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CoBRA: A Coevolutionary Metaheuristic for
Bi-level Optimization

François Legillon, Arnaud Liefooghe, and El-Ghazali Talbi

Abstract. This article presents CoBRA, a new parallel coevolutionary algorithm
for bi-level optimization. CoBRA is based on a coevolutionary scheme to solve bi-
level optimization problems. It handles population-based meta-heuristics on each
level, each one cooperating with the other to provide solutions for the overall prob-
lem. Moreover, in order to evaluate the relevance of CoBRA against more classical
approaches, a new performance assessment methodology, based on rationality, is in-
troduced. An experimental analysis is conducted on a bi-level distribution planning
problem, where multiple manufacturing plants deliver items to depots, and where
a distribution company controls several depots and distributes items from depots to
retailers. The experimental results reveal significant enhancements with respect to a
more classical approach, based on a hierarchical scheme.

4.1 Introduction

Bi-level optimization problems allow to model a large number of real-life applica-
tions, with a hierarchical structure between two decision makers. It includes compa-
nies which have to face a legislator and security constraints [10], companies trying
to predict consumer reaction [8], or a supply chain where a company has to predict
its supplier reaction to determine the real cost of its decision [3].

Metaheuristics are a class of approximate algorithms focusing on finding good-
quality solutions for large-size and complex problems, in a reasonable time [20].
While most of the existing literature about bi-level optimization focuses on
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small-size linear problems (see for example [1, 9]), many real-life applications in-
volve large-size instances and complex NP-hard problems, justifying the use of
meta-heuristics. Meta-heuristics for bi-level optimization can be divided in two
main classes. On the one hand, hierarchical algorithms try to solve the two lev-
els sequentially, improving solutions on each level to get a good overall solution on
both levels. Such algorithms include the repairing algorithm [12] , which considers
the lower-level problem as a constraint and solve it during the evaluation step, or
the constructing algorithm [13] which applies two improving algorithms on a pop-
ulation, one for each level, sequentially until meeting a stopping criterion. On the
other hand, coevolutionary algorithms maintain two populations, one for each level,
and try to improve it separately, while exchanging periodically information to keep
an overall view on the problem, like in [16]. In cooperative coevolution, different
sub-populations evolve a part of the decision variables, and complete solutions are
built by means of a cooperative exchange of individuals from sub-populations [18].

This article focuses on a coevolutionary approach. Sub-problems involved in bi-
level optimization can be tackled by meta-heuristics. Finding a good way to combine
two meta-heuristics in order to solve a bi-level optimization problem would give a
general methodology for bi-level optimization. First, we introduce a new algorithm,
the Coevolutionary Bi-level method using Repeated Algorithms (CoBRA) . This co-
evolutionary meta-heuristic is able to face general bi-level optimization problems,
possibly involving complex large-size problems. Next, we introduce a new method
for performance assessment, the rationality, able to more fully grasp the bi-level as-
pect of the problems than the Pareto efficiency. Rationality is based on the proximity
from the optimum of the lower-level variables with the corresponding upper-level
variables fixed. At last, to evaluate the performance of CoBRA against classical hi-
erarchical approaches, we give an experimental analysis on a bi-level transportation
problem involving a supply chain, the bi-level multiple depot vehicle problem intro-
duced in [3]. This analysis includes the modeling of the problem, the instantiation
of CoBRA on it and the study of the results with respect to the rationality metrics.

The paper is organized as follows. Section 4.2 gives the necessary background
on bi-level optimization. Section 4.3 presents the new coevolutionary algorithm pro-
posed in the paper for bi-level optimization, namely CoBRA. In Section 4.4, we
discuss the issue of assessing the performance of approximate algorithms in bi-level
optimization. The bi-level transportation problem under investigation in this paper
is presented in Section 4.5, both in a single-objective and a multi-objective formu-
lation. The experimental analysis of CoBRA is given Section 4.6. At last, the final
section concludes the paper and gives directions for further research.

4.2 Bi-level Optimization

In this section we introduce a general bi-level optimization problem, and give a
quick overview of state-of-the-art meta-heuristics for bi-level optimization.
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4.2.1 General Principles of Bi-level Optimization

Bi-level optimization problems may be defined by the tuple (S,F, f ) where S rep-
resents the set of feasible solutions, F the objective function(s) of the upper-level,
and f the objective function(s) of the lower-level. For any x ∈ S we separate the
upper-level variables and the lower-level variables, respectively in xu and xl .

We define, for every xu fixed, the set of rational reactions R(xu) as the set of xl

optimal in f .

R(S, f ,xu) =

{
minxl f (x = (xu,xl)) = ( f1(x), f2(x), . . . , fn(x))
s.t. x ∈ S

The bi-level problem consist in finding the solution x ∈ S which is optimal with
respect to f for xu fixed and, respecting this constraint, optimal in F .

BP(S ,F, f) =

⎧
⎪⎪⎨

⎪⎪⎩

minF(x)
x ∈S

s.t.

{
x = (xu,xl)
xl ∈ R(S , f,xu)

Those problems induce a hierarchy between two decision makers:

• The leader, who chooses the upper part of the decision variables, xu, and who
tries to optimize F(x).

• The follower, who chooses the lower part of the decision variables, xl , and who
tries to optimize f (x).

The leader decides first. Then, the follower, knowing the leader decision, has to
decide, in the view of optimizing its own objective function(s) f , without regarding
the upper objective function(s) F . To optimize his choice, the leader then has to
predict the follower reaction. This hierarchy can conduct to a higher complexity
than both sub-problems. For instance, a NP-hard problem can be obtained from two
linear problems [2].

This definition of bi-level optimization corresponds to the optimistic case, where
the leader can “choose” the (xu,xl) couple in the set of (xu,xl) ∈ S where xl ∈ R(xu):
the reaction has to be optimal, but if several reactions are optima (i.e. |R(xu)|> 1) the
leader has the last word . There exists a pessimistic case [14] which is not treated in
this paper, where xl is chosen as the leader worst case scenario in the set of rational
responses.

4.2.2 Meta-heuristic Approaches for Bi-level Optimization

Meta-heuristics are approximate algorithms which allow to tackle large-size prob-
lem instances by delivering satisfactory solutions in reasonable time [20]. Due to
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Fig. 4.1 General scheme of an evolutionary algorithm

their complexity, most bi-level optimization problems are tackled by approaches
which involve a model reformulation masking the bi-level aspect of the problem
(see [1, 9, 11, 15]), or involve meta-heuristics. Evolutionary algorithms are meta-
heuristics mimicking the species evolution. We will use in this article several terms
related to evolutionary algorithms: an individual is a feasible solution, a population
is a set of individuals, a mutation is the creation of a new individual from an exist-
ing one, generally keeping some properties. A cross-over is the creation of individ-
ual(s), called offspring, from several other individuals called parents. The process
of applying cross-over and mutation operators to a population in order to create
a new population is called generation. On each generation, a selection step con-
sists in selecting individuals to meet defined goals. Evolutionary algorithms consist
in creating multiple generations and applying selections until a stopping criterion is
met (Fig. 4.1). The reader is referred to [20] for more details about population-based
meta-heuristics and evolutionary algorithms.

In this paper, we focus on coevolutionary approaches, a sub-group of meta-
heuristics extending the evolutionary scheme. Coevolutionary algorithms consists
in associating several evolutionary algorithms and applying transformations, such
as mutation and cross-over, to distinct populations. A coevolution operator is then
regularly applied between sub-populations to keep a global view on the whole prob-
lem. Oduguwa and Roy described BiGA [16], a coevolutionary algorithm to solve
bi-level problems.

BiGA starts by initializing two distinct sub-populations using a heuristic, popu

for the upper level and popl for the lower, then the upper part of the solutions is
copied from popu to popl. Then during a parametrized number of generations, a
selection process based on the respective level fitness values is applied on both sub-
populations, followed by a mutation/crossover step. Then the sub-populations are
evaluated, sorted, and coevolved, by copying the upper (resp. lower) variables to
the lower (resp. upper) sub-population. At last, an archiving process occurs, be-
fore looping again to the selection step. The pseudo-code of BiGA is given in
Algorithm 5.
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Algorithm 5: BiGA
Data: initial population pop
popl ← selectionlower(pop);
popu← selectionupper(pop);
Coevolution(popu, popl);
while Stopping criterion not met do

Crossover(popu), crossover(popl );
Mutation(popu), mutation(popl );
Evaluation(popu), evaluation (popl );
Elitist coevolution (popu, popl);
Evaluation(popu), evaluation (popl );
Archiving(popu), archiving (popl );

end
return archive

4.3 CoBRA, a Coevolutionary Meta-heuristic for Bi-level
Optimization

In this section we introduce CoBRA, a new meta-heuristic to tackle bi-level
problems.

4.3.1 General Principles

Most of literature works focus on linear bi-level problems (ie: formed with two
linear sub-problems) or lower-level problems solvable in a reasonable amount of
time. They use this property to discard the bi-level aspect of the problem. This article
tries to define a more general methodology to solve bi-level optimization problems.
The complexity of the considered problems lead us to consider the use of meta-
heuristic, to obtain good-quality solutions in a reasonable amount of time.

We introduce a meta-heuristic, CoBRA, a coevolutionary bilevel method us-
ing repeated algorithms. Extending Oduguwa and Roy’s BiGA [16], it is a co-
evolutionary meta-heuristic consisting in improving incrementally two different
sub-populations, each one corresponding to one level, and periodically exchanging
information with the other.

4.3.2 CoBRA Components

In order to instantiate CoBRA to solve a bi-level optimization problem, generic and
problem-specific components have to be defined. Generic components, which can
correspond to both sub-problems, consist in choosing the following:

• An improvement algorithm for each level, to improve the solutions on its level.
We use, for single-objective levels, a classic evolutionary algorithm, and, for
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multi-criterion levels, NSGA-II. Those algorithms are classic population-based
meta-heuristic approaches [20].

• A coevolution strategy to decide how populations should exchange information.
• An archiving strategy to record the best solutions on every level, and to prevent

the coevolution to change completely the sub-populations on a single generation.
• A stopping criterion to decide when the algorithm should stop.

Problem specific components still have to be designed to use CoBRA:

• Initialization operators, generally heuristics, which create a base population to
begin the search process.

• Variation operators, level-specifics, which are then used by the improvements
algorithms.

• Evaluation operators, corresponding to the f and F functions from the bi-level
optimization model.

Figure 4.2 illustrates the outline of CoBRA.

4.3.3 General Algorithm

CoBRA is a coevolutionary algorithm using for each level a different population,
and a different archive (Algo. 9.4). At each iteration, we apply the improvement
algorithms, we archive the best solutions obtained, then we apply a selection opera-
tor to keep a constant size to the archive and to the populations. The final iteration
step is then to coevolve the two sub-populations. Once the stopping criterion is met,
CoBRA returns the lower-level archive.

Extending the BiGA approach, CoBRA involves several differences from the
former:

1. The main difference is that CoBRA applies a complete algorithm, possibly iterat-
ing a certain number of generations, over each main algorithm iteration, instead
of just applying variation operators. Evaluation process occurs during those im-
provement algorithms.

Algorithm 6: CoBRA
Data: initial population pop
popu ←copie pop;
popl ←copie pop;
while Stopping criterion not met do

upper improvement (popu) and lower improvement (popl);
upper archiving (popu) and lower archiving (popl);
selection (popu) and selection (popl);
coevolution(popu, popl );
adding from upper archive (popu) and from lower archive (popl);

end
return lower archive
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2. The coevolution process is not necessarily elitist: default coevolution strat-
egy (Algo. 7) randomly coevolves solutions with each other.

3. The selection operations and the archives take place right after the improvement.

Algorithm 7: Random coevolution
Data: Populations upPop and lowPop of same size, op coevolution operator
Shuffle upPop;
foreach i from 0 to size(upPop) do

op(upPop[i],lowPop[i]);

4.4 Performance Assessment and Bi-level Optimization

In this section, we introduce two new metrics for assessing the performance of
heuristics on solving bi-level optimization problems.

4.4.1 Motivations

Being a problem with two different objective functions, a natural approach to tackle
bi-level optimization problems would be to use a Pareto-based multi-objective ap-
proach . However bi-level optimization problems have a different structure. A good
solution considering a similar problem approximating the Pareto frontier could be
of bad quality in the bi-level way.

Bi-level optimization aim at identifying solutions in the form (xu,xl) which give
good upper objective vectors, while being near the optimum regarding the lower
objective for xu fixed. This leads to the existence of good quality solutions not being
on the Pareto frontier, and solutions on the Pareto frontier not necessarily being
good quality solutions. Fig. 4.3 gives an example of objective functions giving a
bi-level solution corresponding to a dominated solution in the Pareto sense. F and f
are respectively the upper and the lower-level objective functions to be minimized,
the leader chooses in {d,e,f} and the follower in {a,b}. The Pareto front would be
composed of {(d,a),(f,a)}while the bi-level solution is (e,a).

We introduce the notion of rationality which correspond to the difficulty to
improve a solution (xu,xl), with xu fixed, according to the lower-level objective
function. A rational solution is a solution where the follower reaction is rational,
seeking for the optimality of its own objective function(s). We introduce two differ-
ent rationality metrics, the direct one and the weighted one.
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Fig. 4.2 CoBRA outline
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F a b
d 0 1000
e 1 ∞
f 300 ∞

f a b
d 100 99
e 1001 ∞
f 99 ∞

Fig. 4.3 Example of lower-level and upper-level objective functions whose optimal solution
is dominated in terms of Pareto dominance

4.4.2 Rationality

4.4.2.1 Direct Rationality

The direct rationality measure corresponds to the difficulty of improving a solution
without regarding the actual improvement: we simply consider the “improvability”.
To evaluate it for a population, we apply a parametrized number of time a “good”
lower-level algorithm, and count how many times the algorithm did improve the
solution (Algo. 8).

4.4.2.2 Weighted Rationality

The weighted rationality is another rationality measure working on the same princi-
ple as the direct rationality with the difference that, instead of counting how many
times the algorithm was able to improve the solution, we also consider how much
it was improved. Being able to improve a fitness by 0.001 or by 1000 does not
give the same result to the rationality, whereas the direct approach would consider
both as the same (Algo. 9). For bi-level optimization problems involving a multi-
objective lower-level sub-problem, we used the multiplicative ε-indicator, an indi-
cator to compare sets of objective vectors [21].

4.4.3 Discussion

The weighted rationality metric was introduced to compare results for a bi-level
optimization problem composed with a hard lower-level problem. All the tested
algorithms giving a bad direct rationality, we noticed that some algorithms were
still doing better and were far nearer to the optimal on the lower-level than others.
The weighted rationality is able to differentiate such algorithms.



104 F. Legillon, A. Liefooghe, and E.-G. Talbi

Algorithm 8: Direct rationality test
Data: AlgoLow, pop, ni number of iterations
counter← 0;
foreach gen from 1 to ni do

neopop← pop;
f ound← f alse;
AlgoLow(neopop);
foreach x in neopop do

if (not f ound) and (x dominates an element of pop) then
counter++;
f ound← f alse;

end
end

end
return counter/ni

Algorithm 9: Weighted rationality test
Data: AlgoLow, pop, ni number of iterations
ratio← 0;
foreach gen from 1 to ni do

neopop← pop;
AlgoLow(neopop);
ratio=ratio+εind(pop,neopop)/ni;

end
return ratio

We can note that those methods are not absolute, in the sense that we have to com-
pare the algorithm using another algorithm, thus introducing a bias. Those measures
compare the capacity of a meta-heuristic to use improvement algorithms, but do not
actually compare the overall capacity to tackle the problem. To this end, we have to
ensure that none of the tested algorithms is biased toward the improvement used by
the rationality evaluation.

4.5 Application to Bi-level Transportation

In this section we define a bi-level transportation problem , involving two different
companies in a supply chain: the leader transports goods from depots to retailers
answering to the retailers demand, and a follower manages plants producing goods
for the leader. The leader starts by deciding which depots should deliver goods, then
the follower decides how to manufacture the goods, both decisions influencing the
overall cost of solutions. Two variants of this problem are here considered, a single-
objective one, and a multi-objective one.
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4.5.1 A Bi-level Multi-depot Vehicle Routing Problem

The first problem, introduced by Calvete and Galé [3], consists of a bi-level prob-
lem where the leader controls a fleet of vehicles to deliver items from several depots
to retailers, on the same principle as the classical multi-depot vehicle routing prob-
lem (MDVRP) . The follower controls a set of plants, and has to produce the items
and deliver them to the depots according to the demand of the retailers it serves,
thus answering a flow problem. The leader tries to minimize the total distance of
his routes and the buying cost of the resources (depending on the lower-level deci-
sion). The follower minimizes the production cost and the distance traveled by the
produced goods. The follower has to directly transport from plants to depots.

4.5.1.1 Problem Description

Let K, L, R and S denote the sets of plants, of depots, of retailers and of vehicles,
respectively. Let E be the edge set between retailers and depots, br the demand of
retailer r, ca

i, j the cost of transporting from depots or retailers i to j for the leader, cb
k,l

the cost to buy and unload a unit produced in plant k into depot l for the leader, and
cc

k,l the operational cost for plant k to produce and deliver to depot l for the follower.
The upper objective function is to minimize the sum of deliver costs from depots

to retailers and buying from plants .

F(x,y) = ∑
s∈S

∑
(i, j)∈E

ca
i, jx

s
i, j + ∑

k∈K
∑
l∈L

cb
k,lyk,l

with x the leader variables representing the routes chosen to deliver retailers, and
y the follower variables representing the affectation of plants to depots. Then, the
lower-level objective function is to minimize the sum of costs of producing items in
plants and delivering it to depots.

f(x,y) = ∑
k∈K

∑
l∈L

cc
k,lyk,l

The leader and follower follow a hierarchical order, where the leader choose routes,
creating a demand for the depots corresponding to the retailers to be delivered, and
where the follower has to respond to this new demand by associating a part of his
plant production to depots.

∑
k∈K

yk,l ≥ ∑
s∈Sl

∑
r∈Rs

br,∀l ∈ L

Several other VRP-related constraints are omitted to improve readability. See [3] for
more details about the problem.
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4.5.1.2 Solution Representation

In the optic of doing an evolutionary algorithm, a solution representation was nec-
essary. Using a generic bi-level representation, we had to decide a representation for
each level. For the upper-level, we use a permutation: every retailer and every route
(each route being associated to a depot) has an attributed number.

The route numbers in the permutation determine the routes start, and every re-
tailers represent in order the actual route (Fig. 4.4). This representation facilitate
the solution integrity, and suppress the need to check the number of routes and the
“one visit per retailer” constraint. We use for the lower-level problem a more classi-
cal double matrix M, Ma

b representing the ratio of production sent from a to b. The
quantity effectively sent is scaled down at the evaluation step if the sum of a column
are over 1, and rounded down if not integer. This indirect representation permits to
use classical algorithms without much adaptation work.

Fig. 4.4 Example of a VRP with 7 retailers, 2 depots, and 2 routes per depot, from
the permutation [5,4,2,9,7,6,10,1,3,8]. Squares are for depots {a,b}, circles for retailers
{1,2,3,4,5,6,7}.
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4.5.1.3 Problem Instances

Two sets of instances1 were generated to experiment the CoBRA efficiency. S1 con-
sist of instances created from MDVRP instances following the modus operandi de-
scribed in [3]. We add as many plants as there are depots randomly located on the
map. Then we set their maximal production to ensure that the instance is feasible. cb

and cc follows a method described in [3]. Set S1 contains 10 instances created from
the 10 instances provided by Cordeau [4]. The second set S2 consists of the same
instances in which a higher fixed number of plants of 50 was added. Those instance
parameters are described in Table 4.1.

Table 4.1 Description of S1 and S2 instances, R corresponding to the number of routes by
depot

Instance Depot R Plants (S1) Plants (S2) Retailer
bipr01 4 1 4 50 48
bipr02 4 2 4 50 96
bipr03 4 3 4 50 144
bipr04 4 4 4 50 192
bipr05 4 5 4 50 340
bipr06 4 6 4 50 288
bipr07 6 1 6 50 72
bipr08 6 2 6 50 144
bipr09 6 3 6 50 216
bipr10 6 4 6 50 288

4.5.2 A Multi-objective Bi-level Multi-depot Vehicle Routing
Problem

The multi-objective bi-level multi-depot routing problem (M-BiMDVRP) is a vari-
ant of the BiMDVRP where the follower minimizes two costs instead of just one
distance between plants and depots, aiming at finding a Pareto front approximation.
The follower has to directly transport from plants to depots for this problem too.
The lower-level objective function vector becomes:

f(x,y) =

(

∑
k∈K

∑
l∈L

cc
k,lyk,l , ∑

k∈K
∑
l∈L

cd
k,lyk,l

)

cd
k,l being another operational cost of plant k, to produce and delivering a unit of

good to depot l, similar to cc. While the leader still have to chose how to deliver

1 Benchmark files are publicly available on the paradiseo website in the problems section at
the following URL: http://paradiseo.gforge.inria.fr/
index.php?n=Problems.Problems.

http://paradiseo.gforge.inria.fr/
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products from depots to retailers, the follower has to respond to a bi-objective prob-
lem , his goal being to find solutions which are Pareto efficient (see [5] for details
on Pareto efficiency). We kept the same sets of instances as in BiMDVRP, to which
we added the cd cost independently generated on the same way as the cc one.

4.6 Experimental Analysis

In order to evaluate the relevance of CoBRA for bi-level optimization, we conduct
in this section an experimental analysis against a repairing algorithm, a classical
approach which consider the lower-level optimality condition as a constraint, and
simply try to find the best upper-level variable while “repairing” the lower-level one
at the evaluation step.

4.6.1 Experimental Design

We conduct a two-part experimental analysis. In the first part, we apply the two
algorithms on the bi-level multi-depot vehicle routing problem (BiMDVRP). We ran
CoBRA and the repairing algorithm for BiMDVRP on S1, and for M-BiMDVRP on
S1 and S2. We run both of the algorithms 30 times with different seed values, since
both algorithms use stochastic components.

Both algorithms use the same components (i.e. the improvement algorithms, the
stopping criterion, the variation operators and the initializers). The reparation algo-
rithm does not use any archiving or coevolution operator, and a different evaluation
operator which apply a lower-level improvement algorithm before evaluating a so-
lution. Once the stopping criterion is met, we evaluate the population with respect
to three criteria:

• the population average upper-level fitness value,
• the direct rationality,
• the weighted rationality.

4.6.2 CoBRA instantiation for BiMDVRP an M-BiMDVRP

To use CoBRA on the BiMDVRP problem, several problem-specific components
have to be chosen.

4.6.2.1 Upper-Level Problem-Related Components

For the MDVRP upper problem we use a combination of three variation operators:

RBX [19] is a cross-over operator copying routes from a parent, and then com-
pleting the offspring with routes from the other parents by removing visited re-
tailers.
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SBX [19] is a cross-over operator creating a new route, by taking half of a route
starting from a single depot in each parents, keeping the order of each half, and
then completing the offspring with the other routes and removing visited retailers.

Or-opt [17] is a mutation operator taking several retailers from a route and putting
it in another. This operator changes the number of route which neither of the SBX
and RBX can do.

Operators are applied on solutions uniformly chosen in the population.

4.6.2.2 Lower-Level Problem-Related Components

For the lower-level problem we use a combination of two operators:

UXover [6] is a crossover operator choosing elements uniformly for each parent
solution matrix and putting it in the offspring.

Uniform mutation [7] is a mutation operator that add a parametrized real value
rlmut ∈ [−0.5,0.5] to each element of the solution matrix with a plmut probability.

4.6.2.3 Stopping Condition

The algorithm uses three stopping criteria, one for each improvement algorithm and
one for the overall algorithm. Improvement algorithms use a generational stopping
criterion which continue for a fixed number pg of generations. The overall algorithm
uses a lexical continuator which continue until no better solution is found for a
fixed parameter pl of generations, by using a lexical comparator (i.e. by comparing
sequentially the objective values on each level).

4.6.2.4 Selection Operators

The algorithm uses three selection operators to choose which solution to keep from
a generation to the next one, one for each improvement algorithm, and one for the
overall algorithm. We use on both improvement algorithms a deterministic tourna-
ment, which randomly selects two solutions from the population and keep the best
one. For the overall algorithm we use a survive-and-die replacement politic, which
keeps a parametrized proportion of the best solutions nsad from the last generation,
and apply a deterministic tournament on the remaining part of the population in
order to generate the next generation.

4.6.2.5 Archiving Strategy

The algorithm uses archives to keep record of the best solutions found over all gen-
erations. We define two different archive strategies depending on the number of
lower-level objective function:

Single-objective lower-level strategy. We use a straight-forward archive that keeps
the n best found solutions according the the level fitness value
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Multi-objective lower-level strategy. The upper-level archive keeps the same strat-
egy than in the single-objective case. The lower-level archive, at the insertion of
a new individual i, starts by deleting any solution Pareto-dominated by i then
inserts i if it’s not dominated by any individual from the archive. If the archive
size goes over n, we remove from the archive the worst elements according to the
upper-level fitness values until the archive size returned under n.

4.6.2.6 Numerical Parameters

To use those components and CoBRA, the following parameters have to be set:

• n: the populations size, set to 100
• rlmut : the uniform mutation adding parameter, set to 0.5
• plmut : the uniform mutation probability parameter, set to 0.1
• pg: the number of generations each improvement generates, set to 10
• pl: the number of generations CoBRA continues without improvement, set to

100
• nsad the proportion of best solutions that are kept from the last generation, set to

0.8

4.6.3 Experimental Results

4.6.3.1 BiMDVRP

Table 4.2 shows numerical results for CoBRA and the repairing algorithm on in-
stances from S1. Here are displayed the average upper-level fitness value, and the
best fitness value obtained in the lower-level archive, as well as the direct ratio-
nality metric value. Since direct rationality was enough to rank the algorithms, the
weighted measure was not used.

CoBRA has a significantly better score for the rationality, on all the instances.
For both algorithms, rationality is not related to the instance size. The repairing
algorithm is doing better for the upper-level fitness value.

4.6.3.2 M-BiMDVRP

Tables 4.3 and 4.4 show the experimental results over the sets S1 and S2, respectively.
The average and the best upper-level fitness values obtained in the lower archive,
and the weighted rationality measure are given. Direct rationality did not permit to
significantly decide between the coevolutionary and the hierarchical approach.

Both algorithms obtain similar upper-level fitness values. CoBRA is still having
a better rationality. The rationality gap between CoBRA and the repairing algorithm
increases with the instance size. The number of evaluations done by the algorithms
are shown on Figure 4.5. The repairing algorithms needs a lot more evaluations,
impairing the computational cost of the approach.
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Table 4.2 Average upper-level fitness value, best upper-level fitness value and weighted ra-
tionality value for BiMDVRP instances from S1

Averaged fitness Best fitness Direct rationality
Instance CoBRA Repair CoBRA Repair CoBRA Repair

bipr01 1883 1848 1676 1626 0.6 7.5
bipr02 4049 3338 3718 2880 1.3 5.4
bipr03 6058 5849 5604 4712 2.7 23.5
bipr04 7172 7368 6568 6051 1.9 19.9
bipr05 9750 8535 9493 7179 0.6 5.4
bipr06 15237 11637 14837 9656 0.7 5.9
bipr07 3165 2917 2851 2453 0.9 1.5
bipr08 7207 5348 6801 4736 2.2 22.9
bipr09 9825 8326 9343 7042 2.0 22.2
bipr10 14418 12413 13419 12412 0.6 13.5

Table 4.3 Average upper-level fitness value, best upper-level fitness value and weighted ra-
tionality value for M-BiMDVRP instances from S1

Average Fitness Best Fitness Weighted rationality
Instance CoBRA Repair CoBRA Repair CoBRA Repair
mbipr01 3151 3570 2930 3002 0.66 21.50
mbipr02 5980 6559 5729 5792 4.83 140.50
mbipr03 11459 12369 10887 11230 77.49 562.76
mbipr04 12985 14346 12568 13158 6.84 195.84
mbipr05 16067 16872 15317 15982 1.82 52.89
mbipr06 19408 21291 18523 20079 158.02 839.89
mbipr07 5195 5790 4915 4758 8.71 253.39
mbipr08 10566 11691 9943 10543 21.36 106.70
mbipr09 15948 17519 15330 16247 41.13 727.62
mbipr10 20849 22798 20361 21523 86.45 1040.10

Table 4.4 Average upper-level fitness value, best upper-level fitness value and weighted ra-
tionality value for M-BiMDVRP instances from S2

Averaged fitness Best fitness Weighted rationality
Instance CoBRA Repair CoBRA Repair CoBRA Repair
mbipr01 3187 3630 2912 3155 16.69 67.52
mbipr02 6155 6798 5808 6236 25.61 89.10
mbipr03 11226 12390 10865 11544 31.55 197.58
mbipr04 13703 14934 13240 14113 27.18 208.44
mbipr05 15349 16773 14753 16092 111.10 357.05
mbipr06 19894 21986 19314 21132 45.41 306.62
mbipr07 5243 5849 4796 5239 18.86 82.46
mbipr08 10598 11649 10131 10866 15.02 198.85
mbipr09 15862 17517 15357 16535 21.61 229.93
mbipr10 20747 22843 20207 22019 39.43 349.27
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Fig. 4.5 Average number of evaluations required by CoBRA and the repairing algorithm on
M-BiMDVRP instances from Set S2

4.6.3.3 Discussion

CoBRA has a significant advantage in terms of rationality for all the runs we per-
formed, while it does not always give a better upper-level fitness value. Rationality
indicates the quality of the reaction predicted by the algorithm. A bad prediction is
likely to lead to a bad solution: once applied to a real-life situation the follower will
have greater chances to chose a better reaction for his own objective function(s), de-
grading the solution quality for the leader. Since CoBRA has a better rationality, we
can better predict the outcome of the decisions. Thus we can conclude that CoBRA
is more adapted to the bi-level aspect of the problem.

An explanation why the hierarchical algorithm does not select the more rational
response would be that once an irrational solution x = (xu,xl) is obtained, through a
badly done reparation, which gives a better upper-level fitness value than the more
rational response x′ = (xu,x′l), the overall algorithm will have a tendency to discard
x′ and keep x. We can conclude that the reparation approach needs either a good
lower-level heuristic, an exact lower-level algorithm, or some properties over the
problem (such as a strong correlation between the two levels) to be able to produce
rational responses. This is the reason why the coevolution allows CoBRA to get
a better rationality. We can conclude that the coevolutionary approach can give a
significant enhancement for this problem.

4.7 Conclusions and Future Works

In this paper, we described CoBRA, a new general methodology to solve bi-level
optimization problems. We introduced the concept of rationality for bi-level opti-
mization problems and two new metrics to compare the performance of evolutionary
algorithms for such purpose. Using those two metrics, we compared CoBRA against
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a classical hierarchical approach on a bi-level optimization problem of production/-
transportation in its single-objective and multi-objective variants. Experimental re-
sults showed a significant advantage to the CoBRA approach in tackling the bi-level
multiple depot problem against a classical hierarchical approach.

As future work, it would be interesting to look up a possible integration of di-
versification principles into CoBRA. Instead of considering the upper-level fitness
values in the lower-level archive, it could be more efficient to keep a good diversity
in the archive. This would give the opportunity for the algorithm to escape from lo-
cal optima easier. Furthermore, the design of CoBRA is intrinsically parallel, since
two sub-populations evolve independently,parallel computation would improve the
performance in terms of computational time.
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