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Abstract This paper presents a new tool for the study of relationships between
total path length or average depth and number of nodes of decision trees. In
addition to algorithm, the paper also presents the results of experiments with
datasets from UCI ML Repository [1].

Keywords Decision trees � Number of nodes � Total path length � Average depth

1 Introduction

Decision trees are widely used as predictors, as a way of knowledge representa-
tion, and as algorithms for problem solving. These uses require optimizing deci-
sion trees for certain cost functions such as the number of misclassifications,
depth/average depth, and number of nodes. That is, minimizing one of these cost
functions yields more accurate, faster, or more understandable decision trees
(respectively).

We have created a software system for decision trees (as well as decision rules)
called DAGGER—a tool based on dynamic programming which allows us to opti-
mize decision trees (and decision rules) relative to various cost functions such as
depth (length), average depth (average length), total number of nodes, and number
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of misclassifications sequentially [2–5]. The aim of this paper is to study the
relationships between total path length (average depth) and number of nodes of
decision trees and present a new tool (an extension of our software) for computing
such relationships. We also consider the work of this tool on decision tables from
UCI ML Repository [1].

The presented algorithm and its implementation in the software tool DAGGER

together with similar algorithms devised by the authors (see for example [6]) can
be useful for investigations in Rough Sets [7, 8] where decision trees are used as
classifiers [9].

This paper is divided into six sections including Introduction. Section 2 pre-
sents some basic notions related to decision tables, decision trees, and the two cost
functions. Section 3 gives an algorithm to construct a directed acyclic graph
(DAG) DðTÞ that captures all possible decision trees for a given decision table
T . The main algorithm for computing relationships between total path length
(average depth) and number of nodes is presented in Sect. 4. Section 5 shows
some experimental results of work of the algorithm on data tables acquired from
UCI ML Repository and Sect. 6 concludes the paper followed by References and
an appendix for ‘‘transformation of functions’’ proposition used in Sect. 4.

2 Basic Notions

In the following section we define the main notions related to the study of decision
trees and tables and two cost functions for decision trees.

2.1 Decision Tables and Decision Trees

In this paper, we consider only decision tables with discrete attributes. These tables
do not contain missing values and equal rows. Consider a decision table T depicted
in Fig. 1. Here f1; . . .; fm are the conditional attributes; c1; . . .; cN are nonnegative
integers which can be interpreted as the decisions (values of the decision attribute
d); bij are nonnegative integers which are interpreted as values of conditional
attributes (we assume that the rows ðb11; . . .; b1mÞ; . . .; ðbN1; . . .; bNmÞ are pairwise
different). We denote by EðTÞ the set of attributes (columns of the table T), each of

f1 fm d

b11 b1m c1

...
...

bN1 bNm cN

Fig. 1 Decision table
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which contains different values. For fi 2 EðTÞ, let EðT ; fiÞ be the set of values from
the column fi. We denote by NðTÞ the number of rows in the decision table T .

Let fi1 ; . . .; fit 2 ff1; . . .; fmg and a1; . . .; at be nonnegative integers. We denote
by Tðfi1 ; a1Þ. . .ðfit ; atÞ the subtable of the table T , which consists of such and only
such rows of T that at the intersection with columns fi1 ; . . .; fit have numbers
a1; . . .; at, respectively. Such nonempty tables (including the table T) will be called
separable subtables of the table T .

For a subtable H of the table T we will denote by RðHÞ the number of unor-
dered pairs of rows that are labeled with different decisions.

A decision tree C over the table T is a finite directed tree with a root in which each
terminal node is labeled with a decision. Each nonterminal node is labeled with a
conditional attribute, and for each nonterminal node, the outgoing edges are labeled
with pairwise different nonnegative integers. Let v be an arbitrary node of C.
We now define a subtable TðvÞ of the table T . If v is the root then TðvÞ ¼ T . Let v be
a node of C that is not the root, nodes in the path from the root to v be labeled with
attributes fi1 ; . . .; fit , and edges in this path be labeled with values a1; . . .; at,
respectively. Then TðvÞ ¼ Tðfi1 ; a1Þ. . .ðfit ; atÞ.

Let C be a decision tree. We say that C is a decision tree for T if any node v of
C satisfies the following conditions:

• If RðTðvÞÞ ¼ 0 then v is a terminal node labeled with the common decision for
TðvÞ.

• Otherwise, v is labeled with an attribute fi 2 EðTðvÞÞ and, if EðTðvÞ; fiÞ ¼
fa1; . . .; atg, then t edges leave node v, and these edges are labeled with
a1; . . .; at respectively.

Let C be a decision tree for T . For any row r of T , there exists exactly one terminal
node v of C such that r belongs to the table TðvÞ. Let v be labeled with the decision b.
We will say about b as the result of the work of decision tree C on r.

For an arbitrary row r of the decision table T , we denote by lðrÞ the length of
path from the root to the terminal node v of T such that r is in TðvÞ. We say that
the total path length, represented as K, is the sum of path lengths for all rows in
T . That is

KðT;CÞ ¼
X

r

lðrÞ;

where we take the sum on all rows r of the table T . Note that average depth,
represented as havg of C is equal to the total path length divided by the total
number of rows in T i.e.,

havgðT ;CÞ ¼
KðT ;CÞ

NðTÞ :

We will drop T when it is obvious from the context. That is, we will write KðCÞ
instead of KðT ;CÞ if T is known.

For a decision tree C of a decision table T , we represent the total number of
nodes of C by LðCÞ. It is interesting to note that the cost functions K and L are
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bounded above by values depending upon the size of the table. That is, mN and
2N � 1 are the upper bounds for K and L for a decision table with m conditional
attributes and N rows.

3 Representation of Sets of Decision Trees

Consider an algorithm for construction of a graph DðTÞ, which represents the set of
all decision trees for the table T . Nodes of this graph are some separable subtables
of the table T . During each step we process one node and mark it with the
symbol *. We start with the graph that consists of one node T and finish when all
nodes of the graph are processed.

Assume the algorithm has already performed p steps. We now describe the step
number ðpþ 1Þ. If all nodes are processed then the work of the algorithm is finished,
and the resulting graph is DðTÞ. Otherwise, choose a node (table) H that has not been
processed yet. If RðHÞ ¼ 0, label the considered node with the common decision b
for H, mark it with symbol * and proceed to the step number ðpþ 2Þ. If RðHÞ > 0,
then for each fi 2 EðHÞ draw a bundle of edges from the node H (this bundle of
edges will be called fi-bundle). Let EðH; fiÞ ¼ fa1; . . .; atg. Then draw t edges from
H and label these edges with pairs ðfi; a1Þ; . . .; ðfi; atÞ respectively. These edges enter
into nodes Hðfi; a1Þ; . . .;Hðfi; atÞ. If some of the nodes Hðfi; a1Þ; . . .;Hðfi; atÞ are not
present in the graph then add these nodes to the graph. Mark the node H with the
symbol * and proceed to the step number ðpþ 2Þ. Now for each node H of the graph
DðTÞ, we describe the set of decision trees corresponding to the node H. We will
move from terminal nodes, which are labeled with numbers, to the node T . Let H be
a node, which is labeled with a number b. Then the only trivial decision tree depicted
in Fig. 2 corresponds to the node H.

Let H be a nonterminal node (table) then there is a number of bundles of edges
starting in H. We consider an arbitrary bundle and describe the set of decision trees
corresponding to this bundle. Let the considered bundle be an fi-bundle where
fi 2 ðHÞ and EðH; fiÞ ¼ fa1; . . .; atg. Let C1; . . .;Ct be decision trees from sets
corresponding to the nodes Hðfi; a1Þ; . . .;Hðfi; atÞ. Then the decision tree depicted in
Fig. 3 belongs to the set of decision trees, which correspond to this bundle. All such
decision trees belong to the considered set, and this set does not contain any other
decision trees. Then the set of decision trees corresponding to the node H coincides
with the union of sets of decision trees corresponding to the bundles starting in H.
We denote by DðHÞ the set of decision trees corresponding to the node H.

The following proposition shows that the graph DðTÞ can represent all decision
trees for the table T .

Proposition 1 Let T be a decision table and H a node in the graph DðTÞ. Then
the set DðHÞ coincides with the set of all decision trees for the table H.

bFig. 2 Trivial DT
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Proof We prove this proposition by induction on nodes in the graph DðTÞ. For
each terminal node H, only one decision tree exists as depicted in Fig. 2, and the
set DðTÞ contains only this tree. Let H be a nonterminal node and the statement of
proposition hold for all its descendants.

Consider an arbitrary decision tree C 2 DðHÞ. Obviously, C contains more than
one node. Let the root of C be labeled with an attribute fi and the edges leaving
root be labeled with the numbers a1; . . .; at. For j ¼ 1; . . .; t, denote by Cj the
decision tree connected to the root with the edge labeled with the number aj. From
the definition of the set DðHÞ it follows that fi is contained in the set EðHÞ,
EðH; fiÞ ¼ fa1; . . .; atg and for j ¼ 1; . . .; t, the decision tree Cj belongs to the set
DðHðfi; ajÞÞ. According to the inductive hypothesis, the tree Cj is a decision tree
for the table Hðfi; ajÞ. Then the tree C is a decision tree for the table H.

Now we consider an arbitrary decision tree C for the table H. According to the
definition, the root of C is labeled with an attribute fi from the set EðHÞ, edges
leaving the root are labeled with numbers from the set EðH; fiÞ and the subtrees
whose roots are nodes, to which these edges enter, are decision trees for corre-
sponding descendants of the node H. Then, according to the definition of the set
DðHÞ and to inductive hypothesis, the tree C belongs to the set DðHÞ.

4 Relationships

In the following we consider relationships between average depth (total path
length) and number of nodes for decision trees and give an algorithm to compute
the relationships. We also provide an illustration of working of the algorithm on an
example decision table.

Let T be a decision table with N rows and m columns labeled with f1; . . .; fm,
and DðTÞ be the set of all decision trees for T (as discussed in Sects. 2 and 3). We
will use the notion of total path length instead of average depth for clarity and ease
of implementation.

We denote BK;T ¼ fb; bþ 1; . . .;mNg and BL;T ¼ fa; aþ 1; . . .; 2N � 1g, here
b ¼ bðTÞ and a ¼ aðTÞ are minimum total path length and minimum number of
nodes, respectively, of some decision tree in DðTÞ (not necessarily the same tree).
We define two functions GT : BK;T ! BL;T and F T : BL;T ! BK;T as follows:

F TðnÞ ¼ minfKðCÞ : C 2 DðTÞ : LðCÞ� ng; n 2 BL;T

GTðnÞ ¼ minfLðCÞ : C 2 DðTÞ : KðCÞ� ng; n 2 BK;T :

1

1 t

t
if

a a

Fig. 3 Aggregated DT
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We now describe an algorithm which allows us to construct the function FH for
every node H from the graph DðTÞ. We begin from terminal nodes and move
upward to the node T .

Let H be a terminal node. It means that all the rows of decision table H are
labeled with the same decision b and the decision tree Cb as depicted in Fig. 2
belongs to DðHÞ. It is clear that KðCbÞ ¼ 0 and LðCbÞ ¼ 1 for the table H as well
as aðHÞ ¼ 1, therefore, FHðnÞ ¼ 0 for any n 2 BL;H.

Let us consider a nonterminal node H and a bundle of edges, which start from
this node. Let these nodes be labeled with the pairs ðfi; a1Þ; . . .; ðfi; atÞ and enter
into the nodes Hðfi; a1Þ; . . .;Hðfi; atÞ, respectively, to which the functions
FHðfi;a1Þ; . . .;FHðfi;atÞ are already attached.

Let m1; . . .; mt be the minimum values from BL;Hðfi;a1Þ; . . .;BL;Hðfi;atÞ, respectively.
Let

BL;H;fi ¼ fai; ai þ 1; . . .; 2N � 1g; where ai ¼ 1þ
Xt

j¼1

mj:

One can show that ai is the minimum number of nodes of a decision tree from
DðHÞ for which fi is attached to the root and aðHÞ ¼ minfai : fi 2 EðHÞg, where
aðHÞ is the minimum value from BL;H.

We correspond to the bundle (fi-bundle) the function F fi
H: for any n 2 BL;H;fi ,

F fi
HðnÞ ¼ min

Xt

j¼1

FHðfi;ajÞðnjÞ þ NðHÞ;

where the minimum is taken over all n1; . . .; nt such that nj 2 BL;Hðfi;ajÞ for j ¼
1; . . .; t and n1 þ � � � þ nt þ 1� n. [It should be noted that computing F fi

H is a
nontrivial task. We describe the method in detail in the following subsection.] It is
not difficult to show that for all n 2 BL;H,

FHðnÞ ¼ minfF fi
HðnÞ : fi 2 EðHÞ; n 2 BL;H;fig:

We can use the following proposition to construct the function GT (using the
method of transformation of functions described in the Appendix).

Proposition 2 For any n 2 BK;T , GTðnÞ ¼ minfp 2 BL;T : F TðpÞ� ng.

Note that to find the value GTðnÞ for some n 2 BK;T it is enough to make
Oðlog jBK;T jÞ ¼ OðlogðmNÞÞ operations of comparisons.

4.1 Computing Ffi
H

Let H be a nonterminal node in DðTÞ, fi 2 EðHÞ and EðH; fiÞ ¼ fa1; . . .; atg.
Furthermore, we assume the functions FHðfi;ajÞ for j ¼ 1; . . .; t, have already been
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computed. Let the values of FHðfi;ajÞ be given by the tuple of pairs,

ðcj; k
j
cj
Þ; ðcj þ 1; kj

cjþ1Þ; . . .; ð2N � 1; kj
2N�1Þ

� �
, where cj ¼ aðHðfi; ajÞÞ and

kk
j ¼ FHðfi;ajÞðkÞ. We need to compute F fi

HðnÞ for all n 2 BL;H;fj ;

F fi
HðnÞ ¼ min

Xt

j¼1

FHðfi;ajÞðnjÞ þ NðHÞ;

for nj 2 BL;Hðfi;ajÞ, such that n1 þ � � � þ nt þ 1� n.

We construct a layered directed acyclic graph (DAG) dðH; fiÞ to compute F fi
H

as following. The DAG dðH; fiÞ contains nodes arranged in t þ 1 layers
ðl0; l1; . . .; ltÞ. Each node has a pair of labels and each layer ljð1� j� tÞ contains at
most jð2N � 1Þ nodes. The first entry of labels for nodes in a layer lj is an integer
from f1; 2; . . .; jð2N � 1Þg. The layer l0 contains only one node labeled with ð0; 0Þ.

Each node in a layer lj (0� jt) has at most 2N � 1 outgoing edges to nodes in layer
ljþ1. These edges are labeled with the corresponding pairs in FHðfi;ajþ1Þ.
A node with label x as a first entry in its label-pair in a layer lj connects to nodes with
labels xþ cj to xþ 2N � 1 (as a first entry in their label-pairs) in layer ljþ1, with

edges labeled as ðcjþ1; k
jþ1
cjþ1
Þ; ðcjþ1 þ 1; kjþ1

cjþ1þ1Þ; . . .; ð2N � 1; kjþ1
2N�1Þ, respectively.

The function F fi
HðnÞ for n 2 BL can be easily computed using the DAG dðH; fiÞ

for H 2 DðTÞ and for the considered bundle of edges for the attribute fi 2 EðHÞ as
follows:

Each node in layer l1 gets its second value copied from the corresponding
second value in incoming edge label to the node (since there is only one incoming
edge for each node in layer l1). Let ðk; kÞ be a node in layer lj, 2� j� t. Let
E ¼ fðv1; k1Þ; ðv2; k2Þ; . . .; ðvr; krÞg be the set of incoming nodes to ðk; kÞ such that
ða1; b1Þ; ða2; b2Þ; . . .; ðar; brÞ are the labels of these edges between the nodes in E
and ðk; kÞ, respectively. It is clear that k ¼ vi þ ai, 1� i� r. Then
k ¼ min1� i� rfki þ big. We do this for every node layer-by-layer till all nodes in
dðH; fiÞ have received their second label.

Once we finish computing the second value of label pairs for the nodes in layer

lt, we can use these labels to compute F fi
HðnÞ. Let ðk1; k1Þ; . . .; ðks; ksÞ be all label-

pairs attached to the nodes in lt. One can show that

F fi
HðnÞ ¼ min kq : q 2 f1; . . .; sg; kq� n� 1

� �
þ NðHÞ:

An example of working of the algorithm can be found in Fig. 4.
Let us evaluate the number of arithmetic operations of the considered algorithm.

The DAG d ¼ dðH; fiÞ has t þ 1 layers and each layer lj has at most jð2N � 1Þ
nodes. Therefore, the total number of nodes in d is Oðt2NÞ. Since every node has
at most 2N � 1 outgoing edges (except the nodes in layer lt), the number of edges in
d is Oðt2N2Þ. Hence, to build the graph d, we need Oðt2N2Þ operations. To find
the second labels we need a number of additions and comparisons bounded from
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above by the number of edges, i.e, Oðt2N2Þ. Similarly, to find values of F fi
H we need

OðtNÞ comparisons. Therefore, the total number of additions and comparisons is
Oðt2N2Þ.

5 Experimental Results

We performed several experiments on datasets (decision tables) acquired from
UCL ML Repository [1]. The resulting plots are depicted in Figs. 5, 6, 7, and 8.
These plots show the relationship between two cost functions, take for example the

f1 f2 f3 d
0 0 0 0
1 0 1 1
2 1 0 0
3 0 1 1

=((3 ,4) ,(4 ,4) ,(5 ,4) ,(6 ,4) ,(7 ,4))f1 f2 f3 d
0 0 0 0

=((1,0))

f1 f2 f3 d
1 0 1 1

=((1,0))

f1 f2 f3 d
2 1 0 0

=((1,0))

f1 f2 f3 d
3 0 1 1

=((1,0))

f1 f2 f3 d
0 0 0 0
2 1 0 0

=((1,0) ,(2 ,0) ,(3 ,0))

f1 f2 f3 d
0 0 0 0
1 0 1 1
3 0 1 1
=((3,3) ,(4 ,3) ,(5 ,3))

f1 f2 f3 d
1 0 1 1
3 0 1 1

=((1,0) ,(2 ,0) ,(3 ,0))

( f 1 , 0) ( f1 , 1)

( f1 , 2) ( f 1 , 3)

( f 3
, 0)

(f
2

, 0
)

( f3 , 1)

( f2 , 1)

(f
1 , 0)

( f
3 , 0)

( f 1
, 1)

( f 1
, 3

)

( f3 , 1)

Fig. 4 Example illustrating the working of the algorithm
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plot in Fig. 7. It shows that when the number of nodes is 250 the average depth of
the tree is 4:36. These plots help us understand the nature of trees for the particular
dataset. The plots in Figs. 7 and 8 use average depth instead of total path length.

245 250 255 260
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Fig. 7 TIC-TAC-TOE dataset (9
attributes and 959 rows)
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6 Conclusion

This paper presents a tool for studying the relationships between the number of
nodes and average depth (total path length) for decision trees. Further studies will
be connected with the extensions of this tool including studying relationships
between depth and average depth of decision trees.

A.1 7 Appendix: Transformation of Functions

Let f and gbe twofunctions fromasetAontoCf and Cg respectively,whereCf and Cg

are finite sets of nonnegative integers. Let Bf ¼ fmf ;mf þ 1; . . .;Mf g and Bg ¼
fng; ng þ 1; . . .;Ngg where mf ¼ minfm : m 2 Cf g and ng ¼ minfn : n 2 Cgg.
Furthermore, Mf and Ng are natural numbers such that m�Mf and n�Ng for any
m 2 Cf and n 2 Cg, respectively.

We define two functions F : Bg ! Bf and G : Bf ! Bg as follows:

FðnÞ ¼ minff ðaÞ : a 2 A; gðaÞ� ng; 8n 2 Bg; ð1Þ

GðmÞ ¼ minfgðaÞ : a 2 A; f ðaÞ�mg; 8m 2 Bf : ð2Þ

It is clear that both F and G are nonincreasing functions.
The following proposition states that the functions F and G can be used

interchangeably and we can evaluate F using G and vice versa, i.e., it is enough to
know only one function to evaluate the other.

Proposition 3 For any n 2 Bg,

FðnÞ ¼ minfm 2 Bf : GðmÞ� ng;

and for any m 2 Bf ,

GðmÞ ¼ minfn 2 Bg : FðnÞ�mg:

Proof Let for some n 2 Bg

FðnÞ ¼ m0: ð3Þ

Furthermore, we assume that

minfm 2 Bf : GðmÞ� ng ¼ t: ð4Þ

From (3) it follows that

(i) there exists b 2 A such that gðbÞ� n and f ðbÞ ¼ m0;
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(ii) for any a 2 A if gðaÞ� n then f ðaÞ�m0.From (i) it follows that Gðm0Þ� n.
This implies t�m0. Let us assume that t. In this case, there exits m1 for which
Gðm1Þ� n. Therefore, there exists a 2 A such that f ðaÞ�m1 and gðaÞ� n, but
from (ii) it follows that f ðaÞ�m0, which is impossible. So t ¼ m0.

Similarly, we can prove the second part of the statement.

Proposition 3 allows us to transform the function G given by a tuple
Gðmf Þ;Gðmf þ 1Þ; . . .;GðMf Þ
� �

into the function F and vice versa. We know that
Gðmf Þ�Gðmf þ 1Þ� � � � �GðMf Þ, to find the minimum m 2 Bf such that
GðmÞ�m we can use binary search which requires Oðlog jBf jÞ comparisons of
numbers. So to find the value FðnÞ for n 2 Bg it is enough to make Oðlog jBf jÞ
operations of comparison.
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