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Abstract Moving objects detecting and tracking is important for future Unman-
ned Aerial Vehicles (UAVs). We propose a new approach to detect and track
moving objects from the flying UAV. First, estimate the global-motion of the
background by tracking features selected by KLT algorithm from frame to frame.
In order to avoid features located on the foreground objects participating in motion
estimation, feature effectiveness evaluation is employed. Then compensate the
background with the transform model computed by RANSAC. Define the unde-
fined area before applying frame difference method to the compensated frame and
the current frame. Then initialize the tracking module with information obtained
from the detecting module, which overcomes shortcomings of artificial orientation
of traditional tracking algorithms. For tracking fast and robustly from UAVs, we
design a new tracking algorithm by fusing Kalman prediction and Mean Shift
Search together. The experimental results presented effectiveness of the whole
detecting and tracking approach.

Keywords Object detecting � Object tracking � Global-motion estimation �Mean
Shift � Kalman prediction

1 Introduction

Recently, UAVs have been used more and more widely for news gathering, search,
and rescue both in military and civil areas, especially in a reconnaissance and strike
integrated system by aerial surveillance. Aerial surveillance is performed primarily
using video cameras these days. Exploitation of UAV video data is increasingly
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critical for surveillance systems. Large numbers of videos from UAVs will over-
whelm human operators for visually inspecting the data, so automatic video analysis
and processing is essential, which will not only reduce the workload for humans but
will also improve the fully-automatic surveillance ability for future UAVs.

Moving objects detecting and tracking for UAVs is a subject of active research.
The detection of an interesting moving object is based on the motion information
such as optical flow or background subtraction. Tracking is to maintain a con-
sistent identity on the object based on the appearance, shape, or kinematic infor-
mation over the frames. A large amount of research on moving-object detecting
and tracking in a video has been performed in the past years, and a variety of
methods have been developed, which include region-based [1–3], feature-based
[4–6], and contour-based [7, 8] methods. Although many methods have been
proposed, most can only be used for specific applications with reliable assump-
tions, such as a stationary application in a constrained and uncluttered environ-
ment. For UAV videos captured by a fast-moving camera, moving objects
detecting and tracking has the following key challenges.

The camera is mounted on the moving UAV, so there are two independent
motions involved: the motion of moving objects and the motion of camera.
Unfortunately, those two motions are blended together. In order to detect moving
objects robustly from the moving background, it should be able to decompose
these two independent motions from sensor readings.

A UAV may move very fast, and an object may also move fast. UAV video
objects tend to have low resolution and the background is usually cluttered. There
are various types of noise added at various stages, including changing lighting
conditions, changing appearance, rotations, and scales of objects. Furthermore,
UAV objects may be so small that they are similar to noise, and may suffer partial
or total occlusions.

UAV video analysis requires fast tracking of moving objects. Hence a com-
promise typically exists between the achieving of real-time tracking performance
and the constructing of a robust tracking algorithm.

Frame difference, which compares two consecutive image frames and finds
moving objects based on the difference, is perhaps the most intuitive and fastest
algorithm for moving object detection, especially when the viewing camera is
static. However, for UAV videos, straightforward differencing is not applicable
because a large difference is generated by simply moving the camera even if
nothing moves in the environment. The global-motion of the background should
be eliminated so that the remaining motions, which are due to moving objects, can
be detected.

To overcome the first problem mentioned above, various methods have been
proposed to stabilize camera motions by tracking features [9] and computing
optical flow [10]. These approaches focus on estimating the transformations
between two image coordinate systems. The features associated with the fore-
ground objects should be eliminated since they will lead to wrong estimation of the
global-motion of the background.
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Once moving objects has been identified, they need to be tracked. Two major
components can be distinguished in a typical visual tracker [11]. Target Repre-
sentation and Localization is mostly a bottom-up process which copes with the
changes in the appearance of the target. Filtering and Data Association is mostly a
top-down process dealing with the dynamics of the tracked object, learning of
scene priors and evaluation of different hypotheses by using a Bayesian filter. The
way the two components are combined and weighted is application dependent.
They play a decisive role in the robustness and efficiency of the tracker.

In this paper we propose an approach to detect and track moving objects for
UAV. The block diagram of the proposed approach is depicted in Fig. 1. It
includes three steps: compensation of the image flow induced by a moving camera,
detection of moving regions in each frame, and tracking of moving objects in time.
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Fig. 1 The proposed detecting and tracking approach
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2 Global-Motion Estimation

The motion induced by a moving camera must be canceled before motion
detection. The global-motion estimation can be estimated by tracking features
between images. When the camera moves, two consecutive images, It (the image
at time t) and It�1 (the image at time t � 1), are in different coordinate systems.
Global-motion estimation is a transformation from the image coordinates of It�1 to
that of It so that the two images can be compared directly. The transformation can
be estimated using two corresponding feature sets: a set of features f t�1 in It�1 and
a set of corresponding features f t in It.

2.1 Feature Detecting and Matching

In general, two basic questions must be answered: how to select features and how
to track them from frame to frame. Two most successful visual features are corner
[12] and SIFT (Scale Invariant Scale Transform) [13] features. A corner feature is
characterized by the high intensity changes in both horizontal and vertical direc-
tions. SIFT feature is a more advanced visual feature, which is known to be
relatively invariant to image translation, scaling, and rotation and partially
invariant to changes in illumination and local image deformations. Considering the
computational intensive, it is not suitable for real-time applications, unless the
algorithm is implemented in hardware. We adopt the KLT [4] feature (a famous
corner feature) selection algorithm for corresponding feature set selection due to
its computation efficiency. The feature selection algorithm runs on image It�1, and
generates features f t�1. A corresponding feature set f t is constructed by tracking
the same features on the image It. Figure 2a shows the outdoor environment.
Figure 2b shows the feature selected from the image It, and Fig. 2c shows the
same features tracked over 5 frames on the image Itþ5, while Fig. 2d implies the
optical flow between the two frames.

2.2 Valid Feature Determination

Once the correspondence f ¼ f t�1; f t
� �

is known, the geometric transform to align
It�1and It can be estimated using a transformation model. However, as mentioned
before, some of the features associated with the foreground moving objects may be
included, which will lead to an inaccurate estimation of the global-motion of
background. Thus, those features should be eliminated from the feature set before
the transform is computed. We name features belonging to background as valid
features (or insiders) while foreground features are invalid features (or outliers).
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Since features belonging to the background move in a uniform way, assume that
the distribution of the optical flow vectors follows Gaussian distribution. The
probability out of the range of l� 3r; lþ 3r½ � is very small according to the
Gaussian theory, where l; r denote the expected value and variance respectively.
When the vector of two corresponding features is out of the range, the features are
probably belonging to foreground objects. Let Vi represent the optical flow vector
of a selected feature between two consequent frames. Vik k; Ang Við Þ denotes its

vector norm and vector direction, respectively, while l �k k; r �k k
� �

and lAng; rAng

� �

represent the expected value, variance of the norm, and direction angle of all
selected features respectively. The determinant condition (outlier algorithm) can
be defined as follows:

fi 2 Fin if Vik k � l �k k

���
���\ 3 � r �k k and Ang Við Þ � lAng

�� ��\ 3 � rAng

fi 2 Fout otherwise

(

ð1Þ

where Fin and Fout denote valid and invalid features respectively. Figure 3 shows
the result of the valid feature determination algorithm. Fin is marked with red
circles and Fout is marked with green circles. In the frame, the aircraft is moving
while the buildings and trees are static. All the features associated with the aircraft
are detected and eliminated. Note that the valid feature determination will be
violated when moving objects are very close to the camera since they will occupy
most of the areas of an image and the features optical flow will not conform to
Gaussian distribution.

Fig. 2 a out door environment b features detected on image It c features detected on image It+5
d optical flows between the two images
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2.3 Transform Model

Using the remaining insiders (valid features set), we can compute the relatively
accurate transformation model. The most-used models include affine model,
bilinear model, and pseudo-perspective model. When the interval between con-
secutive images is very small, most global-motion can be estimated using an affine
model, which can cover translation, rotation, shearing, and scaling motions.
Hence, we use an affine model here:

f t
x

f t
y

	 

¼ af t�1

x þ bf t�1
y þ t1

cf t�1
x þ df t�1

y þ t2

	 

ð2Þ

We compute the transformation model Tt
t�1 by using RANSAC (RANdom

SAmple Consensus) algorithm [14], an iterative method, to estimate the parame-
ters of the affine model due to its ability for robust estimation.

2.4 Moving Compensation

For frame differencing, image It�1 is converted using the transformation model
before being compared to the image It in order to eliminate the effect of global-
motion. For each pixel x; yð Þ

It�1
comp x; yð Þ ¼ It�1 Tt

t�1

� ��1
x; yð Þ

� �
ð3Þ

where It�1
comp represents the compensation of global-motion of image It�1.

Fig. 3 Inliers (red circle)
and outliers (green circles)
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3 Moving Object Detecting

The difference image between two consecutive images is computed using the
compensated image:

Idiff x; yð Þ ¼ It�1
comp x; yð Þ � It x; yð Þ
���

��� ð4Þ

Note that some pixels around the border moved out of the frame after com-
pensation, causing undefined area in the compensation frame. To obtain a com-
plete frame, we redefine the difference frame as follows:

Idiff x; yð Þ ¼ It�1
comp x; yð Þ � It x; yð Þ
���

��� if x; yð Þ 2 definedarea

0 if x; yð Þ 2 undefinedarea

(

ð5Þ

Figure 4 compares the result of two cases: frame difference without global-
motion compensation (Fig. 4a) and with global-motion compensation (Fig. 4b).

With the image processes introduced above, we can detect the moving object in
theory, but in fact due to illumination and background variance, there are noises in
the frame. Hence, we continue to perform a morphologic closing operation on the
result to remove camera noise and to connect object pixels into regions. The mor-
phologic process include erosion and dilation algorithm, which define as follows:

A� B ¼ x Bð Þx� A
��� �

ð6Þ

A� B ¼ x B̂
� �

x
\ A 6¼£

��� �
ð7Þ

where A is the image to be processed and B is the erosion matrix of 20� 20 pixels.
The resultant image is then size-filtered. Only connected regions of size bigger
than a threshold are kept. Figure 5 shows the difference of the difference image
with noise and with morphologic process. We can extract the detecting moving
object clearly after morphologic.

Fig. 4 a frame difference without global-motion compensation b frame difference with global-
motion compensation
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4 Object Tracking

In the previous work, tracking object was always initialized with a hand-drawn
region. As in the surveillance of the aerial video, it is difficult to point the exact
interesting region due to the fast video speed, and the region including noise and
unrelated information will lead to wrong track. In this paper we propose an
approach to initialize the region by the information about the moving object
obtained from the object detecting module, which overcomes shortcoming of
artificial orientation.

Although KLT algorithm can track feature points, it cannot identify which
feature point belongs to the target we want to track. Hence, we choose other
feature space. Mean Shift, which is based on the motion of ‘‘kernel’’, is an efficient
technique that can automatically sort out local model within a set of data. Here, we
employ the Mean Shift algorithm which chooses color information as the object
feature.

4.1 Object Tracking Using Mean Shift Algorithm

The Mean Shift tracking algorithm is divided into three parts: target representa-
tion, similarity function measure, and target location computation [15]. First, the
reference target model is represented by its probability density function (pdf)
q̂ ¼ q̂uf gu¼1...m,

Pm
u¼1 q̂u ¼ 1. A target candidate which is defined at location y is

characterized by the pdf p̂ yð Þ ¼ p̂u yð Þf gu¼1...m,
Pm

u¼1 p̂u ¼ 1. m represents m-bin
histograms. Second, the similarity between the target model and the target can-
didates in the next frame is measured using the metric derived from the Bhatta-

charyya coefficient q̂ yð Þ 	 q p̂ yð Þ; q̂½ � ¼
Pm

u¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂u yð Þq̂u

p
. The coefficient

determines whether it is the most similar result to a given model, if not then search
around. The bigger the value, the more similar the model is to the target. The
search procedure uses gradient information which is provided by the Mean Shift
vector. Mean Shift was originally presented in 1975 by Fukunaga and Hostetler

Fig. 5 a frame difference without morphologic process b frame difference with morphologic
process
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[16]. We use Mean Shift iterations to search for the maxima density function of the
coefficient, then we can obtain the most reliable candidate. The Mean Shift
algorithm calculates local optimal result fast and effectively which is superior to
blindness search. Besides color feature using for tracking is simple and effective in
most situations.

However, the Mean Shift tracking algorithm has some shortcomings. It cannot
be applied to track fast-moving objects. Because the most reliable location y was
obtained after some manipulations using Taylor expansion around the probability
location ŷ0 on q̂ yð Þ:

q p̂ yð Þ; q̂½ � 
 1
2

Xm

u¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂u ŷ0ð Þ; q̂u

p
þ 1

2

Xm

u¼1

p̂u ŷð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

q̂u

p̂u ŷ0ð Þ

s

ð8Þ

When the target moves fast, the new location is far from the old one which is
not fit for neighborhood expansion analysis.

Besides, the feature color, being described as the target and candidates in Mean
Shift tracking algorithm, is a relative weak feature. When some noises which are
similar to the target appear in the background, it will cause wrong tracking.

4.2 Kalman Prediction

Mean Shift tracking algorithm is a bottom-up appearance-based tracking method,
while Kalman is totally a top-down process. Kalman is an optimal recursive data
processing algorithm, which consists of two steps: prediction and correction. In the
former step, the state is predicted with the dynamic model, while in the latter step,
it is corrected with the observation model. Since the error covariance of the
estimator is minimized, it can be regarded as an optimal estimator.

As for tracking, the information characterizing the target is defined by the state
sequence Xkf gk¼0;1;...¼ xk; yk; vxk; vyk

� �
, representing the target’s location and its

velocity, whose evolution in time is specified by the dynamic equation
Xk ¼ FXk�1 þ wk. The available measurements Zkf gk¼1;...¼ xk; ykf g are related to
the corresponding states through the measurement equation Zk ¼ HXk þ vk. The
matrix F is called the system matrix and H is the measurement matrix. The noise
sequence wk and vk are Gaussian, wk �N 0; r2

w

� �
; vk �N 0; r2

v

� �
.

Considering a target may not always runs with uniform velocity, it moves fast
and sometimes slowly, turns around quickly, or brakes suddenly. We suppose that
it moves in a linear motion with random acceleration noise. We design the state
sequence updates in the following way:

xk ¼ xk�1 þ txk�1 t þ 1
2

wkt2 ð9Þ
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yk ¼ yk�1 þ tyk�1 t þ 1
2

wkt2 ð10Þ

txk ¼ txk�1 þ wkt ð11Þ

tyk ¼ tyk�1 þ wkt ð12Þ

where t denotes the interval frames. Hence, we design the dynamic equation and
the measurement equation as follows:

xk

yk

txk

tyk

0

BB@

1

CCA ¼

1 0 t 0
0 1 0 t
0 0 1 0
0 0 0 1

0

BB@

1

CCA

xk�1

yk�1

txk�1

tyk�1

0

BB@

1

CCAþ

t2

2
t2

2
t
t

0

BB@

1

CCAwk ð13Þ

xk

yk

� 
¼ 1 0 0 0

0 1 0 0

�  xk�1

yk�1

txk�1

tyk�1

0

BB@

1

CCAþ
1
1

� 
vk ð14Þ

where rw ¼ rv ¼ 5. The object of using Kalman prediction is to estimate the state
Xk given all the measurement Z1:k up to that moment, or equivalently to construct
the probability density function p xk Z1:kjð Þ.

4.3 Fusing Kalman Prediction and Mean Shift Search

Considering the advantages and disadvantages of the Mean Shift and Kalman, we
combine Mean Shift search and Kalman prediction together to track fast and
robustly. The framework is shown in Fig. 6. Kalman predicts position of the target
first, and Mean Shift searches in the confidence region estimated by Kalman which
largely improves the search efficiency since it reduces the search area. The search
result of Mean Shift is used in turn as the measurement value of Kalman to predict
the position of the target in the next frame. As the search result of Mean Shift may
not be accurate which will lead to unreliable prediction computed by Kalman, we
add a determination. x̂k; ŷkð Þ which represents predicted value of Kalman, while
xk; ykð Þ denotes the search value of Mean Shift. The two values are highly similar

in general and e kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xk � x̂kð Þ2þ yk � ŷkð Þ2

q
are small. When the difference is

large, we can infer that Mean Shift result is invalid so it cannot be used as the
measure value of Kalman.
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5 Experiments

We have developed a system implementation for testing the detecting and tracking
method, using visual C++ 2010 platform and OpenCV library. The computer
processor is Intel Xeon @2.80 GHz.

5.1 Moving Object Detecting Result

The city video was taken from an airplane. The three rows shown in Fig. 7
represent detection results of frames 37, 41, and 44, respectively, which aims at
detecting a moving car along the road. The first column shows the frame difference
without global-motion compensation while the second column shows the frame
difference with compensation. In the third column, we mark out the detected
moving region with red rectangle. There is only one moving car in the scene. We
compute the location and velocity of the moving region to prepare for the tracking
module. The total process time is 215 ms.

Initialize information from the 
object detection module

Kalman filter 
prediction

success

Mean-shift 
search

Update the 
target model for 

Mean-shift 
search

Update the measurement 
state using the result 

of mean-shift

Using the 
prediction 

result as the 
measurement

No

Yes

Fig. 6 New tracking
algorithm of fusing Mean
Shift search and Kalman
prediction
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Fig. 7 Moving object detection from a moving camera. The frames 37, 41, and 44 are shown

Fig. 8 Results of football tracking with Mean Shift
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5.2 Moving Object Tracking Results

In a sequence of the game of football, the ball runs fast and moves in a random
way. Note that the motion characters of the tracked targets from UAVs are similar
to football, so we use the football sequence to test the performance of the tracking
algorithms. When tracking the football using Mean Shift only (Fig. 8), it shows

Fig. 9 Results of football tracking by fusing Mean Shift and Kalman. Frames 1, 28, 32, 45, 56,
69, 80, 88 (left to right, up to down) are shown
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that the ball can be tracked well in the first few frames, but fails later due to its fast
movement, just as the theory analyzed in the fourth part.

Figure 9 shows the tracking result of the running football in the same football
sequence using the method of fusing Mean Shift search and Kalman prediction
together. Whether the football runs relatively slowly which was brought along by
the player (frame 1, 28, 32, 45), runs very fast because of being shoot (frame 80,
88), or partially occlusion (frame 69) by the dual meet players, it can all be tracked
robustly.

In a car sequence (Fig. 10), which has 200 frames of 512*288 pixels, we intend
to track the black car. Since the histogram of the shade is similar to the car itself,
Mean Shift tracking converges to the shade.

Figure 11 shows the result of tracking the black car using the fusing method
proposed in this paper. Observe that the overall algorithm is able to track the car in
the presence of similar objects (car shadow in frame 110) and partially occlusion
by the obstacle on the road (frame 171).

In a more concrete analysis of the car sequence, similar objects in the neigh-
borhood and occlusion increase the measurement uncertainty. In Fig. 12, we
present the measurements (dotted line) obtained by Mean Shift and the estimated
locations of the object computed by Kalman (solid line) in the direction of X and Y

Fig. 10 Results of car tracking with Mean Shift

Fig. 11 Results of tracking by fusing Mean shift and Kalman. Frame1, 110, 171 (left to right)
are shown
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respectively. In most of the frames, two values are very close to each other. But the
presence of car shadow from frame 72 to 149, which determines an increase in
state uncertainty, give two values which vary. The sharp curve from frame 169 to
175 in the dotted line represents invalid search by Mean Shift caused by feature
occlusion (see Fig. 11). By fusing Mean Shift search and Kalman prediction
together, we can conduct a robust track.

Besides achieving a robust detecting and tracking method, we also care much
about its real-time performance. When searching the target in one frame of
512*288 pixels, the average cost time using Mean Shift is 31 ms, while the time
cost by fusing Mean Shift and Kalman is 26 ms. By fusing Mean Shift search and
Kalman prediction together, we can also conduct a faster track. Thus the fusing
track algorithm is fit for our aerial video tracking.
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6 Conclusion and Future Work

A real-time method for moving object detecting and tracking on an unmanned
aerial vehicle was introduced. The global-motion of the background was estimated
using corresponding valid feature sets first. Then detect the moving object after
compensating the consecutive frames. Use the location and velocity information of
the moving object obtained from the object detecting module for object tracking
module initialization. Finally we integrated the Mean Shift algorithm and the
Kalman prediction to track objects fast and robustly. The results show that the
method is general and computationally inexpensive which is fit for aerial video
surveillance.

Additional research work is needed to improve the performance of the method,
such as optimizing the object detection algorithm to minimize the computation
cost. On the other hand, the current system can only estimate the location,
direction and speed of the moving objects. Since a single camera has limit on
retrieving depth information, the information from a camera alone is not rich
enough to construct full 3-dimensional models of moving objects. We can use a
laser rangefinder, which provides the depth information of a single plane.
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