11.12)

There are M + 1 coefficients, b0, b1, . . . , bM , which are going to be designed.
From Eq. (11.12) it can be seen that there are multiple poles z = 0 in the FIR fil-
ter. Hence, FIR is an absolutely stable system. Moreover, by letting z = ejΩ , the
frequency response of an FIR filter can be expressed as:

H(Ω)=
M∑

k=0

bke
−jkΩ. (11.13)

11.4.2 Estimation of the Order

Once the conditions of the to-be-designed filter are set, the order of the filter must
be determined. The equation below is an order Nc estimation for the design of a
low-pass FIR filter [13]

Nc ≈ D∞(δp, δs)
ΔF

− f (δp, δs)ΔF + 1 (11.14)

where ΔF is the selected frequency band of the filter and

D∞(δp, δs) = log10 δs
[
a1(log10 δp)

2 + a2 log10 δp + a3
]

+ [a4(log10 δp)
2 + a5 log10 δp + a6

]
, (11.15)

f (δp, δs) = 11.01217+ 0.51244[log10 δp − log10 δs] (11.16)
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Table 11.1 Parameters of the
example Parameter Value

order 28

number of ki 3

bit length of ki 5

δp 0.05

δs 00001

passband width 0.425π

stopband width 0.425π

transfer frequency band 0.15π

where

a1 = 5.309× 10−3, a2 = 7.114× 10−2,

a3 =−4.761× 10−1, a4 =−2.66× 10−3,

a5 =−5.941× 10−1, a6 =−4.278× 10−1

in which δp is the magnitude of the ripple in the passband of a target filter, and δs
is the magnitude of the ripple in the stopband of a target filter. The order of the FIR
filter N is the smallest integer which is greater than Nc .

11.4.3 Design Example of an FIR Filter [4]

Assume the parameters are δp = 0.05 and δs = 0.001, and that the frequency band
ΔF is 0.15π . By using Eq. (11.14), we have Nc = 27.024775. Thus, we set N = 28
as the order of the designed filter. For the design of the lowpass filter, we assume the
passband width is 0.425π and the stopband width is 0.425π . The parameters used
for this design are listed in Table 11.1. According to the earlier described proce-
dures, in this section the verification of the proposed method and an efficiency test
are attempted on a symmetrical finite impulse digital lowpass filter of order 28. In
addition, the simulated results are also presented.

The parameters for GA in this example are listed in Table 11.2. It is noted that
the bit length for each chromosome is 270 because there are 15 coefficients in a
chromosome and each coefficient contains three fields k1, k2, k3 with a bit length of
6 for each field (including the sign bit).

The initial generation was simulated randomly with a CSD code. Thereafter, the
CSD-based GA introduced in Sect. 11.3 is then used to design the coefficients of
the filter. The flow chart for this example is as shown in Fig. 11.4.

The mean square errors (MSEs) between the target filter and the designed filter
during the GA evolution from 100 to 100000 iterations are listed in Table 11.3.
The designed coefficients with the CSD structure for the FIR filter are listed in
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Table 11.2 Parameters of GA

Parameter Method/Value

selection method roulette wheel selection

number of chromosomes in each generation 40

bit length in each chromosome 270

crossover probability 0.9

mutation probability 0.01

number of iterations 100000

Fig. 11.4 Flow chart for this
example

Table 11.4. The comparison of the frequency response between the target filter and
the designed filter is depicted in Fig. 11.5. The frequency response in dB scale of
designed filter is shown in Fig. 11.6.
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Table 11.3 Mean square errors (MSEs) between the target and the designed filter

No. of iterations MSE No. of iterations MSE

100 0.169926069135081 4000 0.000130310610534345

200 0.0377396821132693 5000 0.000129315464946452

300 0.00347155998172241 10000 9.35633135984915e-005

400 0.00261887149888509 20000 8.06307730288536e-005

500 0.00260161871871188 30000 6.35793095232774e-005

1000 0.00251135715569537 40000 6.35752031291314e-005

2000 0.000251245587124766 50000 6.35731617230672e-005

3000 0.000130830139548433 100000 6.34650359562179e-005

Fig. 11.5 Comparison of the
frequency response between
the target filter and the
designed filter

Fig. 11.6 Frequency
response (dB) of the designed
filter
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Table 11.4 Designed filter coefficients with CSD structure

Coefficients CSD code (a sign bit in the left-end position for each ki ) Value

C(0) 000000 100000 101000 −0.0039063

C(1) 110000 000010 100000 −1.5259e-005

C(2) 001010 100010 000001 0.00085449

C(3) 101000 000100 000010 −0.0036011

C(4) 001001 001000 000000 0.0019684

C(5) 001000 000000 000000 0.011719

C(6) 101000 100000 101000 −0.0078278

C(7) 100100 000001 100100 −0.033203

C(8) 000100 100000 001000 0.00024414

C(9) 000101 000001 000010 0.050781

C(10) 110000 001010 010101 −1.5244e-005

C(11) 100100 100010 100000 −0.09375

C(12) 001000 000001 000010 0.0063477

C(13) 000010 000010 000100 0.31641

C(14) 000010 000000 101000 0.49902

C(15) 000010 000010 000100 0.31641

C(16) 001000 000001 000010 0.0063477

C(17) 100100 100010 100000 −0.09375

C(18) 110000 001010 010101 −1.5244e-005

C(19) 000101 000001 000010 0.050781

C(20) 000100 100000 001000 0.00024414

C(21) 100100 000001 100100 −0.033203

C(22) 101000 100000 101000 −0.0078278

C(23) 001000 000000 000000 0.011719

C(24) 001001 001000 000000 0.0019684

C(25) 101000 000100 000010 −0.0036011

C(26) 001010 100010 000001 0.00085449

C(27) 110000 000010 100000 −1.5259e-005

C(28) 000000 100000 101000 −0.0039063

11.5 CSD-Based Design of IIR Filter

This section introduces the IIR filter design. Similarly to Sect. 11.4, the CSD-based
GA is used for designing the filter. However, the stability problem which did not
need to be considered in the FIR filter design becomes an important issue and should
be addressed in the IIR filter design. Hence, the organization of this section is as
follows. We will first review the structure of an IIR filter. Subsequently, the stability
problem for the IIR filter is examined. Finally, a design example is presented at the
end of this section.
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Fig. 11.7 Architecture of IIR filters [5]

11.5.1 Overview of Infinite Impulse Response (IIR) Filters

An IIR filter is a filter with the architecture of the output feedback. An architecture
which is used most often is depicted in Fig. 11.7 [14]. The governing equation of an
IIR filter is then described as follows:

N∑

k=0

aky[n− k] =
M∑

k=0

bkx[n− k] (11.17)

in which ak, k = 0,1, . . . ,N , and bk, k = 0,1, . . . ,M , are the coefficients of the IIR
filter to be designed. It is obvious that the output of the filter depends on not only
the current and past inputs but also on the past outputs, which leads to a fact that the
output of the filter will depend on the infinitely many past inputs due to the iteration
process in Eq. (11.17). Hence, the filter is called the Infinite Impulse Response (IIR)
filter. According to Eq. (11.17), the transfer function of the IIR filter can be derived
as:

H(z)= b0 + b1z
−1 + b2z

−2 + b3z
−3 + · · · + bMz−M

a0 + a1z−1 + a2z−2 + a3z−3 + · · · + aNz−N =
∑M
k=0 bkz

−k
∑N
k=0 akz

−k . (11.18)

However, without loss of generality, we adopt the function

H(z)=
∑m
k=0 nkz

−k

1+∑n
k=1 akz

−k (11.19)

as the transfer function of the designed IIR filters [14]. In the following paragraphs,
the parameters ak and bk will be found, under the CSD coded format, via the pro-
posed strategy so that the error between the frequency response of the designed IIR
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filters and the desired frequency response is minimal. Moreover, all the poles of
H(z) will be placed in the disk D(α, r), i.e., the IIR filters are D(α, r)-stable.

11.5.2 Stability Criterion for an IIR Filter

The main difference between the design of an FIR filter and an IIR filter is that
the stability problem should be considered in the design of an IIR filter while it is
unnecessary in the design of an FIR filter, since an FIR filter is always stable as we
have mentioned in Sect. 11.4. Hence, this section will introduce a stability criterion
for the IIR filter design. Before proceeding, the following definitions are introduced
to help the description of this section.

Definition 11.1 A polynomial d(z) is P -stable if all solutions of the equation
d(z)= 0 lie inside the unit circle [15].

Definition 11.2 A polynomial d(z) is PD(α, r)-stable if all solutions of the equa-
tion d(z)= 0 are within the diskD(α, r) centered at α with radius r , in which r > 0
and |α| + r < 1 [15].

Definition 11.3 Let the transfer function of an IIR filter be described as H(z) =∑M
k=0 bkz

−k
∑N
k=0 akz

−k . If the denominator of the H(z), a(z) =∑N
k=0 akz

−k , is P -stable, then

the IIR filter is stable. Moreover, if a(z) is PD(α, r)-stable, then the IIR filter is
D(α, r)-stable [15].

In the following paragraph, a theorem which is useful in the evolution of GA for
design of a robust stable IIR filter is introduced. First, we introduce a useful theorem
as follows:

Theorem 11.1 If f (z) is analytic in a bounded domain ψ and continuous in the
closure of ψ , then |f (z)| takes its maximum on the boundary of ψ [16].

The following theorem will provide a boundary test criterion for the PD(α, r)-
stability of a polynomial.

Theorem 11.2 Consider the polynomial d(z) =∑n
k=0 akz

−k . If the following in-
equality (11.20) is satisfied, then all the solutions of d(z)= 0 will lie inside a disk
D(α, r), i.e., the polynomial d(z) will be PD(α, r)-stable with |α| + r < 1 and
|α| ≤ r [15]

∣∣∣∣∣

n∑

k=1

ak

a0

(
re−jθ + α)−k

∣∣∣∣∣
< 1, ∀θ ∈ [0,2π]. (11.20)
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11.5.3 Design of an IIR Filter

Theorem 11.2 is used to check whether the poles of an IIR filter lie inside the disk
D(α, r). This stability check should be performed in each generation of an evolu-
tionary algorithm used to design an IIR filter. Before proceeding, we first define the
vector of the coefficients in the denominator of H(z), a = (1 a1 a2 . . . an), as a
chromosome of GA. The following definition is helpful to describe the introduced
method.

Definition 11.4 A chromosome a = (1 a1 a2 . . . an) is stable if the corresponding
polynomial a(z) =∑n

k=0 akz
−k is P -stable. Moreover, it is D(α, r)-stable if the

corresponding polynomial is PD(α, r)-stable [15].

After the derivation of the stability criterion for the design of an IIR filter, based
on GA, a design strategy of a robust CSD coded stable IIR filter is then proposed as
follows. Moreover, the flowchart of the design procedure is depicted in Fig. 11.8 for
clarification.

Step 1. Initial generation. Define the coefficients of the denominator of H(z),
a(z) =∑N

k=0 akz
−k , as a chromosome a = (a0 a1 a2 . . . an). Generate

the initial generation of the chromosomes based on the CSD code format.
Step 2. Check the stability property. Check the stability of the chromosome ac-

cording to Theorem 11.2 and Definition 11.4. If a chromosome does not
satisfy the criterion in Theorem 11.2, then regenerate a new chromosome
based on the CSD code format.

Step 3. Evaluate the fitness value of the chromosomes. Evaluate the fitness value
of the chromosomes according to (11.6).

Step 4. Check whether the result is acceptable. If the result is acceptable or the
number of iterations is larger than an assigned maximum number, go to the
end of this procedure (Step 7), otherwise go to the next step.

Step 5. Generate offspring. Generate new chromosomes by the crossover and mu-
tation based on the CSD format which are proposed in Sect. 11.3.

Step 6. Check the stability criterion. Check the new chromosomes generated
from Step 5 to see whether they satisfy the stability criterion in Theo-
rem 11.2. Go to Step 3 if they do, or go back to Step 5.

Step 7. End of this procedure.

11.5.4 Design Example of an IIR Filter [5]

Suppose that the transfer function of a CSD coded IIR filter is described as H(z)=
b0+b1z

−1

a0+a1z
−1+a2z

−2 , in which the coefficients ai, i = 0,1,2, and bi, i = 0,1, are all de-
signed in the CSD format. The target frequency response is HI (Ω) as depicted in
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Fig. 11.8 The design procedure of the proposed strategy

Fig. 11.9. The sampling rate, passband edge frequency and stopband edge frequency
of HI (Ω) are set to be 9600, 1650, and 2800 Hz, respectively. The CSD coded IIR
filter is designed to minimize the mean square error between H(Ω) and HI (Ω),
and to have the poles and zeros of H(z) lie inside the disk D(0.3,0.7). That is, the
IIR filter will be robustly D(0.3,0.7)-stable.

According to the steps of the design strategy proposed in Sect. 11.5.3, in which
the parameters of GA are listed in Table 11.5, the coefficients of the IIR filter are
designed after 35000 generations of GA in the CSD coded format and are listed in
Table 11.6.
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Fig. 11.9 The desired
frequency response

The transfer function of designed CSD coded IIR filter is then described as:

H(z)= −0.49902− 0.125z−1

−1.2505+ 1z−1 − 0.375z−2
. (11.21)

The frequency response of the target IIR filter and the designed IIR filter are
depicted in Fig. 11.10. It can be seen that the designed frequency response is very
close to that of the desired filter. Moreover, the poles of the transfer function of the
IIR filter are depicted in Fig. 11.11. It is also obvious that all the poles lie inside the
disk D(0.3,0.7). That is, the CSD coded IIR filter is robustly D(0.3,0.7)-stable.

Table 11.5 Parameters of GA

Parameter Value

selection method roulette wheel selection

number of chromosomes in each generation 40

bit length for each chromosome 90

crossover probability 0.9

mutation probability 0.08

No. of generations 35000

Table 11.6 CSD code of the coefficients of the designed IIR filter

Coefficients Real number code CSD code (a sign bit in the left-end position for each ki )

ao −1.2505 100000 100010 101001

a1 1 000000 010010 100000

a2 −0.375 100010 100010 100000

a3 −0.49902 100001 001000 100001

a4 −0.125 100010 0000001 00001
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Fig. 11.10 Comparison
between the frequency
responses of the ideal filter
and the designed filter

Fig. 11.11 Poles of the
designed IIR filter
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Chapter 12
Hybrid Correlation-Neural Network Synergy
for Gait Signal Classification

Saibal Dutta, Amitava Chatterjee, and Sugata Munshi

Abstract This chapter presents a thorough discussion on the development of a ro-
bust algorithm for pathological classification of human gait signals. The technique
involves the extraction of time and frequency domain features of the correlograms
obtained by cross-correlating the gait signals with a reference, and subsequently
employing a pre-trained Elman’s recurrent neural network (ERNN) for automatic
identification of healthy subjects and those with neurological disorder, and also the
type of disorder. To assess the performance of the algorithm, stance, swing, and
double support intervals (expressed as percentages of stride) of 63 subjects, either
healthy, or suffering from Parkinson’s disease (PD), Huntington’s disease (HD), or
Amyotrophic Lateral Sclerosis (ALS), have been processed by the proposed algo-
rithm for a period of approximately 300 s. The performances of ERNNs are also
compared with those already reported for back propagation neural network (BPNN),
learning vector quantization (LVQ), and least-square support vector machine (LS-
SVM) based classification algorithms. With time-domain features, the proposed
modular ERNNs outshined the other classifiers by attaining 90.3–98.5 % classifi-
cation accuracy for binary classification jobs, and an accuracy as high as 87.1 %
for the four-class classification problem. With frequency-domain features, classifi-
cation into healthy and pathological subjects has been studied, and in this case also,
the best performance of 81.6 % mean accuracy was achieved employing ERNN.
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12.1 Introduction

Going by the lexicon, the term ‘gait’ represents the manner of moving on foot.
Movement is an important routine activity of all human beings. Any impediment
in movement, substantially downgrades the quality of our life. On the other hand,
human gait signal has the potential to serve as an important biometric trait pri-
marily due to its inconspicuousness, as it can be acquired from a distance with-
out the prior knowledge of the subject [5]. The investigations related to gait as
a distinguishing feature were first attempted a few decades back, from a medi-
cal/behavioral viewpoint [10, 20]. This was followed by several attempts to investi-
gate the problem of gait recognition, in the context of capturing and analyzing gait
signals [9, 19, 27, 30, 33].

So far as medical applications are concerned, the domain of gait and human
movement science has stolen much of the limelight with the appreciation of the
fact that locomotor dysfunctions demand considerable medical attention, involve
high costs of treatment, and may also turn out to be fatal in certain cases [25].
At a certain point of time, statistics revealed that 90 % of the adults with cerebral
palsy (CP) in the U.S.A. lacked access to periodic health checks-up [31], although
more than 50 % of the CP hemiplegics were required to have constant personal
assistance [43]. The elderly people face progressive gait disorder, which enhances
the possibility of death due to falls and bone fractures [46]. Half of these victims
of fall, if left unattended for more than two hours, are exposed to the danger of
succumbing to dehydration, hypothermia, pneumonia, pulmonary embolism (which
accounts for 38 % of deaths in hip fracture falls), rhabdomyolysis (which is a toxic
breakdown of muscle fibres), and pressure ulcers [2].

A large number of research workers have examined gait signals by different
methods. The methods put forward so far are primarily aimed at clustering gait
signals into young and old categories [1, 32, 34, 47]. Reported works on analysis of
gait signals for identifying neurological disorders in subjects, and also distinguish-
ing them from healthy subjects, have been few and far between. The use of artificial
neural networks (ANNs) for automated identification of gait patterns has already
been reported [1, 3]. The work referred to considered eight subjects under three gait
conditions, namely, normal gait, a simulation of leg length difference, and a simu-
lation of leg-length difference [1]. The features from hip–knee joint angle diagrams
were utilized to train the ANN, which was subsequently used for identifying the
type of gait. A three-class classification problem solution yielded a classification
ratio of 83.3 %.

Young–elderly classification of gait signals plays a significant role in identifying
the onset of gait related disorder in aged people, so that preventive measures can be
taken against fall [14, 32]. In an investigation [3], statistical features were processed
by support vector machine based classifier for binary classification of gait signals.
Twenty-four such features were derived from the minimum foot clearance (MFC)
data of 58 subjects to obtain classification into young and elderly gaits. A mean
classification accuracy of 83.3 % was achieved.

Automated determination of whether a subject is suffering from neurological dis-
eases, and also the type of disease, is another object of interest in investigations on
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identification of gait pattern. However, as compared to a young–elderly differentia-
tion method, development of a disease identification scheme is a more complicated
problem, as it is a multi-class (more than two) classification problem.

The present chapter presents the study on the development of an automated gait
identification tool which can automatically determine whether or not the subject un-
der consideration is a healthy one, and if not, then whether the source of neurological
disorder in the pathological subject is due to Parkinson’s disease (PD), Huntington’s
disease (HD), or Amyotrophic Lateral Sclerosis (ALS). Thus, the overall purpose of
the proposed method is to predict whether an unknown subject under consideration
is healthy or suffering from one of the three major neurological diseases.

The basic problem of designing such gait identification tools can be divided into
two subworks:

(i) Suitable feature extraction from input gait signals;
(ii) Designing a suitable classification algorithm to utilize those extracted features.

Feature extraction can be conventionally carried out from input signals by us-
ing various mathematical tools like statistical methods, Fourier transform, wavelet
transform based methods, etc. This chapter attempts to develop efficient feature ex-
traction algorithms employing correlation techniques, instead of the above men-
tioned methods. The chapter explores cross-correlation as a potential tool for fea-
ture extraction of gait signals. Both time and frequency domain based features from
correlations are analyzed to develop powerful gait signal classification algorithms.
The cross-correlation technique has so far been conveniently utilized in several en-
gineering fields, e.g., in instrumentation, robotics, and remote sensing applications.
The cross-correlation technique has also been successfully used in sonar and radar
systems for range and position detection. The chapter also aims at investigating the
usefulness of employing Elman’s recurrent neural network (ERNN) based classi-
fiers, on the basis of the features extracted employing cross-correlation techniques.
ERNN has found successful applications in the domains of function approximation,
prediction, and pattern recognition. Hence, the goal of this chapter is to develop
computer-based highly reliable automatic classification algorithms which can effec-
tively classify gait signals, utilizing cross-correlation based feature extraction and
neural network based classification techniques.

12.2 The Acquisition of Gait Signals

Several researchers have, over a period of time, employed different methodologies
for the analysis of gait signals. Most of these schemes employ different types of
acquisition procedures for recording various signals that are in some way related
to gait and posture of a human body. Subsequently, a variety of mathematical tech-
niques have been utilized for extracting meaningful features from these acquired
signals. Many of these methodologies are based on the recording of [11]:

• Step frequency or cadence,
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• Step length or length of one step,
• Stride length or distance between two steps,
• Stride interval (stance, swing, and double support interval),
• Reaction force or force exerted by a person on the floor while walking,
• Orthopaedic angles or orientation of limb segments,
• Electromyographic (EMG) activity of the involved musculature during walking,
• Minimum foot clearance (MFC) during walking, during the mid swing phase of

the gait cycle.

Under the scope of the present work, benchmark gait signals that are freely avail-
able from the physionet database [35] have been utilized. The database contains
real-life gait signals acquired from both healthy and pathological subjects having
neurological disorders due to Parkinson’s disease (PD), Huntington’s disease (HD),
and Amyotrophic Lateral Sclerosis (ALS). The database was contributed by Haus-
dorff et al. [16, 17], which includes 16 healthy subjects (2 men and 14 women)
aged 20–74 years, 15 PD subjects (10 men and 5 women) aged 44–80 years, 19 HD
subjects (6 men and 13 women) aged 29–71 years, and 13 ALS subjects (10 men
and 3 women) aged 36–70 years. Height and weight of the pathological subjects
recorded in the database were not significantly different from those of the healthy
subjects. This database also maintains a measure of disease severity or duration,
to indicate the extent to which a subject of the database is affected by PD, HD, or
ALS. The database uses Hohn and Yahr score for the subjects suffering from PD.
A higher value of this score indicates a more advanced condition of the disease.
The score varies from 1.5 to 4, for the PD subjects under consideration in this chap-
ter. For 60 % of these patients, the score is 3 or more, signifying a more advanced
state of the disease. The database uses total functional capacity measure for HD sub-
jects. Here, a lower score indicates more advanced functional impairment. The score
varies from 1 to 12 for HD subjects under consideration. Here, for almost 50 % of
these patients, the score is 5 or less (signifying more severe state of the disease), and,
for the rest 50 % patients, the score is more than 5. For the subjects suffering from
ALS, the severity measure maintained by the database is the time since the onset of
the disease. Here, for almost 80 % of the ALS patients, the severity of the disease is
moderate. The subjects were instructed to walk at their normal speed along a 77 m
long hallway. To measure gait rhythm and the timing of gait cycle, force-sensitive
resistors were placed as insoles in each subject’s shoe. The gait time sequences were
obtained using these resistive sensors with output approximately proportional to the
force under the foot. Stride-to-stride measures of footfall contact times were derived
from these signals, and the stride time (i.e., the time from the initial contact of one
foot to the subsequent contact of the same foot) along with swing and stance times
was determined for each stride. For each subject, stride-to-stride measurements of
footfall contact times were acquired for approximately 300 s. In the present study,
the time sequences corresponding to the left and right stance intervals, the left and
right swing intervals, and the double support interval, each expressed as a percentage
of the stride time for each subject, are considered. Figures 12.1, 12.2, 12.3 demon-
strate the time sequence plots of the left swing interval, right stance interval, and
double support interval for some sample subjects. A close inspection of these plots
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Fig. 12.1 Plot of left-swing interval (% of stride) vs. time for sample healthy and pathological
subjects [13]

Fig. 12.2 Plot of right-stance interval (% of stride) vs. time for sample healthy and pathological
subjects [13]

reveals that it is impossible to differentiate between healthy and pathological sub-
jects without any ambiguity. This indicates the need for an intelligent system that
can automatically classify pathological and healthy subjects.
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Fig. 12.3 Plot of double-support interval (% of stride) vs. time for sample healthy and pathological
subjects [13]

12.3 Cross-Correlation Based Feature Extraction Methodology

Cross-correlation is a mathematical operation that can be suitably utilized to find the
extent of similarities between two signals. The cross-correlation technique has been
successfully used in many applications like robotics and remote-sensing, sonar and
radar systems for range and position detection, recovery of signals buried in noise,
signal processing [7, 28, 29], and in several other domains [8, 24, 28, 29, 37, 39].
One of the novelties of the present work lies in applying the cross-correlation tech-
nique judiciously, as a feature extraction tool, for the classification of gait signals.
The cross-correlation of two finite duration causal sequences x[k] and y[k], each
sample having length N , is given by [6, 38, 41]:

rxy[m] =
N−|m|−1∑

k=0

x[k]y[k −m] (12.1)

where m=−(N − 1),−(N − 2), . . . ,0,1, . . . , (N − 2), (N − 1). The index m rep-
resents the time shift parameter, also known as lag, and subscript xy represents
sequences being correlated. The length of the cross-correlation sequence rxy[m] is
(2N − 1) samples. The plot of the cross-correlation function rxy[m] versus m is
known as the cross-correlogram. Each (2N − 1) length cross-correlation sequence
can be fed directly to the classifier to classify bioelectric signals, but it involves
massive computational burden. In order to reduce the computational load, one can
extract meaningful information either directly from the cross-correlation sequence
or from the transformation of the cross-correlation sequence into frequency domain
using Fourier transform and utilizing the cross-spectral density information.
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Fig. 12.4 Representative cross-correlograms of the left-stance interval sequences for the subjects
belonging to different classes [13]

In this work, one of the healthy subjects from the gait database has been cho-
sen as reference. For time-domain feature based analysis of gait signals, the stance
interval (left and right), swing interval (left and right), and double-support interval
sequences y[k] of each of the other subjects (belonging to this database) are cross-
correlated with the corresponding sequences x[k] of the reference. This yields five
cross-correlograms for each subject. However, for frequency domain feature based
analysis, only left stance interval sequence has been considered. Some representa-
tive sets of cross-correlation sequences of gait signals are depicted in Fig. 12.4.

12.3.1 Time Domain Features

Features extracted directly from cross-correlograms are termed as time-domain fea-
tures. The three common traits of the cross-correlograms, expressed quantitatively
by the centroid (cent), the mean-square abscissa (msa), and the variance of abscissa
(va) [6], are found to serve as important parameters to classify bioelectric signals.

They are defined as

centroid= cent = 〈m〉 =
∑N−1
m=−(N−1) m rxy[m]
∑N−1
m=−(N−1) rxy[m]

, (12.2)

mean-square abscissa=msa= 〈m2〉=
∑N−1
m=−(N−1) m

2 rxy[m]
∑N−1
m=−(N−1) rxy[m]

, (12.3)
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and

variance of abscissa= va= 〈(m− 〈m〉)2〉=
∑N−1
m=−(N−1) (m− 〈m〉)2rxy[m]
∑N−1
m=−(N−1) rxy[m]

.

(12.4)

In the present analysis, above three quantitative time-domain descriptors of the
cross-correlograms are used for the classification of gait signals.

12.3.2 Frequency Domain Features

As discussed earlier, one can analyze cross-correlation in frequency domain and
extract meaningful features from it by computing Fourier transform of each cross-
correlation sequence. The Fourier transform of cross-correlation sequence rxy[m] is
called the cross-spectral density (Sxy), which is defined as [6, 38, 41]:

Sxy(f )=
∞∑

m=−∞
rxy[m]e−j2πfm. (12.5)

The features extracted from the cross-spectral density (Sxy) are called frequency-
domain features. These features should be ideally well-suited for characterizing a
bioelectric signal, but with a reduced dimension. From the cross-spectral density
information, one can create the corresponding magnitude and phase cross-spectral
density, i.e., |Sxy(f )| and ∠Sxy(f ) feature vectors. Then the features extracted from
|Sxy(f )| and ∠Sxy(f ) can be given as:

fl_mag(n)= ∣∣Sxy(f )
∣∣∣∣
f=nf0

, n= 1,2,3, . . . , (12.6)

fl_phase(n)=∠Sxy(f )|f=nf0 , n= 1,2,3, . . . , (12.7)

fl_composite= [fl_mag(1),fl_mag(2), . . . ,fl_mag(n), . . . ,

fl_phase(1),fl_phase(2), . . . ,fl_phase(n), . . .
]
. (12.8)

Here, fl_mag(n) denotes the magnitude of the cross-spectral density at the nth fre-
quency sample. Similarly, fl_phase(n) denotes the phase of the cross-spectral den-
sity at the nth frequency sample. Then the composite feature vector fl_composite can
be formed, considering all fl_mag and fl_phase coefficients. Figures 12.5 and 12.6
show the plots of the sample |Sxy(f )| and ∠Sxy(f ) curves for the cross-correlation
sequences of the left stance interval up to the 30th frequency sample.

12.4 Elman’s Recurrent Neural Network Based Classification

Recurrent neural networks (RNNs) are particularly useful for learning both temporal
and spatial patterns. As opposed to a multilayer perceptron (MLP), which employs
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Fig. 12.5 Magnitude cross-spectral density of the left stance interval belonging to healthy and
various pathological subjects

Fig. 12.6 Phase cross-spectral density of the left stance interval belonging to healthy and various
pathological subjects

only feedforward connection, RNNs are more complicated as they employ a combi-
nation of feedback and feedforward connections, exhibiting the property of memory
[4, 18]. RNNs are useful for two types of application: as associated memories and
for input–output mapping [12, 40, 44, 48]. In the present application, RNNs have
been implemented for input–output mapping. There are several architecture layouts
available for different relevant RNNs. Some popular variants of such RNNs include
Jordan’s network (which employs feedback connection from the output of the output
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Fig. 12.7 The architecture of the Elman’s RNN

layer to the input of the input layer) [21], Elman’s network (which employs feed-
back connection from the output of the hidden layer to the input of the input layer)
[26], Pollack sequential cascade network [36], higher order recurrent neural network
of Giles [15], Lee and Song’s network (in which each output node is connected to
itself) [26], etc. In this proposed system, Elman’s RNN has been employed, which
is a popular RNN in the category of dynamically driven neural networks. Like sev-
eral other RNNs, Elman’s network incorporates static MLP architecture as its basic
building block and is trained by some popular learning algorithm, employed for
training MLPs. Figure 12.7 shows the generic architecture of an Elman’s RNN uti-
lized in this work. This is a three-layer architecture where layer 2 contains context
units in addition to the hidden neurons. The context units comprise a bank of unit
time delays and they store the outputs of the hidden neurons for one time step, and
then these are fed back to the input of the input layer. Hence, the context units de-
pict short-term memory of the RNN. However, as the output of the hidden layer of
the RNN, at any time step, is a nonlinear function of both the output of the input
layer at that given time step and the output of the hidden layer in the previous time
step, the network continues to recycle information over multiple time steps, which
is useful for efficient discovery of temporal patterns [18]. Mathematically speaking,
the output from the hidden layer, at the kth time step is given as:

z2
j (k)= f1

(
N∑

i=1

z1
i (k)w

12
ij +

P∑

j=1

z2
j (k − 1)c22

jj + b2
j

)

(12.9)

where

• z2
j (k) = output of the j th neuron of layer 2 at the kth time step,
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• z1
i (k)= output of the ith neuron of layer 1 at the kth time step = xi(k),

• w12
ij =weight connecting the ith neuron of layer 1 and the j th neuron of layer 2,

• c22
jj = weight connecting the j th neuron of context units and the j th hidden layer

neuron of layer 2,
• z2

j (k − 1)= output of the j th neuron of layer 2, delayed by one time step,

• b2
j = bias associated with the j th neuron of layer 2,

• N = number of inputs,
• P = number of hidden layer neurons.

Hence the output of the Elman’s RNN can be given as:

z3(k)= f2

(
P∑

j=1

z2
j (k)w

23
j

)

(12.10)

where

• z3(k)= output of the only neuron in output layer, at time step k,
• w23

j = weight connecting the j th neuron of layer 2 to the only neuron in layer 3,
• f1(•) represents a nonlinear function, usually chosen as tansigmoidal or logsig-

moidal function,
• f2(•) can be either a linear or a nonlinear mapping.

A generalized Elman’s RNN can employ multiple neurons in the output layer also.
In the training phase, for a multiclass problem, the output, for each exemplar input
to an ERNN, is chosen for the system as y ∈ {1,2, . . . , c, . . . ,C}. Here C is the total
number of classes in which each RNN is designated to classify its inputs. In the
implementation phase, the output of the ERNN is classified as:

yclass = c if (c− 0.5) < y ≤ (c+ 0.5) (12.11)

except for the two terminal classes where yclass = 1 if y < 1.5 and yclass = C if
y > (C − 0.5).

12.5 Time Domain Cross-Correlation Based Scheme for Gait
Signal Classification

For the classification of gait signals using time-domain features, benchmark sig-
nals available from the physionet database [35] have been utilized. As mentioned
earlier, the database contains real-life gait signals of 16 healthy subjects, as well
as 15, 19, and 13 pathological subjects having neurological disorders due to PD,
HD, and ALS, respectively. The procedure for obtaining the cross-correlograms has
already been explained. From the cross-correlation sequences, three quantitative de-
scriptors [13], namely, the centroid (cent), the mean-square abscissa (msa), and the
variance of abscissa (va), are evaluated for several subjects with known neurolog-
ical states of health and these values are subsequently used to train ERNNs. Once
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Table 12.1 The range or
universe of discourse for the
selected features

Features Range or discourse

cent_l_st [−60, 35]

msa_l_st [8524, 14100]

va_l_st [6130, 12878]

cent_r_st [−59, 35]

msa_r_st [8500, 14500]

va_r_st [6122, 12900]

cent_l_sw [−60, 35]

msa_l_sw [8442, 14000]

va_r_sw [6052,12829]

cent_r_sw [−60, 35]

msa_r_sw [8440, 14040]

va_r_sw [6050, 12830]

cent_ds [−59, 35]

msa_ds [7574, 13920]

va_ds [5990, 12745]

this process is complete, it is expected that, for a new subject, if the above quan-
tities are calculated and fed to the ERNNs, the system can determine whether the
subject is healthy or not, and also the type of illness, where the subject is found
to be ill. The three features extracted from the left stance interval sequence of a
subject are named as cent_l_st, msa_l_st, and va_l_st. Similarly, the three features
extracted from the right stance interval sequence are named as cent_r_st, msa_r_st,
and va_l_st, the three features extracted from the left swing interval sequence are
named as cent_l_sw, msa_l_sw, and va_l_sw, and the three features extracted from
the right swing interval sequence are named as cent_r_sw, msa_r_sw, and va_r_sw.
The three features extracted from the double support sequence are named as cent_ds,
msa_ds, and va_ds. Hence, for each subject under consideration, 15 features are ex-
tracted from five cross-correlograms. Table 12.1 lists these features, used as the
inputs of the ERNN, with their range of values, obtained for the specific problem
under consideration.

The system is configured as a four-class classification system (i.e., C = 4) where
the four classes correspond to healthy subjects, pathological subjects suffering from
PD, pathological subjects suffering from HD, and those suffering from ALS. Two
schemes are discussed in this chapter for solving the composite problem, utilizing
time-domain features, where each scheme utilizes more than one ERNN in modu-
lar form [13]. Each modular ERNN is designed to solve a sub-problem, and these
ERNNs are arranged in a hierarchical fashion where the output of one ERNN de-
termines whether another (or more than one) ERNN should be activated or not.
Each ERNN is activated as a 15-input–1-output system where the 15 inputs are
determined from the features extracted from cross-correlograms, as discussed in
Section 12.4. For Scheme 1, ERNN1 is trained to solve a binary classification prob-
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Fig. 12.8 Flowchart representation of scheme [13]

lem where we determine whether the subject tested is healthy/pathological. If the
subject is diagnosed as pathological, then ERNN2 is activated with the same set of
feature vectors, determined for that specific subject. ERNN2 is specifically trained
with the training data set determined from pathological subjects only, and it is de-
signed to solve a three-class problem, segregating pathological subjects into PD,
HD, and ALS classes. Figure 12.8 shows Scheme 1 in a flowchart form. Finally,
outputs from both ERNN1 and ERNN2 are utilized to suggest the ultimate diagno-
sis which classifies the subject under consideration into one among the four classes,
i.e., healthy/PD/HD/ALS.

The same problem can also be solved by employing Scheme 2, shown in
flowchart form in Fig. 12.9. The feature extraction part remains identical with that
of Scheme 1, but the classification module now employs three modular ERNNs,
namely ERNN1, ERNN3, and ERNN4, each trained to perform specific binary
classification jobs. ERNN1 is implemented in an identical manner with that of
Scheme 1. But if it diagnoses the subject as pathological, then ERNN3 is activated
to determine whether the pathological subject is suffering from ALS or not. If the
answer is negative, then ERNN4 is activated to determine whether the subject is
suffering from PD or HD. The final outcome of the automated tool discussed in
Scheme 2 is determined by considering outputs from all three ERNNs.
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Fig. 12.9 Flowchart representation of scheme [13]

12.5.1 Performance Evaluation

The performances of the presented schemes have been tested with the signals avail-
able from [35]. As discussed earlier, five time-domain gait signals have been con-
sidered for each subject. By constructing the cross-correlation sequences with ref-
erence to the corresponding signals acquired from the reference subject, a total of
15 features for each subject (extracting three features from each of the five cross-
correlograms) were determined. Table 12.1 shows the universe of discourse for all
these features extracted from the entire signal database. Once the feature extraction
phase is over, each of the four modular ERNNs is trained based on its corresponding
training dataset. The composite training and testing datasets are created by putting
50 % data in each dataset. ERNN1 is trained utilizing the entire training dataset,
ERNN2 and ERNN3 are trained utilizing those exemplars in the training dataset that
belong to pathological subjects, and ERNN4 is trained utilizing those exemplars in
the training dataset that belong to PD or HD diseases. On successful completion of
training, each modular ERNN is tested independently. ERNN1 is tested utilizing the
entire testing dataset, each of ERNN2 and ERNN3 is tested using those cases in the
testing dataset that belong to pathological subjects, and ERNN4 is tested utilizing
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Table 12.2 Classification accuracy of ERNN1

Algorithm Healthy subject Pathological subject Overall

Mean
(%)

Std.dev.
(%)

Range
(%)

Mean
(%)

Std.dev.
(%)

Range
(%)

Mean
(%)

Std.dev.
(%)

Range
(%)

BPNN 61.5 9.9 50.0–75.0 88.4 2.8 82.6–91.3 81.2 2.7 77.4–83.9

LVQ 36.6 12.9 14.3–62.5 75.1 5.5 60.9–87.5 65.9 2.5 58.1–71.0

LS-SVM 56.2 13.6 37.5–100.0 87.6 11.9 69.6–100.0 80.1 11.8 61.3–100.0

ERNN1 90 5.1 87.5–100.0 90.9 3.1 87.1–93.6 90.6 1.8 87.1–93.6

only PD and HD subjects from the testing database. Tables 12.2, 12.3, 12.4, 12.5
present those performance results for each ERNN separately. Here, each ERNN
was run 20 times and the classification results in percentages are mentioned in each
case with the corresponding mean, standard deviation, and range of results obtained
employing 20 such runs for each ERNN. Each system was also implemented in
accordance with N -fold cross-validation theory with N = 2, i.e., the whole set of
experiments was carried out a second time by swapping the composite training and
testing datasets and the result of a particular run is considered as the mean of the
two runs conducted by swapping training and testing data sets. From Tables 12.2
to 12.5, it can be seen that whenever the cross-correlation aided modular ERNNs
were put into operation for binary classification purposes, they could comfortably
attain 90.0 % or higher classification accuracy. ERNN1 reported a mean accuracy of
90.6 %, ERNN3 reported the corresponding result as high as 97.8 %, and ERNN4
reported the mean accuracy of 94.1 %. For ERNN2, which employed a three-class
classification algorithm, accuracy was understandably a little lower, i.e., 89.8 %. The
performances of these ERNNs are compared with backpropagation neural network
(BPNN) [42], Learning Vector Quantization (LVQ) [23], and Least Square Support
Vector Machine (LS-SVM) [22, 45] based classification algorithms. Computation
using BPNN, LVQ, and LS-SVM were preceded by the identical cross-correlation
based feature extraction procedure described earlier, and hence it was implemented
utilizing 15-dimensional feature vectors. BPNN, LVQ, and LS-SVM, like ERNNs,
also employ supervised learning based training procedures. They are also employed
in an identical manner as ERNNs. Hence all of the BPNN, LVQ, and LS-SVM per-
formances were reported on the basis of 20 runs, with their corresponding mean,
standard deviation, and range values. In each case, it can be easily seen that the
performance of ERNN based systems is much superior compared to BPNN, LVQ,
and LS-SVM based systems. BPNN, LVQ, and LS-SVM based supervised learning
procedures produced much inferior results with mean classification accuracy in the
range 52.1–81.2 %, 36.7–78.8 %, and 32.2–80.1 %, respectively.

Once these encouraging results were obtained with each modular ERNN, the
composite hierarchical schemes, Scheme 1 and Scheme 2, have been employed to
obtain the automated gait identification tools as four-class classification systems.
Table 12.6 reports these results which show that Scheme 1 could produce 83.8 %
and Scheme 2 could produce 87.1 % overall accuracy. These results of Scheme 1
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Table 12.4 Classification accuracy of ERNN3

Algorithm ALS Non-ALS Overall

Mean
(%)

Std.dev.
(%)

Range
(%)

Mean
(%)

Std.dev.
(%)

Range
(%)

Mean
(%)

Std.dev.
(%)

Range
(%)

BPNN 50 0 50.0–50.0 83.5 5.4 76.5–88.7 74.8 4 69.6–78.3

LVQ 39.3 11 28.6–50.0 94.1 0 94.1–94.1 78.8 3.9 75.0–82.6

LS-SVM 24.7 15.6 14.3–50.0 92.9 3.1 82.4–94.1 73.9 6.1 62.5–82.6

ERNN3 91.7 8.6 83.3–100.0 99.4 1.8 94.1–100 97.8 2.6 91.3–100.0

Table 12.5 Classification accuracy of ERNN4

Algorithm PD HD Overall

Mean
(%)

Std.dev.
(%)

Range
(%)

Mean
(%)

Std.dev.
(%)

Range
(%)

Mean
(%)

Std.dev.
(%)

Range
(%)

BPNN 51.3 13.7 37.5–75.0 68.9 6.8 56.6–77.7 60.6 5.6 53.0–70.6

LVQ 21.4 22 0.0–42.9 75 25.7 50.0–100.0 50 3 47.1–52.9

LS-SVM 41.3 14.9 25.0–62.5 47 8.1 22.2–66.7 46 5.2 35.3–52.9

ERNN4 87.5 4.1 75.0–100 99.4 2.5 88.9–100.0 93.8 1.3 88.2–94.1

Table 12.6 Composite classification accuracy for Scheme 1 and Scheme 2

Scheme ALS
(%)

PD
(%)

HD
(%)

Healthy
(%)

Overall
(%)

Scheme 1 83.3 87.5 77.8 87.5 83.9

Scheme 2 83.3 87.5 88.9 87.5 87.1

Table 12.7 Confusion
matrix for Scheme 1 Predicted Class

Actual Class ALS PD HD Healthy

ALS 5 0 1 0

PD 0 7 1 0

HD 0 1 7 1

Healthy 0 0 1 7

and Scheme 2 are reported with the best performing modular ERNNs, taken as their
building blocks. These accuracies are a little less than individual accuracies of mod-
ular ERNNs, when implemented in stand-alone form. This is understandable, as
each composite scheme employs two or three modular ERNNs in hierarchical form.
Tables 12.7 and 12.8 present the confusion matrices corresponding to Scheme 1 and
Scheme 2 results, respectively, presented in Table 12.6.
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Table 12.8 Confusion
matrix for Scheme 2 Predicted Class

Actual Class ALS PD HD Healthy

ALS 5 1 0 0

PD 1 7 0 0

HD 0 0 8 1

Healthy 0 0 1 7

To have a realistic understanding of how strong or weak the presented schemes
are, these results are compared with some of the other results reported utilizing
gait signals. The presented schemes are based on signals acquired from 63 subjects,
and the results are reported on the basis of 62 subjects (with one subject taken as
the reference). In [3], an SVM based procedure could solve the binary classifica-
tion problem into young/elderly gaits, utilizing 24 statistical features extracted from
minimum foot clearance (MFC) data of 58 patients, with a mean classification accu-
racy of 83.3 %. Compared to this scheme, each of the binary-classification modular
ERNN systems mentioned here could comfortably produce more than 90 % accu-
racy and with fewer input features (i.e., 15 chosen in our works). In [3], even after
introduction of a hill-climbing algorithm for relevant feature selection (which intro-
duces significant additional computational burden), the binary classification result
could not improve to more than 90 %. In [1], another neural network based gait clas-
sification scheme was proposed using features from hip–knee joint angle measures.
The problem was configured as a three-class classification problem, and utilized data
from 8 subjects only. This scheme also reported a classification ratio of 83.3 % only.
In the light of these discussions, our modular ERNNs reporting 90.3–98.5 % clas-
sification accuracy for binary classification jobs, 87.0 % accuracy for three-class
classification jobs, and an accuracy as high as 87.1 % for the composite scheme
(considering the complete problem as a four-class classification problem) should be
considered as very promising and encouraging solutions for analyzing gait signals
to segregate healthy subjects from pathological subjects and to identify the source
of neurological disorder in pathological subjects [13].

12.6 Frequency Domain Cross-Correlation Based Scheme
for Gait Signal Classification

In the frequency-domain based methodology, gait signals are automatically clas-
sified into healthy and pathological subjects. For the classification of gait signals,
one of the healthy subjects is chosen as reference. For each of the other subjects,
the left stance interval sequence was cross-correlated with the corresponding se-
quence of the reference subject. As explained earlier, a cross-correlogram was thus
obtained for each subject. Representative sets of cross-correlograms of healthy sub-
jects, pathological subjects suffering from ALS, PD, and HD neurological disorders
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are shown in Fig. 12.4. Each cross-correlogram is then transformed to the frequency
domain using Fourier transform to obtain its magnitude and phase cross-spectral
densities, as shown in Fig. 12.5 and Fig. 12.6, respectively.

From magnitude and phase cross-spectral density curves, five different feature
set vectors of size 20, 30, 40, 50, and 60, considering the magnitude and phase
quantities up to n = 10, 15, 20, 25, and 30 frequency samples, have been created.
These feature vectors were utilized to train separate ERNN based classifiers, and
each trained classifier was subsequently tested. Here ERNNs are trained to solve a
binary classification problem to determine whether the subject tested is healthy or
pathological. In this scheme, for each classifier developed, the number of hidden
layer neurons was set equal to the number of features to be examined. This means,
for feature vectors of size n = 20, 30, 40, 50 and 60, the corresponding classifier
was developed using 20, 30, 40, 50, and 60 neurons, respectively.

12.6.1 Performance Evaluation

Like time domain based classification of gait signals, the classification performance
of the ERNN for the frequency domain based classification was also evaluated using
signals available from physionet database [35]. As discussed earlier, the left stance
interval sequence of reference subject is cross-correlated with the corresponding
sequence of other subjects. This yields a cross-correlogram for each subject. The
cross-correlogram is then transformed to the frequency domain using Fourier trans-
form to obtain its magnitude and phase cross-spectral densities. Hence five different
size (i.e., 20, 30, 40, 50 and 60) feature set vectors, considering the magnitude and
phase quantities up to n= 10, 15, 20, 25, and 30 harmonics, have been created. Once
the feature extraction phase is over, ERNNs are trained based on training datasets.
The training and testing datasets are created by putting 50 % data in each dataset.
On successful completion of training, ERNNs are tested independently. ERNNs are
tested utilizing the testing dataset. Table 12.9 presents the performance of ERNN
for different feature sets. Here each ERNN was run 20 times and the classification
results in percentages are mentioned, in each case, with the corresponding mean,
standard deviation, and range of results obtained employing 20 such runs for each
ERNN. Each system was also implemented in accordance with the N -fold cross-
validation theory with N = 2.

From Table 12.9, it can be seen that the ERNN reported overall mean classi-
fication accuracy in the range from 63.6 to 81.6 % for five feature sets, and the
best classification results were obtained with 20 feature set vectors. The perfor-
mances of these ERNNs are then compared with BPNN, LVQ, and LS-SVM based
classification algorithms. BPNN, LVQ, and LS-SVM are also employed in an iden-
tical manner as ERNNs. Hence each BPNN result is reported on the basis of 20
runs, with their corresponding mean, standard deviation, and range values. It can
be seen from Table 12.9 that out of the five cases, LS-SVM produced best re-
sults in four cases compared to BPNN, LVQ, and ERNN based classification algo-
rithms. However, the best performance of 81.6 % mean accuracy was obtained using
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Table 12.9 Classification performance of ERNN for frequency domain classification of gait sig-
nals

Feature
Set

Algorithm Healthy subject Pathological Subject Overall

Mean
(%)

Std.dev.
(%)

Range
(%)

Mean
(%)

Std.dev.
(%)

Range
(%)

Mean
(%)

Std.dev.
(%)

Range
(%)

20 BPNN 59.8 23.8 12.5–87.5 75.3 7.5 65.2–87.5 71.6 7.2 61.3–83.9

LVQ 28.6 29.3 0.0–57.1 89.6 10.7 79.2–100 74.2 0 74.2–74.2

LS-SVM 17.1 19.5 0.0–42.9 95.8 4.7 87.5–100 76.5 2.9 74.2–80.7

ERNN 64.8 16.1 42.9–100 86.9 10.3 73.9–100 81.6 7.1 71.0–93.6

30 BPNN 73.4 10.4 57.1–87.5 79.6 8.8 65.2–95.7 78.1 5.5 71.0–87.1

LVQ 31.4 32.6 0.0–71.4 89.6 10.7 79.2–100 74.8 1.3 74.2–77.4

LS-SVM 20.2 23.8 0.0–62.5 100 0 100–100 80.6 6.1 74.2–90.3

ERNN 54.3 16.8 28.6–87.5 79.4 9.8 65.2–95.7 73.6 7.1 64.5–87.1

40 BPNN 60.4 20 28.6–100 69.4 9.2 60.9–87.0 67.1 10.8 54.8–87.1

LVQ 32.9 34.1 0.0–71.4 89.6 10.7 79.2–100 75.2 1.5 74.2–77.4

LS-SVM 8.4 11.7 0.0–28.6 100 0 100–100 77.7 3.8 74.2–83.9

ERNN 53.6 18.7 25.0–85.7 75.3 9 60.9–87.5 70 8.8 54.8–83.9

50 BPNN 60.6 20.4 25.0–87.5 65.6 12.1 45.8–87.0 64.4 9.4 45.2–83.9

LVQ 28.6 29.3 0.0–57.1 89.6 10.7 79.2–100 74.2 0 74.2–74.2

LS-SVM 0 0 0.0–0.0 100 0 100–100 75.8 1.7 74.2–77.4

ERNN 66.6 13.2 42.9–85.7 72.8 7.8 60.9–91.3 71.3 6.4 61.3–83.9

60 BPNN 74.6 13.1 57.1–100 66.5 8.8 43.5–78.3 66.8 9.4 35.5–77.4

LVQ 32.9 34.1 0.0–71.4 89.6 10.7 79.2–100 75.2 1.5 74.2–77.4

LS-SVM 13 25 0.0–75.0 97 8 73.9–100 76.8 3.9 74.2–87.1

ERNN 67.7 15.3 28.6–85.7 62.1 8.8 52.2–75.0 63.6 6.3 58.1–74.2

ERNN, employing 20 feature vector sets. As far as a comparison of development of
such ERNN based gait classification schemes utilizing time-domain and frequency-
domain based cross-correlation features is concerned, a detailed comparison of Ta-
bles 12.6 and 12.9 reveals that both Scheme 1 and Scheme 2 for time-domain fea-
ture based systems produced better overall classification accuracy compared to the
frequency-domain feature based systems.

12.7 Conclusions

In this chapter, an attempt has been made to develop robust algorithms for automatic
classification of gait signals. Cross-correlation has been utilized as an efficient fea-
ture extraction tool and Elman’s recurrent neural network has been employed as an
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automated gait signal pattern classifier utilizing these extracted features. Classifi-
cation methodologies and their performance evaluations, both involving time and
frequency domain based cross-correlation features, were discussed in Sections 12.5
and 12.6.

In this work, a detailed study pertaining to gait signal classification was pre-
sented. A systematic method of choosing features utilizing both time-domain and
frequency-domain cross-correlation information was described, coupled with dif-
ferent variants of ERNNs and relative comparisons of their performances. These
performance analyses were carried out utilizing well known quantitative measures
or performance indices, popularly employed for evaluating similar systems. In this
context, two time-domain correlation based gait identification schemes have been
presented in Section 12.6, utilizing several modular ERNNs in hierarchical form.
Each of these schemes has been successfully implemented as a multiclass classifica-
tion tool where one can segregate the input gait signals of healthy subjects and those
of pathological subjects suffering from specific neurological disorders, e.g., Parkin-
son’s disease (PD), Huntington’s disease (HD), and Amyotrophic Lateral Sclerosis
(ALS). The performances of the presented schemes have been evaluated by con-
sidering some benchmark signals, and very encouraging results have been reported,
compared to other contemporary algorithms available in practice. The presented
methods show how modular recurrent neural networks can be effectively utilized
for the specific problem under consideration. This work is expected to encourage
future researchers to make an in-depth study of the feasibility of implementing sev-
eral candidate RNN algorithms available in the literature (e.g., Jordan’s network,
Pollack’s network, FIR networks, Laguerre models, etc.) for classification of bio-
electric signals and to compare their performances.
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Chapter 13
Image Denoising Using Wavelets:
Application in Medical Imaging

Abdeldjalil Ouahabi

Abstract Medical images obtained from MRI are the most common tool for di-
agnosis in Medicine. These images are often affected by random noise arising in
the image acquisition process. Hence, noise removal is essential in medical imaging
applications in order to enhance and recover fine details that may be hidden in the
data.

A common approach for image denoising is to convert a noisy image into a trans-
form domain such as the wavelet and contourlet domain, and then compare the trans-
form coefficients with a fixed or adapted threshold. The underlying idea is that the
useful signal can be described by a small number of coefficients of high-amplitude
wavelets, and that the noise is spread across all coefficients. In fact, the wavelet rep-
resentation naturally compresses the essential information in a signal into relatively
few, large coefficients, which represent image details at different resolution scales.

In this chapter, we review recent wavelet denoising techniques for medical ultra-
sound and for magnetic resonance images and discuss their performances in terms
of SNR (or PSNR) and visual aspects of image quality. However, image denoising
using wavelet-based multiresolution analysis requires a delicate compromise be-
tween noise reduction and preserving significant image details. Hence, in practical
applications, we will often simplify the theory using heuristics, when this leads to
algorithms with lower complexity or higher flexibility.

13.1 Introduction to Multiresolution Analysis

This introductory section recalls the theory of wavelets and multiresolution analysis
based on the discrete wavelet transform. The Mallat algorithm for 1D and 2D signals
as a tool for concrete implementation of these concepts is shown at the end of this
section.
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13.1.1 Discovery and Contributions of Wavelets

The astonishing discovery of wavelets in 1975 by Jean Morlet [1] has not only been
exploited commercially, but has also been royally ignored by the petrol company
Elf Aquitaine, now called Total, Morlet’s former employer. A likely explanation is
that this then-public company has been traumatized by the scam of the century: the
infamous “sniffer planes”, supposedly able to miraculously “sniff out” the presence
of petrol!

This politico-financial case has cost the taxpayers over a billion, and 100 millions
of Francs between 1975 and 1979, and also cost the job of the polytechnical engineer
Jean Morlet. Indeed, the chief casualty of this debacle is without doubt the father of
wavelets who, by way of thanks, was forced into early retirement by Elf.

In practice, on the one hand, the field has had to wait for the work of Mallat [2, 3],
and Daubechies [4, 5] which focused on implementation adapted to the pyramidal
algorithms of Burt and Adelson [6] for a concrete exploitation of these wavelets to
be born, thanks to the fast wavelet transform. On the other hand, multiresolution
analysis was also contingent of the benefits of subband coding, introduced in 1977
by Esteban and Galand [7].

13.1.2 Continuous Wavelet Transforms

The transient universe is more complex but much more exciting than the peaceful
garden of the stationary world.

The analysis of transients of different durations requires a transform capable of
acting simultaneously on a range of temporal resolutions: wavelet transforms per-
form this function by decomposing a signal via a family of translated and dilated
wavelets.

Called a wavelet (or mother wavelet), a finite energy function1 ψ contains n
vanishing moments (where n ∈N), that is, satisfies

∫

R

tpψ(t) dt = 0 ∀0≤ p < n. (13.1)

The relationship (13.1) indicates that wavelet ψ analyzes a signal with the following
qualities:

• Oscillation (by taking positive and negative values), that is, the number n controls
the oscillations of ψ ; the larger the n, the more ψ oscillates,

• A zero mean (for p = 0),
• By disregarding the continuous component, for p = 0, and in general (p > 0) by

being orthogonal to polynomial components of degrees less than n. The wavelet
“kills” polynomials [8].

1L2(R) represents the set of finite energy signals.
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Fig. 13.1 Example of an expanded and translated wavelet

Fig. 13.2 The process of a
wavelet transform

Further, the wavelet is normalized ‖ψ‖ = 1, and is centered in the neighborhood
of t = 0. By expanding the wavelet ψ by a factor s and then translating it by u (see
the example in Fig. 13.1), we obtain the family of wavelets ψu,s associated with ψ ,
with the same standard unit (that is, ‖ψu,s‖ = 1):

ψu,s(t)= 1√
s
ψ

(
t − u
s

)
. (13.2)

The continuous wavelet transform of a signal X ∈ L2(R) at time u and scale s is
defined by:

WX(u, s)= 〈X,ψu,s〉 =
∫ −∞

+∞
X(t)

1√
s
ψ∗
(
t − u
s

)
dt (13.3)

where W refers to the wavelet and ψ∗ denotes the complex conjugate of ψ .
The relationship (13.3) represents the scalar product of X and the set of wavelets

ψu,s associated with ψ .WX(u, s) characterizes the “fluctuations” of the signal X(t)
in the neighborhood of position u at scale s (see Fig. 13.2; here u takes the specific
value t0).

Examining expressions (13.1) and (13.3), it is clear that WX(u, s) will be insen-
sitive to the signal’s most regular behaviors and more flexible than polynomials of
degree strictly less than n (the number of vanishing moments of ψ ). Conversely,
WX(u, s) takes into account the irregular behavior of polynomial trends. This im-
portant property plays a role in the detection of signal singularities.
WX(u, s) can also be interpreted as a linear filter operation:

WX(u, s)=X ∗ ψ̄s(u) (13.4)
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where ∗ denotes the product of convolution, with ψ̄s(t) = 1√
s
ψ∗(−t

s
), in which

the Fourier transform, ̂̄ψs(ω) =
√
sψ̂∗(sω), is identified as a transfer function of

a bandpass filter [2].
The relationship (13.4) demonstrates that wavelet transforms can be calculated

by expanded bandpass filters (with variable s). The inverse of a continuous wavelet
transform in L2 is provided by the wavelet admissibility condition:

Kψ =
∫ −∞

0

|ψ̂(ω)|2
|ω| dω=

∫ 0

+∞
|ψ̂(ω)|2
|ω| dω <+∞. (13.5)

In order for this integral to be finite, it is necessary to ensure that ψ̂(0) = 0,
which is why wavelets must have a mean of zero (ψ̂(0) = ∫

R
ψ(t) dt = 0). This

condition is almost sufficient. If ψ̂(0) = 0 with continuously differentiable ψ̂(ω),
the admissibility condition is satisfied.

In practice, choosing a wavelet with a zero mean (and highly localized in time
and in frequency) is sufficient. In this case, it is possibly to synthesize or reconstruct
signal X(t) by inverting the wavelet transform as follows:

X(t)= 1

Kψ

∫ 0

+∞

∫ −∞

+∞
WX(u, s)

1√
s
ψ

(
t − u
s

)
du
ds

s2
, t ∈R. (13.6)

This reconstruction uses all scales, and as such is highly redundant. Continuous
wavelet transform is calculated based on the scale factor s and the time u in the
set of real numbers (the time-scale plane is therefore continuously traversed), which
renders it extremely redundant. In reconstruction of a signal by a continuous in-
verse transform, this redundancy is extreme in the sense that all the expanded and
translated wavelets are employed such that they are linearly dependent, therefore
reflecting existing signal information without adding new information.

13.1.3 Discrete Wavelet Transforms

As previously noted, continuous wavelet transforms are highly redundant:WX(u, s)
is the 2D ((u, s)-plane) representation of a signal X(t) in 1D! This redundancy can
be reduced using one of the countably infinite family of wavelets {ψj,k}, where
(j, k) ∈ Z

2 and ψj,k(t) = 2−j/2ψ(2−j t − k). The time-scale (u, s)-plane is con-
verted to a “dyadic mesh” (or in base 2), as shown in Fig. 13.3:

(
u→ 2j k, s→ 2j , (j, k) ∈ Z×Z

)
.

Clearly, to reduce or eliminate redundancy, the family {ψj,k}(j,k)∈Z2 must consti-

tute an orthonormal basis of L2(R). The conditions under which this basis becomes
orthonormal and thus provides a “highly economical” wavelet transform are related
to the concept of multiresolution analysis (abbreviated MRA).
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Fig. 13.3 Discretization
process: (a) continuous
wavelet transform,
(b) discretization of the
(u, s)-plane, (c) discrete
wavelet transform

To profit from a non-redundant signal representation while ensuring a perfect
reconstruction from its decomposition, an extremely effective tool, i.e., MRA, was
defined by Stéphane Mallat [2] and Yves Meyer [9]. This powerful concept allows
numerical implementation of wavelet decomposition; the definition of the discrete
wavelet transform thus necessarily underpins that of the MRA.

13.1.4 The Concept of MRA

The idea of multiresolution analysis of a signal consists in its representation as a
limit of its successive approximations, where each approximation is a smoothed
version of the preceding approximation. Successive approximations are presented
at different resolutions, hence the term multiresolution analysis.

When resolution increases, successive images approximate the signal increas-
ingly better, and in contrast, when resolution decreases, the amount of information
contained in an image also decreases, eventually to zero. The wavelet coefficients
encode the difference in information between two successive images, that is, the
details acquired by an image when its resolution doubles.

Readers interested in the theoretical aspects will find the axiomatic formulation
of MRA in references [2] and [10].
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Clearly, the idea of multiresolution analysis can be summarized as follows: It
concerns the representation of a signal in the form of a coarse approximation and
a series of “corrections” of decreasing amplitude. A true multiresolution analysis
provides a seductive algorithmic element (see the Mallat algorithm in the next sec-
tion) that paves the way for some impressive applications, notably in compression,
denoising, image restoration, smoothing, computer graphics, vision, etc.

From a formal perspective, multiresolution analysis of a signal X consists of
the realization of successive orthogonal projections of the signal on the spaces Vj ,
which leads to increasingly coarse approximations of X as j increases. The dif-
ference between two successive approximations represents detail information lost
during the transition from one resolution to another. This detail information is con-
tained in the subspaceWj orthogonal to Vj .

Thus the signal X belonging to a space Vj is projected on a subspace Vj+1 and a
subspaceWj+1 with the aim of reducing the resolution by half. There is therefore:

• A scaling function φ(t) which generates an orthonormal basis of Vj+1 via expan-
sion and translation, and

• A wavelet function ψ(t) which generates an orthonormal basis ofWj+1 via dila-
tion and translation.

The projection of the signal X on the space Vj+1 is denoted as

AjX =
∑

k

〈X,φj,k〉φj,k =
∑

k

aj,kφj,k (13.7)

where the scalar products2 aj,k = 〈X,φj,k〉 provide an approximation to scale 2j .
The projection of the signal X on the space Wj+1 is denoted as

DjX =
∑

k

〈X,ψj,k〉ψj,k =
∑

k

dj,kψj,k (13.8)

where dj,k = 〈X,ψj,k〉 are the coefficients of the wavelet transform of the signal X.

13.1.5 Implementation of MRA: Mallat Algorithm

According to relationships (13.7) and (13.8), the decomposition of a signal into
wavelet bases involves a succession of discrete convolutions with the impulse re-
sponse lowpass filter h̄ and the highpass impulse response filter ḡ as shown in
Fig. 13.4.

The coefficients aj+1 and dj+1 are calculated by taking every other sample from
the convolutions of aj with h̄ and ḡ, respectively, and so on.

2aj,k = 〈X,φj,k〉 =
∫ +∞
−∞ X(t)2−j/2φ(2−j t − k)dt .
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Fig. 13.4 Decomposition of a signal on multiple levels

Fig. 13.5 Reconstruction or synthesis

The ↓ 2 symbol represents a decimation of factor 2, that is, accounting for the
use of every other (rather than every) sample.

Fast wavelet transforms are therefore calculated by the cascade of filterings by
h̄ and ḡ followed by subsampling (or decimation) by a factor of 2. Initialization of
the algorithm can present certain difficulties; however, it is possible to assimilate
the sampled values of the signal X with the coefficients a0. The complexity of this
algorithm is of the order of N when the signal X is of size N .

Reconstruction or synthesis consists of an interpolation which inserts zeros in the
sequences aj+1 and dj+1 to double their length, followed by a filter, as shown in
Fig. 13.5.

The ↑ 2 symbol represents an interpolation which inserts zeros between the sam-
ples of aj+1 and dj+1.

Strictly speaking, the sequences aj and dj are respectively aj,k = aj (k) and
dj,k = dj (k); where k is the time. There is a relationship between h(k) and g(k):

g(k)= (−1)kh(1− k), (13.9)

and the following notation will be adopted: h̄(k)= h(−k) and ḡ(k)= g(−k). In two
dimensions, decomposition into a separable wavelet basis is realized by an extension
of the Mallat algorithm. Therefore, for an image, the 1D algorithm is applied first,
to each row and then to each column, as shown in Fig. 13.6.

13.2 Redundant Multiresolution Analysis

When high accuracy is required in image analysis, redundant multiresolution anal-
ysis is applied, such as the undecimated discrete wavelet transform, the wavelet
packet transform, and the contourlet transform. This section introduces these trans-
forms and shows their benefits.
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Fig. 13.6 The Mallat algorithm: decomposition of an image

13.2.1 Undecimated Discrete Wavelet Transform

The undecimated discrete wavelet transform (UDWT), also known as the stationary
wavelet transform, consists of keeping the filter bank construction which provides
a fast and dyadic algorithm, e.g., Mallat algorithm, but eliminating the decimation
step.

Due to the absence of downsamplers (decimation step) in the UDWT’s imple-
mentation, each coefficient sequence from any level of decomposition has the same
length as the original: if the original signal hasN samples, the UDWT J -level repre-
sentation {aJ (k), dj (k)}0<j<J is of size N(J +1), making from the UDWT J -level
a highly redundant representation.

The implementation of the UDWT was initially performed by an algorithm called
the à trous algorithm (à trous, a French term, meaning with holes).

13.2.2 Wavelet Packets

Wavelet packets provide a finer analysis by decomposing, at each level, not only
the approximation spaces but also the detail spaces (see Fig. 13.7). Wavelet packets,
defined by Coifman, Meyer, and Wickerhauser [11], therefore represent a general-
ization of multiresolution decomposition.

The wavelet packets transform is redundant and should only be used in cases
where an extremely fine analysis is required. The choice of the best decomposition
basis depends on the principle of minimal entropy.
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Fig. 13.7 Example of decomposition (at three levels) into wavelet packets by cascading filtering
and decimation

13.2.3 Contourlet Transform

Do and Vetterli [12] have proposed the contourlet transform (CT), which is one
of several transforms developed in recent years, aimed at improving image mul-
tiresolution analysis based on discrete wavelet transform. The main feature of these
transforms is the potential to efficiently handle 2D singularities, i.e., edges, un-
like wavelets which can deal with point singularities exclusively. This difference
is caused by the two main properties that the CT possess:

• Directionality, i.e., the representation should contain basis functions in many di-
rections, as opposed to only 3 directions (horizontal, vertical, and diagonal) of
wavelets,

• Anisotropy, i.e., the representation should capture smooth contours. It should con-
tain basis functions using a variety of elongated shapes with different aspect ra-
tios.

The main advantage of the CT over other geometrically-driven representations,
e.g., curvelets and bandelets, is its relatively simple and efficient wavelet-like im-
plementation using iterative filter banks. Consequently, the contourlet transform is a
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Fig. 13.8 First level decomposition of the Contourlet Transform

true multiresolution and multidirectional image representation which can effectively
capture image edges and contour information in all directions; therefore, it is very
suited for image processing, namely in image denoising.

The Contourlet Transform is constructed by the Laplacian pyramid (LP) and di-
rectional filter banks (DFB) as illustrated in Fig. 13.8. The LP decomposes images
into subbands and DFB analyzes each detail image.

13.3 Denoising or Noise Reduction

The challenge is to restore a useful signal when only a noisy version is available.
The idea consists simply in adequate modification of the coefficients (of the wavelet
transform of the observed signal) taking advantage of their local properties, then
inverting the transformation to obtain a noise-free version of the signal!

For a 1D signal, wavelet shrinkage denoising attempts to remove whatever noise
is present and retain whatever signal is present regardless of the frequency (or
scale) content of the signal. It is not a smoothing (averaging) of data. Smoothing
removes high frequencies and retains low frequencies. Consequently, for a 2D sig-
nal, smoothing introduces a blurring and loss of information.

Wavelet shrinkage denoising consists of three steps: a linear DWT, a nonlinear
shrinkage denoising, and a linear inverse DWT. This heuristic procedure is consid-
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ered a nonparametric method, i.e., it makes no a priori assumption. It is distinct from
parametric methods in which parameters must be estimated for a particular model
that is assumed a priori. For example, the most popular parametric method is that of
using least squares estimation.

13.3.1 Additive Gaussian White Noise Model

The following is a measurement model:

Y(k)=X(k)+B(k) (13.10)

where Y(k) is the measurement signal of size N , X(k) is the a priori unknown
useful signal, and B(k) is a random noise perturbation (usually assumed to be white
Gaussian with variance σ 2).

The elimination or reduction of this additive noise can be achieved nonlinearly by
using multiresolution analysis under the assumption that the appropriate choice of a
decomposition basis allows discrimination of the useful signal from noise. The un-
derlying idea is that the useful signal can be described by a small number of coeffi-
cients of high-amplitude wavelets, and that the noise is spread across all coefficients.
This hypothesis justifies, in part, the traditional use of denoising by thresholding.

If dYj (k) represent the wavelet coefficients of the measured signal, the estimation

of the wavelet coefficients of the useful signal, denoted dX̂j (k), is generated by two
types of thresholding:

• Hard thresholding

dX̂j (k)=
{
dYj (k) if |dYj (k)|> S,

0 otherwise;
(13.11)

• Soft thresholding

dX̂j (k)=

⎧
⎪⎪⎨

⎪⎪⎩

dYj (k)− S if dYj (k) > S,

dYj (k)+ S if dYj (k) <−S,

0 otherwise

(13.12)

with S = σ√2 lnN where N is the size of the measured signal, and σ represents the
noise standard deviation.

A robust estimator of σ is given by:

σ̂ = 1.4826×Med
∣∣dY1 (k)

∣∣ (13.13)

where Med|dY1 (k)| designates the median value of the wavelet coefficients, for
j = 1, in increasing order {|dY1 (k)|,0≤ k ≤N/2}.
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Fig. 13.9 Hard thresholding
and soft thresholding

Donoho and Johnstone [13] have shown that the choice of S is near-optimal for
N ≥ 4.

Fig. 13.9 represents the thresholding procedure. Note that hard thresholding cre-
ates discontinuities at k± 1.

Heuristic denoising is based on the hard and soft thresholding functions (see
Fig. 13.9), the non-negative garrote (NNG) function and the smoothly clipped abso-
lute deviation (SCAD) function, both illustrated in Fig. 13.10.

Although these standard thresholding functions are close to optimal, they raise
some limitations:

• The hard thresholding function is not everywhere continuous and its discontinu-
ities at k± 1 generate a high variance in the estimated signal;

Fig. 13.10 NNG and SCAD shrinkage functions



13 Image Denoising Using Wavelets: Application in Medical Imaging 299

Fig. 13.11 Denoising of the
Lena image corrupted by
Gaussian white noise

• The soft thresholding function is continuous, but creates an attenuation on large
coefficients, which results in an oversmoothing and an important bias for the es-
timated signal;

• The NNG and SCAD functions achieve a certain compromise between the hard
and the soft thresholding functions.

However, all the standard Wavelet Shrinkage functions presented above include
zero-forcing. This zero-forcing induces singularities of the thresholding function.
As a consequence, it results in a significant variation of the estimation due to the sen-
sitivity of the inverse wavelet transform. In addition, thresholding rules assume that
the wavelet representation is sparse. Note that smooth signals yield sparse wavelet
representations in the sense given by: For such signals, large coefficients are very
few in number.

In contrast, wavelet representations of natural images, which tend to be piecewise
regular (where discontinuities are along smooth curves) rather than smooth, fail to
be sparse enough since large coefficients are not very few. This justifies the intro-
duction of more flexible wavelet shrinkage methods for correcting the drawbacks of
thresholding rules.

Figure 13.11 depicts the original Lena image (top left) and the same image made
artificially noisy (to the right) using Gaussian noise (randn function). This image has
been denoised (see Fig. 13.11, bottom panel) using the Matlab function wdencmp
with a fixed soft threshold. The Matlab code for this application is as follows:

% Load Lena image and add Gaussian noise
load lena;
init = 2055615866; randn(’seed’,init);
x = X + 15*randn(size(X));
%Specification of fixed threshold and type of %thresholding
[thr,sorh,keepapp] = ddencmp(’den’,’wv’,x);
%Denoising using a symlet wavelet of order 4
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%Soft thresholding has been chosen
xd = wdencmp(’gbl’,x,’sym4’,2,thr,sorh,keepapp);
% Graphical representation
figure(’color’,’white’)
colormap(pink(255)), sm = size(map,1);
image(wcodemat(X,sm)), title(’Original Image’)
figure(’color’,’white’)
colormap(pink(255))
image(wcodemat(x,sm)), title(’Noisy Image’)
image(wcodemat(xd,sm)), title(’Denoised Image’)

This denoising procedure is achieved in three stages:

• Two-level wavelet decomposition,
• Thresholding, in the three directions of the detail coefficients (horizontal, vertical,

and diagonal),
• Reconstruction of the image from the level 2 approximation coefficients (un-

changed) and the modified detail coefficients.

The wavelet used is a symlet of order 4. The result of this simulation is very
satisfying. However, in a real-life situation applying a denoising procedure is not as
simple because it requires adaptive processing of image zones affected by different
types of local degradation.

This area still attracts significant research interest, via the development of fine
models of noise and the concept of parsimony structured by block models [14]
and [15]. Such a statistical procedure has properties of theoretical optimality re-
markable practicality.

From an operational perspective, it consists of regrouping unknown coefficient
estimations (of wavelets or contourlets) into several disjoint blocks and selecting
these groups via the so-called James–Stein rule. This procedure breathes new life
into image denoising, from the point of view of both quasi-optimality and the re-
duction of calculation time by a factor of 6!

13.3.2 Sigmoidal Wavelet Shrinkage

The sigmoidal wavelet shrinkage [16] performs an adjustable wavelet shrinkage
based on sigmoid function thanks to parameters that control the attenuation degree
imposed to the wavelet coefficients. Consequently, this denoising method allows for
a very flexible shrinkage. This shrinkage function is defined by:

δτ,λ(x)= x

1+ e−τ(|x|−λ) (13.14)

for x ∈ R and (τ, λ) ∈ R
∗+ × R+. Each δτ,λ is the product of the identity function

with a sigmoid-like function. From Fig. 13.12, we can see that when τ tends to
infinity, δτ,λ tends to a hard thresholding function.
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Fig. 13.12 Sigmoidal
wavelet shrinkage

Fig. 13.13 Right: Noisy
Lena image (Noise is white
and Gaussian with σ = 35)
and PSNR= 17 dB. Left:
Denoised Lena using
4-level-sigmoidal wavelet
shrinkage, PSNR
output= 30 dB

Figure 13.13 gives a denoising example using the example of Lena image, cor-
rupted by additive white Gaussian noise with standard deviation σ = 35. The Haar
wavelet and 4 decomposition levels are used for the undecimated wavelet represen-
tation.

It is necessary to establish quantitative/heuristic measure to compare the effects
of image denoising algorithms on image quality. For every test, the PSNR is cal-
culated for the original image and the denoised image. The PSNR (in decibel unit,
dB), is given by

PSNRdB = 10 log10

(
d2

ε

)
(13.15)

where d represents the dynamics of the image (for example, for a 8-bit encoded
images, d = 255), and

ε = 1

MN

M∑

k=1

N∑

l=1

∥∥I1(k, l)− I2(k, l)
∥∥ (13.16)

is the mean square error between image I1 and its noisy version I2, each being
of size M × N . Typical PSNR values in real-world images range between 20 and
40 dB.
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Figure 13.13 gives the noisy Lena with a PSNR= 17 dB as well as the denoised
image using 4-level-sigmoidal wavelet shrinkage. The output PSNR is then equal to
30 dB. This figure highlights that the contrast of the image can be smoothly adjusted
by sigmoidal wavelet shrinkage introducing artifacts.

13.3.3 Parametric Denoising: Wiener Filtering

The Wiener filter reduces or removes noise affecting the signal by comparing the
observed signal with an estimation of the noiseless signal and minimizing the mean
square error, in this sense the Wiener filter is optimal.

However, this technique assumes that the observed signals are stationary and/or
their second order statistics are known. However, in the real world, this assumption
is not always true, which severely limits the performance of Wiener filtering.

It is well known that the most important technique for removal of blur in images
due to linear motion or unfocussed optics is the Wiener filtering.

Let y = x + b be the observed sequence applied at the input of the Wiener filter
with impulse response h to remove the noise perturbation b. The denoised signal
given by the filter will be:

x̂ = y ∗ h=
N∑

i=0

hiy(k − i) (13.17)

and the error of estimation is:

e(k)= x̂ − x(k)=
N∑

i=0

hiy(k − i)− x(k) (13.18)

where x(k) is the noiseless ideal signal. The filter coefficients are the solutions of
the equation:

hi = arg min
{
E
{
e2}} (13.19)

where E is the mathematical expectation (taking the average). The solution of rela-
tion (13.19) is obtained by solving the following equation:
⎛

⎜⎜⎜
⎝

Ry(0) Ry(1) · · · Ry(N)

Ry(1) Ry(0) · · · Ry(N − 1)
...

...
. . .

...

Ry(N) Ry(N − 1) · · · Ry(0)

⎞

⎟⎟⎟
⎠
×

⎛

⎜⎜⎜
⎝

h0
h1
...

hN

⎞

⎟⎟⎟
⎠
=

⎛

⎜⎜⎜
⎝

Ryx(0)
Ryx(1)
...

Ryx(N)

⎞

⎟⎟⎟
⎠

(13.20)

where Ry is a positive definite Toeplitz matrix representing the autocorrelation of
the observed signal, h is the Wiener filter’s vector of coefficients, and Ryx is the
intercorrelation between the observed and the noiseless signal.

The working hypotheses from an operational point of view are:
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• The signal x and the noise b are uncorrelated, namely, Rbx = 0,∀k;
• The noise, b, is an additive white Gaussian process, with zero-mean and vari-

ance σ 2
b ;

• The useful signal, x, is a random Gaussian process with zero-mean and vari-
ance σ 2

x .

Consequently, the observed signal is a zero-mean process with variance σ 2
y =

σ 2
x + σ 2

b . Its autocorrelation is reduced to Ry(k)= σ 2
y I where I denotes the identity

matrix. The intercorrelation between the observed and the noiseless signal is then
Ryx(k)= σ 2

y δ(k),∀k where δ(k) is defined by

δ(k)=
{

1 if k = 0,

0 otherwise.

In these conditions, the solution of Eq. (13.20) is then:

h0 = σ 2
x

σ 2
x + σ 2

b

, and h1 = h2 = · · · = hN = 0.

The denoised signal can be put in the following form:

x̂ = σ 2
x

σ 2
x + σ 2

b

y = SNR

1+ SNR
y (13.21)

where SNR = σ 2
X

σ 2
b

; it represents the signal-to-noise ratio of the observed signal. In

the case of an image, the variance of the useful signal, σ 2
X , can vary in space and

must be estimated locally.
The relations deduced for time (or space)-domain signals are also available in

the wavelet domain, under the same hypotheses, the estimated coefficients being
computed with:

dX̂j = σ 2
X

σ 2
X + σ 2

b

dYj . (13.22)

In the context of medical imaging (see Sect. 13.4), we compare the performance
of this denoising method to shrinkage wavelet denoising both visually an in terms
of PSNR.

13.3.4 Suppression of Correlated Noise

Images captured by digital devices often contain noise. Various methods of wavelet-
based image exist, but their performance is limited in the presence of correlated
noise in the image or signal of interest.
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Fig. 13.14 Denoising based on estimation of the probability of the presence of useful information:
3-band Lena (RGB)

In this context, only advanced heuristics are suitable to properly denoise images
corrupted by correlated noise. These methods combine parametric methods based
on a priori knowledge (or statistical modeling) and nonparametric methods such as
thresholding in the wavelet domain. Among the methods which demonstrate some
effectiveness is the work of A. Pizurica [17]. The heart of this approach is to esti-
mate the probability that a given wavelet coefficient contains a significant noise-free
component. Heuristically, the signal of interest is identified and extracted from the
noisy image. Figure 13.14 shows the application of this method to a three band
image (RGB), specifically to the color Lena image.

A few years later, another method was proposed by the same team [18] to extract
the useful signal. This is characterized by measuring and quantifying the relevant
information in a noisy image taking into account the structure of the correlation of
neighboring wavelet coefficients. The approach consists of combining an intra-scale
model with a hidden Markov type model to capture these dependencies between
wavelet coefficients.

Figure 13.15 shows an example of application of the denoising method based on
a Markov model and a slightly redundant discrete wavelet transform. This method is
compared with SNR: it appears that the denoising presented in Fig. 13.15(d) offers
a slight improvement.

13.4 Applications in Medical Imaging

In recent years, medical imagery and diagnostic techniques have seen spectacular
developments and heavy investment, and research hospitals in particular have es-
tablished neuroimaging centers equipped with functional PET (positron emission
tomography) and MRI (magnetic resonance imagery) equipment.

These new technologies supplement the more classic techniques, which are also
perpetually evolving, for example, ultrasound, X-ray tomography (or classical scan-
ning), magnetoencephalography (or MEG, offering access to the spatiotemporal
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Fig. 13.15 Denoising of the Lena image by modeling with a hidden Markov model combined with
a slightly redundant wavelet transform (d)

timecourse of cerebral activity), electroencephalograpy (EEG), and electrocardio-
graphy (ECG). However, image and signal processing techniques, commonly used
in these domains, remain rudimentary despite the complexity of the signals to be
analyzed (presence of anomalies of outliers, signal mixing, combination of associ-
ated modalities, inverse problems, and so on) and the demands in terms of extracting
relevant information are increasingly greatly, for example, in terms of the size of a
data set, data modeling, image registration and fusion imaging (modalities), as well
taking into account any current major methodological issues in the field.

The challenge, then, is to establish how wavelet-based multiresolution analysis
(decomposition–reconstruction, feature extraction, segmentation, contour detection,
compression, denoising, progressive transmission, and so on) can be combined with
existing classification techniques to meet present and future scientific and techno-
logical challenges.

13.4.1 Medical Imaging Methods and Techniques

Medical imaging includes the following techniques and methodologies:

• Acquisition, restoration, and image processing of the human body,
• Interpretation and exploitation of these images for therapeutic purposes.

The process of formation or generation of these images is based on princi-
ples from physics, such as the absorption of X-rays (radiography, mammogra-
phy, scanner, or tomodensitometry, or computerized tomography), the magnetic
field (spectroscopy and magnetic resonance imagery + and functional magne-
toencephalography), propagation and reflection of ultrasonic waves (echography,
Doppler, elastography, photoacoustics, thermoacoustics, fUltrasound, or functional
brain ultrasound), radioactivity (gammagraphy or scintigraphy or single photon
emission computed tomography-SPECT-or positron emission tomography, PET)
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Fig. 13.16 Representation of the interrelated components of the imaging sequence

and optics (coherent optical tomography, diffuse optical imaging). These various
image sources provide usually complementary insights, whether it be in the mor-
phological (structure and anatomy) or functional (physiology, metabolism) plane.

Figure 13.16 gives an overview of medical image formation and exploitation:

• An object corresponds to an organ or a lesion (bone fracture, tumor, atheroma-
tous plaque). It may be static or moving, a superficial tissue element or a large,
important structure;

• The Sensor section corresponds to the technique of observation or measure con-
cerned which allows the exploration of this object in its context, or separately, at
a macroscopic level just as at the microscopic level, its shape, its architecture, or
while functioning;

• Data (2D, 3D, or time sequence images) are only obtained after using signal
processing techniques and reconstruction algorithms allowing the correction of
defects intrinsic to the sensors (noise, distortion) and to multiple wave–matter in-
teractions. In terms of information management of these data, the DICOM norm
is generally adopted. Methods of signal and image processing, such as noise re-
duction (or denoising) by multiresolution analysis, are indispensable for efficient
processing. However, artifacts frequently remain, and are linked to the reconstruc-
tion methods themselves, as well as to movements of the objects in the course of
acquisition. The final spatiotemporal resolution as well as the contrast between
objects depends on all these factors. Access to an image is often accompanied by
the injection of agent or contrast products (enhancement of vascular structures
in X-ray imaging or even in echography), biomarkers for highlighting lesions or
specific biological processes, and radio-pharmaceutical compounds (tracers) that
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form the basis of nuclear medical imaging (single photon emission tomography,
or, using positrons, PET);

• Decision is based on the extraction of relevant information (of an object from oth-
ers, of a movement, etc.) included in the images for clinical interpretation. Seg-
mentation and contour extraction methods using wavelet multiresolution analysis
play a central role here. Similarly, algorithms for estimation and movement track-
ing, to characterize cardiac kinetics, for example, or to improve reconstruction by
correcting for breathing, have seen considerable advances. This is also the case
for algorithms dealing with image registration techniques for comparing images
of the same type but taken at different times, and for merging different (i.e., mul-
timodal images) image modalities;

• Action consists of making a diagnosis and also of devising a therapeutic response
to that diagnosis. In this phase, images play an essential role in both prepara-
tion (the planning phase) and application (guidance) of the therapy. This may in
the first instance be to simulate the deformations introduced by the actions to be
carried out (instrument–tissue interaction such as during the introduction of an
endovascular probe) and in the second instance, to locate in real time the instru-
ments relative to the organs (to reach a target, or follow a precalculated trajectory)
in real time.

The proliferation of techniques and the complementary nature of these method-
ologies push progress in the direction of a multimodal imagery, in which data gen-
erated by several technologies, whether acquired simultaneously or not, are recal-
ibrated, that is, mapped onto the same image. Thus, the fusion of techniques re-
vealing the anatomy, function, and activity of a structure provides increasingly fo-
cused information. For example, the joint use of magnetoencephalography (MEG,
a technique derived from electroencephalography in which the magnetic field gen-
erated by neuronal activation is measured using highly sensitive sensors) and of
functional magnetic resonance imaging (fMRI) can identify the most complex neu-
ral processes, such as object and face recognition. Another example is that of su-
perimposing on the same image the morphology of the contours of the heart ob-
tained using MRI with information on the mobility of the heart walls obtained using
Doppler echography. Some recent imaging devices can produce multimodal images
in a single examination (for example, hybrid CT-SPECT systems).

Electromagnetic MEG imaging reveals a network of regions in which low-
frequency activity is synchronized with the speed of the hand during manipula-
tion of a classic ball mouse. The traces show the hand speed in green (also lighter)
recorded during a 3-second period, and the corresponding cerebral activity in blue
(also darker) in the principal region implicated in hand motility.

To access the temporal resolution of cognitive functions, magnetoencephalogra-
phy (MEG) can be used in addition to MRI. This imaging method, especially in
terms of sensors, is making advances which are leading to wider applications. In-
deed, magnetoencephalography (MEG) offers better resolution, measuring the mag-
netic field generated by neurons with 150 or even 300 sensors placed on a cap (with-
out direct contact).
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Recent studies reveal that it is possible to demonstrate in humans, in a compre-
hensive and noninvasive manner, the interaction of brain activities in a network, and
whose characteristic frequencies are directly related to basic behavioral parameters,
in the case of limb movement. This discovery may have major implications in the
evaluation of pathologies giving rise to changes in motor control, and in the imple-
mentation of prosthesis control techniques, when the motor act can be imagined but
not performed.

13.4.2 Wavelet-Based Denoising in fMRI, MRI, and Echography

In this section, we will present some practical applications of wavelet domain de-
noising in MRI and ultrasound images.

13.4.2.1 MRI Illustration

In MRI, the practical limits of the duration of acquisition necessitate a compromise
between the signal-to-noise ratio and the resolution of the image. The MR image is
commonly reconstructed by calculating the discrete inverse Fourier transform of the
data noise. Noise in (the modulus of) the MR image is Rician, the mean of which
depends on the signal (that is, it is signal-dependent).

Denoising by multiresolution analysis is generally achieved via uniform or adap-
tive (hard or soft) thresholding. The algorithm described here offers an additional
functionality in adapting to the local spatial context. Because the mean of the Rician
noise depends on the signal, the wavelet coefficients and the scaling function (de-
tails and approximations) of a noisy MR image are biased estimations. To avoid a
signal-dependent bias, the proposed algorithm is applied to the squared modulus of
the MR image; the constant bias is therefore subtracted from the scaling coefficients
(approximations), and the square root of the denoised image is then calculated.

K. Bartusek et al. [19] have focused on techniques of improving the quality of
the image obtained by magnetic resonance (MRI) by applying the wavelet multires-
olution analysis. This improvement has been evaluated according to three criteria,
of which the most relevant are the signal-to-noise ratio in decibels (SNRdB) and the
relative contrast of the image.

Image quality is improved by wavelet-based noise reduction. The two evaluation
parameters are defined as follows: The signal-to-noise ratio of an image obtained by
magnetic resonance is defined by

SNRdB = 10 log10

(
I 2

mean

σ 2
N

)
(13.23)

where Imean is the mean of the intensity values of I in a homogenous region of inter-
est (ROI) in the image (signal), and σN is the standard deviation of the ROI without
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Fig. 13.17 MR image of a
phantom for contrast
definition

the signal (assumed to be Gaussian noise). For Nacq acquisitions, the standard devi-
ation of the noise is

σeff = σN√
Nacq

.

The contrast of the image (for an example, see Fig. 13.17) is defined by

CAB = |IA − IB |.
The relative contrast Cref is defined by the contrast with respect to reference

intensity image Iref:

Crel = CAB
Iref

= 2
|IA − IB |
IA + IB (13.24)

where IA and IB are the respective average images (intensities) of zones A and B ,
as shown in Fig. 13.17.

In this method, the real and imaginary parts of the RM image are filtered sepa-
rately and the evaluation of the efficiency of the filtering is performed on the result-
ing complex image. The influence of the chosen mother wavelet (Haar, Daubechies,
biorthogonal, symlets, coiflets, Meyer), as well as the type of filtering adopted (hard
denoising, soft denoising, Wiener-type using wavelet coefficients), is realized in
phantom images and in experimental RM images. The following paragraph summa-
rizes the principal results obtained:

• Format: It is advisable to process both the amplitude and the phase of the image
in order to suppress any bias in the resulting image (whilst conserving a high
contrast). However, the phase is not always available.

• Quality: It is advisable to use a hard thresholding for denoising images with a
high SNR, whilst soft thresholding is preferable for poor quality images.

• Structure: Haar or Daubechies wavelets should be used for images with a simple
structure (for example, the phantom test image), and Meyer or symlet wavelets
should be reserved for images with a more complex structure (e.g., brain images).

• Resolution quality: If maximum preservation of image information is required,
it is advisable to use hard thresholding with a Meyer mother wavelet, or a high-
order Daubechies mother wavelet.

In the case of semi-automatic image improvement, a Wiener filter with optimized
parameter settings should be used.
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Fig. 13.18 Left: original MR
image. Right: Image noised
by Rician noise (σ = 30,
SNR= 5.9 dB)

Fig. 13.19 Left: Image
denoised by a
spatially-adaptive Wiener
filter (SNR= 10.1 dB).
Right: Image denoised by the
algorithm proposed for K = 2
and a window of analysis of
size 3× 3 (SNR= 12.9 dB)

Performances of the proposed method are illustrated on an MR image with ar-
tificially added Rician noise (see Fig. 13.18), and compared to spatially-adaptive
Wiener filtering. Figure 13.19 shows that, qualitatively, denoising using the pro-
posed method clearly surpasses spatially-adaptive Wiener filtering. MR images were
provided by the Gand (Belgium) university hospital. Suppression of noise in these
images facilitates subsequent automatic processing such as segmentation, for exam-
ple.

The optimal level of wavelet decomposition is J = 4. The tuning parameter
value K , which appears optimal, is 3 in echography (see Fig. 13.21) and 2 in MRI
(see Fig. 13.19). An increment in this parameter can smooth the image, and con-
sequently can lead to a loss of information. The spatial activity indicator e(k) is
calculated by locally averaging neighboring coefficients. A 3 × 3 window is inter-
esting in terms of SNR in echography as well as in MRI.

This method, proposed by Aleksandra Pizurica [17] is of low complexity, both
in terms of implementation and execution time, and adapts to unknown noise and to
the local context of the image. The results produced have been demonstrably useful
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Fig. 13.20 Denoising of an
echographic image for K = 2
and for K = 4

Fig. 13.21 Denoising of an
echographic image for K = 3

in noise suppressing in medical echography and in magnetic resonance imaging. In
these applications, the proposed method clearly surpasses spatially-adaptive algo-
rithm, in terms of quantities measures of performance (SNR, for example) as well
as in terms of visual quality of images.

Matlab and CC codes used in denoising are available from: http://telin.ugent.be/
~sanja/.

13.4.2.2 Echography Illustration

Figure 13.20 illustrates an example of gradual speckle-type noise suppression in an
echographic image. This figure depicts the results of processing with a 5×5 window
for various values of tuning parameter K . These results show that the increase in K
produces strong suppression of background noise or texture by raising the intensity
levels of the image. Although, from Fig. 13.21, for K = 3 and a 3 × 3 window of
analysis, denoising seems optimal, the fact remains that only the trained eye of the
medical expert can make a decision as to the quality of the echographic image, based
on the extracted and interpreted information.

http://telin.ugent.be/~sanja/
http://telin.ugent.be/~sanja/
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13.5 Conclusion

In this chapter, denoising of medical images using heuristics based on multiresolu-
tion analysis has been presented, and some practical applications of wavelet domain
denoising in ultrasound and in MRI were revisited.

The presented results demonstrate the usefulness of wavelet denoising for visual
enhancement of images as well as for improving PSNR or SNR. Indeed, wavelet
denoising methods confirmed their interest for noise suppression in ultrasound and
in MRI images.

In the case of echography, the interactive noise reduction scheme, taking into
account prior information as well as local regional statistics, led to a more natural
ultrasound image, in which anatomical features were better kept intact.

In MRI, undecimated discrete wavelet transform as contourlet transform facili-
tates the edge features to be preserved better.

The proposed methods are adapted to medical image denoising since they ac-
count for the preference of the medical expert: a single parameter can be used to
balance the preservation of (expert-dependent) relevant details against the degree of
noise reduction.

These advanced heuristics are of low-complexity, both in their implementation
and execution time. Moreover, they adapt themselves to unknown noise distributions
and to the local spatial image context.

References

1. Grossman, P., Morlet, J.: Decomposition of Hardy functions into square integrable wavelets
of constant shape. SIAM J. Math. Anal. 15, 723–736 (1984)

2. Mallat, S.: Multiresolution approximations and wavelet orthogonal bases of L2(R). Trans. Am.
Math. Soc. 315, 69–87 (1989)

3. Mallat, S.: A Wavelet Tour of Signal Processing: The Sparse Way, 3rd edn. Academic Press,
New York (2009)

4. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl.
Math. 41, 909–996 (1988)

5. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)
6. Burt, P., Adelson, E.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun.

31, 482–540 (1983)
7. Esteban, D., Galland, C.: Application of quadrature mirror filters to splitband voice coding

schemes. In: IEEE International Conference of Acoustics, Signal and Speech Processing,
Hartford, USA, pp. 191–195 (1977)

8. Unser, M.: Wavelet demystified. Ecole Multiresolution pour l’image, Lyon (2007)
9. Meyer, Y.: Ondelettes et Operateurs. Hermann, Paris (1990)

10. Ouahabi, A.: Introduction to multiresolution analysis. In: Ouahabi, A. (ed.) Signal and Image
Multiresolution Analysis, pp. 1–133. Iste-Wiley, London (2012)

11. Coifman, R., Meyer, Y., Wickerhauser, V.: Wavelet analysis and signal processing. In: Ruskai,
B. et al. (eds.) Wavelets and Their Applications, pp. 153–178. Jones and Barlett, Boston
(1992)

12. Do, M.N., Vitterli, M.: The contourlet transform an efficient directional multiresolution image
representation. IEEE Trans. Image Process. 14, 2091–2106 (2005)



13 Image Denoising Using Wavelets: Application in Medical Imaging 313

13. Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81,
425–455 (1994)

14. Chesneau, C., Fadili, M.J., Starck, J.L.: Stein block thresholding for image denoising. Appl.
Comput. Harmon. Anal. 28, 67–88 (2009)

15. Dupe, F.X., Fadili, M.J., Starck, J.L.: A proximal iteration for deconvolving Poisson noisy
images using sparse representations. IEEE Trans. Image Process. 18, 310–321 (2009)

16. Atto, A.M., Pastor, D., Mercier, G.: Smooth sigmoid wavelet shrinkage for non-parametric
estimation. In: IEEE International Conference on Acoustics, Speech, and Signal Processing,
Las Vegas (2008)

17. Pizurica, A., Philips, W.: Estimating the probability of the presence of a signal of interest
in multiresolution single- and multiband image denoising. IEEE Trans. Image Process. 15,
654–665 (2006)

18. Goossens, B., Pizurica, A., Philips, W.: Removal of correlated noise by modeling the signal of
interest in the wavelet domain. IEEE Trans. Image Process. 18, 1153–1165 (2009)

19. Bartusek, K., Prinosil, J., Smekal, Z.: Wavelet-based de-noising techniques in MRI. Comput.
Methods Programs Biomed. 104, 480–488 (2011)



Chapter 14
Signal Separation with A Priori Knowledge
Using Sparse Representation

Yu Guo and Su Ruan

Abstract This chapter presents a sparse representation method for single-channel
signal separation with a priori knowledge. In this method, it is assumed that different
source signals can be represented with different subsets of a dictionary constructed
based on some a priori knowledge about these sources. Then, by estimating the
sparse representation of the observed signal over this dictionary, we can finally re-
cover the source signals. The two keys of this method are dictionary constructions
and pursuit algorithms for finding sparse representations. An overview of commonly
used schemes or algorithms for the two keys is given. In our work, this method is
used to separate MRS data in order to achieve accurate MRS quantitation. Simula-
tion results show the good performance of this method in separating the overlapping
resonances and baseline. Quantitations of in vivo 1H MRS data of human brain tis-
sues and prostate tissues demonstrate the effectiveness of this method.

14.1 Introduction

Signal separation, which consists of separating a set of signals from mixed signals,
remains one of the most challenging and compelling problems in the domain of
signal processing. In the literature, a lot of methods are proposed to solve this signal
processing problem, such as all kinds of filter-based methods [13, 17], independent
component analysis (ICA) [15, 19], empirical mode decomposition (EMD) [2, 9],
sparsity-based methods [5, 21]. However, as all these methods are developed in
some specific contexts and with certain constraints, none of them can be used to
solve all signal separation problems.
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We focus here on the single-channel signal separation problem in which a single
observed signal is available and it is composed by a linear combination of sev-
eral source signals and a noise signal. For decomposing the observed signal into its
subcomponents, two kinds of methods are proposed in the literature. In one kind of
methods, these subcomponents can be modeled as some mathematical functions and
then the signal separation problem can be converted to a parameter estimation prob-
lem. Some linear or nonlinear parameter estimation algorithms can be used to esti-
mate these subcomponents. In the area of magnetic resonance spectroscopy (MRS)
data analysis, this kind of methods is commonly used to divide an observed spectrum
into several resonances associated respectively to different metabolites [10, 23]. In
the other kind of methods, it is assumed that source signals are disjoint in the time
domain, frequency domain or time–frequency domain, and then source separation
can be achieved in one specified domain. For example, a frequency domain filtering
method can separate sources which are in different frequency bands. However, the
assumption that source signals are disjoint in certain domains is rather restrictive.
The sources are usually non-disjoint in all these domains and even time–frequency
filtering methods cannot separate them.

Recently, some researchers propose sparse representation-based methods which
relax the disjoint condition by allowing the sources to be non-disjoint in the time–
frequency domain, such as the methods proposed in [4–6, 12, 21]. In these methods,
it is assumed that the sources can be sparsely represented over different dictionaries.
Then they are finally recovered by estimating the sparse representation of the ob-
served signal over these dictionaries. The construction of proper dictionaries, which
is one of the keys for this kind of methods, is usually based on some a priori knowl-
edge about the characters of source signals. For example, the method of morpho-
logical component analysis proposed in [21] separates textures from the piecewise
smooth components by estimating the sparse representations of mixed images with
respect to a wavelet dictionary for cartoon source images and Gabor dictionary for
textures.

In this chapter, we introduce in detail how to achieve a single-channel signal sep-
aration based on a priori knowledge and using sparse representations. The chapter
is organized as follows. We first introduce the basic scheme of this kind of signal
separation methods. The two key steps are then presented: dictionary constructions
and pursuit algorithms employed to find sparse representations. Finally, applications
to separate MRS data are presented.

14.2 Signal Separation Using Sparse Representation

The research of sparse representation has attracted more and more interest in signal
processing domain in recent years. It is widely used for denoising [4], signal sepa-
ration [5, 21], direction-of-arrival estimation (DOA) [11], and so on. A basic signal
representation model can be described as

y=Dw (14.1)
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where y is an N × 1 signal vector, which can be represented as a linear combi-
nation of the columns (often called basis vectors or atoms) of a dictionary matrix
D= [d1,d2, . . . ,dM ], w is the representation coefficient vector. When w has only
a small number of nonzero elements, this representation is called a sparse represen-
tation. Considering also that the signal vector y is the sum of K source vectors si
(i = 1,2 . . . ,K), one has

y=
K∑

i=1

si . (14.2)

To recover si (i = 1,2 . . . ,K) from y, methods using sparse representations
assume that these sources can be sparsely represented by different dictionaries
D= [d1,d2, . . . ,dM ] which can be considered as the subsets of D. Then, the sparse
representation w of y over D is estimated and si is finally approximated by wiDi ,
where wi is composed of the part of representation coefficients corresponding to si .

The two keys of this kind of methods are the construction of proper dictionaries
and the estimation of sparse representations over the designed dictionaries. Gen-
erally, dictionaries are designed according to the characters of source signals to
be separated and are overcomplete, meaning that the number of atoms in a con-
structed dictionary is much bigger than the number of sample points of signal vec-
tors (M > N ). As a result, Eq. (14.1) is underdetermined and has infinitely many
solutions. Theoretically, the sparsest representation which has the fewest nonzero
elements is the solution of

min
w

‖w‖0 subject to y=Dw, (14.3)

where ‖ · ‖0 is the l0-norm, to count the nonzero entries of a vector. The exact deter-
mination of the sparsest representation proves to be an NP-hard problem [7] which
means that the time required to solve the problem using any currently known algo-
rithm increases very quickly as the size of the problem grows. Thus, approximate
solutions are considered instead. In the two following sections, we will describe in
detail dictionary construction approaches and some pursuit algorithms commonly
used for estimating sparse representations.

14.2.1 Dictionary Construction

Dictionaries can be constructed by either selecting one from a prespecified set of
linear transforms or adapting the dictionary to a set of training signals.

Choosing a prespecified transform matrix is usually simpler and in many cases
it also leads to simple and fast algorithms for the evaluation of the sparse repre-
sentation. Short-time discrete Fourier transform (DFT), short-time discrete cosine
transform (DCT), and discrete wavelet transform are three kinds of commonly used
prespecified dictionary matrixes.
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The decomposition into dictionaries associated to short-time DFT and DCT is
conducive to the harmonic analysis of periodic signals. An overcomplete Fourier
or cosine dictionary can be constructed by making a finer sampling of frequencies.
Compared with DFT dictionaries, DCT dictionaries give decompositions in the real
space and have the advantage of adapting perfectly to the algorithms developed in
the context of sparse representation. The pure frequency analysis has some limita-
tions. Although it allows detecting the dominant frequencies of a signal, it does not
take into account its temporal characteristics. So DFT and DCT dictionaries are not
suitable for representing a nonstationary or temporally discontinuous signal.

Time–frequency analysis of a signal is an interesting approach when the frequen-
cies are varying. The transforms used for time–frequency analysis, such as wavelet
transforms, can model a nonstationary phenomenon well over a very short duration.
Therefore, dictionaries associated to time–frequency transforms are commonly con-
structed to represent nonstationary signals. Gabor dictionary is, for example, a kind
of time–frequency dictionary and its atoms are created by sampling the following
Gabor basis function: as,τ,f (t) = 1

s
w( t−τ

s
)e2iπf (t−τ), which can be described as a

window function w modulated by an oscillating frequency. τ represents the tem-
poral location of the window w, and s defines its width in the frequency domain.
There is no constraint for the choice of the window function. In general, we choose
the window functions so that they satisfy certain properties; one example is Ham-
ming window.

Unlike the prespecified dictionaries, adaptive dictionaries are constructed from a
set of given signals and based on learning methods, such as the dictionaries studied
in [1]. The advantage of these dictionaries is that they have the adaptability to repre-
sent any signal. However, it needs enough data sources for training the desired dic-
tionaries. In addition, the methods for constructing this kind of dictionaries usually
suffer from low computational efficiency. Choosing a dictionary method depends
on the application. It is therefore difficult to say which method is the best. Once the
dictionary is built, let us now present solutions to obtain the sparsest representation
of a given signal.

14.2.2 Pursuit Algorithms

In the past decade or so, several efficient pursuit algorithms have been proposed
to approximate the solution in Eq. (14.1). Greedy algorithms and algorithms based
on convex relaxations are two kinds of pursuit algorithms commonly used to find a
sparse representation.

14.2.2.1 Greedy Algorithms

For the problem of sparse representation, dictionaries can be supposed to be redun-
dant, which means signals can be well represented with only a small number of basis
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functions in the dictionaries. Greedy algorithms estimate sparse representations in
two steps. The first step consists of the selection of basis functions with nonzero rep-
resentation coefficients and the second step is to estimate these nonzero coefficients.
However, it is impossible to select all the expected basis functions at the same time.
The greedy algorithms do the selection in an iterative manner.

Let Γ be the set of basis functions corresponding to nonzero representation coef-
ficients. It is initialized as an empty set Γ 0 = {φ}. In the kth iteration, a single basis
function in the complement of Γ k is added into Γ k . In this way, Γ k can be updated
in each iteration. The difference between the algorithms using greedy strategies is
in how they select a new basis function to update Γ k .

(A) Matching pursuit
The matching pursuit (MP) algorithm proposed in [16] sequentially selects the

basis functions by involving the computation of inner products between the sig-
nal and basis functions. In each iteration, matching pursuit calculates a new signal
approximation. The approximation error is then used in the next iteration to deter-
mine which new basis functions are to be selected. Let y be the input signal vector,
D= [d1,d2, . . . ,dM ] be the normalized dictionary matrix, and di be a basis vector
of D. Then, the MP algorithm can be summarized as:

Initialize: ŷ0 = 0, r0 = y,Γ 0 = {φ},ω0 = [], k = 1. If ‖rk‖2 ≥ ξ , repeat
– compute αi = 〈rk−1,di〉,
– find imax = argi maxαi ,
– update:
1. Γ k = [Γ k,dimax ];
2. ωk = [ωk−1, αimax ]T;
3. ŷk = ŷk−1 + αimax dimax ;
4. rk = rk−1 − αimax dimax ;
5. k = k+ 1.

The proof of convergence of the MP algorithm relies essentially on the fact that
〈rk,dimax〉 = 0. For the MP algorithm, there is no need to compute any inverse ma-
trix, so it is very simple to be implemented. However, it has also the shortcoming
that although asymptotic convergence is guaranteed, the resulting approximation
after any finite number of iterations will in general be suboptimal and the approxi-
mation error may still be quite large, especially for a nonorthogonal dictionary.

(B) Orthogonal least squares
Another commonly used greedy algorithm is the orthogonal least squares (OLS)

algorithm [3]. In the implementation of OLS, it selects a new basis function that will
lead to the minimum residual error after orthogonalization. The selection procedure
of OLS can be written as:

Initialize: r0 = y,Γ 0 = [], k = 0. If ‖rk‖2 ≥ ξ, repeat
– find imax = argi min‖Γ ′

i (Γ
′
i )

†y− y‖2 where Γ ′
i = Γ k−1 ∪ {di} for all di /∈

Γ k−1,
– update
1. Γ k = [Γ k−1,dimax];



320 Y. Guo and S. Ruan

2. wk = (Γ k)†y;
3. rk = y− Γ kwk ;
4. k = k+ 1.

These greedy algorithms (MP and OLS) are proposed to build up iteratively a
signal representation by selecting the atom that maximally improves the represen-
tation at each iteration. They are easily implemented, converge quickly, and have
good approximation properties. However, there is no guarantee that they compute
sparse representations. Only under some conditions, they can be used to compute
sparse (or nearly sparse) representations [22]. A drawback of these algorithms ap-
plied to sparse representation is their greediness. It is possible to construct signal
representation problems where, because of the greediness, an atom that is not part
of the optimal sparse representation is selected; as a result, many of the subsequent
atoms selected simply compensate for the poor initial selection [14]. This shortcom-
ing motivated the development of basis pursuit algorithm, which succeeds on these
problems.

14.2.2.2 Algorithms Based on Norm Minimization

As searching for the minimum l0-norm is an intractable problem, the researchers
consider using methods based on other norm minimizations to find approximate
solutions to Eq. (14.3). The l1-norm minimization and iteratively reweighted norm
minimization are two commonly used alternatives to the l0-norm minimization.

(A) Basis pursuit
The principle of basis pursuit (BP) proposed in [4] is to find signal representa-

tions whose coefficients have minimal l1-norm. The resulting representations are
sparse in the l0-norm sense under certain conditions [8]. Formally, BP solves the
following problem

min
w

‖w‖1 subject to y=Dw. (14.4)

The basis pursuit problem of Eq. (14.4) can be equivalently reformulated as a
linear program (LP) which is the problem of finding a vector q that minimizes a
linear function fTq subject to linear constraints such that one or more of the fol-
lowing hold: Aq < b, Aeq.q = beq, l ≤ q ≤ u. A tremendous amount of work has
been done on the solution of linear programs. For solving a BP optimization prob-
lem, the algorithm from the LP literature can be considered as a candidate. In [4],
the BP-simplex and BP-interior, which are respectively based on the simplex and
interior-point algorithms, were described to solve a BP optimization problem.

In [4], the BP is also adapted to the case of noisy data. Take data of the form

x= y+ e (14.5)

into consideration, where x is the observed signal vector, y is the clean signal vector,
and e is a Gaussian noise. For finding the sparse representation of the clean signal
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y, the BP principle of Eq. (14.4) cannot be directly used. The alternative principle
Basis Pursuit Denoising (BPDN) is proposed. It refers to a solution of

min
w

1

2
‖x−Dw‖2

2 + λ‖w‖1. (14.6)

The minimization is composed of two parts: the residual and the l1-norm of the
representation vector. The parameter λ decides which part plays a more important
role in the minimization. The choice of λ controls the trade-off between the quality
of fitting and the degree of sparsity. A large value of λ leads to sparser solutions, and
small value leads to a better fit. The BPDN of Eq. (14.6) is equivalent to a quadratic
programming problem. Thus, the algorithms for a quadratic programming problem
can also be used to solve the BPDN problem.

(B) FOCUSS (FOCal Undetermined System Solver)
The FOCUSS algorithm proposed in [11] relies on the principle of iteratively

reweighted least squares minimization (IRLS). The diversity measure E(p)(w) de-
fined in Eq. (14.7) is used to replace the l0-norm and ensure the sparsity of a solu-
tion.

E(p)(w)=
M∑

i=1

sgn(p)
∣∣w(i)

∣∣p. (14.7)

The basic FOCUSS algorithm produces a sparse solution

wk+1 =Wk+1(DWk+1)
†y, (14.8)

where Wk+1 = diag(|wk(1)|1−(p/2), . . . , |wk(M)|1−(p/2)) is the weighting matrix.
To deal with noise in the measurements, a Bayesian framework is used in [18]. w is
estimated by using a maximum a posteriori (MAP) estimator defined as follows:

w= arg min
w
J (w) where J (w)= [‖Dw− x‖2 + γE(p)(w)

]
. (14.9)

The parameter γ controls the trade-off between the quality of fitting x and the degree
of sparsity. A large value of γ leads to sparser solutions, and a small value leads to
a better fit. The iterative algorithm derived to find the solution to Eq. (14.8) is as
follows:

wk+1 =Wk+1DT
k+1

(
Dk+1DT

k+1 + λI
)−1x (14.10)

where Dk+1 = DWk+1. The parameter λ is proportional to γ and should increase
with the level of noise. The details about the choice of λ can be found in [18].

14.3 MRS Spectra Separation with A Priori Knowledge Using
Sparse Representation

In the domain of in vivo MRS study, an observed MRS spectrum is usually the com-
bination of several resonances corresponding respectively to different metabolites,
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Fig. 14.1 Observed 1H MRS spectra (TE = 35 ms) of normal human brain tissue (a) which is
composed of several resonances associated to different metabolites of interest, a baseline compo-
nent and a noise (b)

a baseline and a noise, as shown in Fig. 14.1. It is necessary to recover these res-
onances for accurately quantitating the corresponding metabolites. In our previous
work, we have proposed a method using sparse representation and wavelet filter
for separating different components in observed MRS spectra. Here, we introduce
this method for specifying signal separation with a priori knowledge using sparse
representation.

14.3.1 Signal Models

Generally, an observed MRS spectrum x can be modeled as

x= S+B+ e=
K∑

k=1

sk +B+ e, (14.11)

where S represents the mixed spectrum of interest which is the linear combination
of several resonances sk (k = 1, . . . ,K), B a baseline contribution, e a Gaussian
noise. Each resonance can be modeled as a lineshape. A Lorentzian lineshape in Eq.
(14.12), or a Gaussian lineshape in Eq. (14.13), or a combination of Lorentzian and
Gaussian lineshapes is usually used:

Lk(f )= ak

1+ [(f − fk)/dk]2
, (14.12)
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Gk(f )= ak exp

[
−
(
f − fk
dk

)2]
, (14.13)

where f is the frequency of each data point, ak is the amplitude, dk is the linewidth,
and fk is the peak frequency of the resonance sk . With the above signal model, each
resonance is characterized by its linear parameters ak and its nonlinear parameters
fk and dk .

For recovering the resonances of interest in an observed MRS spectrum, the
method using sparse representation [12] firstly constructs a dictionary, which is
composed of several subdictionaries. Each subdictionary can only represent sparsely
one of these resonances of interest. Then, a pursuit algorithm is used to estimate
the sparse representation of the observed spectrum over the constructed dictionary,
based on which the representation coefficients of each resonance over the corre-
sponding subdictionary can be computed.

14.3.2 Dictionary Construction Based on the A Priori Knowledge

The basis of signal separation methods using sparse representation is that source
signals can be sparsely represented by different dictionaries. Due to the fact that
the form of each resonance can be uniquely characterized by its lineshape model
and nonlinear parameters, we construct a dictionary which is composed of a set of
normalized Gaussian and Lorentzian functions, as shown in Eq. (14.12) and Eq.
(14.13). The a priori knowledge about peak frequencies and the range of possible
linewidths of each resonance is used to fix parameters of these basis functions. In
this way, the constructed dictionary will contain as few basis functions as possible
while still representing the resonances of interest very well.

For each basis function in the dictionary, its central frequency is set as the known
peak frequency of a certain resonance fk (k = 1, . . . ,K). For the basis functions
with the same central frequency, their linewidths dk change in a given range with
a certain sampling interval. According to central frequencies, the dictionary is di-
vided into K groups {D1,D2, . . . ,Dk, . . . ,DK }, where K is the number of possible
resonances in a mixed MRS spectrum. The basis functions {dk1, . . . ,dkj , . . . ,dkL}
in the group Dk have the same central frequency fk and different linewidths denoted
as dkj = dk1 + (j − 1)Δdk (j = 1, . . . ,L), where L is the number of basis functions
in this group, [dk1, dkL] is the range of possible linewidths of the resonance sk and
Δdk is the sampling interval.

Different groups can have different numbers of basis functions. Here for conve-
nience, we assume the same number of basis functions in different groups. When
the range of the possible linewidths of the resonance sk is determined, the choice
of Δdk will decide the number of basis functions L in the group Dk . The relatively
small value of Δdk will lead to more accurate representations of resonances, but
stronger correlations between basis functions, which will make it difficult to accu-
rately estimate sparse representation in the next step. For the choice of the sample
step Δdk , there has to be a compromise between robustness and precision.
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Fig. 14.2 Illustration of dictionary construction: (a) a simulated MRS spectrum with two peaks
(simulated with Gaussian functions); (b) normalized Gaussian basis functions in the corresponding
dictionary (the black lines represent the best approximations of the two spectral peaks in (a))

Figure 14.2 shows a simulated MRS spectrum with three spectrum peaks and the
corresponding basis functions in a dictionary to represent the spectrum. The black
lines in Fig. 14.2(b) correspond to the basis functions which can best approximate
the two peaks in Fig. 14.2(a). The objective of our method is to find the two basis
functions.

The constructed dictionary is denoted as a matrix with M basis vectors
[d1,d2, . . . ,di , . . . ,dM ], where M = K × L. If the sparse representation vector
of the mixed spectrum S is denoted as w, then

S=Dw=
M∑

i=1

diwi =
K∑

k=1

Dkwk, (14.14)

where w = [w1
T,w2

T, . . . ,wkT, . . .wKT]T. Theoretically, only the basis functions
which best approximate the resonances of interest correspond to nonzero repre-
sentation coefficients. In the case, where different resonances have different peak
frequencies, the basis vectors in group Dk can only represent the resonance sk .
Therefore, sk = Dkwk . Let w∧ ([w1

∧T
,w2

∧T
, . . . ,wk∧T

, . . . ,wK∧T]T) denote the
estimated sparse representation of a mixed spectrum, the resonance sk can then be
estimated as sk∧ =Dkwk∧.

However, because of the presence of baseline component in an observed spec-
trum, the mixed spectrum S is unavailable. For dealing with this problem, a strategy
using a wavelet filter is exploited. In the frequency domain, baselines are commonly
assumed to be smooth and broad compared to the resonance signals. Therefore,
a wavelet filter is used to remove the smooth components of an observed spec-
trum. Because of the overlapping of the baseline and the resonances of interest, the
removed components contain not only the baseline, but also a portion of the use-
ful signal. The signal remaining after the filtering consists of only a component of
mixed resonances of interest which does not overlap with the baseline. Our idea is
to carry out the estimation of sparse representation on the remaining signal to finally
reconstruct the resonances of interest in their entirety.



14 Signal Separation with A Priori Knowledge Using Sparse Representation 325

A wavelet filter is denoted as g(•). xh = g(x) is the result of filtering an observed
spectrum x with g(•). xl = x− xh is the smooth component removed by the filter.
Because of the overlapping of B and sk (k = 1, . . . ,K), when the baseline B is
eliminated completely by the wavelet filter, the smooth and broad components of
metabolite spectra will also be lost at the same time. This can be denoted as: xh ≈ Sh
and xl ≈ B + Sl , where Sh = g(S) and Sl = S − Sh. To represent Sh, all the basis
vectors {d1,d2, . . . ,dM} in the dictionary D analyzed above are also processed by
the same wavelet filter. A new dictionary Dh using the remaining components g(di )
(i = 1, . . . ,M) is then constructed. The signal xh remaining after filtering can be
written as:

xh = Sh + ξB =Dhw+ ξB ≈Dhw, (14.15)

where ξB is the remaining component of the baseline after wavelet filtering, which
should be as small as possible. Finally, the representation coefficient vector w of
mixed resonances S with respect to the dictionary matrix D in Eq. (14.14) can be
estimated by computing the sparsest solution of Eq. (14.15).

14.3.3 Resonance Estimation with FOCUSS Algorithm

For estimating the sparse representation in Eq. (14.15), an algorithm based on FO-
CUSS algorithm was developed with the consideration of the following particulari-
ties in this application. Firstly, basis functions in the same group have the same cen-
tral frequency, so strong correlations exist between them. Pursuit algorithms such as
greedy pursuit and basis pursuit, which have severe restriction on the correlations
between basis functions, perform poorly here. Secondly, the expected representation
coefficients are nonnegative, and the non-negativity constraint can be added.

With the non-negativity constraint, the optimization function of regularized FO-
CUSS algorithm can be modified as

w= arg min
w
J (w), where J (w)= [‖Dhw−xh‖2 + γE(p)(w)

]
and ∀i :wi ≥ 0.

(14.16)
By reference to the iterative form of regularized FOCUSS algorithm, the iterative
form of the optimization in (14.16) is then developed as follows:

(a) wk+1 =Wk+1Dk+1
T(Dk+1Dk+1

T + λI)
−1

xh;

(b) wk+1(i)=
{

0 if wk+1(i) < 0,
wk+1(i) if wk+1(i)≥ 0,

where Wk+1 = diag(|wk(1)|1−(p/2), . . . , |wk(M)|1−(p/2)) and Dk+1 =DhWk+1. At
each iteration step, the negative values of the updated solution wk+1 are set to zero
to ensure the non-negativity of w. Actually, the non-negativity constraint also in-
creases the sparsity of a solution to a certain degree. The regularization parameter
λ is the function of the level of noise. In [24], three different criteria for choosing
λ are investigated. They are (i) quality of fit; (ii) a sparsity criterion; (iii) L-curve.
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Fig. 14.3 Simulation of 1H human brain MRS spectra: (a) simulated resonances (solid lines) and
simulated baseline (dashed line); (b) simulated observed spectrum with SNR = 30 dB and SBR =
10 dB

Here, for the consideration of computational efficiency, λ is set as Cε2, where ε
is the estimated noise power and C is a constant chosen by a thorough analysis of
simulated data.

14.3.4 Experiments and Results

In this section, this method is firstly used to process some simulated 1H human brain
MRS data and then its performance is compared with a commonly used nonlinear
parameter estimation method. Finally, some processing results of real clinical MRS
data are presented to illustrate the good performance of this method.

14.3.4.1 Simulated Experiments

(A) Simulated data
Each simulated 1H human brain MRS spectrum used here has 512 data points and

consists of 16 resonances, a baseline, and a Gaussian noise as shown in Fig. 14.3.
The resonances are simulated as Gaussian functions, whose parameters are sum-
marized in Table 14.1. The baseline is obtained from a similar baseline of a true
1H human brain MRS spectrum. Spectra are with different signal-to-noise ratios
(SNR = 25, 30, 35, and 40 dB) and signal-to-baseline ratios (SBR = 5, 10, 15, and
20 dB). Here, SNR is defined as the ratio of the highest amplitude of these simulated
resonances to the noise standard deviation, and SBR is the power ratio of a mixed
spectrum of interest to the simulated baseline. For a given baseline and noise con-
dition, a set of 100 spectra is generated in order to give reliable estimation results
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Table 14.1 Parameters of the
simulated 1H MRS spectra Metabolite kth fk (ppm) dk (ppm) ak

Cr 1 3.91 0.03 7.00

Glu/Gln1 2 3.77 0.03 4.00

Glu/Gln2 3 3.71 0.04 3.00

mI 4 3.56 0.03 6.00

Tau 5 3.42 0.06 1.00

Cho 6 3.22 0.03 8.00

Cr/PCr 7 3.03 0.03 10.00

GABA1 8 3.01 0.03 1.00

GABA2 9 2.31 0.03 2.00

GABA3 10 1.91 0.03 1.00

Glu/Gln3 11 2.45 0.05 2.00

Glu/Gln4 12 2.35 0.05 3.00

Glu/Gln5 13 2.14 0.04 3.00

NAA 14 2.02 0.03 15.00

Lac1 15 1.33 0.03 2.00

Lac2 16 1.26 0.03 2.00

and to check the robustness of different methods. Figure 14.3(b) shows a simulated
observed spectrum with SNR = 30 dB and SBR = 10 dB.

In simulation experiments, the central frequencies of these resonances (fk (k =
1, . . . ,16) listed in Table 14.1) and the range of their linewidths (0.01 ≤ d ≤ 0.10)
are exploited as a priori knowledge to construct a dictionary. Consequently, the dic-
tionary is composed of 320 basis functions and all 20 basis functions have the same
central frequency as one of the simulated resonances and different linewidths taken
from the range 0.01≤ d ≤ 0.10 (ppm) with a sample step Δd = 0.005 (ppm).

The wavelet filter used to remove baselines performs a 5-level wavelet decompo-
sition (Coiflet wavelet COIF5) of the observed MRS spectra. The detail coefficients
of wavelet decompositions are retained to construct xh. The same wavelet decom-
position and reconstruction of each basis vector in D is computed to construct a
new dictionary Dh. In simulation experiments, the regularization parameter λ of the
proposed pursuit algorithm is set as Cε2 and C = 0.4.

(B) Results on simulated data
We analyzed the quantitation performance of the proposed method under dif-

ferent noise and baseline conditions. The RRMSEs (Relative Root Mean Square Er-
rors) of estimated peak amplitudes were calculated. RRMSE is defined as the ratio of
RMSE (Root Mean Square Error) of estimated results to the real values. Figure 14.4
shows the results under a given baseline condition (SBR = 10 dB) and different
noise conditions (SNR = 20, 25, 30, and 35 dB). It can be seen that when the level
of noise increases, the estimation results deteriorate as with most other MRS quan-
titation methods and the noise has more important influence on the quantitation of
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Fig. 14.4 Statistic quantitation results for the simulated spectra (SBR = 10 dB and SNR = 25,
30, 35, and 40 dB) with the proposed method

Fig. 14.5 Statistic quantitation results for the simulated spectra (SNR = 30 dB and SBR = 5, 10,
15, and 20 dB) with the proposed method

small peaks than on that of large peaks. Figure 14.5 shows the results under a given
noise condition (SNR = 30 dB) and different baseline conditions (SBR = 5, 10, 15,
and 20 dB). Because most of baseline components have been filtered by the wavelet
filter and the few residual baseline components limit the influence of the amplitude
change of baselines on the final estimation accuracy, the estimation results of the
proposed method change little with the increase in baseline amplitude.

The proposed method was also compared with another frequency-domain MRS
quantitation method proposed in [10] (called nonlinear method here). This method
uses Levenberg–Marquardt algorithm to estimate the nonlinear model parameters
of metabolite spectra and a wavelet filter to remove the baseline component in an
iterative subtraction manner. The quantitation results of the two methods in 100 sim-
ulation experiments (SNR = 30 dB and SBR = 10 dB) are shown in Fig. 14.6. As
observed in Fig. 14.6, the proposed method has better quantitation accuracy com-
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Fig. 14.6 Statistic quantitation results for the simulated spectra (SNR = 30 dB and SBR = 10 dB)
with two methods: the proposed method (FOCUSS) and the nonlinear method (Nonlinear)

pared with the nonlinear method. For the metabolites with weak MRS peaks, such as
the metabolites Tau (k = 5) and GABA (k = 10), the proposed method can provide
much better quantitations than the nonlinear method in [10].

14.3.4.2 Quantitation of Human Brain 1H MRS Data

This method was applied to quantitate in vivo brain 1H MRS data of patients with
brain lesions. MRS spectra were recorded for these patients at 1.5 T with PRESS se-
quence and with an echo-time of 35 ms in two opposite regions in their brains. The
two regions chosen by the doctor correspond to one region with tumor (zone 1) and
one presumed normal brain region (zone 2) in the contra lateral hemisphere, respec-
tively. Figure 14.7 shows two observed spectra of a patient recorded at the same
time from zone 1 and zone 2, respectively, as well as the corresponding spectral
separation results. As shown in Fig. 14.7, the resonances of interest and the baseline
in an observed spectrum overlap seriously with each other. It is difficult to directly
achieve the accurate quantitation of the resonances of interest (computing their peak
amplitudes or areas), which can be used to measure the chemical compositions of
human tissues and further assist the diagnosis and treatment of diseases. Thus, the
procedure of separating the overlapping components in observed MRS is important
for the analysis of clinical MRS data.

14.3.4.3 Quantitation of Prostate 1H MRS Data

This method was also applied for the quantitation of in vivo prostate 1H MRS data.
Three-dimensional MR spectroscopic imaging data (3D-MRSI) were acquired at
3 T with PRESS sequence and with an echo-time of 140 ms. Figure 14.8 shows two
prostate 1H MRS spectra from a 3D-MRSI exam of a patient with prostate cancer
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Fig. 14.7 Separation results of in vivo human brain 1H MRS spectra: (a) the observed spectrum
from tumor tissue (zone 1) and the estimated baseline (dashed line); (b) the observed spectrum
from normal tissue in the contralateral hemisphere (zone 2) and the estimated baseline (dashed
line); (c) the estimated resonances with the spectrum in (a); (d) the estimated resonances with the
spectrum in (b)

and the corresponding estimation results of the two spectra. The peak area ratios of
(choline+creatine+polyamine) to citrate (Cho+Cr+PA/Cit) were calculated as final
quantitation results. For the spectra in Fig. 14.8(a) and Fig. 14.8(b), the values of
(Cho+Cr+PA/Cit) are respectively 1.18 and 0.39. As a published study [20] has
shown that cancerous prostate tissues associate to relatively high (Cho+Cr+PA/Cit)
value, we can conclude that the spectrum in Fig. 14.8(a) corresponds to cancerous
tissue. The conclusion accords with the final biopsy diagnosis.

14.4 Summary

Single channel signal separation with a priori knowledge using sparse representation
can relax in a certain degree the disjoint condition concerning source signals in
the time–frequency domain. The basis of this kind of methods is decomposing the
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Fig. 14.8 Separation results of in vivo prostate 1H MRS spectra: (a) an observed spectrum from
cancerous tissue (solid line) and the estimated baseline (dashed line); (b) an observed spectrum
from normal tissue (solid line) and the estimated baseline (dashed line); (c) the estimated reso-
nances with the spectrum in (a); (d) the estimated resonances with the spectrum in (b)

observed signal into different dictionaries, which can only sparsely represent one of
the source signals. The a priori knowledge about the features of source signals can
be used to construct these dictionaries. For example, in the application to analyze
MRS data, the mathematical model of source signals (resonances of interest) and
the range of model parameters are exploited for the dictionary construction. As for
the procedure of sparse decomposition, many pursuit algorithms in the literature
are available. However, these algorithms could have different performances on a
specific application. Furthermore, researchers sometimes should develop existing
algorithms according to the specific application for achieving a satisfying separation
result. Additional constraints could lead to a better separation performance.
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Chapter 15
Definition of a Discrete Color Monogenic
Wavelet Transform

Raphael Soulard, Philippe Carré, and Christine Fernandez-Maloigne

Abstract In this chapter, we propose to review different approaches for the in-
troduction of a color monogenic wavelet transform. Monogenic wavelets offer a
geometric representation of grayscale images through an AM/FM model allowing
invariance of coefficients to translations and rotations. The underlying concept of
a local phase includes a fine contour analysis into a coherent unified framework.
Wavelet based color image processing schemes have mostly been made by using a
grayscale tool separately on color channels. In this chapter, we propose to discuss
definitions that consider a color (vector) image right at the beginning of the math-
ematical definition. After a general description of the background of monogenic
concept, we review a first approach built from the grayscale monogenic wavelets to-
gether with a color extension of the monogenic signal based on geometric algebra.
Then, starting from a link with structure tensors, we discuss an alternative nontrivial
extension of the monogenic framework to vector-valued signals. The crucial point is
that our color monogenic wavelet transform is non-marginal and it inherits the co-
herent geometric analysis from the monogenic framework. Finally, we address the
numerical aspect by introducing an innovative scheme that uses a discrete Radon
transform based on discrete geometry.

15.1 Introduction

Since 2001, the analytic signal and its 2D generalizations have brought a great im-
provement to wavelets [8, 22, 27] by a natural embedding of an AM/FM analysis
in the subband coding framework. This yields an efficient representation of the ge-
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ometric structures in grayscale images thanks to a local phase carrying geometric
information complementary to an amplitude envelope having good invariance prop-
erties. So, it codes the signal in a more coherent way than standard wavelets. The
last and seemingly most appropriate proposition [27] of analytic wavelets for image
analysis is based on the monogenic signal [12] defined with geometric algebra.

Despite this substantial research for the 2D case, signal tools are only applicable
to grayscale images and hardly generalized to the vector-valued case. Yet, analyz-
ing color data is essential for a lot of applications. Unfortunately, the processing of
color images is most often based on a marginal scheme that is applying scalar tools
separately on each color channel. Moreover, most of the work done with monogenic
wavelet has been theoretical in nature and discussed in the context of continuous
functions. The important bridge to discrete implementation and use in practical ap-
plications is tenuous at best. This chapter presents the new approaches that aim at
representing color information with a discrete color Monogenic Wavelet transform
based numerical algorithms.

The first section reviews a very recent color extension of Felsberg’s work [10],
and we describe its wavelet counterpart, proposed in a previous work [24] to carry
out a non-marginal representation relying on vector extension of Cauchy–Riemann
equations that are the fundamental basis of the monogenic framework. This defini-
tion needs to improve its underlying phase concept.

Next, we explain our color monogenic wavelet transform that extends the mono-
genic wavelets of [27] to color. This work goes further by proposing a fully inter-
pretable color monogenic analysis based on a link between the Riesz transform and
differential geometry. We may so expect to handle coherent information of multires-
olution color geometric structure; which would make easier any wavelet based color
image processing.

At the end of this chapter, we address the numerical aspect by proposing an
innovative scheme that uses a discrete Radon transform based on discrete geome-
try. Radon domain signal processing and monogenic analysis is studied and perfor-
mance is shown to be equivalent to the usual FFT-based algorithms. The advantage
is that extensions to filterbanks and to higher dimensions are facilitated, thanks to
the perfect invertibility and computational simplicity of the used Radon algorithm.

Notations

2-vector coordinates: x = (x, y), ω= (ω1,ω2) ∈R
2; k ∈ Z

2

Euclidean norm: ‖x‖ =√x2 + y2

Complex imaginary number: j ∈C

Argument of a complex number: arg
Convolution symbol: ∗
Fourier transform: F
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15.2 Analytical Signal and 2D Generalization

This section recalls existing definitions around the analytic signal and the mono-
genic signal. The multiscale aspect will be presented through an overview of ex-
isting analytic wavelets followed by a more detailed description of the monogenic
wavelets by Unser et al. [27].

15.2.1 Analytic Signal (1D)

An analytic signal sA is a multi-component signal associated to a real signal s to be
analyzed. The definition is well known in the 1D case where sA(t)= s(t)+ j(h ∗
s)(t) is the complex signal made of s and its Hilbert transform (with h(t)= 1

πt
).

The polar form of the 1D analytic signal provides an AM/FM representation
of s with |sA| being the amplitude envelope and ϕ = arg (sA) the instantaneous
phase. This classical tool can be found in many signal processing books and is
used in communications, for example. The growing interest in this tool within the
image community is due to an alternative interpretation of amplitude, phase, and
frequency in terms of a local geometric shape. We can interpret the phase in terms
of a signal shape. Such a link between a 2D phase and local geometric structures of
images would be very attractive in image processing. That is why there were several
attempts to generalize it for 2D signals; and among them the monogenic signal [12]
seems the most advanced since it is rotation invariant.

15.2.2 Monogenic Signal (2D)

We here review the key points of the fundamental construction of the monogenic
signal, which will be necessary to understand the color extension. The 2D extension
of the analytic signal has been defined in several ways [6, 14, 15]. We are interested
in the monogenic signal [14] because this is rotation invariant and its generalization
is according to both fundamental definition and signal interpretation. Given a 2D
real (scalar) signal s, the associated monogenic signal sM is 3-vector valued (instead
of complex-valued in the 1D case) and must be taken in spherical coordinates:

sM =
⎡

⎣
s

${Rs}
%{Rs}

⎤

⎦=
⎡

⎣
A cosϕ

A sinϕ cos θ
A sinϕ sin θ

⎤

⎦ (15.1)

where Rs is the complex-valued Riesz transform of s:

{Rs}(x)= p.v.
∫
τ1 + jτ2

2π‖τ‖3
s(x − τ ) dτ

F←→ ω2 − jω1

‖ω‖ ŝ(ω). (15.2)
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Fig. 15.1 Felsberg’s monogenic signal associated to a narrow-band signal s. Orientation θ is
shown modulo π for visual convenience. Phase values of small coefficients have no sense so they
are replaced by black pixels

The monogenic signal is composed of the three following features:

Amplitude: A=√s2 + |Rs|2,
Orientation: θ = arg{Rs} ∈ [−π;π[,
1D Phase: ϕ = arg{s + j |Rs|} ∈ [0;π].

(15.3)

A monogenic signal analysis is illustrated on Fig. 15.1. Felsberg shows a direct link
between the angles θ and ϕ and the geometric local structure of s. The signal is
expressed like an “A-strong” 1D structure with orientation θ . ϕ is analogous to the
1D local phase and indicates if the structure is a line or an edge. A direct drawback
is that intrinsically 2D structures are not handled.

From a signal processing viewpoint, the AM/FM representation provided by an
analytic signal is accordingly well suited for narrow-band signals. That is why it
seems natural to embed it in a multiresolution transform that performs subband
decomposition. We now present the monogenic analysis proposed in [27].

15.2.3 Monogenic Multiresolution

The first proposition of analytic wavelets is for the 1D scalar case with the Dual-
tree Complex Wavelet Transform (CWT) in 1999 [22]. It is a 1D discrete scheme
consisting of two parallel filterbanks which filters are linked by Hilbert transforms.
In fact, the Hilbert transforms are approximate because of discrete constraints. This
method allows near shift-invariance of wavelet coefficients (shift-variance is a fa-
mous problem of classical wavelets).

In 2004, a Quaternion Wavelet Transform (QWT) [3, 8] based on the quaternionic
analytic signal of [6] is proposed for grayscale images. The quaternionic signal is a
2D generalization of the analytic signal that is prior to and maybe less convincing
than the monogenic signal.

Finally, in 2009 a Monogenic Wavelet Transform was proposed in [27]. This
representation—specially defined for 2D signals—is a great theoretic improvement
of the complex and quaternion wavelets.

It provides 3-vector valued monogenic subbands consisting of a rotation-
covariant magnitude and this new 2D phase. The proposition of [27] consists of one
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real-valued “primary” wavelet transform in parallel with an associated complex-
valued wavelet transform. Both transforms are linked by the Riesz transform so
they carry out a multiresolution monogenic analysis. We end up with 3-vector coef-
ficients forming subbands that are monogenic.

15.2.3.1 Primary Transform

The primary transform is real-valued and relies on a dyadic pyramid decomposition
tied to a wavelet frame. Only one 2D wavelet is needed and the dyadic downsam-
pling is done only at the low frequency branch; leading to a redundancy of 4:3. The
scaling function ϕγ is defined in the Fourier domain:

ϕγ
F←→ (4(sin2 ω1

2 + sin2 ω2
2 )− 8

3 sin2 ω1
2 sin2 ω2

2 )
γ
2

‖ω‖γ (15.4)

and the mother wavelet ψ is defined as

ψ(x)= (− )γ2 ϕ2γ (2x) (15.5)

where is the Laplacian operator and ϕγ is a cardinal polyharmonic spline of order
γ and spans the space of those splines with its integer shifts. It also generates—as
a scaling function—a valid multiresolution analysis. This particular construction
is made by an extension of a wavelet basis (non-redundant) related to a critically-
sampled filterbank. In addition, a specific subband regression algorithm is used at
the synthesis side. The construction is fully described in [28].

15.2.3.2 The Monogenic Transform

The second “Riesz part” transform is a complex-valued extension of the primary
one with the Riesz transform:

ψ ′ = −
(

x

2π‖x‖3
∗ψ(x)

)
+ j
(

y

2π‖x‖3
∗ψ(x)

)
. (15.6)

It can be shown that it generates a valid wavelet basis and that it can be extended
to the pyramid described above. The joint consideration of both transforms form
monogenic subbands from which the amplitude and phase can be extracted for an
overall redundancy of 4:1.

In [27], a demonstration of AM/FM analysis is done with fine orientation estima-
tion and gives very good results in terms of coherency and accuracy. Accordingly,
this tool may be rather used for analysis tasks than processing. We propose now to
describe a first generalization for color images.
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15.3 First Extension of Color Monogenic Wavelet

Our first proposition of color Monogenic Wavelet combines a fundamental gener-
alization of the monogenic signal to color with the monogenic wavelets described
above. The challenge is to avoid the classical marginal definition that would be ap-
plying a grayscale monogenic transform on each of the three color channels of a
color image.

15.3.1 The Color Monogenic Signal

Starting from Felsberg’s approach that is originally expressed in the geometric al-
gebra of R

3, the extension proposed in [10] is written in the geometric algebra
of R5. By simply increasing the dimension, we can embed each color channel
along a different axis, and the original equation associated with the monogenic
signal from Felsberg involving a 3D Laplace operator can be generalized in 5D.
Then, the system can be simplified by splitting it into three systems with a 3D
Laplace equation, reducing to an application of Felsberg’s condition to each color
channel. Instead of naively applying the Riesz transform to each color channel,
this fundamental generalization carries out the following color monogenic signal:
sA = (sR, sG, sB, sr1, sr2) where sr1 and sr2 are the Riesz transforms applied to
sR + sG + sB [10]. Now, that the color extension of Felsberg’s monogenic signal is
defined, let us construct the color extension of the monogenic wavelets.

15.3.2 The Color Monogenic Wavelet Transform

We can now define a wavelet transform whose subbands are color monogenic sig-
nals. We can simply use the transforms presented above by applying the primary one
on each color channel and the Riesz part on the sum of the three. The five related
color wavelets forming one color monogenic wavelet ψA are:

ψR =
⎛

⎝
ψ

0
0

⎞

⎠ , ψG =
⎛

⎝
0
ψ

0

⎞

⎠ , ψB =
⎛

⎝
0
0
ψ

⎞

⎠ , (15.7)

ψr1 =

⎛

⎜⎜
⎝

x

2π‖x‖3 ∗ψ
x

2π‖x‖3 ∗ψ
x

2π‖x‖3 ∗ψ

⎞

⎟⎟
⎠ , ψr2 =

⎛

⎜⎜
⎝

y

2π‖x‖3 ∗ψ
y

2π‖x‖3 ∗ψ
y

2π‖x‖3 ∗ψ

⎞

⎟⎟
⎠ , (15.8)

ψA = (ψR,ψG,ψB,ψr1,ψr2). (15.9)
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Fig. 15.2 Color MWT
scheme. Each color channel is
analyzed with the primary
wavelet transform symbolized
by a ψ bloc and the sum
“R+G+B” is analyzed
with the “Riesz part” wavelet
transform (ψr1 and ψr2
blocs)

We then get 5-vector coefficients forming a color monogenic wavelet transform.
The associated decomposition is described by the diagram in Fig. 15.2. This pro-
vides a multiresolution color monogenic analysis made of a 5-vector valued pyramid
transform. The five decompositions of two images are shown in Fig. 15.3 from left
to right. Each one consists of four juxtaposed image-like subbands resulting from a
3-level decomposition.

Note that low intensity corresponds to “no structure”, i.e., where the image has
no geometric information. It is coherent not to display the orientation (low intensity
makes the hue invisible) for these coefficients since this data has no sense in those
cases. These are three primary transforms cR , cG, and cB where white (resp., black)
pixels are large positive (resp., negative) values.

Whereas marginal separable transforms show three arbitrary orientations within
each color channel—which is not easily interpretable—the color monogenic wavelet
transform provides a more compact energy representation of the color image content
regardless of the local orientation. The color information is well separated through
cR , cG, and cB . In each of the three decompositions, it is clear that every orientation

Fig. 15.3 Color MWT of images. The two components of the Riesz part are displayed in the same
graphic with the magnitude of cr1 + jcr2 encoded in the intensity and argument (local orientation)
encoded in the hue
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is equally represented all along the round contours. That is different from a separable
transform that privileges particular directions.

Now look at the “2-in-1” last decomposition forming the Riesz part. It is dis-

played in one color map where the geometric energy
√
c2
r1 + c2

r2 is encoded into
the intensity (with respect to the well known HSV color space) and the orientation
arg (cr1 + jcr2)(π) is encoded in the hue (e.g., red is for {0,π} and cyan is for ±π2 ).
This way of displaying the Riesz part reveals the provided geometric analysis of the
image well.

The Riesz part makes a precise analysis that is local both in space and scale. If
there is a local color geometric structure in the image at a certain scale, the Riesz part
exhibits a high intensity in the corresponding position and subband. This is com-
pleted with an orientation analysis (hue) of the underlying structure. For instance, a
horizontal (resp., vertical) structure in the image will be coded by a cyan (resp., red)
intense point in the corresponding subband. The orientation analysis is strikingly
coherent and accurate. See, for example, that color structures with constant orienta-
tion (second image) exhibit a constant hue in the Riesz part over the whole structure.
This transform is non-marginal because RGB components are considered as well as
the intensity (R +G+ B), which involves two different color spaces. Image pro-
cessing tasks such as denoising need the synthesis part of filterbanks. In the case of
redundant representations, there are often several ways to perfectly reconstruct the
transformed image.

This issue occurs in the scalar case since the pyramids we use have redundancy
of 4:3. The associated reconstruction algorithm is well defined by the authors in [28]
and consists of using spatial redundancy of each subband at the synthesis stage, by
using the so-called subband regression algorithm.

In our case, we have to face another kind of redundancy, that of the monogenic
model. Apart from any wavelet decomposition, monogenic representation (as well
as analytic) is already basically redundant since additional signals are processed
(Riesz part). In our case, the following distinct reconstructions are possible:

• We can reconstruct the whole color image (R,G,B) from the sole primary part
(cR, cG, cB).

• The Riesz part cr1 + jcr2 can be used to reconstruct R+G+B , which is only a
partial reconstruction.

• One can as well combine both reconstructions with a specific application driven
method.

In every case, the reconstruction is perfect. What is unknown is the meaning of the
wavelet domain processing with respect to a chosen reconstruction method.

The main way to improve this work is to focus on a physical interpretation
when designing the key color monogenic concept. Although the generalization is
not strictly marginal, it has a marginal style since it reduces to applying the Riesz
transform on the intensity of the image. We propose now to work on a second nu-
merical definition of color monogenic wavelets, where the physical interpretation is
taken more into account, and the local geometry is studied deeper through a vector
differential geometry point of view.
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15.4 Second Approach for Color Monogenic Signal: A Tensor
Approach

Given the great success of differential approaches in color vision [11, 26], we pro-
pose now to take the advantage of the well established color structure tensor for
a new color extension of monogenic analysis. The theoretical link between Riesz
transform and gradient has already been studied and used in the grayscale case
in [13, 18, 27]. We extend it to color, thanks to the vector structure tensor concept.

15.4.1 Link Between Riesz and Gradient

Here is the recalled classical gradient-based local analysis of grayscale images.
A detailed explanation will be found in [17]. The gradient of an image s is defined
by:

∇s =
[
∂s

∂x

∂s

∂y

]T

= [sx sy]T F←→[jω1ŝ jω2ŝ]T. (15.10)

It points toward the direction of the local maximum variation of s, and its amplitude
is relative to the strength of this variation:

N =
√
s2
x + s2

y (gradient norm), (15.11)

θ+ = arg{sx + jsy} (gradient direction). (15.12)

The edge strength N and orientation θ+ form the well-known basic features
for edge detection. However, the gradient analysis is only efficient for edge-like
structures (see ‘intrinsically 1D’ or ‘simple neighborhoods’), which is tied to the
fact that it is done pointwise.

Let us now consider the neighborhood to define a more relevant oriented local
variation [17], with h being a window function defining the neighborhood and acting
like a smoothing kernel. The measure is squared in order to merge opposite direc-
tions; this provides a quadratic form. Its maximization is known to be equivalent
to finding eigenvalues/eigenvectors of the underlying symmetric positive-definite
matrix:

T (s)=
[
h ∗ s2

x h ∗ sxsy
h ∗ sxsy h ∗ s2

y

]
=
[
T11 T12
T12 T22

]
(15.13)

called the structure tensor. The eigenvalues can be derived analytically:

λ± = 1

2

(
T11 + T22 ±

√
(T22 − T11)2 + 4T 2

12

)
. (15.14)

The eigenvector tied to λ+ is parallel to [cos(θ+) sin(θ+)] with

θ+ = 1

2
arg{T11 − T22 + j2T12}. (15.15)
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As already studied in [18, 27], the Riesz transform is analogous to the gradient.
More precisely, Eqs. (15.2) and (15.10) give

Rs = (−(− )− 1
2 sx
)+ j

(−(− )− 1
2 sy
)
. (15.16)

As a result, R can be viewed either like the smoothed gradient of s or like the gradi-
ent of a smoothed version of s. In [27], a Riesz counterpart of the structure tensor is
derived to improve the Riesz analysis. Based on this fact, the whole structure tensor
formalism can be derived with R replacing ∇ , so that we get the Riesz based tensor
Trz defined as follows:

Trz(s)= h ∗
[${Rs} %{Rs}]T[${Rs} %{Rs}]. (15.17)

The Riesz features are equivalent to the structure tensor features of a smoothed
version of s:

|Rs| ≡N , (15.18)

arg{R} ≡ θ+. (15.19)

Finally, the building block of the monogenic analysis R performs the same efficient
orientation analysis as a gradient. The advantage over the classical gradient is that it
gives access to the local phase and frequency, thanks to the monogenic concept that
also includes the subband component sbp in a unified framework. It is now possible
to extend it to color signals.

15.4.2 Color Riesz Analysis

The color structure tensor is the central tool of color differential approaches. The
idea was first proposed by Di Zenzo in [11], and then further developed in [21].
Given a color image s = (sR, sG, sB), consider its marginal gradients along x and y:

[∇sR,∇sG,∇sB]= [sR
x , s

R
y , s

G
x , s

G
y , s

B
x , s

B
y

]
. (15.20)

The color structure tensorM is defined as follows:

M(s)= T (sR)+ T (sG)+ T (sB)=
[
M11 M12
M12 M22

]
(15.21)

with

M11 = h ∗
((
sR
x

)2 + (sG
x

)2 + (sB
x

)2)
, (15.22)

M12 = h ∗
(
sR
x s

R
y + sG

x s
G
y + sB

x s
B
y

)
, (15.23)

M22 = h ∗
((
sR
y

)2 + (sG
y

)2 + (sB
y

)2)
. (15.24)
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Fig. 15.4 Color Riesz analysis. From left to right: Color image, marginal bandpass filtering output,
marginal Riesz transform (2 components), color Riesz features (norm and direction)

The norm N and direction θ+ of the maximum local variation are again obtained
from the eigenvalues and eigenvectors according to Eqs. (15.14) and (15.15).

We saw above that Riesz features are equivalent to the gradient norm and direc-
tion, so we straightforwardly obtain the following color Riesz features:

N =
√∣∣RsR

∣∣2 + ∣∣RsG
∣∣2 + ∣∣RsB

∣∣2, (15.25)

θ+ = 1

2
arg

{ ∑

C∈{R,G,B}
${RsC}2 −%{RsC}2

+ j
∑

C∈{R,G,B}
2${RsC}%{RsC}

}
. (15.26)

The advantage of defining color Riesz features with differential geometry is the
proper analysis of color discontinuities; as illustrated in Fig. 15.4.

Figure 15.4 shows a bandpass filtering of a color image followed by the color
Riesz analysis. We observe that the color Riesz analysis gives coherent orientations
of all color contours, including isoluminant ones like the border between red and
green disks that would disappear in an intensity-based scheme like this of the first
description.

As for the grayscale approach, we measure the spatial orientation corresponding
to the geometry of image content that is given by θ+ from the Riesz analysis. The
last step is to build the 1D phase for color images. In the grayscale case, the an-
alytic signal consists in combining a signal s with a phase-shifted version of itself
(H s or |Rs|) to extract local amplitude A and phase ϕ. In 2D, orientation is locally
taken into account in the definition of the phase-shift so that |Rs| is analogous to
H s in the direction of maximum variation. With Eq. (15.18) it turns out that this
phase-shifted signal is, in fact, the Riesz gradient norm N which also holds in the
color case with Eq. (15.25). However, s is a 3-vector while N is still scalar. For-

tunately, the Euclidean norm ‖s‖ =
√
(sR)

2 + (sG)
2 + (sB)

2 carries all the needed
information to compute the meaningful amplitude and phase.
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Fig. 15.5 Second version of
color monogenic signal of
image used in Fig. 15.4. Here
again, the color axis and
phase data are not displayed
(black or gray) for
coefficients with low
amplitude

The color monogenic model is defined as follows:

s =
√
‖s‖2 +N 2

︸ ︷︷ ︸
A

cos
(
arg
{‖s‖ + jN

}

︸ ︷︷ ︸
ϕ2

)
u︸︷︷︸

‘axis’

(15.27)

where u= s/‖s‖ indicates a direction in the 3D color space and ϕ2 is the usual 1D
phase. The gradient norm N is obtained with Eq. (15.25). Finally, the amplitude
and phase can be retrieved with the sole Euclidean norm of s. The new color mono-
genic signal is built like a 4-vector whose spherical coordinates are the amplitude,
phase, and color axis:

scolor
M = [sR sG sB N ]T,

Amplitude: A=√‖s‖2 +N 2 ∈ [0;+∞[,
1D Phase: ϕ2 = arg

{‖s‖ + jN
} ∈ [0; π2 [,

Color axis: u= s/‖s‖.
(15.28)

Let us observe Fig. 15.5 illustrating this color monogenic signal. Like previously,
the analysis is done on a subband of the color image obtained with the same filter.
We can see that the amplitude is again coherent with geometrical structures (includ-
ing isoluminant ones) and highlights oriented elements equally regardless of their
orientation—due to Riesz transform isotropy. Its invariance to shift and rotation is
due to the sharing of geometric information with ϕ2 which forms a coherent coding.
This also allows coding a line by a ‘simple line’ in amplitude instead of a ‘double
line’ thanks to the encoding of the kind of discontinuity by ϕ2. Orientation θ+ is
exactly that of Fig. 15.4; u carries some information of the local color direction.

Based on this extension of the monogenic signal, we can derive the corresponding
color extension of the MWT presented previously.

15.4.3 Tensor Based Color Monogenic Wavelet Transform

The extension to the wavelet domain is direct since the above construction relies
on a marginal Riesz transform (non-marginality occurs when combining marginal
outputs into meaningful data). So we can again directly use polyharmonic spline
wavelets of Unser et al. but with a different combination of Cartesian coefficients.
This time components will be combined to carry out color AM/FM analysis.
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Fig. 15.6 The color
monogenic wavelet transform
(γ = 3)

We have first to compute the 6 subband decompositions. The amplitude, phase,
and color axis can be retrieved with Eq. (15.28), and the orientation with Eq. (15.26).
Figure 15.6 illustrates the multiscale color monogenic features obtained from our
color monogenic wavelet transform.

15.4.4 Algorithm Discussion

In this subsection, let us give some practical remarks. The monogenic analysis
is basically defined in a continuous framework. Constraints related to filterbank
design—perfect reconstruction, small redundancy—conflict with desirable proper-
ties of isotropy and rotation invariance. The important bridge to discrete implemen-
tation and use in practical applications is tenuous at best. The choice that is made
by Unser et al. [27] is to provide the ‘minimally-redundant wavelet counterpart of
Felsberg’s monogenic signal’. The presented color monogenic wavelet transform is
by extension in the same spirit. Since filters cannot be exactly isotropic, the analysis
is expected to mildly favor some directions. In addition, the subbands are highly
subsampled (yet not ‘critically’ since the number of coefficients is larger than the
number of pixels), implying that the phase data is varying fast with respect to sam-
pling.

In the last part of this chapter, we believe that such a signal processing tool must
be studied from a discrete viewpoint. This last part presents a new approach that
aims at representing color information with a discrete color Monogenic Wavelet
transform based on discrete Monogenic transform.

We address this issue by introducing a scheme that uses a discrete Radon trans-
form based on discrete geometry. The advantage is that extensions to filterbanks and
to higher dimensions are facilitated, thanks to the perfect invertibility and computa-
tional simplicity of the used Radon algorithm.

The analysis now presented is based on two facts:

• There is a fundamental link between the monogenic framework and the Radon
transform [18];

• ‘True’ discrete counterparts of Radon transforms have already been defined (for
example, in [7]).
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More precisely, the monogenic concept is basically made of a Radon transform
joined with a 1D phase analysis, so we can say that the Radon transform is respon-
sible for isotropy. This crucial point has always been a deep issue in the discrete
world, while at the core of monogenic analysis.

In the past, we have proposed [7] a discrete Radon transform with exact recon-
struction is designed with the help of discrete analytical geometry. This last part
studies the use of this well established discrete representation to perform monogenic
analysis.

We now present the algorithm implementing the discrete Radon transform.

15.5 The Radon Domain for Numerical Monogenic Transform

It is shown in [5] that the Riesz transform is equivalent to an independent Hilbert
transform (1D) on each Radon projection, combined with a sine-like weighting de-
pending on θ :

{Rs}θ (t)= {H sθ }(t)ejθ (15.29)

where H sθ is the Hilbert transform of sθ defined by

{H sθ }(t)=
(
sθ (·) ∗ 1

(π ·)
)
(t). (15.30)

The Hilbert transform is well known and already integrated, for example, in some
analytic wavelet transforms. Performing some monogenic analysis (based on the
Riesz transform) then reduces to a more classical problem in the Radon domain.

The Radon domain represents 2D functions by a set of 1D projections at several
orientations. It forms a fundamental link with 1D and 2D Fourier transforms and so
handles isotropic filtering well.

15.5.1 The Radon Transform

Given a 2D function s(x, y), its projection into the Radon domain along direction θ
is defined by

sθ (t)=
∫

R

s(τ sin θ + t cos θ,−τ cos θ + t sin θ) dτ. (15.31)

The Radon transform can be obtained by applying the 1D inverse Fourier trans-
form to the 2D Fourier transform restricted to radial lines going through the origin
(this is exactly what we are going to do in the discrete Fourier domain with the help
of discrete analytical lines):

ŝ(ω cos θ,ω sin θ)=
∫

R

e−jωtRs(θ, t) dt
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where ŝ is the 2D Fourier transform of s. This is the projection-slice formula that is
used in image reconstruction from projection methods.

The discretization of the Radon transform is difficult to achieve. The majority of
methods proposed in the literature have been devised for computerized tomography
or to approximate the continuous formula. None of them, however, were specifically
designed to be invertible transforms for discrete images and can therefore not be
used for the discrete Riesz transform.

The discrete Radon transform can be computed with one the two following strate-
gies:

• Spatial strategy for digital Radon transform. The Radon transform is defined as
summations of image pixels over a certain set of lines that are defined in a finite
geometry.

• Fourier strategy for digital Radon transform. The projection-slice formula sug-
gests that approximate Radon transforms for digital data can be based on discrete
Fourier transforms (DFT). The Fourier-domain computation of an approximate
digital Radon transform is defined as:

1. Compute the 2D DFT of s.
2. Extract Fourier coefficients along the lines Lθ going through the origin.
3. Compute the 1D inverse DFT on each line Lθ (defined for each value of the

angular parameter θ ).

This approach can be problematic since step 2 is not naturally defined on dis-
crete data.

In this last part, we propose to define a fast and simple reversible digital Riesz
transform. For this, we use the Fourier strategy for the associated digital Radon
transform. Our lines Lθ are defined with the help of the discrete analytical geom-
etry theory in the Fourier domain [1, 20]. This solution allows us to have different
Riesz transforms according to the arithmetical thickness of the discrete lines. This
approach presents a limited wrap-around effect. This representation is redundant,
however, the degree of redundancy can be adapted by our thickness parameter. Our
Radon backprojection is very simple and permits an exact reconstruction.

15.5.2 Discrete Radon

The work in [7] consists in defining a true discrete decomposition by using the dis-
crete geometry. Based on the Fourier slice theorem, discrete lines are defined in
the 2D Fourier domain before performing an inverse 1D Fourier transform to each
extracted line. An arithmetical thickness parameter can be used to control both re-
dundancy and straight line connectivity. In all cases, perfect reconstruction is guar-
anteed, and the algorithm is as simple as it is fast.

The idea behind our associated discrete Radon transform is to represent each di-
rection by a discrete analytical straight line. For this we need a discrete straight line
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Fig. 15.7 (a) Cover of the Fourier domain with the Euclidean line L[p,q]. (b) Redundancy on the
cover of the Fourier lattice by closed naive lines, (c) by supercover lines

that has a central symmetry and that forms a “good” approximation of the corre-
sponding Euclidean straight line (i.e., direction). We chose discrete analytical 2D
lines. It defines not a unique line but a family of lines with a thickness parameter,
called arithmetical thickness. The arithmetical thickness provides a control over the
transform redundancy factor and properties such as the connectivity of the straight
line.

The discrete analytical lines we use for our transform are defined as follows [1]:

Lω[p,q] =
{
(x1, x2) ∈ Z

2
∣∣ |qx1 − px2| ≤ ω

2

}

with [p,q] ∈ Z
2 the direction of the Radon projection (we have θ = arctan( q

p
)) and

ω, a function of (p, q), the arithmetical thickness. It is easy to see that these discrete
analytical lines Lω[p,q] have a central symmetry regardless of the value of ω. The
arithmetical thickness ω is an important parameter that controls, among other things,
the connectivity of the discrete line Lω[p,q] [2]: naive lines with ω = max(|p|, |q|)
where Lω[p,q] is 8-connected and the supercover lines ω= |p| + |q|, where Lω[p,q] is
4-connected, for example.

We use the Fourier domain for the computation of our discrete Radon transform:
Fourier coefficients of ŝ are extracted along the discrete analytical line Lω[p,q] (the

extracted points of the line are ordered in a natural way) and we take the 1D inverse
discrete Fourier transform on each value of the direction [p,q] to obtain the Radon
projection Rωs([p,q], ·).

Figure 15.7 illustrates the cover of the Fourier lattice for two different types of
discrete lines. The gray value of the pixel represents the redundancy in the projection
(number of times a pixel belongs to a discrete line). One isolated line is drawn to
illustrate the shape of the discrete lines depending on its arithmetical thickness.

At last, the set of discrete directions [p,q] for a complete representation has to be
determined. The set of line segments must cover all the square lattice in the Fourier
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domain. For this, we define the directions [p,q] according to pairs of symmetric
points from the boundary of the 2D discrete Fourier spectra.

We now briefly discuss the strategy for inverting our discrete Radon Transform.
Our analytical reconstruction procedure works as follows:

1. Compute the 1D FFT transform for each set Rωs([p,q], ·) to obtain Pω[p,q].
2. Substitute the sampled value of ŝ on the lattice where the points fall on lines
Lω[p,q] with the sampled value of ŝ on the square lattice:

ŝ[p,q]
(
f k1 , f

k
2

)= Pω[p,q](k)

such that |qf k1 − pf k2 | ≤ ω
2 for 0 < k < K + 1 with K + 1 the length of Lω[p,q]

and for all the directions [p,q].
Due to the redundancy, some Fourier coefficients belong to more than one dis-

crete line. In this case, the Fourier value is defined by the mean average:

ŝ(f1, f2)= 1

R

∑
ŝ[pr ,qr ](f1, f2) (15.32)

such that |qrf k1 −prf k2 | ≤ ω
2 . R is the number of times the pixel (f1, f2) belongs to

a discrete line. It depends on the frequency (it is more important at low frequencies)
and the type of discrete lines.

3. Apply the 2D IFFT transform.

The previous procedure allows us to obtain an exact reconstruction if the set of
directions of lines provide a complete cover of the square lattice: analytical Radon
transform followed by backprojection analytical Radon transform is a one-to-one
transform (in this case all the coefficients ŝ[pr ,qr ](f1, f2) in Eq. (15.32) are equal to
the original value of ŝ(f1, f2).

15.5.3 Discrete Radon Based Riesz Transform

We propose now to use this discrete Radon representation to perform monogenic
analysis. Computing of a discrete Radon based monogenic analysis can now be
done as follows:

• Apply 2D bandpass filtering to select some scale (an isotropic bandpass 2D filter-
ing). As we have seen, bandpass filtering is natural in monogenic analysis that is
usually presented either in a scale-space formalism or in a wavelet transform;

• Process the discrete analytical Radon transform of the filtering signal s;
• Process the Hilbert transform of every projection sθ ;
• Multiply every projection by ejθ (by using the computation of θ explained

above);
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Fig. 15.8 Radon-based monogenic signal on a bandpass version of ‘Smiley’ image

• Process the inverse Radon transform on real and imaginary parts separately (we
get sr1 and sr2 );

• Convert s, sr1 , and sr2 to spherical coordinates as in Eq. (15.1).

An example of such a decomposition is given in Fig. 15.8. The result is very
analogous to an FFT-based method. But the whole scheme is fast, thanks to the
simplicity of the chosen Radon algorithm.

15.5.4 Discrete Radon Based Monogenic Wavelet Transform

In order to compute the Monogenic Wavelet transform, the isotropic bandpass 2D
filtering is inserted into a classical discrete 2D Wavelet scheme to select some scale.
The discrete wavelet transform (DWT) stems from the multiresolution analysis and
filterbank theory [19] with two couples of filters: the filters h, h̃ (analysis and recon-
struction lowpass filters) and g, g̃ (analysis and reconstruction highpass filters) that
are quadrature mirror filters.

In order to get an exact restoration, two conditions are required on the conjugate
filters [9]:

H(ω)H̃ ∗(ω)+G(ω)G̃∗(ω)= 1 (15.33)
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which implies a correct data restoration of one scale to the other, and

H(ω+ π/2)H̃ (ω)+G(ω+ π/2)G̃(ω)= 0 (15.34)

which represents the compensation of recovery effects introduced by the downsam-
pling.

Because of decimation, the Mallat’s decomposition is completely time variant.
Moreover, it is difficult to define a 2D filter bank associated with one 2D isotropic
bandpass component at each scale.

A simple way to obtain a time-invariant and isotropic system is to compute all
the integer shifts of the signal. This algorithm was named algorithm “à trous”[16]
and its link with the Mallat’s algorithm is discussed in [23]. Because the decom-
position is not decimated, filters are dilated between each projection. Therefore, in
the signal case, each wavelets’ scale has the same number of points as the original
signal. For the scale L, these N points correspond to 2L different decompositions
obtained with the decimated transform using all the circulant shifts of the signal.
These decompositions, each one composed of N/2L points, are intertwined.

The algorithm “à trous” presents many advantages:

• A simpler filter selection. Condition (15.34), which was required for a perfect
reconstruction, is no longer necessary because coefficients are no longer down-
sampled.

• Knowledge of all wavelets’ coefficients. Coefficients removed during the down-
sampling are not necessary for a perfect reconstruction, but they may contain
information and are necessary to obtain a time invariant decomposition.

In this work, we propose a Monogenic Wavelet transform using the decomposi-
tion “à trous”. For a perfect reconstruction, the algorithm “à trous” requires that the
filters verify condition (15.33). A lot of works (for example, [4]) propose defining
the highpass decomposition filter G(ω) as

G(ω)= 1−H(ω) (15.35)

where H(ω) is the lowpass filter, and the reconstruction filters are defined as

H̃ (ω)= G̃(ω)= 1. (15.36)

It is easy to verify that filters defined in Eqs. (15.35) and (15.36) satisfy
Eq. (15.33) for all H(ω).

From Eq. (15.35), wavelets’ coefficients are simply computed by the difference
between two successive smoothed sequences, and the reconstruction is the sum of
all wavelets’ scales, plus the smoothed signal at the coarsest scale.

The generalization to the 2D case is done by the application of the lowpass fil-
ter along the two directions. Wavelets’ coefficients are computed by the difference
between two successive smoothed sequences and consequently are associated to
isotropic bandpass.
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Fig. 15.9 Principle of the undecimated monogenic Wavelet transform

The scaling function is the B3-Spline, and the associated filter H is

H(z)= 1

16
z−2 + 1

4
z−1 + 3

8
+ 1

4
z+ 1

16
z2. (15.37)

The limitation of this definition is that filters are not quadrature mirror filters.
A consequence is the nonorthogonal decomposition, with a correlation between
scales.

And finally, to compute the second “Riesz part”, we apply on each bandpass fil-
tering signal the process previously presented (Discrete Radon transform, Hilbert
transform, normalization, and inverse Radon transform). An example of the princi-
ple of the decomposition is given in Fig. 15.9.

This last part shows that a discrete monogenic analysis can be performed in the
Radon domain by using existing Radon transform algorithms. The improvement
over the classical FFT-based method may become significant in more developed
processes like wavelet transforms. The existing discrete Radon transform is a good
tool having exact reconstruction and computational simplicity, thanks to discrete
geometry.

15.6 Conclusion

In this chapter, we introduce and analyze some numerical color extensions of the
monogenic wavelet transform. This new transform is a geometric non-marginal
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color wavelet transform. These extensions are non-marginal since they take care
of considering a vector signal at the very beginning of the fundamental construction
and lead to a definition basically different from the marginal approach.

The use of non-separable wavelets jointly with the monogenic framework allows
for a good orientation analysis well separated from the color information. This color
transform can be a great color image analysis tool, thanks to this good separation of
information through various data.

The first section outlines the first color extension that we proposed in [25] based
on the recent color monogenic signal of [10]. This follows Felsberg’s approach [14]
by extending the Cauchy–Riemann equations within geometric algebra (a.k.a. ‘Clif-
ford algebra’). Finally, we keep advantages of the grayscale case in terms of accu-
racy of directional analysis and the fact that we have only one subband per scale.
The color and geometric information of the image are well separated from each
other and the invariance properties are kept. This transform is non-marginal be-
cause RGB components are considered jointly with the intensity (R +G+ B). So,
the original goal of defining a ‘true’ color monogenic wavelet transform is fulfilled.
However, this color generalization is not developed enough to define some intuitive
phase (the sole orientation analysis does not form a complete phase concept).

In addition, some color contours are not analyzed by the ‘Riesz–Laplace’ part be-
cause it is only based on the intensity data. It turns out that a deep study of the color
phase concept is necessary to complete this generalization. To that end, the next
section presents a second approach to the color extension of monogenic analysis.

The second construction is based on a theoretical link between the Riesz trans-
form, the building block of the monogenic framework, and the gradient, the basis
of the structure tensor. Thanks to the vector differential geometry, we build a color
phase concept tied to a non-marginal color extension of the grayscale monogenic
signal. The efficient tensor-based geometric analysis is joined to the physically in-
terpretable amplitude/phase modeling, carrying out a unified representation of color
images through amplitude, phase, orientation, and color axis data.

And finally, in order to address the issue of a discrete use of the continuous mono-
genic framework, we propose a scheme that uses a discrete Radon transform based
on discrete geometry. The experimental equivalence with an FFT-based computa-
tion of the monogenic analysis is observed, but the prospects are more promising
since the Radon domain is well handled for discrete data, as well as it extends well
to higher dimensions. Exact reconstruction of the used Radon transform is also a
fundamental property. The extension to a monogenic filterbank could be facilitated
by this method.

This elegant distribution of the information allows a sparse representation, where
most coefficients have low amplitude and thus insignificant phase and color axis. In
some works, we illustrate this sparsity through compression experiments revealing
the visual information carried by the different coefficients. Geometric multiscale
analysis of color images is also investigated through invariant keypoint detection.
While the famous SIFT algorithm is widely used for its invariance properties, we
introduce the basis of a new method where color is naturally handled and physical
interpretation of the data is possible, thanks to our signal processing approach. The
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future work associated with this new numerical method will include defining higher
level local descriptors to fully characterize the keypoints, as well as integrating hu-
man visual system tools for interest point detection.
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Chapter 16
On Image Matching and Feature Tracking
for Embedded Systems: A State-of-the-Art

Edwige E. Pissaloux, Steve Maybank, and Ramiro Velázquez

Abstract This chapter presents a state-of-the-art on image and feature matching
in 2D and 3D. Only methods suitable for embedded or wearable real-time sys-
tem implementation are considered. The implementation may be supported by a
dedicated VLSI system. Heuristic guided predictive approaches to image matching
are classified as area-based or feature-based. Correlation-based matching, Fourier
matching, and mutual information approaches are area-based. Graph, series, and
their combinations, including pyramidal or multiresolution algorithms, are feature-
based. First, relaxation, maximal clique, tree search, region growing, and dynamic
programming methods are briefly described. Next, the correlation-based methods,
with a fixed size or adaptive sized window, pyramidal methods, the iterative clos-
est point (ICP) algorithm, and probability (saliency)-based approaches are sketched.
Some hardware architectures which support these methods offer new computational
models for image matching and image processing. Methods for feature tracking are
split into two classes: correlation-based methods and Bayesian methods. Kanade–
Lucas–Tomassini (KLT), three-steps/new-three-steps, four-steps, diamond efficient
search, and some of their new extensions with inertial data represent the first class,
while Kalman and other filters, and their recent improvements represent the second
class. The importance of matching is attested by the wide number of applications
which include robot navigation, navigation assistance for impaired people, navi-
gation in virtual systems, the processing of medical, satellite and urban imagery,
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human computer interaction, stereo vision, 3D reconstruction, multimodal fusion.
processing, remote sensing, etc.

16.1 Introduction

A digital image is a representation of a scene by a regular grid of numbers. The
places in the grid are pixels and the numbers are the pixel values. Each number codes
the intensity of the signal received from a small part of the scene. An image sequence
records the changes in the scene over time, for example, changes in illumination or
changes due to relative motion between the sensing device and the objects in the
scene.

Image processing includes both local and global operations on images. The most
important local operation is the construction of features which summarize the infor-
mation in small regions of the image. Important global operations include segmen-
tation and the matching of features between consecutive images in a sequence of
images. The applications of feature matching include stereo vision, structure from
motion, and the detection and tracking of moving objects.

There are many different types of feature, however, hardware limits and recent
results in psycho-cognitive vision suggest that point features are good candidates
for high quality image processing which can be carried out on dedicated (parallel)
hardware. Each point feature is a single location in the image such that the values
of the surrounding pixels have some easily identified property. Point features can be
efficiently and reliably matched or tracked.

The applications of image and feature matching and tracking are very numerous.
Even so, more than 50 years of research have not resulted in unique algorithms for
matching and tracking. Indeed, vision algorithms usually depend heavily on specific
heuristics which are tailored to the application. However, despite the many papers
and communications on tracking and matching published in recent years [103], few
of them take into account the constraints on implementation found in embedded or
wearable systems. This chapter overviews some methods for image matching and
feature tracking which are implemented in academic or research prototype systems
or which could be implemented in hardware suitable for an embedded or wearable
system. The algorithms are not presented in detail. The basic concepts of each algo-
rithm are described and the effects of their system integration on the quality of the
results are discussed.

The rest of the chapter is organized as follows: Sect. 16.2 addresses the match-
ing concept, extraction of the interest/saliency points as basic primitive for targeted
hardware implementation, the most popular algorithms for image matching, and
hardware supports for image/vision matching operations based graphs. Section 16.3
discusses the feature tracking problem, correlation, and Bayesian approaches. Sec-
tion 16.4 provides some final comments on the considered approaches of matching
and tracking, and some potential research points for new hardware developments.
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16.2 Matching: Concepts, Algorithms, and Architectures

Matching and tracking are essential functions for many vision-based processes.
However, they still present difficult problems, especially for implementation in em-
bedded or wearable systems.

16.2.1 Matching: Basic Concepts

In general, matching deals with the identification of certain attributes or character-
istics associated with a given relationship. As far as image matching is considered,
this definition can be reformulated as follows: matching two images of the same (2D
or 3D) scene involves the identification of the geometric (2D or 3D) transformation
that superposes one image onto another. The parameters of the transformation may
be estimated from matches between selected features, sometimes referred to as con-
trol points.

The mathematical model of the geometric transformation depends on the image
acquisition sensors, the required accuracy, and any bounds on algorithmic complex-
ity. The image acquisition system may produce noisy data subject to geometric dis-
tortions. If the error model is known, then it is useful to pre-process images with
an error reverse model. In the case of noise, a Gaussian model is often appropriate
even if the true but unknown distribution is known not to be Gaussian. The most
common geometric image distortions, i.e., deviations from rectilinear projection,
are radial and tangential distortions. The former include quadratic, barrel, and pin-
cushion distortions. These distortions can be corrected with the Brown distortion
model [14]. Camera calibration can include distortion error correction [2, 97, 101].

16.2.2 Characteristics for Matching

Matching can be performed in the space domain or in the frequency domain. In
applications which require fast matching using parallel hardware, matching in the
space domain is preferred.

Image matching methods are classified as area based or feature based, as follows:

1. Area-based methods: matching is carried out using a direct comparison of pixel
values. A dense set of image matches is often sought.

2. Feature based methods vary according to the selected features. Possible features
include:

– Locally salient features, for example, local extrema, in which an image region
differs in some systematic way from its neighboring regions [61, 82, 93].

– Predefined features in which a feature is defined by a specific property of a set
of pixels, for example, a standard deviation in a particular range or a particular
texture [42, 61].

– Application specific features [33, 64], for example, faces and gestures.
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Features defined using local extrema are potential candidates for implementation
in embedded hardware. The following features are considered: edge points, interest
points (local curvature points, inflection points, application specific points, corners),
and salient points/regions.

Almost all edge detectors use edge models first defined in the 1970s [25, 41].
Edges are mainly detected using gradient based operators such as Sobel, Kirsch,
Prewitt, Nagao, Canny, and Deriche [30]. Laplacian based edge detectors discard the
gradient orientation; therefore, they are less useful for subsequent image processing
such as edge following.

The definition of interest points can be based on properties of the human visual
system [63].

The proposed methods differ in the way in which the interest measure is calcu-
lated and the way in which the interest points are detected. The interest measure can
be based on the gradient distribution in the neighborhood of a pixel, quantified by
image local auto-correlation [63], a nonuniform variation of the local gradient orien-
tation [48], curvature discontinuities [5, 56], curve inflections, which are frequently
exploited in medical imagery [29], and corners.

Interest point detectors are classed as raw intensity based [31, 38, 48, 63, 83, 85],
contour based [5, 46], and parametric [91, 104].

Detectors are often designed to be invariant to translation, rotation and changes in
illumination. It is possible to define detectors which are scale invariant and invariant
to affine transformations.

The performance of an interest point detector is measured by its repeatability and
stability under changes in image geometry or illumination [82] and by the distribu-
tion of the detected image points [26, 99].

The Moravec corner detector [63] is invariant to translation and rotation, but the
location of the interest point is imprecise and unstable. Harris and Stephens [38]
and Schmid et al. [82] have stabilized Moravec’s corner detector and improved the
precision with which the interest point is located. Tuytelaars and Mikolajczyk [93]
have made the Harris–Stephen’s detector invariant to affine transforms.

The Smith and Brady [85] SUSAN operator (SUSAN = smallest univalue seg-
ment assimilating nucleus) is based on the ranking of the pixel values in the neigh-
borhood of a potential corner. It is computationally simple and could be imple-
mented in hardware. However, Tissainayagam and Suter [90] have shown that SU-
SAN is less stable than the Harris–Stephen’s detector and the localization of the
interest points is less accurate. Figure 16.1 shows the detection of interest points
with Harris–Stephens detector in two images which differ by a 90◦ rotation and il-
lumination. Both images have the same depth in the field of view. It is easy to check
visually (red circles) that all the corners in the chess board have been detected but
their localization is poor.

Sojka [86] has proposed a corner detector based on Bayesian estimation of the
variance of the gradient directions in a neighborhood. The corner detector is efficient
and fast. Chen and Liu [18] have proposed a Monte Carlo method based on wavelets
and the first derivative of a Gaussian that allows robust detection of corners and
line intersections. Trujillo and Olague [91] have proposed a genetic programming
approach to synthesize stable interest point detectors.
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Fig. 16.1 Interest points
detected with the
Harris–Stephens detector
applied to the image of a
plane surface parallel to the
image plane. Both images are
taken at the same depth

Some authors have introduced local region descriptors to quantify the interest of
a point. Lowe [54] has defined the scale invariant feature transform (SIFT) which
combines a detector of scale invariant regions and a descriptor based on the gradient
distribution in detected regions. SIFT is robust to local geometric distortions. Ke
and Sukthankar [44] have introduced a PCA descriptor; Trujillo et al. [92] defined a
region descriptor based on image local singularity.

More recently, the concept of the saliency of a region has been redefined. It is still
linked to the human perceptual distinctiveness of a region but this distinctiveness is
not confined to regions with high grey levels or high grey level gradients [42, 61].
The definition of saliency is based on the probability of matching two regions from
different images [61]. The definition of saliency can be made quantitative using the
Kullback–Leiber divergence between two conditional probability density functions
(pdfs), one defined on pairs of regions that do not necessarily match and one defined
on pairs of regions which are known to match.

16.2.3 Popular Matching Methods

Several classes of image matching methods exist [15, 100, 103]. They can be clas-
sified according to the image characteristics used for matching, for example, raw
pixel values, spatial distribution of features, and symbolic features. The symbolic
features are outside the scope of this chapter.

An image matching method usually has two steps: feature matching and estima-
tion of the mapping function. These two steps can be carried out sequentially or in
parallel. Methods for estimating mapping functions are not considered here.

16.2.3.1 Raw Data/Area Based Methods

Matching methods based on raw pixel values can be subdivided into three classes
[103]: correlation (or template) matching, Fourier based, and the mutual information
based methods.

The correlation methods are based on the photometric properties of images.
A sub-image, referred to as a window or a correlation kernel, is chosen in the
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Fig. 16.2 The relative simplicity of a Fourier transformed image simplifies the phase correlation
matching. From left to right: original image with periodic noise and a subimage (square), Fourier
representation of the original image, (top) ZNCC correlation, (bottom) phase correlation

first image. The correlations between this sub-image and a set of sub-images in
the second image are obtained. The sub-image in the first image is matched with
the sub-image in the second image for which the highest value of the correlation is
obtained. Different measures could be used [30], for example, sum of absolute dif-
ferences (SAD, ZSAD), sum of squared differences (SSD, ZSSD), cross-correlation
(NCC, ZNCC), etc. The results are good if the two images are acquired under similar
illuminations and the geometric transformation between the images is small. If con-
straints on the matching are known, for example, the epipolar geometry in stereo
images, or constraints associated with known geometric structures in the two im-
ages, then it is possible to obtain the correct matches using correlation even if there
are significant variations in illumination or image geometry [28, 95], sometimes
with subpixel precision [1, 47, 53, 78, 94]. Hu and Ahuja [40] compute correlations
in several directions, under the linearity hypothesis between two adjacent directions,
in order to make correlation based matching invariant to rotation.

Fourier representation based methods (Fig. 16.2) for image matching are useful
when the images are acquired in difficult conditions involving high levels of noise
or time varying illumination or when fast matching is required.

Matching is carried out by searching for the maximum of the inverse of the cross-
power spectrum of the two images I1 and I2 (Eq. (16.1)):

F(I1)F (I2)∗

|F(I1)F (I2)∗| = e
2πi(ux0+vy0). (16.1)

The proposed approaches are based on the Fourier shift theorem applied to phase
correlation. Images can be simply translated with respect to each other or rotated
[27], or scaled [10, 45, 51, 77]. Fourier matching allows the use of kernels larger
than those used for correlation based matching in the space domain, while still re-
taining the ability to find the correct matches quickly, especially if the Fourier based
matching is carried out on specialized digital signal processors.
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Mutual information methods, initially applied in medical imagery [72], have
recently been extended to the matching of arbitrary objects [21, 87]. The mutual
information MI(X;Y) measures the amount of information that one random vari-
able (image X) contains about another random variable (image Y ). It is defined by
Eq. (16.2):

MI(X;Y)=H(Y)−H(Y/X)=H(X)+H(Y)−H(X;Y) (16.2)

where H(X) is the entropy of an image X, H(Y) is the entropy of Y , and H(Y |X)
is the entropy of Y conditional on X [72]. The best image match corresponds to the
maximum value of the mutual information. The maximization can be carried out
using any of several optimization techniques, sometimes combined. The techniques
include gradient descent, Marquardt–Levenberg, hierarchical simulating annealing,
and multiresolution optimization [18, 89]. Cole-Rhodes et al. found that the time
complexity of image matching based on mutual information was one third of the
time complexity of image matching based on correlations [21].

16.2.3.2 Feature Based Approaches

Feature based methods often make use of mathematical structures such as graphs,
combinations of graphs and series, and pyramids. They usually produce a sparse set
of correspondences.

Features are usually represented by graph vertices while the edges of the graph
represent relations between features such as adjacency, order, or relative position.
Pyramids can be regarded as combinations of series and graphs; in fact, they are
used for multi-resolution image processing.

In this context, feature matching approaches are based on graph or pyramid data
structure processing such as traversal, matching, and indexing. Matching methods
based on graphs [16, 22, 35] aim to find a correspondence between the nodes and
edges of two graphs. The correspondences might define a graph isomorphism or
an isomorphism between sub-graphs. The most frequently used graph algorithms in
computer vision are relaxation, maximal cliques, tree search, region growing, and
multi-resolution correlation with fixed or adaptive windows. In addition, dynamic
programming can be considered as a 1D graph matching.

Relaxation methods can be considered as a special case of the consistent labeling
problem. Targeted features of both images are labeled and combinatorial methods
are used to search for feature correspondences that are compatible with the labeling
[76, 79]. Geometric and physical constraints on the features are used to reduce the
complexity of the search. The relaxation is usually implemented as follows: (i) a set
of pairs of vertices is selected and a confidence measure is assigned to the corre-
spondences defined by these pairs; (ii) the matching is extended to pairs of vertices
outside the original set of pairs. The correspondences are iteratively modified in or-
der to find the best set of pairs of matching vertices. Ranade and Rosenfeld [76] ex-
press the cost of a match using the geometric displacement between sets of features.
Their method is invariant to translation and local distortions. The relaxation works
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Fig. 16.3 Two graphs and
their association graph

well for global image features, such as the boundaries between strongly contrasting
regions [52]. However, the combinatorial complexity of these methods is so high
that, for real time implementations, it is necessary to introduce contextual heuris-
tics such as uniqueness and continuity [57], reinforced disparity gradient [74], or
local consistency measure [84]. Probabilistic relaxation approaches have also been
proposed, for example, in [20].

The maximal clique method is based on the concept of an association graph.
A clique in a given graph is a completely connected subgraph. Let G1 and G2 be
two graphs of features obtained from image 1 and image 2, respectively. A vertex of
the association graph of G1 and G2 is a pair of vertices, one from G1 and one from
G2, such that the two vertices have the same labels.

An edge in the association graph links two of its vertices if the relation between
two vertices linked in G1 is the same as the two vertices linked in G2 (Fig. 16.3).

The search for the best match of the features from the two images reduces to
a search for a maximal clique in the association graph [3]. The main disadvantage
of this approach is that the task of finding a maximal clique is NP-hard. A prac-
tical solution consists of reducing the number of features, and thus the size of the
graphs. The basic algorithm has been extended to trees, both rooted and unrooted,
in [67, 68].

The tree-search algorithm is frequently based on the graph traversal operation.
The depth-first search (or branch-and-bound) algorithm [24], for example, matches
features of the first image with features of the second image one by one for as long
as possible. On the first mismatch of a new feature, the algorithm backtracks to the
previous match. In order to improve the performance of the basic algorithm, the
authors of [37] suggest various heuristics such as forward checking to try and avoid
vertices where matching will fail, and the recording of previous failed searches.

Dynamic programming (DP) [6, 8] can be considered as a search for a minimum
cost path in a graph with weighted edges. The N features of interest from the first
and second images are listed on the X and Y axes, respectively, as shown in the left
most picture in Fig. 16.4. The task is to find a matching between the two sets of N
features that minimizes a cost function. Each matching defines a path, for example,
as shown by the dark line in the left hand picture in Fig. 16.4. The path with the



16 On Image Matching and Feature Tracking for Embedded Systems 365

Fig. 16.4 Principle of the
orthogonal dynamic
programming for image
(dense) matching and results

minimal cost is calculated by backtracking. Different constraints, for example, a
requirement that the path be monotonic [30], can be added in order to speed up the
search. DP has been recently applied for speech processing [75].

The further extension of DP to (two-dimension) orthogonal DP is based on a pos-
sible decomposition of nonlinear problems, with all variables not necessary inter-
independent, into a sequence of sub-problems with some of the variables separated
so that they do not appear together in the same sub-problem. The orthogonal DP
(Fig. 16.4 central picture) builds a field of the local orthogonal displacements at ev-
ery pixel. The field is smoothed with an appropriate algorithm to tune the parameters
of the global 2D transformation which links the matched images.

The effectiveness of this approach is shown by the matching achieved in the
rightmost picture in Fig. 16.4 [69, 70]. The associated cost function “compresses”
the luminosity range in the matched images. The speed of the DP algorithm can be
increased using dedicated hardware.

Correlation-based methods can produce a dense set of correspondences between
two images. Two pixels, one from each image, are matched if the neighborhoods of
the pixels are similar. The similarity of two neighborhoods is measured using the
correlation score. The size and shape of the neighborhoods influence the quality and
the time complexity of the matching. Typically, square regions of size 3× 3, 5× 5,
or 5 × 7 are used. The matching between images I1 and I2 is found as follows:
A pixel is selected in I1. A square region of an appropriate size m×m and centered
on this pixel is chosen. This region is referred to as the correlation kernel. A region
of interest (ROI) in I2 is defined, and for each given pixel in the ROI, the correlation
between the m×m square of pixels centered on the given pixel and the correlation
kernel is found. The pixel in I1 is matched with the pixel in the ROI for which the
highest correlation is obtained. This matching process is continued for all the pixels
of interest in I1.

The correlation approach is also used with adaptive correlation kernels in which
the size and shape of the kernel are functions of the local variation of the intensity
and of the disparity between previously matched pixels [7, 12, 32, 34, 43, 78, 81].
The algorithm for adaptive correlation matching proceeds in two steps: (i) the ini-
tial disparity D0 is estimated using correlation with a non-adaptive kernel (usu-
ally 3 × 3), then (ii) for each pixel, the window size and disparity are updated,
D1 = D1 + d . Step 2 is usually implemented iteratively, until the Di converges
or until the maximal (predefined) number of iterations has been reached as follows:
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Fig. 16.5 Pyramidal matching (top) and corresponding correlation (bottom). From left to right:
lowest level, intermediate level, and highest level

(a) the uncertainty of the disparity is calculated over the window centered on the cur-
rent pixel; (b) the window is extended in four orthogonal directions (+/−x,+/−y)
and the uncertainty of the disparities of the four new windows is calculated, (c) the
window is extended in the direction of the smallest uncertainty.

Region growing proceeds as follows: Image seeds, such as interest points, are
selected based on their correlation scores. Local geometric constraints are used to
guide the matching process. The final matches are checked by estimating the global
mapping function. A match is accurate if it agrees with the match predicted by
the mapping function. Pyramidal matching methods [17, 34] combine graphs and
series’ operations. They use images at different resolutions in order to reduce the
time complexity of matching. Figure 16.5 shows the result of the correlation within a
3-level pyramid of the same image; at each level, a single correlation kernel is used.
The matched features at the lower resolution levels guide the search for matching
features at higher resolutions. The main disadvantage of pyramidal multiresolution
approach is that matches may be lost entirely at the low resolution levels and may
not be found during the progress to the high resolution levels. An edge improvement
technique for pyramids has been proposed in [66].

Correlation-based methods have several drawbacks including sensitivity to noise,
scene clutter, variations in texture, occlusions, perspective distortions, illumination,
and view angle changes [58]. However, they are efficient in many applications.

Several probabilistic approaches to image matching have been proposed recently.
Maybank [61] obtains two feature vectors v(1), v(2) from regions in the first and
second images, respectively. Let B be the background hypothesis that v(1) and v(2)
are obtained from independent image regions and let H be the hypothesis that v(1)
and v(2) are obtained from matching image regions. The probability density func-
tions p(v(1), v(2)|B) and p(v(1), v(2)|H) are learnt using one or more training im-
ages. The saliency of a given image region with feature vector v(1) is, by definition,
equal to the Kullback–Leibler divergence of p(v(2)|v(1),B) from p(v(2)|v(1),H).
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It follows that the given image region has a high saliency if v(1) contains a signifi-
cant amount of information about the feature vector of the matching image region.
A match to the given image region can be selected using a log likelihood ratio. In de-
tail, let v(2,1), . . . , v(2,N) be a set of vectors obtained from N candidate matches
to the given image region. The best match v(2, j) is defined such that:

j = argmax i &→ ln
(
p
(
v(2, i)|v(1),H )/p(v(2, i)|v(1),B)). (16.3)

Experiments with stereo images show that the accuracy of matching based on the
above log likelihood ratio is similar to the accuracy of matching based on the sum
of absolute differences of pixel values.

The iterative closest point (ICP) algorithm [9, 19] is one of the most popular
recent algorithms for 3D point matching. The algorithm makes an iterative search
for the best 3D transform which links two sets of 3D features, for example, points,
curves, or surfaces. Each iteration has two steps, namely feature matching and 3D
transform estimation. The list of the matched points found in the current iteration is
used as input for the next iteration. The algorithm finishes when the distance error
between the matched points is less than a predefined threshold. The choice of an
initial 3D transform is difficult because it must be accurate enough to ensure that
the algorithm does not yield a locally optimal solution which is not globally opti-
mal. Several improvements have been proposed. Weik [96] restricts ICP to points
at which there is a large luminosity gradient. Masuda et al. [60] select at each itera-
tion a random subset of points with few outliers. Rusinkiewicz and Levoy [80] have
investigated the relationship between the convergence of the ICP and spatial distri-
bution of the mesh points. They showed that the random subset should be replaced
by the normal-space sampling in order to obtain high precision real time algorithm
(recall: in normal-space sampling points are chosen such that the distribution of
normals among the selected points is as large as possible).

16.2.4 Hardware Systems for Image Matching

Several “universal” hardware systems exist for efficient image processing and anal-
ysis. Three systems which efficiently support graph-based processing are presented.
These are the μDP circuit for DP matching, the Sphinx pyramid for multiresolution
processing, and the MAO for image processing and vision graph operations.

The μDP circuit (Fig. 16.6, left) simulates in hardware the local path parallel
development (Fig. 16.6, right) when comparing two vectors. μDP is a 2D mesh of
N ×N elementary processors (PEij ) each evaluating the local cost of matching two
selected features. In order to be able to develop paths in three possible directions,
two orthogonal and one diagonal, for the global matching of a line, each PE is 3-
connected to its east, south, and south-east neighbors.

Suppose that it is required to match two vectors U, V. The calculations of all
distances dij = |Ui − Vj | between any two components can be performed in paral-
lel, leading to a reduction of the sequential complexity of the matching algorithm
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Fig. 16.6 The internal architecture of the μDP circuit and its operation during matching (left: path
parallel development)

to O(N). Each PE has necessary calculation and memory resources for calculating
values of the form dij . Moreover, each PE remembers the PE which activated it.
This information is useful for backtracking in order to find the optimal match. RE-
CEPTION and ACTIVATION are two signals implemented in each PE for a data
asynchronous exchange protocol. The whole matching algorithm is executed in 2N
steps in the worst case.

The code below gives the main steps of the matching algorithm. The TIMER
variable records the temporal length (equivalent to the matching cost) of the best
global path found so far.

/* local cost calculation in forward direction */
PE(0,0)=ACTIVE; /μPD calculation starts by external activation of PE(0,0) */
FIN=FALSE;
Score_temp := 0 ;

WHILE (NOT FIN) DO IN PARALLEL on ALL Active PEs
IF RECEPTION(Score_temp) from neighbor THAN

TIMER := score_temp;
MEMORIZE the direction s of activation;
UP DATE TIMER_temp in 3 directions;
WAIT until TIMER=dij.C(diagonal) THAN
ACTIVATE & FORWARD TIMER_temp to diagonal neighbor;
WAIT until TIMER=dij.C(orthogonal) THAN
ACTIVATE & FORWARD TIMER_temp to orthogonal neighbors;
FIN=IF(no_more PE) THAN TRUE;
DEACTIVATE yourself;

END IF;
END WHILE

SCORE= TIMER (N,N);
/* Backtracking of the optimal path; POSITION gives the PEij through which optimal path passes */
i=2*N;
PATH(i)= (POSITION=(N,N));
WHILE (NOT PATH(i)=(0,0)) DO

POSITION=POSITION-s(POSITION);
i=i-1;
PATH(i)=POSITION;

END WHILE /* PATH = optimal path */
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Fig. 16.7 The Binary MIMD pyramid and examples of its basic data structures: C-graph (com-
munication graph), centralizing graph, and plan graph

Multiresolution processing is naturally supported by hardware pyramids. Fig-
ure 16.7 shows a binary pyramid [11, 65] which consists of a parallel computer
organized as a series of stacked layers of processing elements. The layers decrease
in size and are interconnected by a mesh-based (matrix) four-neighbor intercon-
nection network within a layer, and a pure binary tree network between layers. In
multiresolution processing, each layer can process one image of a given resolution
independently of the other layers. The basic data structures include partial or sub-
pyramids and communication graphs which are referred to as C-graphs. C-graphs
allow the application in parallel of the same operation to all graph nodes. Data can
be exchanged in parallel between two C-graphs which are embedded in the same
layer of the pyramid. A centralizing graph is formed at the pyramid base by pyrami-
dal projection of all nodes involved in a given process (a centralizing node has no
ancestor).

Communication operations allow mesh (matrix) plane communications and bi-
nary tree traversal operations (send-down, send-up) with possible local computa-
tions using any associative and commutative operator such as AND, OR, +, or ∗.

The MAO (Maille Associative d’Orsay) is a reconfigurable matrix computer for
operations on graphs representing a parallel variable [62]. Figure 16.8 shows the
matrix (2D) organization and communication capability of each basic processing
element (PE). Each PE can be connected to eight of its neighbors; the effective con-
nections are selected using a local network configuration register. This is a simple
support for dynamic graph connectivity, useful for feature matching and for selec-
tive application of an operation (called association) to graph connected component.
An association modifies the value of a parallel variable v by combining, using an
associative and commutative operator, the values of all antecedents u of v. (The
variable u is an antecedent of v if there is a path from u to v).

16.3 Feature Tracking

In feature tracking, the task is to follow a feature from one image to the next in a
time sequence of images. The tracking is easier if the time interval between succes-
sive images is small. Feature tracking is important in automatic surveillance, motion
capture, gesture recognition, vehicle guidance, targeting, and human computer in-
teraction through unconventional interfaces such as brain/body computer interfaces
or gaze based interfaces.
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Fig. 16.8 MAO architecture for dynamic operation of graphs

This section contains a short overview of the most popular methods for feature
tracking, especially those which can be implemented in embedded hardware. These
methods are essentially correlation-based but they may use in addition qualitative
motion heuristics and Bayesian reasoning.

16.3.1 Correlation-Based Feature Tracking

In general, it is very difficult to estimate displacements from one image to another.
The difficulties are caused by changes in illumination, the complexity of the dis-
placements, and the effects of un-modeled noise. One solution is to track salient
points rather than an entire image region, on the grounds that salient points can be
matched even if the noise level is high.

One of the most popular methods for tracking is proposed by [55]. The method
involves the matching of relatively small squares of pixels from one image to the
next. The displacements are assumed to be small translations, usually of the order
of a pixel. This assumption is reasonable if the movement is slow compared to the
camera sampling speed. The windows most suited to matching are those in which
the eigenvalues of the matrix in Eq. 16.4) are above a threshold [83] and have a
weak dynamics:

G=
∫

F

ggT w (16.4)

where F is a given window, g is the luminosity gradient in F as a function of posi-
tion, andw is a weighting function. The displacement of each window is determined
by Eq. (16.5):

Gd =
∫

F

hgw (16.5)
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Fig. 16.9 Match between regions with a large displacement, obtained using KLT tracking with a
window size of 10× 10 pixels2. The score is the sum of the squared differences of the pixel grey
levels

where h is the luminosity gradient between two successive images in the considered
pixel, and d is the required displacement vector.

Shi and Tomasi [83] proposed the KLT tracker which iteratively computes the
translation vector of a region centered on an interest point. A typical region size is
25× 25 pixels2. The region is compared to all candidate regions in the next image.
The comparison is carried out using a scalar matching score. The region with the
highest score is chosen as the matching region. The score can be based on correla-
tion or on the sum of the squared difference of the pixels’ luminosity. In Fig. 16.9,
the coordinates of the four windows of the book are (62; 312), (72; 292), (92; 292),
and (112; 292) in the first image, and (64:37; 306:19), (74:44; 286; 26), (94:35;
286:16), and (114:66; 286:21) in the second image, respectively, with the standard
deviation of the pixel grey level of 13.2, 14.3, 14.0, and 20.1. The displacement of
each window is (2:37; −5:81), (2:44; −5:74), (2:35; −5:84), and (2:66; −5:79).
Despite the important errors (in the scale of 255), the windows/KLT found displace-
ments are coherent as the windows are close one to another and are still localized
on the same physical object.

KLT tracking may fail if the object appearance changes too much or if the ob-
ject is distorted from one image to the next. The main inconvenience of approaches
based on a systematic search of a set of candidate matching regions is their computa-
tional cost which is proportional to the number and size of the regions. Optimization
is possible if the nature of the expected displacement is known or if a search strategy
is adopted. Further optimization is possible if the search is supported by dedicated
embedded hardware.

Different heuristics can be used to reduce the number of correlation score cal-
culations. The heuristics include the assumption of a maximum authorized dis-
placement D. Koga et al. [49] describe a three-step search (TSS, 3SS) algo-
rithm which replaces the exhaustive 1-pixel at a time search through the candi-
date matches by a spatially uniform convolution step with convolution step size of
S =D/2,D/4,D/8,D/16, . . . pixels iteratively until S = 1 pixel. The length D is
a parameter of the algorithm. The algorithm starts with a feature predicted position
(for example, the central black point in Fig. 16.10) and calculates 8 correlations at
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Fig. 16.10 Three-step search
(3SS) algorithm for tracking:
3 iterations with D = 8,
D = 4, and D = 2 pixels for
reaching the correlation
maximum

Fig. 16.11 NTSS algorithm
convolution principle

distances of ±D pixels. The algorithm selects the region with the largest correlation
score and calculates 8 new correlations at distances of ±D/2 pixels from the center
of the selected region. The algorithm finds a correct match under the hypothesis that
surface defined by the values of the correlations is unimodal. The main drawback of
the TSS algorithm is that small motions can be missed because of the lower bound
on the step size and search window size.

A new three-step search (NTSS, N3SS, Fig. 16.11) algorithm [50], implemented
in the MPEG1/2/4 and H.261 standards, is more reliable. At initialization, the cor-
relation is calculated at 16 points: at a 3×3 (S = 1 from the predicted match) and at
a D×D (S =D from the predicted match) window. If the best correlation is found
in the initial prediction, the algorithm ends; otherwise, the point with the maximal
correlation score is selected as algorithm’s new starting point and the whole corre-
lation process restarts with D replaced by D/2 (Note that some of the correlation
scores have already been calculated in the previous step).

Po and Ma [73] propose an improvement to NTSS (N3SS) named the four step
search algorithm (FSS, 4SS). Two square patterns of different sizesD = 2 orD = 1
(Fig. 16.12, left and central), but with a common center, are used to select the pixels
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Fig. 16.12 NTSS for image matching with sparse convolution step

Fig. 16.13 Convolution
principle for diamond search
algorithm: the search is
centered respectively on
black, east-red, north-east
yellow and north green pixels

where the correlation is calculated. At initialization, the correlation step is 2 pixels
(S = 2), and the correlation is calculated at nine points in a 5 × 5 window. If the
maximum correlation is obtained at the central pixel, then S is set equal to 1 and the
appropriate correlations are calculated. If the maximum correlation is attained at a
pixel other than the central pixel, then this other pixel is made a new central pixel
and the calculation is repeated with S = 2.

The constant number of steps of this algorithm is a very attractive characteris-
tic; however, it often fails to find the correct match. Moreover, all search algorithms
based on squares of pixels assume that the displacement vectors are distributed uni-
formly around the search center. The algorithm proposed by [102], namely diamond
search (DS), replaces the squares used by 4SS with diamonds (Fig. 16.13) and pro-
ceeds iteratively until the best match is obtained. The expected number of correla-
tions is reduced significantly. The new cross-diamond search (NCDS) [39] uses an
asymmetric (horizontal or vertical) diamond search pattern in order to overcome the
restrictions on the displacement imposed by search algorithms based on squares and
find the best match.

Information from additional sensors, such as an Inertial Measurement Unit (IMU)
can be used to guide the selection of matching pairs of pixels. Indeed, as the physi-
cal displacements of 3D scene interest points are limited in size from one image to
the next, the integration of data provided by IMU to a recursive position estimator
allows the prediction of the maximum displacement of scene points relative to the
camera, and the estimation of their projected positions in the image. In this way, the
size of the search window for potential matches can be reduced and the matching
process can be speeded up. This principle is proposed in [23], and evaluated on real
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Fig. 16.14 Tracking of
interest points in translated
images via visuo-inertial
method

images where interest points have been tracked (Fig. 16.14) for integration in an
assistive device for the visually impaired [71].

Position estimation errors in the presence of occlusions are the main problem
for all the above algorithms. Statistical methods can help to solve these tracking
problems.

16.3.2 Bayesian Approaches

The position of an object in an image at times t = 1,2, . . . is defined by a series of
states Xt , t = 1,2, . . . . The state evolution is modeled by dynamic Eq. (16.6):

Xt = f t(Xt−1)+Wt (16.6)

where Wt is white noise. The relationship between a measurement Zt and the state
Xt is given by Eq. (16.7):

Zt = ht(Xt,Nt) (16.7)

where Nt is white noise independent of Wt .
The stateXt is estimated using all the measurementsZs , s = 0,1, . . . , t , obtained

up to an including time t . The information in the measurements is summarized by
the probability density function (pdf) for the state conditional on the measurements,
p(Xt |Z1, . . . ,Zt ).

A theoretical optimal solution can be obtained using a recursive Bayesian fil-
ter which consists of two steps: prediction and correction (update). The predic-
tion step uses the dynamic Eq. (16.6) to infer the pdf p(Xt |Z1, . . . ,Zt−1). The
update step uses this pdf and the likelihood function p(Zt |Xt) to estimate the pdf
p(Xt |Z1, . . . ,Zt ). If the scene contains only a single moving object, if the functions
f t and ht are linear, and if the initial state X1 and the noise both have Gaussian dis-
tributions, then the pdf p(Xt |Z1, . . . ,Zt ) is given by the Kalman filter [13].

In the general case, the pdf for the state is not assumed to be Gaussian. The pdf
can be approximated using particle filters [4, 88]. There are four steps in particle
filtering: particle sampling, prediction, pdf updating, and particle re-sampling, in
order to eliminate particles in regions with very low probabilities. The particle filter
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Fig. 16.15 Visible spectrum radial symmetry guided particle filter. Left image summarizes the
principle of the pdf update. Right image shows the tracking results for x and y pupil center position;
in red: raw true data, in blue: the estimated data

can be initialized by either using the first measurement or by training the filter using
sample sequences.

Several methods based on particle filtering for feature tracking and for combining
object models have been proposed. An application of particle filtering to eye track-
ing has been recently proposed. Hansen and Pece [36] combine a particle filter with
a generalized Laplacian for coding grey-level differences, and a Gaussian distribu-
tion for deformation modeling; Wu et al. [98] use a particle filter and a 3D model for
the eye; Martinez [59] combines a particle filter with the radial symmetry in visible
spectrum images of the eye in order to update the associated pdf (Fig. 16.15).

A priori knowledge of the targeted object can be provided during an initializa-
tion stage using interest point detection. However, all these methods are not robust
against occlusions or changes in the appearance of the object and have a high com-
putational complexity. There is no suitable hardware for real time processing.

16.4 Final Comments and Potential Future Developments

This chapter has described algorithms for image and image sequence matching.
Many of these algorithms are suitable for embedded hardware implementation. The
new hardware oriented computational structures can be used not only for image
matching, but for image processing and image analysis in general.

Image matching, despite its long history and significant progress, is still an ac-
tive research area. 2D matching is better understood than 3D matching, however,
2D matching still lacks pertinent approaches to deal with occlusion and to include
additional information about the matching.

There are very few efficient methods for 3D–3D matching and for 2D–3D match-
ing. For future wearable and autonomous systems, it seems necessary to build the
matching model using additional sensors in order to obtain reliable feature tracking
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and image matching. Neuroscientific knowledge will probably offer new insights
for image matching.

Single object tracking can use powerful techniques such as SVM or other regres-
sion methods. However, these methods have a high computational complexity.
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