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Preface

Importance of This Book

Applications of bi-level optimization is countless. Many challenging applications
in science and industry (logistics, transportation, finance, engineering design, man-
agement, security, yield management) can be formulated as bi-level optimization
problems.

A large number of real-life bi-level optimization problems in science, engineer-
ing, economics and business are complex and difficult to solve. They cannot be
solved in an exact manner within a reasonable amount of time. Using metaheuris-
tics, hybrid metaheuristics with efficient exact algorithms is the main alternative to
solve this class of problems.

Purpose of This Book

The main goal of this book is to provide a state of the art of metaheuristics and hy-
brid metaheuristics with exact methods in solving bi-level optimization problems.
The book provides a complete background that enables readers to design and imple-
ment metaheuristics to solve complex bi-level optimization problems in a diverse
range of application domains. Numerous real-world examples of problems and so-
lutions demonstrate how metaheuristics are applied in such fields as logistics and
transportation, network design, security, location problems, etc.

Audience

One of the main audience of this book is advanced undergraduate and graduate
students in computer science, operations research, applied mathematics, control,
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business and management, engineering, etc. Many undergraduate courses on opti-
mization throughout the world would be interested in the contents.

In addition, the postgraduate courses related to optimization and complex prob-
lem solving will be a direct target of the book. Metaheuristics and bi-level optimiza-
tion are present in more and more postgraduate studies (computer science, business
and management, mathematical programming, engineering, control, etc).

The intended audience is also researchers in different disciplines. Researchers
in computer science and operations research are developing new optimization algo-
rithms. Many researchers in different application domains are also concerned by the
use of metaheuristics and hybrid methods to solve bi-level optimization problems.

Many engineers are also dealing with bi-level optimization in their problem solv-
ing. The purpose of the book is to help engineers to use metaheuristics for solving
real-world bi-level optimization problems in various domains of application. The
application part of the book will deal with many important and strategic domains
such as network design, transportation and logistics, pricing problems, etc.

Outline

The book is organized following different chapters dealing with :

• a taxonomy of metaheuristics to solve bi-level optimization problems.
• different metaheuristics to solve bi-level optimization problems: genetic algo-

rithms, particle swarm optimization, co-evolutionary algorithms.
• different matheuristics combining exact algorithms and metaheuristics to solve

bi-level optimization problems.
• exact algorithms to solve linear and mixed integer bi-level optimization prob-

lems.
• evolutionary algorithms to solve multi-objective bi-level optimization problems.

Lille, Prof. Dr. El-Ghazali Talbi
March 2013 University of Lille 1, CNRS, INRIA, France
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Chapter 1
A Taxonomy of Metaheuristics for Bi-level
Optimization

El-Ghazali Talbi

Abstract. In recent years, the application of metaheuristic techniques to solve multi-
level and particularly bi-level optimization problems (BOPs) has become an active
research area. BOPs constitute a very important class of problems with various ap-
plications in different domains. A wide variety of metaheuristics have been proposed
in the literature to solve such hierarchical optimization problems. In this paper, a
taxonomy of metaheuristics to solve BOPs is presented in an attempt to provide
a common terminology and classification mechanisms. The taxonomy, while pre-
sented in terms of metaheuristics, is also applicable to most types of heuristics and
exact optimization algorithms.

1.1 Introduction

Multi-level and bi-level optimization are important research areas of mathematical
programming [6] [13] [16]. This type of problems has emerged as an important
area for progress in handling many real-life problems in different domains. The first
formulation of bi-level programming was proposed in 1973 by J. Bracken and J.
McGill [7]. W. Candler and R. Norton are the first authors which use the designation
of bi-level and multi-level programming [10]. Since the eighties bi-level and multi-
level programming receive the attention they deserved. The reader can refer to [17]
[60] for extended bibliography reviews.

Multi-level optimization problems (MLOP) have been developed for distributed
planning problems in a hierarchical organization with many decision makers. The
decisions are taken in a sequential way and without any cooperation. These MLOPs
are characterized by a hierarchy of planners; each planner is independently control-
ling a subset of decision variables, disjoint from the others.
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A bi-level optimization problem (BOP) can be seen as a multi-level problem
with two levels. A BOP is a hierarchy of two optimization problems (upper-level
or leader, and lower-level or follower problems). The leader-follower game play is
sequential and cooperation is not allowed. Each decision maker optimizes its own
objective without considering the objective function of the other party, but the de-
cision made by each party affects the objective space of the other party as well as
the decision space. A subset of variables at the upper-level optimization problem
is constrained to be the optimal solution of the lower-level optimization problem
parameterized by the remaining variables.

Compared to single-level optimization, the difficulty in solving bi-level optimiza-
tion problems lies in the following general facts:

• Evaluation of the solutions at the upper-level problem: It is not easy to eval-
uate the upper-level objective function of a BOP. The objective function at the
upper-level has no explicit formulation, since it is compounded by the lower-level
optimization problem. In other words, the upper-level decision maker cannot op-
timize his objective without regards to the reactions of the lower-level decision
maker.

• Complex interaction between the upper-level and the lower-level optimiza-
tion problems: The lower-level can be seen as a non-linear constraint and the
whole problem is intrinsically a non-convex programming problem. Even if the
objective function and the constraints of the upper-level and lower-level opti-
mization problems of a BOP are all linear, the BOP is neither continuous every-
where nor convex for the objective function of the upper-level problem.

Computing optimal solutions is computationally intractable for many BOPs. In
practice, we are usually satisfied with “good” solutions, which are generally ob-
tained by metaheuristics. In addition to single-solution based metaheuristics such as
descent local search (LS) [79], simulated annealing (SA) [80], tabu search (TS) [81],
there is a growth interest in population-based metaheuristics. Those metaheuris-
tics include evolutionary algorithms (EA: genetic algorithms (GA) [82], evolution
strategies (ES) [83], genetic programming [85], etc.), ant colonies (AC) [87], scatter
search (SS) [86], particle swarm optimization, and so on. We refer the reader to [84]
for good overviews of metaheuristics.

Over the last years, interest in metaheuristics in solving BOPs has risen consid-
erably among researchers in mathematical programming. The best results found for
many practical or academic optimization problems are obtained by metaheuristics.
In this paper, a taxonomy of metaheuristics in solving BOPs is presented in an at-
tempt to provide a common terminology and classification mechanisms. The goal of
the general taxonomy given here is to provide a mechanism to allow comparison of
metaheuristics in a qualitative way. In addition, it is hoped the categories and their
relationships to each other have been chosen carefully enough to indicate areas in
need of future work as well as to help classify future work. In fact, the taxonomy
could usefully be employed to classify any optimization algorithm (specific heuris-
tics, exact algorithms) and any BOP (mono-objective BOP, multi-objective BOP,
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BOP under uncertainty). However, we shall focus our attention on metaheuristics
since they are general heuristics applicable to a wide class of BOPs.

The paper is organized as follows. First, section 1.2 presents bi-level optimization
concepts. Sections 1.2.1 and 1.2.2 describe the different classes of BOPs, their com-
plexity and some optimality conditions. Then, section 1.3 shows the relationships of
BOPs with other classes of optimization problems (e.g multi-objective optimization,
Stackelberg game). In section 1.4, some real-life applications of BOPs in different
domains are outlined. An overview and unified view of metaheuristics are described
in section 1.5. Section 1.6 details a taxonomy that tries to encompass all published
work to date in the field of application of metaheuristics to BOPs. A focus is made
on the different classes of metaheuristics for BOPs. Section 1.7 addresses an impor-
tant question related to performance assessment of bi-level metaheuristics. Finally,
section 1.8 summarizes the main conclusions and perspectives of this work.

1.2 Bi-level Optimization Concepts

This section covers the main concepts of bi-level optimization such as the upper-
level problem, the lower-level problem, the feasible and optimal solution, the low-
level reaction set and the induced region. In these definitions it is assumed, without
loss of generality, the minimization of all the objectives.

In bi-level optimization problems, a hierarchical structure arises with an opti-
mization problem on the upper level and another optimization problem on the lower
level. Due to this hierarchical structure, bi-level optimization problems are closely
related to Stackelberg games in game theory [55].

Example 1.1 (Illustrative bi-level manufacturer-retailer problem). Let us illus-
trate a bi-level optimization problem with a manufacturer-retailer problem [25]. The
retailer orders articles from the manufacturer and sells them. Suppose tthat the in-
volved articles are newspapers. The manufacturer is the leader and the retailer is
the follower. Both the retailer and the manufacturer wish to maximize their profit
as much as possible from the articles sale. The manufacturer’s profit (F) and the
retailer’s profit ( f ) can be formulated as:

⎧
⎪⎨

⎪⎩

F = (C−D).Q

f =

{
(A−C)ξ , Q < ξ
(A−C)ξ −C(Q− ξ ), Q≥ ξ

where D is the cost of manufacturing, C is the wholesale price per article, Q is the
quantity of articles ordered by the retailer, ξ is the quantity of articles sold by the
retailer, and A is the retail price. The manufacturer wish the maximal wholesale
price and the largest quantity of articles to be ordered. The order quantity is fixed
by the retailer, and the manufacturer can control the wholesale price only. When
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the wholesale price increases, the retailer probably decreases the order quantity to
avoid profit loss. So, increasing the wholesale price by the manufacturer does not
mean increasing the profit. The problem for the manufacturer is to fix the value of
the wholesale price to maximize the profit.

Definition 1.1 (Bi-level optimization problem). A bi-level optimization problem
(BOP) may be defined as:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Min
x∈Rn,y∈Rm

F(x,y)

subject to G(x,y)≤ 0{
Min
y∈Rm

f (x,y)

subject to g(x,y)≤ 0

where F, f : Rn×Rm −→ R are respectively the upper-level and the lower-level ob-
jective functions, G : Rn×Rm −→ Rp the constraint set of the upper-level problem,
and g : Rn×Rm −→ Rq the constraint set of the lower-level problem.

Definition 1.2 (Constraint set). The constraint set of a BOP is:

Ω = {(x,y)/G(x,y)≤ 0 and g(x,y)≤ 0}

For each value of the upper-level vector x, the lower-level constraints g(x) ≤ 0 de-
fines the feasible set Ω(x) of the low-level problem for each x.

Definition 1.3 (Feasible set of the follower). The feasible set of the follower Ω(x)
is:

Ω(x) = {y : g(x,y)≤ 0}
Definition 1.4 (Rational reaction set). The rational reaction set M(x) may be de-
fined as:

M(x) ∈Ω(x) := Argmin
y
{ f (x,y) : g(x,y)≤ 0}

The set of variables is partitioned between two vectors: x and y. Given the vector x,
the vector y is to be chosen as an optimal solution y = M(x) of the lower-level opti-
mization problem (or follower problem) parameterized by x. The solution M(x) may
be seen a the rational reaction of the follower on the leader’s choice x. According to
those definitions, a BOP can be redefined as follows:

⎧
⎪⎪⎨

⎪⎪⎩

Min
x,y

F(x,y)

subject to G(x,y)≤ 0

y ∈M(x)

Definition 1.5 (Induced region). The induced region IR of a bi-level optimization
problem, which represents the feasible region at the upper-level optimization prob-
lem, is defined by the set:
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IR = {(x,y) ∈ Rn×Rm : G(x)≤ 0,y ∈M(x)}
Hence the set of solutions of the lower-level problem M(x) is found by minimizing
the lower-level objective function f :

M(x) = {y : y ∈ Argmin{ f (x,y) : y ∈Ω(x)}

A more general definition for continuous and discrete BOP can be:

BOP(Ω ,F, f ) =

⎧
⎪⎨

⎪⎩

Min
x,y

F(x,y)

(x,y) ∈Ω
subject to y ∈M(x)

or
Min

x,y
{F(x,y) : (x,y) ∈ IR}

Definition 1.6 (Feasible solution). A solution (x,y) is feasible if (x,y) ∈ IR.

Definition 1.7 (Optimal solution). A solution (x∗,y∗) ∈ IR is an optimal solution
if ∀(x,y) ∈ IR,F(x∗,y∗)≤ F(x,y)

Example 1.2. A bi-level optimization problem: let us consider the following BOP
problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min
x,y

F(x,y) = x− 2y

subject to
G(x,y) =−x+ 3y− 4≤ 0
⎧
⎪⎪⎨

⎪⎪⎩

Min
y

f(x,y) = x+ y

subject to
g1(x) =−x− y≤ 0
g2(x) = x− y≤ 0

For this given BOP problem:

Ω(x) = {y : y≥ |x|}

and
M(x) = |x|

The induced region may be represented by:

{(x,y) :−x+ 3y− 4≤ 0,y ∈M(x)} =
{(x,y) : y =−x,−1≤ x≤ 0}

⋃

{(x,y) : y = x,0≤ x≤ 2}
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The induced set is a non-convex set but it is a connected one. If the upper-level
constraints G(x) are modified to:

G1(x) =−x+ 3y− 4≤ 0

G2(x) =−y+
1
2
≤ 0

The induced region will be:

I = {(x,y) : y =−x,−1≤ x≤−1
2
}
⋃

{(x,y) : y = x,
1
2
≤ x≤ 2}

This new induced set is disconnected and compact. For the two BOP problems,
there are two local optima solutions (x,y): (−1,1) and (2,2) and one global optimal
solution: (2,2).

Optimistic versus pessemistic bi-level optimization: in the formulation of a BOP,
there is a certain ambiguity in the case of the existence of multiple lower-level op-
timal solutions (i.e. the reaction set M(x) is composed of multiple solutions). In
the optimistic case , the leader selects the couple (x,y) where the reaction has to
be optimal for the upper-level objective function (e.g. the leader has the last word).
Then, an optimistic solution comes from a cooperative behavior of the follower. In
the pessimistic case1 the follower will select the worst case scenario in the set of
rational solutions [42].

1.2.1 Bi-level Optimization Problems

As in single-level optimization, BOPs can be divided into two categories: those
whose solutions are encoded with real-valued variables, also known as continuous
BOPs , and those where the solutions are encoded using discrete variables such
as combinatorial BOPs. Those BOPs combining continuous and discrete decision
variables are considered as mixed BOPs .

In the last 30 years, the majority of the works concerned the continuous linear
BOPs (particularly in the follower problem). The principal reasons of this interest
are on the one hand the development of the linear programming in mathematical
programming, and the relative facility to deal with such problems2, and on the other
hand the abundance of the practical cases which can be formulated in linear form. In
the class of continuous BOP, this chapter deals with complex continuous MOPs (e.g.
non linear3) for which exact algorithms cannot be applied in a reasonable amount
of time.

1 In this paper, the traditional optimistic case is treated.
2 Facility to solve exactly the follower problem.
3 The BOP formulation contains at least one non-linear problem.
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Definition 1.8 (Linear Bi-level Optimization Problem). (LBOP) may be defined
as:

Max
x∈Rn,y∈Rm

F(x,y) = cT
1 x+ cT

2 y

where y solves the following problem:
⎧
⎪⎪⎨

⎪⎪⎩

Max f (x,y) = dT
1 x+ dT

2 y
subject to

g(x,y) = aT x+ bT y≤ 0
x,y≥ 0

where F, f : Rn×Rm −→ R are respectively the upper-level and lower-level linear
objective functions, g : Rn×Rm −→ Rq the linear constraints, c1, d1, a ∈ Rn, and c2,
d2, b ∈ Rm.

Non-linear continuous BOP represent also a well known class of BOPs. The non-
linearity may concern the upper-level, the lower-level or both optimization problems
(Tab. 1.1).

Table 1.1 Popular continuous BOPs

Upper-level problem Lower-level problem

Linear Linear
Non-linear Linear
Quadratic Quadratic
Non-linear Non-Linear

Example 1.3. Quadratic bi-level optimization problem: A quadratic bi-level opti-
mization problem (QBOP) is an optimization model formulated as follows:

Max
x∈Rn,y∈Rm

F(x,y) = cT
1 x+ cT

2 y+(xT ,yT )R(xT ,yT )T

where y solves the following problem:

⎧
⎪⎨

⎪⎩

Max f (x,y) = dT
1 x+ dT

2 y+(xT ,yT )Q(xT ,yT )T

subject to g(x,y) = aT x+ bT y≤ 0

x,y≥ 0

where F, f : Rn×Rm −→ R are respectively the upper-level and lower-level linear
objective functions, g : Rn×Rm −→ Rq the linear constraints, R,Q ∈ R(n+m).(n+m)

are symmetric matrices, c1, d1, a ∈ Rn, and c2, d2, b ∈ Rm.
The model below shows an example of a quadratic BOP [48]:

{
Min y2

1 + y2
2 + x2− 4x

subject to 0≤ x≤ 2
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where y = (y1,y2)

⎧
⎪⎨

⎪⎩

Min y2
1 + 0.5y2

2 + y1.y2 +(1− 3x)y1+(1+ x)y2

subject to 2y1 + y2− 2x≤ 1

y1,y2 ≥ 0

If the lower and/or upper level of a BOP is discrete, the problem is more difficult
and the number of references in the literature solving combinatorial BOPs are rather
small compared to continuous BOPs [17].

Example 1.4. Toll-setting problem: let us illustrate a discrete BOP by an example
related to the toll-setting problem taken from [13]. The problem consists in maxi-
mizing the revenue raised from the tolls of a transportation network. The tolls are
set on some links of the network. Given a network and a setting of the tolls, the users
wish to minimize their travel costs. If the tolls levels are not to high, the users are
detereed from using the toll arcs. Once the leader (i.e. network manager) schedule
the tolls, the followers (i.e. traveler) react to this setting and choose his itinerary to
minimize the total travel cost (i.e. standard cost such as time and distance plus tolls).

Given A the set of links of the transportation network and A the subset of toll
links. At the upper-level, the BOP can be defined as:

Max
T,x

∑a∈A
Taxa

subject to la ≤ Ta ≤ ua,∀a ∈ A

where Ta and xa represent the toll and the flow on link a respectively, and la (respec-
tively ua) is a lower (respectively upper) bound on the toll.

From the users point of view, they are assigned to paths of minimum cost ac-
cording to the current state of the transportation network. Let us consider a simple
case in which thre is a congestion-free environment. In that case, the equilibrium
will coincide with the flow assignement that minimizes the total travel cost. So, the
path-flow vector f , and the link-flow vector x, is represented by the solution of the
following lower-level discrete linear problem:

Min
f ,x

∑a∈A caxa +∑a∈A Taxa

subject to ∑p∈Prs f rs
p = drs,∀(r,s) ∈Θ

xa = ∑(r,s)∈Θ ∑p∈Prs δ
rs
a,p f rs

p ,∀a ∈ A
f rs
p ≥ 0,∀p ∈ Prs,∀(r,s) ∈Θ

The objective of the follower problem is the sum of tolls Ta (a ∈ A) and other costs
(e.g. time, distance), aggregated in a measure ca for each link. The first constraint
expresses demand satisfaction in the sense that, for a given origin-destination pair
(r,s) (the set of all such pairs is denoted by Θ ), the sum of the flows f rs

p on all paths
p connecting r to s (these paths being regrouped in Prs) equals the travel demand,
drs. The next cosntraint links path flows f rs

p and link flows xa with:
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δ rs
a,p =

{
1 if path p ∈ Prs uses link a,
0 otherwise

The leader and the follower problems are connected through the use of common
variables, namely tolls Ta (a ∈ A) and flows xa (a ∈ A). The profit of the leader
cannot be computed until flows are known. These flows are not in the direct control
of the manager, but the solution of a follower problem parameterized by the toll
vector T . This gives the following BOP:

Max
T, f ,x

∑a∈A
Taxa

subject to la ≤ Ta ≤ ua,∀a ∈ A
Min

f ,x
∑a∈A caxa +∑a∈A Taxa

subject to ∑p∈Prs f rs
p = drs,∀(r,s) ∈Θ

xa = ∑(r,s)∈Θ ∑p∈Prs δ
rs
a,p f rs

p ,∀a ∈ A
f rs
p ≥ 0,∀p ∈ Prs,∀(r,s) ∈Θ

Hence, most of metaheuristics for solving BOPs are designed to deal with continu-
ous BOPs. One of the reasons of this development is the availability of “standard”
benchmarks for continuous BOPs. We expect in the near future a growing interest in
solving combinatorial BOPs. Indeed many real-life and well-known academic prob-
lems (e.g. vehicle routing, knapsack, scheduling) can be modeled as combinatorial
BOPs.

1.2.2 Complexity and Optimality Conditions

The difficulty of BOPs and their complexity is assessed by the simplest problems.
The simplest family of BOPS, in which all the functions are continuous and lin-
ear, are strongly NP-hard [28] [4]. Even if all the functions defining the BOP are
continuous and linear, the induced region is a non-convex set [21]. In the presence
of upper-level constraints of the form G(x) ≤ 0, the induced region is a connected
set. If we consider upper-level constraints involving the lower-level variables, of the
form G(x,y) ≤ 0, then the induced region could become a disconnected set [21].
Moreover, checking the local optimality in a continuous linear BOP is a NP-hard
problem [59]. It is very easy to construct a linear BOP problem where the number
of local optima grows exponentially function of the number of variables [8].

Theorem 1.1. For any ε > 0 it is NP-hard to find a feasible solution to the linear
bi-level programming problem with no more than ε times the optimal value [19].

Many research studies in the literature concern the determination of optimality con-
ditions for a BOP. This is a central topic since the presence of the lower-level opti-
mization problem as a constraint to the upper-level problem. In some conditions, a
BOP can be transformed to a single-level optimization problem.

If the lower-level problem is convex and continuously differentiable in the lower-
level variables, then the BOP admits a necessary and sufficient representation in
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terms of its first-order necessary conditions. The resulting problem is a single level
optimization problem.

Several published approaches replace the lower-level optimization problem with
its Karush-Kuhn-Tucker (KKT) conditions. This popular approach transforms the
BOP into a single-level optimization problem with complementary constraints.
KKT conditions are used to identify whether a solution is an optimum for a con-
strained optimization problem [88]. If a regularity condition is satisfied for the
lower-level problem, then the KKT conditions are necessary optimality conditions.
Those conditions are also sufficient when the BOP is a convex optimization problem
in the y−variables for fixed parameters x. The problem can be transformed as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Min
x,y,λ

F(x,y)

subject to
G(x,y)≤ 0
�y f (x,y)+λ t�yg(x,y) = 0
g(x,y)≤ 0
λ ≥ 0,λ t g(x,y) = 0

where �y denotes the gradient with respect to the variable y.
In a constrained optimization problem, two types of optimal solutions are possi-

ble. The first type of optimal solution lies inside the feasible region and the second
type lies on the boundary of the feasible region. In the case the optimum is inside the
feasible region and the problem does not contain equality constraints, the gradient
of the objective function and the Lagrange multipliers μ are equal to zero. When
equality constraints are present in the model, the gradient of the objective function
and the Lagrange multipliers of the equality constraints λ can be different to zero.
Moreover, if the optimal solution lies at the boundary, these terms take non zero
values.

1.3 Relationships with Other Problems

In this section, the relationship of BOPs with other related problems, such as Stack-
elberg games and multi-objective optimization, is analyzed.

1.3.1 Bi-level versus Stackelberg Games

Stackelberg game is a leader-follower strategy and an N-people nonzero-sum game
[43]. In two-person nonzero-sum games, the objectives of the players are neither
exactly opposite nor do they coincide with each other, and the loss of one of them
is not equal to the other. A bi-level optimization problem can be viewed as a static
version of the non-cooperative two-person game introduced by Von Stackelberg in
the context of unbalanced economic markets [55].
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Indeed, BOPs are more or less similar in principle to Stackelberg games in game
theory [23]. In Stackelberg games, the lower-level problem is an equilibrium prob-
lem while in bi-level optimization, an optimization problem arises in the lower level.
A Stackelberg game may differ from a BOP when the reaction set of the lower-level
decision maker is not a singleton for some decisions of the leader, then a solution of
the static Stackelberg game may not be a solution for the BOP [54].

1.3.2 Bi-level versus Multi-objective Problems

The relationashio between BOPs and MOPs has been naturally investigated in the
literature. A BOP may not be equivalent to a corresponding bi-objective problem
composed with the upper-level and the lower-level objectives:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Min
x,y

F(x,y)

Min
x,y

f (x,y)

subject to G(x,y)≤ 0

g(x,y)≤ 0

Indeed, the optimal solution of the BOP is not necessarily a Pareto optimal solution
of the MOP and vice versa. At least one feasible solution of the BOP is Pareto opti-
mal for the bi-objective optimization problem. Hence, solving the bi-level program-
ming problem via the bi-objective optimization problem using the Pareto dominance
will not work.

Many researchers attempted to establish a link between BOPs and multi-objective
optimization problems (MOPs) [5] [58]. No conditions have been found which
guarantee that the optimal solution of a BOP is a Pareto optimal solution for the
upper-level and the lower-level optimization problems [54]. Using a counter exam-
ple, many authors show that optimality in BOPs and Pareto optimality in MOP are
two different concepts [65] [9] [12].

Example 1.5. Bi-level versus bi-objective optimization: this example illustrates
the existence of optimal solution for a BOP not being on the Pareto frontier of the bi-
objective problem. Hence, solutions on the Pareto frontier are not necessarily good
quality solutions for a BOP. Let us consider the following continuous linear BOP:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min
x≥0

F(x,y) = x− 4y

subject to ⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Min
y≥0

f(x,y) = y

subject to
−x− y≤−3
−2x+ y≤ 0
2x+ y≤ 12
−3x+ 2y≤−4
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Figure 1.1 shows the inducible region and the optimal solution of the BOP. In fig-
ure 1.2, all solutions in the triangle ABC dominate the optimal solutions of the bi-
level optimization problem.

1 2 3 4

1

2

3

4

5

6

Inducible region

(2,1)

(4,4)

(1,2)

(3,6)

x

y

f(y)=y

F(x,y)=x-4y

Optimal solution
(x*,y*)=(4,4)
F= -12
f = 4

Fig. 1.1 Bi-level optimization versus bi-objective optimization (1)

1.3.3 Bi-level versus Set-Valued Optimization Problems

BOPs are also closely related to set-valued optimization problems (SVOP). SVOP
can be defined as:

Min
x
{F(x) : x ∈ X}

where F : X → 2Rp
is a point to set mapping transforming x ∈ X ⊆ Rn to a subset of

Rp. Assume that the function G does not depend on y, the solution set of the system
{x : G(x)≤ 0} is identified with the set X , and F(x) corresponds to the set of all
possible upper level objective function values

F(x) :=
⋃

y∈M(x)

F(x,y)
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Thus, a SVOP problem can be transformed into a BOP. In general, the considerations
are restricted to optimization problems with set-valued objective functions and will
not consider problems with constraints in the form of set inclusions.

1 2 3 4

1

2

3

4

5

6

(2,1)

A=(4,4)

(1,2)

(3,6)

x

y

f(y)=y

F(x,y)=x-4y

-f

-F

C

B
       Feasible region of the bi-objective problem
dominating the optimal solution of the bi-level problem 

Example; solution (3,4)
F = -13
f = 4 

Fig. 1.2 Bi-level optimization versus bi-objective optimization (2)

1.4 Applications of Bi-level Optimization

Hierarchical problem structures appear in many real-life applications where low-
level decisions depend on upper-level actions. Indeed, various applications of bi-
level optimization problems arise in practice [13] [47]:

• Transportation: Many transportation models take the form of a BOP. In the
upper-level model, the traffic planner takes decisions regarding management,
control, design, and improvement investments to improve the performance of
the system [47]. In the lower-level model, the network users make choices with
regard to route, travel mode, origin and destination of their travel in response
to the upper-level decision. Typical examples include road network design [37],
logistic distribution network and supply-chain design [32], multi-depot vehicle
routing problem [38], optimal congestion pricing [67]. In road network design,
the upper-level optimization problem models the decision making of the network
manager. For example, in the case one has to add a new link, the upper-level
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problem is how much toll to charge on a road or how to set traffic signals. In the
lower-level optimization problem, the model characterizes the optimal decision
of the user responding to these controls.

• Yield management: Yield management constitutes one of the most popular
application of bi-level optimization [14]. The objective of revenue management
is to predict consumer behavior and optimize product availability and price to
maximize revenue growth. The primary goal of revenue management is selling
the right product to the right customer at the right time for the right price. The
core of this area is in understanding customers’ perception of product value and
accurately aligning product prices, placement and availability with each customer
segment. In revenue management, different primary levels may be concerned:
pricing, inventory, marketing and channels.

• Supply chain: many management problems have been formulated as BOPs, such
as competitive facility location [35].

Example 1.6. Supply chain management: Many supply chain management
problems may be formulated as BOPs [36]. The current supply chain model is
with two distribution centers and one assembly factory. The variable notation for
supply chain model is as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i : the number of distribution centers,
j : the number of assembly factories,
Di j : the demand of the jth assembly factory from the ith distribution

center, product price that the ith distribution center provides to the
jth assembly factory,

Xi : the total amount of products that the ith distribution center has,
Ci(Xi) : the unit cost for the ith distribution center to purchase product Xi,
Wi : the capacity constraint for the ith distribution center,
A j : the total amount of products that the jth assembly factory needs,
Si j(Di j) : the unit cost of product that the jth assembly factory order from the

ith distribution center,
Ti j(Di j) : the unit transportation cost of product being delivered from the

ith distribution center to the jth assembly factory,
h j : the unit holding cost for the jth assembly factory

We assume that the distribution centers belong to the upper level, while assembly
factories are the lower-level. The objective of the upper-level is to maximize the
total profits for distribution centers, while the objective of the lower level is to
minimize the total costs for assembly factories. The related parameters are set as:
i = 2, j = 1, P11 = 100, P21 = 150, C1(X1) = 40, C2(X2) = 50, W1 = 30, W2 = 20,
S11(D11) = 10, S21(D− 21) = 15, T11(D11) = 20, T21(D21) = 25, and h1 = 5.
Thus, the corresponding model can be represented as a BOP:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MAX f1 = 100D11 + 150D21− 40X11− 50X22

Min f2 = 135D11 + 195D21

subject to:
D11 ≤ X1

D21 ≤ X2

X1 ≤ 30
X2 ≤ 20
X1 +X2 ≥ 50
Xi ≥ 0, i = 1,1
Di j ≥ 0, i = 1,2; j = 1

• Engineering design: in engineering design (e.g. chemistry, mechanics), many
practical problems involve an upper-level optimization problem which requires
that a feasible solution must satisfy some given physical conditions (e.g. stability
and equilibrium conditions) [31]. Such conditions are ensured by solving a given
optimization problem which can be considered as the lower-level optimization
problem of a BOP.

• Security: indeed, many security applications are naturally modeled by bi-level
models such as the vulnerability analysis of a system (e.g. electric grid) under
terrorist threat [2].

Example 1.7. Terrorist threat problem: the terrorist threat problem can be mod-
eled as a BOP problem [3]. The vulnerability analysis involves two agents who try
to make optimal decisions according to their respective objectives functions: the ter-
rorists (i.e. destructive agents, leader) attack the system with the goal of maximizing
the damage, whereas the network operator (i.e. lower-level agent, follower) reacts
to minimize such damage (Fig.1.3). So the upper-level optimization problem is as-
sociated with the disruptive agent which will select the components of the system
to be attacked in order to maximize the damage caused to the system (e.g. lines of
an electrical grid). The damage is computed in terms of the level of system load
shed. In the lower-level model, the system operator reacts to those attacks. The fol-
lower will determine the optimal power system operation (e.g. load shedding, gen-
eration redispatch, line switching) which will minimizes the damage caused by the
disruptive agents.

1.5 Metaheuristics

The word heuristic has its origin from the Greek word heuriskein. This old Greek
word means the art of discovering new strategies (rules) to solve problems. The
suffix meta which is also a Greek word, means “upper-level methodology”. The
term metaheuristic has been introduced by F. Glover in the paper [81]. Metaheuristic
search methods can be defined as upper-level general methodologies (templates) that
can be used as guiding strategies in designing underlying heuristics to solve specific
optimization problems.
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C o m p o n e n t s  t o  b e  a t t a c k e d

U p p e r - l e v e l  p r o b l e m

L o w e r - l e v e l  p r o b l e m

M a x i m i z e  t h e  d a m a g e

D e t e r m i n e  : D i s r u p t i v e  a g e n t  ( l e a d e r )

S y s t e m  o p e r a t o r  ( f o l l o w e r )

M i n i m i z e  t h e  d a m a g e

D e t e r m i n e  :

L o a d  s h e d

Fig. 1.3 Vulnerability analysis of the electric grid under terrorist threat

Unlike exact methods, metaheuristics allow to tackle large-size problem in-
stances by delivering satisfactory solutions in a reasonable time. There is no guaran-
tee to find global optimal solutions or even bounded solutions. Metaheuristics have
received more and more popularity in the last 20 years. Their use in many applica-
tions show their efficiency and effectiveness to solve large and complex problems.

Figure 1.4 shows the genealogy of the numerous metaheuristics. The heuris-
tic concept in solving optimization problems has been introduced by Polya in
1945 [71]. The simplex algorithm, created by G. Dantzig in 1947, can be seen as
a local search algorithm for linear programming problems. J. Edmonds presents
first the greedy heuristic in the combinatorial optimization literature in 1971 [72].
The original references of the following metaheuristics are based on their applica-
tion to optimization and/or machine learning problems: ACO (Ant Colonies Opti-
mization) [89], AIS (Artificial Immune Systems) [90] [91], BC (Bee Colony) [73]
[92], CA (Cultural Algorithms) [93], CEA (Co-Evolutionary Algorithms) [94] [95],
CMA-ES (Covariance Matrix Adaptation Evolution Strategy) [75], DE (Differen-
tial Evolution) [74] [96], EDA (Estimation of Distribution Algorithms) [76], EP
(Evolutionary Programming) [99], ES (Evolution Strategies) [97] [98], GA (Genetic
Algorithms) [100] [82], GDA (Great Deluge) [101], GLS (Guided Local Search)
[77] [102], GP (Genetic Programming) [85], GRASP (Greedy Adaptive Search
Procedure) [103], ILS (Iterated Local Search) [104], NM (Noisy Method) [105],
PSO (Particle Swarm Optimization) [106], SA (Simulated Annealing) [80] [107],
SM (Smoothing Method) [108], SS (Scatter Search) [86], TA (Threshold Accept-
ing) [109], TS (Tabu Search) [81] [110], VNS (Variable Neighborhood Search) [78].

There are three common design questions related to all iterative metaheuris-
tics: the representation (i.e encoding) of solutions handled by the algorithms, the
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Fig. 1.4 Genealogy of metaheuristics. The application to optimization and/or machine learn-
ing is taken into account as the original date.

definition of the objective function that will guide the search and the strategies for
handling constraints .

Population-based search vs. single-solution based search: single-solution based
algorithms (e.g. local search, simulated annealing) manipulate and transform a sin-
gle solution during the search while in population-based algorithms (e.g. particle
swarm, evolutionary algorithms) a whole population of solutions is evolved. These
two families have complementary characteristics: single-solution based metaheuris-
tics are exploitation oriented; they have the power to intensify the search in local
regions. Population-based metaheuristics are exploration oriented; they allow a bet-
ter diversification in the whole search space.

1.5.1 S-metaheuristics

While solving optimization problems, single-solution based metaheuristics (S-meta-
heuristics) improve a single solution. They could be viewed as “walks” through
neighborhoods or search trajectories through the search space of the problem at
hand [112]. The walks (or trajectories) are performed by iterative procedures that
move from the current solution to another one in the search space. S-metaheuristics
show their efficiency in tackling various optimization problems in different domains.

S-metaheuristics iteratively apply the generation and replacement procedures
from the current single solution (Fig. 1.5). In the generation phase, a set of can-
didate solutions are generated from the current solution s. This set C(s) is generally
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obtained by local transformations of the solution. In the replacement phase4, a se-
lection is performed from the candidate solution set C(s) to replace the current solu-
tion, i.e. a solution s′ ∈C(s) is selected to be the new solution. This process iterates
until a given stopping criteria. The generation and the replacement phases may be
memoryless. In this case, the two procedures are based only on the current solution.
Otherwise, some history of the search stored in a memory can be used in the gener-
ation of the candidate list of solutions and the selection of the new solution. Popular
examples of such S-metaheuristics are local search, simulated annealing and tabu
search. Algorithm 1 illustrates the high-level template of S-metaheuristics.

Algorithm 1: High-level template of S-metaheuristics.
Input: Initial solution s0.
t = 0 ;
repeat

/* Generate candidate solutions (partial or complete neighborhood) from st */
Generate(C(st )) ;
/* Select a solution from C(s) to replace the current solution st */
st+1 = Select(C(st)) ;
t = t +1 ;

until Stopping criteria satisfied
Output: Best solution found.

M e m o r y

G e n e r a t e
c a n d i d a t e s

S e l e c t
s o l u t i o n

C a n d i d a t e
 s o l u t i o n s

Fig. 1.5 Main principles of single-based metaheuristics

The common search concepts for all S-metaheuristics are the definition of the
neighborhood structure and the determination of the initial solution .

1.5.2 P-metaheuristics

Population based metaheuristics (P-metaheuristics) start from an initial population
of solutions5. Then, they iteratively apply the generation of a new population and

4 Also named transition rule, pivoting rule and selection strategy.
5 Some P-metaheuristics such as ant colony optimization start from partial or empty solutions.
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the replacement of the current population (Fig. 1.6). In the generation phase, a new
population of solutions is created. In the replacement phase, a selection is carried
out from the current and the new populations. This process iterates until a given
stopping criteria. The generation and the replacement phases may be memoryless.
In this case, the two procedures are based only on the current population. Other-
wise, some history of the search stored in a memory can be used in the generation
of the new population and the replacement of the old population. Most of the P-
metaheuristics are nature inspired algorithms. Popular examples of P-metaheuristics
are evolutionary algorithms, ant colony optimization, scatter search, particle swarm
optimization, bee colony and artificial immune systems. Algorithm 2 illustrates the
high-level template of P-metaheuristics.

Algorithm 2: High-level template of P-metaheuristics.
P = P0 ; /* Generation of the initial population */
t = 0 ;
repeat

Generate(P′t ) ; /* Generation a new population */
Pt+1 = Select-Population(Pt ∪P′t ) ; /* Select new population */
t = t+1 ;

until Stopping criteria satisfied
Output: Best solution(s) found.

M e m o r y

G e n e r a t e  p o p u l a t i o n

R e p l a c e  p o p u l a t i o n

Fig. 1.6 Main principles of population based metaheuristics (P-metaheuristics)

P-metaheuristics differ from the way they perform the generation and the selec-
tion procedures and the search memory they are using during the search:

• Search Memory: the memory of a P-metaheuristic represents the set of infor-
mation extracted and memorized during the search. The content of this mem-
ory varies from a P-metaheuristic to another one (Tab. 1.2). In most of the P-
metaheuristics such as evolutionary algorithms and scatter search, the search
memory is limited to the population of solutions. In ant colonies, the pheromone
matrix is the main component of the search memory, whereas in estimation distri-
bution algorithms, it is a probabilistic learning model which composes the search
memory.



20 E.-G. Talbi

Table 1.2 Search memories of some P-metaheuristics

P-metaheuristic Search memory
Evolutionary algorithms (EA) Population of individuals

Scatter Search (SS) Population of solutions, reference set
Ant colonies (AC) Pheromone matrix

Estimation of Distribution Algorithms (EDA) Probabilistic learning model
Particle Swarm Optimization (PSO) Population of particles,

best global and local solutions
Bee colonies (BC) Population of bees

Artificial immune systems(AIS): Population of antibodies
Clonal selection

• Generation: in this step, a new population of solutions is generated. Accord-
ing to the generation strategy, P-metaheuristics may be classified into two main
categories (Fig. 1.7):

– Evolutionary-based: in this category of P-metaheuristics, the solutions com-
posing the population are selected and reproduced using variation operators
(e.g. mutation, recombination6) acting directly on their representations. A new
solution is constructed from the different attributes of solutions belonging to
the current population. Evolutionary algorithms (EAs) and scatter search (SS)
represent well-known examples of this class of P-metaheuristics. In EAs, the
recombination operator is generally a binary operator (crossover), while in
SS, the recombination operator may be a n-ary operator (n > 2).

– Blackboard-based7: here, the solutions of the population participate in the
construction of a shared memory. This shared memory will be the main in-
put in generating the new population of solutions. The recombination in this
class of algorithm between solutions is indirect through this shared memory.
Ant colonies and estimation distribution algorithms belong to this class of
P-metaheuristics. For the former, the shared memory is represented by the
pheromone matrix, while in the latter strategy, it is represented by a prob-
abilistic learning model. For instance, in ant colonies, the generated solu-
tions by past ants will affect the generation of solutions by future ants via the
pheromone. Indeed, the previously generated solutions participate in updating
the pheromone.

• Selection: the last step in P-metaheuristics consists in selecting the new solutions
from the union of the current population and the generated population. The tradi-
tional strategy consists in selecting the generated population as the new popula-
tion. Other strategies use some elitism in the selection phase where they provide

6 Also called crossover and merge.
7 A blackboard system is an artificial intelligence application based on the blackboard archi-

tectural model, where a shared knowledge base, the ”blackboard”, is iteratively updated by
a diverse group of agents [111].
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Fig. 1.7 Evolutionary-based versus Blackboard-based strategies in P-metaheuristics

the best solutions from the two sets. In blackboard-based P-metaheuristics, there
is no explicit selection. The new population of solutions will update the shared
search memory (e.g. pheromone matrix for ant colonies, probabilistic learning
model for estimation of distribution algorithms) which will affect the generation
of the new population.

As for S-metaheuristics, the search components which allow to define and differ-
entiate P-metaheuristics have been identified. The common search concepts for P-
metaheuristics are the determination of the initial population and the definition of
the stopping criteria.

1.6 Metaheuristics for Bi-level Optimization

Due to the intrinsic complexity of bi-level models, the problem has been recognized
as one of the most difficult, yet challenging problems to solve. Hence, metaheuristic
algorithms have been investigated to solve BOPs. They can be classified into the
following type of strategies (Fig. 1.8):

• Nested sequential approach: in this class of metaheuristic strategies, the lower-
level optimization problem is solved in a nested and sequential ways to evaluate
the solutions generated at the upper-level of the BOP.

• Single-level transformation approach: the main characteristic of this class of
metaheuristics is to reformulate the BOP into a single-level optimization prob-
lem. Then, any traditional metaheuristic can be used to solve the single-level
problem.

• Multi-objective approach: in this class of metaheuristics strategies, the BOP is
transformed to a multi-objective optimization problem. Then, any multi-objective
metaheuristic can be used to solve the generated problem.

• Co-evolutionary approach: this is the most general methodology to solve BOPs
in which many metaheuristics8, solving the different levels of the problem, co-
evolve in parallel and exchange information.

8 The number of metaheuristics is generally equal to the number of levels.
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   Metaheuristics for
 bi-level optimization

  Nested 
approach

Multi-objectiive transformation
              approach

Single-level transformation
           approach

Co-evolutuonary 
     approach

 Repairing
 approach

 Constructing
   approach

Fig. 1.8 A taxonomy of metaheuristics for bi-level optimization

1.6.1 Metaheuristics Based on Nested Approach

In the nested approach, hierarchical optimization algorithms try to solve the two
levels sequentially, improving solutions on each level to get a good overall solution
on both levels. Such algorithms include:

• Repairing approach: this approach considers the lower-level problem as a con-
straint and solve it during the evaluation step [34]. It is supposed that the lower-
optimization problem has a given structure that can be taken into account in
solving efficiently the problem.

• Constructing approach: this approach applies two improving algorithms on a
population, one for each level, sequentially until meeting a stopping criterion (e.g
given number of generations) [41].

As mentioned, the repairing approach considers the follower problem as a con-
straint. In this first phase, a solution is generated at the upper-level (i.e., generation
of (x,y)). The solution (x,y) is sent to the lower-level problem and is considered
as given initial solution for the lower-level problem (Fig.1.9). Then, an optimiza-
tion algorithm (e.g. any metaheuristic) can be used to find a “good” solution y∗
according to the lower-level optimization problem. At the lower-level, the variable
x is used as a parameter and the is fixed. Afterwards, the solution of the lower-level
(x,y∗) is transmitted to the upper-level. Then, the whole solution of the upper-level
is replaced by (x,y∗) and the upper-level objective is evaluated. Those three phases
proceed iteratively in a sequential way until a given stopping criteria.

In the constructive approach, the low-level problem is solved to improve a pop-
ulation of solutions (x,y) generated at the upper-level using the objective function
F (Fig.1.10). This approach is generally used into a population based metaheuristic
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(i.e. P-metaheuristic). Then, this population is improved at the lower-level using the
objective function f in which the decision variables x are fixed. Finally, after a given
stopping criteria, the improved population of solutions (x,y∗)will constitute the initial
population at the upper-level. This process iterates until a given stopping criteria.

U p p e r - l e v e l  p r o b l e m

E v a l u a t i o n  ( x , y )

L o w e r - l e v e l  p r o b l e m

S o l u t i o n  ( x , y )

 O p t i m a l  s o l u t i o n
      (x ,y* )

  S t r u c t u r e d  p r o b l e m

  O p t i m i z e  ( s o l u t i o n  y )

M e t a h e u r i s t i c

S p e c i f i c  a l g o r i t h m
 o r  m e t a h e u r i s t i cG e n e r a t e  ( x , y )

Fig. 1.9 The metaheuristics nested repairing approach for solving bi-level optimization
problems

The main drawback of the nested approach is its computational complexity. In-
deed, the nested procedure needs to solve an optimization problem (i.e. lower-level
problem) for each solution of the problem generated at the upper-level. The effi-
ciency of this class of strategies depends strongly on the difficulty in solving the
lower-level problem. For complex lower-level problems, more efficient metaheuris-
tic strategies must be designed in which more coordination is carried out between
the two levels of optimization.

The nested approach is characterized by:

• Upper-level solving approach: the generation of solutions at the upper-level
model needs to be considered carefully since it is the key for solving efficiently
the whole BOP problem. At the upper-level model, two different approaches may
be used:

– Exact method: the nested exact approach is widely used when the set of fea-
sible solutions can be explored in an exhaustive way. Indeed, in some BOPs,
the set of feasible solutions can be enumerated completely [32].

– Metaheuristic: any metaheuristic (or a specific heuristic) can be used to solve
the upper-level problems (e.g. genetic algorithms [2] [20], particle swarm op-
timization (PSO) [27], Differentiel evolution [34]). Metaheuristics are widely
used to solve the upper-level problem. For instance, genetic algorithms have
been used to solve linear BOPs in which the follower’s reaction is obtained
from the solution of a linear programming problem [45] [62] [50]. Each in-
dividual represents a feasible solution but not necessarily an extreme point.
In [68], a genetic algorithm has been used to solve the upper-level non-convex
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             (x,y*)

Fig. 1.10 Constructing nested approach to solve BOPs. The different optimization algorithms
may be homogeneous or heterogeneous.

problem, while a Frank-Wolfe gradient based linearized optimization strategy
has been used to solve the lower-level problem. A hybrid evolutionary algo-
rithms (genetic algorithm with simplex algorithm) in which the upper-level
problem is non-linear has been proposed in [39]. The basic idea is to gener-
ate an initial population satisfying the constraint of the upper-level problem.
Then for each solution of the population, the optimal solutions according to
the lower-level problem is generated using for instance a simplex method 1.11.
Each solution will be evaluated according to the corresponding optimal solu-
tion. This lower-level optimal solution can be considered as a feasible solution
at the upper-level.

• Lower-level solving approach: as for the upper-level, any traditional optimiza-
tion strategy can be developped to solve the lower-level problem depending on
the difficulty of the inner problem:
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Fig. 1.11 The evolutionary algorithm nested approach for solving linear bi-level optimization
problems

– Exact: according to the complexity of the problem, an exact optimization
algorithm can be used to solve the lower-level problems (e.g. branch and cut
solving a mixed-integer linear BOP [2], branch and bound solving a mixed-
integer non linear BOP [35]).
For some lower-level structured or easy problems, the nested approach may
be practical. For instance, when the lower-level problem is a linear continuous
problem, efficient linear programming techniques may be used to solve the
lower-level problem and then the nested approach can be used.

– Metaheuristic: generally, when the lower-level problem is difficult, meta-
heuristics are used to solve the inner problem (e.g. evolutionary algorithm
[32], gradient-based techniques [34]).

Table 1.3 shows some proposed nested approaches to solve BOPs. It is difficult to
extend this approach to non-linear and large scale optimization problems because of
it high computational complexity.

In homogeneous nested approach , the same metaheuristic is used at both levels
(upper-level and lower-level). For instance, in [41], a particle swarm optimization
based metaheuristic has been designed, while in [15], genetic algorithms have been
developed to solve a continuous network design problem.

1.6.2 Metaheuristics Based on Reformulation to Single-Level
Optimization Problems

Over the years, the most popular approaches for metaheuristics transform the BOP
into a single-level optimization problem by using approximate or exact method-
ologies to replace the lower-level optimization problem. Several approaches, for
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Table 1.3 Some nested approches based on metaheuristics at the upper-level and/or the lower-
level to solve BOPs

Ref Upper-level Level Lower-level Application

[34] Differential evolution Gradient-based techniques Network design
- Differential evolution Traffic assignment algorithm Toll-setting

[51] Simulated annealing Fast Gradient descent Highway network layout
[20] Genetic algorithms Path Enumeration Road network design
[39] Hybrid genetic algorithms Enumerative Non-linear continuous
[63] Genetic algorithms LP solver Linear continuous
[56] Genetic algorithms Assignment Congestion control
[70] Genetic algorithms Exact algorithm Road pricing
[36] PSO PSO Linear

Supply chain model
[40] Evolutionary algorithm Exact algorithm Upper-level non-linear

Lower-level linear
[35] Tabu search Branch and bound Facility location

- Gradient ascent Mixed nonlinear
[24] Particle swarm Particle swarm Pricing
[69] Genetic algorithm Assignment Transit scheduling
[53] Genetic algorithm Assignment Toll-setting

example, enumeration methods, penalty methods [1] [26], marginal function [46],
method and trust-region methods, have been proposed for BOPs, under the assump-
tions that all functions are convex and twice differentiable.

In the case of differentiable objectives and constraints in the lower-level problem,
a popular approach is to include the KKT conditions of the lower-level problem as
constraints into the upper-level optimization problem [31]. Additional variables into
the upper-level problem are represented by the Lagrange multipliers of the lower-
level problem. Other conditions must be satisfied to ensure that the KKT solutions
are optimal solutions.

Karush-Kuhn-Tucker (KKT) conditions: KKT conditions on the lower-level op-
timization problem are generally used as constraints in the formulation of the KKT
conditions of the upper-level optimization problem. This will involve the second
derivatives of the objectives and constraints of the lower-level problem as necessary
conditions of the upper-level optimization problem. This methodology is difficult to
apply in practical problems since the presence of many lower-level Lagrange multi-
pliers and an abstract term containing coderivatives [18].

Once the BOP is transformed to a single-level optimization problem (e.g. us-
ing KKT conditions), any traditional metaheuristic can be used to solve the single-
level problem: genetic algorithms [61] [30], differential evolution [34], simulated
annealing [33] [22], evolutionary algorithms [68] [62] [29] [57] [64], local search
algorithm [11] [52] [59], and hybrid metaheuristics (genetic algorithm with neural
network) [66].
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The basic idea of the penalty approach is the use of the concept of penalty func-
tion. In [26], a penalty function has been used to generate an initial solution and
improving the current solution using a Tabu search algorithm. The current solution
belongs always to the admissible region. Marcotte et al. transformed the network
design problem into a single-level equivalent differentiable optimization problem,
in which the required constraints involve all the extreme points of the closed convex
polyhedron for the feasible acyclic multicommodity floow patterns [44].

Table 1.4 summarizes some metaheuristics applying the reformulation of the
BOP to a single-level optimization problem.

Table 1.4 Some reformulation approches based on metaheuristics to solve the single-level
optimization problem

Ref Transformation applied Used metaheuristic

[1] Penalty function
[46] Marginal function
[26] Penalty function Tabu search
[61] KKT conditions Genetic algorithms
[30] KKT conditions Genetic algorithms
[34] KKT conditions Differential evolution
[33] KKT conditions Simulated annealing
[22] KKT conditions Simulated annealing
[68] KKT conditions Evolutionary algorithms
[62] KKT conditions Evolutionary algorithms
[29] KKT conditions Evolutionary algorithms
[57] KKT conditions Evolutionary algorithms
[64] KKT conditions Evolutionary algorithms
[11] KKT conditions Local search
[52] KKT conditions Local search
[59] KKT conditions Local search
[66] KKT conditions Hybrid metaheuristics

GA+neural network

1.6.3 Metaheuristics Based on Transformation to Multi-objective
Optimization Problems

Being a problem with two different objective functions, a natural approach to tackle
bi-level optimization problems would be to use a Pareto-based multi-objective ap-
proach . However bi-level optimization problems have a different structure. A good
solution considering a similar problem approximating the Pareto frontier could be
of bad quality in the bi-level way.

In [21], the authors propose a methodology in which a BOP is transformed to
an equivalent multi-objective optimization problem. A specific cone dominance
concept is used.
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Hence, one can use any metaheuristic for multi-objective optimization to solve
the problem. However, this approach is limited to differentiable problems since the
derivatives of the objectives of the original BOP problem are used in the mathemati-
cal formulation of the MOP problem. These assumptions are clearly very restrictive
and can be seldom satisfied.

1.6.4 Co-evolutionary Metaheuristics

In many cases, methodologies based on the nested, multi-objective or reformulation
approaches may not be used or practically inefficient. Indeed, most of those tradi-
tional approaches are designed for specific versions of BOPs or based on specific
assumptions (e.g. upper-level or lower-level problem differentiable, convex feasible
region, low-level structured problems, upper-level reduced search space). Because
of such deficiencies, those approaches cannot be used to solve real-life complex
applications (e.g. BOPs with non-differentiable objective functions, complex com-
binatorial BOPs). Therefore, some co-evolutionary based metaheuristics approaches
have been developed to solve general BOPs as bi-level programming problems with-
out any transformation.

In co-evolutionary metaheuristics, the two levels proceed in parallel. At each
level, an optimization strategy is applied. In general, the optimization strategy is
a population-based metaheuristic. Each level try to maintain and improve his own
population separately (Fig. 1.12). The two populations are evolving in parallel. Dif-
ferent populations evolve a part of the decision variables, and complete solutions are
built by means of a cooperative exchange of individuals from populations. Hence,
The two levels exchange information to keep the global view of the BOP.

Upper-level problem

Evaluation of solutions (x,y)

Lower-level problem

Information
 exchange

Metaheuristic 1

Generate (x,y)

Metaheuristic 2

Evaluation of solutions (x,y)

Generate (x,y)

Upper-level population
        of solutions

Lower-level population
        of solutions

Fig. 1.12 Co-evolutionary approach for solving BOPs. The two metaheuristics evolve in par-
allel and cooperate via information exchange.
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In designing a co-evolutionary model for any metaheuristic, the same design
questions need to be answered:

• The exchange decision criterion (When?): the exchange of information be-
tween the metaheuristics can be decided either in a blind (periodic or probabilis-
tic) way or according to an “intelligent” adaptive criterion. Periodic exchange
occurs in each algorithm after a fixed number of iterations; this type of commu-
nication is synchronous. Probabilistic exchange consists in performing a com-
munication operation after each iteration with a given probability. Conversely,
adaptive exchanges are guided by some run-time characteristics of the search.
For instance, it may depend on the evolution of the quality of the solutions or
the search memory. A classical criterion is related to the improvement of the best
found local solutions.

• The information exchanged (What?): this parameter specifies the information
to be exchanged between the metaheuristics. In general, it may be composed of:

– Solutions: this information deals with a selection of the generated and stored
solutions during the search. In general, it contains elite solutions that have
been found such as the best solution at the current iteration, local best solu-
tions, global best solution, best diversified solutions. The number of solutions
to exchange may be an absolute value or a given percentage of the population.
Any selection mechanism can be used to select the solutions. The most used
selection strategy consists in selecting the best solutions for a given criteria
(e.g. objective function of the problem, diversity, age) or random ones.

– Search memory: this information deals with any element of the search mem-
ory which is associated to the involved metaheuristic (Tab. 1.5). For ant
colonies (resp. estimation distribution algorithms), the information may be
related to the pheromone trails (resp. the probability model).

Table 1.5 Exchanged information while partitioning the population of some P-metaheuristics

Metaheuristic Search memory

Evolutionary algorithms Population of individuals
Ant colonies Pheromone matrix

Particle swarm optimization Population of particles
Scatter search Reference set, population of solutions

Estimation of distribution algorithms Probabilistic model

• The integration policy (How?): symmetrically to the information exchange pol-
icy, the integration policy deals with the usage of the received information. In
general, there is a local copy of the received information. The local variables are
updated using the received ones. For instance, the best found solution for a given
solution (x,y) is recombined with the received solution (x,y∗).

Table 1.6 summarizes the characteristics of some proposed co-evolutionary meta-
heuristics to solve BOPs. A co-evolutionary approach has been used in [49]. Two
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different populations are maintained in a parallel and independent way. The first
(resp. second) handles the decision variables x (resp. y). A limited asymmetric coop-
eration between the two players is carried out. An external elite population is main-
tained to identify the elite members of both populations after the co-evolutionary
operator for every generation. Asymmetric cooperation is implied by a mono-
directional cooperation. The follower cooperates with the leader but not otherwise.
Cooperation is only allowed amongst the best solutions (evaluated using the objec-
tive function space) who are able to satisfy their own local objectives. This serves as
the incentive to guide the search towards the optimal region. Co-evolution is carried
out by copying the lower variables to the upper population via a crossover operator.

In [38], the authors proposed a more general bi-level co-evolutionary algorithm,
which is an elitist optimisation algorithm developed to encourage cooperation be-
tween the two levels, to solve different classes of bi-level problems within a flexible
framework. CoBRA is a coevolutionary algorithm using for each level a different
population, and a different archive. The cooperation between the two players is
symetric.

Table 1.6 Characteristics of some co-evolutionary metaheuristics

Reference When? What? How ?

BiGA [49] Periodic, asymmetric Elite solutions Crossover
One generation

CoBRA [38] Periodic, symetric Elite solutions Population’s
Numerous generations recombination

1.7 Performance Assessment of Bi-level Metaheuristics

Definition 1.9 (Relaxed BOP). The relaxed version of a BOP can be defined as:
⎧
⎪⎪⎨

⎪⎪⎩

Min
x,y

F(x,y)

subject to G(x,y)≤ 0

g(x,y)≤ 0

The optimal solution for the relaxed BOP may not be feasible for the origianl BOP.
Indeed, the optimal value of the relaxed problem is a lower bound for the BOP. The
relaxed feasible region is defined as:

Ω = {(x,y) : G(x,y)≤ 0,g(x,y)≤ 0}

When the low-level problem is solved to optimality, the performance assessment of
bi-level metaheuristics is carried out using the upper-level objective. This can be
done using traditional performance measures (e.g. efficiency, effectiveness, robust-
ness) of the single-level metaheuristic community [84].
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Performance assessment of bi-level metaheuristics in which the low-level prob-
lem is not solved to optimality is not an easy task. Indeed, bi-level optimization aims
at identifying solutions in the form (x,y) which give good upper objective vectors,
while being near the optimum regarding the lower objective in which the values of
x are fixed. Figure 1.13 illustrates this difficulty. The solution X∗ is considered to be
the optimal solution of the bi-level problem, whereis A, B and C are considered to be
approximate solutions found by metaheuristics. The two solutions A and B are non
dominated in the multi-objective space composed of F and f . However, the solution
C is dominated by both solution A and B.

  X*: Optimal solution
of the bi-level problem

A

B

Min F (Upper-level)

Min f (Lower-level)

C

Fig. 1.13 Performance assessment of bi-level metaheuristics when the lower-level problem is
not solved to optimality

1.7.1 Performance Indicators

If the optimal solution (x∗,y∗) of the BOP is available, some performance metrics

such as the error rates fot the upper-level objective F: |F(x∗,y∗)−F(x,y)|
F(x∗,y∗) and the lower-

level objective f : | f (x∗,y∗)− f (x,y)|
f (x∗,y∗) may be used.

When the optimal solution of the BOP is not available, the rationality metric
has been proposed in [38] for assessing the performance of metaheuristics in solv-
ing bi-level optimization problems. Rationality is based on the proximity from the
optimum of the lower-level variables with the corresponding upper-level variables
fixed. The notion of rationality corresponds to the difficulty to improve a solution
(x,y), with the subset of upper-level variables x fixed, according to the lower-level
objective function. A rational solution is a solution where the follower reaction is
rational, seeking for the optimality of its own objective function(s).
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Given the subset x fixed, if the optimal solution for the lower problem is known,
the rationality can be measured by the error rate between the optimal solution and
the approximated solution found by the metaheuristic. Otherwise, when the optimal
solution is not known, two different rationality metrics can be used:

• Direct rationality: the direct rationality measure corresponds to the difficulty
of improving a solution without regarding the actual improvement. One simply
consider the “improvability”. To evaluate it for a population, one can apply a
parametrized number of time a “good” lower-level algorithm, and count how
many times the algorithm did improve the solution (Algo. 8).

• Weighted rationality: the weighted rationality is another rationality measure
working on the same principle as the direct rationality with the difference that,
instead of counting how many times the algorithm was able to improve the solu-
tion, one also consider how much it was improved. Being able to improve a fit-
ness by 0.001 or by 1000 does not give the same result to the rationality, whereas
the direct approach would consider both as the same (Algo. 9).

The rationality metric was introduced to compare results for a bi-level optimization
problem composed with a hard lower-level problem. Among algorithms giving a bad

Algorithm 3: Direct rationality test.
Data: AlgoLow, pop, ni number of iterations
counter← 0;
foreach gen from 1 to ni do

neopop← pop;
f ound← f alse;
AlgoLow(neopop);
foreach x in neopop do

if (not f ound) and (x dominates an element of pop) then
counter++;
f ound← f alse;

end
end

end
return counter/ni

Algorithm 4: Weighted rationality test
Data: AlgoLow, pop, ni number of iterations
ratio← 0;
foreach gen from 1 to ni do

neopop← pop;
AlgoLow(neopop);
ratio=ratio+εind(pop,neopop)/ni;

end
return ratio
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direct rationality, some algorithms can do better and were far nearer to the optimal
on the lower-level than others. The weighted rationality is able to differentiate such
algorithms.

Let us notice that rational metrics are not absolute, in the sense that we have to
compare the metaheuristics using other optimization algorithms (e.g. metaheuris-
tics), thus introducing a bias. Those performance indicators compare the capacity
of a metaheuristic to use improvement optimization algorithms, but do not actually
compare the overall capacity to tackle the whole BOP. To this end, one has to ensure
that none of the tested metaheuristics is biased toward the improvement algorithm
used by the rationality evaluation.

1.8 Conclusions and Perspectives

This chapter provides a unified view in designing metaheuristics for bi-level op-
timization problems. Moreover, a taxonomy of metaheuristics in solving BOPs
is presented in an attempt to provide a common terminology and classification
mechanisms. The class of bi-level optimization problems has an immense practical
importance.

It is not surprising that most metaheuristic algorithms to date has focused on
the simplest cases of bi-level optimization problems characterized by nice proper-
ties such as linear, quadratic or convex objective and constraint functions. There
is still a need for extensive additional research in this area. First, different variants
of metaheuristics should be compared in solving realistic large-scale problems. The
comparisons should be made from the perspectives of both computational efficiency
and effectiveness. Performance assessment of metaheuristics for bi-level optimiza-
tion constitute an important scientific challenge for researchers.

Second, designing parallel an co-evolutionary metaheuristics to solve BOPs is
a challenging issue. Indeed, solving hierarchical problems needs to revisit the de-
sign and implementation of parallel metaheuristics on different parallel architectures
(e.g. GPUs, multi-core, clusters, Grids, heterogeneous computers).

It is also promising to extent metaheuristics to solve multi-level optimization
problems with more than two levels. This is a challenging problem in terms of de-
sign and implementation of metaheuristics and also modeling real-life applications
as multi-level optimization problems.

Finally, it will be also important to tackle BOP with uncertainty. Indeed, uncer-
tainty is present in many real-life optimization problems (e.g. transportation, yield
management, supply chain).

One hope that this chapter will inspire further applications and research in bi-
level optimization using metaheuristics, to see in the future an increasing interest in
designing efficient metaheuristics for large scale BOPs.
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Squillero, G., Uyar, A.Ş., Yang, S. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp.
669–678. Springer, Heidelberg (2008)

21. Fliege, J., Vicente, L.N.: Multicriteria approach to bilevel optimization. J. Optimization
Theory Appl. 131(2), 209–225 (2006)

22. Friesz, T.L., Anandalingam, G., Mehta, N.J., Nam, K., Shah, S.J., Tobin, R.L.: The
multiobjective equilibrium network design problem revisited: A simulated annealing
approach. European Journal of Operational Research 65(1), 44–57 (1993)

23. Fudenberg, D., Tirole, J.: Game theory. MIT Press (1993)
24. Gao, J., Zhang, G., Lu, J., Wee, H.-M.: Particle swarm optimization for bi-level pricing

problems in supply chains. Journal of Global Optimization 51, 245–254 (2010)
25. Gao, Y.: bi-level decision making with fuzzy sets and particle swarm optimization. PhD

thesis, UTS, Australia (2010)
26. Gendreau, M., Marcotte, P., Savard, G.: A hybrid tabu-ascent algorithm for the linear

bilevel programming problem. Journal of Global Optimization 8, 217–233 (1996)
27. Halter, W., Mostaghim, S.: Bilevel optimization of multi-component chemical systems

using particle swarm optimization. In: World Congress on Computational Intelligence
(WCCI 2006), pp. 1240–1247 (2006)

28. Hansen, P., Jaumard, B., Savard, G.: New branch and bound rules for linear bilevel
programming. SIAM Journal on Scientific and Statistical Computing 13, 1194–1217
(1992)

29. Hecheng, L., Wang, Y.: A genetic algorithm for solving a special class of nonlinear
bilevel programming problems. In: 7th International Conference on Computational Sci-
ence (ICCS 2007), pp. 1159–1162 (2007)

30. Hejazia, S.R., Memariania, A., Jahanshahloob, G., Sepehria, M.M.: Linear bilevel
programming solution by genetic algorithm. Computers and Operations Research 29,
1913–1925 (2002)

31. Herskovits, J., Leontiev, A., Dias, G., Santos, G.: Contact shape optimization:a bilevel
programming approach. Struct. Multidisc. Optimization 20, 214–221 (2000)

32. Huang, B., Liu, N.: Bilevel programming approach to optimizing a logistic distribution
network with balancing requirements. Journal of the Transportation Research, 188–197
(1894, 2004)

33. Ciric, A.R., Sahin, K.H.: A dual temperature simulated annealing approach for solv-
ing bilevel programming problem. Computers and Chemical Engineering 23(1), 11–25
(1998)

34. Koh, A.: Solving transportation bi-level programs with differential evolution. In: IEEE
Congress on Evolutionary Computation (CEC 2007), pp. 2243–2250 (2007)
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Chapter 2
A Genetic Algorithm for Power System
Vulnerability Analysis under Multiple
Contingencies

José M. Arroyo and Francisco J. Fernández

Abstract. This chapter examines the use of a genetic algorithm to analyze the vul-
nerability of power systems. Recent blackouts worldwide have revealed the vulner-
ability of power systems and the inability of current security standards to cope with
multiple contingencies. The need for new approaches for power system vulnerability
assessment has given rise to the development of attacker-defender models, which are
particular instances of bilevel programming. The upper-level optimization identifies
a set of simultaneous outages in the power system whereas the lower-level optimiza-
tion models the reaction of the system operator against the outages obtained in the
upper level. The system operator reacts by determining the optimal power system
operation under contingency. In general, attacker-defender models are characterized
as mixed-integer nonlinear bilevel programs for which efficient solution procedures
are yet to be explored.

A genetic algorithm is described in this chapter to assess power system vulner-
ability through an attacker-defender model. The modeling flexibility provided by
genetic algorithms makes them suitable for this kind of bilevel programming prob-
lems. Numerical results demonstrate the effectiveness of the proposed approach in
the identification of critical power system components.

2.1 Introduction

Power systems play a key role in the development of national economies worldwide.
As any other critical infrastructure, power systems are subject to disruptions, either
unintentional or deliberate, that may have a significant impact on their performance.
Consequently, reliability and security are major factors in power system operation
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and planning. Current reliability policy and associated security standards in power
systems worldwide are limited to analyzing a reduced set of events where the out-
age of multiple components is typically neglected. However, recent blackouts in
industrialized countries have uncovered the vulnerability of power systems. More-
over, such catastrophic events have been caused by the coincidence in time of the
loss of several independent system components. Therefore, these disruptions reveal
the need for considering a larger number of simultaneous outages in the traditional
security assessment tools.

This chapter describes the work carried out by the authors at the Universidad
de Castilla – La Mancha which is focused on the proposal of a genetic algorithm
to analyze the vulnerability of power systems against multiple contingencies. The
level of vulnerability is defined as the system load shed and a deterministic worst-
case analysis is implemented. This is fundamental to deal with outages with low
probability of occurrence but catastrophic impact on the system that can either re-
sult from unusually devastating natural disasters or even be targeted by strategic
disruptive agents.

A general attacker-defender framework for power system vulnerability analysis
under multiple contingencies is presented in this chapter. This general framework
is formulated as a bilevel programming problem involving two optimization levels
in which their respective objective functions are optimized over a jointly depen-
dent set. The upper-level optimization determines a set of simultaneous outages in
the power system whereas the lower-level optimization models the reaction of the
system operator against the outages identified in the upper level.

Bilevel programs are complex problems for which no exact general solution
techniques are currently available. This chapter reports experience in power sys-
tem vulnerability analysis with a genetic algorithm. The modeling flexibility of this
metaheuristic provides a suitable framework to address the complexity of this type
of problems. The proposed genetic algorithm defines an individual as the vector of
statuses for all components in a power system. The optimal solution to the lower-
level problem is used to evaluate each individual. In order to find increasingly fitter
solutions in terms of the upper-level objective function, individuals are constantly
modified by the application of genetic operators.

The remainder of the chapter is organized as follows. Section 7.3 describes the
problem of power system vulnerability analysis and motivates the need for new
models accounting for multiple outages. Section 7.4 discusses the salient features
of the bilevel programming framework used to model power system vulnerability
analysis under multiple contingencies. Section 7.5 presents the structure of genetic
algorithms from the perspective of metaheuristic techniques. This section also in-
cludes the description of the proposed genetic algorithm. Section 7.6 is devoted to
a particular instance of power system vulnerability analysis. After mathematically
formulating the problem, the specific features of the proposed genetic algorithm are
examined. Section 7.7 gives numerical results to illustrate the performance of the
proposed approach. In Section 6.7, relevant conclusions are drawn. Finally, the Ap-
pendix provides the equivalent linear expressions of nonlinear constraints appearing
in the original formulation of the proposed application.
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2.2 Power System Vulnerability Analysis

Due to the reliance of current societies on electric energy, power systems have be-
come a strategic and critical infrastructure [30]. Hence, a secure and reliable op-
eration is required. Moreover, power system planning should address the reduction
of the overall vulnerability so that the correct flow of electricity from generation
facilities to consumers is guaranteed even under the most adverse conditions.

The analysis of power system vulnerability allows identifying the set of contin-
gencies to which the system is most vulnerable, i.e., those critical assets whose out-
age would yield the maximum damage to the system. The solution to this problem
is relevant for the system planner and the system operator so that effective protec-
tive and corrective actions can be devised. According to [10, 11], several strate-
gies for vulnerability reduction can be implemented such as (i) adding new assets
for purposes of redundancy [1, 5, 14], and (ii) hardening the infrastructure or
improving its active defenses so that the hardened or defended assets become invul-
nerable [9, 11, 15, 19, 37, 65]. Hardening and defense actions may include appropri-
ate surveillance measures, patrolling localized assets, and undergrounding specific
transmission components.

The vulnerability of power systems has been traditionally assessed through the
well-established methodology of power system security analysis [22]. This method-
ology is based on the well-known n− 1 and n− 2 security criteria, by which the
system is capable to withstand the loss of a single component or a couple of com-
ponents, respectively [64]. Traditional approaches used by system operators rely on
simulating a pre-specified set of contingencies, one at a time, based on the afore-
mentioned security standards [23, 28, 33, 39, 40].

Several new factors are coming into play in the operation and planning of power
systems. Over the last years, the consumption of electricity has increased above
forecasts in many countries. Furthermore, power industry is currently immersed in
a restructuring process where the main driving force is competition [57]. However,
the transmission network has not been expanded accordingly due to economic, en-
vironmental, and political reasons. In addition, security standards have not been
updated accordingly. As a consequence, power systems are being operated close to
their static and dynamic limits, yielding a vulnerable operation. This vulnerability
has been confirmed by recent large-scale events involving the outage of multiple
system components [2, 7, 24, 41, 61].

Within this new framework of increasingly vulnerable power systems and unex-
pected contingencies comprising multiple outages, system planners and operators
are exposed to a new challenge: how to assess power system vulnerability under the
occurrence of multiple contingencies beyond currently used n−1 and n−2 security
criteria.

The extension of vulnerability analysis tools to include an n−K criterion with
up to K out-of-service components poses computational challenges. As a matter
of fact, the tremendous number of contingencies that should be examined in real-
istic power systems may exceed the computational capability of today’s comput-
ers. Moreover, in selecting the set of credible contingencies in the new context of
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multiple simultaneous outages, the required experience and engineering judgment
may not be available.

This issue constitutes one of the main targets of the initiatives that have been
launched worldwide as a consequence of the concern raised by governments [16, 17,
30]. As a result, researchers have recently begun to address this problem with the
development of approaches based on attacker-defender models for both intentional
[4, 8, 9, 18, 48, 55, 56] and unintentional outages [3, 21, 52].

2.3 Attacker-Defender Models

Recently proposed attacker-defender models for power system vulnerability assess-
ment perform a worst-case analysis considering both natural-occurring events and
malicious attacks. Worst-case analysis is crucial for vulnerability assessment and
mitigation of critical infrastructure such as power systems [11]. Unlike traditional
simulation-based security assessment tools, approaches based on attacker-defender
models address the problem from the perspective of mathematical programming.
This change of paradigm is fundamental since rather than assessing the behavior of
the system on an individual contingency basis, attacker-defender models implicitly
consider the whole contingency set at the same time.

Attacker-defender models can be cast as bilevel programming problems [6, 20].
Bilevel programming is an appropriate framework to model optimization problems
in which one or several constraints are optimization problems themselves. There-
fore, the objective function of the upper-level problem is optimized considering that
the lower-level problem optimizes its own objective function. Bilevel programs are
particular instances of a sequential Stackelberg game [59] in which the game com-
prises a single round.

The upper-level problem is associated with either nature or a disruptive agent,
whereas the lower-level problem is identified with the system operator. As shown
in Fig. 2.1, out-of-service power system components are selected in the upper level.
This optimization problem takes into account that in the lower level the system
operator optimally reacts against the set of simultaneous contingencies determined
in the upper level. This reaction may include redispatching generation; involuntary
decreasing consumption, also known as load shedding; starting-up fast-acting gen-
erating units; or modifying the topology of the transmission network through the
so-called transmission line switching.

Two bilevel programming models are available in the technical literature [3],
namely a minimum vulnerability model and a maximum vulnerability model. In
both models, vulnerability is measured in terms of the system load shed, i.e., the
total power the system is unable to supply to the consumers under contingency.

In the minimum vulnerability model, the analysis of vulnerability is defined as
the identification of the lowest number of simultaneous out-of-service components
that result in a level of vulnerability (system load shed) greater than or equal to a
pre-specified threshold set by the system planner or the system operator. The solu-
tion to this problem provides the system planner with relevant information on the
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Fig. 2.1 Attacker-defender model

vulnerability of the system in a similar fashion as the currently used n−1 and n−2
security criteria. These traditional standards ensure that a minimum of 2 or 3 com-
ponents should respectively be out of service to yield limit violations eventually
requiring load shedding.

In contrast, the maximum vulnerability model determines the maximum level of
vulnerability (system load shed) that can be attained with a number of simultaneous
component outages less than or equal to a pre-specified limit. The solution to this
problem is also useful for the system planner since it allows identifying the set of
critical assets in a power system.

Both vulnerability analysis models can be formulated in a general compact way
as follows:

(Upper-Level Problem)

min
v

Fu(v,y∗,z∗) (2.1)

subject to:
Gu(v,y∗,z∗)≥ 0 (2.2)

v ∈ {0,1} (2.3)

(Lower-Level Problem)

(y∗,z∗) ∈ arg

{

min
y,z

Fl(v,y,z) (2.4)

subject to:
Gl(v,y,z) ≥ 0 (2.5)
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z ∈ {0,1}
}

, (2.6)

where v is the vector of binary upper-level decision variables; y is the vector of con-
tinuous lower-level decision variables; z is the vector of binary lower-level decision
variables; Fu(·) and Fl(·) are the upper- and lower-level objective functions, respec-
tively; and Gu(·) and Gl(·) respectively represent the sets of upper- and lower-level
constraints.

Problem (2.1)-(2.6) is a mixed-integer nonlinear bilevel programming problem.
The upper-level problem (2.1)-(2.3) determines the combination of out-of-service
components, v, considering the reaction of the system operator in the lower-level
problem (2.4)-(2.6). The system operator reacts by solving what is commonly
known as an optimal power flow [64]. It should be noted that this optimal power flow
(2.4)-(2.6) is parameterized in terms of the upper-level decision vector v. Moreover,
it is worth emphasizing that the lower-level problem (2.4)-(2.6) is generally non-
convex due to the presence of discrete variables and nonlinearities characterizing the
operation of power systems. Problem (2.1)-(2.6) is mathematically well posed based
on the assumption that the corrective actions available to the system operator allow
a feasible reaction against any feasible upper-level decision vector v. In other words,
for every upper-level decision vector v satisfying upper-level constraints (2.2), there
exist feasible lower-level decision vectors y and z.

The inherent structure of bilevel programs leads in general to nonconvex prob-
lems. Even in the simplest case with linear expressions and continuous variables,
bilevel programs are strongly NP-hard [34]. Therefore, devising exact methodolo-
gies to solve this kind of problems is a complex task. Several solution techniques
have been proposed in the technical literature to address the mixed-integer nonlin-
ear bilevel problem (2.1)-(2.6). The most relevant works include decomposition-
based approaches [8, 18, 55, 56], equivalent transformations to mixed-integer
programs [3, 4, 21, 48], and approximate methods [9, 52].

However, all previous works share limitations from either the modeling or
methodological perspectives. Thus, these models typically rely on a simplified rep-
resentation of the system behavior leading to bilevel programs with convex lower-
level problems. Furthermore, solution techniques (i) do not guarantee optimality, (ii)
are specifically tailored to such simplified models, and (iii) are mainly applicable to
systems of moderate size. Therefore, we still lack efficient tools addressing more
realistic models that are also suitable for large-scale systems.

2.4 Genetic Algorithm: An Evolutionary Metaheuristic

Introduced by Holland [36], a genetic algorithm is a metaheuristic belonging to the
class of evolutionary approaches. Metaheuristics [31, 60] are devised to address
complex optimization problems for which conventional optimization methods are
unable to be either effective or efficient. Among the various metaheuristics avail-
able, genetic algorithms are recognized as practical solution approaches for many
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real-world problems. Several factors have boosted the appeal of genetic algorithms
as global optimization approaches:

• The need for more sophisticated models makes it difficult or even impossible the
use of traditional optimization techniques. These models typically result in com-
plex optimization problems with many local optima and little inherent structure
to guide the search.

• Genetic algorithms are generally quite effective for rapid global search of large
solution spaces. As a result, near-optimal solutions are likely to be attained in
reasonable computation times.

• Genetic algorithms operate on a pool of individuals, thus multiple solutions are
suggested.

• The search mechanism is intrinsically parallel, thus lending itself to a parallel
implementation with the potential reduction in the computational requirement.

Particularly relevant applications of genetic algorithms in the field of power sys-
tem operation and planning can be found in [27, 47, 58]. In addition, genetic
algorithms have also been successfully applied to several instances of bilevel pro-
gramming [12, 13, 35, 42–44, 49–51, 62, 63]. These previous works pave the way
for the application of genetic algorithms to bilevel programs with nonconvex lower-
level problems such as the attacker-defender model (2.1)-(2.6) characterizing power
system vulnerability analysis.

2.4.1 Structure of a Genetic Algorithm

Within the general framework of metaheuristics, the genetic algorithm approach
comprises two steps: (i) obtaining an initial set of solutions, and (ii) implementing
an improving search driven by specific rules in order to yield new solution sets.

A genetic algorithm is a set-based method, i.e., in each step k, the current state of
the algorithm is represented by Sk ⊆ S, where Sk denotes the set of solutions in step k
and S is the solution space. For each solution set Sk, a neighborhood N(Sk) is defined
as all solutions resulting from the application of certain operators to the current
solutions. A candidate solution set C ⊂ N(Sk) is selected from the neighborhood
N(Sk) of the current solution set. The selected candidate solution set is subsequently
evaluated through the calculation or estimation of the performance of the candidate
solutions. Based on this evaluation, candidate solutions yield the solution set of
the next step Sk+1. This process is repeated until a convergence criterion is met.
Fig. 2.2 presents the general structure of a genetic algorithm under a metaheuristic
framework.

As other evolutionary approaches, a genetic algorithm is an adaptive search tech-
nique inspired by the evolution of natural systems [36]. Based on the idea of natu-
ral selection, a genetic algorithm works by evolving or improving a constant-sized
population of individuals over successive iterations called generations. Individuals
represent samples of the search space and are typically referred to as chromosomes,
which are encoded as strings of symbols. The position of a symbol and its value
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Fig. 2.2 General metaheuristic structure of a genetic algorithm

are respectively denoted as gene and allele. Each individual is evaluated in terms
of its overall fitness with respect to the given application domain. High-performing
individuals are selected to produce offspring that retain many of the features of their
parents.

The evolution process is carried out through a series of genetic operators [26,
32, 36, 46]. Main genetic operators include (i) selection, which implements survival
of the fittest or best solutions and determines the parents of the new generation;
(ii) crossover, which randomly exchanges gene structures from two selected par-
ents to produce new offspring; and (iii) mutation, which randomly changes one or
more components of a selected individual, thus acting as a population perturbation
operator.

From the perspective of the above general framework, the distinctive feature of
a genetic algorithm with respect to other metaheuristics is the application of ge-
netic operators to determine the neighborhood of a solution set. Thus, for a current
solution set Sk ⊆ S, the neighborhood is defined as:

N(Sk) = Ncro(Sk)∪Nmut(Sk)∪Sk, (2.7)

where Ncro(Sk) and Nmut (Sk) respectively denote the solution sets provided by
crossover and mutation, which can be expressed as:

Ncro(Sk) = {c ∈ S | c is the crossover of two solutions belonging to Sk} (2.8)
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Nmut(Sk) = {m ∈ S | m is the mutation of some solution belonging to Sk}. (2.9)

The selection of solutions is guided by their performance so that high-performing
solutions, referred to as fit individuals, are more likely to survive and yield new
solutions through crossover. As a consequence, fit solutions will be present in
subsequent generations, either unchanged or as part of their offspring. In contrast,
low-performing solutions will not survive. Selection is usually implemented using
random strategies such as the roulette wheel mechanism [26, 32, 36, 46], by which
the probability of being selected is proportional to the individual fitness.

Unlike selection, crossover and mutation are exclusively driven by the represen-
tation of the solutions. Hence, solutions yielded by these genetic operators may be
worse than current solutions, which constitutes another salient aspect with respect
to other metaheuristic approaches.

Genetic operators are intended to explore large portions of the solution space
without getting trapped at local optima. An appropriate design of the genetic oper-
ators, which is specific for each application, is thus crucial to prevent stagnation of
the evolution process.

2.4.2 Proposed Genetic Algorithm for Attacker-Defender Models

In addition to the general difficulties associated with standard combinatorial opti-
mization, the bilevel programming framework for attacker-defender models (2.1)-
(2.6) is challenging due to the existence of two optimization levels and due to the
need for an accurate representation of the system operation.

Based on previous applications of genetic algorithms to several instances of
bilevel programming [12, 13, 35, 42–44, 49–51, 62, 63], this evolution-inspired
methodology is proposed to address the general mixed-integer nonlinear bilevel pro-
gramming formulation for attacker-defender models (2.1)-(2.6). Unlike previously
reported approaches [12, 13, 35, 43, 44, 49, 51, 62, 63], the proposed method con-
siders the presence of binary variables in the lower-level problem.

The proposed genetic algorithm also differs from available genetic algorithms
for bilevel programming [12, 13, 35, 42–44, 50, 51, 62, 63] by the use of specific
repair procedures to enforce feasibility of solutions. Thus, the genetic algorithm
deals with feasible solutions only, thereby avoiding the use of penalty terms in the
objective functions, which are typically difficult to choose.

Similar to the approach presented in [44, 49, 62], the proposed genetic algorithm
is based on the following nested procedure. The evolution process operates on a set
of individuals, which are instances of the upper-level decision vector v. For each
individual, the optimal solution to the lower-level problem yields vectors y and z,
and eventually the values of the upper- and lower-level objective functions Fu and
Fl . Fig. 2.3 presents the block diagram of the proposed genetic-algorithm-based ap-
proach for the general bilevel programming formulation (2.1)-(2.6) for power sys-
tem vulnerability analysis. This figure also shows the relationship between the steps
of the genetic algorithm and the associated optimization problem.
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This nested implementation essentially decouples both optimization levels. The
upper-level problem, i.e., the determination of decision vector v, is associated with
the evolution process (initialization of the population and alteration of the individu-
als by the genetic operators). In contrast, the lower-level problem yielding decision
variables y and z is solved to obtain the fitness of individuals. This decoupling al-
lows preserving the original formulation of both optimization levels. In addition,
this nested approach is advantageous since no assumption on convexity or differen-
tiability of the lower-level problem is required, as done in [12, 35, 42, 43, 51, 63].

No 

Initial population 
(Upper-level problem  v) 

Stopping 
criterion? 

Yes 

Evaluation 
(Lower-level problem  y, z, Fl  Fu) 

Genetic operators 
(Upper-level problem  v) 

Evaluation 
(Lower-level problem  y, z, Fl  Fu) 

Start 

Stop 

Fig. 2.3 Block diagram of the proposed genetic algorithm

The proposed genetic algorithm overcomes the major shortcomings characteriz-
ing previous works on power system vulnerability analysis [3, 4, 8, 9, 18, 21, 48,
52, 55, 56] as follows:

• The decoupling between the upper and lower levels provides a flexible modeling
framework, thus allowing the consideration of sophisticated models including
nonconvexities and nonlinearities to precisely represent the operation of power
systems under contingency.

• Given the inherent parallel structure of the genetic algorithm, a parallel imple-
mentation of the approach is straightforward, thus enabling the application to
large-scale systems with tractable computational effort.

When applying genetic algorithms, selecting an appropriate solution coding scheme
and choosing a suitable evaluation procedure are both crucial. The information pro-
vided by the evaluation procedure on the fitness of each individual in the population
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is used to guide the search process. Moreover, the design of an adequate evolution
procedure is essential to avoid getting trapped at local optima. These aspects are de-
scribed next for the general formulation of the power system vulnerability analysis
problem (2.1)-(2.6).

2.4.2.1 Coding

Each individual in the population represents a candidate solution to the vulnerability
analysis problem, i.e., a vector v. Since decision vector v is binary, it is convenient to
use binary coding. Thus, individuals are encoded as binary-valued strings of length
nv, where nv is the size of vector v. Fig. 2.4 shows an example of binary coding for
the proposed genetic algorithm.

0 
Gene 1 

1 
Gene 2 

1
Gene 3 

… 
… 

0 
Gene nv 

Fig. 2.4 Example of binary coding

2.4.2.2 Fitness Evaluation

The fitness function measures the quality of individuals. Let i and fi respectively de-
note an individual and its associated fitness. For the vulnerability analysis problem
(2.1)-(2.6), the fitness of i is the value of the objective function of the upper-level
problem (2.1), i.e.:

fi = Fu(vi,y
∗
i ,z
∗
i ), (2.10)

where vi is the upper-level decision vector associated with individual i, whereas y∗i
and z∗i denote the optimal lower-level decision vectors characterizing individual i.
Note that y∗i and z∗i are obtained from the solution to the optimal power flow (2.4)-
(2.6). This step may require the solution of a mixed-integer program.

2.4.2.3 Evolution Procedure

The initial population is created with random feasible individuals. For each genera-
tion, the population is updated by replacing all parent individuals with new potential
solutions. This updating procedure is based on the individuals’ fitness and comprises
the application of several genetic operators, such as selection, crossover, mutation,
and elitism. It should be noted that infeasible solutions violating upper-level con-
straints (2.2) go through a repair procedure in order to remove infeasibilities. Ge-
netic operators are implemented as follows:

• Selection. Given a generation of feasible solutions, parents of the next genera-
tion are obtained by randomly selecting solutions of the current generation with
probabilities proportional to their corresponding fitness. This selection scheme is
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known as the roulette wheel mechanism [46], where selection is implemented by
using a roulette wheel with slots sized in proportion to individuals’ fitness. For
an individual i, the probability of being selected is expressed as:

psel
i =

fi

∑
i∈I

fi
, (2.11)

where I is the set of individuals in the current generation.
The number of parents is the same as the size of the population. Once parent
solutions are selected, they are arranged in couples in order to undergo crossover.

• Crossover. Based on a pre-specified crossover rate, crossover is applied to cou-
ples of parent solutions to produce two solutions of the next generation. For the
sake of simplicity, a single-point crossover is implemented [46]. The single-point
crossover randomly selects a location in the parent strings. Two offspring are
created by swapping the parents’ substrings located to the right of the crossover
location. Fig. 2.5 shows an example of single-point crossover.

0 1 1 0 1 

0 0 1 1 0 

Parents 

0 1 1 10 

0 0 1 01 

Offspring 

Crossover 
location 

Fig. 2.5 Example of single-point crossover

• Mutation. To avoid the loss of potentially useful genetic material, individuals
are randomly mutated according to a pre-specified mutation rate. The mutation
operator is implemented by flipping a random element from the 0/1 vector from
0 to 1 or vice versa. The application of this operator is illustrated in Fig. 2.6.

0 1 1 01

Individual selected for mutation 

0 0 1 0 1 

Mutated individual 

Gene selected 
for mutation

Fig. 2.6 Example of the mutation operator
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• Elitism. The elitist operator preserves the best solutions found by maintaining a
group of them in the next generation. As is shown in [26], this operator is neces-
sary to prove the convergence to the optimum through a Markov chain analysis.

• Feasibility. The solutions resulting from crossover and mutation operators may
be infeasible and specifically tailored procedures are used to regain feasibility.
In order to enforce feasibility of the upper-level constraints (2.2), infeasible in-
dividuals are modified by flipping a randomly selected gene from 1 to 0 or vice
versa according to the infeasibility level. This process is repeated until feasibility
is attained. If the infeasibility was caused by the mutation operator, feasibility
procedures are run without undoing what the mutation procedure did. As men-
tioned in Section 7.4, it should be noted that once a feasible upper-level vector v
is obtained, its associated lower-level problem is always feasible.

• Stopping criterion. The genetic algorithm is stopped after a pre-specified num-
ber of generations.

2.5 Application: Maximum Vulnerability Model with Line
Switching

This section presents the application of the proposed genetic algorithm approach to
a particular instance of the general attacker-defender model described in Section 7.4.
The problem addressed is a maximum vulnerability model considering transmission
line switching as one of the corrective measures available to the system operator.
For the sake of simplicity, the proposed model is based on the following modeling
assumptions:

• A static planning model comprising a single period is considered. During this
target period generation sites are known and a single load scenario is modeled,
typically corresponding to the highest load demand forecast for the considered
planning horizon.

• The model only considers failures of transmission lines and transformers, which
are both characterized by their series reactance.

• A linearized model of the transmission network, referred to as dc network flow
model [64], is used.

• The effects of unit commitment and decommitment are neglected, and thus the
lower bound on the power output of each generator is zero.

Notwithstanding, the extension to a multiperiod setting including the restoration
of damaged system components is straightforward. Similarly, the failure of other
power system components, a nonlinear transmission network model, and generation
scheduling could also be addressed.

After providing the mathematical formulation of this problem, the particular fea-
tures of the genetic algorithm implementation are described.
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2.5.1 Problem Formulation

The maximum vulnerability model with line switching can be formulated as the
following bilevel programming problem:

max
v�

∑
n∈N

ΔPd∗
n (2.12)

subject to:

∑
�∈L

(1− v�) = K (2.13)

v� ∈ {0,1}; ∀� ∈ L (2.14)

ΔPd∗
n ∈ arg

{

min
P f
� ,P

g
j ,w�,δn,ΔPd

n

∑
n∈N

ΔPd
n (2.15)

subject to:

P f
� = v�w�

1
x�

[
δO(�)− δR(�)

]
; ∀� ∈ L (2.16)

∑
j∈Jn

Pg
j − ∑

�|O(�)=n

P f
� + ∑

�|R(�)=n

P f
� +ΔPd

n = Pd
n ; ∀n ∈ N (2.17)

0≤ Pg
j ≤ P

g
j ; ∀ j ∈ J (2.18)

−P
f
� ≤ P f

� ≤ P
f
� ; ∀� ∈ L (2.19)

δ ≤ δn ≤ δ ; ∀n ∈ N (2.20)

0≤ ΔPd
n ≤ Pd

n ; ∀n ∈ N (2.21)

w� ∈ {0,1}; ∀� ∈ L

}

, (2.22)

where v� is a 0/1 variable which is equal to 0 if transmission asset � is out of service
and otherwise is equal to 1; ΔPd

n is the load shed at bus n; N is the set of bus indices;
L is the set of indices of transmission assets; K is the number of simultaneous out-
of-service transmission assets; P f

� is the power flow of transmission asset �; Pg
j is the

power output of generator j; w� is a 0/1 variable which is equal to 0 if transmission
asset � is disconnected by the system operator and 1 otherwise; δn is the phase angle
at bus n; x� is the reactance of transmission asset �; O(�) and R(�) are the sending
and receiving buses of transmission asset �, respectively; Jn is the set of indices
of generators connected to bus n; Pd

n is the demand at bus n; P
g
j is the capacity

of generator j; J is the set of generator indices; P
f
� is the power flow capacity of

transmission asset �; and δ and δ are the lower and upper bounds for the nodal
phase angles, respectively.

Problem (2.12)-(2.22) comprises an upper-level problem (2.12)-(2.14) and a
lower-level problem (2.15)-(2.22). The upper level controls binary variables v�. The
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system operator is represented by the optimal power flow in the lower-level problem
(2.15)-(2.22), which is parameterized in terms of the upper-level decision variables
v�. The system operator controls continuous variables P f

� , Pg
j , δn, and ΔPd

n , as well
as binary variables w� modeling the capability to modify the network topology.

The upper-level objective (2.12) is to maximize the system load shed. Note that
ΔPd

n are lower-level variables whose optimal values ΔPd∗
n are used in the upper-

level objective function. The pre-specified number of failures in the transmission
network is set in (2.13). Constraints (2.14) model the binary nature of variables v�.

The system operator reacts against the combination of out-of-service transmis-
sion assets v� determined by the upper-level problem by solving a dc optimal power
flow modeled by (2.15)-(2.22). The objective of the system operator is to minimize
the system load shed (2.15). Constraints (2.16) express the power flows in terms
of the nodal phase angles δn, the line switching variables w�, and the upper-level
variables v�. Note that if transmission asset � is either out of service (v� = 0) or
disconnected (w� = 0), the corresponding power flow is set to 0 by (2.16). Con-
straints (2.17) represent the power balance in each bus of the system. Upper and
lower bounds on lower-level decision variables are imposed in constraints (2.18)-
(2.21). Finally, constraints (2.22) model the integrality of variables w�. It should
be noted that weights could be assigned to nodal loads shed to reflect the relative
importance of each load.

Problem (2.12)-(2.22) is a mixed-integer nonlinear bilevel program. It is worth
pointing out that the objective functions of both optimization levels are identical.
Thus, the difficulties associated with the indifference of the lower level with respect
to the upper-level decisions [6, 20] are not present, thereby guaranteeing the exis-
tence of an optimal solution.

Constraints (2.16) constitute the main difference with respect to the bilevel mod-
els presented in [3, 4, 9, 48, 55, 56]. These constraints make the lower-level prob-
lem nonconvex due to the presence of lower-level binary variables w�, and nonlinear
due to the products of lower-level decision variables w� and δn. As a consequence,
available methods are either inexact or even inapplicable. Furthermore, the number
of possible contingency sets satisfying constraint (2.13) is equal to

(|L|
K

)
, where |L|

denotes the total number of transmission assets that are susceptible to be out of ser-
vice. Hence, an exhaustive search is not practical for large values of |L| and K, and,
consequently, new tools such as the proposed genetic algorithm are thus needed.

2.5.2 Particular Features of the Genetic Algorithm Approach

The application of the genetic algorithm approach described in Section 2.4.2 to
problem (2.12)-(2.22) is characterized by several particular aspects related to cod-
ing, fitness evaluation, and constraint handling. These specific features are described
in detail next.
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2.5.2.1 Coding

As above mentioned, each individual in the population represents a candidate solu-
tion to the vulnerability analysis problem. Each contingency set is characterized by
a binary-valued string of length |L|, associated with variables v� in problem (2.12)-
(2.22). If the allele of a gene is equal to 0, it means that the corresponding asset is
out of service. In contrast, a value of 1 indicates that the corresponding component
is operative.

2.5.2.2 Fitness Evaluation

For a given individual i, the fitness is the value of the objective function of the
upper-level problem (2.12), i.e., the system load shed:

fi = ∑
n∈N

ΔPd
n . (2.23)

Since ΔPd
n are lower-level variables, the fitness of individual i is obtained from

solving the optimal power flow (2.15)-(2.22) associated with its vector of out-of-
service transmission assets. For quick reference, the formulation of this optimization
is:

min
P f
� ,P

g
j ,w�,δn,ΔPd

n

∑
n∈N

ΔPd
n (2.24)

subject to:

P f
� = vi�w�

1
x�

[
δO(�)− δR(�)

]
; ∀� ∈ L (2.25)

∑
j∈Jn

Pg
j − ∑

�|O(�)=n

P f
� + ∑

�|R(�)=n

P f
� +ΔPd

n = Pd
n ; ∀n ∈ N (2.26)

0≤ Pg
j ≤ P

g
j ; ∀ j ∈ J (2.27)

−P
f
� ≤ P f

� ≤ P
f
� ; ∀� ∈ L (2.28)

δ ≤ δn ≤ δ ; ∀n ∈ N (2.29)

0≤ ΔPd
n ≤ Pd

n ; ∀n ∈ N (2.30)

w� ∈ {0,1}; ∀� ∈ L, (2.31)

where vi� is a parameter denoting the on/off state of transmission asset � for
individual i.

Problem (2.24)-(2.31) is a mixed-integer nonlinear programming problem. Non-
linearities arise in (2.25) due to the products of binary variables w� and continuous
variables δO(�) and δR(�). However, the product of a binary variable and a continuous
variable can be equivalently transformed into linear expressions [25]. The equivalent
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linear formulation of constraints (2.25) is provided in the Appendix. By transform-
ing nonlinear expressions (2.25) into linear equivalents, the resulting optimal power
flow becomes a mixed-integer linear programming problem suitable for off-the-shelf
branch-and-cut software [38].

2.5.2.3 Feasibility Repair Procedure

Crossover and mutation operators may produce infeasible individuals violating
upper-level constraint (2.13). In order to restore feasibility, the following repair pro-
cedure is implemented on each infeasible individual:

1. If the number of out-of-service transmission assets is less than K, a randomly
selected gene with allele equal to 1 is flipped from 1 to 0. This process is repeated
until the number of out-of-service assets is equal to K.

2. If the number of out-of-service transmission assets is greater than K, a randomly
selected gene with allele equal to 0 is flipped from 0 to 1. This process is repeated
until the number of out-of-service assets is equal to K.

2.6 Numerical Results

This section presents a case study based on the IEEE One Area Reliability Test
System-1996 (RTS-96) [54]. This test system is a widely adopted benchmark by the
power system community since its size allows both reproducibility and a compre-
hensive analysis of the results. The one-line diagram of RTS-96 is depicted in Fig.
2.7. This system comprises 24 buses, 38 transmission assets, 32 generators, and 17
loads. The corresponding number of feasible contingency sets and associated res-
olutions of the lower-level problem is

(38
K

)
. For large values of K, methods based

on complete enumeration may require excessive computational effort even for this
benchmark system.

For illustration purposes, the data of RTS-96 [54] are slightly modified as re-
ported in Tables 2.1 and 2.2. In addition, circuits sharing the same towers are treated
as independent lines; e.g., line 20-23 has two circuits: 20-23A and 20-23B. For the
sake of simplicity, line switching is restricted to the disconnection of transmission
assets.

Several instances of the maximum vulnerability model (2.12)-(2.22) have been
solved to illustrate the effectiveness of the proposed genetic algorithm. The input
parameter defining the instances is K, representing the number of simultaneous out-
of-service transmission assets. The proposed genetic algorithm has been applied for
values of K ranging between 6 and 12, which are well beyond current n− 1 and
n− 2 security criteria.

Some parameters of the genetic algorithm affect the quality of the solution and
the computation time. These parameters are selected empirically. Thus, the popu-
lation size is 100 and the maximum number of generations is 150, which are large
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Fig. 2.7 IEEE One Area Reliability Test System

enough values guaranteeing a vast exploration of the search space. In order to pro-
mote a higher exchange of genetic information among the individuals, the crossover
rate is 1.0, i.e., crossover is applied to all selected pairs of parent solutions. Fur-
thermore, in each generation a member of the population is randomly selected to be
subject to mutation. Finally, the elitist operator maintains the best solution into the
next generation.

In order to test the robustness and accuracy of the method with the selected pa-
rameter configuration, the algorithm was run 100 times with different initial popu-
lations randomly created from scratch. The simulations have been run on a Sun Fire
X4140 X64 at 2.3 GHz and 8 GB of RAM using MATLAB 7.7 [45] . The mixed-
integer linear programming optimal power flows associated with each individual
have been solved using CPLEX 11.2 [38] under GAMS 23.0 [29], which was called
from MATLAB using a recently developed interface [53].

The performance of the proposed genetic algorithm in terms of solution accu-
racy is assessed through the comparison with the upper and lower bounds on the
vulnerability level provided by two available methods. The upper bound is obtained
from the solution to the maximum vulnerability problem without considering line
switching in the lower-level problem. An exact solution approach for this relaxed
problem was presented in [48]. The lower bound, i.e., the best known result, is
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Table 2.1 Power flow capacity

Asset P f
� (MW) Asset P f

� (MW)

1-2 87.5 12-13 250.0
1-3 87.5 12-23 250.0
1-5 87.5 13-23 50.0
2-4 87.5 14-16 50.0
2-6 87.5 15-16 50.0
3-9 87.5 15-21A 250.0
3-24 80.0 15-21B 250.0
4-9 100.0 15-24 80.0
5-10 100.0 16-17 250.0
6-10 87.5 16-19 50.0
7-8 87.5 17-18 250.0
8-9 50.0 17-22 250.0
8-10 87.5 18-21A 250.0
9-11 50.0 18-21B 250.0
9-12 200.0 19-20A 250.0
10-11 50.0 19-20B 250.0
10-12 200.0 20-23A 250.0
11-13 250.0 20-23B 250.0
11-14 50.0 21-22 250.0

Table 2.2 Nodal power demand

Bus Pd
n (MW) Bus Pd

n (MW)

1 108 10 170
3 100 13 265
4 74 14 100
5 50 15 317
6 136 16 100
7 125 18 333
8 137 19 181
9 155 20 128

attained by a heuristic Benders-decomposition-based approach that was recently
presented in [18]. Both bounds are relevant since they allow measuring the maxi-
mum distance to the optimal solution, referred to as optimality gap. In other words,
the optimality gap gives insight on the maximum improvement attainable by the
proposed genetic algorithm.

The results of this assessment are summarized in Table 2.3. Columns 2-4 respec-
tively list the aforementioned lower and upper bounds as well as the corresponding
optimality gap. Columns 5-7 present the results from the genetic algorithm, namely
the best vulnerability level, the improvement over the best known result, and the
new optimality gap, respectively. In addition, Table 2.4 lists the sets of critical
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transmission assets identified by the heuristic method of [18] and the proposed
genetic algorithm.

As shown in Table 2.3, the proposed genetic algorithm always finds a solution
better than or equal to the best known solution in terms of vulnerability level. For
K equal to 7, 11, and 12, the lower and upper bounds for the vulnerability level are
identical and thus equal to the optimal value, which is also achieved by the genetic
algorithm (Tables 2.3 and 2.4). For K equal to 6 and 9, the genetic algorithm attains
the same solutions found by the heuristic approach described in [18]. However, for
K equal to 8 and 10, the genetic algorithm significantly outperforms the heuristic
method. The vulnerability level is substantially increased by 1.05% and 3.34%, re-
spectively, through the identification of different sets of critical assets, as listed in
Table 2.4. Moreover, in these cases where the genetic algorithm improves upon the
best known solution, the optimality gap is considerably reduced to tight values of
0.48% and 0.19%, respectively, thus allowing us to claim that the genetic algorithm
is able to achieve high-quality near-optimal, probably optimal, solutions.

Table 2.3 Accuracy assessment of the proposed genetic algorithm

K
Available methods Genetic algorithm

Lower bound
(MW)

Upper bound
(MW)

Gap
(%)

Best solution
(MW)

Improvement
(%)

New gap
(%)

6 775.0 794.9 2.50 775.0 0.00 2.50

7 855.0 855.0 0.00 855.0 0.00 0.00

8 905.0 918.9 1.51 914.5 1.05 0.48

9 1002.0 1003.0 0.10 1002.0 0.00 0.10

10 1017.0 1053.0 3.42 1051.0 3.34 0.19

11 1131.0 1131.0 0.00 1131.0 0.00 0.00

12 1194.0 1194.0 0.00 1194.0 0.00 0.00

As an illustrative example, Fig. 2.8 shows the sets of critical transmission assets
found by the proposed genetic algorithm and the heuristic approach for K = 10
(Table 2.4). Note that the genetic algorithm includes in the critical contingency set
assets 1-3, 1-5, 9-12, and 10-12 instead of assets 1-2, 12-13, 12-23, and 16-19,
which are identified as critical by the heuristic method. This slight modification
in the critical contingency set increases the level of vulnerability by 3.34%, thus
providing a more effective vulnerability analysis.

The robustness of the proposed genetic algorithm is backed by the statistical
results over all runs presented in Table 2.5. This table lists the minimum, maxi-
mum, and mean values as well as the standard deviation of the best vulnerability
level attained at the last generation. The relatively small values of the standard de-
viation indicate that the genetic algorithm systematically finds the best solution in
most runs.
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Table 2.4 Critical transmission assets

K Heuristic approach Genetic algorithm

6 7-8, 11-13, 12-13, 12-23, 20-23A, 20-23B 7-8, 11-13, 12-13, 12-23, 20-23A, 20-23B

7 7-8, 11-13, 12-13, 12-23, 15-24, 20-23A,
20-23B

7-8, 11-13, 12-13, 12-23, 15-24, 20-23A,
20-23B

8 7-8, 11-13, 12-13, 12-23, 14-16, 15-24,
20-23A, 20-23B

11-13, 12-13, 12-23, 15-21A, 15-21B,
16-17, 20-23A, 20-23B

9 7-8, 11-13, 12-13, 12-23, 15-21A, 15-
21B,
16-17, 20-23A, 20-23B

7-8, 11-13, 12-13, 12-23, 15-21A,15-21B,
16-17, 20-23A, 20-23B

10 1-2, 2-4, 2-6, 7-8, 11-13, 12-13, 12-23,
16-19, 20-23A, 20-23B

1-3, 1-5, 2-4, 2-6, 7-8, 9-12, 10-12,
11-13, 20-23A, 20-23B

11 1-3, 1-5, 2-4, 2-6, 7-8, 11-13, 12-13,
12-23, 15-24, 20-23A, 20-23B

1-3, 1-5, 2-4, 2-6, 7-8, 11-13, 12-13,
12-23, 15-24, 20-23A, 20-23B

12 1-2, 2-4, 2-6, 7-8, 11-13, 12-13, 12-23,
15-21A, 15-21B, 16-17, 20-23A, 20-23B

1-2, 2-4, 2-6, 7-8, 11-13, 12-13, 12-23,
15-21A, 15-21B, 16-17, 20-23A, 20-23B

Table 2.5 Best vulnerability level (MW) attained by the genetic algorithm

K Minimum Maximum Mean Standard deviation

6 775.0 775.0 775.0 0.00

7 855.0 855.0 855.0 0.00

8 879.5 914.5 910.7 5.31

9 963.5 1002.0 972.6 14.41

10 1019.0 1051.0 1046.8 9.96

11 1097.0 1131.0 1120.1 12.68

12 1149.0 1194.0 1188.6 9.39

As for the computational performance of the genetic algorithm, Table 2.6 pro-
vides statistical information on the computation times required over all trials. High-
quality solutions are achieved in less than 39 minutes for all cases, which is moder-
ate bearing in mind that a planning problem is being solved for which computational
issues are not a primary concern. It should also be noted that a slight reduction in
computation time is experienced as K increases due to the faster attainment of the
optimal solutions to the lower-level problems.

Finally, Fig. 2.9 illustrates the convergence behavior of the genetic algorithm by
showing the evolution of the mean best vulnerability level along generations for all
cases. The mean best vulnerability level is defined as the average among all runs of
the best vulnerability level achieved at each generation. As a general result, it should
be noted that the quality of the best solutions is rapidly improved in the first 20 gen-
erations. From Fig. 2.9, it might also be inferred that convergence is mostly attained
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Table 2.6 Computation time (min) required by the genetic algorithm

K Minimum Maximum Mean Standard deviation

6 33.8 38.9 36.5 1.09

7 34.4 37.5 35.9 0.63

8 34.0 36.8 35.6 0.52

9 34.2 36.0 35.0 0.37

10 33.0 35.0 34.1 0.30

11 33.1 34.4 33.7 0.25

12 32.8 33.8 33.3 0.20

after 80 generations. Notwithstanding, it should be noted that finding the best solu-
tion required at least 100 generations in 19.4% of the simulations. In other words,
improvements between generations took place along the whole evolution process,
thereby supporting both the effectiveness of the genetic operators in avoiding stag-
nation as well as the choice of 150 generations as the stopping criterion.
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2.7 Conclusions

This chapter has presented a genetic algorithm to solve the bilevel programming
models used for the analysis of vulnerability of power systems under multiple con-
tingencies. The proposed approach provides a flexible modeling framework that al-
lows considering the nonlinearities and nonconvexities associated with the operation
of power systems.

The proposed genetic algorithm has been applied to a maximum vulnerability
model in which the upper-level problem identifies the set of critical components,
whereas the lower-level problem selects the corrective actions implemented by the
system operator in order to minimize the system damage. As a complicating fac-
tor, the set of corrective actions includes the modification of the network topology
through the connection and disconnection of transmission assets by the system op-
erator. The resulting problem is characterized as a mixed-integer nonlinear bilevel
programming problem for which no exact solution techniques are available.

Numerical simulations conducted on the IEEE One Area Reliability Test System
revealed an effective performance by the genetic algorithm in terms of solution qual-
ity and computational burden. Solution quality is measured by a lower and an upper
bound for the optimal value of the vulnerability level, which are both attained by pre-
viously reported methods. It is worth mentioning that the genetic algorithm always
provided solutions within those bounds in moderate computation time. Moreover, in
several cases the genetic algorithm outperformed the best known solutions, which is
of utmost relevance for the system planner. Based on these results, the application of
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genetic algorithms for power system vulnerability analysis represents a promising
avenue of research.

Research is currently underway to address more sophisticated vulnerability
analysis models accounting for a precise nonlinear representation of power flows
through the transmission network. This extension would require the modification of
the solution method for the lower-level problem. Another interesting issue for future
research is to study the behavior of the genetic algorithm on minimum vulnerability
models. Finally, further research will also be devoted to exploring the computa-
tional savings that may be gained from the parallel implementation of the genetic
algorithm and the use of alternative genetic operators.

Acknowledgements. This work was supported in part by the Ministry of Science of Spain,
under CICYT Project ENE2009-07836; and by the Junta de Comunidades de Castilla-La
Mancha, under Project POII11-0130-2055.

Appendix

In (2.25) there are two products of binary and continuous variables per transmission
asset: (i) w� and the phase angle of the sending node of asset �, denoted as δO(�);
and (ii) w� and the phase angle of the receiving node of asset �, denoted as δR(�).

As explained in [25], by introducing four new sets of continuous variables δQ
O(�),

δQ
R(�) (representing the products w�δO(�) and w�δR(�), respectively), δA

O(�), and δA
R(�),

nonlinear constraints (2.25) are equivalently replaced by:

P f
� = vi�

1
x�

[
δQ

O(�)
− δQ

R(�)

]
; ∀� ∈ L (2.32)

δQ
O(�)

= δO(�)− δA
O(�); ∀� ∈ L (2.33)

δQ
R(�) = δR(�)− δA

R(�); ∀� ∈ L (2.34)

δw� ≤ δQ
O(�)
≤ δw�; ∀� ∈ L (2.35)

δw� ≤ δQ
R(�) ≤ δw�; ∀� ∈ L (2.36)

δ (1−w�)≤ δA
O(�) ≤ δ (1−w�); ∀� ∈ L (2.37)

δ (1−w�)≤ δA
R(�) ≤ δ (1−w�); ∀� ∈ L. (2.38)

Constraints (2.32) are the new linear expressions of the power flows. Expressions
(2.33) and (2.34) relate the nodal phase angles with the new variables δQ

O(�)
, δA

O(�),

and δQ
R(�), δA

R(�), respectively. Finally, lower and upper bounds on variables δQ
O(�)

,

δQ
R(�), δ

A
O(�), and δA

R(�) are imposed in (2.35)-(2.38), respectively.
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If transmission asset � is disconnected by the system operator (w� = 0), vari-
ables δQ

O(�)
and δQ

R(�) are set to 0 by (2.35)-(2.36), and, consequently, the power flow

through asset � is equal to 0 by (2.32). In addition, variables δA
O(�) and δA

R(�) are
respectively equal to the phase angles at the sending and receiving nodes by (2.33)-
(2.34).

Similarly, if transmission asset � is not disconnected (w� = 1), variables δA
O(�) and

δA
R(�) are both equal to 0 by (2.37)-(2.38), and variables δQ

O(�)
and δQ

R(�) are respec-

tively equal to δO(�) and δR(�) by (2.33)-(2.34). Hence, the power flow is determined
by the difference of phase angles at the sending and receiving nodes (2.32).
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Chapter 3
A Bilevel Particle Swarm Optimization
Algorithm for Supply Chain Management
Problems

Yannis Marinakis and Magdalene Marinaki

Abstract. Nature inspired methods are approaches that are used in various fields and
for the solution for a number of problems. In this study, a new bilevel particle swarm
optimization algorithm is proposed for solving two well known supply chain mana-
gement problems, the Vehicle Routing Problem and the Location Routing Problem.
The results of the algorithms are compared with the results of algorithms that solve
these problems with a single objective function and with a bilevel genetic algorithm.
As most of the decisions in Supply Chain Management are taken in different levels,
the study presented in this paper has two main goals. The first one is to give to the
decision maker the possibility to formulate the supply chain management problems
as bilevel or multilevel problems and the second one is to propose an efficient nature
inspired algorithm that solves this kind of problems.

3.1 Introduction

Significant attention concerning companies’ organization related to the entire supply
chain is paid by all companies that aim to be competitive on the market. In particular,
companies have to analyze the supply chain in order to improve the customer service
level without an uncontrolled growth of costs [41].

The decisions for supply chain management are classified into three broad ca-
tegories - strategic, tactical and operational [1]. Strategic planning represents the
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highest level of the hierarchy of decision making activities which occur within a
firm or an organization. These decisions are concerned with the definition of the
long term objectives of a firm, the charting of the long term course which will allow
a firm to meet its defined objectives, and the assurance that a firm has the proper
resources and assets necessary to support its long term objectives [41]. Thus, facility
locations, missions and relationships (i.e. network infrastructure and design), new
facility locations and sizes, facility closings and facility capacity levels are some
typical strategic logistics issues and problems which firms must address. Tactical
planning represents the second or intermediate level of decision making activities
that occur in a firm. The decision making process primarily focuses on resource
allocation and resource utilization at this level while quite often annual planning
is viewed as a subset of tactical planning. Operational planning and scheduling
represents the third and lowest level of the hierarchical planning process. At this
level, the firm must carry out the resource allocation and utilization decisions made
at the tactical level in the daily and weekly activities which occur at the operational
level [41]. At this level, an extraordinary number of individual manufacturing and
distribution decisions occur regularly, a small sample of which are the customer
order processing and scheduling, the facility operations scheduling, and the vehicle
scheduling and routing.

In this paper, two classic NP-hard Supply Chain Management problems, the Ve-
hicle Routing Problem and the Location Routing Problem are formulated as a bilevel
programming problems. For the Vehicle Routing Problem the decisions are made in
the operational level. When the problem is formulated as a bilevel programming
problem, in the first level, the decision maker assigns customers to the vehicles
checking the feasibility of the constructed routes (vehicle capacity constraints) and
without taking into account the sequence by which the vehicles will visit the cus-
tomers. In the second level, the decision maker finds the optimal routes of these
assignments. The decision maker of the first level, once the cost of each routing has
been calculated in the second level, estimates which assignment is the better one
to choose. For the Location Routing Problem, the decisions are made in the strate-
gic level and in the operational level. Thus, we formulate the problem in such a
way that in the first level, the decisions of the strategic level are made, namely, the
top manager finds the optimal location of the facilities, while in the second level,
the operational level decisions are made, namely, the operational manager finds the
optimal routing of vehicles.

For the solution of these bilevel problems a hybrid Particle Swarm Optimiza-
tion algorithm is used. Particle Swarm Optimization (PSO) is a population-based
swarm intelligence algorithm that was originally proposed by Kennedy and Eber-
hart [23] and simulates the social behavior of social organisms by using the physical
movements of the individuals in the swarm. Its mechanism enhances and adapts to
the global and local exploration. Most applications of PSO have concentrated on
the optimization in continuous space while some work has been done to the discrete
optimization [24, 56]. Recent complete surveys for the Particle Swarm Optimiza-
tion can be found in [2, 3, 48]. The Particle Swarm Optimization (PSO) is a very
popular optimization method and its wide use, mainly during the last years, is due to
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the number of advantages that this method has, compared to other optimization me-
thods. Some of the key advantages are that this method does not need the calculation
of derivatives, that the knowledge of good solutions is retained by all particles and
that particles in the swarm share information between them. PSO is less sensitive to
the nature of the objective function, can be used for stochastic objective functions
and can easily escape from local minima. Concerning its implementation, PSO can
easily be programmed, has few parameters to regulate and the assessment of the
optimum is independent of the initial solution.

As there are not any nature inspired methods based on Particle Swarm Optimiza-
tion, at least to our knowledge, for the solution of bilevel Supply Chain Manage-
ment problems focusing on routing decisions, we would like to develop such an
algorithm and to test its efficiency compared to other evolutionary algorithms for
bilevel formulated problems. Also, the results will be compared with the results of
a Particle Swarm Optimization algorithm when this algorithm is used for the so-
lution of these supply chain management problems when they are not formulated
as bilevel problems. Thus, in this paper, we demonstrate how a nature inspired in-
telligent technique, the Particle Swarm Optimization (PSO) [23] and the Expanding
Neighborhood Search strategy [29] can be incorporated in a hybrid scheme, in order
to give very good results for the Bilevel Vehicle Routing Problem and the Bilevel
Location Routing Problem.

The rest of the paper is organized as follows. In section 3.2 a brief introduc-
tion of Bilevel Optimization is given. In section 3.3, the formulation of the Supply
Chain Management Problems is given while in section 3.4, an analytical descrip-
tion of the proposed algorithm is given. In section 3.5, the computational results of
the algorithm are presented and analyzed. Finally, in the last section some general
conclusions and the future research are given.

3.2 Bilevel Programming

Bilevel optimization problems arise in hierarchical decision making, where players
of different ranks are involved. The situation is described by the so-called Stackel-
berg game . Because of the inherent nonconvexity of these problems, it is not easy
to find globally optimal solutions [39, 40].

The bilevel programming problem describes a hierarchical system which is com-
posed of two levels of decision makers. The higher level decision maker, known
as leader, controls the decision variables y, while the lower level decision maker,
known as follower, controls the decision variables x. The interaction between the
two levels is modeled in their respective loss functions ϕ(x,y) and f (x,y) and of-
ten in the feasible regions. The leader and the follower play a Stackelberg duopoly
game . The idea of the game is as follows: The first player, the leader, chooses y to
minimize the loss function ϕ(x,y), while the second player, the follower, reacts to
leader’s decision by selecting an admissible strategy x that minimizes his loss func-
tion f (x,y). Thus, the follower’s decision depends upon the leader’s decision, i.e.
x = x(y), and the leader is in full knowledge of this.
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The general bilevel programming problem is stated as follows:

(BP) min
y∈Y

ϕ(x(y),y) (3.1)

subject to ψ(x(y),y)≤ 0, (3.2)

where x(y) = argmin
x∈X

f (x,y) (3.3)

subject to g(x,y)≤ 0, (3.4)

where X ⊂ Rn and Y ⊂ Rm are closed sets, ψ : X×Y → Rp and g : X×Y → Rq are
multifunctions, ϕ and f are real-valued functions.

The upper level (3.1)-(3.2) corresponds to the leader, while the lower level (3.3)-
(3.4) corresponds to the follower. The set S = {(x,y) : x ∈ X ,y ∈ Y,ψ(x,y) ≤
0,g(x,y) ≤ 0} is the constraint set of BP. For fixed y ∈ Y , the set X(y) = {x ∈
X : g(x,y) ≤ 0} is the feasible set of the follower. The set R(y) = {x ∈ X : x ∈
argminw∈X(y) f (w,y)} is called the rational reaction set of BP. The feasible set of
BP is F = {(x,y) ∈ S : x ∈ R(y)}. A feasible point (x�,y�) ∈ F is a Stackel-
berg equilibrium (with the first player as the leader) if ϕ(x�,y�) ≤ ϕ(x,y) for all
(x,y) ∈F .

3.3 Supply Chain Management Problems

3.3.1 Vehicle Routing Problem

The Vehicle Routing Problem (VRP) or the Capacitated Vehicle Routing
problem (CVRP) is often described as the problem in which vehicles based on
a central depot are required to visit geographically dispersed customers in order to
fulfill known customer demands. The vehicle routing problem was first introduced
by Dantzig and Ramser (1959) [9]. Since then, a number of variants of the classic
Vehicle Routing Problem has been proposed in order to incorporate more constraints
like time windows, multi-depot, stochastic or dynamic demands. The reader can find
more detailed descriptions of the algorithms proposed for the CVRP and its variants
in the survey papers [5, 6, 14, 17, 18, 26–28, 57] and in the books [19, 21, 45, 59].

In this section, the Vehicle Routing Problem is formulated as a problem of two
decision levels [31]. In the first level, the decision maker assigns customers to the
vehicles checking the feasibility of the constructed routes (vehicle capacity con-
straints) and without taking into account the sequence by which the vehicles will
visit the customers. In the second level, the decision maker finds the optimal routes
of these assignments. The decision maker of the first level, once the cost of each
routing has been calculated in the second level, estimates which assignment is the
better one to choose.

One of the most important formulations that has ever been proposed for the solu-
tion of the problem is the formulation of Fisher and Jaikumar [13]. This formulation
belongs to the category of vehicle flow models. Fisher and Jaikumar proved that the
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constraints of the problem can be separated in two sets. The first set of constraints
are the constraints of a generalized assignment problem and they ensure that each
route begins and ends at the depot, that every customer is served by some vehi-
cle, and that the load assigned to a vehicle is within capacity. The second set of
constraints corresponds to the constraints of a Traveling Salesman Problem for all
customers of each vehicle. So, they solved a generalized assignment problem ap-
proximation of the Vehicle Routing Problem in order to obtain an assignment of
customers. Subsequently, the customers assigned to each vehicle can be sequenced
using any Traveling Salesman algorithm.

The formulation of Fisher and Jaikumar gave us the idea that the Vehicle Rou-
ting Problem can be formulated as a problem of two decision phases or as a problem
of two decision levels. By saying two levels it is meant that in each level a diffe-
rent problem is solved, but the solution of the one level depends on the solution of
the other. In particular, it is assumed that the decisions in the second level are re-
acting to the decisions of the first level and that the decisions in the first level must
be made by taking this fact into consideration. This kind of formulation is called
bilevel formulation. Thus, the Vehicle Routing Problem can be viewed as a bilevel
decision problem where in the first level decisions must be made concerning the
assignment of the customers to the routes and in the second level decisions must be
made concerning the routing of the customers.

Let G = (N,E) be a graph where N is the vertex set and E is the arc set. The
customers are indexed i = 2, · · · ,n, j = 1, · · · ,n and i = 1 refers to the depot. The
vehicles are indexed k = 1, · · · ,K. The capacity of vehicle k is Qk. If the vehicles are
homogeneous, the capacity for all vehicles is equal and denoted by Q. A demand
q j and a service time st j are associated with each customer node j. The travel cost
between customers i and j is ci j. The problem is to construct a low cost, feasible
set of routes - one for each vehicle (starting and finishing at the depot). A route
is a sequence of locations that a vehicle must visit along with the indication of
the serve it provides [6]. The vehicle must start and finish its tour at the depot.
Customer orders cannot be split. The customers are assigned to a single route until
the routes reach capacity or time limits, subsequently a new customer is selected as
a seed customer for the new route and the process is continued. A seed customer is
a customer not yet assigned in a route that is used in order to initialize a new route.
The distance of the k seed customer from the depot is dk.

In order to present the bilevel model for the problem, we define the following
variables:

zk =

{
1 if k is a seed customer
0 otherwise,

xk j =

⎧
⎨

⎩

1 if customer j belongs in the same route
with the seed customer k

0 otherwise,
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and

yi j =

{
1 if edge (i, j) is in the route
0 otherwise.

The bilevel formulation for the Vehicle Routing Problem is then:

(leader) min
x,z

K

∑
k=1

dkzk +
K

∑
k=1

n

∑
j=1

ck jxk j +
n

∑
i=1

n

∑
j=1

ci jyi j (3.5)

s.t.
n

∑
k=1

zk = K (3.6)

n

∑
j=1

q jx jk ≤ (Q− qk)zk, ∀k ∈ K (3.7)

K

∑
k=1

xk j = 1, ∀ j = 1, · · · ,n (3.8)

where

(follower) min
y|x,z

n

∑
i=1

n

∑
j=1

ci jyi j (3.9)

s.t.

yi j ≤ xik, i, j = 1, · · · ,n,
k = 1, · · · ,K (3.10)

n

∑
i=1

yi j = 1, j = 1, · · · ,n (3.11)

n

∑
j=1

yi j = 1, i = 1, · · · ,n (3.12)

∑
j∈V

∑
i∈V

yi j ≤ |S|− 1, ∀S⊂V,S 
= /0. (3.13)

The objective function of the leader (Eq. 3.5) minimizes the sum of the seed cus-
tomers’ costs from depot, the sum of the costs of assigning customers to the routes,
i.e. the assignment of the customers to the seed customers and the routing cost.
Constraints (Eq. 3.6) requires zk to be set equal to the number of vehicles. Con-
straints (Eq. 3.7) are the vehicle capacity constraints. Finally, constraints (Eq. 3.8)
state that every customer j must be on exactly one route (vehicle). The objective
function of the follower (Eq. 3.9) describes the routing cost of each vehicle based
on the assignment by the leader. Constraints (Eq. 3.10) require that the Traveling
Salesman Problem should be solved only for the group of customers that have
been assigned to the specific vehicle. Constraints (Eq. 3.11), (Eq. 3.12) are degree
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constraints specifying that each node is entering exactly once and is leaving it ex-
actly once. Constraints (Eq. 3.13) are subtour elimination constraints.

3.3.2 Location Routing Problem

In the most location models, it is assumed that the customers are served directly
from the facilities being located. Each customer is served on his or her own route.
In many cases, however, customers are not served individually from the facilities.
Rather, customers are consolidated into routes which may contain many customers.
One of the reasons for the added difficulty in solving these problems is that there
are far more decisions that need to be made by the model. These decisions include:

• how many facilities to locate,
• where the facilities should be,
• which customers to assign to which depots,
• which customers to assign to which routes,
• in what order customers should be served on each route.

In the Location Routing Problem (LRP), a number of facilities are located among
candidate sites and delivery routes are established to a set of users in such a way
that the total system cost is minimized. As Perl and Daskin [46] pointed out, lo-
cation routing problems involve three inter-related, fundamental decisions: where
to locate the facilities, how to allocate customers to facilities, and how to route the
vehicles to serve customers. The difference of the Location Routing Problem from
the classic vehicle routing problem is that not only routing must be designed but
also, the optimal depot location must be simultaneously determined. The main dif-
ference between the location routing problem and the classical location-allocation
problem is that, once the facility is located, the former requires a visitation of cus-
tomers through tours while the later assumes that the customer will be visited from
the vehicle directly and, then, it will return to the facility without serving any other
customer [42]. In general terms, the combined location routing model solves the
joint problem of determining the optimal number, capacity and location of facilities
serving more than one customer and finding the optimal set of vehicle routes. In the
location routing problem the distribution cost is decreased due to the assignment of
the customers to vehicles while the main objective is the design of the appropriate
routes of the vehicles. An extended recent literature review is included in the survey
paper published by Nagy and Salhi [43].

In this section, a formulation for the Location Routing Problem based on the
Bilevel Programming is given [32]. Location Routing Problem consists of decisions
taken at two different levels, at the strategic level and at the operational level. The
strategic level is considered as the first level of the proposed bilevel formulation
and the operational level is considered as the second level. There are two decisions
makers that solve a different problem at each level. The decision maker of the first
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level (leader), namely, the decision maker that will decide where the facilities will
be located, calculates the alternative solutions for the location of the facilities and
the assignment of the customers in each facility. For each proposed solution, the
decision maker of the second level (the follower) reacts and calculates the routing
cost and the order that the vehicles will visit the customers. The leader based on the
solutions of the follower’s problem decides the optimal location of the facilities. In
the following, the proposed formulation is given and analyzed in detail.

Let G = (N,E) be an undirected graph, where N = {1, ...,n} is the set of nodes
and E is the set of edges. Each node can be used either as facility node or customer
node or both. Let C = (ci j) be a matrix of costs, distances or travel times associated
with the number of edges. If ci j = c ji for all i, j ∈ N, the matrix and the problem is
said to be symmetrical, otherwise it is asymmetrical. C satisfies the triangle inequa-
lity if and only if ci j + c jl ≥ cil for all i, j, l ∈ N. There can be, at most, k identical
vehicles of capacity Qk based at facility l. It is assumed that ci j are nonnegative.
Every customer has a nonnegative demand q j.

For the modeling of the problem, the following sets are used:

• N is the set of the demand nodes,
• U is the set of candidate facility sites, and
• K is the set of all vehicles that can be used.

The inputs to the model are the following:

• q j is the demand at customer node j,
• Fl is the fixed cost of locating a facility at candidate site l,
• ci j is the cost of traveling between node i and node j,
• Qk is the capacity of vehicle k, and
• QFl is the capacity of each facility l.

Finally, the decision variables of the problem are:

y j =

{
1, if the facility is located at candidate site l
0, otherwise,

zlk =

⎧
⎨

⎩

1, if vehicle k operates out of a facility at candidate
site l

0, otherwise,

and

xi jk =

⎧
⎨

⎩

1, if node i immediately precedes node j on a route
using vehicle k

0, otherwise.



3 A Bilevel PSO Algorithm for Supply Chain Management Problems 77

Taking into account the previous definitions, inputs and variables, the proposed
bilevel formulation of the Location Routing Problem is the following:

(leader) min ∑
l∈U

Flyl +∑
i∈N

∑
j∈N

∑
k∈K

ci jxi jk (3.14)

s.t.

∑
k∈K

Qkzlk ≤ QFlyl , ∀l ∈U (3.15)

zlk ≤ yl , ∀l ∈U,∀k ∈ K (3.16)

∑
l∈U

zlk ≤ 1, ∀k ∈ K (3.17)

where

(follower) c = min ∑
i∈N

∑
j∈N

∑
k∈K

ci jxi jk (3.18)

s.t.

∑
k∈K

∑
i∈N

xi jk = 1, ∀ j ∈ N (3.19)

∑
i∈N

qi ∑
j∈N

xi jk ≤ Qk ∑
l∈U

zlk, ∀k ∈ K (3.20)

∑
i∈N

xi jk = z jk, ∀k ∈ K,∀ j ∈ N (3.21)

∑
i∈N

x jik = z jk, ∀k ∈ K,∀ j ∈ N (3.22)

∑
i∈S

∑
l∈S

∑
k∈K

xilk ≤ |S|− 1, S = {2,3, · · · ,n}. (3.23)

The objective function of the leader problem (Eq. 3.14) minimizes the sum of the
fixed facility location costs and the distance related routing costs. Constraints (Eq.
3.15) state that the total quantity of products that the vehicles can carry in each route
must not exceed the capacity of the facility. Constraints (Eq. 3.16) state that a ve-
hicle can be assigned to a route originating from site l only if a facility is located
at site l. Constraints (Eq. 3.17) state that each vehicle can be assigned to at most
one facility. The objective function of the follower (Eq. 3.18) minimizes the sum of
the distance related routing costs. Constraints (Eq. 3.19) state that every customer i
must be on exactly one route. Constraints (Eq. 3.20) are the vehicle capacity con-
straints. Constraints (Eq. 3.21) and (Eq. 3.22) state that if vehicle k is assigned to a
route originating from a facility at site j, then at least one link goes into node j (Eq.
3.21) and one leaves node j (Eq. 3.22) and are used, also, as flow conservation con-
straints. They state that if a vehicle k enters at node j (from any node i), then it must
depart from node j (to some other node i). To eliminate the possibility of subtours,
constraints (Eq. 3.23) are used that are known as subtour elimination constraints.
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3.4 Bilevel Particle Swarm Optimization Algorithm

3.4.1 General Description of the Bilevel Particle Swarm
Optimization Algorithm (PSOBilevel)

For the solution of these problems, a Bilevel Particle Swarm Optimization Algo-
rithm, the PSOBilevel, is proposed. In the first level of the algorithm, a Capacitated
Facility Location Problem is solved for the Location Routing Problem and a Ge-
neralized Assignment Problem is solved for the Vehicle Routing Problem in order
to create the initial population of individuals (solutions). The follower’s problem
requires the solution of a Vehicle Routing Problem (for the Location Routing Prob-
lem) and of a Traveling Salesman Problem (for the Vehicle Routing Problem) for
each individual of the population. The outline of the proposed algorithm is presented
in the following.

Initialization
First Level Problem

1. Select the number of swarms.
2. Select the number of particles in each swarm.
3. Initialize the solutions with a random way.
3. Convert particles’ positions in continuous form.
4. Initialize the position and velocity of each particle.
5. Calculate the initial fitness function of each particle.
6. Find the best solution of each particle.
7. Find the best particle of the entire swarm.
8. Call for each particle the second level algorithm.

Second Level Problem

1. For each particle of the initial population solve a Vehicle Routing Problem (for
the Location Routing Problem) and a Traveling Salesman Problem (for the Vehi-
cle Routing Problem) using a nearest neighborhood algorithm.

2. Improve the solution of each particle using the Expanding Neighborhood Search
Method.

Main Algorithm

1. Set the number of iterations equal to zero.
2. Do while stopping criteria are not satisfied (the maximum number of iterations

has not been reached):

First Level Problem

2.1 Calculate the velocity of each particle.
2.2 Calculate the new position of each particle.
2.3 Convert particles’ positions in integer form.
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2.4 Calculate the new fitness function of each particle.
2.5 Call for each particle the second level algorithm.

Second Level Problem
2.5.1 For each particle of the initial population solve a Vehicle Routing Prob-

lem (for the Location Routing Problem) and a Traveling Salesman Problem
(for the Vehicle Routing Problem) using a nearest neighborhood algorithm.

2.5.2 Improve the solution of each particle using the Expanding Neighbor-
hood Search Method.

2.6 Update the best solution of each particle.
2.7 Find the best particle of the whole swarm.
2.8 Convert particles’ positions in continuous form.

3. Enddo
4. Return the best particle.

In the following, a detailed description of each step of the proposed algorithm is
given.

3.4.2 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm was proposed by Kennedy and
Eberhart [23–25] to simulate the social behavior of social organisms such as bird
flocking and fish schooling. This method has been identified as very useful in many
problems. The reason is that the implementation is easy and it gives good results,
especially in problems with continuous variables.

Some of the advantages of this method is that:

• it has memory which is important because the information from past good solu-
tions passes on to future generations,

• there is cooperation between particles (solutions) of the swarm because they
work together to create solutions.

In this section, the proposed Particle Swarm Optimization (PSO) algorithm for the
solution of the Bilevel Supply Chain Management Problems is given . In PSO al-
gorithm, initially a set of particles is created randomly where each particle corre-
sponds to a possible solution. Each particle has a position in the space of solutions
and moves with a given velocity. One of the key issues in designing a successful
PSO for the bilevel problem is to find a suitable mapping between the bilevel prob-
lems and the particles in PSO. In the first level of the problem, where the Particle
Swarm Optimization method is applied, the Capacitated Facility Location Problem
(for the Location Routing Problem) and the Generalized Assignment Problem (for
the Vehicle Routing Problem) are solved, respectively. In these problems the rep-
resentation of a solution is mapped into a binary particle where the bit 1 denotes
that the corresponding location is opened for the first problem and the customer is
assigned to the vehicle for the second problem and the bit 0 denotes otherwise.
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The position of each individual (called particle) is represented by a d-dimensional
vector in problem space xi = (xi1,xi2, ...,xid), i = 1,2, ...,N (N is the population size
and n is the number of the vector’s dimension), and its performance is evaluated on
the predefined fitness function ( f (xi j)). The velocity vi j represents the changes that
will be made to move the particle from one position to another. Where will move
the particle depends on the dynamic interaction of its own experience and the ex-
perience of the whole swarm. There are three possible directions that a particle can
follow: to follow its own path, to move towards the best position it had during the
iterations (pbesti j) or to move to the best particle’s position (gbest j).

In the literature, a number of different variants of the Particle Swarm Optimiza-
tion have been proposed for the calculation of the velocities. In this paper it is used
the one called Inertia Particle Swarm Optimization [56]:

vi j(t + 1) = wvi j(t)+ c1rand1(pbesti j− xi j(t))+ c2rand2(gbest j− xi j(t)) (3.24)

where c1 and c2 are the acceleration coefficients, rand1 and rand2 are two random
variables in the interval [0, 1]. The acceleration coefficients c1 and c2 control how
far a particle will move in a single iteration. Low values allow particles to roam
far from target regions before being tugged back, while high values result in abrupt
movement towards, or past, target regions [23]. If c1 = c2 = 0 the particles are di-
rected where their velocity indicates, if c1 > 0 and c2 = 0, then, each particle is
influenced only by its previous moves and not from the other particles in the swarm
and if c2 > 0 and c1 = 0 all the particles follow the best particle. Most of the time
the researchers select c1 = c2. In this case, the particle is influenced equally by both
factors. Also, sometimes the values of c1 and c2 are changed so that the influence
of the two factors can vary during the iterations. In our algorithm, we use the fol-
lowing definition for c1 and c2. Let c1,min,c1,max,c2,min,c2,max be the minimum and
maximum values that c1,c2 can take, respectively, then:

c1 = c1,min +
c1,max− c1,min

itermax
× t (3.25)

c2 = c2,min +
c2,max− c2,min

itermax
× t (3.26)

where t is the number of current iteration and itermax the maximum number of the
iterations. In the first iterations of the algorithm, the values of c1 and c2 are small
and, then, they increase until they reach to their maximum values. The advantage of
this definition for c1 and c2 is that in the first iterations there is a great freedom of
movement in the particles’ (solutions’) space.

The inertia weight w is used to control the impact of previous histories of velo-
cities on the current velocity. The particle adjusts its trajectory based on informa-
tion about its previous best performance and the best performance of its neighbors.
The inertia weight w is, also, used to control the convergence behavior of the PSO.
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A number of different alternatives for the definition of w have been proposed. These
alternatives vary from constant values to different ways of increasing or decreasing
of w during the iterations. In this paper, in order to exploit more areas in the solution
space, the inertia weight w is updated according to the following equation:

w = wmax− wmax−wmin

itermax
× t (3.27)

where wmax, wmin are the maximum and minimum values of inertia weight. Initially,
the particles’ velocities are initialized with zeros.

The basic PSO and its variants have successfully operated for continuous opti-
mization functions. As both of the problems should have binary values we use the
extension for discrete spaces proposed by Kennedy and Eberhart [24]. In this ver-
sion, a particle moves in a state space restricted to zero and one on each dimension
where each vi represents the probability of bit xi taking the value 1. Thus, the parti-
cles’ trajectories are defined as the changes in the probability and vi is a measure of
individual’s current probability of taking 1. If the velocity is higher, it is more likely
to choose 1, and lower values favor choosing 0. A sigmoid function is applied to
transform the velocity from real number space to probability space:

sig(vi j) =
1

1+ exp(−vi j)
(3.28)

The position of a particle changes using the following equation:

xid(t + 1) =

{
1, if rand3 < sig(vi j)
0, if rand3≥ sig(vi j)

(3.29)

A particle’s best position (pbesti j) in a swarm is calculated from the equation:

pbesti j =

{
xi j(t + 1), if f (xi j(t + 1))< f (xi j(t))
pbesti j, otherwise

(3.30)

The optimal position of the whole swarm in the Bilevel PSO at time t is calculated
by the equation:

gbest j ∈ {pbest1 j, pbest2 j, · · · , pbestN j| f (gbest j)}=
min{ f (pbest1 j), f (pbest2 j), · · · , f (pbestN j)} (3.31)

In the second level of the problem the Expanding Neighborhood Search algorithm
is solved for each particle (see section 3.4.3). In each iteration of the algorithm, the
optimal solution of the whole swarm and the optimal solution of each particle are
kept. All the solutions in the second level are represented with the path represen-
tation of the tour. The algorithm stops when a maximum number of iterations has
been reached.
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3.4.3 Expanding Neighborhood Search

The local search method that is used in this paper is the Expanding Neighbor-
hood Search [29]. Expanding Neighborhood Search (ENS) is a metaheuristic algo-
rithm [29–31, 34, 35] that can be used for the solution of a number of combinatorial
optimization problems with remarkable results. The main features of this algorithm
are:

• the use of the Circle Restricted Local Search Moves Strategy,
• the use of an expanding strategy, and,
• the ability of the algorithm to change between different local search strategies.

These features are explained in detail in the following.
In the Circle Restricted Local Search Moves - CRLSM strategy , the computa-

tional time is decreased significantly compared to other heuristic and metaheuristic
algorithms because all the edges that are not going to improve the solution are ex-
cluded from the search procedure. This happens by restricting the search space into
circles around the candidate for deletion edges. It has been observed [29, 30, 35],
for example, in the 2-opt local search algorithm that there is only one possibility for
a trial move to reduce the cost of a solution, i.e. when at least one new (candidate
for inclusion) edge has cost less than the cost of one of the two old edges (candidate
for deletion edges) and the other edge has cost less than the sum of the costs of
the two old edges. Thus, in the Circle Restricted Local Search Moves strategy, for
all selected local search strategies, circles are created around the end nodes of the
candidate for deletion edges and only the nodes that are inside these circles are used
in the process of finding a better solution.

In Expanding Neighborhood Search strategy, the size of the neighborhood is ex-
panded in each iteration. In order to decrease even more the computational time
and because it is more possible to find a better solution near to the end nodes of the
candidate for deletion edge, the largest possible circle is not used from the beginning
but the search for a better solution begins with a circle with a small radius. For ex-
ample, in the 2-opt algorithm if the length of the candidate for deletion edge is equal
to A, the initial circle has radius A/2, then, the local search strategies are applied and
if the solution can not be improved inside this circle, the circle is expanding by a
percentage θ (θ is determined empirically) and the procedure continues until the
circle reaches the maximum possible radius which is set equal to A+B, where B is
the length of one of the other candidate for deletion edges.

The ENS algorithm has the ability to change between different local search strate-
gies . The idea of using a larger neighborhood to escape from a local minimum to
a better one, had been proposed initially by Garfinkel and Nemhauser [15] and re-
cently by Hansen and Mladenovic [22]. Garfinkel and Nemhauser proposed a very
simple way to use a larger neighborhood . In general, if with the use of one neigh-
borhood a local optimum was found, then a larger neighborhood is used in an at-
tempt to escape from the local optimum. Hansen and Mladenovic proposed a more
systematical method to change between different neighborhoods, called Variable
Neighborhood Search .
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In the Expanding Neighborhood Search, a number of local search strategies are
applied inside the circle. The procedure works as follows: initially an edge of the
current solution is selected (for example the edge with the worst length) and the first
local search strategy is applied. If with this local search strategy a better solution
is not achieved, another local search strategy is selected for the same edge. This
procedure is continued until a better solution is found or all local search strategies
have been used. In the first case the solution is updated, a new edge is selected and
the new iteration of the Expanding Neighborhood Search strategy begins, while in
the second case the circle is expanded and the local search strategies are applied in
the new circle until a better solution is found or the circle reach the maximum possi-
ble radius. If the maximum possible radius has been reached, then a new candidate
for deletion edge is selected.

The local search strategies for the Vehicle Routing Problem and the Location
Routing Problem are distinguished between local search strategies for a single route
and local search strategies for multiple routes. The local search strategies that are
chosen and belong to the category of the single route interchange (strategies that try
to improve the routing decisions) are the well known methods for the TSP, the 2-opt
and the 3-opt [6]. In the single route interchange all the routes have been created
in the initial phase of the algorithm. The local search strategies for multiple route
interchange try to improve the assignment decisions. This, of course, increases the
complexity of the algorithms but gives the possibility to improve even more the
solution. The multiple route interchange local search strategies that are used are
the 1-0 relocate, 2-0 relocate, 1-1 exchange, 2-2 exchange and crossing [59].

3.5 Results

The algorithm was implemented in Fortran 90 and was compiled using the Lahey
f95 compiler on a Intel Core 2 DUO CPU T9550 at 2.66 GHz, running Suse Linux
9.1. The parameters of the proposed algorithm are selected after thorough testing.
A number of different alternative values were tested and the ones selected are those
that gave the best computational results concerning both the quality of the solu-
tion and the computational time needed to achieve this solution. Thus, the selected
parameters are given in Table 3.1.

The algorithm for the Vehicle Routing Problem was tested on two sets of bench-
mark problems. The 14 benchmark problems proposed by Christofides ( [8]) and
the 20 large scale vehicle routing problems proposed by Golden ( [20]). Each in-
stance of the first set contains between 51 and 200 nodes including the depot. Each
problem includes capacity constraints while the problems 6-10, 13 and 14 have,
also, maximum route length restrictions and non zero service times. For the first
ten problems, nodes are randomly located over a square, while for the remaining
ones, nodes are distributed in clusters and the depot is not centered. The second set
of instances contains between 200 and 483 nodes including the depot. Each prob-
lem instance includes capacity constraints while the first eight have, also, maximum
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Table 3.1 Parameter Values

Parameter Value
Number of swarms 1
Number of particles 20

Number of generations 100
c1 2
c2 2

wmin 0.01
wmax 0.9

Size of RCL 50

route length restrictions but with zero service times. The efficiency of the PSO-
Bilevel algorithm is measured by the quality of the produced solutions. The quality
ωPSOBilevel is given in terms of the relative deviation from the best known solution

(ω =
100(cPSOBilevel−copt)

copt
, where cPSOBilevel denotes the cost of the solution found by

PSOBilevel and copt is the cost of the best known solution).
In the first column of Tables 3.2 and 3.3 the number of nodes of each instance is

presented, while in the second, third and fourth columns the most important char-
acteristics of the instances, namely the maximum capacity of the vehicles (Cap. -
column 2), the maximum tour length of each vehicle (m.t.l. - column 3) and the
service time of each customer (s.t. - column 4) are presented. In the last four
columns, the results of the proposed algorithm (column 5), the best known solution
(BKS - column 6), the quality of the solution of the proposed algorithm (ωPSOBilevel

- column 7) and the CPU time need to find the solution by the proposed algorithm
for each instance (column 8) are presented, respectively. It can be seen from Table
3.2 that for the first set, the algorithm has reached the best known solution in nine
out of the fourteen instances. For the other five instances the quality of the solutions
is between 0.01% and 0.32% and the average quality for the fourteen instances is
0.06%. For the 20 large scale vehicle routing problems (Table 3.3), the algorithm
has found the best known solution in one of them, for the rest the quality is between
0.16% and 1.08% and the average quality of the solutions is 0.47%. Also, in these
Tables the computational time needed (in minutes) for finding the best solution by
the proposed algorithm is presented. The CPU time needed is significantly low for
the first set of instances and only for two instances (instance 5 and 10) is somehow
increased but still is very efficient. In the second set of instances, the problems are
more complicated and, thus, the computational time is increased but is still less than
10 min in all instances. These results denote the efficiency of the proposed algorithm.

In Tables 3.4 and 3.5, a comparison of the proposed algorithm with other three
algorithms from the literature is presented. In the first algorithm (VRPBilevel) [31],
the Vehicle Routing Problem is formulated, also, as a bilevel programming model
solving a Generalized Assignment Problem in the first level and a Traveling Sales-
man Problem in the second level. The algorithm that is used for the solution of
the problem is a bilevel genetic algorithm following the same idea that is behind the
proposed Particle Swarm Optimization algorithm that is presented in this paper. The
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Table 3.2 Results of PSOBilevel in Christofides benchmark instances for the VRP

Nodes Cap. m.t.l. s.t. PSOBilevel BKS ωPSOBilevel (%) CPU (min)
51 160 ∞ 0 524.61 524.61 [55] 0.00 0.09
76 140 ∞ 0 835.26 835.26 [55] 0.00 0.27

101 200 ∞ 0 826.14 826.14 [55] 0.00 0.35
151 200 ∞ 0 1028.42 1028.42 [55] 0.00 1.02
200 200 ∞ 0 1295.38 1291.45 [55] 0.32 2.25
51 160 200 10 555.43 555.43 [55] 0.00 0.10
76 140 160 10 909.68 909.68 [55] 0.00 0.27

101 200 230 10 865.94 865.94 [55] 0.00 0.85
151 200 200 10 1165.58 1162.55 [55] 0.26 1.37
200 200 200 10 1396.05 1395.85 [55] 0.01 2.38
121 200 ∞ 0 1043.28 1042.11 [55] 0.11 1.20
101 200 ∞ 0 819.56 819.56 [55] 0.00 0.25
121 200 720 50 1544.07 1541.14 [55] 0.19 0.45
101 200 1040 90 866.37 866.37 [55] 0.00 0.35

Table 3.3 Results of PSOBilevel in the 20 benchmark Golden instances for the VRP

Nodes Cap. m.t.l. s.t. PSOBilevel BKS ωPSOBilevel (%) CPU (min)
240 550 650 0 5688.31 5627.54 [38] 1.08 2.01
320 700 900 0 8458.24 8444.50 [53] 0.16 2.25
400 900 1200 0 11095.21 11036.22 [54] 0.53 6.08
480 1000 1600 0 13682.48 13624.52 [49] 0.43 7.25
200 900 1800 0 6460.98 6460.98 [58] 0.00 1.18
280 900 1500 0 8457.35 8412.8 [49] 0.53 1.45
360 900 1300 0 10201.37 10181.75 [47] 0.19 2.38
440 900 1200 0 11728.27 11643.90 [53] 0.72 6.08
255 1000 ∞ 0 585.95 583.39 [38] 0.44 1.41
323 1000 ∞ 0 744.25 741.56 [38] 0.36 2.24
399 1000 ∞ 0 925.28 918.45 [38] 0.74 3.08
483 1000 ∞ 0 1115.38 1107.19 [38] 0.74 7.45
252 1000 ∞ 0 861.21 859.11 [38] 0.24 3.08
320 1000 ∞ 0 1083.25 1081.31 [38] 0.18 2.42
396 1000 ∞ 0 1355.28 1345.23 [38] 0.75 7.15
480 1000 ∞ 0 1635.18 1622.69 [38] 0.77 9.11
240 200 ∞ 0 710.98 707.79 [38] 0.45 2.24
300 200 ∞ 0 1002.32 997.52 [38] 0.48 2.15
360 200 ∞ 0 1370.25 1366.86 [38] 0.25 3.05
420 200 ∞ 0 1825.68 1820.09 [38] 0.31 5.37

second algorithm is a hybrid Particle Swarm Optimization (HybPSO) for the solu-
tion of the Vehicle Routing Problem using the classic formulation of the VRP and a
hybridized version of the Particle Swarm Optimization algorithm [37]. The reason
that we compare the proposed algorithm with HybPSO is that the two approaches
have a number of common characteristics but also they have a lot of different char-
acteristics. Both methods use a hybrid version of the Particle Swarm Optimization
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algorithm but in the proposed algorithm the problem is solved in two levels while
in HybPSO the problem is solved in one level. This issue has led to a different map-
ping of the particles. In the proposed algorithm the PSO is used for the solution of
the Generalized Assignment Problem and, thus, each solution is mapped into a bi-
nary particle where the bit 1 denotes that the corresponding customer is assigned to
the vehicle and the bit 0 denotes otherwise. From the other hand in the HybPSO, the
mapping of the particles corresponds to the path representation of the tour. In the two
algorithms, a number of procedures are similar like the Expanding Neighborhood
Search algorithm that is used as a local search phase in the HybPSO algorithm and
for the solution of the second level in the proposed algorithm. The third algorithm
used for the comparisons is a Hybridization version of Particle Swarm Optimization
with a Genetic Algorithm (HybGENPSO) for the solution of the classic version of
the Vehicle Routing Problem [36]. The representation of the solution is similar with
the representation used in HybPSO. For more information about the algorithms,
please see the papers [31], [37] and [36].

Table 3.4 Comparison of the proposed algorithm with other approaches in the 14 Christofides
benchmark instances for the VRP

VRPBilevel HybPSO HybGENPSO PSOBilevel
cost ω (%) cost ω (%) cost ω (%) cost ω (%)

524.61 0.00 524.61 0.00 524.61 0.00 524.61 0.00
835.26 0.00 835.26 0.00 835.26 0.00 835.26 0.00
826.14 0.00 826.14 0.00 826.14 0.00 826.14 0.00
1028.42 0.00 1029.54 0.11 1028.42 0.00 1028.42 0.00
1306.17 1.15 1294.13 0.22 1294.21 0.23 1295.38 0.32
555.43 0.00 555.43 0.00 555.43 0.00 555.43 0.00
909.68 0.00 909.68 0.00 909.68 0.00 909.68 0.00
865.94 0.00 868.45 0.29 865.94 0.00 865.94 0.00
1177.76 1.31 1164.35 0.15 1163.41 0.07 1165.58 0.26
1404.75 0.64 1396.18 0.02 1397.51 0.12 1396.05 0.01
1051.73 0.92 1044.03 0.18 1042.11 0.00 1043.28 0.11
825.57 0.73 819.56 0.00 819.56 0.00 819.56 0.00
1555.39 0.92 1544.18 0.20 1544.57 0.22 1544.07 0.19
875.35 1.04 866.37 0.00 866.37 0.00 866.37 0.00

The most important comparison is the comparison with the VRPBilevel algo-
rithm as both algorithms solve the bilevel version of the problem and are the only,
at least to our knowledge, algorithms that solve the bilevel version of the Vehi-
cle Routing Problem. For the first set of instances, the VRPBilevel algorithm finds
the best known results in seven out of fourteen instances while the proposed PSO-
Bilevel algorithm performs better as it finds the best known results in nine out of
fourteen instances. In the other instances the PSOBilevel performs better as there
is no instance that the deviation from the best known solution is more than 1% but
in the VRPBilevel there are three instances with the deviation from the optimum
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Table 3.5 Comparison of the proposed algorithm with other approaches in the 20 Golden
instances for the VRP

VRPBilevel HybPSO HybGENPSO PSOBilevel
cost ω (%) cost ω (%) cost ω (%) cost ω (%)

5702.48 1.33 5695.14 1.20 5670.38 0.76 5688.31 1.08
8476.64 0.38 8461.32 0.20 8459.73 0.18 8458.24 0.16

11117.38 0.74 11098.35 0.56 11101.12 0.59 11095.21 0.53
13706.78 0.60 13695.51 0.52 13698.17 0.54 13682.48 0.43
6482.67 0.34 6462.35 0.02 6460.98 0.00 6460.98 0.00
8501.15 1.05 8461.18 0.58 8470.64 0.69 8457.35 0.53

10254.35 0.71 10202.41 0.20 10215.14 0.33 10201.37 0.19
11957.15 2.69 11715.35 0.61 11750.38 0.91 11728.27 0.72
589.12 0.98 586.29 0.50 586.87 0.60 585.95 0.44
749.15 1.02 743.57 0.27 746.56 0.67 744.25 0.36
934.24 1.72 928.49 1.09 925.52 0.77 925.28 0.74
1138.92 2.87 1118.57 1.03 1114.31 0.64 1115.38 0.74
868.80 1.13 862.35 0.38 865.19 0.71 861.21 0.24
1096.18 1.38 1088.37 0.65 1089.21 0.73 1083.25 0.18
1367.25 1.64 1352.21 0.52 1355.28 0.75 1355.28 0.75
1645.24 1.39 1632.28 0.59 1632.21 0.59 1635.18 0.77
711.07 0.46 710.87 0.44 712.18 0.62 710.98 0.45
1015.12 1.76 1002.59 0.51 1006.31 0.88 1002.32 0.48
1389.15 1.63 1368.57 0.13 1373.24 0.47 1370.25 0.25
1842.17 1.21 1826.74 0.37 1831.17 0.61 1825.68 0.31

larger than 1% and in two others the deviation is near to 1%. In the second set
of instances, the proposed algorithm finds the best known solution in one instance
while the VRPBilevel did not find the solution in any instance. For the other in-
stances, the PSOBilevel performs better as the improvement in the deviation from
the best known results in the solutions is between 0.01% and 2.13% with average
improvement compared to the VRPBilevel in all instances equal to 0.78%. HybPSO
performs equally well compared to the proposed algorithm as in the first set the pro-
posed algorithm finds the best known solution in nine instances and the HybPSO in
seven. For the other instances, in two instances the HybPSO finds better solutions
from the PSOBilevel while for all the other instances the PSOBilevel finds better
solutions. The average improvement of PSOBilevel compared to the HybPSO in all
instances is 0.02%. For the second set of instances, the PSOBilevel performs better
in fourteen instances while the HybPSO performs better in the other six instances.
The average improvement of the PSOBilevel compared to the HybPSO in all in-
stances is 0.04%. The results with the HybGENPSO is almost similar to the results
of the PSOBilevel as in the first set the proposed algorithm finds the best known so-
lution in nine instances and the HybGENPSO in ten. For the other instances, in three
instances the HybGENPSO finds better solutions from the PSOBilevel while for all
the others the PSOBilevel finds better solutions. The average improvement of the
HybGENPSO compared to PSOBilevel is 0.01%. For the second set of instances,
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the PSOBilevel performs better in fourteen instances, in one the two algorithms
found the same solutions while the HybGENPSO performs better in the other five
instances. The average improvement of the PSOBilevel compared to HybGENPSO
is 0.13%. Thus, in general, the PSOBilevel algorithm is a very competitive algorithm
compared to other algorithms for the solution of the Vehicle Routing Problem.

The algorithm for the Bilevel Location Routing problem was tested on one set
of benchmark problems. It should be noted that there are not many papers in the
literature that analyze and test the efficiency of the algorithms proposed in the past
for the solution of location routing problems. Thus, a set of instances is used based
on instances that most researchers have used (see [4]). In Table 3.6, the first column
shows the researcher that proposed each instance and the paper that the instance was,
firstly, described. The second column shows the number of customers, the third col-
umn shows the number of facilities, the fourth column shows the vehicle capacity,
the fifth column shows the solution given by the proposed PSOBilevel algorithm
and the last three columns show the Best Known Solution (BKS), the quality of the
solution of the proposed algorithm and the computational time needed (in minutes)
for finding the best solution by PSOBilevel. The quality is given in terms of the rel-

ative deviation from the best known solution, that is ω =
100(cPSOBilevel−copt)

copt
, where

cPSOBilevel denotes the cost of the solution found by PSOBilevel and copt is the cost
of the best known solution. From Table 3.6, it can be seen that the PSOBilevel algo-
rithm, in three out of nineteen instances has found the best known solution. For the

Table 3.6 Results of PSOBilevel in benchmark instances for the LRP

Name of Custo- Faci- Vehicle PSO BKS ω CPU
Researchers mers lities Capacity Bilevel (%) (min)

Christofides and Eilon [7] 50 5 160 575.6 565.6 [51] 1.77 0.06
Christofides and Eilon [7] 75 10 140 855.8 844.4 [60] 1.35 0.35
Christofides and Eilon [7] 100 10 200 862.3 833.4 [12] 3.47 0.52

Daskin [10] 88 8 9000000 368.7 355.8 [51] 3.63 1.15
Daskin [10] 150 10 8000000 44415.8 43919.9 [60] 1.13 2.28
Gaskell [16] 21 5 6000 428.7 424.9 [52] 0.89 0.02
Gaskell [16] 22 5 4500 586.8 585.1 [50] 0.29 0.09
Gaskell [16] 29 5 4500 512.1 512.1 [4] 0.00 0.15
Gaskell [16] 32 5 8000 568.5 562.2 [11] 1.12 0.19
Gaskell [16] 32 5 11000 507.3 504.3 [50] 0.59 0.21
Gaskell [16] 36 5 250 468.5 460.4 [50] 1.76 0.19

Min et al. [42] 27 5 2500 3062 3062 [4] 0.00 0.52
Min et al. [42] 134 8 850 5978.1 5709 [60] 4.71 1.18

Perl and Daskin [46] 12 2 140 204 204 [4] 0.00 0.02
Perl and Daskin [46] 55 5 120 1129.8 1112.1 [60] 1.59 0.26
Perl and Daskin [46] 85 7 160 1656.9 1622.5 [60] 2.12 0.59
Perl and Daskin [46] 318 4 25000 570489.8 557275.2 [60] 2.37 3.15
Perl and Daskin [46] 318 4 8000 706539.8 673297.7 [60] 4.94 3.21

Or [44] 117 14 150 12474.2 12290.3 [60] 1.50 1.35
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rest of the instances, the quality of the solution is between 0.29% and 4.94% with
average deviation from the best known solution equal to 1.75%.

In Table 3.7, a comparison of the proposed algorithm with other two algorithms
of the literature is presented. In the first algorithm (LRPBilevel) [32], the Location
Routing Problem is formulated, also, as a bilevel programming model solving a Ca-
pacitated Facility Location Problem in the first level and a Vehicle Routing Problem
in the second level. The algorithm that is used for the solution of the problem is
the bilevel genetic algorithm used for the solution of the Bilevel Vehicle Routing
Problem presented in [31], modified properly for the solution of the bilevel Loca-
tion Routing Problem. The second algorithm used for the comparisons is a hybrid
Particle Swarm Optimization (HybPSO) algorithm for the solution of the Location
Routing Problem. In this algorithm the classic formulation of the LRP is used and
a hybridized version of the Particle Swarm Optimization algorithm is applied [33].
The algorithm that was used for the solution of the Location Routing Problem is
the algorithm that was described previously for the solution of the Vehicle Rout-
ing Problem (presented in [37]), modified properly for the solution of the Location
Routing Problem. For more information about the algorithms and how they applied
in the Location Routing Problem, please see the papers [32] and [33]. As in the case
of the bilevel Vehicle Routing Problem, the interesting comparison is the one with
the LRPBilevel as both algorithms solve the bilevel version of the problem and are
the only, at least to our knowledge, algorithms that solve the bilevel version of the
Location Routing Problem. Both algorithms find the best known solution in three

Table 3.7 Comparison of the proposed algorithm with other approaches for the LRP

LRPBilevel HybPSO PSOBilevel
cost ω (%) cost ω (%) cost ω (%)

582.7 3.02 582.7 3.02 575.6 1.77
886.3 4.96 886.3 4.96 855.8 1.35
889.4 6.72 889.4 6.72 862.3 3.47
384.9 8.18 384.9 8.18 368.7 3.63

46642.7 6.20 46642.7 6.20 44415.8 1.13
432.7 1.84 432.9 1.88 428.7 0.89
587.9 0.48 588.5 0.58 586.8 0.29
512.1 0.00 512.1 0.00 512.1 0.00
570.5 1.48 570.8 1.53 568.5 1.12
510.9 1.31 511.1 1.35 507.3 0.59
470.7 2.24 470.7 2.24 468.5 1.76
3062 0.00 3062 0.00 3062 0.00
6229 9.11 6230 9.13 5978.1 4.71
204 0.00 204 0.00 204 0.00

1135.8 2.13 1135.9 2.14 1129.8 1.59
1656.9 2.12 1656.9 2.12 1656.9 2.12

580680.2 4.20 580680.2 4.20 570489.8 2.37
747619 11.04 747619 11.04 706539.8 4.94
12474.2 1.50 12474.2 1.50 12474.2 1,50
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out of nineteen instances while for the other instances the PSOBilevel algorithm per-
forms better as the improvement in the deviation from the best known results in the
solutions is between 0.18% and 6.10% with average improvement of the PSOBilevel
compared to LRPBilevel is equal to 1.75%. The performance of the proposed algo-
rithm compared to HybPSO is almost the same as previously as the two algorithms
find the best known solution in three instances and for the rest instances, the im-
provement in the deviation from the best known results in the solutions is between
0.29% and 6.10% with average improvement of PSOBilevel compared to HybPSO
is equal to 1.75%.

3.6 Conclusions and Future Research

In this paper a new bilevel version of the Particle Swarm Optimization algorithm
was presented and was used for the solution of two well known Supply Chain Ma-
nagement problems, the Vehicle Routing Problem and the Location Routing Prob-
lem. These two problems are formulated as bilevel programming problems. The
results of the algorithms were very satisfactory as they found in a number of in-
stances the best known solution and in the other instances the deviation from the
optimum was not larger than 1.08% for the Vehicle Routing Problem and 4.94% for
the Location Routing Problem. The algorithms were thoroughly compared with the
VRPBilevel and LRPBilevel algorithms which are two genetic based algorithms that
have been applied in the past for the bilevel version of the VRP and LRP problems,
respectively. The results of the proposed algorithm show that the Particle Swarm
Optimization method can be applied effectively in this kind of problems. Our fu-
ture research will be focused on the analysis of the Location Routing Problem in
more than 2 levels, on the formulation as a multilevel programming problem and
on the development of solution methods for multilevel formulations of other more
complicated problems in Supply Chain Management.
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Chapter 4
CoBRA: A Coevolutionary Metaheuristic for
Bi-level Optimization

François Legillon, Arnaud Liefooghe, and El-Ghazali Talbi

Abstract. This article presents CoBRA, a new parallel coevolutionary algorithm
for bi-level optimization. CoBRA is based on a coevolutionary scheme to solve bi-
level optimization problems. It handles population-based meta-heuristics on each
level, each one cooperating with the other to provide solutions for the overall prob-
lem. Moreover, in order to evaluate the relevance of CoBRA against more classical
approaches, a new performance assessment methodology, based on rationality, is in-
troduced. An experimental analysis is conducted on a bi-level distribution planning
problem, where multiple manufacturing plants deliver items to depots, and where
a distribution company controls several depots and distributes items from depots to
retailers. The experimental results reveal significant enhancements with respect to a
more classical approach, based on a hierarchical scheme.

4.1 Introduction

Bi-level optimization problems allow to model a large number of real-life applica-
tions, with a hierarchical structure between two decision makers. It includes compa-
nies which have to face a legislator and security constraints [10], companies trying
to predict consumer reaction [8], or a supply chain where a company has to predict
its supplier reaction to determine the real cost of its decision [3].

Metaheuristics are a class of approximate algorithms focusing on finding good-
quality solutions for large-size and complex problems, in a reasonable time [20].
While most of the existing literature about bi-level optimization focuses on
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small-size linear problems (see for example [1, 9]), many real-life applications in-
volve large-size instances and complex NP-hard problems, justifying the use of
meta-heuristics. Meta-heuristics for bi-level optimization can be divided in two
main classes. On the one hand, hierarchical algorithms try to solve the two lev-
els sequentially, improving solutions on each level to get a good overall solution on
both levels. Such algorithms include the repairing algorithm [12] , which considers
the lower-level problem as a constraint and solve it during the evaluation step, or
the constructing algorithm [13] which applies two improving algorithms on a pop-
ulation, one for each level, sequentially until meeting a stopping criterion. On the
other hand, coevolutionary algorithms maintain two populations, one for each level,
and try to improve it separately, while exchanging periodically information to keep
an overall view on the problem, like in [16]. In cooperative coevolution, different
sub-populations evolve a part of the decision variables, and complete solutions are
built by means of a cooperative exchange of individuals from sub-populations [18].

This article focuses on a coevolutionary approach. Sub-problems involved in bi-
level optimization can be tackled by meta-heuristics. Finding a good way to combine
two meta-heuristics in order to solve a bi-level optimization problem would give a
general methodology for bi-level optimization. First, we introduce a new algorithm,
the Coevolutionary Bi-level method using Repeated Algorithms (CoBRA) . This co-
evolutionary meta-heuristic is able to face general bi-level optimization problems,
possibly involving complex large-size problems. Next, we introduce a new method
for performance assessment, the rationality, able to more fully grasp the bi-level as-
pect of the problems than the Pareto efficiency. Rationality is based on the proximity
from the optimum of the lower-level variables with the corresponding upper-level
variables fixed. At last, to evaluate the performance of CoBRA against classical hi-
erarchical approaches, we give an experimental analysis on a bi-level transportation
problem involving a supply chain, the bi-level multiple depot vehicle problem intro-
duced in [3]. This analysis includes the modeling of the problem, the instantiation
of CoBRA on it and the study of the results with respect to the rationality metrics.

The paper is organized as follows. Section 4.2 gives the necessary background
on bi-level optimization. Section 4.3 presents the new coevolutionary algorithm pro-
posed in the paper for bi-level optimization, namely CoBRA. In Section 4.4, we
discuss the issue of assessing the performance of approximate algorithms in bi-level
optimization. The bi-level transportation problem under investigation in this paper
is presented in Section 4.5, both in a single-objective and a multi-objective formu-
lation. The experimental analysis of CoBRA is given Section 4.6. At last, the final
section concludes the paper and gives directions for further research.

4.2 Bi-level Optimization

In this section we introduce a general bi-level optimization problem, and give a
quick overview of state-of-the-art meta-heuristics for bi-level optimization.
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4.2.1 General Principles of Bi-level Optimization

Bi-level optimization problems may be defined by the tuple (S,F, f ) where S rep-
resents the set of feasible solutions, F the objective function(s) of the upper-level,
and f the objective function(s) of the lower-level. For any x ∈ S we separate the
upper-level variables and the lower-level variables, respectively in xu and xl .

We define, for every xu fixed, the set of rational reactions R(xu) as the set of xl

optimal in f .

R(S, f ,xu) =

{
minxl f (x = (xu,xl)) = ( f1(x), f2(x), . . . , fn(x))
s.t. x ∈ S

The bi-level problem consist in finding the solution x ∈ S which is optimal with
respect to f for xu fixed and, respecting this constraint, optimal in F .

BP(S ,F, f) =

⎧
⎪⎪⎨

⎪⎪⎩

minF(x)
x ∈S

s.t.

{
x = (xu,xl)
xl ∈ R(S , f,xu)

Those problems induce a hierarchy between two decision makers:

• The leader, who chooses the upper part of the decision variables, xu, and who
tries to optimize F(x).

• The follower, who chooses the lower part of the decision variables, xl , and who
tries to optimize f (x).

The leader decides first. Then, the follower, knowing the leader decision, has to
decide, in the view of optimizing its own objective function(s) f , without regarding
the upper objective function(s) F . To optimize his choice, the leader then has to
predict the follower reaction. This hierarchy can conduct to a higher complexity
than both sub-problems. For instance, a NP-hard problem can be obtained from two
linear problems [2].

This definition of bi-level optimization corresponds to the optimistic case, where
the leader can “choose” the (xu,xl) couple in the set of (xu,xl) ∈ S where xl ∈ R(xu):
the reaction has to be optimal, but if several reactions are optima (i.e. |R(xu)|> 1) the
leader has the last word . There exists a pessimistic case [14] which is not treated in
this paper, where xl is chosen as the leader worst case scenario in the set of rational
responses.

4.2.2 Meta-heuristic Approaches for Bi-level Optimization

Meta-heuristics are approximate algorithms which allow to tackle large-size prob-
lem instances by delivering satisfactory solutions in reasonable time [20]. Due to
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Fig. 4.1 General scheme of an evolutionary algorithm

their complexity, most bi-level optimization problems are tackled by approaches
which involve a model reformulation masking the bi-level aspect of the problem
(see [1, 9, 11, 15]), or involve meta-heuristics. Evolutionary algorithms are meta-
heuristics mimicking the species evolution. We will use in this article several terms
related to evolutionary algorithms: an individual is a feasible solution, a population
is a set of individuals, a mutation is the creation of a new individual from an exist-
ing one, generally keeping some properties. A cross-over is the creation of individ-
ual(s), called offspring, from several other individuals called parents. The process
of applying cross-over and mutation operators to a population in order to create
a new population is called generation. On each generation, a selection step con-
sists in selecting individuals to meet defined goals. Evolutionary algorithms consist
in creating multiple generations and applying selections until a stopping criterion is
met (Fig. 4.1). The reader is referred to [20] for more details about population-based
meta-heuristics and evolutionary algorithms.

In this paper, we focus on coevolutionary approaches, a sub-group of meta-
heuristics extending the evolutionary scheme. Coevolutionary algorithms consists
in associating several evolutionary algorithms and applying transformations, such
as mutation and cross-over, to distinct populations. A coevolution operator is then
regularly applied between sub-populations to keep a global view on the whole prob-
lem. Oduguwa and Roy described BiGA [16], a coevolutionary algorithm to solve
bi-level problems.

BiGA starts by initializing two distinct sub-populations using a heuristic, popu

for the upper level and popl for the lower, then the upper part of the solutions is
copied from popu to popl. Then during a parametrized number of generations, a
selection process based on the respective level fitness values is applied on both sub-
populations, followed by a mutation/crossover step. Then the sub-populations are
evaluated, sorted, and coevolved, by copying the upper (resp. lower) variables to
the lower (resp. upper) sub-population. At last, an archiving process occurs, be-
fore looping again to the selection step. The pseudo-code of BiGA is given in
Algorithm 5.
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Algorithm 5: BiGA
Data: initial population pop
popl ← selectionlower(pop);
popu← selectionupper(pop);
Coevolution(popu, popl);
while Stopping criterion not met do

Crossover(popu), crossover(popl );
Mutation(popu), mutation(popl );
Evaluation(popu), evaluation (popl );
Elitist coevolution (popu, popl);
Evaluation(popu), evaluation (popl );
Archiving(popu), archiving (popl );

end
return archive

4.3 CoBRA, a Coevolutionary Meta-heuristic for Bi-level
Optimization

In this section we introduce CoBRA, a new meta-heuristic to tackle bi-level
problems.

4.3.1 General Principles

Most of literature works focus on linear bi-level problems (ie: formed with two
linear sub-problems) or lower-level problems solvable in a reasonable amount of
time. They use this property to discard the bi-level aspect of the problem. This article
tries to define a more general methodology to solve bi-level optimization problems.
The complexity of the considered problems lead us to consider the use of meta-
heuristic, to obtain good-quality solutions in a reasonable amount of time.

We introduce a meta-heuristic, CoBRA, a coevolutionary bilevel method us-
ing repeated algorithms. Extending Oduguwa and Roy’s BiGA [16], it is a co-
evolutionary meta-heuristic consisting in improving incrementally two different
sub-populations, each one corresponding to one level, and periodically exchanging
information with the other.

4.3.2 CoBRA Components

In order to instantiate CoBRA to solve a bi-level optimization problem, generic and
problem-specific components have to be defined. Generic components, which can
correspond to both sub-problems, consist in choosing the following:

• An improvement algorithm for each level, to improve the solutions on its level.
We use, for single-objective levels, a classic evolutionary algorithm, and, for
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multi-criterion levels, NSGA-II. Those algorithms are classic population-based
meta-heuristic approaches [20].

• A coevolution strategy to decide how populations should exchange information.
• An archiving strategy to record the best solutions on every level, and to prevent

the coevolution to change completely the sub-populations on a single generation.
• A stopping criterion to decide when the algorithm should stop.

Problem specific components still have to be designed to use CoBRA:

• Initialization operators, generally heuristics, which create a base population to
begin the search process.

• Variation operators, level-specifics, which are then used by the improvements
algorithms.

• Evaluation operators, corresponding to the f and F functions from the bi-level
optimization model.

Figure 4.2 illustrates the outline of CoBRA.

4.3.3 General Algorithm

CoBRA is a coevolutionary algorithm using for each level a different population,
and a different archive (Algo. 9.4). At each iteration, we apply the improvement
algorithms, we archive the best solutions obtained, then we apply a selection opera-
tor to keep a constant size to the archive and to the populations. The final iteration
step is then to coevolve the two sub-populations. Once the stopping criterion is met,
CoBRA returns the lower-level archive.

Extending the BiGA approach, CoBRA involves several differences from the
former:

1. The main difference is that CoBRA applies a complete algorithm, possibly iterat-
ing a certain number of generations, over each main algorithm iteration, instead
of just applying variation operators. Evaluation process occurs during those im-
provement algorithms.

Algorithm 6: CoBRA
Data: initial population pop
popu ←copie pop;
popl ←copie pop;
while Stopping criterion not met do

upper improvement (popu) and lower improvement (popl);
upper archiving (popu) and lower archiving (popl);
selection (popu) and selection (popl);
coevolution(popu, popl );
adding from upper archive (popu) and from lower archive (popl);

end
return lower archive
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2. The coevolution process is not necessarily elitist: default coevolution strat-
egy (Algo. 7) randomly coevolves solutions with each other.

3. The selection operations and the archives take place right after the improvement.

Algorithm 7: Random coevolution
Data: Populations upPop and lowPop of same size, op coevolution operator
Shuffle upPop;
foreach i from 0 to size(upPop) do

op(upPop[i],lowPop[i]);

4.4 Performance Assessment and Bi-level Optimization

In this section, we introduce two new metrics for assessing the performance of
heuristics on solving bi-level optimization problems.

4.4.1 Motivations

Being a problem with two different objective functions, a natural approach to tackle
bi-level optimization problems would be to use a Pareto-based multi-objective ap-
proach . However bi-level optimization problems have a different structure. A good
solution considering a similar problem approximating the Pareto frontier could be
of bad quality in the bi-level way.

Bi-level optimization aim at identifying solutions in the form (xu,xl) which give
good upper objective vectors, while being near the optimum regarding the lower
objective for xu fixed. This leads to the existence of good quality solutions not being
on the Pareto frontier, and solutions on the Pareto frontier not necessarily being
good quality solutions. Fig. 4.3 gives an example of objective functions giving a
bi-level solution corresponding to a dominated solution in the Pareto sense. F and f
are respectively the upper and the lower-level objective functions to be minimized,
the leader chooses in {d,e,f} and the follower in {a,b}. The Pareto front would be
composed of {(d,a),(f,a)}while the bi-level solution is (e,a).

We introduce the notion of rationality which correspond to the difficulty to
improve a solution (xu,xl), with xu fixed, according to the lower-level objective
function. A rational solution is a solution where the follower reaction is rational,
seeking for the optimality of its own objective function(s). We introduce two differ-
ent rationality metrics, the direct one and the weighted one.
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Fig. 4.2 CoBRA outline
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F a b
d 0 1000
e 1 ∞
f 300 ∞

f a b
d 100 99
e 1001 ∞
f 99 ∞

Fig. 4.3 Example of lower-level and upper-level objective functions whose optimal solution
is dominated in terms of Pareto dominance

4.4.2 Rationality

4.4.2.1 Direct Rationality

The direct rationality measure corresponds to the difficulty of improving a solution
without regarding the actual improvement: we simply consider the “improvability”.
To evaluate it for a population, we apply a parametrized number of time a “good”
lower-level algorithm, and count how many times the algorithm did improve the
solution (Algo. 8).

4.4.2.2 Weighted Rationality

The weighted rationality is another rationality measure working on the same princi-
ple as the direct rationality with the difference that, instead of counting how many
times the algorithm was able to improve the solution, we also consider how much
it was improved. Being able to improve a fitness by 0.001 or by 1000 does not
give the same result to the rationality, whereas the direct approach would consider
both as the same (Algo. 9). For bi-level optimization problems involving a multi-
objective lower-level sub-problem, we used the multiplicative ε-indicator, an indi-
cator to compare sets of objective vectors [21].

4.4.3 Discussion

The weighted rationality metric was introduced to compare results for a bi-level
optimization problem composed with a hard lower-level problem. All the tested
algorithms giving a bad direct rationality, we noticed that some algorithms were
still doing better and were far nearer to the optimal on the lower-level than others.
The weighted rationality is able to differentiate such algorithms.
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Algorithm 8: Direct rationality test
Data: AlgoLow, pop, ni number of iterations
counter← 0;
foreach gen from 1 to ni do

neopop← pop;
f ound← f alse;
AlgoLow(neopop);
foreach x in neopop do

if (not f ound) and (x dominates an element of pop) then
counter++;
f ound← f alse;

end
end

end
return counter/ni

Algorithm 9: Weighted rationality test
Data: AlgoLow, pop, ni number of iterations
ratio← 0;
foreach gen from 1 to ni do

neopop← pop;
AlgoLow(neopop);
ratio=ratio+εind(pop,neopop)/ni;

end
return ratio

We can note that those methods are not absolute, in the sense that we have to com-
pare the algorithm using another algorithm, thus introducing a bias. Those measures
compare the capacity of a meta-heuristic to use improvement algorithms, but do not
actually compare the overall capacity to tackle the problem. To this end, we have to
ensure that none of the tested algorithms is biased toward the improvement used by
the rationality evaluation.

4.5 Application to Bi-level Transportation

In this section we define a bi-level transportation problem , involving two different
companies in a supply chain: the leader transports goods from depots to retailers
answering to the retailers demand, and a follower manages plants producing goods
for the leader. The leader starts by deciding which depots should deliver goods, then
the follower decides how to manufacture the goods, both decisions influencing the
overall cost of solutions. Two variants of this problem are here considered, a single-
objective one, and a multi-objective one.
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4.5.1 A Bi-level Multi-depot Vehicle Routing Problem

The first problem, introduced by Calvete and Galé [3], consists of a bi-level prob-
lem where the leader controls a fleet of vehicles to deliver items from several depots
to retailers, on the same principle as the classical multi-depot vehicle routing prob-
lem (MDVRP) . The follower controls a set of plants, and has to produce the items
and deliver them to the depots according to the demand of the retailers it serves,
thus answering a flow problem. The leader tries to minimize the total distance of
his routes and the buying cost of the resources (depending on the lower-level deci-
sion). The follower minimizes the production cost and the distance traveled by the
produced goods. The follower has to directly transport from plants to depots.

4.5.1.1 Problem Description

Let K, L, R and S denote the sets of plants, of depots, of retailers and of vehicles,
respectively. Let E be the edge set between retailers and depots, br the demand of
retailer r, ca

i, j the cost of transporting from depots or retailers i to j for the leader, cb
k,l

the cost to buy and unload a unit produced in plant k into depot l for the leader, and
cc

k,l the operational cost for plant k to produce and deliver to depot l for the follower.
The upper objective function is to minimize the sum of deliver costs from depots

to retailers and buying from plants .

F(x,y) = ∑
s∈S

∑
(i, j)∈E

ca
i, jx

s
i, j + ∑

k∈K
∑
l∈L

cb
k,lyk,l

with x the leader variables representing the routes chosen to deliver retailers, and
y the follower variables representing the affectation of plants to depots. Then, the
lower-level objective function is to minimize the sum of costs of producing items in
plants and delivering it to depots.

f(x,y) = ∑
k∈K

∑
l∈L

cc
k,lyk,l

The leader and follower follow a hierarchical order, where the leader choose routes,
creating a demand for the depots corresponding to the retailers to be delivered, and
where the follower has to respond to this new demand by associating a part of his
plant production to depots.

∑
k∈K

yk,l ≥ ∑
s∈Sl

∑
r∈Rs

br,∀l ∈ L

Several other VRP-related constraints are omitted to improve readability. See [3] for
more details about the problem.
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4.5.1.2 Solution Representation

In the optic of doing an evolutionary algorithm, a solution representation was nec-
essary. Using a generic bi-level representation, we had to decide a representation for
each level. For the upper-level, we use a permutation: every retailer and every route
(each route being associated to a depot) has an attributed number.

The route numbers in the permutation determine the routes start, and every re-
tailers represent in order the actual route (Fig. 4.4). This representation facilitate
the solution integrity, and suppress the need to check the number of routes and the
“one visit per retailer” constraint. We use for the lower-level problem a more classi-
cal double matrix M, Ma

b representing the ratio of production sent from a to b. The
quantity effectively sent is scaled down at the evaluation step if the sum of a column
are over 1, and rounded down if not integer. This indirect representation permits to
use classical algorithms without much adaptation work.

Fig. 4.4 Example of a VRP with 7 retailers, 2 depots, and 2 routes per depot, from
the permutation [5,4,2,9,7,6,10,1,3,8]. Squares are for depots {a,b}, circles for retailers
{1,2,3,4,5,6,7}.
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4.5.1.3 Problem Instances

Two sets of instances1 were generated to experiment the CoBRA efficiency. S1 con-
sist of instances created from MDVRP instances following the modus operandi de-
scribed in [3]. We add as many plants as there are depots randomly located on the
map. Then we set their maximal production to ensure that the instance is feasible. cb

and cc follows a method described in [3]. Set S1 contains 10 instances created from
the 10 instances provided by Cordeau [4]. The second set S2 consists of the same
instances in which a higher fixed number of plants of 50 was added. Those instance
parameters are described in Table 4.1.

Table 4.1 Description of S1 and S2 instances, R corresponding to the number of routes by
depot

Instance Depot R Plants (S1) Plants (S2) Retailer
bipr01 4 1 4 50 48
bipr02 4 2 4 50 96
bipr03 4 3 4 50 144
bipr04 4 4 4 50 192
bipr05 4 5 4 50 340
bipr06 4 6 4 50 288
bipr07 6 1 6 50 72
bipr08 6 2 6 50 144
bipr09 6 3 6 50 216
bipr10 6 4 6 50 288

4.5.2 A Multi-objective Bi-level Multi-depot Vehicle Routing
Problem

The multi-objective bi-level multi-depot routing problem (M-BiMDVRP) is a vari-
ant of the BiMDVRP where the follower minimizes two costs instead of just one
distance between plants and depots, aiming at finding a Pareto front approximation.
The follower has to directly transport from plants to depots for this problem too.
The lower-level objective function vector becomes:

f(x,y) =

(

∑
k∈K

∑
l∈L

cc
k,lyk,l , ∑

k∈K
∑
l∈L

cd
k,lyk,l

)

cd
k,l being another operational cost of plant k, to produce and delivering a unit of

good to depot l, similar to cc. While the leader still have to chose how to deliver

1 Benchmark files are publicly available on the paradiseo website in the problems section at
the following URL: http://paradiseo.gforge.inria.fr/
index.php?n=Problems.Problems.

http://paradiseo.gforge.inria.fr/


108 F. Legillon, A. Liefooghe, and E.-G. Talbi

products from depots to retailers, the follower has to respond to a bi-objective prob-
lem , his goal being to find solutions which are Pareto efficient (see [5] for details
on Pareto efficiency). We kept the same sets of instances as in BiMDVRP, to which
we added the cd cost independently generated on the same way as the cc one.

4.6 Experimental Analysis

In order to evaluate the relevance of CoBRA for bi-level optimization, we conduct
in this section an experimental analysis against a repairing algorithm, a classical
approach which consider the lower-level optimality condition as a constraint, and
simply try to find the best upper-level variable while “repairing” the lower-level one
at the evaluation step.

4.6.1 Experimental Design

We conduct a two-part experimental analysis. In the first part, we apply the two
algorithms on the bi-level multi-depot vehicle routing problem (BiMDVRP). We ran
CoBRA and the repairing algorithm for BiMDVRP on S1, and for M-BiMDVRP on
S1 and S2. We run both of the algorithms 30 times with different seed values, since
both algorithms use stochastic components.

Both algorithms use the same components (i.e. the improvement algorithms, the
stopping criterion, the variation operators and the initializers). The reparation algo-
rithm does not use any archiving or coevolution operator, and a different evaluation
operator which apply a lower-level improvement algorithm before evaluating a so-
lution. Once the stopping criterion is met, we evaluate the population with respect
to three criteria:

• the population average upper-level fitness value,
• the direct rationality,
• the weighted rationality.

4.6.2 CoBRA instantiation for BiMDVRP an M-BiMDVRP

To use CoBRA on the BiMDVRP problem, several problem-specific components
have to be chosen.

4.6.2.1 Upper-Level Problem-Related Components

For the MDVRP upper problem we use a combination of three variation operators:

RBX [19] is a cross-over operator copying routes from a parent, and then com-
pleting the offspring with routes from the other parents by removing visited re-
tailers.
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SBX [19] is a cross-over operator creating a new route, by taking half of a route
starting from a single depot in each parents, keeping the order of each half, and
then completing the offspring with the other routes and removing visited retailers.

Or-opt [17] is a mutation operator taking several retailers from a route and putting
it in another. This operator changes the number of route which neither of the SBX
and RBX can do.

Operators are applied on solutions uniformly chosen in the population.

4.6.2.2 Lower-Level Problem-Related Components

For the lower-level problem we use a combination of two operators:

UXover [6] is a crossover operator choosing elements uniformly for each parent
solution matrix and putting it in the offspring.

Uniform mutation [7] is a mutation operator that add a parametrized real value
rlmut ∈ [−0.5,0.5] to each element of the solution matrix with a plmut probability.

4.6.2.3 Stopping Condition

The algorithm uses three stopping criteria, one for each improvement algorithm and
one for the overall algorithm. Improvement algorithms use a generational stopping
criterion which continue for a fixed number pg of generations. The overall algorithm
uses a lexical continuator which continue until no better solution is found for a
fixed parameter pl of generations, by using a lexical comparator (i.e. by comparing
sequentially the objective values on each level).

4.6.2.4 Selection Operators

The algorithm uses three selection operators to choose which solution to keep from
a generation to the next one, one for each improvement algorithm, and one for the
overall algorithm. We use on both improvement algorithms a deterministic tourna-
ment, which randomly selects two solutions from the population and keep the best
one. For the overall algorithm we use a survive-and-die replacement politic, which
keeps a parametrized proportion of the best solutions nsad from the last generation,
and apply a deterministic tournament on the remaining part of the population in
order to generate the next generation.

4.6.2.5 Archiving Strategy

The algorithm uses archives to keep record of the best solutions found over all gen-
erations. We define two different archive strategies depending on the number of
lower-level objective function:

Single-objective lower-level strategy. We use a straight-forward archive that keeps
the n best found solutions according the the level fitness value
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Multi-objective lower-level strategy. The upper-level archive keeps the same strat-
egy than in the single-objective case. The lower-level archive, at the insertion of
a new individual i, starts by deleting any solution Pareto-dominated by i then
inserts i if it’s not dominated by any individual from the archive. If the archive
size goes over n, we remove from the archive the worst elements according to the
upper-level fitness values until the archive size returned under n.

4.6.2.6 Numerical Parameters

To use those components and CoBRA, the following parameters have to be set:

• n: the populations size, set to 100
• rlmut : the uniform mutation adding parameter, set to 0.5
• plmut : the uniform mutation probability parameter, set to 0.1
• pg: the number of generations each improvement generates, set to 10
• pl: the number of generations CoBRA continues without improvement, set to

100
• nsad the proportion of best solutions that are kept from the last generation, set to

0.8

4.6.3 Experimental Results

4.6.3.1 BiMDVRP

Table 4.2 shows numerical results for CoBRA and the repairing algorithm on in-
stances from S1. Here are displayed the average upper-level fitness value, and the
best fitness value obtained in the lower-level archive, as well as the direct ratio-
nality metric value. Since direct rationality was enough to rank the algorithms, the
weighted measure was not used.

CoBRA has a significantly better score for the rationality, on all the instances.
For both algorithms, rationality is not related to the instance size. The repairing
algorithm is doing better for the upper-level fitness value.

4.6.3.2 M-BiMDVRP

Tables 4.3 and 4.4 show the experimental results over the sets S1 and S2, respectively.
The average and the best upper-level fitness values obtained in the lower archive,
and the weighted rationality measure are given. Direct rationality did not permit to
significantly decide between the coevolutionary and the hierarchical approach.

Both algorithms obtain similar upper-level fitness values. CoBRA is still having
a better rationality. The rationality gap between CoBRA and the repairing algorithm
increases with the instance size. The number of evaluations done by the algorithms
are shown on Figure 4.5. The repairing algorithms needs a lot more evaluations,
impairing the computational cost of the approach.
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Table 4.2 Average upper-level fitness value, best upper-level fitness value and weighted ra-
tionality value for BiMDVRP instances from S1

Averaged fitness Best fitness Direct rationality
Instance CoBRA Repair CoBRA Repair CoBRA Repair

bipr01 1883 1848 1676 1626 0.6 7.5
bipr02 4049 3338 3718 2880 1.3 5.4
bipr03 6058 5849 5604 4712 2.7 23.5
bipr04 7172 7368 6568 6051 1.9 19.9
bipr05 9750 8535 9493 7179 0.6 5.4
bipr06 15237 11637 14837 9656 0.7 5.9
bipr07 3165 2917 2851 2453 0.9 1.5
bipr08 7207 5348 6801 4736 2.2 22.9
bipr09 9825 8326 9343 7042 2.0 22.2
bipr10 14418 12413 13419 12412 0.6 13.5

Table 4.3 Average upper-level fitness value, best upper-level fitness value and weighted ra-
tionality value for M-BiMDVRP instances from S1

Average Fitness Best Fitness Weighted rationality
Instance CoBRA Repair CoBRA Repair CoBRA Repair
mbipr01 3151 3570 2930 3002 0.66 21.50
mbipr02 5980 6559 5729 5792 4.83 140.50
mbipr03 11459 12369 10887 11230 77.49 562.76
mbipr04 12985 14346 12568 13158 6.84 195.84
mbipr05 16067 16872 15317 15982 1.82 52.89
mbipr06 19408 21291 18523 20079 158.02 839.89
mbipr07 5195 5790 4915 4758 8.71 253.39
mbipr08 10566 11691 9943 10543 21.36 106.70
mbipr09 15948 17519 15330 16247 41.13 727.62
mbipr10 20849 22798 20361 21523 86.45 1040.10

Table 4.4 Average upper-level fitness value, best upper-level fitness value and weighted ra-
tionality value for M-BiMDVRP instances from S2

Averaged fitness Best fitness Weighted rationality
Instance CoBRA Repair CoBRA Repair CoBRA Repair
mbipr01 3187 3630 2912 3155 16.69 67.52
mbipr02 6155 6798 5808 6236 25.61 89.10
mbipr03 11226 12390 10865 11544 31.55 197.58
mbipr04 13703 14934 13240 14113 27.18 208.44
mbipr05 15349 16773 14753 16092 111.10 357.05
mbipr06 19894 21986 19314 21132 45.41 306.62
mbipr07 5243 5849 4796 5239 18.86 82.46
mbipr08 10598 11649 10131 10866 15.02 198.85
mbipr09 15862 17517 15357 16535 21.61 229.93
mbipr10 20747 22843 20207 22019 39.43 349.27
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Fig. 4.5 Average number of evaluations required by CoBRA and the repairing algorithm on
M-BiMDVRP instances from Set S2

4.6.3.3 Discussion

CoBRA has a significant advantage in terms of rationality for all the runs we per-
formed, while it does not always give a better upper-level fitness value. Rationality
indicates the quality of the reaction predicted by the algorithm. A bad prediction is
likely to lead to a bad solution: once applied to a real-life situation the follower will
have greater chances to chose a better reaction for his own objective function(s), de-
grading the solution quality for the leader. Since CoBRA has a better rationality, we
can better predict the outcome of the decisions. Thus we can conclude that CoBRA
is more adapted to the bi-level aspect of the problem.

An explanation why the hierarchical algorithm does not select the more rational
response would be that once an irrational solution x = (xu,xl) is obtained, through a
badly done reparation, which gives a better upper-level fitness value than the more
rational response x′ = (xu,x′l), the overall algorithm will have a tendency to discard
x′ and keep x. We can conclude that the reparation approach needs either a good
lower-level heuristic, an exact lower-level algorithm, or some properties over the
problem (such as a strong correlation between the two levels) to be able to produce
rational responses. This is the reason why the coevolution allows CoBRA to get
a better rationality. We can conclude that the coevolutionary approach can give a
significant enhancement for this problem.

4.7 Conclusions and Future Works

In this paper, we described CoBRA, a new general methodology to solve bi-level
optimization problems. We introduced the concept of rationality for bi-level opti-
mization problems and two new metrics to compare the performance of evolutionary
algorithms for such purpose. Using those two metrics, we compared CoBRA against
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a classical hierarchical approach on a bi-level optimization problem of production/-
transportation in its single-objective and multi-objective variants. Experimental re-
sults showed a significant advantage to the CoBRA approach in tackling the bi-level
multiple depot problem against a classical hierarchical approach.

As future work, it would be interesting to look up a possible integration of di-
versification principles into CoBRA. Instead of considering the upper-level fitness
values in the lower-level archive, it could be more efficient to keep a good diversity
in the archive. This would give the opportunity for the algorithm to escape from lo-
cal optima easier. Furthermore, the design of CoBRA is intrinsically parallel, since
two sub-populations evolve independently,parallel computation would improve the
performance in terms of computational time.
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Chapter 5
A Matheuristic for Leader-Follower Games
Involving Facility
Location-Protection-Interdiction Decisions

Deniz Aksen and Necati Aras

Abstract. The topic of this chapter is the application of a matheuristic to the leader-
follower type of games—also called static Stackelberg games—that occur in the
context of discrete location theory. The players of the game are a system planner
(the leader) and an attacker (the follower). The decisions of the former are related to
locating/relocating facilities as well as protecting some of those to provide service.
The attacker, on the other hand, is interested in destroying (interdicting) facilities
to cause the maximal possible disruption in service provision or accessibility. The
motivation in the presented models is to identify the facilities that are most likely to
be targeted by the attacker, and to devise a protection plan to minimize the resulting
disruption on coverage as well as median type supply/demand or service networks.
Stackelberg games can be formulated as a bilevel programming problem where the
upper and the lower level problems with conflicting objectives belong to the leader
and the follower, respectively. In this chapter, we first discuss the state of the art
of the existing literature on both facility and network interdiction problems. Sec-
ondly, we present two fixed-charge facility location-protection-interdiction models
applicable to coverage and median-type service network design problems. Out of
these two, we focus on the latter model which also involves initial capacity plan-
ning and post-attack capacity expansion decisions on behalf of the leader. For this
bilevel model, we develop a matheuristic which searches the solution space of the
upper level problem according to tabu search principles, and resorts to a CPLEX-
based exact solution technique to tackle the lower level problem. In addition, we
also demonstrate the computational efficiency of using a hash function, which helps
to uniquely identify and record all the solutions visited, thereby avoids cycling
altogether throughout the tabu search iterations.
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5.1 Introduction and Background

5.1.1 Man-Made Attacks as a Source of Disruption

The malicious acts of terror syndicates around the world have been threatening the
public and governments in the last 20 years. The massive and well-prepared attacks
in New York 1993 and 2001, in İstanbul and Morocco 2003, in Madrid 2004, and in
London, Bali and Sharm el-Sheikh 2005 point to the increased sophistication in the
planning of such terrorist deeds . This emerging trend is highlighted also in Perl’s
report of 2006 [41] presented to the U.S. Congress. The Internet age amenities help
modern-day terrorists to collect the necessary information for tactical planning prior
to any attack. Thanks to the availability of information in the public domain, crim-
inals can utilize their resources in the best possible way to inflict maximum harm.
In response to this trend, governments and security officials have been fostering
the protection of critical facilities against such attacks. The protection of hard tar-
gets, however, heightened the attractiveness of soft targets for terrorist attacks [14].
Taliban’s attack on the telecommunication towers in Afghanistan [42] is a signifi-
cant example, where the attacker’s primary aim was disrupting service rather than
killing people. Another example is the assault on an ambulance station in North-
ern Ireland [8] where the station was shut down after the attack causing a major
disruption in emergency services. As can be seen in these examples, critical infras-
tructure comprises certain physical assets of a system the loss of which leads to
significant disruption in the system’s operational and functional capabilities. Exam-
ples are given in [16] as transportation linkages such as bridges, viaducts, tunnels
and railroads; public service facilities; government buildings; power plants; critical
stockpiles; key personnel; and even national landmarks whose loss would severely
impact the morale of the public.

5.1.2 Preliminary Interdiction Models

Security planning and protection of critical infrastructure has been motivating the
OR community to develop a wide variety of interdiction models in the last years.
The terms interdiction and attack are used interchangeably in the literature. They
both refer to the deliberate act of attempting to destroy or damage one or more
components of an infrastructure or service system in order to impair its overall per-
formance. In a recent encyclopedia article, Smith [50] argues that interdiction mod-
els and algorithms can effectively identify critical components in a complex network
without resorting to exhaustively enumerating worst-case scenarios, and can be cou-
pled with fortification models to assess the benefits of protecting a network. In this
regard, the identification of vulnerabilities is realized from the perspective of the
attacker to anticipate the extent of the maximal possible or worst-case disruption in
service provision. This analysis pinpoints the particular facilities that would be tar-
geted by the attacker in the worst-case scenario. Once they have been identified, the
system planner can devise a protection plan to minimize the worst-case disruption.
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The scope of interdiction models can be divided into two major lines: network
interdiction and facility interdiction. In the latter, the target of disruption by the
attacker is facility or supply nodes offering some service to a set of customer nodes.
Arcs providing the linkage in between the two entities are not considered. However,
the former was studied much earlier and more extensively in the literature. In this
line, the seminal work belongs to Wollmer [55]. He described the ever first network
interdiction model where the objective is to minimize the maximum possible flow
between a pair of source and sink nodes by the removal of a certain number of
arcs from the graph. Complete and partial interdiction of arc capacities in maximum
flow networks under budget and cardinality constraints was later studied in-depth
by Wood [56]. Attacks with probabilistic outcome were introduced into network
interdiction models for the first time by Cormican et al. [18]. The objective of their
model is the minimization of the expected maximum flow through a graph where
the attacker’s arc interdictions follow a Bernoulli process with success probability
(1− p).

The first models in the line of facility interdiction are found in [17], where the
authors deal with disruptions both in coverage and median type supply/demand net-
works. They formulated two models from an attacker’s viewpoint given that there
are p existing facilities serving the customers. In the r-interdiction median problem
(RIM), the objective is to maximize the demand-weighted total distance by attacking
r out of p facilities where the customers of the disrupted facilities have to be reas-
signed to undamaged facilities to get service. In the r-interdiction covering problem
(RIC), the goal of the attacker is to determine a subset of r facilities among the set
of p existing ones, which if destroyed will yield the greatest reduction in covered
customer demand. It is not difficult to see that RIM and RIC are the antitheses of
the well-known p-median and maximal covering problems, respectively. Church et
al. [17] presented also an exhaustive survey of interdiction models published before
2004.

5.1.3 Recent Network and Power Grid Interdiction Models

The shortest path network interdiction model based on the unsolicited elongation
of arc lengths was first introduced by Fulkerson and Harding [20]. Later, Israeli
and Wood [29] adopted this model to analyze the impact of complete destruction,
i.e., removal of arcs from the shortest path graph. Lim and Smith [33] studied the
multi-commodity flow network version where arc capacities can be reduced either
partially or completely. The attacker’s objective is to minimize the maximum profit
that can be obtained from shipping commodities across the network. The case of
asymmetric arc length information held by the evader and the attacker of a shortest
path network was discussed in Bayrak and Bailey [7]. Finally, Khachiyan et al. [31]
revisited Israeli and Wood’s shortest path interdiction model, and looked into two
subcases: total limited interdiction, where a fixed number k of arcs can be removed
from the network, and node-wise limited interdiction, where for each node v of the
network a fixed number k(v) of outgoing arcs can be removed. In all five papers,
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the attacker is assumed to have some budget for interdicting arcs, and each arc is
associated with a positive interdiction expense.

The stochastic version of the shortest path interdiction model has been studied
from the attacker’s perspective by Hemmecke et al. [28], Held et al. [27], and Held
and Woodruff [26]. The objective in the stochastic version is to maximize the ex-
pected minimum distance between a pair of source and sink on a network with
uncertain characteristics. A variation of this model is the case where the attacker’s
objective is to maximize the probability that the shortest path length exceeds a par-
ticular threshold value.

On the front of node-based connectivity and flow interdiction, one can cite Mur-
ray et al.’s paper [38] among recent works. Their paper presents an optimization
approach for identifying connectivity and/or flow interdiction bounds with respect
to the origin-destination pairs of a network. Royset and Wood [43] proposed a de-
terministic, single level and bi-objective arc interdiction model in maximum flow
networks. In this model, the interdictor seeks to destroy some arcs beyond repair so
as to minimize both the total interdiction cost and maximum flow.

Real-world applications of bilevel network interdiction models have been lately
presented by Arroyo and Galiana [6], Motto et al. [37], and Salmerón et al. [44].
In these papers, an electric power grid involving different vulnerable components
such as generators, transmission lines, transformers and substations is threatened by
a disruptive agent, e.g., a group of terrorists. The disruptive agent in the upper level
problem tries to maximize the costs arising by power generation and intentionally-
engineered power outage (load shedding). In turn, the grid operator in the lower
level problem tries to minimize either this or a different total cost function by taking
corrective actions while meeting power requests of consumers.

5.1.4 Protection-Interdiction Models

Governments cannot afford to safeguard all critical assets of a country so as to make
them 100 percent immune. Murray et al. [38] point to fiscal constraints that may
limit the scope of applicable protective measures. Yet, protecting or fortifying a sub-
set of an infrastructure or service system against disruptive action can be a viable
alternative to the complete redesign of that system to minimize the aftermath of in-
terdiction. Scaparra and Church [47] count the addition of security/guards, perimeter
fencing, surveillance cameras, and strengthened telecommunications among possi-
ble measures of protection against an interdictor. Protection can reduce the proba-
bility of the loss of a facility or network component (critical asset), or can prevent
it altogether. A broad range of models investigating this issue within the context
of network and facility interdiction can be found in Snyder et al. [53]. The ensu-
ing protection-interdiction (or fortification-interdiction) models are used to identify
the critical assets whose protection sustains the post-attack system functionality as
much as possible. The amount of protection is explicitly restricted either through
a budget constraint or by the cardinality of assets that can be hardened against
interdiction.
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The presence of two players in these models, namely a system planner and an
attacker, gives rise to a bilevel programming structure. Another commonly used
name for bilevel programs is leader-follower or static Stackelberg games . A bilevel
programming (BP) problem is a special case of multilevel optimization with two
levels or two parties, one of whom takes the leader’s position, and the other one
is the follower making his or her plan based on the leader’s decision. In a bilevel
protection-interdiction problem, protection and location or network design decisions
are modeled in the upper level problem, whereas the lower level interdiction model
is used to assess the impact of the most damaging disruption for a given protection
and location or network design strategy. This modeling prototype can be found in
the following articles which are listed in chronological order:

• O’Hanley et al. [39] dealt with the problem of budget-constrained protection
of critical ecological sites . There is a conservation planner who reserves (pro-
tects) ecological sites against a hypothetical adversary who destroys a subset of
unprotected (nonreserve) sites. The authors developed a mixed-integer bilevel
programming model based on the RIC of Church et al. [17] to minimize the
maximum species losses following the worst-case loss of a restricted subset of
nonreserve sites.

• Church and Scaparra [16] incorporated the protection of facilities into the RIM
model to obtain the interdiction median problem with fortification (IMF).

• Scaparra and Church [45] proposed another formulation for the IMF referred to
as the maximal covering problem with precedence constraints (MCPC).

• Scaparra and Church [46] solved a BP formulation of the r-interdiction median
problem with fortification (RIMF) based on an implicit enumeration algorithm
performed on a search tree.

• Smith and Lim [51] reviewed the ongoing research in the area of three-stage net-
work interdiction problems in which the network operator fortifies the network
by increasing capacities, reducing flow costs, or defending network elements be-
fore the interdictor takes action.

• Scaparra and Church [47] studied another version of the RIMF with capacitated
facilities as a trilevel programming problem .

• Aksen et al. [2] solved the budget-constrained protection of facilities with ex-
pandable capacities in a median type supply/demand network.

• Losada et al. [34] dealt with the partial protection of uncapacitated facilities
with nonzero post-attack recovery times in a median type service network over a
multi-period planning horizon.

• Liberatore et al. [32] studied the stochastic RIMF.
• Cappanera and Scaparra [13] solved a multi-level interdiction problem to deter-

mine the optimal allocation of protective resources in a shortest path network so
as to maximize its robustness to an attacker who is capable of ruining unprotected
arcs and nodes of that network.
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5.1.5 Location-Interdiction and Network Design-Interdiction
Models

In this type of interdiction models, the network or system designer (the defender)
assumes the role of the leader in the static Stackelberg game, and decides on the
structure of the underlying system which may be a network infrastructure or a
median or coverage-type supply/demand system. The attacker—in the role of the
follower—makes his plan in order to inflict as much damage as possible to this sys-
tem. Research on this type of interdiction models is quite new and rare. To be cited
on the network design-interdiction front is the paper by Smith et al. [52], which
considers budget constrained arc construction and partial arc interdiction in a mul-
ticommodity flow network. The authors built on the work of Lim and Smith [33] by
incorporating an additional design layer into the linear BP problem. The resulting
model is a three-level defender-attacker game. The defender first constructs a net-
work each arc of which has a fixed construction cost, a maximum capacity, and a
per-unit flow profit. Next, the attacker interdicts a set of arcs, and in the third level
the defender determines the set of flows through the surviving network to maxi-
mize her post-interdiction profit. The objective of the upper level problem includes
a weighted combination of flow profits before and after interdiction minus arc con-
struction costs. The distinguishing merit of Smith et al.’s model is that the defender’s
and attacker’s objective functions are not identical. The former includes a weighted
combination of net profits before and after interdiction, while the latter minimizes
the net profits after interdiction only.

In the category of shortest path networks , the first network design-interdiction
problem was defined in Berman and Gavious [11], where the leader and the follower
of the underlying Stackelberg game are the State and the terrorist, respectively. The
State determines K sites of emergency response facilities on a shortest path network
comprising multiple cities, and decides the total amount of protective resources out-
side the network. This amount dictates the probability that a terrorist attack on a city
will succeed. The higher the resources, the lower an attack’s success probability. The
terrorist is assumed to have exact information about the response facility sites cho-
sen by the State. Following the terrorist strike on a city, resources are sent from the
closest response facility over the shortest path in the network between that facility
and the attacked city. The objective of the terrorist is to maximize the loss which
is represented by the product of the delay in sending the required resources and the
expected damage at the attacked city. The State’s objective, on the other hand, is the
minimization of the sum of this loss and the total cost of opening response facilities
and installing protective resources. The problem is solved first for the case of single
response facility (K = 1), then for multiple facilities. In a recent follow-up paper by
Berman et al. [12], the assumption of the terrorist being perfectly knowledgeable
about the response facility sites is relaxed. This leads to a simultaneous move game
between the two players for which Nash equilibria can be found numerically. Due
to the intractability of the resulting game-theoretical problem , solutions are found
only for the case of K = 1.
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On the front of facility location-interdiction , we are aware of only two pub-
lished papers. The first one is due to O’Hanley and Church [40], which considers
a maximal coverage type supply/demand system. The defender of this system has
to decide on the locations of at most p facilities by choosing from a set of candi-
date sites which are all exposed to disruptive actions by an intelligent attacker. This
bilevel model is inspired by the maximal covering problem (MCP) , first introduced
by Church and ReVelle [15]. The authors couple MCP with RIC, which means that
facility locations are determined while anticipating their effect on the most disrup-
tive interdiction pattern of the attacker. This way, a pre-attack layout of facility sites
can be obtained that is more robust to worst-case losses inflicted by the attacker.
The resulting problem is called the maximal covering location-interdiction problem
(MCLIP) , and formulated as a bilevel mixed-integer program (BMIP). A bilevel
decomposition based algorithm is applied to the BMIP, where two separate prob-
lems, i.e. the upper level master problem and the lower level subproblem derived by
decoupling the original BMIP are solved sequentially.

The second paper dealing with a facility location-interdiction problem was writ-
ten by Berman et al. [10]. The authors studied a defensive p-median maximal cov-
ering problem with a single link (arc) interdiction. The attacker deliberately severs
one of the network links to reduce the coverage of customer nodes as much as pos-
sible. The defender, on the other hand, tries to maximize coverage following the
destruction of that link. Rather than using a bilevel programming framework, the
leader’s and follower’s problems are solved separately with three heuristics.

5.1.6 The Triple Problem of Facility
Location-Protection-Interdiction

A defender-attacker game revolving around a facility location-interdiction problem
that also involves the defender’s facility protection decisions is found in Aksen et
al. [3] for a p-median problem, in Aksen and Aras [1] for a fixed-charge facility
location problem, and in Keçici et al. [30] for a maximal coverage type service net-
work with fixed-charge facilities. In the first two papers, the defender has to plan also
for the initial capacity acquisition and post-attack capacity expansion at the facili-
ties as necessary in order to accommodate all customer demands in the event of the
worst-case interdiction by the attacker. We can say that the defender’s facility loca-
tion decisions bring about an additional location layer to the protection-interdiction
problem in Aksen et al. [2]. In all three papers, both protection and interdiction
decisions are implemented on an all-or-none basis. This means that neither partial
protection nor partial interdiction is possible. While [3] and [30] put a budget limit
on the sum of facility protection expenditures, in [1] it is added directly to the ob-
jective function of the defender in the upper level problem.

We may treat the generic facility location-protection-interdiction problem as a
service network design problem (SND). In this chapter, we revisit the models of
Keçici et al. [30] and Aksen and Aras [1] that are proposed to capture the triple SND
of facility location-protection-interdiction in a BP framework. We then develop an
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efficient tabu search based matheuristic with hashing (TSH) which is capable of
producing high-quality solutions to this SND both on median and coverage-type
service networks. We show the results of extensive computations performed with
TSH on a set of randomly generated median-type networks with capacity acquisition
and expansion costs. For future research we suggest several extensions of this SND
for which TSH can still prove an effective method to solve the upper level problem.

The remainder of the chapter is organized as follows. In Sect. 7.3 we give two
location-protection-interdiction models formulated as bilevel integer programs. The
first one is for a coverage-type network, while the second one is for a median-type
network. The solution approach, which is a matheuristic based on tabu search, is
outlined in detail in Sect. 7.4. Section 7.5 includes the computational results on
randomly generated test instances. Finally, Sect. 7.6 concludes the chapter.

5.2 Two Service Network Design Models

5.2.1 A Location-Protection-Interdiction Model for
Coverage-Type Networks

In this problem setting it is assumed that there exist |J1| operational facilities provid-
ing service to customers that are located at |I| different zones with demand di. Since
an attacker aims to minimize the service coverage by interdicting r unprotected
facilities, the system planner’s objective is to maximize the post-attack service cov-
erage by taking one or more of the following actions: relocating existing facilities,
opening new facilities at some of the |J2| candidate sites, and protecting some of
the existing and new facilities to render them invulnerable to any attack. A different
cost is incurred associated with each of these actions: gi j is the cost of relocating an
existing facility from site j ∈ J1 to site k ∈ J2, f j is the cost of opening a new facility
at site j ∈ J2, and h j is the protection cost of an existing or new facility at site j. The
amount of the total cost cannot exceed a predetermined level of budget given as b.

The service coverage can be modeled using the gradual coverage concept in-
troduced in [9], where the coverage of a customer zone is full when the distance
between the customer zone and a facility is smaller than a lower limit R1, and it
decreases gradually to zero when the distance becomes larger than an upper limit
R2 > R1. As pointed out in [9], the gradual coverage idea might be a good approxi-
mation in some real-life applications as opposed to the “all or nothing” property of
the classical maximal covering model developed in [15]. According to this model,
the coverage is full at a distance smaller than or equal to a threshold value R, and
suddenly drops and remains at zero beyond this value. In the present model, a lin-
ear decay function between R1 and R2 is adopted, where the level of partial service
coverage ai j is given as follows when the distance between customer zone i and the
facility at site j is equal to ci j.
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ai j =

⎧
⎪⎨

⎪⎩

1 if ci j ≤ R1
R2−ci j
R2−R1

if R1 < ci j ≤ R2

0 if ci j > R2

It is assumed that when a customer zone is partially covered by multiple facilities,
the final coverage can be obtained by taking the maximum of the partial coverage
value of each facility. This implies that the resulting coverage is achieved by the
closest facility to a customer zone when R1 and R2 are the same for each facility.

Since the system planner makes his decisions with the anticipation of the at-
tacker’s decision about the destruction of some of the facilities, the situation can
be formulated as a BP model. The upper level problem (ULP) corresponds to the
system planner who is the leader of the game, while the lower level problem (LLP)
belongs to the attacker who is the follower. We assume that the system planner has
complete information about the attacker’s problem, i.e., the objective function and
the constraints of the LLP. Similarly, the attacker is assumed to be fully knowledge-
able about the protection status of the facilities so that he will not waste his resources
by attacking protected facilities.

Before presenting the BP model with binary variables at both levels, we give the
notation used in the formulation.

Index Sets:

I = set of customer zones,
J1 = set of existing facility sites,
J2 = set of candidate facility sites,
J = J1

⋃
J2 = set of existing and candidate facility sites.

Parameters:

di = demand of customer zone i ∈ I,
f j = fixed cost of opening a new facility at site j ∈ J2,
g jk = cost of relocating an existing facility from site j ∈ J1 to site k ∈ J2,
h j = fixed cost of protecting a facility at site j ∈ J,
b = available budget of the system planner,
r = the maximum number of facilities the attacker can interdict,
ai j = partial coverage of customer zone i ∈ I by the facility at site j ∈ J.

Decision Variables:

Yj =

{
1 if there is a facility at site j ∈ J,
0 otherwise.

Xjk =

{
1 if an existing facility at site j ∈ J1 is relocated to site k ∈ J2,
0 otherwise.
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S j =

{
1 if facility at site j ∈ J is destroyed by the attacker,
0 otherwise.

Pj =

{
1 if facility at site j ∈ J is protected,
0 otherwise.

Vi = fraction of customer zone i’s demand served after the attack.
Note that if there is an existing facility at site j ∈ J1, or a new facility is opened

at site j ∈ J2 or an existing facility is relocated to site j ∈ J2, then Yj = 1. The BP
model corresponding to the coverage-type location-protection-interdiction problem
described above is given as follows:

max
X,Y,P

Zsys =∑
i∈I

diVi (5.1)

s.t.

(1−Yj) = ∑
k∈J2

Xjk j ∈ J1 (5.2)

∑
j∈J1

Xjk ≤ Yk k ∈ J2 (5.3)

∑
j∈J2

f j(Yj− ∑
k∈J1

Xk j)+ ∑
j∈J1

∑
k∈J2

g jkXjk +∑
j∈J

h jPj ≤ b (5.4)

Pj ≤ Yj j ∈ J (5.5)

Yj,Pj ∈ {0,1} j ∈ J (5.6)

Xjk ∈ {0,1} j ∈ J1,k ∈ J2 (5.7)

where X, Y, and P solve:

min
S,V

Zatt =∑
i∈I

diVi (5.8)

s.t.

ai j(Yj− S j)≤Vi i ∈ I, j ∈ J (5.9)

S j ≤ Yj−Pj j ∈ J (5.10)

∑
j∈J

S j ≤ r (5.11)

0≤Vi ≤ 1 i ∈ I (5.12)

S j ∈ {0,1} j ∈ J (5.13)

In the above formulation (5.1)–(5.7) represent the system planner’s ULP, while
(5.8)–(5.13) constitute the attackers LLP. In the ULP, the objective function (5.1)
is the maximization of the total post-attack service coverage. Constraints (5.2) and
(5.3) establish the relationship between location variablesYj and relocation variables
Xjk. In particular, the first set of constraints guarantee that if a facility is relocated
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from site j ∈ J1 to any other site k ∈ J2, then the location variable Yj must be equal
to zero. The second set of constraints state that if a facility is relocated to site k ∈ J2,
then Yk = 1 must hold true. Note that these constraints are valid in the case that no
facility is relocated to site k ∈ J2 (i.e., the left-hand side is zero) and a new facility
is opened at site k ∈ J2 (i.e., the right-hand side is one). Constraint (5.4) makes sure
that the total expenditure of the system planner does not exceed the available bud-
get. The first term on the left-hand side of this inequality represents the cost of new
facility openings, while the second and third terms constitute the cost of the reloca-
tions and protections, respectively. Constraints (5.5) suggest that a facility cannot be
protected if it is not opened. Binary restrictions are imposed on location variables
Yj and protection variables Pj in constraints (5.6), and on relocation variables Xjk in
constraints (5.7).

In the LLP, the objective function (5.8) is the same as that of the system planner,
but the sense of optimization is opposite. Namely, the attacker aims at reducing the
total post-attack service coverage as much as possible. Constraints (5.9) ensure the
coverage of each customer zone by the closest open facility which is not interdicted
by the attacker. Note that if customer zone i can be served from multiple facilities,
the final coverage represented by variable Vi is set to the maximum of the partial
coverage due to each facility. In other words, this customer zone is served from
the closest facility. Constraints (5.10) are logical conditions, which prevent the at-
tacker from interdicting facilities either not existing at all or opened/relocated but
also protected by the system planner. Constraint (5.11) states that the attacker can
interdict at most r facilities. Constraints (5.12) ensure that coverage variables Vi are
between zero and one, and constraints (5.13) are binary restrictions on interdiction
variables S j.

There are 2|J|+ |J1||J2| binary variables and 2|J|+ 1 constraints in the ULP of
the BP model defined in (5.1)–(5.13). Its LLP contains |I| continuous and |J| binary
variables and (|I|+ 1)|J|+ |I|+ 1 constraints.

5.2.2 A Location-Protection-Interdiction Model for
Median-Type Networks

In this subsection, we consider a unified bilevel fixed-charge location problem called
BFCLP. The problem is defined on a median-type fixed-charge service network. We
introduce a BP model for this problem. In the upper level (leader’s problem), a sys-
tem planner is the decision maker who decides about the following issues: which
facilities should be opened, which of them should be protected, and what should
their initial capacity levels be so as to minimize the sum of the costs incurred before
and after the interdiction attempt of an attacker. Here, the number of facilities to be
opened is a decision variable as is the case in the well-known uncapacitated facility
location problem. Each customer goes to the nearest opened facility, which cannot
deny service. Thus, the system planner has to assure the necessary capacity acquisi-
tion at each opened facility to meet the total demand of customers who will choose
that facility for service. We assume that a protected facility becomes immune to any
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attack, hence cannot be interdicted by the attacker. As opposed to earlier facility
protection models IMF [16] and RIMF [45] which use a cardinality constraint on
the number of protected facilities and BCRIMF-CE [2] which uses a budget limit
on the total cost of protection, BFCLP explicitly includes the cost of protection in
the system planner’s objective function.

As mentioned earlier, the system planner’s objective includes costs that are real-
ized both before the interdiction (BI) and after the interdiction (AI). BI costs include
the following components.

BI-1: The total fixed cost of opening facilities where each facility may have a
different fixed cost.

BI-2: The total fixed cost of protecting the opened facilities where each facility
may have a different protection cost.

BI-3: The sum of capacity acquisition costs at the opened facilities, which may
vary from one facility to another depending on the unit capacity acquisition
cost and the total customer demand met.

BI-4: The sum of demand-weighted traveling costs from customer locations to
the respective nearest facilities opened before interdiction.

Given the decisions of the system planner in the upper level, the attacker in the lower
level (follower’s problem) chooses at most r facilities to destroy. As is the case with
the previous model, the attacker has perfect information about the protection status
of the facilities. This means that he never hits a protected facility. As a consequence
of the attack on a facility, all its customers have to be reallocated to the nearest non-
interdicted facilities since no customer must be left out even after the attack. This, in
turn, leads to a necessary expansion at the facilities that are still operational. In our
model the capacity expansion cost is incurred at a unit rate, which may be different
for each facility. In summary, AI costs consist of the following components.

AI-1: The sum of capacity expansion costs incurred by the non-interdicted facil-
ities due to the reallocation of the customer demand originally satisfied by
the interdicted facilities.

AI-2: The sum of extra demand-weighted traveling costs arising due to the real-
location of the customers from the facilities severed by the attacker.

AI-3: The sum of post-attack demand-weighted traveling costs between all cus-
tomers and their respective nearest facilities surviving the attack.

Note that AI-2 is included in AI-3. The system planner pursues the minimization
of the sum of BI-1 through BI-4, AI-1 and AI-2. BI costs should be included in
his objective function Zsys since they constitute the setup and operating costs in an
undisrupted service network. The probability of disruption due to malicious acts
may be fairly small. Thus, ignoring BI costs could lead to a facility location plan
which turns out to be very cost-ineffective in the absence of interdiction. Another
issue is the inclusion of AI-2 instead of AI-3 in Zsys. Its rationale is to avoid the
double-counting of accessibility costs for those customers whose post-attack facility
assignments do not differ from their pre-attack assignments.
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The attacker’s objective is to maximize the total of AI-1 and AI-3. His objective
function Zatt should include AI-1 because capacity expansion due to customer real-
location is a direct outcome of facility interdiction. Not only is it highly expensive
in many real situations, but also impractical due to spatial restrictions or even un-
doable due to lack of personnel or equipment. The inclusion of AI-1 in Zatt indicates
the attacker’s intent to cause this sort of inconvenience in the system. Finally, AI-3
should be added to Zatt as well, since the attacker tries to maximize the accessibility
costs for all customers, not just for those who are reallocated to another facility in
the wake of an interdiction.

Index Sets:

I = set of customer zones
J = set of candidate facility sites

Parameters:

ci j = shortest distance between customer node i ∈ I and facility site j ∈ J,
α = customers’ traveling cost per unit distance per unit demand,
di = demand at customer node i ∈ I,
f j = fixed cost of opening a facility at site j ∈ J,
h j = fixed cost of protecting a facility at site j ∈ J,
e j = unit capacity acquisition / expansion cost for the facility at site j ∈ J,
r = the maximum number of facilities the attacker can interdict.

Decision Variables:

Yj =

{
1 if there is a facility opened at site j ∈ J,
0 otherwise.

Pj =

{
1 if the facility at site j ∈ J is protected,
0 otherwise.

S j =

{
1 if facility at site j ∈ J is destroyed by the attacker,
0 otherwise.

Bi j =

{
1 if customer i ∈ I is assigned to the facility at site j ∈ J before the attack,
0 otherwise.

Ai j =

{
1 if customer i ∈ I is assigned to the facility at site j ∈ J after the attack,
0 otherwise.

We will also use an auxiliary set called Fi j which is defined as the subset of
candidate facility sites that are at least as close as site j is to customer i, i.e.,
Fi j = {k ∈ J|cik ≤ ci j}. The mathematical model of the BFCLP is given as follows.
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min
B,P,Y

Zsys = ∑
j∈J

f jYj +∑
j∈J

h jPj +∑
i∈I

∑
j∈J

(e j +αci j)diBi j

+∑
i∈I

∑
j∈J

(e j +αci j)di(1−Bi j)Ai j (5.14)

s.t.

∑
j∈J

Bi j = 1 i ∈ I (5.15)

∑
i∈I

Bi j ≤ nYj j ∈ J (5.16)

∑
k∈Fi j

Bik ≥Yj i ∈ I, j ∈ J (5.17)

Pj ≤ Yj j ∈ J (5.18)

Bi j,Pj,Yj ∈ {0,1} i ∈ I, j ∈ J (5.19)

where B, P, and Y solve:

max
S,A

Zatt =∑
i∈I

∑
j∈J

e jdi(1−Bi j)Ai j +∑
i∈I

∑
j∈J

diαci jAi j (5.20)

s.t.

∑
j∈J

Ai j = 1 i ∈ I (5.21)

∑
j∈J

S j ≤ r (5.22)

S j ≤ Yj−Pj j ∈ J (5.23)

∑
i∈I

Ai j ≤ nYj(1− S j) j ∈ J (5.24)

∑
k/∈Fi j

Aik ≤ 1+ S j−Yj i ∈ I, j ∈ J (5.25)

Ai j ≥ Bi j(1− S j) j ∈ J (5.26)

S j,Ai j ∈ {0,1} i ∈ I, j ∈ J (5.27)

In the BFCLP formulation above, (5.14)–(5.19) represent the upper level problem
and (5.20)–(5.27) correspond to the LLP of BFCLP. Expression (5.14) shows the
objective function Zsys of the system planner. The first component of this objective
is the fixed cost of opening facilities (BI-1). The second component is the facility
protection cost (BI-2). The third component is equivalent to (BI-3+BI-4). We do
not have to account for BI-3 if e j = e for all j ∈ J. The fourth objective compo-
nent in (1) represents (AI-1+AI-2). The multiplication of the post-attack assignment
variable Ai j with (1−Bi j) ensures that the system planner will incur no additional
accessibility and capacity expansion costs for those customers who keep going to
the same closest facilities as before the attack. Constraints (5.15) require that each
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customer be assigned to exactly one facility before the interdiction. Constraints
(5.16) prohibit illegal assignment of customers to a facility that is not opened. The
set of constraints (5.17) are closest assignment (CA) constraints, which—together
with the constraints (5.16) and binary decision variables Yj—explicitly enforce the
assignment of each and every customer to its closest facility put in service. For any
pair of customer i and site j, if no facility is opened at j (Yj = 0), then the constraint
has no effect. If a facility is opened at site j (Yj = 1), then customer i will go to the
facility at site j or to another opened facility at the same or shorter distance than
j. Constraints (5.18) suggest that a facility cannot be protected if it is not opened.
Binary constraints on the decision variables shown in (5.19) conclude the system
planner’s problem.

The values of the variables Bi j, Yj, and Pj obtained in the ULP are parsed as input
parameters to the lower level problem. The objective function Zatt in (5.20) is equal
to (AI-1+AI-3). The first constraint of the LLP given in (5.21) requires that each
customer be assigned to exactly one facility after the attack. The next constraint in
(5.22) states that the attacker can interdict at most r facilities. Constraints (5.23) are
logical conditions, which prevent the attacker from interdicting facilities either not
opened at all or opened, but also protected by the system planner. These inequalities
provide at the same time a linkage between the upper and lower level problems.
Their right-hand side value can never be negative due to the upper level constraints
(5.18). Thus, the interdiction variables S j are never forced to become less than zero.
Constraints (5.24) ensure the logic that no customer is assigned to an interdicted
facility or to a facility not opened earlier by the system planner. The right-hand side
of the inequality in (5.24) is a linear expression for a given value of Yj. So, there is
no need to linearize the multiplication of Yj(1− S j).

Constraints (5.25) enforce the post-attack assignment of customers to the closest
non-interdicted facilities. Their working mechanism is as follows. First, observe
that given a pair of customer i and site j, the summation on the left-hand side of
(5.25) is over all other sites k that are farther from i than j. Now if the facility
at j is lost (S j = 1), then (5.25) has no effect. If facility j is not opened by the
system planner, hence cannot be hit by the attacker either (Yj = S j = 0), then (5.25)
is again ineffective. However, if facility j is opened but not hit during the attack
(Yj = 1,S j = 0), then the right-hand side of (5.25) equals zero. With the facility j
being available in this case, (5.25) now prevents customer i from being assigned to
any facility site k farther than j. The reader is referred to Aksen et al. [2] for further
discussion of the CA constraints used in the formulation of BFCLP.

In constraints (5.26) we use the values of the binary decision variables Bi j as
constants imported from the upper level solution. Therefore, constraints (5.26) like
(5.24) are actually linear constraints. They state that a customer who has been as-
signed to the closest of the opened facilities in the upper level problem should still
stay with the same facility in the lower level problem unless it is lost due to interdic-
tion. In other words, if facility j is not lost (S j = 0) and if customer i used to go to j
before the attack (Bi j = 1), then he/she will go again to j after the attack (Ai j = 1).
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This constraint is crucial in the presence of two or more equidistant closest facilities
around some customer node. If neglected, the attacker’s optimal solution unneces-
sarily reassigns such a customer from her pre-attack facility to another facility at the
same distance in order to maximize the objective component AI-1 without violating
the CA constraint in (5.25).

Finally, binary constraints on the decision variables S j and Ai j are provided in
(5.27) to conclude the lower level problem. One may ask why constraint (5.22) is
written as an inequality rather than equality. Its main reason is to account for the
trivial situation when ∑ j∈J Yj < r (the number of opened facilities is below r), or
when the system planner decides to protect more than (∑ j∈J Yj− r) facilities against
interdiction.

Note that BFCLP has 2|I||J|+ 3|J| binary decision variables where |I||J|+ 2|J|
variables are in the ULP and |I||J|+ |J| variables are in the LLP. It has 2|I||J|+
5|J|+2|I|+1 constraints |I||J|+2|J|+ |I| of which are in the ULP and the remaining
|I||J|+ 3|J|+ |I|+ 1 ones in the LLP.

5.3 A Tabu Search Based Matheuristic for the BFCLP

In their working paper, Scaparra and Church [47] stated that the introduction of ca-
pacity constraints within a protection-interdiction model greatly increases the com-
plexity of the problem and requires the formulation of a three-level program. For our
unified facility location-protection-interdiction problem BFCLP we proposed in the
previous section a pure integer linear bilevel programming formulation which has
binary variables in both the upper and lower level problems. Moore and Bard [36]
showed that mixed-integer bilevel programming problems (MIBPPs) are NP-hard.
The authors observed that—unlike the single-level mixed-integer problems—when
the integrality constraints of a given MIBPP are relaxed, the solution of the relaxed
problem does not provide a valid lower bound on the global optimum of the MIBPP
even if that solution is integral. They developed a branch-and-bound type of enu-
merative solution algorithm to tackle the MIBPP, and experimented with different
versions of their algorithm on a test bed of 50 randomly generated MIBPP instances.
The number of integer variables in either the leader’s or the follower’s problem is at
most 10, which admits the restricted applicability of Moore and Bard’s algorithm.

More recently, Gümüş and Floudas [24] introduced a comprehensive method-
ology to solve a variety of mixed-integer nonlinear bilevel programming problems
including the pure integer linear BPP. It capitalizes on a novel deterministic global
optimization framework combined with a reformulation/ linearization technique
(RLT) originally developed by Sherali and Adams [48] and further extended by
Sherali et al. [49] to exploit special structures found in linear mixed-integer 0-1
problems. RLT transforms the mixed-integer inner problem constraint set of the
given BPP into the continuous domain. Provided that the inner problem is bounded,
the transformation results in a polytope with all vertices defined by binary values.
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This polytope is actually equivalent to the convex hull of all integer feasible solu-
tions of the respective inner problem. RLT converts the inner problem to a linear pro-
gramming problem with respect to inner variables. The inner problem can be then
replaced with the set of equations that define its necessary and sufficient Karush-
Kuhn-Tucker (KKT) optimality conditions . In this way, the original BPP is reduced
into a single level optimization problem to be solved to global optimality. This final
job is accomplished by Cplex provided that the problem is a mixed-integer linear
problem. If there are continuous nonlinear terms in the problem, but all integer vari-
ables are binary, linear and separable, the so-called global optimization procedure
SMIN-αBB can be used. Otherwise, another procedure called GMIN-αBB solves
the single level optimization problem to optimality. Both procedures are discussed
in detail in the monograph of Floudas [19].

The literature is not so rich in heuristic methods proposed for MIBPPs. A recent
example of such methods is due to Hecheng and Yuping [25], where an exponential-
distribution based genetic algorithm (GA) has been proposed for two classes of
MIBPPs: one is where the follower’s objective function and constraints are separa-
ble with respect to the follower’s variables, and the other is where they are convex
when the follower’s variables are not restricted to integers. The GA essentially fixes
the leader’s decision variables, and obtains a proven optimal solution to the linear
relaxation of the follower’s mixed-integer problem by using a simplified branch-
and-bound method. The algorithm proceeds according to the principles of genetic
search until it converges to the best possible values of the leader’s decision variables.

No matter how effective the methodology of Gümüş and Floudas [24] is, it may
be impractical even for a 5-facility and 50-customer instance of the BFCLP, since
such a modest instance would require as many as 515 binary variables and 626
constraints. The use of efficient heuristic methods to obtain quality solutions to the
BFCLP in a reasonable computational time becomes inevitable as the problem size
increases towards realistic values. Motivated by this fact, we first propose a tabu
search based matheuristic called TSH (Tabu Search with Hashing) . It involves the
search for the best facility locations using tabu search principles. When the loca-
tions of the facilities are fixed, i.e., when a solution of the system planner’s problem
(ULP) is provided, the attacker’s problem (LLP) can be solved to optimality condi-
tional on the protection plan of the system planner. It yields an interdiction scheme
that is in the best interest of the attacker. The post-attack customer-facility assign-
ments in that solution are used to calculate the system planner’s objective value in
the present BFCLP instance. We utilize the commercial mixed-integer programming
solver Cplex 11.2 to solve the LLP to optimality. Cplex is a contemporary bench-
mark in the field of optimization software. We can classify TSH as a matheuristic
due to the involvement of Cplex as an exact solution technique in it. Matheuristics
are optimization algorithms which consist of a metaheuristic merged with mathe-
matical programming methodologies . The reader is referred to an edited volume by
Maniezzo et al. [35] dedicated to the topic of matheuristics.
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5.3.1 Background of Tabu Search

Tabu search (TS) is a celebrated metaheuristic algorithm that has been widely ap-
plied to many difficult combinatorial optimization problems known in the literature
or encountered in real life. An in-depth TS study can be found in Glover and La-
guna [22], among others. The latest advances in this methodology alongside its key
aspects have been presented in Glover et al. [23]. We acknowledge an excellent
short tutorial on the fundamental concepts of TS by Gendreau [21]. There have
been numerous successful TS applications for the p-median and fixed charge fa-
cility location problems and their extensions (see, for example, Sun [54]; Aras and
Aksen [4]; Aras et al. [5]).

5.3.2 Key Features of the Tabu Search Algorithm TSH

5.3.2.1 Initial Solution of TSH

If r < |J|, we randomly select p = max{r+ 1, [| log2 |J|] facilities and open them in
the unprotected mode. The operator [| · |] in this formula rounds off its argument to
the nearest integer number. Should |J| be smaller than (r + 1), we open all of the
candidate facilities in the protected mode. This initial solution is guaranteed to be
feasible regardless of how big r is. If r < |J|, the attacker’s problem for the initial
solution can be solved by Cplex as a RIM problem since none of the p facilities will
be protected in that situation.

5.3.2.2 Neighborhood Structure

TSH capitalizes on a large-scale neighborhood structure comprising five types of
moves. The advantage of large-scale neighborhood structures is that they allow a
more thorough search of the solution space. The types of moves executed in each
TSH iteration are explained below.

1-Drop: One of the open facilities will be closed.
1-Add: A facility either in the protected or unprotected mode will be opened at

one of the candidate sites without a facility yet.
1-Flip: The protection status of an open facility will be switched on or off.
1-Swap-Int: Two facilities opened in opposite protection modes will swap their

modes.
1-Swap-Ext: A facility will be opened at one of the candidate sites without a

facility yet, and one of the currently open facilities will be closed. The
new facility will be opened either in the protected or unprotected mode.

Let p and π respectively denote the numbers of opened and protected facilities in
the current solution. The number of available candidate sites is then (m− p), and
the number of opened, but unprotected facilities equals (p− π). Using this extra
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notation, we give in Table 5.1 the properties of the move types in TSH. The fourth
column of the table shows the maximum number of neighborhood solutions that can
be generated for the current solution σt using the respective move type. This num-
ber for the 1-Swap-Ext move is divided further by a granularity coefficient called
ratio of neighborhood size RNS (RNS ≥ 1), which shrinks the actual search space
explored. If p > 1 and RNS > 1 as well, then less-than-possible 1-Swap-Ext moves
are performed on σt . The selection of which ones to perform is random. Yet we
guarantee that in each TSH iteration as many distinct moves as the applying maxi-
mum neighborhood size will be executed during the exploration of the 1-Swap-Ext
neighborhood.

Table 5.1 Properties of the move types used in TSH

Move Types Affects p Affects π Max. Neigh. Size

1-Add Yes Possible 2(|J|− p)
1-Drop Yes Possible p
1-Flip No Yes p
1-Swap-Int No No π(p−π)

1-Swap-Ext No Possible

{ �2p(|J|− p)/RNS� if p > 1,
2(|J|−1) otherwise.

Throughout the TSH iterations, we do not allow any move to create an infea-
sible solution for the BFCLP. An infeasible solution is where the facility location-
protection plan of the system planner is too weak to secure the sustainability of the
public service system in the wake of the worst-case attacks. To put it in other words,
a facility location-protection plan of the system planner is infeasible if p ≤ r and
π = 0. In response to such a plan, the attacker would interdict all facilities opened,
thereby paralyze the whole system.

5.3.2.3 Solution Representation and Hash Values

We represent any solution to the upper level problem in (5.14)–(5.19) as a unique
string made up of ternary digits (trits) 0, 1, and 2. The trits 0, 1, 2 correspond to
a closed (not opened), an opened (but not protected), and a protected facility, re-
spectively. Figure 7.1 illustrates a sample solution string for |J| = 10 where the
opened facilities are 1, 3, 5, and 8 among which 5 and 8 have been protected. The
ternary string of a given solution can be treated as a ternary number, which converts
to a unique decimal number as shown in Fig. 7.1. The ternary-to-decimal conver-
sion is a “one-to-one” and “onto” mapping between all feasible or infeasible facility
location-protection plans of the system planner and positive integer numbers in the
range of [0,3|J| − 1]. Let σ be the ternary string representation of a particular up-
per level solution in which the status of the jth facility is indicated by trit j for
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Facility ID   1 2 3 4 5 6 7 8 9 10 

Status  trit   1 0 1 0 2 0 0 2 0 0 
          0x30 
         0x31  

        2x32   

       0x33    

      0x34     

     2x35      

    0x36       

   1x37        

  0x38         

 1x39          

Hash value  39 
+ 37 

+ 2x35 + 2x32  22,374 

Fig. 5.1 The unique ternary string representation and hash value of a sample BFCLP solution
σ

j = 1, . . . , |J|. The unique decimal integer number associated with this solution is
referred to as hash value and is given by the following hash function:

Hash(σ) =
|J|
∑
j=1

trit j× 3|J|− j (5.28)

The function Hash(σ) in (5.28) takes in a facility location-protection plan (a solu-
tion vector) and returns a unique integer to be stored in a hash list. Hash lists reduce
the memory requirements and the computational burden associated with checking
whether a newly constructed solution is already stored in the explicit memory. The
hash value of a new neighborhood solution (hashneigh) can be computed in O(1) time
if we know the current solution’s hash value (hashcurr). Table 5.2 lists the formulae
of this computation for each move type of the neighborhood structure in TSH.

Table 5.2 Computation of the hash value of a neighborhood solution in TSH

Move ID of ID of Formula of hashneigh given the current solution
Type Fac.1 added Fac.2 dropped σ and its hash value hashcurr

or flipped or flipped

1-Add j – (hashcurr + trit j×3|J|−k)

1-Drop – k (hashcurr− tritk×3|J|− j)

1-Flip j –
(hashcurr +3|J|− j) if trit j was 1 in σ ,
(hashcurr−3|J|− j) otherwise.

1-Swap-Int j k (hashcurr +3|J|− j−3|J|−k) where trit j was 2 in
σ

1-Swap-Ext j k (hashcurr + trit j×3|J|− j− tritk×3|J|−k)
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5.3.2.4 Prevention of Cycling by Means of a Hash List

Cycling can be defined as the endless or exclusive execution of the same sequence of
moves until a stopping condition is satisfied, which results in revisiting the same set
of solutions in the algorithmic loop. A search algorithm should be prevented from
falling back to a recently visited solution; otherwise it can never escape local optima
(Woodruff and Zemel [57]). In tabu search this is typically ensured by the use of a
tabu list that records the recent history of the search. The tabu principle states that
if a particular move/move attribute/solution attribute was previously placed in the
tabu list, i.e., declared tabu, and if it is still tabu active, then it cannot be reversed
or undone. Tabus are useful to help the search move away from previously visited
portions of the search space, hence perform more extensive exploration (Gendreau
[21]).

The simplest scheme for mitigating cycling is to keep a certain number of most
recently visited solutions in an explicit tabu list, and forbid them at the current it-
eration. Actually, cycling is completely avoided by storing in the tabu list all the
previous solutions accepted as the then-current solutions. Woodruff and Zemel [57]
have argued that this approach can be computationally very expensive. Instead of
recording complete solutions, they have proposed to compute the hash values of
newly found solutions by using a hash function, and put them in a hash list. A new
hash value can be compared with the previously recorded values to avoid cycling.
Hash values and hash lists nullify the need to set tabu restrictions and tabu list sizes,
which are otherwise indispensable features of an attributive memory.

5.3.2.5 Minimization of the Number of Cplex Calls

Woodruff and Zemel [57] have listed the following three goals to be met by an
effective pair of a hash function and hash list:

1. Computation and update of the hash values should be as easy as possible.
2. The integers generated should be in a range that requires reasonable storage and

comparison effort.
3. The probability of collision (also known as hashing error) should be low. A colli-

sion occurs when the hash function returns the same hash value for two different
solutions.

The hash function we use for TSH, namely Hash(σ) in (5.28), and the sorted doubly
linked HashList illustrated in Fig. 7.2 meet these goals. The update of the hash value
is accomplished in O(1) time as described in Table 5.2. The maximum possible
value attained by Hash(σ) is (3|J|−1), which can be stored in the computer memory
as a 17-digit precision number of type long double. This way, the probability
of collision drops to zero as long as |J| ≤ 34 since (334− 1) is a 17-digit integer,
and the compiler of a computer programming language can precisely perform basic
arithmetic operations with it.

Moreover, the number of Cplex calls is minimized by preventing the attacker’s
problem from being solved more than once for the same solution vector σ of the
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Fig. 5.2 The doubly linked HashList to store the hash values in ascending order

system planner. This is achieved by recording in the HashList not only the hash
value, but also the objective value Zsys(σ) and the type (current or neighbor) of
each solution constructed during the TSH iterations. The hash value of each new
solution is searched in the sorted HashList starting from both the head and the tail
of the list. If it is found, the associated Zsys(σ) is retrieved and compared with the
objective value of the so far best neighborhood solution. If not found, the objective
value Zsys of the new solution is computed first. Next, its hash value is inserted to-
gether with the associated Zsys at the appropriate position of the sorted list. After the
neighborhood search has been completed, the best neighborhood solution becomes
the new current solution, and its type field in the HashList is changed from neighbor
to current. The preservation of the ascending order of hash values in the HashList
is critical to the efficiency of this bilinear search procedure.

5.3.2.6 Stopping Conditions

We use two stopping conditions. The first one is completing the maximum number
of iterations (Max Iter), which is set equal to 200. The second one is reaching the
maximum number of successive iterations during which the incumbent does not
improve (Max Nonimp Iter). This number is set equal to 100. TSH is stopped as
soon as either of these conditions is satisfied.

5.3.2.7 Probabilistic Nature of the Algorithm

TSH is probabilistic in the sense that it involves randomness which comes from the
random selection of an initial feasible facility location-protection plan, and from
the granularity of the 1-Swap-Ext neighborhood. Depending on the random number
seed, TSH starts with a different initial solution in each run. Hence, it needs to be
restarted multiple times with different seeds in order to get the best solution overall.
Likewise, for a given current solution σcurr, the particular 1-Swap-Ext neighborhood
that will be constructed and evaluated depends on the random number seed and on
the value of the granularity coefficient RNS given in Table 5.1. We adopt these two
elements of randomness as a diversification mechanism of TSH.
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5.3.2.8 Borderline Cases

Attention to the following borderline cases can be time-saving during the execution
of TSH iterations.

• If p = π , then there is no need to solve the LLP of the attacker. The system
planner’s post-attack objective value will be equal to the pre-attack level. Nei-
ther will the post-attack customer-facility assignments differ from the pre-attack
assignments.

• If p−π = 1, then the trivial solution to the attacker’s problem is to interdict the
only opened, but not protected facility. It is unnecessary to call Cplex to solve
the associated LLP.

The outline of the algorithm TSH is presented below with the following additional
notation.

t the iteration counter,
τ the counter of successive iterations during which the incumbent does

not improve,
σt the current solution at iteration t,
σneigh

t a solution in the neighborhood of σt ,
σbest

t the best solution identified in the neighborhood of σt ,
MOVES the set of move types comprising the neighborhood structure of TSH,
Ob jt the system planner’s objective value (Zsys) in the current solution σt ,
Ob jneigh the system planner’s objective value in a neighborhood solution σneigh

t ,
Ob jbest the system planner’s objective value in the best neighborhood solution

σbest
t ,

Ob j∗ the system planner’s objective value in the Incumbent.

5.3.3 Partial Validation of TSH Solutions with Exhaustive
Search

More evidence is needed to assess the solution quality performance of the pro-
posed matheuristic TSH. Only then can one justify its competence in solving the
BFCLP. For this purpose, we have developed a conditional exhaustive search algo-
rithm called ESV-p. We use this algorithm to partially validate and assess the quality
of the solutions produced by TSH. It works conditionally on the value of p∗ stands
for the number of opened (protected as well as unprotected) facilities in the best
TSH solutions yielding (Z∗sys)min values. In other words, it solves a given BFCLP
instance under the condition that the total number of facilities to be opened in either
mode will be fixed to p∗. Unlike in the p-median version, this number is unknown
in the BFCLP. It must be nonzero to secure the provision of public service to the
customers in the system, but it can be any positive integer less than or equal to |J|.
Therefore, one can actually guarantee global optimality by running ESV-p |J| times
for each possible value of p∗ in the interval [1, |J|]. Yet, for large |J| this would be
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1: while t ≤Max Iter and τ ≤Max Nonimp Iter do
2: Ob jbest← ∞
3: for each move type k ∈MOV ES do
4: /* Pay attention to the granularity of 1-Swap-Ext neighborhood. */
5: for each feasible neighborhood solution σneigh

t of type k do
6: Compute hashneigh according to Table 2 using hashcurr

7: if σneigh
t was previously recorded in the HashList as current then

8: Bypass it and continue with the next σneigh
t

9: else if σneigh
t was previously recorded in the HashList as neighbor then

10: Retrieve Ob jneigh
11: else
12: Solve the attacker’s problem CRIM associated with σneigh

t to optimality
using Cplex

13: Based on the optimal CRIM solution, calculate Ob jneigh for σneigh
t

14: Record σneigh
t as neighbor with its hashneigh and Ob jneigh in the HashList

15: end if
16: if Ob jneigh < Ob jbest then

17: Ob jbest← Ob jneigh and σbest
t ← σneigh

t
18: end if
19: if Ob jneigh < Ob j∗ then

20: Ob j∗ ← Ob jneigh and Incumbent = σneigh
t

21: end if
22: end for
23: end for
24: if the Incumbent has improved in this iteration then
25: τ← 1
26: else
27: Increment τ
28: end if
29: σt+1 = σbest

t and change the solution type of σt+1 recorded in the HashList to
current

30: Increment t
31: end while
32: Return the Incumbent and Ob j∗ as the best feasible solution to BFCLP

virtually impossible because of the exponential time complexity of the algorithm.

ESV-p explores in an outer loop

( |J|
p

)

site combinations to open p facilities. For

each combination Jp = j1, . . . , jp it has to check all subsets of sites to be protected.
If q out of p facilities are protected in some combination Jp and if ρ =min{r, p−q},
then as many as ∑ρ

k=1

(
p− q

k

)

possible interdiction patterns of the attacker must

be examined for that Jp. In our experiments ESV-p tackles BFCLP instances in
somewhat tolerable times for p∗ ≤ 8.



5 A Matheuristic for Leader-Follower Games in Location Theory 139

To validate TSH, we exploit ESV-p in the following way: first, we check the p∗
value found in the best TSH solution. If p∗ ≤ 8, we run ESV-p for p = p∗. Secondly,
if p∗ > 1, we run ESV-p for p = p∗ − 1. Thirdly, ESV-p is run again to solve the
given BFCLP instance for p = p∗+ 1 provided that p∗ ≤ 7. Each time we record
ZESV

sys (p), the objective value found by ESV-p. We then compare the lowest of these
denoted by (ZESV

sys )min against the best TSH objective value (Z∗sys)min. In the end,
if ZESV

sys (p∗) = (Z∗sys)min and if (ZESV
sys )min = ZESV

sys (p∗) , the partial validation of the
TSH solution concludes affirmatively.

5.4 Computational Results

In this section we present extensive test results obtained with TSH. We validate TSH
solutions partially, where possible, with an exhaustive search algorithm called ESV-
p, which is described in the sequel. All coding was done in C with Microsoft Visual
Studio 2005 using Cplex 11.2 Callable Library. We measured CPU times on an Intel
Xeon X5460 3.16 GHz Quad-Core server equipped with 16 GB RAM.

5.4.1 Random Generation of Test Instances

Our test bed comprises a total of 60 randomly generated BFCLP instances, which
vary in m (the number of candidate sites), r (the number of interdictions in the worst
case), h j (cost of protecting a facility at site j), and α (customers’ traveling cost per

Table 5.3 Random problem generation template employed in the computational study

Parameters Values

m 10, 15, 20, 25, 30
n 10m
r 1, 2, 3
(R,L) (1000, 1500)
(cxi,cyi) Let Ri = R×U(0,1),θi = 2π ×U(0,1). Then,

cxi = [|Ri cosθi|] and cyi = [|Ri sinθi|]
(fx j, fy j) fx j =−0.5L+ L

m ×U [0,m] and fy j =−0.5L+
L
m ×U [0,m]

di 10+5×U [0,18]
f j 10,000+1,250×U [0,8]
(h j)low 0.5 f j
(h j)high 3.0 f j
e j 10+2.5×U [0,4]
αlow 0.10
αhigh 0.20
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unit distance per unit demand). The instances are named to be indicative of the m, r,
and h j values. For example, the name [10-1-lo] implies that the system planner can
open a facility at 10 candidate sites, the attacker can hit at most one facility, and h j

values are low, i.e., equal to half of the fixed costs of opening.
In each instance n = |I| (the number of customers) is set to 10m = 10|J|. Cus-

tomer nodes are uniformly distributed over a circular area centered at the origin (0,0)
with a radius R = 1000. Candidate sites are uniformly dispersed on (m+1) equidis-
tant horizontal and vertical lines which hypothetically dice a square centered at the
origin (0,0) with a side length of 1500. All coordinates are rounded to the nearest
integer. In the random instance generation template given in Table 5.3, the operator
[| · |] rounds off its argument to the nearest integer; (cxi, cyi) and (fx j, fy j) stand for
the coordinates of customer node i and facility site j, respectively; U(0,1) stands
for a uniform random number in the interval [0, 1); and finally U [lb,ub] symbolizes
a random integer number between and inclusive of a lower bound lb and an upper
bound ub.

5.4.2 Preliminary Analysis of the Neighborhood Structure

First, we investigated whether TSH would do better with fewer move types. For
this investigation, we left out the move types in Table 5.1 one at a time, and re-
performed the TSH iterations with four instead of five move types. Five different
reduced neighborhood structures were applied this way. However, none of them
helped improve the best objective value in any of the 60 test instances. This prelim-
inary analysis convinced us of the necessity of five move types in the neighborhood
structure. We recorded the selection frequencies of each move type responsible for
the progress from the current to the next solution during the algorithmic loop of
TSH. The frequencies were averaged over 150 runs of 30 test instances each with
low and high unit distance costs. We observed that 30.7%, 29.7%, 2.8%, 1.3%, and
35.6% of the current-to-next solution updates were attributed to the 1-Add, 1-Drop,
1-Flip, 1-Swap-Int, and 1-Swap-Ext moves, respectively, in case of low unit distance
costs. In the test instances with αhigh, these frequency percentages were calculated
as 33.4%, 30.5%, 4.8%, 5.2%, and 26.1%. We also experimented with different val-
ues of the granularity coefficient RNS, which shrinks the size of the 1-Swap-Ext
neighborhood as was explained in Table 5.1 before. We observed that the best CPU
time and incumbent quality trade-off was achieved at RNS = 5; hence we adopted
this coefficient in our experiments.

5.4.3 Test results of TSH

Due to the probabilistic nature of TSH, we ran the code of the algorithm in a multi-
start scheme by solving each instance five times with five different random number
seeds as was explained in Sect. 5.3.2.7. Objective values and CPU times attained



5 A Matheuristic for Leader-Follower Games in Location Theory 141

by TSH in 30 test instances with αlow and αhigh are shown in Tables 5.4 and 5.5,
respectively, alongside the number of times Cplex was called to solve the lower
level problem. The minimum and average objective values Z∗sys found by TSH in five
runs are reported in the second and third columns of the tables. Column 4 shows the
average CPU times consumed by TSH in those five runs. The columns labeled as p∗
and π∗ show respectively the numbers of opened and protected facilities in the best
TSH solutions which yield the (Z∗sys)min values. Finally, the last column gives the
number of Cplex calls performed throughout the TSH iterations in each instance.

The computing platform employed in our study requires 1,007 (1,124) seconds
on the average to perform a single run of TSH on the test instances for which the
α value is equal to 0.10 (0.20). The main reason for these considerably long CPU
times of the algorithm TSH is the number of calls to Cplex. Although we use a
hash list as shown in Figure 7.2 to store the objective values of all visited solutions,
and although this absolutely eliminates duplicate objective value calculations for
the same solution during the TSH iterations, Cplex is still called 6,346 times per
instance in the average of 5×30= 150 runs on test instances with αlow. The average
CPU time of TSH increases to 1,124 seconds per run from 1,007 seconds when
αhigh is used. Also the number of Cplex calls per run rises to 9,360 averaged over 30
instances each solved five times. This is due to the fact that the share of the demand-
weighted traveling cost in the system planner’s objective function increases as the
customers’ unit distance traveling cost rises from 0.10 to 0.20 per unit demand,
which makes opening more facilities than before viable. This, in turn, renders the
search for the best facility configuration by TSH more difficult, thus more time-
consuming.

Moreover, TSH opens and protects more and more facilities as m goes from 10 to
25. This trend is not sustained when m increases from 25 to 30, but also in that case
the average π∗ ascends although the total number of opened facilities goes down.

Another interesting observation that can be drawn from Table 5.5 is that among
60 test instances there are just three in which the system planner opens a mixture of
protected and unprotected facilities to counter the attacker’s disruptive threats. Only
in the instances “20-r2-hi”, “20-r3-hi”, and “30-r3-hi” with αhigh, the system planner
opens 10, 10, and 15 facilities, respectively and protects one of them. Otherwise,
the system planner’s best strategy found by TSH is to open facilities either in the
protected or unprotected mode exclusively. At most six facilities are opened and
protected by the system planner. This situation is observed in six particular instances
where m is 25 or 30, α = 0.20, and h j values are low. Once h j increases from 0.5 f j

to 3.0 f j the system planner prefers to open many more facilities in the unprotected
mode in lieu of any protected facility. The only exception is “30-r3-hi” with αhigh.
While the system planner opens and protects six facilities in the low h j version of
this instance, the best defense policy in the high h j version suggests that 15 facilities
be opened and one of them be protected.
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Table 5.4 Objective values and CPU times attained by TSH for αlow

Problem (Z∗sys)min (Z∗sys)avg CPUavg p∗ π∗ NCplex

10-r1-lo 383,583 383,583 0.6 1 1 110
10-r1-hi 465,833 468,419 20.6 1 1 2,534
10-r2-lo 383,583 383,583 0.5 1 1 100
10-r2-hi 465,833 488,041 14.3 1 1 949
10-r3-lo 383,583 383,583 1.5 1 1 136
10-r3-hi 465,833 465,833 24.9 1 1 1,293
Averages 424,708 428,840 10.4 1.0 1.0 854
15-r1-lo 554,693 554,693 5.9 2 2 790
15-r1-hi 656,982 658,659 143.1 6 0 6,700
15-r2-lo 554,693 554,693 7.8 2 2 709
15-r2-hi 749,255 749,255 353.0 7 0 6,800
15-r3-lo 554,693 554,693 16.4 2 2 924
15-r3-hi 729,693 819,743 435.8 2 2 4,524
Averages 633,335 648,622 160.4 3.5 1.3 3,408
20-r1-lo 670,595 706,431 66.9 3 3 5,736
20-r1-hi 804,407 804,492 267.5 5 0 7,654
20-r2-lo 670,595 670,595 20.6 3 3 1,613
20-r2-hi 904,898 914,619 985.8 8 0 8,488
20-r3-lo 670,595 670,595 9.8 3 3 650
20-r3-hi 998,940 1,021,150 1246.8 10 0 8,737
Averages 786,671 797,980 432.9 5.3 1.5 5,480
25-r1-lo 917,001 934,455 138.4 4 4 5,715
25-r1-hi 1,032,114 1,048,461 1670.9 8 0 15,592
25-r2-lo 917,001 917,001 227.9 4 4 3,269
25-r2-hi 1,153,094 1,153,094 4775.2 10 0 15,956
25-r3-lo 917,001 917,001 237.9 4 4 2,283
25-r3-hi 1,240,523 1,244,311 10513.5 11 0 15,709
Averages 1,029,456 1,035,721 2,927.3 6.8 2.0 9,754
30-r1-lo 947,879 981,942 249.0 5 5 12,815
30-r1-hi 1,066,937 1,073,992 2148.8 7 0 15,572
30-r2-lo 947,879 947,879 172.7 5 5 6,079
30-r2-hi 1,181,813 1,232,369 4386.8 11 0 19,924
30-r3-lo 947,879 947,879 139.7 5 5 5,144
30-r3-hi 1,178,930 1,282,046 1919.9 2 2 13,880
Averages 1,045,219 1,077,684 1,502.8 5.8 2.8 12,236
Grand Avg. 783,878 797,770 1,006.8 4.5 1.7 6,346

5.4.4 Comparison of the Best TSH Solutions with the ESV-p
Results

The partial validation of the best TSH solutions through the use of ESV-p is pre-
sented, where possible, in Table 5.6 and Table 5.7 for low and high distance costs,
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Table 5.5 Objective values and CPU times attained by TSH for αhigh

Problem (Z∗sys)min (Z∗sys)avg CPUavg p∗ π∗ NCplex

10-r1-lo 625,715 625,715 4 3 3 804
10-r1-hi 706,085 736,985 18 5 0 1,797
10-r2-lo 625,715 625,715 1 3 3 267
10-r2-hi 843,632 853,590 53 7 0 3,268
10-r3-lo 625,715 625,715 3 3 3 396
10-r3-hi 746,416 911,121 54 1 1 2,625
Averages 695,546 729,807 22.1 3.7 1.7 1,526
15-r1-lo 849,962 849,962 43 4 4 4,844
15-r1-hi 952,103 955,308 205 8 0 6,135
15-r2-lo 849,962 893,152 53 4 4 2,051
15-r2-hi 1,073,465 1,089,345 356 9 0 5,598
15-r3-lo 849,962 849,962 15 4 4 862
15-r3-hi 1,087,123 1,139,347 430 2 2 5,680
Averages 943,763 962,846 183.7 5.2 2.3 4,195
20-r1-lo 1,018,362 1,053,347 172 5 5 9,748
20-r1-hi 1,154,365 1,154,603 591 7 0 8,303
20-r2-lo 1,018,362 1,116,695 211 5 5 8,429
20-r2-hi 1,262,446 1,263,197 1,010 10 1 11,049
20-r3-lo 1,018,362 1,117,974 177 5 5 6,618
20-r3-hi 1,363,394 1,366,011 1,236 10 1 11,936
Averages 1,139,215 1,178,638 566.1 7.0 2.8 9,347
25-r1-lo 1,425,903 1,499,490 1,123 6 6 16,262
25-r1-hi 1,517,865 1,539,055 1,613 10 0 13,048
25-r2-lo 1,425,903 1,547,308 504 6 6 11,884
25-r2-hi 1,680,009 1,706,407 3,120 13 0 15,236
25-r3-lo 1,425,903 1,508,689 1,269 6 6 10,486
25-r3-hi 1,803,353 1,869,447 11,287 15 0 17,572
Averages 1,546,489 1,611,733 3,152.5 9.3 3.0 14,081
30-r1-lo 1,414,479 1,485,410 380 6 6 15,363
30-r1-hi 1,504,678 1,566,019 1,844 11 0 19,747
30-r2-lo 1,414,479 1,494,753 569 6 6 17,315
30-r2-hi 1,679,823 1,706,480 3,524 11 0 22,010
30-r3-lo 1,414,479 1,414,479 182 6 6 7,411
30-r3-hi 1,829,376 1,898,706 3,675 15 1 24,048
Averages 1,542,886 1,594,308 1,695.7 9.2 3.2 17,649
Grand Avg. 1,173,580 1,215,466 1,124.0 6.9 2.6 9,360

respectively. The last column labeled as “Gap” in both tables shows the relative per-
cent gaps between (ZESV

sys )min and (Z∗sys)min. A negative value would indicate that
ESV-p yields a lower objective value for the system planner than TSH; however,
this is never the case in the tables. The only nonzero gap is observed for the instance
[15-2-hi] in Table 5.7, which is actually due the unavailability of ZESV

sys (p∗) since the
p∗ value in the best TSH solution is larger than eight.
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Table 5.6 Partial validation of the best TSH solutions for αlow

TSH over five runs ESV-p results for p∗ −1, p∗, and p∗+1

Problem (Z∗sys)min p∗ ZESV
sys (p∗-1) ZESV

sys (p∗) ZESV
sys (p∗+1) (ZESV

sys )min Gap (%)

10-r1-lo 383,583 1 – 383,583 401,501 383,583 0.00
10-r1-hi 465,833 1 – 465,833 562,647 465,833 0.00
10-r2-lo 383,583 1 – 383,583 401,501 383,583 0.00
10-r2-hi 465,833 1 – 465,833 562,647 465,833 0.00
10-r3-lo 383,583 1 – 383,583 401,501 383,583 0.00
10-r3-hi 465,833 1 – 465,833 562,647 465,833 0.00
15-r1-lo 554,693 2 645,245 554,693 559,948 554,693 0.00
15-r1-hi 656,982 6 660,602 656,982 668,598 656,982 0.00
15-r2-lo 554,693 2 645,245 554,693 559,948 554,693 0.00
15-r2-hi 749,255 7 760,103 749,255 753,183 749,255 0.00
15-r3-lo 554,693 2 645,245 554,693 559,948 554,693 0.00
15-r3-hi 729,693 2 733,995 729,693 810,938 729,693 0.00
20-r1-lo 670,595 3 693,422 670,595 687,205 670,595 0.00
20-r1-hi 804,407 5 836,278 804,407 805,159 804,407 0.00
20-r2-lo 670,595 3 693,422 670,595 687,205 670,595 0.00
20-r2-hi 904,898 8 914,219 904,898 – 904,898 0.00
20-r3-lo 670,595 3 693,422 670,595 687,205 670,595 0.00
20-r3-hi 998,940 10 – – – – –
25-r1-lo 917,001 4 948,170 917,001 935,585 917,001 0.00
25-r1-hi 1,032,114 8 1,054,522 1,032,114 – 1,032,114 0.00
25-r2-lo 917,001 4 948,170 917,001 935,585 917,001 0.00
25-r2-hi 1,153,094 10 – – – – –
25-r3-lo 917,001 4 948,170 917,001 935,585 917,001 0.00
25-r3-hi 1,240,523 11 – – – – –
30-r1-lo 947,879 5 964,121 947,879 965,728 947,879 0.00
30-r1-hi 1,066,937 7 1,091,886 1,066,937 1,071,259 1,066,937 0.00
30-r2-lo 947,879 5 964,121 947,879 965,728 947,879 0.00
30-r2-hi 1,181,813 11 – – – – –
30-r3-lo 947,879 5 964,121 947,879 965,728 947,879 0.00
30-r3-hi 1,178,930 2 1,303,965 1,178,930 1,227,813 1,178,930 0.00

The results in Table 5.6 and Table 5.7 do not prove the global optimality of the
best TSH solutions since ESV-p has been run only for a limited number of p values,
namely p∗ − 1, p∗, and p∗+ 1. However, they serve as further evidence for the
solution quality of TSH. We remark that CPU times of the runs have been purposely
omitted, since ESV-p is uncompetitive in that venue. Especially in the test instances
with m = 25 and m = 30, we observed extravagant solution times. When m equals
25, the algorithm consumes approximately 33 min, 4 h, and 12.5 h on average for
p = 6, p = 7, and p = 8, respectively. These times jump to 2 h, 36.5 h, and 77 h
when m equals 30. In conclusion, ESV-p cannot be a viable alternative to TSH.
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Table 5.7 Partial validation of the best TSH solutions for αhigh

TSH over five runs ESV-p results for p∗ −1, p∗, and p∗+1

Problem (Z∗sys)min p∗ ZESV
sys (p∗-1) ZESV

sys (p∗) ZESV
sys (p∗+1) (ZESV

sys )min Gap (%)

10-r1-lo 625,715 3 642,589 625,715 647,729 625,715 0.00
10-r1-hi 706,085 5 746,048 706,085 739,591 706,085 0.00
10-r2-lo 625,715 3 642,589 625,715 647,729 625,715 0.00
10-r2-hi 843,632 7 871,743 843,632 861,852 843,632 0.00
10-r3-lo 625,715 3 642,589 625,715 647,729 625,715 0.00
10-r3-hi 746,416 1 – 746,416 806,132 746,416 0.00
15-r1-lo 849,962 4 874,083 849,962 853,016 849,962 0.00
15-r1-hi 952,103 8 957,569 952,103 – 952,103 0.00
15-r2-lo 849,962 4 874,083 849,962 853,016 849,962 0.00
15-r2-hi 1,073,465 9 1,085,828 – – 1,085,828 1.14
15-r3-lo 849,962 4 874,083 849,962 853,016 849,962 0.00
15-r3-hi 1,087,123 2 1,225,366 1,087,123 1,137,833 1,087,123 0.00
20-r1-lo 1,018,362 5 1,020,485 1,018,362 1,026,877 1,018,362 0.00
20-r1-hi 1,154,365 7 1,175,580 1,154,365 1,155,872 1,154,365 0.00
20-r2-lo 1,018,362 5 1,020,485 1,018,362 1,026,877 1,018,362 0.00
20-r2-hi 1,262,446 10 – – – – –
20-r3-lo 1,018,362 5 1,020,485 1,018,362 1,026,877 1,018,362 0.00
20-r3-hi 1,363,394 10 – – – – –
25-r1-lo 1,425,903 6 1,433,096 1,425,903 1,432,375 1,425,903 0.00
25-r1-hi 1,517,865 10 – – – – –
25-r2-lo 1,425,903 6 1,433,096 1,425,903 1,432,375 1,425,903 0.00
25-r2-hi 1,680,009 13 – – – – –
25-r3-lo 1,425,903 6 1,433,096 1,425,903 1,432,375 1,425,903 0.00
25-r3-hi 1,803,353 15 – – – – –
30-r1-lo 1,414,479 6 1,448,031 1,414,479 1,416,260 1,414,479 0.00
30-r1-hi 1,504,678 11 – – – – –
30-r2-lo 1,414,479 6 1,448,031 1,414,479 1,416,260 1,414,479 0.00
30-r2-hi 1,679,823 11 – – – – –
30-r3-lo 1,414,479 6 1,448,031 1,414,479 1,416,260 1,414,479 0.00
30-r3-hi 1,829,376 15 – – – – –

5.4.5 Sensitivity of the TSH Solutions to Problem Parameters

Our next goal is to conduct an analysis with regard to three parameters in the model:
the protection cost (h j), the maximum number of facilities that can be interdicted
by the attacker (r), and the unit distance traveling costs per unit demand (α). We
recorded the (Z∗sys)min values of the best TSH solutions averaged over the parameters
h j, r, and α in Table 5.8. p∗ and π∗ indicate, respectively, the average numbers of
opened and protected facilities in the best TSH solutions. The columns of Table 5.8
corresponding to (h j)high reveal that as r increases (Z∗sys)min takes on larger values.
This is a consequence of the demand-weighted traveling costs increased by extra
interdictions. However, that is true only when the protection costs are high and the
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cost of protecting added facilities exceeds the cost of capacity expansions induced
by extra interdictions. When the protection costs are low, on the other hand, the
system planner can afford to protect all opened facilities, and the value of r does not
have any effect on the average (Z∗sys)min. Moreover, (Z∗sys)min increases as expected
when α doubles.

Table 5.8 Change in (Z∗sys)min, p∗, π∗ with respect to problem parameters

αlow = 0.10 αhigh = 0.20 Grand
(h j)low (p∗, π∗) (h j)high (p∗, π∗) (h j)low (p∗, π∗) (h j)high (p∗, π∗) Avg.

r = 1 694,750 (3.0,
3.0)

805,254 (5.4,
0.2)

1,066,884 (4.8,
4.8)

1,167,019 (8.2, 0.0) 933,477

r = 2 694,750 (3.0,
3.0)

890,979 (7.4,
0.2)

1,066,884 (4.8,
4.8)

1,307,875 (10.0, 0.2) 990,122

r = 3 694,750 (3.0,
3.0)

922,784 (5.2,
1.0)

1,066,884 (4.8,
4.8)

1,365,933 (8.6, 1.0) 1,012,588

As the attacker’s threat level is elevated in problems with (h j)high, p∗ exhibits a
unimodal pattern. The first increase from r = 1 to r = 2 causes additional facilities
to be opened, but π∗ remains more or less the same due to the fact that h j values are
three times higher than f j . When r increases to three, however, the system planner
cannot afford opening his facilities in the unprotected mode anymore. He needs
to protect one facility on average against interdiction. In return, he tries to offset
the considerably high protection cost of that facility by opening a lesser number of
facilities in the unprotected mode.

5.4.6 Effect of the Protection Costs on the Best Facility
Configuration

In our final experiment, we picked the problem instance (m = 20,r = 3) with αhigh

to test the effect of h j on the best facility configuration. The reason for selecting this
particular instance is that its p∗ and π∗ values show significant variation between
low and high protection costs. Moreover, its cumulative CPU time over five runs is
less than 1 3

4 h so that multiple replications can be performed in a reasonable amount
of time. We started h j’s at zero and increased them in multiples of 0.5 f j until they
reached 3.0 f j which is equal to (h j)high. The results including the objective values
and the numerals of the opened, protected, and interdicted facilities can be seen in
Table 5.9 for each test. We observe that when h j = 0, seven facilities are opened all
of which are protected; thus no interdiction occurs. A slight increase in the protec-
tion costs induces three facilities (#6, #16, #18) to leave and one facility (#15) to
enter the initial configuration. All of them are still opened in the protected mode.
When h j values double becoming equal to f j , three facilities in the previous config-
uration (#8, #15, #17) are replaced by one facility (#6) again in the protected mode.
This configuration remains the same until the highest level of the protection costs,
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namely 3.0 f j. At this level the system planner cannot endure the cost of protecting
more than one facility; thus he opens one protected and nine unprotected facilities
three of which are subsequently targeted in worst-case interdiction by the attacker.

Table 5.9 Effect of the increasing protection costs

h j (Z∗sys)min Fac. opened in Fac. opened in Facilities
unprotected mode protected mode interdicted

0.0 918,726 none 6, 8, 10, 16, 17, 18, 20 none
0.5 f j 1,018,362 none 8, 10, 15, 17, 20 none
1.0 f j 1,085,638 none 6, 10, 20 none
1.5 f j 1,137,888 none 6, 10, 20 none
2.0 f j 1,190,138 none 6, 10, 20 none
2.5 f j 1,242,388 none 6, 10, 20 none
3.0 f j 1,363,394 4, 6, 8, 12, 13, 15, 16 10 12, 13, 16

17, 18

5.5 Conclusions

In this chapter we review the state of the art of the network and facility interdic-
tion literature by differentiating between interdiction problems that include either
an extra protection or network design/facility location dimension. Of interest to us
is the unified problem of facility location-protection- and interdiction which was dis-
cussed in only three recent references before. This triple facility interdiction prob-
lem can be modeled as a static Stackelberg game between a system planner and a
potential attacker. We revisit two versions of this problem: The first one is defined
as a bilevel maximal coverage problem where the system planner has to make new
facility opening, existing facility relocation, and facility protection decisions. The
second one is defined as a bilevel fixed-charge facility location problem. Here, the
system planner has to decide about the locations of new facilities, the protection
status and initial capacity acquisition at the opened facilities as well as post-attack
capacity expansions to remedy capacity reductions caused by the attacker’s worst-
case interdiction. In both versions the system planner is free to open arbitrarily many
facilities; he is restricted only by the number of available candidate sites. After pre-
senting both models, we focus on the solution of the latter which we refer to as the
bilevel fixed-charge location problem (BFCLP). The leader of the static Stackelberg
game in this problem is the planner of a public supply/demand system whose clien-
tele always goes to the closest facility available to get service. The follower of the
game is an attacker with the objective to inflict the maximum possible disruption
to this public service system. To achieve his objective, the attacker destroys up to
a fixed number of facilities beyond repair unless they are opened in the protected
mode at additional site-specific costs. Thus, the system planner needs to decide the
protection status of the opened facilities too.
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We elaborate a matheuristic, called TSH, to solve the BFCLP. It is a probabilis-
tic tabu search algorithm capitalizing on a hash list which records the objectives
and hash values of all solutions explored. The use of hashing helps avoid cycling
and boosts the efficiency of the tabu search by minimizing the number of objec-
tive function evaluations. TSH searches the space of candidate facility locations
to determine the best feasible configuration of protected and unprotected facilities.
For each such configuration, a binary programming problem is solved to optimal-
ity using the commercial solver Cplex 11.2 to find the best interdiction plan of the
attacker. The attacker’s best interdiction plan is synonymous with the worst-case
interdiction faced by the system planner. We also develop a conditional exhaustive
search and validation algorithm called ESV-p by means of which the quality of each
TSH solution is tested and confirmed. Experiments with both solution approaches
demonstrated the suitability of the proposed matheuristic TSH for producing high-
quality solutions to the BFCLP in tolerable CPU times.

There can be two extensions of this work. One is formulating the same BFCLP
model such that partial interdiction of facilities is allowed. This means that facilities
will not be rendered totally out of service in the wake of an attack, but will continue
to provide service with less-than-full capacity depending on the degree of interdic-
tion. Another extension could be to incorporate into the model the partial protection
of facilities alongside their partial interdiction. This approach, albeit much more in-
tractable than complete protection and interdiction, could disclose a quite different
service network design and interdiction strategy on behalf of the system planner
and the attacker enabling the former to better utilize his protective resources and the
latter to do so with his limited offensive resources.
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35. Maniezzo, V., Stützle, T., Voß, S. (eds.): Matheuristics: Hybridizing Metaheuristics and
Mathematical Programming. Annals of Information Systems, vol. 10. Springer (2009)

36. Moore, J.T., Bard, J.F.: The mixed-integer linear bilevel programming problem. Oper.
Res. 38(5), 911–921 (1990)

37. Motto, A.L., Arroyo, J.M., Galiana, F.D.: MILP for the analysis of electric grid security
under disruptive threat. IEEE Transactions on Power Systems 20(3), 1357–1365 (2005)

38. Murray, A.T., Matisziw, T.C., Grubesic, T.H.: Critical network infrastructure analysis:
interdiction and system flow. Journal of Geographical Systems 9(2), 103–117 (2007)

39. O’Hanley, J.R., Church, R.L., Gilless, K.: Locating and protecting critical reserve sites
to minimize expected and worst-case losses. Biological Conservation 134(1), 130–141
(2007)

40. O’Hanley, J.R., Church, R.L.: Designing robust coverage to hedge against worst-case
facility losses. Eur. J. Oper. Res. 209(1), 23–36 (2011)

41. Perl, R.: Trends in terrorism: Congressional Research Service Report for Congress. The
Library of Congress, Order Code: RL33555 (2006), http://www.dtic.mil/
cgi-in/GetTRDoc?AD=ADA464744&Location=U2&doc=GetTRDoc.pdf
(cited November 12, 2011)

42. Radio Free Europe-Radio Liberty, Afghanistan Report: March 8, 2008. Afghanistan:
Mobile-Phone Towers are Taliban’s New Target (2008),
http://www.rferl.org/content/article/1347757.html
(accessed November 12, 2011)

43. Royset, J.O., Wood, R.K.: Solving the bi-objective maximum-flow network interdiction
problem. INFORMS J. Computing 19(2), 175–184 (2007)

44. Salmerón, J., Wood, K., Baldick, R.: Worst-case interdiction analysis of large-scale Elec-
tric power grids. IEEE Trans. Power Systems 24(1), 96–104 (2009)

45. Scaparra, M.P., Church, R.L.: A bilevel mixed integer program for critical infrastructure
protection planning. Comp. Oper. Res. 35(6), 1905–1923 (2008a)

46. Scaparra, M.P., Church, R.L.: An exact solution approach for the interdiction median
problem with fortification. Eur. J. Oper. Res. 189(1), 76–92 (2008b)

47. Scaparra, M.P., Church, R.L.: Protecting supply systems to mitigate potential disaster:
A model to fortify capacitated facilities. Kent Business School Working Paper No.209,
University of Kent, Canterbury, UK (2010)

48. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and con-
vex hull representations for zero-one programming problems. SIAM Journal on Discrete
Mathematics 3(3), 411–430 (1990)

http://www.dtic.mil/cgi-in/GetTRDoc?AD=ADA464744\&Location=U2\&doc=GetTRDoc.pdf
http://www.dtic.mil/cgi-in/GetTRDoc?AD=ADA464744\&Location=U2\&doc=GetTRDoc.pdf
http://www.rferl.org/content/article/1347757.html


5 A Matheuristic for Leader-Follower Games in Location Theory 151

49. Sherali, H.D., Adams, W.P., Driscoll, P.J.: Exploiting special structures in constructing
a hierarchy of relaxations for 0-1 mixed integer problems. Oper. Res. 46(3), 396–405
(1998)

50. Smith, J.C.: Basic interdiction models. In: Cochran, J. (ed.) Wiley Encyclopedia of Op-
erations Research and Management Science (EORMS), Wiley, New York (2010),
http://eu.wiley.com/WileyCDA/Section/id-380764.html (accessed:
November 12, 2011)

51. Smith, J.C., Lim, C.: Algorithms for network interdiction and fortification games. In:
Chinchuluun, A., Pardalos, P.M., Migdalas, A., Pitsoulis, L. (eds.) Pareto Optimality,
Game Theory and Equilibria, pp. 609–644. Springer, New York (2008)

52. Smith, J.C., Lim, C., Sudargho, F.: Survivable network design under optimal and heuris-
tic interdiction scenarios. Journal of Global Optimization 38(2), 181–199 (2007)

53. Snyder, L.V., Scaparra, M.P., Daskin, M.S., Church, R.L.: Planning for disruptions in
supply chain networks. In: Greenberg, H.K. (ed.) TutORials in Operations Research, pp.
234–257. INFORMS, Baltimore (2006)

54. Sun, M.: Solving the uncapacitated facility location problem using tabu search. Comp.
Oper. Res. 33(9), 2563–2589 (2006)

55. Wollmer, R.: Removing arcs from a network. Oper. Res. 12(6), 934–940 (1964)
56. Wood, R.K.: Deterministic network interdiction. Mathematical and Computer Mod-

elling 17(2), 1–18 (1993)
57. Woodruff, D.L., Zemel, E.: Hashing vectors for tabu search. Annals of Oper. Res. 41(2),

123–137 (1993)

http://eu.wiley.com/WileyCDA/Section/id-380764.html


Chapter 6
A Metaheuristic Framework for Bi-level
Programming Problems with Multi-disciplinary
Applications

Andrew Koh

Abstract. Bi-level programming problems arise in situations when the decision
maker has to take into account the responses of the users to his decisions. Several
problems arising in engineering and economics can be cast within the bi-level pro-
gramming framework. The bi-level programming model is also known as a Stack-
leberg or leader-follower game in which the leader chooses his variables so as to
optimise his objective function, taking into account the response of the follower(s)
who separately optimise their own objectives, treating the leader’s decisions as ex-
ogenous. In this chapter, we present a unified framework fully consistent with the
Stackleberg paradigm of bi-level programming that allows for the integration of
meta-heuristic algorithms with traditional gradient based optimisation algorithms
for the solution of bi-level programming problems. In particular we employ Differ-
ential Evolution as the main meta-heuristic in our proposal. We subsequently apply
the proposed method (DEBLP) to a range of problems from many fields such as
transportation systems management, parameter estimation and game theory. It is
demonstrated that DEBLP is a robust and powerful search heuristic for this class of
problems characterised by non smoothness and non convexity.

6.1 Introduction

This paper introduces a meta-heuristic framework for solving the Bi-level program-
ming Problem (BLPP) with a multitude of applications [26, 74]. As a historical
footnote, the term “bi-level programming” was first coined in a technical report
by Candler and Norton in [20] who were concerned with general multilevel pro-
gramming problems. The BLPP is a special case of a multilevel programming prob-
lem restricted to two levels. Prior to that time, the BLPP was known simply as a
mathematical program with an optimisation problem in the constraints [18] but had

Andrew Koh
Institute for Transport Studies, University of Leeds, Leeds, LS2 9JT, United Kingdom
e-mail: a.koh@its.leeds.ac.uk

E.-G. Talbi (Ed.): Metaheuristics for Bi-level Optimization, SCI 482, pp. 153–187.
DOI: 10.1007/978-3-642-37838-6_6 c© Springer-Verlag Berlin Heidelberg 2013

a.koh@its.leeds.ac.uk


154 A. Koh

already found military applications [19]. In economics and game theory, a BLPP
is a Stackleberg [106] or “leader-follower” game (see Fig. 6.1) in which the leader
chooses his variables so as to optimise his objective but continues to take into ac-
count the response of the follower(s) who when independently optimising their sep-
arate objectives, treat the leader’s decisions as an exogenous input [72].

Fig. 6.1 Pictoral Representation of a BLPP

BLPPs possess in common the following three characteristics [86, 117]:

• The decision-making units are interactive and exist within a hierarchical
structure.

• Decision making is sequential from higher to lower level. The lower level deci-
sion maker executes its policies after decisions are made at the upper level.

• Each unit independently optimises its own objective functions but is influenced
by actions taken by other units.

The BLPP has been a subject of intense research and several notable volumes have
been published to date [7, 32, 72, 87]. At the same time applications of BLPP can be
found in fields as diverse as chemical engineering [49], robot motion planning and
control [72], production planning [8] occurring in a multitude of disciplines [7]. In
tandem, there has been much work on the development of solution methodologies
(see [26, 32] for a review of these).

This chapter is structured as follows. In Section 7.3 we formally introduce the
BLPP and provide a brief and by not means exhaustive review of solution method-
ologies for the BLPP. In Section 7.4 we discuss the Differential Evolution for
Bi-Level Programming (DEBLP) meta-heuristic introduced in [61] and apply it
to problems in transportation systems management in Section 7.5. To emphasise
the multidisciplinary applications to which DEBLP is applicable, Section 7.6 pro-
vides examples of BLPPs arising from parameter estimation problems. Section 7.7
introduces a method for handling constraints integrating recent developments in
evolutionary algorithms to propose a method to handle constraints in the leader’s
problem. Having set up this framework, we are ready in Section 6.7 to apply DEBLP
to solving Generalised Nash Equilibrium Problems (GNEP) which when formulated
as BLPPs are in fact characterised by constraints in the leader’s objective. Section
6.8 summarises and provides extensive directions for further research on problems
related to the topic of BLPPs.
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6.2 The Bi-level Programming Problem

6.2.1 A General BLPP

We can write a generic BLPP as the system of equations in Eq. 6.1. The unique
feature of Eq. 6.1 is that the constraint region is implicitly determined by yet another
optimisation problem1. This constraint is always active. The upper level problem
denoted as Program U, is given in Eq. 6.1a,

Program U

⎧
⎪⎪⎨

⎪⎪⎩

min
x∈X

U(x,y)

subject to
G(x,y)≤ 0
E(x,y) = 0

(6.1a)

where for given x, y is the solution to the lower level program (Program L) in 6.1b:

Program L

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
y∈Y

L(x,y)

subject to
g(x,y))≤ 0
e(x,y)) = 0

(6.1b)

In the formulation in Eq. 6.1 we define the following mappings: U,L : Rn1×R
n2 →

R
1,G :Rn1×R

n2→R
q1 , g :Rn1×R

n2→R
q2 , E : Rn1×R

n2→R
r1 , e : Rn1×R

n2→
R

r2 . In the general case the objectives and constraints at both levels are non-linear.
The sets X and Y representing the search domains for 6.1a and 6.1b respectively
are defined as follows: X =

{
(x1,x2, ....,xn1)

ᵀ ∈ R
n1
∣
∣xl

i ≤ xi ≤ xu
i , i = 1, ...,n1

}

and Y =
{
(y1,y2, ....,yn2)

ᵀ ∈ R
n2

∣
∣
∣yl

j ≤ y j ≤ yu
j , j = 1, ...,n2

}
with ᵀ denoting the

transpose. Arising from the “leader-follower” analogy of BLPPs, we use the terms
leader’s variables and upper level variables interchangeably when referring to x.

6.2.2 Mathematical Programs with Equilibrium Constraints

We also define a class of BLPPs known as the Mathematical Programs with Equi-
librium Constraints (MPECs) . MPECs are BLPPs where the lower level problem
consists of a variational inequality (VI) [26].

Program U

⎧
⎪⎪⎨

⎪⎪⎩

min
x∈X

U(x,y)

subject to
G(x,y)≤ 0
E(x,y) = 0

(6.2a)

1 Hence the original name of mathematical programs with optimisation problems in the con-
straints chosen by Bracken and McGill in [18].



156 A. Koh

where for given x, y is the solution of the VI in Program L 6.2b:

L(x,y)ᵀ(y− y∗)≥ 0,∀y ∈ϒ (x) (6.2b)

Another class of problems closely related to MPECs are Mathematical Programs
with Complementarity Constraints [67] which feature in place of a VI, a Comple-
mentarity Problem instead in Program L. However since the VI is a generalization
of the Complementarity Problem [56, 82], we will treat these two categories as syn-
onymous for the purposes of this chapter and neglect the theoretical distinctions. We
return in Section 6.4 to give an example of MPECs that arise naturally in transporta-
tion systems management.

6.2.3 Solution Algorithms for the BLPP

When all functions (both objectives and constraints) at both levels are linear and
affine , this class of problems is known as the linear-BLPP . However even in this
deceptively “simple” case the problem is still nondeterministic polynomial time
hard [11]. Even when both the upper level and the lower level are convex pro-
gramming problems , the resulting BLPP itself can be non-convex [12] . Non con-
vexity suggests the possibility of multiple local optima. Ben-Ayed and Blair [11]
demonstrated the failure of both the Parametric Complementarity Pivot Algorithm
[13] and the Grid Search Algorithm [5] to locate the optimal solution . Since then,

progress has been made in solving the linear-BLPP and techniques including im-
plicit enumeration [21], penalty based methods [2] and methods based on Karush
-Kuhn-Tucker (KKT) conditions [41] have been developed. (See [117] for a detailed
review of the algorithms available for the linear-BLPP).

Turning to solution algorithms for the general BLPP, several intriguing attempts
have been proposed to solve it. One early proposal was the Iterative Optimisation
Algorithm (IOA) [3, 107]. This method involved solving the Program U for fixed y
and using the solution thus obtained to solve the lower level problem, Program L,
and repeatedly iterating between the two programs until some convergence criteria
is met. However the IOA was shown to be an exact method for solving a Cournot
Nash game [40, 42] rather than the Stackleberg game that the BLPP reflects. The
IOA implicitly assumes that the leader is myopic as he does not take into account the
follower’s reaction to his policy [42]. To be consistent with the Stackleberg model,
the leader must be modelled as endowed with knowledge of the follower’s reaction
function which the leader knows the follower will obey.

The primary difficulty with solving MPECs is that they fail to satisfy certain tech-
nical conditions (known as constraint qualifications) at any feasible point [23, 102].
The penalty interior point algorithm (PIPA) was proposed in [72]. Unfortunately
a counterexample in [67] demonstrates that PIPA can converge to a nonstationary
point. Subsequent research has led to the development of many other techniques to
solve the MPEC such as the piecewise sequential quadratic programming in [72],
branch-and-bound[6], nonsmooth approaches [32, 87] and smoothing methods [38].
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Wrapping up this section, we summarise briefly the use of methods based on
meta-heuristics. Meta-heuristics including stochastic optimisation techniques are
recognised as useful tools for solving problems such as the BLPPs which do
not necessarily satisfy the classical optimisation assumptions of continuity, con-
vexity and differentiability. Techniques include Simulated Annealing (SA) [1],
Tabu Search (TS) [48], Genetic Algorithms (GA) [47], Ant Colony Optimisation
(ACO) [34], Particle Swam Optimisation (PSO) [57] and Differential Evolution
(DE) [94, 95, 108].

SA was used to optimise a chemical process plant layout design problem for-
mulated as a BLPP in [100] and a Network Design Problem formulated as an
MPEC [43]. ACO techniques for BLPPs are found in [93]. GAs have been used
to solve BLPPs in inter alia [73, 86, 111, 114, 122]. PSO was applied to BLPPs
in e.g. [126]. DE was used for BLPPs in [61] where an example demonstrated the
inability of the TS method implemented in [96] to locate the global optima of a
test function. Despite their reported successes in tackling very difficult problems, it
must be emphasised that heuristics provide no guarantee of convergence to even a
local optimum. Despite this heuristics have been succesfully used to solve a variety
of difficult problems such as the BLPP.

6.3 Differential Evolution for Bi-Level Programming (DEBLP)

Differential Evolution for Bi-Level Programming (DEBLP) was initially proposed
in [61] to tackle BLPPs arising in transportation systems management. It is devel-
oped from the GA Based Approach proposed in [111, 122] but substitutes the use
of binary coded GA strings with real coded DE [95] as the meta-heuristic instead.

DE is a simple algorithm that utilises perturbation and recombination to optimise
multi-modal functions and has already shown remarkable success when applied to
the optimisation of numerous practical engineering problems [94, 95, 108]. On the
other hand, many years of research have resulted in the development of a plethora
of robust gradient based algorithms for tackling many operations research questions
posed as non-linear programming problems (NLP) [9, 70, 85]. If we momentarily
ignore the upper level problem, then for fixed x, Eq. 6.1b is effectively an NLP2

which can be tackled by dedicated NLP tools such as sequential quadratic program-
ming [9, 70, 85]. Such considerations motivated the development of the DEBLP
meta-heuristic which sought to synergise DE’s well-documented global search ca-
pability to optimise the upper level problem with the dedicated NLP tools focused
on solving the lower level problem. More importantly, as we shall emphasise later,
DEBLP continues to maintain the crucial “leader-follower” paradigm upon which
the BLPP is founded.

2 Note that for fixed x, the lower level problem in the MPEC in Eq. 6.2b can also be solved
using deterministic methods. See e.g. [82] for a review of deterministic solution algorithms
for VIs.
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In the rest of this section, we provide an overview of the operation of the DEBLP
algorithm and discuss some of its limitations. However we temporarily neglect con-
sideration of the q1+ r1 upper level constraints in Program U . Our discussion of the
procedure used to ensure satisfaction of the upper level inequality and/or equality
constraints is postponed till later (see Section 7.7).

6.3.1 Differential Evolution

Conventional deterministic optimisation methods generally operate on a single trial
point, transforming it using search directions computed based on first (and possibly,
second) order conditions until some criteria measuring convergence to a stationary
point is satisfied [9, 70, 85]. On the other hand, population based meta-heuristics
such as DE operate with a population of trial points instead. The idea here is that
of improving each member throughout the operation of the algorithm by way of an
analogy with Darwin’s theory of evolution3.

Let there be π members in such a population of trial points. Specifically we
denote the population at iteration it as P it . An illustration of such a population
is given in Eq. 6.3. Each member of P it representing a single trial point xit

k =
(xit

k,1, . . . ,x
it
k,n1

),k = {1, . . . ,π}, also known as an individual, is a n1 dimensional
vector that represents the upper level variables (see Eq. 6.1a). To avoid notational
clutter, we drop the it superscript as long as it does not lead to confusion. Without
loss of generality, we will assume minimization. The DEBLP algorithm is outlined
in Algorithm 10 which we elaborate upon in the ensuing paragraphs of this section.

P it =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

xit
1
...

xit
k
...

xit
π

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

xit
1,1 xit

1,2 · · · xit
1,n1

...
...

. . .
...

xit
k,1 xit

k,2 · · · xit
k,n1

...
...

. . .
...

xit
π ,1 xit

π ,2 · · · xit
π ,n1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(6.3)

6.3.1.1 Generate Parent Population

When the algorithm begins, real parameters in each dimension i of each member k
of P , that comprise the parent population, are randomly generated within the lower
and upper bounds of the domain of the BLPP as in Eq. 6.4.

xk,i = rand(0,1)(xu
i − xl

i)+ xl
i,k ∈ {1, ...,π}, i ∈ {1, ...,n1}. (6.4)

In Eq. 6.4 rand(0,1) is a pseudo random number generated from an uniform distri-
bution between 0 and 1.

3 Hence some of these methods are sometimes referred to as evolutionary algorithms in the
literature.
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Algorithm 10: Differential Evolution for Bi-Level Programming (DEBLP)

1. Randomly generate parent population P of π individuals.
2. Evaluate P
set iteration counter it = 1
3. While stopping criterion not met, do:

For each individual in P it , do:
(a) Mutation and Crossover to create a single child from individual.
(b) Evaluate the child using a hierarchical strategy.
(c) Selection: If the child is fitter than the individual, the child replaces
the parent. Otherwise, the child is discarded.

End For
it = it +1
End While

6.3.1.2 Evaluation

The evaluation process to determine the fitness4 of a trial point in the population has
to be developed within the Stackleberg model [106] since we have to specifically
model the leaders taking into account the response (reaction) of the followers to his
strategy x. One way to accomplish this is via a “two stage” or hierarchical strategy
which is achieved as follows.

In the first stage, for each individual k vector of the leader’s decision variables xk,
we solve Program L i.e. Eq. 6.1b to obtain y by using deterministic methods such
as linear programming or sequential quadratic programming [9, 70, 85]. With y so
obtained, we are then able to carry out the second stage which involves computing
the value of the upper level objective U , corresponding to each individual vector of
the leader’s decision variables input in the first stage.

It is worth highlighting that this procedure is different from the IOA described
earlier in Section 7.3 as DEBLP obviates any iteration between the two levels. In-
stead, entirely consistent with the “leader-follower” paradigm, the leader’s vector
xk being manipulated by DE is offered as an exogenous input to the lower level
program to be solved in the first stage. One obvious drawback of doing this is the
resulting increase in computational burden which has been significantly reduced by
advances in computing power.

6.3.1.3 Mutation and Crossover

The objective of mutation and crossover is to produce a child vector wk from
the parent. This is accomplished by stochastically adding to the parent vector the

4 The term “fitness” used in such evolutionary meta-heuristics is borrowed from its analogy
with evolution where Darwin’s concept of survival of the fittest is a conerstone. In min-
imization problems, when comparing two individuals, the fitter individual is the one that
evaluates to a lower upper level objective.
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factored difference of two other randomly chosen vectors from the population as
shown in Eq. 6.5.

wk,i =

{
xs1,i +λ (xs2,i− xs3,i)

xk,i

if rand(0,1)< χ or i = intr(1,n1)
otherwise

(6.5)

In Eq. 6.5, s1,s2 and s3 ∈ {1,2, . . . ,π} are randomly chosen population indices dis-
tinct from each other and also distinct from the current population member index
k. rand(0,1) is a pseudo random real number between 0 and 1 and intr(1,n1) is a
pseudo random integer between 1 and n1. The mutation factor λ ∈ (0,2) is a param-
eter which controls the magnitude of the perturbation and χ ∈ [0,1] is a probability
that controls the ratio of new components in the offspring. The or condition in Eq.
6.5 ensures that the child vector wk will differ from its parent xk in at least one
dimension.

We stress that the mutation and crossover strategy shown in Eq. 6.5 is not the only
possible strategy available though this is the one used in this work. Other strategies
are found in [94, 95, 108]. Nevertheless all the strategies of DE reflect a common
theme: the creation of the child vector wk via the arithmetic recombination of ran-
domly chosen vectors along with addition of difference vector(s) typified in Eq. 6.5.

6.3.1.4 Enforce Bound Constraints

Mutation and crossover can however produce child vectors that lie outside the
bounds of the original problem specification. There are several ways to ensure satis-
faction of these constraints. One could set the parameter equal to the limit exceeded
or regenerate it within the bounds. Alternatively, following [94], we reset out of
bound values in each dimension i half way between its pre-mutation value and the
bound violated as shown in Eq. 6.6.

wk,i =

⎧
⎪⎨

⎪⎩

xk,i+xl
i

2 if wk,i < xl
i

xk,i+xu
i

2 if wk,i > xu
i

wk,i otherwise

(6.6)

6.3.1.5 Selection

Once the hierarchical evaluation process is carried out on the child vector wk pro-
duced, we can compare the fitness obtained with that of its parent xk. This means
that comparison is against the same k parent vector5 on the basis of whichever of
the two gives a lower value for Program U . Assuming minimization the one that
produces a lower value survives to become a parent in the following generation as
shown in Eq. 6.7.

5 This is sometimes referred to as “one to one” comparison in [94, 95, 108].
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xit+1
k =

{
wit

k
xit

k

if U(wit
k ,L(•))≤U(xt

k,L(•))
otherwise

(6.7)

These steps are repeated until some user specified termination criteria is met, and
this is usually when it reaches the maximum number of iterations, although other
criteria are possible [95].

6.3.2 Control Parameters of DE

Unless otherwise stated, for all experiments reported throughout this chapter we
used a Mutation Factor, λ , of 0.9 and a Probability of Crossover, χ , of 0.9. The
population size, π , and the maximum number of iterations allowed varied for each
of the BLPPs we investigated and these will be clearly stated in the relevant sections.
Because DEBLP is a stochastic meta-heuristic, we always carry out 30 independent
runs with different random seeds. All numerical experiments were conducted using
MATLABTM 7.8 running on a 32 bit WindowsTM XP machine with 4 GB of RAM.

6.3.3 Implicit Assumptions of DEBLP

Through the rest of this paper we will demonstrate in examples from various dis-
ciplines that DEBLP is a powerful and robust solution methodology for handling a
variety of problems formulated as BLPPs. However we are cognizant at the outset
two key limitations of our approach:

1. DEBLP is a heuristic: with its strength arising from it avoiding reliance on the ob-
jective functions being differentiable and/or satisfying convexity properties and
hence able to handle a large class of intrinsically non smooth problems. How-
ever it should recognised that for this very reason, it is not generally possible to
establish convergence of the algorithm to even a local optimum.

2. DEBLP implicitly assumes that the Program L is convex for fixed x and can be
solved to global optimality by deterministic methods and that failure to solve
the lower level problem to global optimality does not affect the solution of
Program U .

This section has focused on defining the motivation for, and outlining, the DEBLP
meta-heuristic which sought to synergise the exploratory power of DE with robust
deterministic algorithms focused on solving the lower level problem. Recognizing
its limitations, in the next section, we apply DEBLP to control problems arising
from Transportation Systems Management formulated as BLPPs where the lower
level program is shown to be convex for a given tuple of the leader’s variables.
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6.4 Applications to Transportation Systems Management

In this section, we study two problems in transportation systems management. In
applications, the leader in Program U could be thought of as a regulatory authority
applying control strategies (policy) that influence the travel choices of the followers
who are the highway users on the road network. It will be shown under certain
assumptions, the followers problem can be established as a VI thus the problems
under consideration are MPECs.

6.4.1 The Lower Level Program in Transportation

In the transportation systems management literature, Program L has an interpre-
tation in that it is the mathematical formulation representing the follower’s (road
user’s) route choice [15] on a highway network. This is often referred to as the Traf-
fic Assignment Problem (TAP). Traffic assignment aims to determine the number of
vehicles and the travel time on different road sections of a traffic network, given the
travel demand between different pairs of origins and destinations [60].

Definition 1. [115] The journey times on all the routes actually used are equal,
and not greater than those which would be experienced by a single vehicle on any
unused route.

The TAP is founded on the behavioral premise of Wardrop’s User Equilibrium as
given in Definition 1. In effect this states that user equilibrium is attained when no
user can decrease his travel costs by unilaterally changing routes. The TAP provides
the link flow vector (v) when user equilibrium is attained.

To facilitate exposition of Program L, consider a transportation network repre-
sented as a graph with N nodes and A links/arcs, and let:

P: the set of all paths/routes in the network,
H: the set of all Origin Destination (OD) pairs in the network,
Ph: the set of paths connecting an OD pair h,h ∈H,
Fp: the flow on route/path p,p ∈ P,
va: the link flow on link av = [va],a ∈ A,
ca(va) : the travel cost of utilising the link a, as a function of link flow va on that

link only, c(v) = [ca(va)],a ∈ A
cp: the travel cost of path p,p ∈ P,
δap : a dummy variable that is 1 if the path p,p∈ P uses link a ,a∈ A, 0 otherwise

and
Ω : the set of feasible flows and demands.
On the demand side, we assume that there is an amount of demand dh,h ∈ H

(dh ≥ 0) wishing to travel between OD pair h and μh is the minimum travel cost that
OD pair h,h ∈ H.
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6.4.1.1 TAP as a Variational Inequality

Lemma 6.1. Wardrop’s Equilibrium Condition of route choice implies that at equi-
librium the following conditions are simultaneously satisfied:

Fp∈Ph ≥ 0⇔ cp∈Ph = μh ∀h ∈ H,∀p ∈ P;
Fp∈Ph = 0⇔ cp∈Ph ≥ μh ∀h ∈ H,∀p ∈ P;
dh = ∑

p∈Ph

Fp ∀h ∈ H,∀p ∈ P;

Lemma 6.1 states that path p connecting OD pair h will be used by the travellers
if and only if the cost of travelling on this route is the minimum travel cost be-
tween that OD pair. The Variational Inequality (VI) in Eq. 6.8 restates Wardrop’s
Equilibrium Condition.

Find v∗ ∈Ω such that c(v∗)ᵀ(v− v∗)≥ 0,∀v ∈Ω (6.8)

Proposition 6.1. The solution of the Variational Inequality defined in Eq. 6.8 results
in a vector of link flows demands (v∗ ∈ Ω) that satisfies Wardrop’s Equilibrium
Condition of route choice given by Lemma 6.1.

Proof. For a proof of Proposition 6.1, see [28, 105]. ��

6.4.1.2 Convex Optimisation Reformulation

In the particular instance (and in the cases considered in this chapter) when the travel
cost of using a link is dependent only on its own flow6, there exists an equivalent
convex optimisation program for the VI (Eq. 6.8) as shown in Eq. 6.9.

min
v

L =∑
∀a

va∫

0

ca(z)dz (6.9a)

Subject to:

∑
p∈Ph

Fp = dh ,h ∈ H (6.9b)

va = ∑
p∈P

Fpδap ,a ∈ A (6.9c)

Fp ≥ 0, p ∈ P. (6.9d)

The objective of the program in Eq. 6.9 is a mathematical construct, with no behav-
ioral interpretation, employed to solve for the equilibrium link flows that satisfies
Wardrop’s Equilibrium Condition [103]. In this program, the first constraint states
that the flow on each route used by each OD pair is equal to the total demand for
that OD pair. The second constraint is a definitional constraint which stipulates that

6 This is known as the separability assumption.
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the flow on a link comprises flow on all routes that use that link. The last constraint
restricts the equilibrium flows and demands to be non negative. These linear con-
straints define Ω . Since Ω is closed and convex, the equilibrium link flows v∗ ∈ Ω
are unique [15]. In practice, it is usually the case that traffic assignment algorithms
(see examples in texts such as [89, 103]) are used to solve Program L.

6.4.2 Continuous Optimal Toll Pricing Problem (COTP)

The continuous optimal toll pricing problem involves selecting an optimal toll level
for each predefined tolled link in the network [11]. With a view to controlling con-
gestion, there has been renewed interests by transportation authorities globally to
study this “road pricing ” problem (e.g. Singapore, London, Stockholm).

6.4.2.1 Model Formulation

In addition to the notation defined at the start of this section, we introduce the fol-
lowing notation to describe the COTP. Let:

ta(va) : the travel time on link a, as a function of link flow va on that link only,
T : the set of links that are tolled T ⊆ A
τ: the vector of tolls, τ = [τa], a ∈ T
τmax

a ,τmin
a : the upper and lower bounds of toll charge on link a, a ∈ T

Total travel cost, conventionally measured as the sum product of the travel times
and traffic flows on all links in the network, may be interpreted as the social cost of
the transport sector and acts as a proxy for the resource cost to the economy of the
highway system. The objective of the upper level decision maker in the COTP is to
minimise this by encouraging more efficient routing of traffic by levying tolls on the
road users in the network. The upper level program is the system in Eq. 6.10.

min
τ

U = ∑
a∈A

va ta(va) (6.10a)

Subject to:
τmin

a ≤ τa ≤ τmax
a , a ∈ T

τa = 0, a /∈ T
(6.10b)

Note however that v can only be obtained by solving Program L in Eq. 6.9. Thus
in terms of Figure 6.1, the policy variables x is the toll vector τ and the follower’s
response is the traffic routing that manifests in the vector of link flows on the road
network v that in turns affect the leader’s objective.

Recall that in defining the lower level program in Eq. 6.9, the road user was
assumed to consider the travel cost of utilising an arc a, a ∈ A. Eq. 6.11 maps the
travel time ta(va) on an arc a, into the equivalent travel costs ca(va).
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ca(va) =

{
ta(va)+ τa

ta(va)
if a ∈ T

otherwise
(6.11)

6.4.2.2 Previous Work on the COTP

Various solution algorithms have been proposed for the COTP. Yang and Lam
proposed a linearisation based method that uses derivative information to form ap-
proximations to the upper level objective [118] known as a sensitivity based analysis
algorithm (SAB). However it has been pointed out [122] the global optimality of the
SAB algorithm is not assured and that obtaining a local optimum is indeed possible.
Another derivative-based method was derived from constraint accumulation [66]. A
review of algorithms for the COTP is found in [111].

6.4.2.3 Example

We illustrate the use of DEBLP to solve the COTP with an example from [118].
Fig. 6.2 shows the network which has 6 nodes and 7 links. Link numbers are written
above the links and node numbers are indicated accordingly. There are two OD pairs
between nodes 1 and 3 and between 2 and 4 of 30 trips each. The rest of the nodes
represent junction/intersections of the road network and travel is in the direction
indicated by the arrows. The link travel times ta(va) take the explicit function forms
as given in Eq. 6.12.

ta(va) = t0
a (1+ 0.15(

va

Capa
)4) (6.12)

In Eq. 6.12, t0
a is the free flow travel time of the link a and Capa is the capacity of

link a. The parameter details for the network and the upper bound on tolls τmax
a are

found in [118] and given in Table 6.1. Note that τmin
a = 0,∀a ∈ T.

For this example, we use a population size, π , of 20 and allowed a maximum
of 50 iterations in each of 30 runs. Table 6.2 compares the results of DEBLP with
that of two deterministic algorithms (direct from [118] and our implementation of
the algorithm of [66] together with a GA based method from [122]. UPO refers
to the value of (Upper level) Objective in Eq. 6.10. It can be seen from Table 6.2
that the four different algorithms provided different tolls underlying the multimodal
nature of this problem. However the upper level objective function values are the
same in all cases. This bears testimony to the multimodal nature of the COTP where
many different toll vector tuples could potentially result in attaining the same upper
level objective function value.

6.4.3 Continuous Network Design Problem

The continuous network design problem (CNDP) aims to determine the optimal
capacity enhancements of existing facilities of a traffic network [43]. Care has to be
taken when solving the CNDP because additional capacity can counter productively
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Table 6.1 Network Parameters
for COTP Example

Link a t0
a Capa τmax

a
1 8 20 5
2 9 20 5
3 2 20 2
4 6 40 2
5 3 20 2
6 3 25 2
7 4 25 2

Table 6.2 Comparison of existing against DEBLP results
for COTP Example

Method Deterministic Stochastic
Tolls [118] Method of [66] [122] DEBLP

Link 1 3.82 2.667 4.324 3.824
Link 2 4.265 3.548 4.976 3.92
Link 3 0.472 0.038 0.035 0.564
Link 4 0.476 0.154 1.759 0.462
Link 5 0.294 0.116 0.016 0.145
Link 6 0.472 0.038 0.127 0.396
Link 7 0.294 0.116 0.013 0.111
UPO 628.6 628.6 628.6 628.6

Fig. 6.2 Network for COTP Example [118] Fig. 6.3 Network for CNDP Example 1 [27]

increase the total network travel time and this is a phenomenon is known as Braess’s
paradox [17]. Braess’s paradox has been known to occur in transportation [17] and
telecommunication networks [63].

6.4.3.1 Model Formulation

To proceed with this example, we introduce additional notation as follows (others
as previously defined):

κ : the set of links that have their individual capacities enhanced, κ ⊆ A.
β : the vector of capacity enhancements, β = [βa], a ∈ κ
βmax

a ,βmin
a : the upper and lower bounds of capacity enhancements, a ∈ κ .

da: the monetary cost of capacity increments per unit of enhancement, a ∈ κ .
Cap0

a: existing capacity of link a, a ∈ A.
θ : conversion factor from monetary investment costs to travel cost units.
In the CNDP, the regulator aims to minimise the sum of the total travel times

and investment costs with constraints on the amount of capacity additions while
Program L determines the user’s route choice, for a given β , once again based
on Wardrop’s principle of route choice as mentioned previously. Hence the CNDP
seeks a |κ | dimension vector of capacity enhancements optimal to the following
BLPP in Eq. 6.13:
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min
τ

U = ∑
a∈A

va ta(va)+ ∑
∀a∈K

θda βa (6.13a)

subject to:
βmin

a ≤ βa ≤ βmax
a a ∈ κ ;

βa = 0 a /∈ κ (6.13b)

where v is the solution of a lower level TAP (Program L) Eq. 6.9, parameterised in
the vector of capacity enhancements for the fixed demand case. We map the travel
times to the travel costs by means of Eq. 6.14.

ca(va) =

{
t0
a(1+ 0.15( va

Cap0
a+βa

)4)

t0
a (1+ 0.15( va

Cap0
a
)4)

if a ∈ κ
if a /∈ κ (6.14)

6.4.3.2 Previous Work on CNDP

The CNDP has been investigated by many researchers and various solution algo-
rithms have so far been proposed. Meng et al transformed the CNDP into a sin-
gle level continuously differentiable problem using a marginal function and solved
the resulting formulation with the Augmented Lagragian method [75]. Chiou in-
vestigated several variants of the descent based Karush-Khun-Tucker (KKT) ap-
proaches [24]. Stochastic meta-heuristics have also been used; GAs were applied
in [27] and the use of SA has been reported in [43].

6.4.3.3 Example 1: Hypothetical Network

The network for the first example is taken from [27] and reproduced in Fig. 6.3.
This network has 6 nodes and 2 OD pairs; the first between nodes 1 and 6 of 10 trips
and the second, between nodes 6 and 1 of 20 trips. Please refer to [27] for the link
parameter details. Note that βmin

a = 0 and βmax
a = 20, ∀a ∈ κ ,κ ⊆ A as in [27]. We

assumed a population size, π , of 20 and allowed a maximum of 150 iterations. Table
6.3 summarises the results that have been reported previously and compares it with
the results reported in our paper. UPO refers to the value of (upper level) objective
in Eq. 6.13. NFE is the number of function evaluations. Note that the number of
lower level programs solved equal to population size multiplied by the maximum
number of iterations allowed. SD is the standard deviation over 30 runs. Our results
are based on the mean of these 30 runs. Though the SD of the GA method is much
lower, [27] also reported using local search method to aid the search process which
accounts for the higher NFE as well.
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6.4.3.4 Example 2: Sioux Falls Network

The second example is the CNDP for the Sioux Falls (South Dakota,USA) network
with 24 nodes, 76 links and 552 OD pairs. The network parameters and OD details
are found in [75]. Only 10 links out of the 76 are subject to improvements.

While this network is clearly larger and arguably more realistic, the problem
dimension (i.e. leader’s variables simultaneously optimised) is smaller than in Ex-
ample 1, since 10 links are subject to improvement rather than the 16 links in the
former. This offers an explanation as to why the number of function evaluations
(NFE) reported in all studies compared is less than for the first example. The re-
sults are compared in Table 6.4. Our results show the mean of 30 runs with different
random seeds.

It can be deduced from Table 6.4 that DEBLP is able to locate the global opti-
mum; again with a lesser number of iterations than the SA method in [43]. More
interestingly, DEBLP required less iterations than the deterministic method of [75].
The standard deviation is also very low which suggests that this heuristic is reason-
ably robust as well.

Table 6.3 Comparison of existing against
DEBLP results for CNDP Example 1

Method: Deterministic Stochastic
Source [24] [75] [43] [27] DEBLP
UPO 534 532.71 528.49 519.03 522.71
NFE 29 4,000 24,300 10,000 3,000
SD –Not Reported– 0.403 1.34

Table 6.4 Comparison of existing against
DEBLP results for CNDP Example 2

Method: Deterministic Stochastic
Source [24] [75] [43] DEBLP
UPO 82.57 81.75 80.87 80.74
NFE 10 2,000 3,900 1,600
SD —-Not Reported—- 0.002

6.5 Applications to Parameter Estimation Problems

In this section we derive the Error-In-Variables model and show that it can be for-
mulated as a BLPP and apply it to 2 examples from [49]. Parameter estimation is
an important step in the verification and utilization of mathematical models in many
fields of science and engineering [37, 49, 59]. In the classical least-squares approach
to parameter estimation, it is implicitly assumed that the set of independent variables
is not subject to measurement errors [46]. On the other hand, the error-in-variables
(EIV) approach assumes that there are measurement errors in all variables [16, 98].

6.5.1 Formulation of EIV Model

We consider models of the implicit form as in Eq. 6.15.

f (x,y) = 0 (6.15)
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In Eq. 6.15, x is the vector of n1 unknown parameters, y is the vector of n2 measure-
ment variables and f is the system of algebraic functions. The measured variables
are the sum of the true values ζm which are unknown and the additive error term εm

at the data point m as shown in Eq. 6.16.

ym = ζm + εm (6.16)

We assume that the error is normally distributed with zero mean and possessing a
known covariance matrix. The vector of unknown parameters x can be estimated
from the solution of the constrained optimisation problem in Eq. 6.17.

min
x̂,ŷ

M
∑

m=1
(ŷm− ym)

ᵀΛ−1(ŷm− ym)

subject to
f (ŷm, x̂) = 0, m = 1, . . . ,M

(6.17)

As mentioned, we do not know the true values of ζm. However they are approxi-
mated from the optimisation as the fitted variables ŷm. Assuming that the covari-
ance matrix Λ is the same in each experiment and diagonal, we write Eq. 6.17 as
Eq. 6.18.

min
x̂,ŷ

M
∑

m=1

n2

∑
i=1

(ŷm,i−ym,i)
2

σ2
i

subject to
f (ŷm, x̂) = 0, m = 1, . . . ,M

(6.18)

In Eq. 6.18, σi is the standard deviation of variable i in all the experiments. Follow-
ing [49], we can write the EIV model as a BLPP of the form of Eq. 6.19.

Program U

{

min
x̂

M
∑

m=1

n2

∑
i=1

(ŷm,i−ym,i)
2

σ2
i

(6.19a)

where for given x, y is the solution to the lower level program (Program L):

Program L

⎧
⎪⎪⎨

⎪⎪⎩

min
x̂,ŷ

M
∑

m=1

n2

∑
i=1

(ŷm,i−ym,i)

σ2
i

subject to
f(ŷm,i, x̂) = 0, m = 1, . . . ,M, i = 1, . . . ,n2

(6.19b)

For a survey of the alternative optimisation based formulations of the EIV model,
the reader is referred to [59].

6.5.2 Examples

We present 2 examples of the EIV model that were solved using deterministic meth-
ods in the cited references. Note that we consider only a single common variance
term for all variables and we can eliminate it from further consideration. In all our
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experiments of DEBLP we assumed a population size, π , of 20 and allowed a max-
imum of 100 iterations.

6.5.2.1 Example 1: “Kowalik Problem”

Consider the model due to Moore et al in [76] known as the “Kowalik Problem”
where we estimate the equation of the form in Eq. 6.20.

ŷm,1 =
x1y2

m,2
+ x1x2ym,2

y2
m,2

+ ym,2x3 + x4
(6.20)

We have 11 data points for this model (see [49] for the data set). It is assumed that
ym,1 contains errors, and ym,2 is error-free. The resulting BLPP is shown in Eq. 6.21.
Notice that the lower level equality constraint in Eq. 6.21 is the model formulation
hypothesised in Eq. 6.20.

min
x̂

11
∑

m=1
(ŷm,1− ym,1)

2

subject to

min
y

11
∑

m=1
(ŷm,1− ym,1)

2

ŷm,1(y2
m,2

+ ym,2x3 + x4)− x1y2
m,2
− x1x2ym,2 = 0

(6.21)

30 runs of DEBLP were performed for this problem with a maximum of 100 itera-
tions allowed per run and a population size, π of 20. Following [49], the parameter
bounds are assumed to be between -0.2892 and 0.2893 for each of the 4 upper level
variables x1,x2,x3 and x4. Table 6.5 shows the results which clearly agrees with that
reported in [49]. In this table UPO refers to the objective of the upper level in Eq.
6.21. Note that the standard deviation of the UPO over the 30 independent DEBLP
runs conducted was less than 1× 10−5.

6.5.2.2 Example 2: “Linear Fit”

The model we intend to estimate is a linear equation of the form in Eq. 6.22. The 10
data points are from [49]. Compared to Example 1, here we assume that measure-
ment errors are present in both ym,1 and ym,2, m = {1, . . . ,10}.

ŷm,2 = x1 + x2ŷm,1 (6.22)

Assuming a common variance for each data tuple {ym,1,ym,2}, we can estimate the
vector of unknown x parameters via the BLPP in Eq. 6.23.
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min
x̂

10
∑

m=1

2
∑

i=1
(ŷm,i− ym,i)

2

subject to

min
y

10
∑

m=1

2
∑

i=1
(ŷm,i− ym,i)

2

ŷm,2− x1− x2ŷm,1 = 0

(6.23)

The results of 30 runs of DEBLP (with a maximum of 100 iterations allowed per
run and a population size π of 20) for this problem are shown in Table 6.6. Again
the standard deviation over the 30 runs was less than 1× 10−5. As with Example 1,
the results obtained by DEBLP agrees with those reported in [49].

Table 6.5 Parameter Estimation Example 1
(“Kowalik Problem”)

Variable DEBLP [49]
x1 0.1928 0.1928
x2 0.1909 0.1909
x3 0.1231 0.1231
x4 0.1358 0.1358

UPO 0.000307 0.000307

Table 6.6 Parameter Estimation Example 2
(“Linear Fit”)

Variable DEBLP [49]
x1 5.7840 5.784
x2 -0.544556 -0.54556

UPO 0.61857 0.61857

6.6 Handling Upper Level Constraints

The keen reader would notice that up to this point our discussions and our numeri-
cal examples have neglected mention of constraints in the upper level problems (cf.
Eqn. 6.1a). We have in fact thus far only assumed the presence of bound constraints
and described a technique to ensure that the population remains within the search
domain which was sufficient for the problem examples investigated. Before pro-
ceeding to our next application area for BLPPs, we outline in this section, necessary
modifications to DEBLP to enable it to handle them effectively.

6.6.1 Overview of Constraint Handling Techniques with
Meta-Heuristics

In their most basic form, meta-heuristics do not have the capability to handle gen-
eral constraints aside from bound constraints. However since real world problems
generally have linear and nonlinear constraints, a large amount of research effort
has been expended on the topic of constraint handling with such algorithms. In the
past few years many techniques have been proposed. Among others these include
penalty methods [121], adaptive techniques [104], techniques based on multiobjec-
tive optimisation [25, 65] etc.
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The penalty method transforms the constrained problem into an unconstrained
one. However one of the drawbacks of this method when applied with meta-
heuristics is that the solution quality is sensitive to the penalty parameter used. The
penalty parameter itself is problem dependent [99]. This method also encounters
difficulties when solutions lie at the boundary of the feasible and infeasible space.

Recall the selection criteria of the DEBLP in Algorithm 10. In the presence of
constraints, when we are deciding whether to accept or reject the child, wk, it is no
longer a case of comparing the values of objective U attained. The key consideration
is how one would say, decide between a infeasible individual with low U and a
feasible individual but higher U .

Intuitively one could conclude that a feasible individual is better than the infea-
sible individual because the aim is to ultimately seek solutions that minimise the
objective function and satisfy all the constraints. This viewpoint however ignores
the fact that the meta-heuristics are generally stochastic by design. There exists the
possibility that the infeasible individuals could in fact be better than the feasible one
at some iterations during the algorithm [124]. The question then is how to strike the
right balance between objective and constraints.

6.6.2 Stochastic Ranking

Runarsson and Yao [99, 101] proposed an alternative constraint handling method
known as stochastic ranking (SR)7 to aid in answering this question. To use SR, the
first step is to obtain a measure of the constraint violation, v(xk), of vector xk using
Eqn. 6.24. The first term on the RHS of Eq. 6.24 sums the maximum of either 0
or the value of the inequality constraint G j(xk), j ∈ {1, . . . ,q1}8. The second term
sums the absolute value of each of the equality constraints E j(xk), j ∈ {1, . . . ,r1}.

v(xk) =
q1

∑
j=1

max{0,G j(xk)}+
r1

∑
j=1

∣
∣E j(xk)

∣
∣ (6.24)

The key operation of SR involves counting how many comparisons of adjacent
pairs of solutions are dominated by the objective function and constraint violations.
This is accomplished in SR through a stochastic bubble sort like procedure that is
used to rank9 the population. This comparison is illustrated in Algorithm 11 where
rand(0,1) is a pseudo random real number between 0 and 1. The method requires a
probability factor η which should be less than 0.5 to create a bias against infeasible
solutions [99].

7 The source code of SR is available at
http://notendur.hi.is/tpr/index.php?page=software/sres/sres,
accessed Oct 2011.

8 In Eq. 6.1a, all the upper level inequality constraints are in the form “≤ 0”.
9 With π population members, ranking results in the best ranked 1 (highest rank) and the

worst ranked π (lowest rank).

http://notendur.hi.is/tpr/index.php?page=software/sres/sres
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Suppose we have two individuals xk1 and xk2,k1 
= k2. If both do not violate
constraints or if a pseudo random real number is less than or equal to η , we swap
their rank order based on the objective function obtained, with the lower one be-
ing assigned a higher rank. Otherwise we swap their ranks based on the constraint
violations, again with the lower constraint violation being assigned a higher rank.
Working our way through the population to be ranked, we continue comparing ad-
jacent members according to Algorithm 11 and swapping ranks. When no change
in rank order occurs, SR terminates.

Algorithm 11: Stochastic Ranking
if v(xk1) = 0 and v(xk2) = 0 or rand(0,1) ≤ η then

rank based on objective function value only
else

rank based on constraint violation only
end if

6.6.3 Revised DEBLP with Stochastic Ranking

DEBLP-SR, as presented in Algorithm 12, is the result of incorporating SR in DE-
BLP. Italics highlight the changes between DEBLP in Algorithm 10 and DEBLP-SR
in Algorithm 12. These are summarised as follows:

1. Evaluation of both the upper level objective and constraint violation for each
member of the parent and child population.

2. Instead of the one to one selection criteria discussed in Section 7.4, we propose
to pool the parent and child population (along with the corresponding objective
values and constraint violations) together as an input into SR.

3. Combining parents and children will lead to a population size of 2π . Hence the
selection process will only retain the top π ranked individuals output by SR to
constitute the population at the next iteration. The remainder are discarded.

In the next section, we apply DEBLP-SR to a examples of BLPPs that are in
fact characterised by the presence of upper level constraints. It will be shown that
DEBLP-SR continues to be a robust meta-heuristic in such applications.

6.7 Applications to Generalised Nash Equilibrium Problems

Game theory [116] is a branch of social science that provides methodologies to study
behaviour when rational agents seek to maximise personal gains in the presence of
others symmetrically doing the same simultaneously. The solution concept of such
games was devised by Nash in [83, 84]. The game attains a Nash Equilibrium (NE)
if no one player can unilaterally improve her payoff given the strategic decisions of
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Algorithm 12: DEBLP with Stochastic Ranking (DEBLP-SR)

1. Randomly generate parent population P of π individuals.
2. Evaluate P and obtain constraint violations using Eq. 6.24
set iteration counter it = 1
3. While stopping criterion not met, do:

For each individual in P it, do:
a) Apply Mutation and Crossover to create a single child from individual.
b) Evaluate child and obtain constraint violations using Eq. 6.24

End For
4. Combine parents and children violations and objectives.
5. Apply stochastic ranking
6. Selection: retain the top π ranked individuals to form new population P it+1

it = it +1
End While

all other players. While establishing that an outcome is not a NE (by establishing
that a player can profitably deviate) is usually not difficult, locating the NE itself is
more challenging. In this section we show how the process of determining NE in
some games can be formulated as a BLPP and illustrate the performance of DEBLP
on some example problems from the literature.

6.7.1 The Generalised Nash Equilibrium Problem

We are concerned with a specific Nash Game known as the Generalised Nash Equi-
librium Problem (GNEP). In the GNEP, the players’ payoffs and their strategies are
continuous (and subsets of the real line) but most critically the GNEP embodies
the distinctive feature that players face constraints depending on the strategies their
opponents choose. This distinctive feature is in contrast to a standard Nash Equi-
librium Problem (NEP) where the utility/payoff/reward the players obtain depend
solely on the decisions they make and their actions are not restricted as a result of
the strategies chosen by others. The ensuing constrained action space in GNEPs
makes them more difficult to resolve than standard NEPs discussed in monographs
such as [116]. As will be demonstrated in this section, the technique here can nev-
ertheless be applied to standard NEPs.

The GNEP under consideration is a single shot10 game with a set Γ of players
indexed by i ∈ {1,2, ...,ρ} and each player can play a strategy xi ∈ Xi which all
players are assumed to announce simultaneously. X is the collective action space

for all players. In a standard NEP, X =
ρ
∏
i=1

Xi, i.e. X is the Cartesian product.

In contrast, in a GNEP, the feasible strategies for player i, i ∈ Γ depend on the
strategies of all other players [4, 39, 53, 112]. We denote the feasible strategy space

10 It is one-off and not played repeatedly in a dynamic sense.



6 A Metaheuristic Framework for Bi-level Programming Problems 175

of each player by the point to set mapping: C i : X−i→ Xi, i ∈Γ that emphasises the
ability of other players to influence the strategies available to player i [39, 51, 112].
The distinction between a conventional Nash game and a GNEP can be viewed as
analogous to the distinction between unconstrained and constrained optimisation.

To give stress to the variables chosen by player i, we sometimes write x=(xi,x−i)
where x−i is the combined strategies of all players in the game excluding that of
player i i.e. x−i = (x1 , ...,x(i−1)

,x
(i+1)

, ...,xρ). Note that the notation(xi,x−i) does not
mean that the components of x are somehow reordered such that xv becomes the
first block. In addition, let φi(x) be the payoff/reward to player i, i∈Γ if x is played.

Definition 2. [112] A combined strategy profile x∗ = (x∗
1
,x∗

2
, ...,x∗ρ) ∈ X is a Gen-

eralised Nash Equilibrium for the game if:

φi(x
∗
i ,x
∗
−i)≥ φi(xi,x

∗
−i),

∀xi ∈ C (x∗−i) , i ∈ Γ
(6.25)

At a Nash Equilibrium no player can benefit (increase individual payoffs) by uni-
laterally deviating from her current chosen strategy. Players are also assumed not to
cooperate and in this situation each is doing the best she can given what her com-
petitors are doing [45, 62, 116]. For a GNEP, the strategy profile x∗ is a Generalised
Nash Equilibrium (GNE) if it is both feasible with respect to the mapping C i and if
it is a maximizer of each player’s utility over the constrained feasible set [51].

6.7.2 Nikaido Isoda Function

The Nikaido Isoda (NI) function in Eq. 6.26 is an important construct much used in
the study of Nash Equilibrium problems [39, 52, 53]. Its interpretation is that each
summand shows the increase in payoff a player will receive by unilaterally deviating
and playing a strategy yi ∈ C (x−i) while all other players play according to x.

Ψ (x,y) =
ρ

∑
1

[φi(yi,x−i)−φi(xi,x−i)] (6.26)

The NI function is always non-negative for any combination of x and y. Further-
more, this function is everywhere non-positive when either x or y is a NE by virtue
of Definition 2 since at a NE no one player should be able to increase their payoff
by unilaterally deviating. This result is summarised in Definition 3.

Definition 3. [53] A vector x∗ ∈X is called a Generalised Nash Equilibrium (GNE)
if Ψ(x,y) = 0.

6.7.3 Solution of the GNEP

Proposition 6.2 establishes the key result that the GNEP can be formulated as a
BLPP.
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Proposition 6.2. The Generalised Nash Equilibrium is the solution to the BLPP in
Eq. 6.27.

min
(x,y)

f (x,y) = (y− x)T (y− x) (6.27a)

subject to xi ∈ C i(x−i) ,∀i ∈ Γ . (6.27b)

where y solves

max
(x,y)

(φ1(y
1,x−1)+ . . .+φρ(y

ρ ,x−ρ)) =

max
(x,y)

n

∑
i=1

[φi(yi,x−i)−φi(xi,x−i)]
(6.28a)

subject to yi ∈ C i(x−i) ,∀i ∈ Γ . (6.28b)

Proof. For a proof of Proposition 6.2, see [112]. ��
The upper level problem (Eq. 6.27a) is a norm minimization problem subject to
strategic variable constraints (Eq. 6.27b). The objective function of the lower level
problem (Eq. 6.28) is exactly the Nikado Isoda function (Eq. 6.26).

Proposition 6.3. The optimal value of the upper level objective in Eq. 6.27a, f (x,y),
is 0 at the Generalised Nash Equilibrium.

Proof. For a proof of Proposition 6.3, see [14, 112]. ��
Proposition 6.3 serves the critical role of being the termination criteria of the DE-
BLP. Although DEBLP and DEBLP-SR are heuristic in nature, Proposition 6.3 en-
ables us to detect that we have found the solution to the GNEP.

6.7.4 Examples

In this section, we present four numerical examples of GNEPs sourced from the
literature. The first case study is in fact a standard NEP and it serves to demonstrate
that the BLPP formulation proposed here can also be applied in this situation. We
then impose a constraint which transforms the standard NEP into a GNEP which
serves as the second example. The third example has origins in pollution abatement
modeling while the last example is an internet switching model from [58].

6.7.4.1 Example 1

Example 1 is a non-linear Cournot-Nash Game with 5 players from [81]. As men-
tioned, this is a standard NEP i.e. where the feasible strategies of each player is un-
constrained. The profit function for player i,i ∈ {1, ...,5}, comprising the difference
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between revenues and production costs, is given by: φi(x)=(5000
1

1.1 (
5
∑

i=1
xi)
−( 1

1.1 ))xi−

ωixi +( αi
αi+1)γi

−1
α j xi

αi+1
αi . The player dependent parameters (ωi, γi and αi) are found

in [81, 87].
The feasible space for this problem is the positive axis since production

cannot be negative. The solution of the NEP is x∗ = [36.9318,41.8175,43.7060,
42.6588,39.1786]ᵀ [50, 81].

6.7.4.2 Example 2

Using the same parameters as in Example 1, and introducing a production constraint
on total output of all players 11 as in [87], Example 1 is transformed into a GNEP.

The feasible space for the resulting GNEP is defined by [87]:

X = {x ∈ R
5|xi ≥ 0 ∀i ∈ {1, ...,5},

5

∑
i=1

xi ≤ 100}

x∗ is [14.050,17.798,20.907,23.111,24.133]ᵀ [54].

6.7.4.3 Example 3

This problem describes an internet switching model with 10 players originally pro-
posed in [58] and also studied in [54]. The cost function for player i, i ∈ {1, . . . ,10}
is given by φi(x) =−( xi

(x1+···+x10)
)(1− (x1+...+x10)

1 ). The feasible space is X = {x ∈
R

10|xi≥ 0.01, i∈ {1, . . . ,10},
10
∑

i=1
xi ≤ 1}. The NNE is x∗i = 0.09, i= {1, ...,10} [53].

6.7.5 Discussion

As highlighted earlier, Proposition 6.3 states that when the upper level objective
(UPO) (cf. Eqn. 6.27a) , f (x,y), in Program U reaches 0, we have successfully
solved the GNEP. Hence this allows us to provide a termination criteria of the
DEBLP-SR algorithm. In all other examples, we have always stopped the DEBLP
after a user specified number of maximum iterations. In practice, we terminate each
run when the UPO attains the value of 1×10−8 or less, which we judge to be suffi-
ciently close to 0.

In all these examples, we used DEBLP-SR i.e. Algorithm 12 with a population
size, π = 50 and allowed a maximum of 250 iterations. Following [99, 101], the
probability factor, η used in SR was set to 0.45. Table 6.7 reports the mean,median
and standard deviations (SD) of the number of function evaluations (NFE) over
the 30 independent runs of DEBLP-SR to meet the convergence criteria (i.e. UPO
attains the value of at least 1× 10−8).

11 One can think of this as simulating a cartel limiting production to keep prices high.
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Table 6.7 Summary of Performance of DEBLP-SR on GNEP Examples

Example 1 2 3 4
mean NFE 3993 7378 2825 10098

median NFE 4075 7325 2850 10025
SD 410 2758 273 1659

Constraint Violation NA 0 0 0

While it is clear that all the examples are easily solved using DEBLP-SR, three
observations are pertinent from Table 6.7. Firstly, comparing Problem 3 and 4 for
example, we can see that as the dimensions increase, the NFE required to meet
the convergence criteria also increase significantly. This is a manifestation of the
so called “curse of dimensionality” [10] which plagues optimisation algorithms in
general and meta-heuristics in particular. Secondly the mean and median NFE re-
quired to solve the GNEP (Example 2) is almost twice that required to solve the NEP
(Example 1). This should not come as a surprise because constrained problems are
known [121] to be harder to solve than unconstrained ones. Finally, the constraint
violation of all examples at termination is 0 as shown in the last row of Table 6.7.
Thus we can conclude that the SR method for handling constraints is effective for
the examples given.

6.8 Summary and Conclusions

6.8.1 Summary

In this chapter, we have outlined a meta-heuristic algorithm DEBLP to solve bi-
level programming problems. These hierarchical optimisation problems are typi-
cally characterised by non convexity and non smoothness. DEBLP is designed to
synergise the well-documented global search capability of Differential Evolution
with the application of robust deterministic optimisation techniques to the lower
level problem. Most importantly, DEBLP is fully consistent with the Stackleberg
framework upon which the BLPP is founded where the leader takes into account the
follower’s decision variables when optimizing his objective and where the follower
treats the leader’s variables as exogenous when solving his problem.

DEBLP was subsequently demonstrated on a number of BLPPs arising from sev-
eral disciplines. These include control problems in Transportation Systems where
we studied the Continuous Optimal Toll Pricing and the Continuous Network De-
sign Problem. In these situations we postulated that the leader/upper level player
was the regulatory agency and the followers were users of the highway network.
The BLPPs from this field were shown to be MPECs as the lower level problem
arises naturally as a Variational Inequality. We also examined examples from Pa-
rameter Estimation Problems, a key step in the development of models in science
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and engineering applications, which could also be formulated as BLPPs. In order
to enable DEBLP to solve BLPPs where the upper level problem was also subject
to general constraints, we integrated the stochastic ranking algorithm from [99] into
DEBLP to produce DEBLP-SR. Stochastic ranking is a constraint handling tech-
nique that seeks to balance the dominance of the objective and constraint violations
in the search process of meta-heuristic algorithms. We demonstrated the operation
of DEBLP-SR on a series of Generalised Nash Equilibrium Problems which could
be formulated as BLPPs characterised by upper level constraints. Developments in
the literature of GNEPs also enabled us to even specify a specific termination crite-
ria for the proposed BLPP and hence provides additional justification for the use of
a meta-heuristic for these problems.

Due to space constraints, we could not illustrate BLPPs where the leader’s deci-
sion variables and/or the follower’s variables were restricted to be discrete or binary.
However there exists a large body of literature of DE being used for such problems,
albeit single level ones [91, 92]. Thus we conjecture the techniques proposed therein
could be integrated into DEBLP to solve such problems as well. Additionally dis-
crete and mixed integer lower level problems can already be solved using established
techniques available in the deterministic optimisation literature [9, 70, 85].

6.8.2 Further Research

In this chapter, we have demonstrated that DEBLP is an effective meta-heuristic for
a variety of BLPPs. Nevertheless there are several topics that still require additional
research before robust methodologies can be developed. The study of some of these
problems is still in its infancy but we argue that meta-heuristic paradigms such as
Differential Evolution can provide a viable alternative solution framework for these.

6.8.2.1 Multiple Optimisation Problems at Lower Level

The BLPP we have formulated assumes the existence of a single optimisation prob-
lem at the lower level. Both DEBLP and DEBLP-SR are unable to handle the sit-
uation of multiple followers i.e. presence of multiple optimisation problems at the
lower level. See e.g. [69, 114] for examples of these. However we have neglected
consideration of such problems in this paper but should be the subject of further
research.

6.8.2.2 Bi-Level Multiobjective Problems

Recall that in our formulation of the BLPP in Eq. 6.1 we assumed the function
mappings: U,L : Rn1 ×R

n2 → R
1. In other words, the objectives in both the up-

per and lower levels are restricted to be scalar. However there are also problems
where the objectives are vectors. Such problems are known as multiobjective (MO)
problems i.e. where the decision maker has multiple, usually conflicting, objectives.
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In such problems the Pareto Optimality criteria is used to identify optimum solu-
tions [30, 90]. One of the major advantages of using population based meta-heuristic
algorithms for MO Problems is that because of their population based structure, they
are able to identify multiple Pareto Optimal solutions in a single run [29].

Two categories of these problems have been discussed in the literature. Firstly
there is the case where only the upper level objective is vector based or secondly
where both the upper and lower level objectives are vector based. For problems
occurring in the first category, advances in meta-heuristics to solve MO problems
(e.g. [30]) could be easily integrated into DEBLP to transform it into an algorithm
able of handle MO-BLPPs of the type described in e.g. [44, 110, 123]. Problems of
the second category are relatively novel in the literature and have only recently been
investigated [31]. Further research should introduce new methodologies to enable
DEBLP to solve problems in this latter category.

6.8.2.3 Multiple Leader Follower Games

In Section 7.5 we provided an example of the COTP which models a highway reg-
ulatory agency optimising the total travel time on the highway system by levying
toll charges. With the trend in recent years towards privatization together with con-
strained governmental budgets, it is quite possible that instead of a welfare maxi-
mizing authority setting the tolls in future, this task could potentially be consigned
to private profit maximising entities. The latter obtain concessions to collect tolls
from users on these private toll roads [36, 119] in return for providing the capital
layout of investments in new road infrastructure. When setting such tolls, these pri-
vate firms could also be in competition with others doing the same on other roads in
the network.

The problem just described is in fact an example of a class of Equilibrium prob-
lems with Equilibrium Constraints (EPEC). In EPECs, the decision variables of
the private firms are constrained by a variational inequality describing equilibrium
in some parametric system [62]. For example in the case of competition between
the private toll road operators just highlighted, the equilibrium constraint is just
Wardrop’s User Equilibrium condition. The study of EPECs has recently been given
greater emphasis by researchers in many disciplines [55, 68, 77, 80, 119, 125].
Though it is still in a period of infancy it has emerged as major area of research
[22, 35, 109] in applied mathematics.

Formally an EPEC is a mathematical program to find an equilibrium point that si-
multaneously solves a set of MPECs where each MPEC is parameterised by decision
variables of other MPECs [125]. Compared to the MPEC, the focus in the EPEC is
shifted away from finding minimum points to finding equilibrium points [78, 79].
Figure 6.4 gives a multi-leader generalization of the BLPP that constitutes a Multi-
leader-follower game [68] where there are now ρ ,ρ > 1 leaders instead.

In this multi-leader generalization of the Stackelberg game researchers have con-
jectured that there could be two possible behaviours of the leaders at the upper level
[78, 88]. At one end, leaders could cooperate which results in a multiobjective
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problem subject to an equilibrium constraint at the lower level [120]. At the other
end, the leaders could act non-cooperatively and play a Nash game amongst them-
selves resulting in a Non Cooperative EPEC (NCEPEC). EPECs are extremely diffi-
cult to solve and the current emphasis has been on the use of nonsmooth methods and
nondifferentiableoptimisation techniques [78, 79]. We believe that meta-heuristic al-
gorithms offer a powerful alternative solution methodology for EPECs in both cases.
In the case when leaders are assumed to cooperate, we have pointed out that because
they operate with populations, population based meta-heuristics are able to identify
multiple Pareto Optimal solutions in a single simulation run. This is key to solving
multiobjective problems. For the NCEPECs, a DE based algorithm exploiting a con-
cept from [71] was proposed and demonstrated on a range of EPECs occurring in
transportation and electricity markets in [62].

Most importantly, whatever solution algorithms are proposed in future, when
searching for an equilibrium amongst the players at the upper level they must con-
tinue to take the reaction of the followers at the lower level into account. This serves
to ensure that proposals are entirely consistent with the Stackleberg paradigm which
remains applicable in EPECs.

Fig. 6.4 Pictoral Representation of an EPEC
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121. Yeniay, Ö.: Penalty function methods for constrained optimization with genetic algo-
rithms. Mathematical and Computational Applications 10(1), 45–56 (2005)

122. Yin, Y.: Genetic Algorithm based approach for bilevel programming models. ASCE
Journal of Transportation Engineering 126(2), 115–120 (2000)

123. Yin, Y.: Multiobjective bilevel optimization for transportation planning and manage-
ment problems. Journal of Advanced Transportation 36(1), 93–105 (2002)

124. Yuchi, M., Kim, J.H.: Grouping-based evolutionary algorithm: seeking balance between
feasible and infeasible individuals of constrained optimization problems. In: Proceed-
ings of the IEEE Congress on Evolutionary Computation, pp. 280–287 (2004)

125. Zhang, X.P.: Overview of electricity market equilibrium problems and market power
analysis. In: Zhang, X.P. (ed.) Restructured Electric Power Systems: Analysis of Elec-
tricity Markets with Equilibrium Models, pp. 99–137. John Wiley, Hoboken (2010)

126. Zhao, Z., Gu, X.: Particle swarm optimization based algorithm for bilevel programming
problems. In: Proceedings of the Sixth IEEE International Conference on Intelligent
Systems Design and Applications, pp. 951–956 (2006)



Chapter 7
Matheuristics and Exact Methods for the
Discrete (r|p)-Centroid Problem

Ekaterina Alekseeva and Yury Kochetov

7.1 Introduction

In the (r|p)-centroid problem, there are two decision makers which we refer to as
a leader and a follower. They compete to serve customers from a given market by
opening a certain number of facilities. The decision makers open facilities in turn.
At first, the leader decides where to locate p facilities taking into account the fol-
lower’s reaction. Later on, the follower opens other r facilities. We assume that
the customers’ preferences among the opened facilities are based only on the dis-
tances to these facilities rather than the quality of service provided by the decision
makers. We consider a binary preference (all or none) model where each customer
chooses the closest opened facility. In case of ties, the leader’s facility is preferred.
The binary model is important from a theoretical point of view and useful for certain
applications where the product can be considered homogeneous and facilities are as-
sumed to be identical. Each customer has a weight (purchasing power or demand).
We assume that the weights are essential, that is goods must be consumed, and each
customer visits one facility to get them. The weight of each customer is fixed and
does not depend on how far from, or close to a facility, the customer is. The leader
and the follower obtain a profit from serving the customer which coincides with the
weight of the customer. Each decision maker maximizes his own profit or market
share. The problem is to define the p facilities which should be opened by the leader
to maximize his market share.

Following Hakimi [22], we call this problem the (r|p)-centroid problem. In the
literature this problem can be found under such names as leader-follower problem,
competitive p-median problem, competitive location model with foresight, or pre-
emptive capture problem.
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Three types of possible facility locations can be considered:

- at the nodes of a graph (discrete case);
- at the nodes and anywhere on the edges of a graph (absolute case);
- anywhere on a plane (continuous case).

In this chapter we consider the discrete case only when all customers and facilities
are located at the nodes of a complete bipartite graph.

We may reagard the discrete (r|p)-centroid problem as a game with two players
(the leader and the follower). They compete with each other. The players have the
same goal which is to catch as large a market share as possible. Each player has
exactly one move. The first player (the leader) moves taking into account that once
he selects his p facilities, the second player (the follower) will select the best pos-
sible r places for his facilities. The payoff to the follower is the loss to the leader.
The discrete (r|p)-centroid problem can be considered as a Stackelberg game. It is
a strategic game in which two players move sequentially. A Stackelberg solution is
a pair (X∗p ,Y ∗r ) where Y ∗r is the optimal strategy of the follower if the leader has p
facilities located at X∗p and X∗p is the optimal preemptive strategy of the leader.

The discrete (r|p)-centroid problem is a one-round discrete Voronoi game (or
Thiessen polygon) [47], when p = r. The Voronoi game is a geometric model for
the competitive facility location problem with two players where each one must
place the same number of facilities on a graph. Each node of a graph is a poten-
tial facility or a customer. Each customer is dominated by the player who owns the
nearest placed facility generating a profit for the player. Each player aims to obtain
the maximum profit. When the follower starts playing after all leader’s p facilities
are placed, the game is called the one-round Voronoi game. Thus, approaches com-
ing from economics or game theory could be applied. Since the problem can be
considered as a game, some questions concerning an equilibrium state arise.

In the voting theory, there is an interesting problem that can be modeled as a
discrete (p|p)-centroid problem. This problem consists in finding a p-Simpson so-
lution, i. e. a set of p facilities, such that the maximum number of customers closer
to another set of p facilities is minimum. For more details, see [8].

In this chapter we present an overview of the recent results for the discrete (r|p)-
centroid problem. It begins with different formulations of the problem and a brief
overview of the related works in Section 7.2. The bi-level mixed integer linear for-
mulation is introduced in Section 7.2.1, the min-max formulation, in Section 7.2.2,
and the single-level mixed integer linear formulation, in Section 7.2.3. The com-
plexity status of the problem is discussed in Section 7.3. The heuristic algorithms are
described in Section 7.4. We present matheuristics based on the p-median problem,
an alternative heuristics, and the hybrid heuristics. We describe the exact approaches
in Section 7.5. The branch-and-cut algorithm and the iterative exact method are pre-
sented in Sections 7.5.1 and 7.5.2, respectively. Finally, we discuss the comparative
computational results in Section 7.6 and conclude with possible further research
directions in Section 7.7.
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7.2 The Problem Statement

In this section we formulate the discrete (r|p)-centroid problem as a bi-level mixed
integer linear program, a min-max problem, and a single-level mixed integer linear
problem with polynomially many variables and exponentially many constraints.

7.2.1 The Bi-level Mixed Integer Linear Formulation

Let I = {1, . . . ,m} be a set of potential facilities locations and J = {1, . . . ,n} be a set
of customers locations. The elements of matrix (di j) define the distances between
each customer j ∈ J and each facility i ∈ I. The components of positive vector (wj)
define the weight of each customer j ∈ J. Let us introduce the following decision
variables:

xi =

{
1 if facility i is opened by the leader,
0, otherwise,

yi =

{
1 if facility i is opened by the follower,
0, otherwise,

z j =

{
1 if customer j is serviced by the leader,
0 if customer j is serviced by the follower.

Denote x = (xi), y = (yi) i ∈ I, and z = (z j) j ∈ J, for short. Now we can define the
set of facilities which allows the follower to capture customer j if the leader uses a
solution x:

I j(x) = {i ∈ I |di j < min
l∈I |xl=1

dl j}, j ∈ J.

Note that we consider conservative customers. It means that if a customer has the
same distances to the closest leader’s and the closest follower’s facilities, he prefers
the leader’s facility. So, the follower never opens a facility at a site where the leader
has opened a facility. Now the discrete (r|p)-centroid problem can be written as a
linear 0–1 bi-level programming model:

max
x ∑

j∈J

wjz
∗
j (7.1)

subject to

∑
i∈I

xi = p, (7.2)

xi ∈ {0,1}, i ∈ I, (7.3)

where z∗ is a component of the optimal solution to the follower’s problem:

max
y, z ∑

j∈J
wj(1− z j) (7.4)
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subject to

∑
i∈I

yi = r, (7.5)

1− z j ≤ ∑
i∈Ij(x)

yi, j ∈ J, (7.6)

xi + yi ≤ 1, i ∈ I, (7.7)

yi,z j ∈ {0,1}, i ∈ I, j ∈ J. (7.8)

The objective function (7.1) defines the market share of the leader. Equation (7.2)
guarantees that the leader opens exactly p facilities. The objective function (7.4)
defines the market share of the follower. Equation (7.5) guarantees that the follower
opens exactly r facilities. Constraints (7.6) determine the values of (z j) by the deci-
sion variables (yi) of the follower. Constraints (7.7) guarantee that each facility can
be opened by at most one decision maker. Actually, these constraints are redundant
due to the definition of set I j(x). It does not make sense for the follower to open
facilities at the same places which the leader has already occupied. Nevertheless,
we use them to reduce the feasible domain of the follower’s problem. Furthermore,
this constraint becomes important in case of curious customers, that is when

I j(x) = {i ∈ I |di j ≤ min
l∈I |xl=1

dl j}, j ∈ J.

In this situation customers choose the facility opened by the second player when-
ever there are several equally distant opened facilities. They prefer a newly opened
facility. However, this case is of no interest since the follower can occupy the same
places where the leader has already opened his own facilities so as to seize the whole
market in case r ≥ p [22].

We can drop the integrality requirements on variables (z j), due to the fact that the
optimal value for the leader’s problem does not change. Thus, formulation (7.1)–
(7.8) can be rewritten as a mixed integer linear bi-level program. The upper level
(7.1)–(7.8) is called the leader’s problem or the (r|p)-centroid. The lower level
(7.4)–(7.8) is called the follower’s problem or the (r|Xp)-medianoid, where Xp is
a set of facilities opened by the leader.

Following [3], let us introduce some definitions which help us understand the
nature of the bi-level problem deeper.

Definition 7.1. The triple (x,y,z) is called a semi-feasible solution to the bi-level
problem (7.1)–(7.8) if and only if x satisfies the constraints (7.2)–(7.3) and the pair
(y,z) satisfies the constraints (7.5)–(7.8).

When we need to consider only x which satisfies constraints (7.2)–(7.3), we will call
it a leader’s solution.

Definition 7.2. The semi-feasible solution (x,y,z) is called a feasible solution to the
bi-level problem (7.1)–(7.8) if and only if the pair (y,z) is an optimal solution to the
follower’s problem (7.4)–(7.8).
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Note that semi-feasible solutions can be found in a polynomial time. To find feasible
solutions, we have to solve the follower’s problem, which is NP-hard in the strong
sense.

For the feasible solution (x,y,z), let us denote the value of the leader’s objective
function as L(x,y,z). Before we define the optimal solution to the leader’s problem,
we should note that the follower’s problem may have several optimal solutions for a
given x. As a result, the leader’s problem turns out to be ill-posed. Thus, we should
distinguish two extreme cases:

• cooperative follower’s behavior (altruistic follower). In case of multiple optimal
solutions, the follower always selects one providing the best objective function
value for the leader.

• non-cooperative follower’s behavior (selfish follower). In this case, the follower
always selects the solution providing the worst objective function value for the
leader.

Definition 7.3. The feasible solution (x,y,z) is called a cooperative solution if and
only if L(x,y,z) ≥ L(x, ȳ, z̄) for each feasible solution (x, ȳ, z̄).

Definition 7.4. The feasible solution (x,y,z) is called a non-cooperative solution if
and only if L(x,y,z) ≤ L(x, ȳ, z̄) for each feasible solution (x, ȳ, z̄).

Once the follower’s behavior is determined, we can give the definition of the optimal
solution to the leader’s problem.

Definition 7.5. The cooperative solution (x∗,y∗,z∗) is called an optimal solution un-
der cooperative follower’s behavior (optimistic solution) if and only if L(x∗,y∗,z∗)≥
L(x,y,z) for each cooperative solution (x,y,z).

Definition 7.6. The non-cooperative solution (x∗,y∗,z∗) is called an optimal solu-
tion under non-cooperative follower’s behavior (pessimistic solution) if and only if
L(x∗,y∗,z∗)≥ L(x,y,z) for each non-cooperative solution (x,y,z).

If the follower’s behavior is unknown and thus cannot be predicted, the bilevel prob-
lem is ill-posed. Considering cooperative and non-cooperative behaviors yields up-
per and lower bounds to the maximal value for the leader, respectively. Note that in
our case the sum of leader and follower objective function values equals ∑ j∈J wj , i.e.
a constant. Thus, each feasible solution (x,y,z) is cooperative and non-cooperative
at the same time, and all feasible solutions for x produce the same leader’s mar-
ket share. Hence, we do not need to distinguish between optimistic and pessimistic
cases. They coincide here and we can define the optimal solution to the leader as
the best feasible solution. In other competitive models, for example, where the sum
of objective functions is not a constant, the follower’s behavior should be defined
properly. Suppose that fi is a fixed cost for opening the facility i and the follower’s
objective function is the following: max(∑ j∈J wj(1− z j)−∑i∈I fiyi). In this case,
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multiple optimal solutions of the follower can provide the leader with different val-
ues. Thus, to find the cooperative and non-cooperative solutions, auxiliary optimiza-
tion problems should be defined, as described in [3, 5].

7.2.2 The Min-Max Formulation

In this section we present the discrete (r|p)-centroid problem as a min-max problem.
Note that the customer j is serviced by the leader if and only if the follower does not
open a facility from the set I j(x), that is z j = ∏i∈Ij (x)(1− yi). Now we can exclude
the variables (z j) and rewrite formulation (7.1)–(7.8) as follows:

max
x ∑

j∈J
wj ∏

i∈Ij (x)

(1− y∗i ) (7.9)

subject to

∑
i∈I

xi = p, (7.10)

xi ∈ {0,1}, i ∈ I, (7.11)

where y∗ is the optimal solution to the follower’s problem:

max
y ∑

j∈J
wj(1− ∏

i∈Ij(x)

(1− yi)) (7.12)

subject to

∑
i∈I

yi = r, (7.13)

yi ∈ {0,1}, i ∈ I. (7.14)

Consider the pseudo–Boolean function P(x,y) =∑ j∈J wj−∑ j∈J wj ∏i∈Ij(x)(1−yi).
Then the discrete (r|p)-centroid problem can be formulated as the following min-
max problem [30]:

min
x

max
y
{P(x,y) |∑

i∈I

xi = p, ∑
i∈I

yi = r, xi,yi ∈ {0,1}, i ∈ I}.

In this formulation we assume that each customer will be served either by the leader
or the follower. In [37] other competitive location models are considered. Suppose
that each customer has a patronizing set of facilities. These sets may arise in dif-
ferent ways. For example, it may be the set of facilities lying within a threshold
distance from a customer. He could be captured by the leader or by the follower if
and only if at least one opened facility belongs to his patronizing set. As a result,
some customers in a feasible solution could be unserved. In this case the problem
cannot be formalized as a min-max problem. We have to consider the cooperative
and non-cooperative solutions, and the definition of an optimal solution should be
accurately done.
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7.2.3 The Single-Level Mixed Integer Linear Formulation

In Section 7.3 we will discuss the complexity status of the problem. Going ahead,
we notice that the discrete (r|p)-centroid problem is ΣP

2 -hard. It means that it is
more difficult than any NP-complete problem. In spite of its complexity status, the
problem admits a single level linear programming formulation with polynomially
many variables and exponentially many constraints. Nevertheless, neither a poly-
nomial formulation nor a formulation where all constraints can be separated in a
polynomial time is possible unless NP = ΣP

2 [38].
Let us introduce new binary variables:

zi j =

{
1 if the facility i is the leader’s nearest facility to the customer j,
0, otherwise,

and a positive variable W which means the leader’s market share. Let F be the set
of all possible follower’s solutions. Each y f ∈F defines a set of r facilities opened
by the follower. The set F is composed of

(m
r

)
solutions. For each y f we define

I j(y
f ) =
{

i ∈ I | di j ≤ min
l∈I,y f

l =1
dl j
}
, j ∈ J

which is a set of the facilities which allows the leader to keep the customer j if the
follower uses the solution y f . Following [38], the discrete (r|p)-centroid problem
can be reformulated as a single–level mixed integer linear problem:

max
W, x, z

W (7.15)

subject to

∑
i∈I

xi = p, (7.16)

0≤ zi j ≤ xi, i ∈ I, j ∈ J, (7.17)

∑
i∈I

zi j = 1, j ∈ J, (7.18)

W ≤∑
j∈J

∑
i∈Ij (y f )

wjzi j , y f ∈F , (7.19)

W ≥ 0, xi,zi j ∈ {0,1}, i ∈ I, j ∈ J. (7.20)

The objective function (7.15) maximizes the total market share of the leader. Con-
straint (7.16) indicates as before that the leader has to choose precisely p facilities.
Constraints (7.17) ensure the consistency between the variables xi and zi j. The set
of constraints (7.18) indicates that exactly one facility of the leader is the nearest
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facility to each customer. Finally, constraints (7.19) ensure that, the follower chooses
the best solution among all feasible ones leaving as small a market share for the
leader as possible. Note that we can remove the integrality constraint for variables
(zi j).

Reformulation (7.15)–(7.20) contains a polynomial number of variables and an
exponential number of constraints, due to the exponential cardinality of the set F .
It is not the only single–level formulation of the problem. In [2, 12] other single–
level formulations are considered. But these formulations are worse due to an ex-
ponentially great number of variables and constraints as far as we know, formula-
tion (7.15)– (7.20) is the best.

7.2.4 The Brief Overview of Related Works

The discrete (r|p)-centroid problem belongs to the competitive facility location
models. This class of problems has aroused interest since the seventies of the last
century due to many private sector applications. In a competitive environment, a
location first deemed desirable may become undesirable because competitors lo-
cate additional facilities to achieve their own objectives. It is necessary, therefore,
to find facility locations that not only improve performance within a short time,
but also protect performance from future competitive encroachment [45]. The study
of competitive location models is rooted in the Hotelling spatial duopoly model of
two vendors on a beach [25] which was the basis of a number of studies on spa-
tial competition. In 1981 Hakimi has proposed the concept of ”centroids” [24]. He
introduced the terms (r|p)-centroid and (r|Xp)-medianoid and formalized the leader-
follower location problem in networks. Hakimi has considered different models of
customers’ preference behavior and type of demands. He was the first to obtain the
complexity results for the basic (r|p)-centroid problem.

The main ingredients of competitive location models are as follows:

• the nature of the space where facilities and customers can be located. Discrete
and continuous cases are considered. In the discrete case potential facility loca-
tions are taken from a finite set or of the nodes of a graph. In the continuous case
they are on a plane or on the edges of a graph.

• the character of the goods and the demand. Essential goods must be consumed
and customers visit one or more facilities to get them. Each customer satisfies
his purchasing power entirely. Inessential goods are dispensable and customers
may decide not to visit any facility if they consider the travel distance too long.
Essential and inessential goods correspond to inelastic and elastic demand, re-
spectively.

• the interpretation of matrix elements (di j). They might be interpreted not only as
distances, but as any kind of preferences for customers. For example, a customer
may prefer a facility with a minimal traveling and waiting time, or with maximum
known brand name rather than with a minimal distance. In [48] facility location
models with general customers’ preferences are studied. However, we preserve
the distances for simplicity.
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• the customers’ preference behavior. In binary preference behavior each customer
patronizes one closest facility among all those opened and satisfies his demand
entirely. In partially binary preference behavior each customer satisfies his de-
mand from several opened facilities. He may select from time to time either the
leader’s or the follower’s facilities, but the percentages of times when he chooses
the leader’s or the follower’s are inversely proportional to some functions of the
distances. In the models with proportional preferences each customer patronizes
all opened facilities with probabilities that are inversely proportional to the func-
tion of the distances to (p+ r) opened facilities.

• the various objective functions can be considered:

- each player wants to maximize his own market share;
- each player wants to minimize the competitors’ market share;
- a player wants to maximize the difference between his market share and the

competitors’ market share;
- a player wants to insure that his market share is not less than the competitor’s

one.

If the customer’s demand is to be totally satisfied by the players, then the total
demand is distributed among the competitors and these objective functions are
similar. Otherwise, we have got different models [37].

In 1984 Ghosh and Craig [19] considered the competitive location model of re-
tail convenience stores on a certain planning horizon. They assumed that the total
consumer expenditure is affected by the distance separating the consumer from that
store. That is, demand is elastic with respect to distance. Each consumer allots a typ-
ical budget for expenditure on the class of good sold by convenient stores. However,
if the nearest convenient store is relatively inaccessible, the consumer may obtain
the product at alternative types of stores or completely forgo it on some occasions. A
consumer who lives far away from a fast food outlet, for example, may occasionally
forgo consumption.

In 1994 Serra and ReVell [42] considered competitive models with uncertainty in
the information about weights of customers and the number of facilities opened by
the follower. They have started their investigation from the basic Maximum Capture
problem. In this problem the leader wants to enter a market and obtain the maximum
capture given the locations of the follower. Then they gradually extended this prob-
lem relaxing their assumptions about equal weights of customers, the follower’s
reaction to the leader’s entrance, and the fixed number of competitors’ locations.
They considered binary customers’ preference behavior and inelastic demand.

An exhaustive review of recent developments in the field of sequential competi-
tive location problems with a focus on the network problems can be found in [31].
We concentrate on the discrete (r|p)-centroid problem with essential goods and bi-
nary customers’ preference behavior.
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7.3 Complexity Status

In this section we discuss the complexity of the discrete (r|p)-centroid problem.
Hansen and Labbé have developed a polynomial time algorithm for finding the
(1|1)-centroid of a network. However, multiple competitive location problems are
much harder than their counterparts in a single competitive location. The previously
obtained results demonstrate that these problems are extremely hard. In [23] Hakimi
has proved that to locate r follower facilities optimally under one opened leader’s
facility is an NP-hard problem. Furthermore, Hakimi has proved that the (r|Xp)-
medianoid problem is NP-hard on a network. In [15] Davydov et al. have shown
that even under Euclidean distances between facilities and customers, the (r|Xp)-
medianoid problem is NP-hard in the strong sense. It means that finding a feasible
solution to the discrete (r|p)-centroid problem in this case is a difficult problem.
However, there is a polynomial case on a tree network considered in [33].

Various complexity results have been obtained by Spoerhase and Wirth in [40,
43]. They have investigated the complexity status of the problem on general graphs
and on special graph structures, such as trees, paths, spider graphs, and pathwidth
bounded graphs. They have developed an O(pm4) polynomial algorithm on a m-
node path. However, they have proved that the discrete (r|p)-centroid on a spider
graph, a tree where only one node has a degree larger than 2 is NP-hard. In terms of
approximability, they have showed in [40] that the discrete (r|Xp)-medianoid prob-
lem is approximable within e

(e−1) but not within e
(e−1) − ε for any ε > 0 unless

P=NP. They studied the approximability of the discrete (r|p)-centroid problem. It
has turned out that this problem is essentially not approximable at all unless P=NP,
that is the problem cannot be approximated within m1−ε for any ε > 0 unless P
= NP. In particular, this holds for any fixed r ≥ 1. Roughly speaking, there is no
approximation algorithm for this problem with a reasonable worst case behavior.

Spoerhase and Wirth have rightly noticed that investigating a complexity status
is not only a theoretical aspect of any research. This question has some practical
implications. The knowledge that a problem is NP-complete, allows ones to apply
various heuristic approaches. Many heuristics are based on the fact that the objective
function of the underlying problem is polynomially computable. This concerns, for
example, the greedy strategy as well as many metaheuristics such as hill climbing,
tabu search, simulated annealing, genetic algorithms and others. For the discrete
(r|p)-centroid, in order to calculate the leader’s objective function, we need to solve
the (r|Xp)-medianoid problem which is NP-hard in the strong sense. Hence, we
could not immediately apply these heuristic approaches. Thus, the bi-level methods
which solve heuristically the leader’s problem and solve heuristically the follower’s
problem to evaluate the leader’s solutions are worth developing. Unfortunately, such
bi-level metaheuristics can find only semi-feasible solutions. They do not solve the
follower’s problem exactly. But the hybridization of heuristics to the upper level
with exact approaches to the lower level allows one to find optimal or near optimal
feasible solutions. Below we will describe some of these hybrid methods for the
centroid problem.
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To investigate the computational complexity of the bilevel problems use is made
of a special class ΣP

2 . This class is a part of the polynomial time hierarchy and con-
tains all decision problems decidable in a polynomial time by a non-deterministic
Turing machine with access to an oracle for NP. In particular, this class contains de-
cision problems which can be described using a formula of the form ∃x∀yφ , where
φ is a quantifier-free formula. It is widely assumed that ΣP

2 is a proper superset of
NP. Hence, the problems from this class turn out to be even more complex than the
well-known NP-complete decision problems.

It is known [35] that the corresponding decision version of the discrete (r|p)-
centroid is ΣP

2 -complete. Moreover, this problem remains ΣP
2 -hard even in the case

of Euclidean distances between customers and facilities [15]. Thus, it is substan-
tially harder than the (r|Xp)-medianoid problem. Table 7.1 summarizes some com-
plexity results concerning the discrete (r|p)-centroid problem.

Table 7.1 Complexity of the discrete (r|p)-centroid problem. Facilities and customers are
located at nodes of a graph, binary choice, essential demand

Problem Complexity status Author (year)

(r|X1)-medianoid NP-hard on a network Hakimi (1983)

(r|Xp)-medianoid NP-hard on a network Hakimi (1983)
NP-hard in the strong sense Davydov et al. (2013)
even in the case of Euclidean distances
O(m2r) polynomial algorithm Megiddo et al. (1983)
on a tree network

(1|1)-centroid polynomial solvable on a network Hansen and Labbé (1988)

(1|p)-centroid NP-hard on a general networks Hakimi (1983)
O(m2(logm)2 log∑w( j)) on a tree Spoerhase and Wirth (2009)
NP-hard on pathwidth bounded graph Spoerhase and Wirth (2009)

(r|p)-centroid polynomial solvable on paths Spoerhase (2010)
NP-hard on a spider Spoerhase (2010)
ΣP

2 -complete on a graph Noltemeier et al. (2007)
ΣP

2 -hard in the case of Euclidean distances Davydov et al. (2013)

7.4 Heuristics for the Discrete (r|p)-Centroid Problem

Due to the combinatorial nature of the discrete (r|p)-centroid problems some ap-
proaches based on enumeration ideas have been proposed [12, 19]. Nevertheless,
due to the laboriousness of such approaches it is worth developing heuristic algo-
rithms. In our case of solving a bi-level problem, pure heuristics could produce only
good quality semi-feasible solutions without proving their feasibility. For this rea-
son matheuristics, which integrate heuristics for the upper level and mathematical
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programming tools for the lower level, are a balanced approach to tackle the bi-
level problem. We describe the developed heuristic approaches in this section and
the exacts methods in the next one.

In [42] Serra and ReVelle have suggested two heuristic algorithms based on so-
called one-opt heuristics for the leader’s problem. Algorithms are distinguished by
the approaches for solving the follower’s problem. It can be solved using integer
programming or the one-opt heuristics which is applied to the leader’s problem as
well. In essence, the one-opt heuristics is a local improvement algorithm under the
swap neighborhood. This heuristics is very efficient in terms of running time but it
does not guarantee optimality for the follower’s problem. Thus, it produces semi-
feasible solutions only.

In [4] Benati and Laporte have solved the discrete (r|p)-centroid problem by
tabu search. They have developed a bi-level tabu search algorithm as it combines
tabu search for the (r|Xp)-medianoid problem within tabu search for the centroid
problem. They have built a greedy procedure in tabu search for (r|Xp)-medianoid
based on the properties of submodular (r|Xp)-medianoid objective function. The
algorithm works with semi-feasible solutions; however, it can find optimal solutions
for relatively small test instances of the size m = n = 15, p,r ∈ {2,3}.

In [11] Campos-Rodrı́guez et al. have proposed a particle swarm optimization
(PSO) procedure with two swarms. It is an evolutive optimization technique based
on the social behaviour in Nature. Originally, it was developed for the continuous
problems. In [10] an application of PSO with two swarms has been shown for solv-
ing the (r|p)-centroid problem on the plane. The authors have adapted Jumping Par-
ticle Swarm Optimization for the discrete bi-level problem. Semi-feasible solutions
are modeled as members of a swarm which moves in the solution space influenced
by the inertia effect and the attraction exerted by the best positioned particles in the
swarm. The algorithm finds semi-feasible solutions to the instances with m= n= 25,
p = 3, and r = 2 .

Below we describe the most prominent matheuristics which combine some
heuristical strategies for the upper level with mathematical programming tools for
the lower level of the problem.

7.4.1 Median Heuristics

The first and simplest approach arising naturally to tackle the discrete (r|p)-centroid
problem is based on the classical p-median problem [29, 34]. In [41] this idea has
already been used to create an initial solution. The approach consists of two steps.
At the first step, the classical p-median problem is optimally solved by a branch-
and-bound algorithm via, for example, CPLEX software. The leader opens facilities
according to the optimal p-median solution. At the second step, the follower’s prob-
lem is solved by a branch-and-bound algorithm in order to get a feasible solution to
the bi-level problem (7.1)–(7.8).

In the p-median problem the leader opens facilities to minimize the total distance
between customers and his facilities ignoring the follower. He wishes to service
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all customers. To formulate the p-median problem, let us introduce the following
additional binary variables:

xi j =

{
1 if the customer j is serviced from the facility i
0, otherwise.

Then the well-known p-median problem is the following:

min∑
i∈I

∑
j∈J

wjdi jxi j (7.21)

subject to

∑
i∈I

xi j = 1, j ∈ J, (7.22)

xi ≥ xi j, i ∈ I, j ∈ J, (7.23)

∑
i∈I

xi = p, (7.24)

xi,xi j ∈ {0,1}, i ∈ I, j ∈ J. (7.25)

Fig. 7.1 Optimal p-median solution

Fig. 7.2 Feasible solution based on the p-median strategy
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Fig. 7.1–7.2 show the structure of the feasible solution obtained by the this approach.
We have carried out experiments on the instances with 100 potential facilities loca-
tions and customers chosen randomly on a 7000×7000 square, I = J, p = r = 10,
di j is the Euclidean distance between the customer j and the facility location i, and
wj = 1 for all j ∈ J.

Fig. 7.1 shows the optimal solution to the p-median problem. The black circles
mean the facilities which the leader opens according to the p-median solution. This
strategy forces the leader to open his own facilities as closer to customers as pos-
sible. Since here the follower is absent, all the customers are served by the leader.
Fig. 7.2 shows the corresponding feasible solution to the centroid problem. An in-
teresting observation concerns the follower’s reaction, namely, the places where he
locates his facilities to catch as many customers as possible. We can notice that in
the central areas of the square, where the customers’ density is high, the follower
opens two facilities in the close vicinity of the leader’s facility. He attacks the most
profitable leader’s facilities from two sides. In the distant areas of the square the fol-
lower opens either one facility near the leader or none. We encircle only customers
served by the leader, the rest of the customers are served by the follower. Each group
of customers corresponds to one facility opened by the leader. The feasible solution
based on the p-median strategy delivers 41 customers for the leader in this instance.

Ignoring the follower is the weakness of the p-median strategy. Opening the p
median facilities, the leader does not take into account that he will definitely lose
some customers when the follower appears. Thus, the second approach is similar to
the previous one but it is more sophisticated. The leader anticipates that the follower
will react to his decision. The leader finds more facilities than he needs supposing
that the follower will use the rest of them. More precisely, at the first step, the (p+r)-
median problem is solved, that is problem (7.21)–(7.23), (7.25) with

∑
i∈I

xi = p+ r, (7.26)

instead of constrain (7.24). At the second step, the leader opens those p facilities
among (p+ r) facilities which catch the largest market share. At the third step, the
follower’s problem is solved exactly and the market is divided between the leader
and the follower.

Both approaches produce feasible solutions and give the lower bound to the max-
imal leader’s market share. But they have a weakness as they do not consider the ra-
tionality in the follower’s reaction. According to these approaches, the leader opens
his own facilities following his only goal: to minimize the total distance in servicing
all customers. When the follower comes, he will try to take over the customers with
the largest market share.

Fig. 7.3 presents an optimal solution to the (p+ r)-median problem or a semi-
feasible solution to the (r|p)-centroid problem. We draw the median facilities as
black circles marked L. According to the (p+ r)-median strategy, the leader opens
facilities in circles with the mark L. We can see that 65 customers are served by
the leader. But in the corresponding feasible solution, the follower does not stay at
the black circles. Fig. 7.4 shows the feasible solution obtained by this strategy. We
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can observe that the follower attacks the leader’s facilities and the (p+ r)-median
strategy delivers only 33 customers for the leader.

In Fig. 7.5 we draw the optimal solution to the (r|p)-centroid problem. The
leader’s market share is 50 customers against 33 customers in the previous case. Fur-
thermore, the optimal locations differ from the median solutions significantly. Com-
paring the feasible solutions obtained by the median strategies in Fig. 7.2 and 7.4,
we can notice that the second strategy provides the leader’s market share less than
the first one.

7.4.2 Alternative Heuristics

In the third approach we try to use the optimal follower’s solution to improve the
leader’s solution. This heuristics is an iterative process. It starts from an arbitrary
feasible leader solution. Then, given a set of leader’s locations, the follower’s prob-
lem is solved. Once that is done, and knowing the follower’s facilities located at Yr

the leader tries to reoptimize his solution by solving the (p|Yr)-medianoid problem.
This process is repeated until some stopping criterion is satisfied. In other words,

Fig. 7.3 Semi-feasible solution based on the (p+ r)-median strategy

Fig. 7.4 Feasible solution based on the (p+ r)-median strategy
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both players alternately solve the medianoid problems. The best found leader’s so-
lution is the result of the heuristics. Originally, it has been studied for the centroid
problem in the Euclidean plane [6]. We adopt it for the discrete case. This heuristics
is schematically presented in Fig. 7.6.

The idea of this approach comes from the best response strategy for finding the
Nash equilibrium. Under the assumption that the players have equal rights, this alter-
native optimization process may lead to the Nash equilibrium. As we have observed
in our computational experiments, Nash equilibrium may not exist. Nevertheless,
the alternative heuristics finds a feasible solution to the bi-level problem at each
iteration. After some iterations of the alternative heuristics a cycle is revealed. By
a cycle we mean a set of leader’s solutions obtained since a once found leader’s
solution appears again. We can stop the alternative heuristics as soon as a cycle is
revealed. The cycle existence means that it is useless to increase the total number
of iterations. We should restart the alternative heuristics from another point as the
cardinality of cycles can be different for the same instance depending on the initial
leader’s solution.

Fig. 7.7 shows the typical behavior of the alternative heuristics which we ob-
served in previously mentioned test instances. The computational results show that
the length of cycles can be quite large. It varies from 10 to 5000 solutions depend-
ing on the values of p and r. For the instance presented in Fig. 7.7 the length of
a cycle is 10 solutions. We can compare the best found objective value with the

Fig. 7.5 Optimal solution

1 Generate an initial leader’s solution.
2 Repeat until the stopping condition is met:

2.1 Find the best follower’s response to the leader’s solution.
2.2 Find the best leader’s response to the follower’s solution.

3 Return the best found leader’s solution.

Fig. 7.6 Alternative heuristics
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results obtained by the p-median heuristics (dashed line), and the optimal value
(horizontal line). As we can see, the alternative heuristics finds solutions better than
the p-median heuristics but it still does not find the optimal solution. Although the
alternative heuristics finds good feasible solutions, it is a time consuming procedure
due to the necessity of solving the medianoid problem optimally at each step.

7.4.3 Hybrid Heuristics

The fourth strategy, which seems to be the most promising, is to solve prob-
lem (7.1)–(7.8) for each element of the randomized neighborhood by hybrid algo-
rithms. Following [32] by hybrid approaches we mean algorithms that combine the
use of exact techniques with metaheuristic frameworks. We suggest using a meta-
heuristic framework based on stochastic tabu search on the upper level and linear
programming by the branch-and-bound method on the lower one. The fundamental
ideas of tabu search have been proposed by Glover [21] for single–level combinato-
rial problems. The tabu search based algorithm uses the information on the search
history to force local search procedures to overcome local optimality. The local
search procedure focuses on the binary leader’s variables (xi). The basic attribute
of any heuristics based on local search procedures is a neighborhood. We adopt the
well-known swap neighborhood. It contains all the leader solutions which can be
obtained from a current solution by closing one leader’s facility and opening an-
other one. The size of the neighborhood is also a crucial attribute and should be
tuned. In our case the size of the swap neighborhood is p(m− p). As exploring the
entire neighborhood might be time-consuming, we use a randomization procedure,
which independently includes each element of the swap neighborhood with a fixed
probability q in the randomized neighborhood (denoted Nq).

To prevent the local search from coming back to the previously visited solutions
and cycling, there is a tabu list. This list contains the components of the leader’s
solutions, namely the pairs of swapping leader’s facilities, which have been changed
during the move to the best neighboring solution. They are stored in the list for a
certain number of iterations. The number of elements in the tabu list may be fixed

Fig. 7.7 Alternative heuristics’s behavior
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or changed from time to time at random for the diversification of the search process.
All the neighboring leader’s solutions with components from the current tabu list
are in a Tabu set.

Fig. 7.8 shows the general framework of our hybrid algorithm. There are many
strategies of creating an initial leader solution at Step 1. Any previously described
heuristics can be used for that. Recall that in order to find the best neighbor we have
to solve the follower’s problem (7.4)–(7.8) and compute the objective function value
for each element of the neighborhood. It is a time-consuming procedure. To reduce
the running time, in addition to the randomization of the neighborhood, we use the
first improvement pivoting rule and the linear programming relaxation to estimate
the neighboring solutions. It allows us to get an upper bound for the follower’s
market share and consequently, a lower bound for the leader’s market share. Thus,
exploring the neighborhood takes a polynomial time at Step 2.2.

Once the best neighboring solution is found, we solve the follower’s problem
exactly and calculate the leader’s market share. Then we update the tabu list by
including a new pair of swapping leader’s facilities and removing the oldest one.
We use the total number of iterations as a stopping criterion.

Table 7.2 shows the comparative results of the lower bounds obtained by four
previously described heuristics. As expected, the hybrid algorithm demonstrates the
best results for a series of instances. Moreover, the lower bounds obtained by this
algorithm coincide with the optimal values [38].

Note that the hybrid algorithm can be modified easily at some points. To estimate
neighboring solutions at Step 2.2 other approaches can be used. In [14] Davydov has
suggested a modification of the hybrid algorithm. It differs from Fig. 7.8 in Step 2.2
and concerns with the involvement of subgradient optimization. The Lagrangian
relaxation technique has been applied to evaluate the leader solutions. According
to reported computational results this algorithm finds optimal solutions with high

1 Generate an initial feasible solution, create an empty tabu list.
2 Repeat

2.1 generate the randomized neighborhood Nq;
2.2 if Nq\Tabu 
= /0 then

find the neighbor from Nq\Tabu provided the best leader’s lower bound by
solving

the linear programming relaxation for the follower’s problem
else go to Step 2.1;

2.3 move to the best neighboring solution;
2.4 solve the follower’s problem exactly to compute the leader’s market share;
2.5 update the tabu list

3 until the stopping condition is met.
4 Return the best found solution.

Fig. 7.8 Hybrid algorithm: stochastic tabu search with linear programming
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Table 7.2 The lower bounds. m = n = 100, p = r = 10, w j = 1, j ∈ J

Instance p-median (p+ r)-median Alternative heuris-
tics

Hybrid algorithm

1 41 31 49 50
2 41 36 45 49
3 46 41 44 48
4 41 39 45 49
5 48 40 47 48
6 42 37 46 47
7 49 37 48 51
8 42 37 44 48
9 47 35 46 49
10 46 33 47 49

frequency. It has been shown that the algorithm generates a Markov chain on a fi-
nite set of outcomes. This chain is irreducible and non-periodic under the proper
restrictions on the length of the tabu list. These properties guarantee that the algo-
rithm can reach an optimal solution from an arbitrary starting point. Furthermore,
other states of the art of heuristics, such as variable neighborhood search [27], ge-
netic algorithm [16], artificial immune systems algorithm [7], particle swarm opti-
mization [11] etc. can be adopted instead of the stochastic tabu search for the upper
level and / or instead of the linear programming for the lower level. The choice of
an appropriate heuristics is not clear. Every time it constitutes an interesting line of
research. In [2] a memetic matheuristics based on an exact solution of the follower’s
problem is suggested.

7.5 Exact Methods

Some exact methods have been proposed for the discrete (r|p)-centroid problem.
Table 7.3 summarizes them. In [19] Ghosh and Craig have explored a competitive
location model with elastic demand, with respect to distance, and given the length
of the planning horizon. As their model is not a constant sum game, they have de-
signed an enumerative search algorithm with simple heuristic rules to improve effi-
ciency and reduce the computational burden. They have also used myopic solution
ideas, based on the p-median problem to create an initial leader’s solution. This ex-
act approach could be used for our model, but as it does not take into account the
specificity of the (r|p)-centroid, it is not efficient in our case.

In [22] Hakimi has noticed that the (1,1)-centroid on a tree is equivalent to the
1-median which can be determined in linear time [18] and on a general graph (1,1)-
centroid can be found in polynomial time [9, 26]. In [43] Spoerhase and Wirth have
solved the discrete (r|p)-centroid on a path and the discrete (1|p)-centroid on a tree
in a polynomial time.
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Table 7.3 Exact approaches to the discrete (r|p)-centroid problem. Facilities and customers
are located at nodes of a graph, demand is essential

Authors (year) Algorithms The largest size of solved in-
stances

Ghosh and Craig
(1984)

Enumerative search method m = 21, n = 48, p≤ 4, r ≤ 3

Campos-Rodrı́guez and
Moreno-Pérez (2010)

Partially enumerative method m = 50, n = 100, p = r ∈ {2,4}

Alekseeva et al. (2010) Iterative exact method m = n = 100, p = r ≤ 5
Roboredo and Pessoa
(2012)

The branch-and-cut method m = n = 100, p = r ≤ 15

In [12] Campos-Rodrı́guez et al. have developed a partially enumerative method
for general graphs. They use the single–level integer linear programming reformula-
tion for the discrete (r|p)-centroid problem with an exponential number constraints
and variables. At each iteration of this approach, a small subfamily of good fol-
lower’s solutions is created. The method stops when all leader’s solutions have been
examined. The authors avoid full enumeration by organizing a special elimination
process. They have solved the instances where customers and facilities are randomly
distributed on a (50× 50) grid graph. The authors report that the average computa-
tional time for solving the instances with 20 potential facilities, 30 customers, p= 4,
r = 2 was about 50 minutes, while larger instances consumed more than 2 hours on
the average.

To the best of our knowledge, two the most successful and exact approaches have
been developed in [2] and [38]. These approaches have some similarities, but they
use different ideas. Both of them use the single-level reformulation. Due to the ex-
ponential size of that reformulation, these methods operate with a small subfamily
F instead of a full family F . The iterative exact method from [2] uses matheuristics
to find an optimal subfamily by enlarging the subfamily at each iteration, whereas,
the branch-and-cut method from [38] uses the upper bound obtained by linear pro-
gramming relaxation for the leader’s problem with a subfamily F . To enlarge F , a
special separation problem is built in [38] and solved by a greedy procedure or IP
optimization solver depending on the size of the initial problem.

Originally, a single-level reformulation with an exponential number of constraints
and variables was presented in [8]. At that time it was the first single–level reformu-
lation for the discrete (r|p)-centroid problem. In [2] another reformulation with an
exponential number of constraints and variables was presented. Later on, a new, im-
proved reformulation (7.15)–(7.20) with an exponential number of constraints and
polynomially many variables is proposed in [38]. An ability for improving the itera-
tive exact method has occurred. Also, an original contribution of [38] is strengthened
inequalities, which makes it possible to improve both exact approaches. Below we
describe in some details these exact methods taking account of the improvements
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completed for the iterative exact method from [2]. In Section 7.6 we present compar-
ative computational results for these methods.

7.5.1 The Branch-and-Cut Method

In [38] Roboredo and Pessoa have recently developed a branch-and-cut method. To
set forth its key aspects, let us go back to reformulation (7.15)–(7.20). This program
has an exponential number of constraints due to the exponential cardinality of F ,
which contains all possible follower’s solutions, and polynomially many variables.
Since the number of variables xi is smaller than that of zi j, the branch is performed
over the xi variables. To produce the upper bound, the linear programming relaxation
of the single-level reformulation is solved. But due to the exponential number of
constraints it is necessary to solve a separation problem associated with (7.19) in
order to include only the necessary constraints into the reformulation. To improve
the formulation, a family of strengthened valid inequalities has been suggested.

The main idea of these inequalities is based on considering other follower’s so-
lutions, in addition to y f when we compute the upper bound for W in the cases
where the leader locates one facility opened in y f . To this end, we define a function
H : y f → I that gives an alternative place for each facility opened by the follower to
be used if the original place has already been used by the leader. Then, in addition
to the follower’s solution y f , we consider the solutions that replace some facilities i
such that y f

i = 1, by H(i). Now the new family of inequalities is as follows:

W ≤∑
j∈J

∑
i∈Ij (y f )∪Ĩ j (y f )

wjzi j, y f ∈ F, (7.27)

where
I j(y

f ) =
{

i ∈ I | y f
i = 0 and di j ≤min

k∈I
(dk j|y f

k = 1)
}
,

Ĩ j(y
f ) =
{

i ∈ I | y f
i = 1 and di j ≤min

{
min
k∈I

(dk j|y f
k = 1),dH(i) j

}}
, j ∈ J.

These sets contain the leader’s facilities which allow the leader to keep customer j
when the follower uses the solution y f and wants to open some facilities at the same
places where the leader has already opened his own facilities.

For finding some violated cuts, Roboredo and Pessoa have defined the separation
problem. Given a fractional solution (W̄ , x̄, z̄) that satisfies (7.16)–(7.18), and some
of the constraints (7.27), the separation problem is to find the best follower’s solu-
tion y f ∈F and a corresponding function H : y f → I that minimize the number of
customers caught by the leader, that is they minimize [38]:

∑
j∈J

wj ∑
i∈I|di j≤dk�j j

z̄i j− ∑
j∈J|dH(k�j ) j<dk�j j

w j z̄k�j j, (7.28)
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where k�j is the number of the closest follower’s facility in solution y f for the cus-
tomer j, that is k�j = argmin{k∈I|y f

k=1}dk j.

The separation problem can be written as IP formulation. Let us introduce the
binary variables:

sk =

{
1 if yk = 1 and y ∈ F,
0, otherwise,

t jk =

{
1 if yk = 1,y ∈ F and k is the closest facility to the customer j,
0, otherwise,

t ′jk =
{

1 if the closest facility k to the customer j is situated farther than H(k),
0, otherwise,

and

hkl =

{
1 if H(k) = l,
0, otherwise.

The separation problem is as follows:

min∑
j∈J

∑
k∈I

(wj ∑
i∈I|di j≤dk j

z̄i j)t jk−∑
j∈J

∑
k∈I

(wjz̄k j)t
′
jk, (7.29)

subject to

∑
k∈I

sk = r, (7.30)

t jk ≤ sk, j ∈ J,k ∈ I, (7.31)

∑
k∈I

t jk = 1, j ∈ J, (7.32)

t ′jk ≤ t jk, j ∈ J,k ∈ I, (7.33)

t ′jk ≤ ∑
l∈I|dk j>dl j

hkl , j ∈ J,k ∈ I, (7.34)

∑
l∈I

hkl = sk, k ∈ I, (7.35)

sk, t jk, t
′
jk,hkl ∈ {0,1}, k ∈ I, j ∈ J, l ∈ I. (7.36)

The value of the objective function (7.29) is equivalent to the sum (7.28). Con-
straint (7.30) ensures that the follower has exactly r facilities. Constraints (7.31) en-
sure the consistency between the variables t jk and sk. Constraints (7.32) ensure that,
for each customer j, there is only one facility k, such that yk = 1, closest to this cus-
tomer. Constraints (7.33) and (7.34) ensure the consistency between the variables t ′jk
and t jk and between the variables t ′jk and hkl , respectively. Finally, constraints (7.35)
ensure that for each customer j, if yk = 1 then there is only one facility l such that
H(k) = l.

This problem can be solved exactly by the IP optimization solver. To avoid inte-
ger programming optimization, the authors have proposed a greedy heuristics. The
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heuristics first greedily constructs the solution y f by choosing r facilities one at a
time as follows. At each iteration, we choose a facility that causes a minimum in-
crease in the value of the positive terms of (7.28). Next, for each facility i such that
y f

i = 1, we choose H(i) to maximize the value of the negative terms of (7.28).
The entire exact method is the branch-and-cut, where the authors apply the sepa-

ration procedures described above to get the upper bound and use the lower bounds
obtained in [2] and [14]. This method solves small instances on G50×50 significantly
faster than the other previously developed approaches. It also allows one to solve
the large instances with m = n = 100 and p = r ∈ {5,10,15} from [1].

7.5.2 An Iterative Exact Method

Here we describe another exact approach based on the same single-level reformu-
lation presented in Section 7.2.3. We present an improved version of the iterative
exact method developed in [2]. The improvement results from using a formulation
with a polynomial number of variables and strengthened inequalities introduced by
Roboredo and Pessoa.

Let us go back again to reformulation (7.15)–(7.20). Note, that if we take any
subset F of F and solve problem (7.15)–(7.20) with F instead of F , we get an
upper bound W (F) to the leader’s market share. This problem is NP-hard even when
the subset F contains only two follower’s solutions. It can be shown by reduction
of the well-known set partitioning problem [20]. We do not give the proof of this
statement here so as not to distract the reader’s attention from the exact method.

The arbitrary feasible solution obtained by the matheuristics described above
produces a lower bound. The main idea of the iterative exact method is to find a
subfamily F so that the corresponded upper bound coincides with the lower bound.
It would mean that the optimal solution is found. Fig. 7.9 presents the general frame-
work of the method.

1 Choose an initial subfamily F .
2 Solve problem (7.15)–(7.20) with F instead of F exactly and find

the leader’s solution x(F) and the upper bound W (F).
3 Solve the follower’s problem exactly, find the follower’s solution

y(F), and calculate LB(F).
4 If W (F) = LB(F) then STOP.
5 Include the solution y(F) into the subfamily F and go to Step 2.

Fig. 7.9 An iterative exact method

It is easy to make sure that the iterative exact method presented in 7.9 is exact
and finite. Indeed, assume that we solve the follower’s problem at Step 3 and find
y(F), but y(F) has already belonged to F . From (7.19) we have
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LB(F) = ∑
j∈J

wjz
∗
j (F)≥W (F).

Thus, LB(F) =W (F) and x(F) is the optimal solution to the bi-level problem. The
method is finite because |F | ≤ (mr

)
.

Since the cardinality of F is increased as the number of iterations grows, Step
2 becomes the most time-consuming. We have to solve exactly a large scale opti-
mization problem. If we use an IP optimization solver, we get W (F) and x(F), but
it spends a lot of time to prove its optimality. Actually, we need a solution only.
Therefore, we may reduce the running time if we replace problem (7.15)–(7.20) by
a feasibility problem.

Denote the optimum for the bi-level problem (7.1)–(7.8) as W ∗ and consider the
following feasibility problem:

W ≥W ∗, (7.37)

W ≤∑
j∈J

∑
i∈Ij (y f )∪Ĩ j (y f )

wjzi j, y f ∈ F, (7.38)

∑
i∈I

xi = p, (7.39)

zi j ≤ xi, i ∈ I, j ∈ J, (7.40)

∑
i∈I

zi j = 1, j ∈ J, (7.41)

W ≥ 0,xi,zi j ∈ {0,1}, i ∈ I, j ∈ J. (7.42)

If we have a feasible solution x(F) to this system, we include y(F) into the subset
F and repeat the calculations. Otherwise, we can stop the search with the appro-
priate subfamily F . The feasibility problem is easier than the optimization one. We
do not need to prove the optimality. We can apply IP solvers with a convenient
objective function or metaheuristics. To cut down the size of F , we use the strength-
ened inequalities (7.38) suggested by Roboredo and Pessoa with the closest distance
function H. We do not know the optimal value of W ∗. Thus, we use the best value
W ′ found by metaheuristics and update it during the search. Fig. 7.10 presents the
framework of the modified exact method.

The laboriousness of the modified exact method strongly depends on the size of
the subfamily. Ideally, if we can find the optimal subfamily F by a metaheuristics at
Step 1, then we check the feasibility of the system only once. Otherwise, we have to
solve the feasibility system by a solver many times. In the branch-and-cut method
described above the authors suggest the use of the greedy procedure to solve the
separation problem and thereby avoid IP optimization. Here we apply the modi-
fied stochastic tabu search as in Fig.7.8 for solving the feasibility system. We try
to find the leader’s solution with a maximal market share against the subfamily F .
At Step 2.2 instead of solving the linear programming relaxation of the follower’s
problem we calculate the market share of the leader for each element of the ran-
domized neighborhood directly. To accelerate the computations, we have adapted
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1 Apply metaheuristics to create the subfamily F and find W ′.
2 Find a feasible solution x(F) to system (7.37)–(7.42).

If it is infeasible then return the best found solution and stop.
3 Solve the follower’s problem exactly, find optimal solution y(F)

and calculate LB(F).
4 If W ′ < LB(F) then W ′ := LB(F).
5 Include y(F) into the subfamily F and go to Step 2.

Fig. 7.10 The modified exact method

the procedure of Resende and Werneck [39] developed for the p-median problem.
This procedure finds the most prominent pair of open-close facilities for a current
leader’s solution and result in the best neighboring solution. Due to special data
structures to store the partial results, it is significantly faster than the standard eval-
uation for each possible pair. If we cannot find a feasible solution of the system by
metaheuristics, we have to apply the branch-and-bound method from, say, CPLEX
software to check infeasibility.

This modified exact method can be slightly changed to find solutions with a given
gap of the optimal solution. To this end, we introduce a positive parameter ε and
replace inequality (7.37) in the feasibility problem by the following:

W ≥ (1+ ε)W∗.

In this case, the method allows us to find approximate solutions with at most an ε rel-
ative gap of the optimum. Our computational experiments presented in the next sec-
tion demonstrate that we are able to find optimal and approximate solutions within
a reasonable time.

7.6 Computational Experiments

The exact methods have been tested and compared on a group of the instances from
the benchmark library Discrete Location Problems [1]. This electronic library con-
tains the test instances for the facility location problems including the competitive
ones. For the discrete (r|p)-centroid problem we have 10 instances which are dif-
ferentiated by (di j) matrix. For all instances, customers and facilities are in the
same sites, that is m = n. The sites are chosen at random uniformly in a square
7000× 7000. The elements of matrix (di j) are the Euclidean distances between the
sites i, j. There are two cases for each instance with respect to the customer’s weight.
In the first case, all customers are identical and wj = 1, for all j ∈ J. In the second
case, all customers are different and wj is chosen from (0,200) interval uniformly.
The size of the instances is m = n = 100, p = r ∈ {5,10,15,20}.
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Our experiments have been carried out in a PC Intel Xeon X5675, 3 GHz, RAM
96 Gb, running under the Windows Server 2008 operating system. We have used
the CPLEX 12.3. as an optimization solver. Below we present comparative compu-
tational results which have been obtained on the computers with other specifications.
Namely, our earlier iterative exact method suggested in [2] have been realized on a
PC Pentium Intel Core 2, 1.87 GHz, RAM 2 Gb, running under the Windows XP
Professional operating system. The branch-and-cut method by Roboredo and Pes-
soa [38] has been realized on a PC Pentium Intel Core 2 duo, 2.13 GHz, RAM 2 Gb,
and the authors used the CPLEX 12.1.

The presented exact approaches use the metaheuristics which we have discussed
before to find the solution provided the lower bound of a good quality. Each ex-
act method tries to improve it or, in case it has already been the optimal solu-
tion, to prove it. Actually, the chosen test instances from [1] with m = n = 100,
p = r ∈ {5,10,15,20} are not difficult for the metaheuristics. They can find the op-
timal solutions [2, 14]. However, proving its optimality is a burdensome problem
for exact methods. Here, we focus on the comparative results concerning the com-
putational time for the exact methods. We demonstrate their capacities with respect
to the parameters p and r.

Tables 7.4 – 7.6 present computational results. The column Instance indicates
the code name of the test instance. The column Opt contains the leader’s market
share for the optimal solution, the columns IEM, MEM and BC show the total CPU
time in minutes consumed by the iterative exact method suggested in [2], their mod-
ified exact method presented in Section 7.5.2 and the branch-and-cut method by
Roboredo and Pessoa from Section 7.5.1, respectively.

Table 7.4 shows that the modified exact method (the column MEM) consumes
significantly less time than its earlier version (the column IEM) even taking into
account the differences in the machine specifications. The columns MEM and BC
in Tables 7.4, and 7.5 show that the modified exact method is better for the relatively

Table 7.4 m = n = 100, p = r = 5

w j = 1, j ∈ J w j ∈ (0,200), j ∈ J

Time (in min) Time (in min)
Instance Opt IEM MEM BC Opt IEM MEM BC
111 47 120 6 44.2 4139 65 1 27.4
211 48 60 1 58.7 4822 37 4 159.9
311 45 3600 26 202.8 4215 5460 38 313.7
411 47 150 2 52.0 4678 900 69 74.1
511 47 120 1 39.4 4594 720 16 469.0
611 47 90 3 51.0 4483 660 2 25.7
711 47 180 4 53.4 5153 2550 5 130.9
811 48 42 1 35.7 4404 720 2 195.5
911 47 160 2 44.8 4700 2520 13 290.3
1011 47 165 2 66.2 4923 30 1 18.3
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small test instances with m = n = 100, p = r = 5 and 10 than the branch-and-cut
method in comparison with the computational time.

Table 7.6 shows that the MEM and BC methods take a lot of computational ef-
forts for the case p = r = 15. It means that these instances become difficult for both
methods. Discussed in [2] have been the reasons why this case requires such a long
running time. It deals with the growth of the subfamily F as the values of p and
r increase. It has been noticed that under the fixed values of n and m the problem
becomes more difficult in the instances with the values of p and r equal to about a
one-third of m. The computational time for the BC algorithm increases as both the
number of branch-and-bound nodes and the number of cuts generated expand [38].
Thus, for more difficult instances we have to develop other exact approaches or do
with approximate solutions.

Table 7.7 shows the comparative results concerning the approximate solutions.
The column 5% ·Opt contains a leader market share with a gap of at most 5% of the
optimal value for the MEM. The column GapBC shows a root gap between the best
known lower bound and the best upper bound obtained by the branch-and-cut algo-
rithm [38]. We can see that even for the problems where the gap has been about 2%,
the running time has reached 10 hours. It is unlikely that MEM would be able to find
solutions with a lesser gap for admissible computational efforts but to find solutions
within 5% of the optimum by the MEM takes a reasonable time on a powerful com-
puter. We can conclude that the existing exact methods are good enough since they
are able to tackle previously open instances with up to 100 customers, 100 potential
facilities and p = r = 15 for a reasonable time. Nevertheless, they leave room for
further improvements.

Table 7.5 m = n = 100, p = r = 10

w j = 1, j ∈ J w j ∈ (0,200), j ∈ J

Time (in min) Time (in min)
Instance Opt MEM BC Opt MEM BC
111 50 13 38,1 4361 60 170,3
211 49 20 78,5 5310 42 158,1
311 48 195 222,8 4483 146 317,9
411 49 135 188,6 4994 33 229,1
511 48 270 315,4 4906 399 1340,2
611 47 900 381,8 4595 143 859,7
711 51 12 42,2 5586 73 339,2
811 48 145 259,9 4609 152 446,8
911 49 102 187,3 5302 6 39,6
1011 49 180 237,1 5005 97 562,7
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Table 7.6 m = n = 100, p = r = 15

w j ∈ (0,200), j ∈ J
Time (in min)

Instance Opt MEM BC
111 4596 72 162,53
211 5373 3845 1349,27
311 4800 395,00 461,78
411 5064 1223 1402,33
511 5131 2120 1318,32
611 4881 2293 472,37
711 5827 1320 810,00
811 4675 4570 1919,73
911 5158 >600 >600
1011 5195 >600 1200,57

Table 7.7 m = n = 100, p = r = 20

w j ∈ (0,200), j ∈ J
Instance 5% ·Opt Time MEM Gap (%) Time BC

MEM (in min) BC (in min)
111 4737,6 1 3,83 >600
211 5703,6 185 3,35 >600
311 5137,65 248 3,05 >600
411 5677,81 5 1,99 >600
511 5600,7 110 1,61 >600
611 5199,6 190 1,90 >600
711 6187,65 97 7,28 >600
811 5100,9 570 2,46 >600
911 5731,95 165 2,41 >600
1011 5668,95 130 1,64 >600

7.7 Conclusions

Since the nineties of the last century, the competitive facility location models have
been increasingly asked-for and have been created an active field of research. In this
chapter we have discussed the classical model in this field, a so-called discrete (r|p)-
centroid problem. With respect to other competitive models, it is the basic model.
There are many extensions of this challenging problem concerning the customers’
behavior, type of demands, arising additional costs etc. [31]. A new line of studies
in this field is the competitive facility location and design models. The players aim
at finding the location and attractiveness of each facility to be opened so as to max-
imize their own market shares or profits. Some insights in this area can be found
in [28, 36, 44].
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We have reviewed the heuristics and exact methods for the (r|p)-centroid prob-
lem. The stochastic tabu search shows excellent results. To be sure, it is a time-
consuming approach but we have obtained a global optimum in a relatively small
number of steps. We believe that the matheuristics are useful for bi-level optimiza-
tion. We can apply these methods to solve the discrete bi-level problems but have to
make a lot of efforts for computing objective function values. We have discussed two
exact approaches. They realize different ideas but they are based on the single level
reformulation. It is easy to suggest the single level reformulation for the min-max
problems. The cooperative and noncooperative cases coincide here. Is it possible to
adopt these methods for other competitive location models? For example, we have
not touched the continuous location models where the players can open their own
facilities anywhere in the Euclidean plane [13]. It is a min-max problem with a fi-
nite number of customers. The sum of the leader and follower objective functions
values is here a constant too. Nevertheless, we have neither any upper bounds nor
any single level reformulations. We believe that exact methods and matheuristics for
this case will be great of interest for further research.
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a survey of metaheuristic approaches. European J. Oper. Res. 179, 927–939 (2007)

35. Noltemeier, H., Spoerhase, J., Wirth, H.: Multiple voting location and single voting lo-
cation on trees. European J. Oper. Res. 181, 654–667 (2007)

36. Plastia, F., Carrizosa, E.: Optimal location and design of a competitive facility. Math.
Program., Ser A. 100, 247–265 (2004)

37. Plastria, F., Vanhaverbeke, L.: Discrete models for competitive location with foresight.
Comp. & Oper. Res. 35(3), 683–700 (2008)

38. Roboredo, M.C., Pessoa, A.A.: A branch-and-cut algorithm for the discrete (r|p)-
centroid problem. European J. Oper. Res. (in press)

39. Resende, M., Werneck, R.: On the implementation of a swap-based local search pro-
cedure for the p-median problem. In: Ladner, R.E. (ed.) Proceedings of the Fifth Work-
shop on Algorithm Engineering and Experiments (ALENEX 2003), pp. 119–127. SIAM,
Philadelphia (2003)

40. Spoerhase, J.: Competitive and Voting Location. In: Dissertation. Julius Maximilian Uni-
versity of Würzburg (2010)

41. Serra, D., ReVelle, C.: Competitive location in discrete space. In: Drezner, Z. (ed.) Facil-
ity Location - A Survey of Applications and Methods, pp. 367–386. Springer, New York
(1995)

42. Serra, D., ReVelle, C.: Market capture by two competitors: the pre-emptive capture prob-
lem. J. Reg. Sci. 34(4), 549–561 (1994)

43. Spoerhase, J., Wirth, H. (r, p)-centroid problems on paths and trees. J. Theor. Comp. Sci.
Archive. 410(47–49), 5128–5137 (2009)

44. Saidani, N., Chu, F., Chen, H.: Competitive facility location and design with reactions of
competitors already in the market. European J. Oper. Res. 219, 9–17 (2012)

45. Smith, J.C., Lim, C., Alptekinoglu, A.: Optimal mixed-integer programming and heuris-
tic methods for a bilevel Stackelberg product introduction game. Nav. Res. Logist. 56(8),
714–729 (2009)
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Chapter 8
Exact Solution Methodologies for Linear and
(Mixed) Integer Bilevel Programming

Georgios K.D. Saharidis, Antonio J. Conejo, and George Kozanidis

Abstract. Bilevel programming is a special branch of mathematical programming
that deals with optimization problems which involve two decision makers who make
their decisions hierarchically. The problem’s decision variables are partitioned into
two sets, with the first decision maker (referred to as the leader) controlling the first
of these sets and attempting to solve an optimization problem which includes in its
constraint set a second optimization problem solved by the second decision maker
(referred to as the follower), who controls the second set of decision variables. The
leader goes first and selects the values of the decision variables that he controls. With
the leader’s decisions known, the follower solves a typical optimization problem in
his self-controlled decision variables. The overall problem exhibits a highly combi-
natorial nature, due to the fact that the leader, anticipating the follower’s reaction,
must choose the values of his decision variables in such a way that after the problem
controlled by the follower is solved, his own objective function will be optimized.
Bilevel optimization models exhibit wide applicability in various interdisciplinary
research areas, such as biology, economics, engineering, physics, etc. In this work,
we review the exact solution algorithms that have been developed both for the case
of linear bilevel programming (both the leader’s and the follower’s problems are
linear and continuous), as well as for the case of mixed integer bilevel programming
(discrete decision variables are included in at least one of these two problems). We
also document numerous applications of bilevel programming models from vari-
ous different contexts. Although several reviews dealing with bilevel programming
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have previously appeared in the related literature, the significant contribution of the
present work lies in that a) it is meant to be complete and up to date, b) it puts to-
gether various related works that have been revised/corrected in follow-up works,
and reports in sequence the works that have provided these corrections, c) it iden-
tifies the special conditions and requirements needed for the application of each
solution algorithm, and d) it points out the limitations of each associated methodol-
ogy. The present collection of exact solution methodologies for bilevel optimization
models can be proven extremely useful, since generic solution methodologies that
solve such problems to global or local optimality do not exist.

8.1 Introduction

Hierarchical optimization deals with mathematical programming problems whose
feasible set is implicitly determined by a sequence of nested optimization problems.
The most studied case is the case of bilevel programming and especially the linear
one. A bilevel program is a problem in which a subset of the variables is required
to be an optimal solution of a second mathematical program. This problem can be
considered as a two-person game where one of the players, the leader, knows the
cost function mapping of the second player, the follower, who may or may not know
the cost function of the leader. The follower knows, however, the strategy chosen by
the leader and takes it into account when computing his own strategy. The leader can
foresee the reactions of the follower and can therefore optimize his strategy choice.

Several surveys on bilevel programming have appeared in the related literature. In
the linear bilevel programming survey of Wen and Hsu [88], the authors review the
basic models and the characterizations of the problem, the areas of application, the
existing solution approaches, and the related models and areas for further research.
In the survey on the features of linear bilevel programming by BenAyed [16], the
author reviews complexity properties, algorithms, applications, as well as the rela-
tionship of the problem with other optimization problems. Vicente and Calamai [86]
discuss the main properties, summarize the main solution algorithms, review key
applications, and present an extensive bibliography of bilevel and multi-level pro-
gramming. Dempe [42] [43] discusses alternative formulations, relationships with
other optimization problems, theoretical and complexity results, optimality condi-
tions, solution algorithms and applications of bilevel optimization models.

Colson et al. [36] consider various cases (linear, linear-quadratic, nonlinear) of
bilevel optimization problems, describe their main properties, and give an overview
of solution approaches. An updated version of the same survey was presented
by Colson et al. [37]. Chinchuluun et al. [33] discuss algorithmic and theoretical
results on multilevel programming, including complexity issues, optimality con-
ditions, and algorithmic methods for solving multilevel programming problems.
Finally, the books of Bard [10] and Dempe [41] provide an excellent introduction to
the subject.
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8.2 Description of the Bilevel Problem

Bilevel programming involves two optimization problems, the first of which (upper)
is controlled by the leader and the second of which (lower) is controlled by the
follower. The feasible region of the upper optimization problem is determined by
its own constraints plus the lower optimization problem. In general, the problem is
non-convex, and finding its global optimum is an arduous task.

The decision variables of a bilevel program are partitioned into two sets, with
the leader controlling the first subset (x), and the follower controlling the second
one (y). If the leader chooses x = x′ then the follower responds with y = y′ as is
shown in figure 8.1. For a given x, the follower solves the lower problem, optimiz-
ing F2. The leader examines the reactions of the follower for each feasible choice
of x (the dashed line in the x−axis). The set of all feasible solutions of the bilevel
problem (the black line in figure8.1) is called inducible region (IR), and is gener-
ally non-convex [30]. The optimal solution of the bilevel problem is the point on
the inducible region for which the upper level objective function, F1, takes its op-
timal value (point A in figure8.1). In the linear case, this is an extreme point of
the inducible region. In general, a bilevel programming model may have continu-
ous and/or integer decision variables and constraints in the upper and/or the lower
level. In order to simplify the presentation of the main characteristics of the bilevel
problem, we consider first the case where only continuous variables (x, which is an
n−dimensional vector controlled by the leader and y, which is an m−dimensional
vector controlled by the follower) are present. This leads to the Bilevel Linear Prob-
lem (BLP) defined as follows:

x ∈ X ⊆ Rn,y ∈Y ⊆ Rm

For
F1 : X×Y −→ R1,F2 : X×Y −→ R1

Maxx∈X F1(x,y) = c1x+ d1y
s.t. g1(x,y) = A1x+B1y≤ b1

Maxy∈Y F2(x,y) = c2x+ d2y
s.t. g2(x,y) = A2x+B2y≤ b2,

where c1,c2 ∈ Rn,d1,d2 ∈ Rm,b1 ∈ Rp,b2 ∈ Rq,

A1 ∈ Rp×n,B1 ∈ Rp×m,A2 ∈ Rq×n,B2 ∈ Rq×m

Sets X and Y impose additional restrictions on the decision variables, such as upper
and/or lower bounds. From the leader’s perspective, this model can be viewed as
a mathematical program with an implicitly defined non-convex constraint region
given by the follower’s sub-problem. In general, the following regions and sets (cf.
figure 8.1) are defined in linear bilevel optimization problems:
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Fig. 8.1 Bilevel linear problem

• The BLP constraint region is defined as: Ω = {(x,y) : x ∈ X ,y ∈ Y,g1(x,y) ≤
b1,g2(x,y)≤ b2}

• The projection of Ω onto the leader’s decision space is Ω(X) = {x ∈ X :
∃y,(x,y) ∈Ω}

• The follower’s feasible region for x ∈ X fixed is Ω(x) = {y ∈ Y : g2(x,y)≤ b2}
• The follower’s rational reaction set is M(x) = {y ∈ Y : y ∈ argmax(F2(x,y) : y ∈

Ω(x))}
• The Inducible Region (IR) which corresponds to the solution space of the bilevel

problem is IR = {(x,y) = x ∈Ω(X),y ∈M(x)}
In order to ensure that the above bilevel problem is well posed, we make the ad-
ditional assumption that Ω is nonempty and compact and that for each decision
taken by the leader, the follower has some room to respond (Ω(x) 
= 0) . The ratio-
nal reaction set, M(x), defines these responses, while the IR represents the set over
which the leader may optimize. Thus, in terms of the above notation, the BLP can
be written as:

Max(F1(x,y) : (x,y) ∈ IR)

A bilevel feasible solution is a pair (x,y) with y∈M(x)for the specific x. An optimal
solution for the bilevel problem is a point (x∗,y∗) if this point is bilevel feasible and
for all bilevel feasible points (x,y) ∈ IR,F1(x∗,y∗)≥ F1(x,y).

Besides the lower problem’s primal decision variables, the upper level optimiza-
tion problem may also depend on the lower problem’s dual decision variables. For
example, such is very often the case in the context of an electricity market that
adopts a clearance payment scheme which compensates each participating energy
producer by a uniform market clearing price for each unit of energy that he provides.
In the bilevel programming model that the individual producer must solve in order
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to maximize his profit, the actual value of this profit depends on the energy quantity
that he will inject to the system (a lower level primal decision variable), as well as
on the value of this uniform market price, which is defined as the dual variable of
the lower level constraint that ensures satisfaction of the demand for energy.

Bialas and Karwan [20] propose an incentive scheme to overcome the problem of
multiple optima in the lower level problem. This problem arises when for a particu-
lar choice of the upper level variables, the follower’s problem has multiple optima,
which do not all result in the same objective value for the leader. It is clear that the
bilevel program may not have an optimal solution in this case, since the leader has
no way of forcing the follower to choose a particular lower level optimal solution.
Thus, if one of these alternative optimal solutions is the one that maximizes the ob-
jective of the leader, there is no guarantee that it will be selected. The method of
Bialas and Karwan [20] perturbs the lower level problem, replacing the original ob-
jective by F

′
2 = F2(x,y)+εF1(x,y),where the value of ε > 0 is suitably small. As the

authors show, this would require a ”kick-back” of a small portion of the upper level’s
earnings to encourage the follower to choose a desirable solution. Concluding, the
authors note that, in general, such a perturbation method may still not determine a
unique solution, since the leader may have the same objective function value for a
number of distinct level two optimal solutions. In that case, however, any of these
solutions would be satisfactory for level one.

Another approach that has been proposed to deal with the issue of multiple op-
timal lower level solutions is the optimistic (pessimistic) approach (see for exam-
ple [61]). According to this approach, whenever the follower has multiple optimal
solutions, he is forced to select the one which is the most (least) favorable to the
leader. This implies that in the case of multiple lower level optimal responses to
a particular choice, x, of the leader, the follower would have to solve a second
optimization problem that would determine his final selected solution as the one
that maximizes (minimizes) the leader’s objective value among all these alternative
solutions.

If the problem involves integer and continuous variables which are separable and
appear in linear relations, then the bilevel problem corresponds to a Mixed Integer
Bilevel Linear Problem (MIBLP). Let x be an n-dimensional vector of continuous
variables controlled by the leader, y be an m-dimensional vector of continuous vari-
ables controlled by the follower, z be a t-dimensional vector of integer variables
controlled by the leader, and w be a u-dimensional vector of integer variables con-
trolled by the follower. Then, the MIBLP is formulated as follows in its general
form:

x ∈ X ⊆ Rn,y ∈ Y ⊆ Rm,z ∈ Zt ,w ∈ Zu

For
F1 : X×Y ×Zt ×Zu −→ R1,F2 : X×Y ×Zt ×Zu −→ R1

Maxx∈X ,z∈Zt F1(x,y,z,w) = c1x+ d1y+ r1z+ g1w
s.t. A1x+B1y+C1z+Q1w≤ b1
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Maxy∈Y,w∈ZuF2(x,y,z,w) = c2x+ d2y+ r2z+ g2w
s.t. A2x+B2y+C2z+Q2w≤ b2,

where c1,c2 ∈ Rn,d1,d2 ∈ Rm,r1,r2 ∈ Rt ,g1,g2 ∈ Ru,b1 ∈ Rp,b2 ∈ Rq,

A1 ∈ Rp×n,B1 ∈ Rp×m,C1 ∈ Rp×t ,Q1 ∈ Rp×u,A2 ∈ Rq×n,B2 ∈ Rq×m,C2 ∈ Rq×t ,Q2 ∈ Rq×u

Three general cases can appear: a) only the leader controls integer variables,
b) only the follower controls integer variables, and c) both players control integer
variables. Figure 8.2 below presents the IR of each of these three cases.

Fig. 8.2 IR of mixed integer bilevel linear problems

8.3 Solution Approaches for the Linear Bilevel Problem

Solution approaches for the BLP can be categorized into 4 main categories. The first
one includes reformulation techniques which transform the bilevel program into a
single level problem using mainly the lower problem’s Karush Kuhn Tucker (KKT)
optimality conditions. The second group includes vertex enumeration approaches ,
which develop a modified version of the simplex method, exploiting the fact that the
problem’s global optimal solution occurs at an extreme point of IR, which is also an
extreme point of Ω [21]. The third group includes algorithms which extract gradient
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information from the lower problem and use it to compute directional derivatives for
the leader’s objective function. The fourth group includes penalty algorithms , which
introduce a term that incorporates a penalty associated with the violation of certain
optimality conditions, leading this way the search towards the optimal solution.

Fortuny-Amat and McCarl [47] propose a solution procedure for the quadratic
bilevel problem . In the case of linear bilevel programming with constraints at both
levels, this procedure leads to the transformation of the original problem into a sin-
gle level problem using the lower problem’s first order optimality conditions. This
problem is then transformed into a mixed integer linear problem through the intro-
duction of one auxiliary binary decision variable for each complementary slackness
condition. Each of these variables takes the value 0 or 1, depending on whether the
corresponding constraint is binding or the associated multiplier is equal to 0. The
problem that results after this transformation is then solved through a suitable enu-
merative (branch and bound) procedure that checks every possible combination for
optimality. The authors apply the proposed procedure on a numerical study, but do
not present generic results regarding its computational performance.

Bard and Falk [11] consider the general linear bilevel problem with functional
constraints at both levels, and transform it into a single level optimization problem
by substituting the (convex) lower level problem with its KKT optimality conditions.
Due to the introduction of the complementarity conditions, the problem obtained
through this transformation is non-convex. In order to handle this difficulty, the
authors reformulate the general form of the complementarity conditions,

∑
i

uigi = 0,

xhere ui is the multiplier that corresponds to constraint i as follows:

∑
i

uigi = 0⇒∑
i

min(ui,gi) = 0⇒∑
i
{min(0,gi−ui)+ui}= 0⇒∑

i
{min(0,wi)+ui}= 0,

where
wi = gi− ui.

Although this reformulation does not eliminate the non-convexity, the resulting
problem is separable and can be solved with existing solution methodologies for
separable programming [46]. The authors solve this problem with a branch and
bound such methodology that partitions the problem’s feasible space. They illustrate
the proposed methodology on various examples, but they do not present computa-
tional results demonstrating its requirements on random problems.

The method proposed by Candler and Townsley [30] considers a formulation
with constraints at the lower level only, and assumes that for any given values of
the leader’s decision variables, there will be a unique solution for the follower. An
implicit search is employed, which uses necessary conditions for a better solution to
limit the extent of the search. The developed algorithm involves an implicit search
of all bases in the leader’s decision vectors. The number of bases to be searched
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explicitly is restricted to those which satisfy (global) necessary conditions for a
better basis. Three types of necessary conditions are developed and tested.

The algorithm presented by Bard [8] solves a BLP with the lower level problem
acting as the only constraint for the leader’s problem. The algorithm uses sensitiv-
ity analysis to solve the BLP, developing a parametric model which is equivalent
to the initial BLP. The main concept of the underlying theory rests on a set of first
order optimality conditions that parallel the KKT conditions associated with a one
dimensional parametric linear program. The solution to the original problem is un-
covered by systematically varying the parameter over a unit interval and solving the
corresponding linear program. For the solution of the resulting parametric model, a
one-dimensional grid search algorithm is presented. For the validity and the finite
convergence of the proposed algorithm, the author assumes that the solution to the
follower’s problem is non-degenerate. The paper also discusses other solution tech-
niques including branch and bound and vertex enumeration, and gives an example
highlighting their computational and storage requirements.

Utilizing the relationship between biobjective and bilevel programming, Unlu
[85] proposes an algorithm for the linear bilevel problem without constraints at
the upper level, which modifies the parametric approach that has been proposed by
Bard [8]. The algorithm is an iterative procedure that searches among the efficient
solutions of the associated biobjective problem (the one that results considering the
leader’s and the follower’s objectives) for bilevel feasibility. The author presents
computational results demonstrating that the performance of the algorithm is supe-
rior to that of the algorithm presented by Bard [8].

Using counterexamples, Candler [28] and Benayed and Blair [18] independently
showed that the grid search algorithm developed by Bard [8] does not always pro-
duce the optimal solution. In turn, this contradicted the validity of the algorithm
proposed by Unlu [85]. The shortcomings of these two methodologies were also
pointed out by Wen and Hsu [87]. Haurie et al. [52] also shows that the efficient
point algorithm proposed by Bard [8] does not always converge to the desired so-
lution. A counterexample is provided in which the proposed algorithm fails to con-
verge to the optimal solution. The authors explain that the main reasons for this lack
of convergence are: a) the fact that in the case of semi-infinite programming the
correct reformulation is obtained when the Fritz-John necessary conditions are used
instead of the KKT conditions even if the problem is linear, and b) the fact that the
inequalities produced in Bard’s method are only valid if the follower’s constraints
do not depend on the leader’s decision variables. The authors conclude by pointing
out that even though the algorithm presented by Bard [8] does not find the optimal
solution, it can be used as a solution concept in real-life bilevel systems in order to
find satisfactory sub-optimal solutions.

Based on the parametric algorithm proposed by Bard [8], White [90] presents
another interesting approach for the solution of BLP. The main result of this pa-
per resides in a theorem which reduces the solution of BLP to the solution of a
maximin linear problem. The author points out that the general methodology pro-
posed by Bard [8] is not always correct, and develops, for this reason, the suggested
methodology. The main idea of this methodology is that if the solution obtained by
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the parametric maximin linear problem with respect to the decision variables con-
trolled by the follower has the same value with the optimal solution obtained when
the follower’s problem is optimized over Ω(X), then this is the BLP optimal solu-
tion; otherwise, the selected parameter is increased until the optimality criterion is
satisfied.

Three interesting algorithms are presented by Bialas and Karwan [22] for the
solution of BLP. The first one finds local optima and can rarely identify a global
optimal solution, whereas the other two find the global optimum. The first algo-
rithm assumes that the follower has a unique (non-degenerate) solution and utilizes
most of the standard tools of the simplex method for bounded decision variables.
At each iteration, the leader’s objective function is optimized first and the obtained
solution is used in order to optimize the follower’s objective function in the same
bounded solution space. If the optimal solution of the follower and the leader are the
same, then the algorithm stops; otherwise, the algorithm continues using the current
basic solution. In the last step of the algorithm, a modified version of the simplex
method is employed, which solves the follower’s problem to optimality, calculating
the reduced cost of the variables which are candidate to enter the basis based on
the leader’s solution space. The algorithm obtains an extreme point on the rational
reactions over Ω ; it then moves among the extreme points of the rational reactions
over Ω , never allowing the leader’s objective function to decrease (in the case of
maximization). However, only a local optimal solution is obtained this way. More
specifically, the algorithm terminates with an extreme point solution in the leader’s
solution space, which has the property that all the adjacent extreme points either
lead to a decrease in the leader’s objective function (in the case of maximization) or
do not belong to the leader’s solution space.

The second algorithm proposed by Bialas and Karwan [22] is a vertex enumera-
tion procedure called the “k-th best” algorithm. In this approach, the leader solves
his problem in both the leader’s and the follower’s decision vectors (suppressing
the follower’s objective function), and orders the basic feasible solutions in non-
increasing value of his objective (in the case of a maximization problem). Given the
optimal values of the decision variables controlled by the leader, the follower solves,
at any iteration of the algorithm, his own problem. If the optimal solution and the
optimal values of the decision variables obtained this way are the same, then the al-
gorithm stops. Otherwise, the algorithm uses the next optimal solution of the leader
and solves again the follower’s problem, until both problems find the same optimal
solution for the follower’s decision variables. Finally, the third algorithm proposed
for the solution of BLP by Bialas and Karwan [22] uses the KKT optimality condi-
tions in order to reformulate the original problem. The main idea of this approach
is to replace the follower’s problem with its KKT optimality conditions and append
the resultant system of constraints to the leader’s problem.

Júdice and Faustino [54] show that the sequential linear complementarity prob-
lem (SLCP) presented by Bialas and Karwan [22] is not able to solve the BLP in
all cases. For this reason, they present in a later work [55] a modified version of
the SLCP that achieves this goal, introducing at the same time some modifications
that can improve the convergence of the algorithm. The improved SLCP algorithm
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is shown to be competitive with the branch and bound methods that have been pro-
posed for BLPs of small dimension, and becomes much more efficient when the
dimension of the BLP increases. The novelty of the proposed method lies in the
approach adopted for the solution of the linear complementarity problems arising in
the SLCP algorithm. This approach is a hybrid enumerative method with three mod-
ifications introduced in the enumerative method to make the SLCP algorithm more
robust. The main steps of the hybrid enumerative method incorporate Al-Khayyal’s
algorithm [1], some new procedures for the generation of nodes, and heuristic rules
for the choice of nodes and complementary pairs of variables.

Dempe [40] proposes a solution algorithm for finding local optima to the linear
bilevel problem with constraints at the lower level only. The algorithm employs a
modified simplex procedure with specialized rules for updating the basis. The author
proposes a technique for generating starting points which can be utilized by this
algorithm in an attempt to reach global optima. He also proposes the implementation
of a branching search procedure exploring the different basic feasible solutions of
the problem, which is guaranteed to reach the global optimum. He does not provide
computational results, but he illustrates the algorithm on a small example.

The solution methodology suggested by Bard and Moore [12] is valid for BLPs
with constraints at both levels. The authors begin by converting the original BLP into
a standard mathematical program. This is achieved by replacing the follower’s prob-
lem with its KKT conditions, and giving control of all the variables to the leader.
As was suggested firstly by Fortuny-Amat and McCarl [47], the basic idea of the
proposed algorithm is to suppress the complementarity condition term and solve the
resulting linear program. At each iteration, a check is carried out to verify if the
complementarity condition term is satisfied. If it does, the corresponding point is in
the inducible region; hence, it is a potential solution to the BLP. The novelty of the
proposed algorithm lies in the course of action followed in the case that the comple-
mentarity condition term is not satisfied. Fortuny-Amat and McCarl [47] take the
more direct approach of replacing the complementarity condition term with a set of
inequalities using the big-M approach. They then solve the resulting problem with
a standard zero-one mixed integer code. The novelty of Bard and Moore [12] lies in
that they suggest using a branch and bound scheme to implicitly examine all combi-
nations of complementary slackness. The authors present a comparison of the Para-
metric Complementary Pivot algorithm of Bialas and Karwan [22], their branch and
bound scheme, and the separable approach of Bard and Falk [11]. As they demon-
strate, the latter is roughly equivalent to the zero-one formulation of Fortuny-Amat
and McCarl, in that both approaches lead to problems of nearly identical size and
structure. The presented results show that the suggested method outperforms the
separable approach and is on equal footing with the Parametric Complementary
Pivot method with respect to CPU solution time.

Anandalingam and White [4] and White and Anandalingam [91] propose a
penalty function approach for solving the linear bilevel problem without constraints
at the upper level. They notice that at the optimal solution to the follower’s problem,
the duality gap between the objective value of its primal and its dual formulation is
equal to 0. Thus, they transform the original problem into a single level optimization
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problem in the original decision variables of the leader and the primal and dual vari-
ables of the follower, which includes the primal and dual constraints of the follower.
The objective of this problem consists of the original upper level objective minus
a penalty which is proportional to the difference between the dual and the primal
objective values of the follower’s problem. The algorithm employs a search that up-
dates the current solution until the global optimum is obtained. The authors present
computational results demonstrating that their approach outperforms the k-th best
algorithm proposed by Bialas and Karwan [22], but requires significantly higher
computational effort than the branch and bound algorithm proposed by Bard and
Moore [12]. Campelo et al. [26] contradicted the validity of the assumptions of the
algorithm proposed by White and Anandalingam [91]. They also provided alterna-
tive versions of these assumptions and modified some of the steps of the algorithm,
re-establishing this way its validity.

Onal [69] presents a modified simplex approach for solving bilevel linear prob-
lems with constraints at the lower level only. At the first step, this approach uses
the KKT optimality conditions to reformulate the initial BLP into an equivalent
non-linear single level problem (ENLSLP), whereas in the second step, the comple-
mentary slackness constraints are incorporated into the leader’s objective function
as a penalty term with a large coefficient, M, resulting in a parametric quadratic pro-
gram (PQP). The modified simplex approach is applied into this PQP. This solution
approach solves the ENLSLP by searching local solutions of the PQP. The author
develops a method for finding a stable local solution of PQP as a feasible solution
that remains the same under any arbitrary choice of M > M0 for some large number
M0. If this is valid, then the penalty term vanishes. The difficulty of this methodol-
ogy is the selection of M. Small values may not eliminate the penalty term, whereas
large values may cause computational problems. Campelo and Scheimberg [27] do
a more rigorous analysis of the possible cases at a local solution of the PQP. They
show that some additional cases might occur that have not been taken into consid-
eration by Onal [69]. Another important point is that Onal’s method is valid only if
the PQP is not unbounded for sufficiently large M. Campelo and Scheimberg [26]
illustrate that this algorithm may not find the global optimal solution in some cases,
and explain why this may happen.

Tuy et al. [84] reformulate the linear bilevel problem with constraints at both
levels as a single level reverse convex programming problem, by replacing the fol-
lower’s (minimization) objective with a constraint stating that the value of the fol-
lower’s objective function cannot exceed the value that it will have at the optimal
solution of the problem. Of course, this is a trivial optimality condition, since these
two quantities will be equal at optimality. The authors develop a technique to re-
duce the size of the problem and then solve it through a vertex enumeration solution
procedure. They do not present generic computational results, but illustrate the pro-
posed algorithm on a small numerical example.

Liu and Spencer [60] propose a solution algorithm for the linear bilevel problem
without constraints at the upper level, which runs in polynomial time if the num-
ber of decision variables controlled by the follower is fixed. The algorithm solves
a series of linear programs, each of which results from optimizing the follower’s
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objective subject to a different set of constraints determined by nonsingular coeffi-
cient matrices of the original bilevel formulation that pertain to the decision vari-
ables of the follower. Of course, these are single level programs involving only the
decision variables of the follower. Those linear programs that do not have a bounded
optimal solution are discarded. Each of the programs that have a bounded solution
is used to formulate a new single level linear program that only involves the leader’s
decision variables. Each of the optimal solutions of these linear programs in the
leader’s decision variables combined with the optimal values of the follower’s de-
cision variables found in the associated problem of the previous stage provides a
solution which is candidate for optimality for the original bilevel problem formu-
lation. Of course, out of these solutions, the one which provides the largest value
for the objective value of the leader is the optimal solution of the original bilevel
problem. The authors do not present generic computational results, but illustrate the
proposed algorithm on a small numerical example.

Shi et al. [79] study how to solve a BLP when the upper-level constraint functions
are of arbitrary linear form. A new definition for the solution of the BLP is given
attempting to take into consideration some cases that the classical definition for
the solution of the BLP could not handle properly. The main difference between
the two definitions is that, in the new one, the follower’s feasible set is defined
from the sets of constraints of both levels, and not only from the lower level. The
authors motivate their new definition by giving an instance of the BLP for which no
solution can be found even though Ω is not empty. They introduce a new type of
optimal solution referred to as Pareto optimal solution when the BLP does not have
a complete optimal solution. They claim that the fact that a Pareto optimal solution
exists but cannot be found using the common definitions is a deficiency of the theory.
In order to obtain this Pareto optimal solution, they propose a new definition for the
solution of the BLP. The authors apply this definition on two numerical examples,
demonstrating how and why the classical approach fails to find a solution and how
the new approach finds the Pareto optimal solution. They do not clarify why the
obtained solution is a Pareto solution and if this Pareto solution corresponds to the
equivalent biobjective Pareto optimal solution.

Based on the results presented by Shi et al. [79] [80] [82], Shi et al. [81] develop
3 extended algorithms which can be considered as extensions of existing algorithms
through the incorporation of the new definition presented by Shi et al. [79]. The first
algorithm is an extended version of the Kuhn-Tucker approach proposed by Bialas
and Karwan [20], Bard and Falk [11], and Hansen et al. [51]; the second algorithm
is an extended version of the k-th best approach proposed by Candler and Towns-
ley [30], and Bialas and Karwan [22]; the third algorithm is an extended version
of the branch and bound algorithm proposed by Bard and Moore [12]. All these
extensions make use of the new definition for the BLP and revise the original al-
gorithms similarly, incorporating the upper level constraints involving lower level
decision variables into the follower’s constraint region. The authors refer to the the-
orem given in Shi et al. [79] on the condition under which a BLP has an optimal
solution, but the term Pareto optimal solution used and defined in Shi et al. [79] is
replaced by the term optimal solution in this theorem, without making clear if this
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solution is the global optimal solution of the BLP. Through two numerical examples,
they demonstrate how the classical approaches fail to reach an optimal solution in a
case where Ω is not empty, and show that the new definition in which the leader’s
problem does not have constraints involving the follower’s decision variables gives
exactly the same optimal solution.

Audet et al. [6] show that the new definition of BLP presented by Shi et al. [79]
is equivalent to transferring the constraints of the leader that involve decision vari-
ables of the follower into the follower’s problem, resulting in a special case of BLP
in which there are no upper level constraints that involve lower level decision vari-
ables. The authors point out that the difference between the two definitions is that
the definition presented by Shi et al. [79] implies that the lower level is now respon-
sible for enforcing the upper level constraints that involve the follower’s decision
variables. They also prove that the new definition relaxes the feasible region of the
BLP, allowing for infeasible points to be considered as feasible. The aim of the note
paper is to show that the deficiency pointed out by Shi et al. [79] is not an actual
one, and that if the upper level constraints that involve lower level decision vari-
ables are moved into the lower level, the nature of the original BLP changes, since
the new problem obtained through this transformation is not equivalent to the orig-
inal. The authors note that the solution of the original BLP, as it is strictly defined,
does not have to be Pareto optimal [85], and explain that this is due to the intrin-
sic non-cooperative nature of the model. This implies that the fact that no Pareto
optimal solution could be found for the example presented in Shi et al. [79] is not
really a deficiency, but is due to the fact that no such solution exists, and that this
may happen even if Ω is not empty. In the presented note, the authors show that the
first numerical example presented in Shi et al. [80] [81] [82] does not have an op-
timal solution even though Ω is not empty, and that the second numerical example
has the same optimal solution just because the leader’s formulation does not have
constraints that involve the follower’s decision variables, resulting in an application
of the new BLP definition which is coincidentally the same.

Audet et al. [7] propose a two-phase branch and cut algorithm for the bilevel lin-
ear problem with constraints at both levels. The algorithm exploits the relationship
between bilevel linear programming and mixed integer programming [5]. The first
phase of the algorithm consists of an iterative procedure that generates and adds a
valid inequality (cut) to a suitable relaxation of the problem. The authors consider
three different types of cuts, i.e., Gomory cuts, simple cuts and extended cuts. The
second phase engages a branch and bound enumerative procedure that converges to
the global optimum of the problem. The authors test the algorithm on problems with
the same size as the problems tested by Hansen et al. [51]. Through these results,
they compare different design rules, and assess the impact that they have on total
computational performance.

Glackin et al. [49] propose an algorithm for bilevel linear programming with
constraints at both levels, which exploits the relationship between multiple objec-
tive linear programming and bilevel linear programming, as well as the results for
minimizing a linear objective over the efficient set of a multiple objective problem.
The algorithm works by searching among the efficient solutions of the associated
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biobjective linear program through simplex pivots on an expanded tableau. The au-
thors report computational results on problem instances generated similarly as in
the procedure adopted by Bard and Moore [13].

8.4 Solution Approaches for the Mixed Integer Bilevel
Problem

The differentiation of algorithms for solving bilevel linear problems is based on
the presence or not of constraints at the upper level. Some algorithms can only solve
BLPs with constraints at the lower level only, while some other algorithms can solve
the more general case of BLP where constraints are present at both levels. In the
case of mixed integer bilevel linear programming, the situation is more complex
and many more different cases exist. The upper (lower) level problem may include
integer/continuous variables controlled by the leader (follower), and/or integer/con-
tinuous variables controlled by the follower (leader). The discrete variables can be
restricted to general integer and/or binary values.

Solution approaches for MIBLP can be classified into 3 main categories. The
first one includes reformulation approaches, where, for example, mathematical de-
composition techniques are used in order to decompose the initial MIBLP into two
single level problems. The second category includes branch and bound/branch and
cut techniques, and the third one includes parametric programming approaches.

Exact and heuristic solution procedures based on the branch and bound technique
for solving the MIBLP are presented by Wen and Yang [89]. These algorithms as-
sume that the optimal solution of MIBLP is non-degenerate. The authors define
some trivial bound information for the optimal solution of MIBLP in the case of
maximization problems as follows: a) a trivial lower bound on the optimal value of
the leader’s objective function is computed as the greatest feasible such value that
has been found so far, and b) a trivial upper bound on the optimal solution of MI-
BLP is the optimal objective value of the problem that results when the lower level
objective function is neglected by MIBLP and all the decision variables are con-
trolled by the leader. The exact algorithm that is proposed involves typical steps of
any branch and bound algorithm: 1) initialization, 2) branching procedure, 3) calcu-
lation of bounds, 4) fathoming, 5) backtracking, 6) calculation of feasible solution,
and 7) termination.

The authors point out that if the number of upper level zero-one decision vari-
ables grows linearly, then the computational time grows exponentially. For this rea-
son, they propose a heuristic solution procedure, which provides satisfactory near
optimal solutions in reasonably short computational time. The heuristic algorithm
utilizes a judgment index which is calculated based on the weighted estimated op-
timal solution for the values of the decision variables controlled by the leader that
are obtained by neglecting the follower’s objective function, and on the weighted
estimated optimal solution for the values of the decision variables controlled by the
leader that are obtained by neglecting the leader’s objective function. The weights
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depend on the estimated optimal solution obtained and the number of variables con-
trolled by each of them; the higher the judgment index value of the upper level
decision variable, the higher priority is assigned for checking that variable. The
numerical results show that the bounding function becomes more effective as the
percentage of variables controlled by the leader increases. The heuristic algorithm
provides a good approximation to find an optimal or near optimal solution. The pro-
posed methodology can also solve the case where the leader only controls integer
variables and constraints are only present at the lower level problem. Another lim-
itation of the algorithm is that the integer decision variables cannot appear in the
follower’s objective function.

Bard and Moore [13] propose a solution algorithm for the pure binary bilevel
problem with constraints at the lower level, binary decision variables at both levels
and integer coefficients in both objectives and all constraints . The algorithm per-
forms an enumerative branch and bound search procedure on the decision variables
of the leader. More specifically, the authors replace the objective of the leader in the
original problem formulation with a constraint that sets the value of this objective
greater or equal to α , where α is a parameter, originally set equal to−∞. Optimizing
the follower’s objective and incrementing the value of α in successive iterations, the
algorithm finds a series of bilevel feasible solutions that provide a monotonic im-
provement on the objective value of the leader. The algorithm can be modified to
accommodate the case where the lower level decision variables are allowed to take
integer values. The authors present computational results on randomly generated
problem instances.

The (heuristic) algorithm of Moore and Bard [66] was later extended by DeNegre
and Ralphs [44] through the incorporation of cutting plane techniques for improv-
ing the bounds on the optimal objective function value. The formulation addressed
by DeNegre and Ralphs [44] includes constraints and pure general integer formula-
tions at both levels. The proposed algorithm employs a branch and cut tree, at each
node of which a relaxation of the original problem is solved. If the solution ob-
tained is bilevel feasible, then this solution is the desired in the associated subtree.
If not, a suitable cut is added, which excludes this solution without excluding any
bilevel feasible solution. The authors claim that the advantage of this procedure over
the one of Moore and Bard [66] is that it relies solely on the solution of standard
integer linear programs, preserving the typical rules for fathoming and branching.
The authors present computational results on random problems with two different
branching strategies.

Saharidis and Ierapetritou [75] propose a new algorithm for the solution of MI-
BLPs. Their algorithm is based on the decomposition of the initial problem into
two problems, the restricted master problem (RMP) and a series of problems named
slave problems (SPs). The proposed approach is based on the Benders decomposi-
tion method where, at each iteration, the set of variables controlled by the leader
is fixed, generating the SP. The RMP is a relaxation of the MIBLP composed by
all the constraints including only integer decision variables controlled by the leader.
The RMP interacts at each iteration with the current SP through the addition of three
type of cuts produced using Lagrangean information from the current SP. These cuts
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are the classical Benders cuts (optimality Benders cut and feasibility Benders cut)
and a third cut referred to as exclusion cut which is used if the RMP is not restricted
by the last generated Benders cut. The lower and upper bound provided (in the case
of minimization) from the RMP and the (best found so far) SP are updated in each
iteration, respectively. The algorithm converges when the difference between the
upper and lower bound is within a small difference ε . In the case of MIBLP, the
KKT optimality conditions cannot be used directly for the inner problem in order
to transform the bilevel problem into a single level problem. The proposed decom-
position technique, however, allows the use of these conditions and transforms the
MIBLP into two single level problems. The algorithm is illustrated through a modi-
fied numerical example from the literature. Additional examples from the literature
are presented to highlight the algorithm convergence properties, which are compara-
ble with those of other approaches (the same optimal solution is found in small CPU
time). The proposed methodology can solve MIBLPs in which the leader controls
discrete (binary or general integer) decision variables and these decision variables
can appear in any constraint or objective function.

For a bilevel problem with only integer decision variables at the lower level and
constraints at both levels, Köppe et al. [57] consider both the case in which the
leader’s decision variables are continuous and the case in which they are integer.
The solution algorithm that the authors develop is based on the theory of paramet-
ric integer programming and runs in polynomial time when the number of decision
variables of the follower is fixed. If the infimum of the problem is not attained,
the algorithm is able, under the same assumption, to find an ε-optimal solution
whose objective value approximates the sought infimum in polynomial time, too.
The authors do not report computational results demonstrating the performance of
the algorithm.

Before closing this section, it is worthwhile discussing a special solution method-
ology that can be applied whenever the lower problem is linear and continuous, in-
dependently of the exact nature of the upper problem. This methodology consists of
replacing the lower level problem with corresponding optimality conditions, which
set the objective function values of the lower level primal and dual problems equal,
while also ensuring primal and dual feasibility. In a sense, this approach seems
equivalent to the KKT based approaches; yet it exhibits a significant advantage,
which stems from the fact that it avoids the introduction of the (nonlinear) com-
plementarity conditions. Thus, the resulting problem can be readily solved through
solution methodologies that can handle problems such as the original upper level
problem. Garcés et al. [48] and Baringo and Conejo [15] have utilized this solution
methodology in the context of power market optimization.

8.5 Bilevel Programming Applications

Bilevel programming formulations are encountered in the context of several in-
terdisciplinary areas, such as agricultural planning, government policy making,
economic planning, financial management, warfare optimization, transportation
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planning, optimal pricing, ecological programming, chemical design, production
planning, optimal resource allocation, etc. One of the main domains of bilevel pro-
gramming applications is decision-making in electricity markets. In that context,
market agents (typically energy producers) aim to maximize the profit they will re-
alize from participating in an energy market. With the decisions of the market agents
known, on the other hand, the market operator aims to clear the market in the lowest
possible cost (i.e., the highest possible benefit for the energy consumers). Since a
separate optimization problem needs to be solved for the clearance of the market, the
overall problem, on the individual agent’s view, is an optimization problem (agent
decision making) constrained by another optimization problem (market clearing),
i.e., a bilevel programming model.

Ruiz and Conejo [72] consider supply function offering by a strategic electricity
producer using a bilevel model whose upper-level problem represents the strate-
gic behavior of the producer who seeks to maximize his profit, and whose lower-
level problem represents the clearing of the market under many demand constraints.
Garcés et al. [48] address the electricity transmission expansion planning problem
considering a bilevel programming approach, whose upper-level problem represents
transmission investment decisions (in power lines), and whose lower level problem
describes the clearance of the market. Kazempour et al. [56] analyze generation
capacity investments by a strategic electricity producer using a bilevel approach,
whose upper-level problem represents the producer investment decisions and a col-
lection of lower-level problems describes market clearing under many operational
conditions. Baringo and Conejo [14] address investment problems pertaining to non-
dispatchable electricity producers (wind and solar power facilities) via a bilevel
model whose upper-level problem represents investment in non-dispatchable pro-
duction units and a number of lower-level problems describe market clearing under
many scenarios of wind/solar energy production. Baringo and Conejo [15] extend
this work by simultaneously considering investment decisions in network reinforce-
ments and in renewable production facilities. Finally, Pandzic et al. [71] address the
preventive maintenance scheduling of power transmission lines within a yearly time
framework using a bilevel approach: the upper-level problem represents line main-
tenance decisions aiming to maximize security in the system, whereas a collection
of lower-level problems model the clearance of the market under different demand
conditions.

Hobbs and Nelson [53] introduce another application of bilevel programming
in the electric utility industry. The leader is seen as the electric utility who seeks to
determine the rates so as to optimize a cost/benefit related objective, whereas the fol-
lower represents the customers, who aim to decide their energy consumption, so as
to maximize their individual benefit. In another related application, Motto et al. [67]
model the vulnerability analysis of an electric grid under terrorist threat using a
mixed-integer nonlinear bilevel program. The objectives of the leader and the fol-
lower are in direct conflict, with the leader trying to maximize the damage caused on
the network, and the follower trying to minimize it. Salmerón et al. (2004), Brown et
al. (2006) and Salmerón et al. (2009) consider similar problem types, which involve
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an informed attacker seeking to maximize system damage, and an informed system
operator who is reacting in order to minimize such damage.

Several transportation/traffic problems have been addressed using bilevel opti-
mization methodologies, as also documented by Migdalas [64]. LeBlanc and Boyce
[59] formulate the transportation network design problem as a linear bilevel prob-
lem. At the upper level of the model, the leader minimizes the cost associated with
the implementation of a set of network improvements aimed mainly at increasing
its flow capacities, whereas at the lower level, the network users minimize their flow
cost under these improvements. The authors propose a modification of the algo-
rithm that has been proposed by Bard [8] in order to solve this problem. A formula-
tion of the network design problem as a bilevel linear program is also presented by
BenAyed et al. [18].

Suh and Kim [83] consider two bilevel programming formulations for the net-
work design problem, in which the leader minimizes the cost associated with the
increase in capacity of several network links, whereas the follower solves a user-
equilibrium route choice problem. The authors develop a descent-type heuristic al-
gorithm for the solution of the problem and compare its performance against that of
other existing ones. In a related work, BenAyed et al. [19] formulate the highway
network design problem as a linear bilevel optimization model and solve it through
a specialized algorithm that decomposes the lower level problem into separate
problems.

Constantin and Florian [38] develop a bilevel programming model for the prob-
lem of optimizing frequencies of transit lines in a transportation network. In the
associated formulation, both the leader and the follower have the same objective
function, although their decision variables differ. The authors solve this problem
with a projected subgradient algorithm and illustrate its application on different
case studies. Labbe et al. [58] formulate a bilevel model, in which the leader wants
to maximize revenues from a taxation scheme, whereas the follower reacts to these
regulations in order to minimize the cost payments he is entitled to. The authors
illustrate the application of the model on optimal highway toll pricing through a
numerical example. Maher et al. [62] formulate the trip matrix estimation and the
traffic signal optimization problems as bilevel programs. They develop a neighbor-
hood search solution algorithm that can be applied to both problems with minor
modifications and illustrate its behavior on simple examples.

Yin [92] considers a multiobjective bilevel optimization model for the problem
of setting tolls in a highway network. The objectives optimized by the leader are
related to the travel cost and the total revenue, whereas the lower level problem
represents a network equilibrium that describes users’ route choice behavior. The
author applies a genetic algorithm for the solution of the problem, and illustrates its
application on a numerical example. Cote et al. [39] introduce a bilevel model for
solving the pricing/fare optimization problem in the airline industry. Acting as the
airline operator, the leader maximizes revenues, whereas the follower minimizes an
aggregate function expressing the disutility of the passengers. The authors illustrate
the applicability of the model on a small numerical example. Marinakis et al. [63]
introduce a bilevel formulation for the vehicle routing problem. At the upper level
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of the model, the leader assigns vehicles to customers, whereas at the lower level,
the follower finds the minimum cost route for each vehicle. The authors propose a
genetic algorithm for the solution of the problem. Erkut and Gzara [45] develop a
bilevel programming model for the network design problem for hazardous material
transportation, in which the government acts as the leader making decisions that
concern the structure of the network, whereas the carriers (follower) optimize their
routes, given these decisions. The authors solve the problem with a heuristic solution
method that always finds a stable solution.

Saharidis et al. [75] study the berth scheduling problem with customer differ-
entiation. A new methodological approach based on bilevel optimization is used
in order to model the different objectives that are present in a container terminal.
Such objectives are often non-commensurable, and gaining an improvement on one
of them often causes degrading performance on the others. An iterative algorithm
based on the k-th best algorithm is proposed in order to solve the resulting problem.
Finally, Golias et al. [50] deal with the problem of scheduling inbound trucks at
a cross-docking facility with two conflicting objectives: minimize the total service
time for all the inbound trucks, and minimize the delayed completion of service for
a subset of the inbound trucks, which are considered as preferential customers. The
problem is formulated both as a biobjective and as a mixed integer bilevel problem.

In the context of production and process optimization, Clark and Westerberg [34]
provide a bilevel formulation for chemical process design optimization, and solve
it through two specialized approaches that find local optima. The first approach is
based on an active set strategy for the inner problem and the second on a relax-
ation of the complementarity conditions. Clark and Westerberg [35] extended this
work by refining these two approaches and comparing their performance on a pro-
cess design problem. Nicholls [68] develops a nonlinear bilevel optimization model
for aluminum production, and solves it with a vertex enumeration algorithm that is
based on the grid search algorithm proposed by Bard [8]. Mitsos et al. [65] consider
a bilevel model for parameter estimation in phase equilibrium problems. The model
includes multiple lower level problems, each of which is associated with a separate
experiment. The leader minimizes the errors between predicted and measured val-
ues, whereas each follower minimizes the Gibbs free energy. The authors illustrate
the model on several binary mixture case studies.

Ryu et al. [73] address bilevel decision-making problems under uncertainty in
the context of enterprise-wide supply chain optimization, with the upper level cor-
responding to a plant planning problem, and the lower level corresponding to a
distribution network problem. The authors solve the problem through a parametric
based solution methodology and illustrate its application on a numerical example.
Cao and Chen [31] introduce a bilevel optimization model to address the capacitated
plant selection problem. At the upper level, a central decision maker selects which
plants to establish, so that the related cost is minimized. At the lower level, the aim
is to minimize the operational cost of the selected plants. The authors transform the
problem into a single level program using the KKT optimality conditions, linearize
the nonlinear terms through an equivalent reformulation, and solve the resulting
problem with standard commercial optimization software.
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Amouzegar and Moshirvaziri [2] introduce a bilevel optimization model for
waste capacity planning and facility location. At the upper level of the model, the
government, acting as the leader, maximizes social welfare via taxation, whereas at
the lower level, the firms optimize their collective location/allocation problem after
observing the leader’s decisions. The authors solve the problem through a modifica-
tion of an existing penalty solution methodology for bilevel programming. Dempe et
al. [43] develop a discrete bilevel program to model the problem of minimizing the
cash-out penalties of a natural gas shipper. The authors reformulate the lower level
problem as a generalized transportation problem and solve the resulting bilevel pro-
gram with the algorithm of White and Anandalingam [91].

In the context of warfare optimization, Bracken and McGill [23] formulate
several defense related problems as bilevel optimization models. They study their
general characteristics and key properties, and discuss their main similarities and
differences. They also point to previous works that can be utilized for their so-
lution. Anandalingam and Apprey [3] examine conflict resolution problems using
multi-level (including bilevel) programming and illustrate their methodology on an
application in a water conflict problem between two countries.

A review on multi-level approaches for firm-related organizational issues has
been presented by Burton and Obel [25]. Cassidy et al. [32] present a bilevel model
for optimal resource allocation of government funds to state projects. Acting as the
leader, the government tries to allocate the available budget to the states as evenly
as possibly in order to minimize their total dissatisfaction resulting from the per-
centage of the total budget they are entitled to. Acting as the follower, on the other
hand, each state maximizes the return attained from the utilization of the budget it
gets allocated. The authors solve the problem through a parametric programming
enumeration procedure and illustrate its application on small numerical examples.

Onal et al. [70] develop a bilevel optimization model for agricultural credit dis-
tribution. The government plays the role of the leader in this model, maximizing
the total agricultural output value. The follower’s objective is to maximize the total
surplus of all consumers and producers. The authors solve the problem through a
heuristic procedure which is a modification of the algorithm proposed by Bard [9].
They also illustrate the application of the proposed methodology on a case study.

In one of the earliest applications of bilevel programming, Candler and Nor-
ton [29] address a policy development problem, in which the leader (governmen-
t/manager, etc.) wants to select a policy (tax rates, etc.) at the upper level, so as
to maximize some appropriate objective function, whereas the follower (firms/con-
sumers, etc.) optimizes some objective function related to its behavior/operation
given that policy. The authors demonstrate the proposed methodology on an agri-
cultural case study.

The final bilevel programming application concerns a procedure that aims to
build a model that will be able to provide a description of the behavior of a sys-
tem under consideration, as well as a prediction for the future. Saharidis et al. [76]
present a novel hierarchical bilevel implementation of the cross validation method.
In this bilevel scheme, the leader optimization problem builds (trains) the model,
whereas the follower checks (tests) the developed model. The problem of synthesis
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and analysis of regulatory networks is used to compare the classical cross validation
method to the proposed methodology referred to as bilevel cross validation.

8.6 Summary

Bilevel programming is a very important branch of mathematical programming that
has stimulated the interest of operations researchers for many years. In the present
work, we have attempted to review in rational sequence the exact solution method-
ologies that have been developed for the solution of linear bilevel and mixed integer
bilevel problems, as well as to provide the most recent developments on the subject.
We have also tried to provide an extensive list of relevant applications that have been
treated through the development of bilevel optimization models.

Over the last decades, many significant results have been reported in the bilevel
programming related literature, some of which have been revised or restated in later
works, in order to be directly applicable and/or mathematically correct. As a con-
sequence, although initially introduced as exact, some of the algorithms described
above have turned out to exhibit a rather heuristic behavior. In order to assist re-
searchers who are active in the area, the present survey also documents and catego-
rizes these works. We believe that the present work can be proven particularly useful
as a study and reference guide to the numerous researchers who currently engage
themselves with bilevel programming problems, as well as to those that will do so
in the future.
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Chapter 9
Bilevel Multi-Objective Optimization and
Decision Making

Ankur Sinha and Kalyanmoy Deb

Abstract. Bilevel optimization problems are special kind of optimization problems
which require every feasible upper-level solution to satisfy the optimality conditions
of a lower-level optimization problem. Due to complications associated in solving
such problems, they are often treated as single-level optimization problems, and
approximation principles are employed to handle them. These problems are com-
monly found in many practical problem solving tasks which include optimal control,
process optimization, game-playing strategy development, transportation problems,
coordination of multi-divisional firms, and others. The chapter addresses certain in-
tricate issues related to solving multi-objective bilevel programming problems, and
describes recent methodologies to tackle such problems. The first methodology is a
hybrid evolutionary-cum-local-search based algorithm to generate the entire Pareto-
frontier of multi-objective bilevel problems. The second methodology is a decision
maker oriented approach, where preferences from the upper level decision maker
are incorporated in the intermediate steps of the algorithm, leading to reduced com-
putational expense. Both these methodologies are tested on a set of recently pro-
posed test problems. The test problems involve various intricacies which could be
encountered in multi-objective bilevel problem solving, and the algorithms have
been shown to successfully handle these problems. The study opens up a variety of
issues related to multi-objective bilevel programming, and shows that evolutionary
methods are effective in solving such problems.
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9.1 Introduction

Optimization is an inter-disciplinary mathematical science which refers to the pro-
cess of finding the optimal solutions for a given number of objectives, subject to
a set of constraints [Reklaitis et al.(1983), Rao(1984)]. Constraint satisfaction pro-
vides feasible members for the optimization problem, with one or more feasible
members being the optimal solutions. The constraints for optimization problems are
commonly in the form of equalities or inequalities, and such problems are single
level optimization tasks. However, the practice always seems to offer more, and
there can be problems with another optimization task within the constraints, giving
rise to two-levels of optimization. The original problem is referred as an upper level
optimization problem and the one within the constraints is referred as a lower level
optimization problem. Such problems are bilevel optimization problems, where the
two levels of optimization tasks are inter-twined in a way that solving the lower level
optimization problem along with satisfying the other constraints provide a feasible
member for the upper level problem. Bilevel programming problems can be found
in many practical optimization problems [Bard(1998)]; for example, a solution is
considered feasible for the upper level optimization problem only if it satisfies cer-
tain equilibrium, stability or conservation principles. To ensure that the requisite
condition or a principle is satisfied, a lower level optimization task is required to
be solved.

Lack of efficient methodologies and the computational expense required to solve
bilevel problems to optima, have deterred practitioners to solve the problem in its
original form. In practice [Bianco et al.(2009), Dempe(2002), Pakala(1993)], these
problems are not usually treated as bilevel programming problems, instead
some approximate methodologies are used to replace the lower level problem. The
approximate methodologies are inept to find true optimal solutions for bilevel prob-
lems, which provides a motivation to explore better solution methodologies to handle
such problems. Bilevel programming problems with single objectives at both level
have received some attention from theory [Dempe et al.(2006)], algorithm develop-
ment and application [Alexandrov and Dennis(1994), Vicente and Calamai(2004)],
and even using evolutionary algorithms [Yin(2000), Wang et al.(2008)].
However, apart from a few recent studies [Eichfelder(2007), Eichfelder(2008),
Halter and Mostaghim(2006), Shi and Xia(2001)] and our recent evolutionary multi-
objective optimization (EMO) studies [Deb and Sinha(2009a), Deb and Sinha(2009b),
Sinha and Deb(2009), Deb and Sinha(2010)], multi-objective bilevel programming
studies are scarce in both classical and evolutionary optimization fields. The lack of
interests for handling bilevel multi-objective problems is not due to lack of practical
problems, but more due to the added complexities offered by multiple objectives, in
addition to the complex interactions of the two levels.

In this chapter, we briefly outline a generic multi-objective bilevel optimiza-
tion problem and then provide an overview of existing studies both on single and
multi-objective bilevel programming. The chapter takes a closer look at the intri-
cacies of bilevel multi-objective programming problems and describes a procedure
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to construct bilevel multi-objective test problems. It describes solution methodolo-
gies to handle multiple objectives in bilevel context. The first solution methodol-
ogy is a hybrid and self-adaptive bilevel evolutionary multi-objective optimization
(H-BLEMO) algorithm, which aims at generating the entire Pareto-optimal front
for the multi-objective bilevel problem. The second methodology extends the first
methodology by incorporating decision maker’s preferences at the upper level, and
produces the most preferred solution on the Pareto-front. Both the methodologies
have been evaluated on the recently proposed set of test problems and a scalability
study has been performed by considering different problem sizes ranging from 10
to 40 decision variables.

9.2 Multi-objective Bilevel Optimization Problems

A multi-objective bilevel optimization problem has an upper and lower level of
multi-objective optimization task. The lower level optimization problem belongs
to the constraint of the upper level optimization problem, such that, a member can
be feasible at the upper level only if it is Pareto-optimal for the lower level opti-
mization problem. A general multi-objective bilevel optimization problem can be
described as follows:

Minimize(xu,xl)
F(x) = (F1(x), . . . ,FM(x)) ,

subject to xl ∈ argmin(xl )

{
f(x) = ( f1(x), . . . , fm(x))

∣
∣

g(x)≥ 0,h(x) = 0} ,
G(x)≥ 0,H(x) = 0,

x(L)i ≤ xi ≤ x(U)
i , i = 1, . . . ,n.

(9.1)

In the above description of a generic multi-objective bilevel problem, F1(x), . . . ,
FM(x) are upper level objectives and f1(x), . . . , fm(x) are lower level objectives.
The functions g(x) and h(x) determine the feasible space for the lower level prob-
lem. The decision vector x is formed by two smaller vectors xu and xl , such that
x = (xu,xl). At the lower level, optimization is performed only with respect to the
variables xl , therefore, the solution set of the lower level problem can be represented
as a function of xu, or as x∗l (xu). This means that the upper level variables xu, act as
a parameter to the lower level problem and hence the lower level optimal solutions
x∗l are a function of the upper level vector xu. The functions G(x) and H(x) along
with the Pareto-optimality to the lower level problem determine the feasible space
for the upper level optimization problem. Both sets xl and xu are decision variables
for the upper level problem.

Figure 9.1 shows feasible regions for a multi-objective bilevel problem. The
problem has two objectives both at the upper and the lower level. The graphs on
the corners of the figure correspond to four different upper level variable vectors

x(1)u ,x(2)u ,x(3)u and x(4)u . In these graphs, we show with arrows, the possible rela-
tionships between members in the lower level space and their positions in the upper

level space. For the lower level problem corresponding to x(1)u , we have shown a few
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Fig. 9.1 Two objective bilevel minimization problem. The graph in the centre shows the upper
level feasible region along with members which are feasible, infeasible or optimal. The corner
graphs show the lower level feasible region for different xu along with members which are
lower level feasible or lower level optimal.

members in the lower level space. A lower level feasible but non-optimal member
always corresponds to an infeasible position at the upper level. As shown in the fig-
ure, a lower level optimal member may also be infeasible at the upper level because
of some equality or inequality upper level constraint. For the lower level problem

corresponding to x(2)u , we observe that one of the lower level optimal members is
feasible at the upper level, and another lower level optimal member is infeasible at
the upper level because of some upper level constraint. For the lower level problem

corresponding to x(3)u , we observe that one of the lower level optimal members is
feasible at the upper level, and the other lower level optimal member is also upper

level optimal. Finally, for the lower level problem corresponding to x(4)u , we ob-
serve that a lower level feasible but non-optimal member is infeasible at the upper
level, and the lower level optimal member is feasible at the upper level. Therefore,
the graphs present the possible scenarios in a bilevel multi-objective problem. It is
noteworthy here, if the lower level is not optimized properly we might end up with a
non-optimal lower level solution, and hence an infeasible solution at the upper level.
This infeasible solution might lie ahead of the upper level frontier, as is the case with

x(4)u , which would dominate and eliminate the true Pareto-optimal solutions at the
upper level.
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9.2.1 Real World Problems

Bilevel optimization problems are commonly found in practice. These problems
arise from hierarchical problems where the strategy for solving the overall system
depends on optimal strategies of solving a number of subsystems. In this subsection,
we illustrate a few examples, where the first two have single objectives at all levels,
and the later two are multi-objective bilevel problems.

9.2.1.1 Engineering Problems

Many engineering design problems in practice involve an upper level optimization
problem requiring that a feasible solution to the problem must satisfy certain phys-
ical conditions, such as satisfying a network flow balance or satisfying stability
conditions or satisfying some equilibrium conditions. If simplified mathematical
equations for such conditions are easily available, often they are directly used as
constraints and the lower level optimization task is avoided. But in many problems
establishing whether a solution is stable or in equilibrium can be established by en-
suring that the solution is an optimal solution to a derived optimization problem.
Such a derived optimization problem can then be formulated as a lower level prob-
lem in a bilevel optimization problem. A common source of bilevel problems is
in chemical process optimization problems, in which the upper level problem opti-
mizes the overall cost and quality of product, whereas the lower level optimization
problem optimizes error measures indicating how closely the process adheres to dif-
ferent theoretical process conditions, such as mass balance equations, cracking, or
distillation principles [Dempe(2002)].

9.2.1.2 Environmental Economics

Multi-level solution methodologies are useful in handling a number of problems in
environmental economics, we state one such example here [Dempe(2002)]. It is a
well known theory in economics that market failures occur when the market is un-
able to allocate scarce resources to generate the maximum social welfare. Keeping
this statement in mind consider an environmental setting, where increase in profit for
one firm leads to increase in environmental pollution, and increase in environmental
pollution leads to a decrease in profit for another firm. Under such circumstances,
the government tries to protect the second firm by levying taxes on the first firm.
The tax determination problem for maximizing social welfare in this case is a tri-
level problem. The upper level problem is a social welfare function which is to be
maximized, and the two lower level problems are profit maximization problem for
the two firms. The first firm maximizes its profit subject to the taxes, and the second
firm maximizes its profit subject to the production of first firm. A multi-objective
social welfare function could also be considered such that the problem becomes
multi-objective at the upper level.
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9.2.1.3 Transportation Problems

It is easy to find bilevel problems in transportation. Here, we state an example
[Wang and Ehrgott(2011)] of a tolled road network, where the objectives at the
upper level are to minimize system travel time and total vehicle emissions. The up-
per level is an optimization task necessary for the government or a planning body.
The lower level is a network equilibrium problem of traffic flow which results from
the tax proposed by the planning body. The lower level decision makers are users,
who have two objectives in their mind, namely, minimize travel time and minimize
toll cost. The users are rational in the sense that they will choose one of the effi-
cient paths. Based on this bilevel formulation, a set of efficient toll charges can be
obtained.

Fig. 9.2 A company scenario with upper and lower level decision makers

9.2.1.4 A Company Scenario

The bilevel problems are also similar in principle to the Stackelberg games
[Fudenberg and Tirole(1993), Wang and Periaux(2001)] in which a leader makes

the first move and a follower then maximizes its move considering the leader’s
move. The leader has an advantage that it can control the game by making its move
in a way so as to maximize its own gain knowing that the follower will always
maximize its own gain. For an example [Zhang et al.(2007)], consider a company
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scenario shown in Figure 9.2, where a CEO (leader) may be interested in maximiz-
ing net profits of the company and quality of products, and head of branch (fol-
lower) may maximize his own net profit and worker satisfaction. The CEO knows
that for each of his strategy, the head of branch will optimize his own objectives.
The CEO must then adjust his own decision variables so that CEO’s own objec-
tives are maximized. Stackelberg’s game model and its solutions are used in many
different problem domains, including engineering design [Pakala(1993)], security
applications [Paruchuri et al.(2008)], and others.

9.3 Existing Classical and Evolutionary Methodologies

The importance of solving bilevel optimization problems, particularly problems
having a single objective in each level, has been recognized amply in the optimiza-
tion literature. The research has been focused in both theoretical and algorithmic
aspects. However, there has been a lukewarm interest in handling bilevel problems
having multiple conflicting objectives in any or both levels. Here we provide a brief
description of the main research outcomes so far in both single and multi-objective
bilevel optimization areas.

9.3.1 Theoretical Developments

Several studies exist in determining the optimality conditions for an upper level so-
lution. The difficulty arises due to the existence of another optimization problem as a
hard constraint to the upper level problem. Usually the Karush-Kuhn-Tucker (KKT)
conditions of the lower level optimization problems are first written and used as
constraints in formulating the KKT conditions of the upper level problem, involving
second derivatives of the lower level objectives and constraints as the necessary con-
ditions of the upper level problem. However, as discussed in [Dempe et al.(2006)],
although KKT optimality conditions can be written mathematically, the presence of
many lower level Lagrange multipliers and an abstract term involving coderivatives
makes the procedure difficult to be applied in practice.

[Fliege and Vicente(2006)] suggested a mapping concept in which a bilevel
single-objective optimization problem (one objective each in upper and lower level
problems) can be converted to an equivalent four-objective optimization problem
with a special cone dominance concept. Although the idea may apparently be ex-
tended for bilevel multi-objective optimization problems, no such suggestion with
an exact mathematical formulation is made yet. Moreover, derivatives of original
objectives are involved in the problem formulation, thereby making the approach
limited to only differentiable problems.
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9.3.2 Algorithmic Developments

One simple algorithm for solving bilevel optimization problems using a point-by-
point approach would be to directly treat the lower level problem as a hard con-
straint. Every solution (x = (xu,xl)) must be sent to the lower level problem as an
initial point and an optimization algorithm can then be employed to find the optimal
solution x∗l of the lower level optimization problem. Then, the original solution x
of the upper level problem must be repaired as (xu,x∗l ). The employment of a lower
level optimizer within the upper level optimizer for every upper level solution makes
the overall search a nested optimization procedure, which may be computationally
an expensive task. Moreover, if this idea is to be extended for multiple conflicting
objectives in the lower level, for every upper level solution, multiple Pareto-optimal
solutions for the lower level problem need to be found and stored by a suitable
multi-objective optimizer.

Another idea [Herskovits et al.(2000), Bianco et al.(2009)] of handling the lower
level optimization problem having differentiable objectives and constraints is to
include the explicit KKT conditions of the lower level optimization problem di-
rectly as constraints to the upper level problem. This will then involve Lagrange
multipliers of the lower level optimization problem as additional variables to the
upper level problem. As KKT points need not always be optimum points, fur-
ther conditions must have to be included to ensure the optimality of lower level
problem. For multi-objective bilevel problems, corresponding multi-objective KKT
formulations need to be used, thereby involving further Lagrange multipliers and
optimality conditions as constraints to the upper level problem. Despite
these apparent difficulties, there exist some useful studies, including reviews
on bilevel programming [Colson et al.(2007), Vicente and Calamai(2004)],
test problem generators [Calamai and Vicente(1994)], nested bilevel linear program-
ming [Gaur and Arora(2008)], and applications [Fampa et al.(2008), Abass(2005),
Koh(2007)], mostly in the realm of single-objective bilevel optimization.

Recent studies by [Eichfelder(2007),Eichfelder(2008)] concentrated on handling
multi-objective bilevel problems using classical methods. While the lower level
problem uses a numerical optimization technique, the upper level problem is han-
dled using an adaptive exhaustive search method, thereby making the overall pro-
cedure computationally expensive for large-scale problems. This method uses the
nested optimization strategy to find and store multiple Pareto-optimal solutions for
each of finitely-many upper level variable vectors.

Another study by [Shi and Xia(2001)] transformed a multi-objective bilevel pro-
gramming problem into a bilevel ε-constraint approach in both levels by keeping
one of the objective functions and converting remaining objectives to constraints.
The ε values for constraints were supplied by the decision-maker as different lev-
els of ‘satisfactoriness’. Further, the lower-level single-objective constrained opti-
mization problem was replaced by equivalent KKT conditions and a variable metric
optimization method was used to solve the resulting problem.
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Certainly, more efforts are needed to devise effective classical methods for multi-
objective bilevel optimization, particularly to handle the upper level optimization
task in a more coordinated way with the lower level optimization task.

9.3.3 Evolutionary Methods

Several researchers have proposed evolutionary algorithm based approaches in solv-
ing single-objective bilevel optimization problems. As early as in 1994,
[Mathieu et al.(1994)] proposed a GA-based approach for solving bilevel linear pro-
gramming problems having a single objective in each level. The lower level prob-
lem was solved using a standard linear programming method, whereas the upper
level was solved using a GA. Thus, this early GA study used a nested optimization
strategy, which may be computationally too expensive to extend for nonlinear and
large-scale problems. [Yin(2000)] proposed another GA based nested approach in
which the lower level problem was solved using the Frank-Wolfe gradient based lin-
earized optimization method and claimed to solve non-convex bilevel optimization
problems better than an existing classical method. [Oduguwa and Roy(2002)] sug-
gested a coevolutionary GA approach in which two different populations are used
to handle variable vectors xu and xl independently. Thereafter, a linking procedure
is used to cross-talk between the populations. For single-objective bilevel optimiza-
tion problems, the final outcome is usually a single optimal solution in each level.
The proposed coevolutionary approach is viable for finding corresponding single
solution in xu and xl spaces. But in handling multi-objective bilevel programming
problems, multiple solutions corresponding to each upper level solution must be
found and maintained during the coevolutionary process. It is not clear how such a
coevolutionary algorithm can be designed effectively for handling multi-objective
bilevel optimization problems. We do not address this issue in this chapter, but
recognize that Oduguwa and Roy’s study ( [Oduguwa and Roy(2002)]) was the
first to suggest a coevolutionary procedure for single-objective bilevel optimization
problems. Since 2005, a surge in research in this area can be found in algorithm
development mostly using the nested approach and the explicit KKT conditions of
the lower level problem, and in various application areas [Hecheng and Wang(2007),
Li and Wang(2007), Dimitriou et al.(2008), Yin(2000), Mathieu et al.(1994)],
[Sun et al.(2006), Wang et al.(2007), Koh(2007), Wang et al.(2005)],
[Wang et al.(2008)].

[Li et al.(2006)] proposed particle swarm optimization (PSO) based procedures
for both lower and upper levels, but instead of using a nested approach, they pro-
posed a serial application of upper and lower levels iteratively. This idea is appli-
cable in solving single-objective problems in each level due to the sole target of
finding a single optimal solution. As discussed above, in the presence of multiple
conflicting objectives in each level, multiple solutions need to be found and pre-
served for each upper level solution and then a serial application of upper and lower
level optimization does not make sense for multi-objective bilevel optimization.
[Halter and Mostaghim(2006)] also used PSO on both levels, but since the lower
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level problem in their application problem was linear, they used a specialized linear
multi-objective PSO algorithm and used an overall nested optimization strategy at
the upper level.

Recently, we proposed a number of EMO algorithms through conference publi-
cations [Deb and Sinha(2009a), Deb and Sinha(2009b), Sinha and Deb(2009)] using
NSGA-II to solve both level problems in a synchronous manner. First, our method-
ologies were generic so that they can be used to linear/nonlinear, convex/non-
convex, differentiable/non-differentiableand single/multi-objective problems at both
levels. Second, our methodologies did not use the nested approach, nor did they
use a serial approach, but employed a structured intertwined evolution of upper
and lower level populations. But they were computationally demanding. However,
these initial studies made us understand the complex intricacies by which both
level problems can influence each other. Based on this experience, we suggested
a less-structural, self-adaptive, computationally fast, and a hybrid evolutionary al-
gorithm coupled with a local search procedure for handling multi-objective bilevel
programming problems. This procedure [Deb and Sinha(2010)] and its extension
[Sinha(2011)] are discussed in detail in this chapter.

Bilevel programming problems, particularly with multiple conflicting objectives,
should have been paid more attention than what has been made so far. As more and
more studies are performed, the algorithms must be tested and compared against
each other. This process needs an adequate number of test problems with tunable
difficulties. In the next section, we describe a generic procedure for developing test
problems.

9.3.4 Development of Tunable Test Problems

Bilevel multi-objective optimization problems are different from single-level
multi-objective optimization problems. In bilevel multi-objective problems Pareto-
optimality of a lower level multi-objective optimization problem is a feasibility
requirement to the upper level problem. Thus, while developing a bilevel multi-
objective test problem, we should have ways to test an algorithm’s ability to handle
complexities in both lower and upper level problems independently and addition-
ally their interactions. Further, the test problems should be such that we would have
a precise knowledge about the exact location (and relationships) of Pareto-optimal
points. Thinking along these lines, we outline a number of desired properties in a
bilevel multi-objective test problem:

1. Exact location of Pareto-optimal solutions in both lower and upper level prob-
lems are possible to be established. This will facilitate a user to evaluate the
performance of an algorithm easily by comparing the obtained solutions with the
exact Pareto-optimal solutions.

2. Problems are scalable with respect to number of variables. This will allow a
user to investigate whether the proposed algorithm scales well with number of
variables in both lower and upper levels.
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3. Problems are scalable with respect to number of objectives in both lower and
upper levels. This will enable a user to evaluate whether the proposed algorithm
scales well with the number of objectives in each level.

4. Lower level problems are difficult to solve to Pareto-optimality. If the lower level
Pareto-optimal front is not found exactly, the corresponding upper level solu-
tion are not feasible. Therefore, these problems will test an algorithm’s ability to
converge to the correct Pareto-optimal front. Here, ideas can be borrowed from
single-level EMO test problems [Deb et al.(2005)] to construct difficult lower
level optimization problems. The shape (convex, non-convex, disjointedness and
multi-modality) of the Pareto-optimal front will also play an important role in
this respect.

5. There exists a conflict between lower and upper level problem solving tasks. For
two solutions x and y of which x is Pareto-optimal and y is a dominated solution
in the lower level, solution y can be better than solution x in the upper level.
Due to these discrepancies, these problems will cause a conflict in converging to
the appropriate Pareto-optimal front in both lower and upper level optimization
tasks.

6. Extension to higher level optimization problems is possible. Although our focus
here is for bilevel problems only, test problems scalable to three or higher levels
would be interesting, as there may exist some practical problems formulated in
three or higher levels. On the other hand, it will also be ideal to have bilevel test
problems which will degenerate to challenging single level test problems, if a
single objective function is chosen for each level.

7. Different lower level problems may contribute differently to the upper level front
in terms of their extent of representative solutions on the upper level Pareto-
optimal front. These test problems will test an algorithm’s ability to emphasis
different lower level problems differently in order to find a well-distributed set of
Pareto-optimal solutions at the upper level.

8. Test problems must include constraints at both levels. This will allow algorithms
to be tested for their ability to handle constraints in both lower and upper level
optimization problems.

Different principles are possible to construct test problems following the above
guidelines. Here, we present a generalized version of a recently proposed proce-
dure [Deb and Sinha(2009a), Deb and Sinha(2010)].

9.3.4.1 A Multi-objective Bilevel Test Problem Construction Procedure

We suggest a test problem construction procedure for a bilevel problem having M
and m objectives in the upper and lower level, respectively. The procedure needs at
most three functional forms and is described below:

Step 1: First, a parametric trade-off function ΦU : RM−1→R
M which determines

a trade-off frontier (v1(u), . . . ,vM(u)) on the F-space as a function of (M− 1)
parameters u (can be considered as a subset of xu) is chosen. Figure 9.3 shows
such a v1-v2 relationship on a two-objective bilevel problem.



258 A. Sinha and K. Deb

Lower

f1

f2
(v1,v2)

F2

F1

level

Pareto−optimal front
B’A’

f2

f1

Lower
level

Derived Upper level

u

t

s

Step 1: Choose

Step 2: Form envelope (U1,U2) at every (v1,v2)

Step 3: Map (U1,U2)

B’

U

V2

V1 Φ

Step 4: Form lower

Step 5: Form upper

to (f1*,f2*) B
C

A

level problem from
(v1,v2) and (U1,U2)

D

A

B

A’

level problem from (f1*,f2*)

C’

D’

Fig. 9.3 A multi-objective bilevel test problem construction procedure is illustrated through
two objectives in both upper and lower levels

Step 2: Next, for every point v on the ΦU -frontier, a (M − 1)-dimensional en-
velope (U1(t), . . . ,UM(t))v) on the F-space as a function of t (having (M− 1)
parameters) is chosen. The non-dominated part of the agglomerate envelope
∪v ∪t

[
(v1(u)+U1(t)v), . . . ,(vM(u)+UM(t)v)

]
constitutes the overall upper

level Pareto-optimal front. Figure 9.3 indicates this upper level Pareto-optimal
front and some specific Pareto-optimal points (marked with bigger circles) de-
rived from specific v-vectors.

Step 3: Next, for every point v on the ΦU -frontier, a mapping function ΦL :
R

M−1 → R
m−1 which maps every v-point from the U-frontier to the lower

level Pareto-optimal front ( f ∗1 (s), . . . , f ∗m(s))v is chosen. Here, s is a (m− 1)-
dimensional vector and can be considered as a subset of xl . Figure 9.3 shows this
mapping The envelope A′C′B′ (a circle in the figure) is mapped to the lower level
Pareto-optimal frontier ACB (inlet figure on top).

Step 4: After these three functions are defined, the lower level problem can
be constructed by using a bottom-up procedure adopted in [Deb et al.(2005)]
through additional terms arising from other lower level decision variables: f j(xl)
= f ∗j (s) + e j(xl\s) with e j ≥ 0. The task of the lower level optimization task
would be to make the e j term zero for each objective. The term e j can be
made complex (multi-modal, non-linear, or large-dimensional) to make the con-
vergence to the lower level Pareto-optimal front difficult by an optimization
algorithm.

Step 5: Finally, the upper level objectives can be formed from u j functions by
including additional terms from other upper level decision variables. An additive
form is as follows: Fj(x) = u j(u)+E j(xu\u) with E j ≥ 0. Like the e j term, the
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term E j can also be made complex for an algorithm to properly converge to the
upper level Pareto-optimal front.

Step 6: Additionally, a number of linked terms l j(xu\u,xl\s) and Lj(xu\u,xl\s)
(non-negative terms) involving remaining xu (without u) and xl (without s) vari-
ables can be added to both lower and upper level problems, respectively, to make
sure a proper coordination between lower and upper level optimization tasks is
needed to converge to the respective Pareto-optimal fronts.

Another interesting yet a difficult scenario can be created with the linked terms. An
identical link term can be added to the lower level problem, but subtracted from
the the upper level problem. Thus, an effort to reduce the value of the linked term
will make an improvement in the lower level, whereas it will cause a deterioration
in the upper level. This will create a conflict in the working of both levels of opti-
mization. Based on this described construction procedure, a set of two-objective test
problems is proposed in [Deb and Sinha(2010)]. The test-suite is called the DS test
problems and has been used in this chapter to evaluate the solution methodologies.
In the next section, we describe the first solution methodology, which can be used
to approximate the Pareto-optimal set of a given multi-objective bilevel problem.

9.4 Hybrid Bilevel Evolutionary Multi-Objective Optimization
(H-BLEMO) Algorithm

The H-BLEMO [Deb and Sinha(2010)] procedure is an extension of our previously
suggested algorithms [Deb and Sinha(2009a), Deb and Sinha(2009b)]. In this sec-
tion, we provide a step-by-step procedure for the algorithm. A sketch of an iteration
of the algorithm and the population structure is shown in Figure 9.4.

An upper level population of size Nu is initialized, which has a subpopulation of
lower level variable set xl for each upper level variable xu. Each xu is shown in the
figure with a dotted line, and its corresponding subpopulation members are shown

with continuous lines. To begin with, the subpopulation size (N(0)
l ) is kept identical

for each xu variable set, but it is allowed to change adaptively with generation T . At
the initialization stage, an empty archive A0 is created, which is shown in the figure
below the upper level population memebers at T = 0. For each xu, we perform a
lower level NSGA-II operation on the corresponding subpopulation which contain
only lower level variables xl . The NSGA-II search is not performed till the true
lower level Pareto-optimal front is found, rather only until a small number of gen-
erations at which the specified lower level termination criterion (discussed in sub-
section 9.9.2) is satisfied. Thereafter, a local search is performed on a few rank-one
lower level solutions until the local search termination criterion is met (discussed in
Step 3 in subsection 9.4.3). The archive is maintained at the upper level containing
solution vectors (xua ,xla), which are optimal at the lower level and non-dominated
at the upper level. The solutions in the archive are updated after every lower level
NSGA-II call. The members of the lower level population undergoing a local search
are lower level optimal solutions and hence are assigned an ‘optimality tag’. These
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Fig. 9.4 A sketch of an iteration of the H-BLEMO algorithm

local searched solutions (xl) are then combined with corresponding xu variables and
become eligible to enter the archive if it is non-dominated when compared to the
existing members of the archive. The dominated members in the archive are then
eliminated. The solutions obtained from the lower level (xl) are combined with cor-
responding xu variables and are processed by the upper level NSGA-II operators to
create a new upper level population. This process is continued till an upper level
termination criterion (described in subsection 9.9.2) is satisfied.

To make the proposed algorithm computationally faster, we have used two dif-
ferent strategies: (i) for every upper level variable vector xu, we do not completely
solve the lower level multi-objective optimization problem, thereby not making our
approach a nested procedure, and (ii) the subpopulation size and number of gen-
erations for a lower level NSGA-II simulation are computed adaptively based on
the relative location of xu compared to archive solutions, thereby making the over-
all procedure less parametric and more computationally efficient in terms of overall
function evaluations. However, before we present a detailed step-by-step procedure,
we discuss the automatic update procedure of population size and termination crite-
ria of the lower level NSGA-II.
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9.4.1 Update of Population Sizes

The upper level population size Nu is kept fixed and is chosen to be proportional to
the number of variables. However, the subpopulation size (Nl) for each lower level
NSGA-II is sized in a self-adaptive manner. Here we describe the procedure.

In a lower level problem, xl is updated by a modified NSGA-II procedure and
the corresponding xu is kept fixed throughout. Initially, The population size of each

lower level NSGA-II (N(0)
l ) is set depending upon the dimension of lower and upper

level variables (|xl | and |xu|, respectively). The number of lower level subpopula-

tions (n(0)s ) signifies the number of independent population members for xu in a

population. Our intention is to set the population sizes (n(0)s and N(0)
l ) for xu and xl

proportionately to their dimensions, yielding

n(0)s

N(0)
l

=
|xu|
|xl | . (9.2)

Noting also that n(0)s N(0)
l = Nu, we obtain the following sizing equations:

n(0)s =

√
|xu|
|xl |Nu, (9.3)

N(0)
l =

√
|xl |
|xu|Nu. (9.4)

For an equal number of lower and upper level variables, n(0)s = N(0)
l =

√
Nu. The

above values are set for the initial population only, but are allowed to get modified
thereafter in a self-adaptive manner by directly relating the location of the corre-
sponding xu variable vector from the points in the archive in the variable space. As
shown in Figure 9.5, first the maximum Euclidean distance (δU ) in the xu-space
among the members of the archive is computed. Then, the Euclidean distance (δu)
between the current xu vector and the closest archive member is computed. The
subpopulation size Nl is then set proportional to the ratio of δu and δU as follows:

u

δU

x1

x2

Archive

Current x_u
x_u space

δ

Fig. 9.5 Computation of δu and δU
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Nl = (round)
δu

δU
N(0)

l . (9.5)

To eliminate the cases with too low or too large population sizes, Nl is restricted be-
tween four (due to the need of two binary tournament selection operations to choose

two parent solutions for a single recombination event in the NSGA-II) and N(0)
l . If

the current xu variable vector is far away from the archive members, a large number
of generations must have to be spent in the corresponding lower level NSGA-II, as
dictated by equation (9.5).

9.4.2 Termination Criteria

In a bilevel optimization, it is clear that the lower level optimization must have to be
run more often than the upper level optimization, as the former task acts as a con-
straint to the upper level task. Thus, any judicial and efficient efforts in terminating
a lower level optimization can make a substantial saving in the overall computa-
tional effort. For this purpose, we first gauge the difficulty of solving all lower level
problems by observing the change in their hypervolume measures only in the initial
generation (T = 0) of the upper level optimization.

The maximum (Hmax) and minimum (Hmin) hypervolume is calculated from the
lower level non-dominated set (with a reference point constructed from the worst
objective values of the set) in every τ generations of a lower level run. The Hl-metric
is then computed as follows:

Hl =
Hmax

l −Hmin
l

Hmax
l +Hmin

l

. (9.6)

If Hl ≤ εl (a threshold parameter) is encountered, indicating that an adequate conver-
gence in the hypervolume measure is obtained, the lower level NSGA-II simulation
is terminated. The number of lower level generations needed to meet the above crite-
rion is calculated for each subpopulation during the initial generation (T = 0) of the
upper level NSGA-II and an average (denoted here as tmax

l ) is computed. Thereafter,
no subsequent lower level NSGA-II simulations are allowed to proceed beyond tl
generations (derived from tmax

l , as calculated below) or the above Hl ≤ εl is satisfied.
We bound the limiting generation (tl) to be proportional to the distance of current
xu from the archive, as follows:

tl = (int)
δu

δU
tmax
l . (9.7)

For terminating the upper level NSGA-II, the normalized change in hypervolume
measure Hu of the upper level population (as in equation (9.6) except that the hy-
pervolume measure is computed in the upper level objective space) is computed in
every τ consecutive generations. When Hu ≤ εu (a threshold parameter) is obtained,
the overall algorithm is terminated. We have used τ = 10, εl = 0.1 (for a quick
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termination) and εu = 0.0001 (for a reliable convergence of the upper level prob-
lem) for all problems in this study.

Now, we are ready to describe the overall algorithm for a typical generation in a
step-by-step format.

9.4.3 Step-by-Step Procedure

At the start of the upper level NSGA-II generation T , we have a population PT of
size Nu. Every population member has the following quantities computed from the
previous iteration: (i) a non-dominated rank NDu corresponding to F and G, (ii) a
crowding distance value CDu corresponding to F, (iii) a non-dominated rank NDl

corresponding to f and g, and (iv) a crowding distance value CDl using f. In addition
to these quantities, for the members stored in the archive AT , we have also computed
(v) a crowding distance value CDa corresponding to F and (vi) a non-dominated rank
NDa corresponding to F and G.

Step 1a: Creation of new xu: We apply two binary tournament selection opera-
tions on members (x=(xu,xl)) of PT using NDu and CDu lexicographically. Also,
we apply two binary tournament selections on the archive population AT using
NDa and CDa lexicographically. Of the four selected members, two participate
in the recombination operator based on stochastic events. The members from
AT participate as parents with a probability of |AT |

|AT |+|PT | , otherwise the members
from PT become the parents for recombination. The upper level variable vec-
tors xu of the two selected parents are then recombined using the SBX operator
[Deb and Agrawal(1995)] to obtain two new vectors of which one is chosen for
further processing at random. The chosen vector is then mutated by the polyno-

mial mutation operator [Deb(2001)] to obtain a child vector (say, x(1)u ).

Step 1b: Creation of new xl : First, the population size (Nl(x
(1)
u )) for the child so-

lution x(1)u is determined by equation (9.5). The creation of xl depends on how

close the new variable set x(1)u is compared to the current archive, AT . If Nl =N(0)
l

(indicating that the xu is away from the archive members), new lower level

variable vectors x(i)l (for i = 1, . . . ,Nl(x
(1)
u )) are created by applying selection-

recombination-mutation operations on members of PT and AT . Here, a parent
member is chosen from AT with a probability |AT |

|AT |+|PT | , otherwise a member from

PT is chosen at random. A total of Nl(x
(1)
u ) child solutions are created by concate-

nating upper and lower level variable vectors together, as follows: ci = (x(1)u ,x(i)l )

for i = 1, . . . ,Nl(x
(1)
u ). Thus, for the new upper level variable vector x(1)u , a sub-

population of Nl(x
(1)
u ) lower level variable vectors are created by genetic opera-

tions from PT and AT .
However, if the lower level population size (Nl(x

(1)
u )) is less than N(0)

l (indicat-
ing that the variable set xu is close to the archive members), a different strategy

is used. First, a specific archive member (say, x(a)u ) closest to x(1)u is identified.
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Instead of creating new lower level variable vectors, Nl(x
(1)
u ) vectors are cho-

sen from the subpopulation to which x(a)u belongs. Complete child solutions are
created by concatenating upper and lower level variables vectors together. If how-

ever the previous subpopulation does not have Nl(x
(1)
u ) members, the remaining

slots are filled by creating new child solutions by the procedure of the previous
paragraph.

Step 2: Lower level NSGA-II: For each subpopulation, we now perform a NSGA-
II procedure using lower level objectives (f) and constraints (g) for tl generations
(equation (9.7)). It is important to reiterate that in each lower level NSGA-II run,
the upper level variable vector xu is not changed. The selection process is dif-
ferent from that in the usual NSGA-II procedure. If the subpopulation has no
member in the current archive AT , the parent solutions are chosen as usual by
the binary tournament selection using NDl and CDl lexicographically. If, how-
ever, the subpopulation has a member or members which already exist in the
archive, only these solutions are used in the binary tournament selection. This is
done to emphasize already-found good solutions. The mutation operator is ap-
plied as usual. After the lower level NSGA-II simulation is performed on a sub-
population, the members are sorted according to the constrained non-domination
level [Deb et al.(2002)] and are assigned their non-dominated rank (NDl) and
crowding distance value (CDl) based on lower level objectives (f) and lower level
constraints (g).

Step 3: Local search: The local search operator is employed next to provide us
with a solution which is guaranteed to be on a locally Pareto-optimal front. Since
the local search operator can be expensive, we use this operator sparingly. We
apply the local search operator to good solutions having the following proper-
ties: (i) it is a non-dominated solution in the lower level having NDl = 1, (ii) it
is a non-dominated solution in the upper level having NDu = 1, and (iii) it does
not get dominated by any current archive member, or it is located at a distance

less than δU Nl/N(0)
l from any of the current archive members. In the local search

procedure, the achievement scalarizing function problem [Wierzbicki(1980)] for-
mulated at the current NSGA-II solution (xl) with z j = f j(xl) is solved:

Minimizep
m

max
j=1

f j(p)−z j

f max
j − f min

j
+ρ∑m

j=1
f j(p)−z j

f max
j − f min

j
,

subject to p ∈Sl ,
(9.8)

where Sl is the feasible search space for the lower level problem. The mini-
mum and maximum function values are taken from the NSGA-II minimum and
maximum function values of the current generation. The optimal solution p∗ to
the above problem is guaranteed to be a Pareto-optimal solution to the lower
level problem [Miettinen(1999)]. Here, we use ρ = 10−6, which prohibits the
local search to converge to a weak Pareto-optimal solution. We use a popular
software KNITRO [Byrd et al.(2006)] (which employs a sequential quadratic
programming (SQP) algorithm) to solve the above single objective optimiza-
tion problem. The KNITRO software terminates when a solution satisfies the
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Karush-Kuhn-Tucker (KKT) conditions [Reklaitis et al.(1983)] with a pre-
specified error limit. We fix this error limit to 10−2 in all problems of this study
here. The solutions which meet this KKT satisfaction criterion are assigned an
‘optimal tag’ for further processing. For handling non-differentiable problems,
a non-gradient, adaptive step-size based hill-climbing procedure [Nolle(2006)]
can be used.

Step 4: Updating the archive: The optimally tagged members, if feasible with re-
spect to the upper level constraints (G), are then compared with the current
archive members. If these members are non-dominated when compared to the
members of the archive, they become eligible to be added into the archive. The
dominated members in the archive are also eliminated, thus the archive always
keeps non-dominated solutions. We limit the size of archive to 10Nu. If and when
more members are to be entered in the archive, the archive size is maintained to
the above limit by eliminating extra members using the crowding distance (CDa)
measure.

Step 5: Formation of the combined population: Steps 1 to 4 are repeated until the
population QT is filled with newly created solutions. Each member of QT is now
evaluated with F and G. Populations PT and QT are combined together to form
RT . The combined population RT is then ranked according to constrained non-
domination [Deb et al.(2002)] based on upper level objectives (F) and upper
level constraints (G). Solutions are thus, assigned a non-dominated rank (NDu)
and members within an identical non-dominated rank are assigned a crowding
distance (CDu) computed in the F-space.

Step 7: Choosing half the population: From the combined population RT of size
2Nu, half of its members are retained in this step. First, the members of rank
NDu = 1 are considered. From them, solutions having NDl = 1 are noted one by
one in the order of reducing crowding distance CDu. For each such solution, the
entire Nl subpopulation from its source population (either PT or QT ) are copied
in an intermediate population ST . If a subpopulation is already copied in ST and
a future solution from the same subpopulation is found to have NDu = NDl =
1, the subpopulation is not copied again. When all members of NDu = 1 are
considered, a similar consideration is continued with NDu = 2 and so on till ST

has Nu population members.
Step 6: Upgrading old lower level subpopulations: Each subpopulation of ST

which are not created in the current generation are modified using the lower level
NSGA-II procedure (Step 2) applied with f and g. This step helps progress each
lower level population towards their individual Pareto-optimal frontiers.

The final population is renamed as PT+1. This marks the end of one generation of
the overall H-BLEMO algorithm.

9.4.4 Algorithmic Complexity

With self-adaptive operations to update population sizes and number of generations,
it becomes difficult to compute an exact number of function evaluations (FE) needed
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in the proposed H-BLEMO algorithm. However, using the maximum allowable val-
ues of these parameters, we estimate that the worst case function evaluations is
Nu(2Tu + 1)(tmax

l + 1) + FELS. Here Tu is the number of upper level generations
and FELS is the total function evaluations used by the local search (LS) algorithm.
Lower level NSGA-II is able to quickly bring the members close to the Pareto-
optimal front and then local search operator is used on few members. Moreover,
towards the end of a simulation, most upper level solutions are close to the archive,
thereby requiring a much smaller number of function evaluations than that used in
the above expression.

However, it is important to note that the computations needed in the local search
may be substantial and any effort to reduce the computational effort will be useful. In
this regard, the choice of the local search algorithm and the chosen KKT error limit
for terminating the local search will play an important role. Also, the termination
parameter for lower level NSGA-II run (parameter εl) may also make an important
contribution.

9.5 Results on Test Problems

To evaluate the H-BLEMO solution methodology we use the DS test suite, and pro-
vide the results in this section. We use the following standard NSGA-II parameter
values in both lower and upper levels on all problems considered in this section:
Crossover probability of 0.9, distribution index for SBX of 15, mutation probability
of 0.1, distribution index for the polynomial mutation of 20. The upper level pop-
ulation size is set proportional to the total number of variables (n): Nu = 20n. As
described in the algorithm, all other parameters including the lower level population
size, termination criteria are all set in a self-adaptive manner during the optimization
run. The approximate Pareto-optimal fronts obtained from H-BLEMO procedure for
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each of the test problems are shown in Figures 9.6, 9.8, 9.10, 9.12 and 9.14. Each
figure represents the approximation of the Pareto-frontier obtained from a particular
run of the H-BLEMO procedure. Moreover, in all cases, we have used 21 different
simulations starting from different initial populations and show the 0, 50, and 100%
attainment surfaces [Fonseca and Fleming(1996)] in Figures 9.7, 9.9, 9.11, 9.13
and 9.15 to describe the robustness of the proposed procedure.
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9.6 Scalability Study

In this section, we consider DS1 and DS2 and show the scalability of our proposed
procedure up to 40 variables. For this purpose, we consider four different variable
sizes: n = 10, 20, 30 and 40. Based on parametric studies performed on these prob-
lems in section 9.5, we set Nu = 20n. All other parameters are automatically set in
a self-adaptive manner during the course of a simulation, as before.

Figure 9.16 shows the variation of function evaluations for obtaining a fixed ter-
mination criterion on normalized hypervolume measure (Hu < 0.0001) calculated
using the upper level objective values for problem DS1.



9 Bilevel Multi-Objective Optimization and Decision Making 269

Since the vertical axis is plotted in a logarithmic scale and the relationship is
found to be sub-linear, the hybrid methodology performs better than an exponential
algorithm. The break-up of computations needed in the local search, lower level
NSGA-II and upper level NSGA-II indicate that majority of the computations is
spent in the lower level optimization task. This is an important insight to the working
of the proposed H-BLEMO algorithm and suggests that further efforts must be put
in making the lower level optimization more computationally efficient.

Figure 9.17 shows the similar outcome for problem DS2, but a comparison with
that for problem DS1 indicates that DS2 is more difficult to be solved with an in-
crease in problem size than DS1.
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9.7 Comparison with a Nested Algorithm

We have argued before that by allowing lower level and upper level NSGA-IIs to
proceed partially in tandem, we have created a computationally efficient and accu-
rate algorithm which progresses towards the true Pareto-optimal front on a num-
ber of difficult problems (Section 9.5). The algorithm is even found to converge
in problems in which there is a conflict between upper and lower level problems
[Deb and Sinha(2010)]. The proposed algorithm is also found to solve scaled-up
problems up to 40 real-parameter variables (Section 9.6). In this section, we com-
pare the proposed H-BLEMO algorithm with an efficient yet nested bilevel opti-
mization algorithm using the NSGA-II-cum-local-search procedure. This algorithm
uses a fixed population structure, but for every xu, the lower level optimization is
terminated by performing a local search to all non-dominated solutions of the fi-
nal lower level NSGA-II population. The termination criterion for lower and up-
per level NSGA-IIs and that for the local search procedure are identical to that
in H-BLEMO algorithm. Since for every xu, we find a set of well-converged and
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well-distributed lower level Pareto-optimal solutions, this approach is truly a nested
bilevel optimization procedure.

For the simulation with this nested algorithm on DS1 and DS2 problems, we use
Nu = 400. To make a fair comparison, we use the same subpopulation size Nl as that
was used in the very first iteration of our H-BLEMO algorithm using equation (9.4).
The number of generations for the lower level NSGA-II is kept fixed for all up-
per level generations to that computed by equation (9.3) in the initial generation.
Similar archiving strategy and other NSGA-II parameter values are used as before.
Table 9.1 shows the comparison of overall function evaluations needed by the nested
algorithm and by the hybrid BLEMO algorithm. The table shows that for both prob-
lems, the nested algorithm takes at least one order of magnitude of more function
evaluations to find a set of solutions having an identical hypervolume measure. The
difference between our proposed algorithm and the nested procedure widens with
an increase in number of decision variables. The median number of function evalu-
ations are also plotted in Figures 9.16 and 9.17. The computational efficacy of our
proposed hybrid approach and difference of our approach from a nested approach
are clearly evident from these plots.

Table 9.1 Comparison of function evaluations needed by a nested algorithm and by H-
BLEMO on problems DS1 and DS2. Results from 21 runs are summarized.

Problem DS1
n Algo. Median Min. overall Max. overall

Lower FE Upper FE Overall FE FE FE
10 Nested 12,124,083 354,114 12,478,197 11,733,871 14,547,725
10 Hybrid 1,454,194 36,315 1,490,509 1,437,038 1,535,329
20 Nested 51,142,994 1,349,335 52,492,329 42,291,810 62,525,401
20 Hybrid 3,612,711 94,409 3,707,120 2,907,352 3,937,471
30 Nested 182,881,535 4,727,534 187,609,069 184,128,609 218,164,646
30 Hybrid 7,527,677 194,324 7,722,001 6,458,856 8,726,543
40 Nested 538,064,283 13,397,967 551,462,250 445,897,063 587,385,335
40 Hybrid 12,744,092 313,861 13,057,953 10,666,017 15,146,652

Problem DS2
n Algo. Median Min. overall Max. overall

Lower FE Upper FE Overall FE FE FE
10 Nested 13,408,837 473,208 13,882,045 11,952,650 15,550,144
10 Hybrid 1,386,258 50,122 1,436,380 1,152,015 1,655,821
20 Nested 74,016,721 1,780,882 75,797,603 71,988,726 90,575,216
20 Hybrid 4,716,205 117,632 4,833,837 4,590,019 5,605,740
30 Nested 349,242,956 5,973,849 355,216,805 316,279,784 391,648,693
30 Hybrid 13,770,098 241,474 14,011,572 14,000,057 15,385,316
40 Nested 1,248,848,767 17,046,212 1,265,894,979 1,102,945,724 1,366,734,137
40 Hybrid 28,870,856 399,316 29,270,172 24,725,683 30,135,983
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9.8 Incorporating Decision Maker Preferences in H-BLEMO

From the results presented in the previous sections, we observe that the H-BLEMO
procedure is able to perform significantly better than a nested approach. However,
the number of function evaluations required by the H-BLEMO approach are still
high, and we seek to further reduce the evaluations. In order to achieve this, we
make a shift from an a posteriori approach to a progressively interactive approach,
where the upper level decision maker interacts with the H-BLEMO algorithm, and
a single point on the Pareto-optimal front is the target. Concepts from a Progres-
sively Interactive Evolutionary Multi-objective Optimization algorithm (PI-EMO-
VF) [Deb et al.(2010)] have been integrated with the Hybrid Bilevel Evolutionary
Multi-objective Optimization algorithm (H-BLEMO). In the suggested methodol-
ogy, preference information from the decision maker at the upper level is used to di-
rect the search towards the most preferred solution. Incorporating preferences from
the decision maker in the optimization run makes the search process more efficient
in terms of function evaluations as well as accuracy. The integrated methodology,
interacts with the decision maker after every few generations of an evolutionary al-
gorithm and is different from an a posteriori approach, as it explores only the most
preferred point. An a posteriori approach like the H-BLEMO and other evolution-
ary multi-objective optimization algorithms [Deb et al.(2002), Zitzler et al.(2001)]
produce the entire efficient frontier as the final solution and then a decision maker
is asked to pick up the most preferred point. However, an a posteriori approach is
not a viable methodology for problems which are computationally expensive and/or
involve high number of objectives (more than three) where EMOs tend to suffer in
convergence as well as maintaining diversity. Figure 9.18 shows the interaction of
the upper level decision maker at various stages of a progressively interactive algo-

Fig. 9.18 Progressive interaction with the decision maker at the upper level of multi-objective
bilevel problem. Upper level frontier and lower level frontiers for different xu are shown for
a maximization problem at both levels.
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rithm. Each broken line shows a Pareto-optimal point in the lower level objective
space for a particular xu, and the same point in the upper level objective space.

The integration procedure, Progressively Interactive Hybrid Bilevel Evolutionary
Multi-objective Optimization (PI-HBLEMO) algorithm, has been discussed in the
next section, and thereafter, the performance of the algorithm has been evaluated
on the DS test problems [Deb and Sinha(2010)]. A comparison for the savings in
computational cost has also been done with a posteriori H-BLEMO approach.

9.9 Progressively Interactive Hybrid Bilevel Evolutionary
Multi-objective Optimization Algorithm (PI-HBLEMO)

In this section, the changes made to the Hybrid Bilevel Evolutionary Multi-objective
Optimization (H-BLEMO) [Deb and Sinha(2010)] algorithm have been stated. The
major change made to the H-BLEMO algorithm is in the domination criteria. The
other change which has been made is in the termination criteria. The Progressively
Interactive EMO using Value Function (PI-EMO-VF) [Deb et al.(2010)] is a generic
procedure which can be integrated with any Evolutionary Multi-objective Optimiza-
tion (EMO) algorithm. Here, we integrate the procedure at the upper level execution
of the H-BLEMO algorithm.

After every χ upper level generations of the H-BLEMO algorithm, the decision-
maker is provided with η (≥ 2) well-sparse non-dominated solutions from the up-
per level set of non-dominated points. The decision-maker is expected to provide a
complete or partial preference information about superiority of one solution over the
other, or indifference towards the two solutions. In an ideal situation, the DM can
provide a complete ranking (from best to worst) of these solutions, but partial pref-
erence information is also allowed. With the given preference information, a strictly
increasing polynomial value function is constructed. The value function construc-
tion procedure involves solving another single-objective optimization problem. Till
the next χ upper level generations, the constructed value function is used to direct
the search towards additional preferred solutions.

The termination condition used in the H-BLEMO algorithm is based on hyper-
volume. In the modified PI-HBLEMO algorithm, the search is for the most preferred
point and not for a Pareto optimal front, therefore, the hypervolume based termina-
tion criteria can no longer be used. The hypervolume based termination criteria at
the upper level has been replaced with a criteria based on distance of an improved
solution from the best solutions in the previous generations.

In the following, we specify the steps required to blend the H-BLEMO algorithm
within the PI-EMO-VF framework and then discuss the termination criteria.

Step 1: Set a counter t = 0. Execute the H-BLEMO algorithm with the usual def-
inition of dominance at the upper level for χ generations. Increment the value of
t by one after each generation.
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Step 2: If t is perfectly divisible by χ , then use the k-mean clustering approach
[Deb(2001), Zitzler et al.(2001)] to choose η diversified points from the non-
dominated solutions in the archive; otherwise, proceed to Step 5.

Step 3: Elicit the preferences of the decision-maker on the chosen η points. Con-
struct a value function V (f), emulating the decision maker preferences, from the
information. The value function is constructed by solving an optimization prob-
lem (VFOP), described in Section 9.9.1. If a feasible value function is not found
which satisfies all DM’s preferences then proceed to Step 5 and use the usual
domination principle in H-BLEMO operators.

Step 4: Check for termination. The termination check (described in Section 9.9.2)
is based on the distance of the current best solution from the previous best solu-
tions and requires a parameter Δu. If the algorithm terminates, the current best
point is chosen as the final solution.

Step 5: An offspring population at the upper level is produced from the parent
population at the upper level using a modified domination principle (discussed in
Section 9.9.3) and H-BLEMO algorithm’s search operators.

Step 6: The parent and the offspring populations are used to create a new parent
population for the next generation using the modified domination based on the
current value function and other H-BLEMO algorithm’s operators. The iteration
counter is incremented as t← t + 1 and the algorithm proceeds to Step 2.

The parameters used in the PI-HBLEMO algorithm are χ , η and Δu.

9.9.1 Step 3: Preference Elicitation and Construction of a Value
Function

Whenever a DM call is made, a set of η points are presented to the decision maker
(DM). The preference information from the decision maker is accepted in the form
of pairwise comparisons for each pair in the set of η points. A pairwise comparison
of a give pair could lead to three possibilities, the first being that one solution is
preferred over the other, the second being that the decision maker is indifferent to
both the solutions and the third being that the two solutions are incomparable. Based
on such preference information from a decision maker, for a given pair (i, j), if i-th
point is preferred over j-th point, then Pi � Pj, if the decision maker is indifferent
to the two solutions then it establishes that Pi ≡ Pj. There can be situations such
that the decision maker finds a given pair of points as incomparable and in such a
case the incomparable points are dropped from the list of η points. If the decision
maker is not able to provide preference information for any of the given solution
points then algorithm moves back to the previous population where the decision
maker was able to take a decisive action, and uses the usual domination instead
of modified domination principle to proceed the search process. But such a scenario
where no preference is established by a decision maker is rare, and it is likely to have
at least one point which is better than another point. Once preference information
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is available, the task is to construct a polynomial value function which satisfies the
preference statements of the decision maker.

9.9.1.1 Polynomial Value Function for Two Objectives

A polynomial value function is constructed based on the preference information
provided by the decision maker. The parameters of the polynomial value function
are optimally adjusted such that the preference statements of the decision maker
are satisfied. We describe the procedure for two objectives as all the test problems
considered in this chapter have two objectives. The value function procedure de-
scribed below is valid for a maximization problem therefore we convert the test
problems into a maximization problem while implementing the value function pro-
cedure. However, while reporting the results for the test problems they are converted
back to minimization problems.

V (F1,F2) = (F1 + k1F2 + l1)(F2 + k2F1 + l2),
where F1,F2 are the objective values
and k1,k2, l1, l2 are the value function parameters

(9.9)

The description of the two objective value function has been taken from
[Deb et al.(2010)]. In the above equations it can been seen that the value function V ,
for two objectives, is represented as a product of two linear functions S1 : R2→ R

and S2 : R2→ R. 1 The parameters in this value function which are required to be
determined optimally from the preference statements of the decision maker are k1,
k2, l1 and l2. Following is the value function optimization problem (VFOP) which
should be solved with the value function parameters (k1, k2, l1 and l2) as variables.
The optimal solution to the VFOP assigns optimal values to the value function pa-
rameters. The above problem is a simple single objective optimization problem
which can be solved using any single objective optimizer. Here, the problem has
been solved using a sequential quadratic programming (SQP) procedure from the
KNITRO [Byrd et al.(2006)] software.

Maximize ε,
subject to V is non-negative at every point Pi,

V is strictly increasing at every point Pi,
V (Pi)−V(Pj)≥ ε, for all (i, j) pairs

satisfying Pi � Pj,∣
∣V (Pi)−V(Pj)

∣
∣≤ δV , for all (i, j) pairs

satisfying Pi ≡ Pj.

(9.10)

The above optimization problem adjusts the value function parameters in such a
way that the minimum difference in the value function values for the ordered pairs
of points is maximum.

1 A generalized version of the polynomial value function can be found in [Sinha et al.(2010)].
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9.9.2 Termination Criterion

Distance of the current best point is computed from the best points in the previ-
ous generations. In the simulations performed, the distance is computed from the
current best point to the best points in the previous 10 generations and if each of
the computed distances δu(i), i ∈ {1,2, . . . ,10} is found to be less than Δu then the
algorithm is terminated. A value of Δu = 0.1 has been chosen for the simulations.

9.9.3 Modified Domination Principle

In this sub-section we define the modified domination principle proposed in
[Deb et al.(2010)]. The value function V is used to modify the usual domination
principle so that more focussed search can be performed in the region of interest
to the decision maker. Let V (F1,F2) be the value function for a two objective case.
The parameters for this value function are optimally determined from the VFOP. For
the given η points, the value function assigns a value to each point. Let the values
be V1,V2, . . . ,Vη in the descending order. Now any two feasible solutions (x(1) and
x(2)) can be compared with their objective function values by using the following
modified domination criteria:

1. If both points have a value function value less than V2, then the two points are
compared based on the usual dominance principle.

2. If both points have a value function value more than V2, then the two points are
compared based on the usual dominance principle.

3. If one point has a value function value more than V2 and the other point has a
value function value less than V2, then the former dominates the latter.

The modified domination principle has been explained through Figure 9.19 which
illustrates regions dominated by two points A and B. Let us consider that the second
best point from a given set of η points has a value V2. The function V (F) = V2

represents a contour which has been shown by a curved line 2. The first point A
has a value VA which is smaller than V2 and the region dominated by A is shaded
in the figure. The region dominated by A is identical to what can be obtained using
the usual domination principle. The second point B has a value VB which is larger
than V2, and, the region dominated by this point is once again shaded. It can be
observed that this point no longer follows the usual domination principle. In addition
to usual region of dominance this point dominates all the points having a smaller
value function value than V2.

The above modified domination principle can easily be extended for handling
constraints as in [Deb et al.(2002)]. When two solutions under consideration for a
dominance check are feasible, then the above modified domination principle should
be used. If one solution is feasible and the other is infeasible, then the feasible

2 The reason for using the contour corresponding to the second best point can be found
in [Deb et al.(2010)]
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solution is considered as dominating the other. If both the solutions are found to
be infeasible then the one with smaller overall feasibility violation (sum of all con-
straint violations) is considered to be dominating the other solution.

9.10 Results

In this section, results have been presented on the set of 5 DS test problems. In all
simulations, the crossover and mutation parameters of the NSGA-II algorithm are
kept same as before. Population size Nu = 40, number of points given to the DM for
preference information η = 5, and number of generations between two consecutive

DM calls: χ = 5 has been used. A point, (F (b)
1 ,F (b)

2 ), on the Pareto-front of the
upper level is assumed as the most preferred point and then a DM emulated value
function is selected which assigns a maximum value to the most preferred point. The
value function selected is V (F1,F2) =

1

1+(F1−F(b)
1 )2+(F2−F(b)

2 )2
. It is noteworthy that

the value function selected to emulate a decision maker is a simple distance function
and therefore has circles as indifference curves which is not a true representative of
a rational decision maker. A circular indifference curve may lead to assignment
of equal values to a pair of points where one dominates the other. For a pair of
points it may also lead assignment of higher value to a point dominated by the
other. However, only non-dominated set of points are presented to a decision maker,
therefore, such discrepancies are avoided and the chosen value function is able to
emulate a decision maker by assigning higher value to the point closest to the most
preferred point and lower value to others.

V(F)=V2
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F2

B

A

Fig. 9.19 Dominated regions in case of
two points A and B using the modified
definition
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Fig. 9.21 Pareto-optimal front for
problem DS2. Final parent population
members have been shown close to the
most preferred point.

G=0

Upper level
PO front

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2 0.4 0.6  1  1.2 1.4
F1

 0.8

F2

−0.2

 0
Most Preferred
Point

Fig. 9.22 Pareto-optimal front for
problem DS3. Final parent population
members have been shown close to the
most preferred point.

Upper Level Front

Lower Level Front

 0

 0.5

 1

 1.5

 2

 0  0.5  1.5  2

F2

F1
 1

Most Preferred
Point

Fig. 9.23 Pareto-optimal front for
problem DS4. Final parent population
members have been shown close to the
most preferred point.

Upper Level Front

Lower Level Front

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

F2

F1

Point
Preferred
Most
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The DS test problems are minimization problems and the progressively inter-
active procedure using value function works only on problems to be maximized.
Therefore, the procedure has been executed by converting the test problems into
a maximization problem by putting a negative sign before each of the objectives.
However, the final results have once again been converted and the solution to the
minimization problem has been presented. The upper level and lower level func-
tion evaluations have been reported for each of the test problems. A comparison has
been made between the H-BLEMO algorithm and PI-HBLEMO procedure in the
tables 9.2, 9.3, 9.4, 9.5 and 9.6. The tables show the savings in function evaluations
which could be achieved moving from an a posteriori approach to a progressively
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interactive approach. The total lower level function evaluations (Total LL FE) and
the total upper level function evaluations (Total UL FE) are presented separately.
Figures 9.20, 9.21, 9.22, 9.23 and 9.24 show the Pareto-optimal front for each
of the test problems. The most-preferred solution is marked on the front. The final
population members from a particular run of the PI-HBLEMO algorithm are also
shown.

Table 9.2 Total function evaluations for the upper and lower level (21 runs) for DS1

Algo. 1, Algo. 2, Best Median Worst
Savings Total LL Total UL Total LL Total UL Total LL Total UL

FE FE FE FE FE FE
H-BLEMO 2,819,770 87,582 3,423,544 91,852 3,829,812 107,659

PI-HBLEMO 329,412 12,509 383,720 12,791 430,273 10,907
H−BLEMO

PI−HBLEMO 8.56 7.00 8.92 7.18 8.90 9.87

Table 9.3 Total function evaluations for the upper and lower level (21 runs) for DS2

Algo. 1, Algo. 2, Best Median Worst
Savings Total LL Total UL Total LL Total UL Total LL Total UL

FE FE FE FE FE FE
H-BLEMO 4,796,131 112,563 4,958,593 122,413 5,731,016 144,428

PI-HBLEMO 509,681 14,785 640,857 14,535 811,588 15,967
H−BLEMO

PI−HBLEMO 9.41 7.61 7.74 8.42 7.06 9.05

Table 9.4 Total function evaluations for the upper and lower level (21 runs) for DS3

Algo. 1, Algo. 2, Best Median Worst
Savings Total LL Total UL Total LL Total UL Total LL Total UL

FE FE FE FE FE FE
H-BLEMO 3,970,411 112,560 4,725,596 118,848 5,265,074 125,438

PI-HBLEMO 475,600 11,412 595,609 16,693 759,040 16,637
H−BLEMO

PI−HBLEMO 8.35 9.86 7.93 7.12 6.94 7.54

9.11 Accuracy and DM calls

Table 9.7 represents the accuracy achieved and the number of decision maker calls
required while using the PI-HBLEMO procedure. In the above test problems the
most preferred point which the algorithm is seeking is pre-decided and the value
function emulating the decision maker is constructed. When the algorithm termi-
nates it provides the best achieved point. The accuracy measure is the Euclidean
distance between the best point achieved and the most preferred point. It can be ob-
served from the results of the PI-HBLEMO procedure that preference information
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Table 9.5 Total function evaluations for the upper and lower level (21 runs) for DS4

Algo. 1, Algo. 2, Best Median Worst
Savings Total LL Total UL Total LL Total UL Total LL Total UL

FE FE FE FE FE FE
H-BLEMO 1,356,598 38,127 1,435,344 53,548 1,675,422 59,047

PI-HBLEMO 149,214 5,038 161,463 8,123 199,880 8,712
H−BLEMO

PI−HBLEMO 9.09 7.57 8.89 6.59 8.38 6.78

Table 9.6 Total function evaluations for the upper and lower level (21 runs) for DS5

Algo. 1, Algo. 2, Best Median Worst
Savings Total LL Total UL Total LL Total UL Total LL Total UL

FE FE FE FE FE FE
H-BLEMO 1,666,953 47,127 1,791,511 56,725 2,197,470 71,246

PI-HBLEMO 168,670 5,105 279,568 6,269 304,243 9,114
H−BLEMO

PI−HBLEMO 9.88 9.23 6.41 9.05 7.22 7.82

Table 9.7 Accuracy and the number of decision maker calls for the PI-HBLEMO runs (21
runs). The distance of the closest point to the most preferred point achieved from the H-
BLEMO algorithm has been provided in the brackets.

Best Median Worst
DS1 Accuracy 0.0426 (0.1203) 0.0888 (0.2788) 0.1188 (0.4162)

DM Calls 12 13 29
DS2 Accuracy 0.0281 (0.0729) 0.0804 (0.4289) 0.1405 (0.7997)

DM Calls 12 15 25
DS3 Accuracy 0.0498 (0.0968) 0.0918 (0.3169) 0.1789 (0.6609)

DM Calls 7 17 22
DS4 Accuracy 0.0282 (0.0621) 0.0968 (0.0981) 0.1992 (0.5667)

DM Calls 7 15 23
DS5 Accuracy 0.0233 (0.1023) 0.0994 (0.1877) 0.1946 (0.8946)

DM Calls 7 14 22

from the decision maker leads to a high accuracy (Table 9.7) as well as huge sav-
ings (Table 9.2,9.3,9.4,9.5,9.6) in function evaluations. Producing the entire front
using the H-BLEMO procedure has its own merits but it comes with a cost of huge
function evaluations and there can be instances when the entire set of close Pareto-
optimal solutions will be difficult to achieve even after high number of evaluations.
The accuracy achieved using the H-BLEMO procedure has been reported in the
brackets; the final choice made from a set of close Pareto-optimal solutions will
lead to a poorer accuracy than a progressively interactive approach.
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9.12 Conclusions

In the realm of research in optimization, multi-objective bilevel problems provide
significant challenges to researchers by elevating every aspect of an optimization
effort at a higher level. This makes the problem demanding as well as intriguing
to pursue. Extensive attempts have been made to develop solution methodologies
for bilevel problems, however, the instance of multiple objectives at both levels has
received less attention from researchers. This chapter provides an insight into multi-
objective bilevel programming and highlights some of the past efforts made towards
handling these problems. It discusses a generic procedure for test problem develop-
ment by featuring various intricacies which may exist in a practical multi-objective
bilevel problem. Further, the chapter describes a couple of recently proposed so-
lution methodologies for multi-objective bilevel problems and evaluates its perfor-
mance on the DS test suite.

The first methodology (H-BLEMO) is a hybrid evolutionary-cum-local-search
algorithm, where the evolutionary part contributes towards handling the intertwined
and multi-solution aspect of the problem and the local search part contributes to-
wards ensuring lower level optimality. The algorithm is also self adaptive, allowing
an automatic update of the key parameters during an optimization run without any
user intervention. The procedure approximates the entire Pareto-optimal front for
the bilevel problem allowing the decision maker to choose the most preferred point
a posteriori. Simulation results on the test suite amply demonstrate the effectiveness
of evolutionary algorithms in solving such complex problems. The second method-
ology (PI-HBLEMO) extends the first methodology by incorporating preference
information from the decision maker at the upper level. It makes the procedure in-
teractive and produces the most preferred point as the final solution. The methodol-
ogy showcases the power of amalgamating evolutionary algorithm’s parallel search
with principles from the field of multi-criteria decision making. Incorporating pref-
erences from the decision maker in the intermediate steps of the algorithm offers a
dual advantage of reduced computational expense and an enhanced accuracy.

To conclude, further investigation in the direction of bilevel programming is re-
quired urgently. Theoretical research in bilevel optimization has led to the formu-
lation of optimality conditions, however, viable methodologies to implement them
in practice are challenging. There is still a lack of a generic and efficient proce-
dure which guarantees convergence for such problems. Although a nested procedure
could be used to tackle the problem, the enormous computational expense required
would render the procedure redundant for problems with high number of variables.
Under such circumstances, developing bilevel optimization algorithms by hybridiz-
ing principles from evolutionary and classical research provide immense implemen-
tation opportunities.
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