Task Based System Load Balancing
Approach in Cloud Environments

Fahimeh Ramezani, Jie Lu and Farookh Hussain

Abstract Live virtual machine (VM) migration is a technique for transferring an
active VM from one physical host to another without disrupting the VM. This
technique has been proposed to reduce the downtime for migrated overload VMs.
As VMs migration takes much more times and cost in comparison with tasks
migration, this study develops a novel approach to confront with the problem of
overload VM and achieving system load balancing, by assigning the arrival task to
another similar VM in a cloud environment. In addition, we propose a multi-
objective optimization model to migrate these tasks to a new VM host applying
multi-objective genetic algorithm (MOGA). In the proposed approach, there is no
need to pause VM during migration time. In addition, as contrast to tasks
migration, VM live migration takes longer to complete and needs more idle
capacity in host physical machine (PM), the proposed approach will significantly
reduce time, downtime memory, and cost consumption.

Keywords Cloud computing - Multi-objective genetic algorithm - Virtual
machine migration - Task based system load balancing algorithm

F. Ramezani (D<) - J. Lu - F. Hussain

Decision Systems and e-Service Intelligence Laboratory, Faculty of Engineering and IT,
School of Software, Centre for QCIS, University of Technology, Sydney, Australia
e-mail: Fahimeh.Ramezani @students.uts.edu.au

J. Lu
e-mail: Jie.Lu@uts.edu.au

F. Hussain
e-mail: Farookh.Hussain@uts.edu.au

F. Sun et al. (eds.), Knowledge Engineering and Management, 31
Advances in Intelligent Systems and Computing 214,
DOI: 10.1007/978-3-642-37832-4_4, © Springer-Verlag Berlin Heidelberg 2014

32 F. Ramezani et al.

1 Introduction

Cloud computing provides new business opportunities for both service providers
and requestors clients (e.g., organizations, enterprises, and end users), by means of
a platform and delivery model for delivering Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service (SaaS). A cloud encloses
the TaaS, PaaS, and/or SaaS inside its own virtualized infrastructure, in order to
carry out an abstraction from its underlying physical assets. Typically, the virtu-
alization of a service implies the aggregation of several proprietary processes
collected in a virtual environment, called Virtual Machine (VM) [1, 2].

Often, clouds are also spread over distributed virtualization infrastructure
covering larger geographical areas (example, let us think about Amazon (‘Amazon
Elastic Compute Cloud [24]’), Azure [25], and RESERVOIR (an European project
facing the cloud computing IaaS topic [3]). In addition, the perspective of cloud
federation [4, 5], where cloud providers use virtualized infrastructures of other
federated clouds, opens toward new scenarios in which more and more types of
new services can be supplied. In fact, clouds exploiting distributed virtualization
infrastructures are able to provide new types of “Distributed laaS, PaaS, and
SaaS” [2].

Cloud computing platform using virtualization technology for resource man-
agement, achieves dynamic balance between the servers. Using online VM
migration technology [6] can online achieve the remapping of VMs and physical
resources, and dynamic achieve the whole system load balancing [7]. In modern
data center (DC) or cloud environment, virtualization is a critical element since
using virtualization the resources can be easily consolidated, partitioned, and
isolated. In particular, VM migration has been applied for flexible resource allo-
cation or reallocation, by moving VM from one physical machine to another for
stronger computation power, larger memory, fast communication capability, or
energy savings [8].

Although a significant amount of research has been done to achieve the whole
system load balancing ([6-9], etc.), more improvement is still needed as most of
these approaches tried to migrate VMs, when they became overloaded. As VMs
migration takes much more times and cost in comparison with tasks migration, we
believe migrating tasks from overloaded VMs instead of migrating overloaded
VMs, will significantly reduce transfer time and total cost. In addition, to migrate
VMs, we have to find a new PM which can accommodate the VM being migrated,
and we can rarely avoid choosing an idle PM to optimize power consumption. But
in task migration, we just need to find another VM which is located on an active
PM and has the same features and number of CPU and more capacity just for
executing a task.

Considering these facts and lack of resources in this area, we developed a novel
Task Based System Load Balancing (TBSLB) approach to achieve system load
balancing and confront with the lack of capacity for executing new task in one
VM, by assigning the task to another homogeneous VM in cloud environment. In

Task Based System Load Balancing Approach in Cloud Environments 33

addition, we proposed an algorithm to solve the problem of migrating these tasks
to new VM host which is a multi-objective problem subject to minimizing cost,
minimizing execution time, and transferring time. To solve this problem, we
applied multi-objective genetic algorithm (MOGA).

The rest of this paper is organized as follows. In Sect. 2 related works about
VM migration are described. In Sect. 3 we propose a conceptual model and the
algorithm of TBSLB approach for solving the problem of overloaded VMS by
optimal tasks migration from overloaded VMs. The MOGA algorithm is described
in Sect. 4. Our developed algorithm for solving multi-objective tasks scheduling
problem and completing TBSLB algorithm, is described in Sect. 5. The proposed
approach is evaluated in Sect. 6. Finally, we present our conclusion and future
work in Sect. 7.

2 Related Works for VM Migration

Virtualization has delivered significant benefits for cloud computing by enabling
VM migration to improve utilization, balance load, and alleviate hotspots [10].
Several mechanisms have been proposed to migrate a running instance of a VM
(a guest operating system) from one physical host to another to optimize cloud
utilization.

VM migration is a hot topic of computing system virtualization. Primary
migration relies on process suspend and resume. Many systems [11-13] just pause
the VM and copy the state data, then resume the VM on the destination host. This
forces the migrated application to stop until all the memory states have been
transferred to the migration destination where it is resumed. These methods cause
the application to become unavailable during the migration process. ZAP [14]
could achieve lower downtime of the service by just transferring a process group,
but it still uses stop-and-copy strategy. To reduce the migration downtime and
move the VM between hosts in local area network without disrupting it, VMotion
[15] and Xen [6] utilize precopy migration technique to perform live migration and
support seamless process transfer. Based on their works, [16] tried migrating
running VM on a wide area network [8].

In precopy migration technique, VMs migrate by precopying the generated run-
time memory state files from the original host to the migration destination host. If
the rate for such a dirty memory generation is high, it may take a long time to
accomplish live migration because a large amount of data needs to be transferred.
In extreme cases, when dirty memory generation rate is faster than precopy speed,
live migration will fail. Considering this fact, [8] presented the basic precopy
model of VM live migration and proposed an optimized algorithm to improve the
performance of live migration by limiting the speed of changing memory through
controlling the CPU scheduler of the VM monitor [8].

[7] designed an IPv6 live migration framework for VM based on IPv6 network
environment [7]. The framework has been used IPv6 VM live migration in

34 F. Ramezani et al.

different IPv6 network. They designed a global control engine as a core complete
IPv6 live migration for VM, and provided IPv6 cloud computing service for IPv4/
IPv6 client. In their approach, during VM migration process, the source VM would
continue to offer services, and the source VM is still not stopped, but no longer
provides new services until the old service completion then stop the source VM.

Since power is one of the major limiting factors for a DC or for large cluster
growth, [9] proposed a runtime VM mapping framework in a cluster or DC to save
energy [9]. Their placement module focused on reducing the power consumption.
The main point of their approach is how to map VMs onto a small set of PMs
without significant system performance degradation. Actually, they tried to turn off
the redundant nodes or PMs to save energy, while the remaining active nodes
guarantee the system performance. In their GreenMap framework, one probabi-
listic, heuristic algorithm is designed employing the idea from simulated annealing
(SA) optimization, for the optimization problem: mapping VMs onto a set of PMs
under the constraint of multi-dimensional resource consumptions.

[17] believe that most of the proposed methods for on-demand resource pro-
visioning and allocation, focused on the optimization of allocating physical
resources to their associated virtual resources, and migrating VMs to achieve load
balance and increase resource utilization. Unfortunately, these methods require the
suspension of the executing cloud computing applications due to the mandatory
shutdown of the associated VMs [17]. To overcome this drawback, they proposed
a threshold-based dynamic resource allocation scheme for cloud computing that
dynamically allocates the VMs among the cloud computing applications based on
their load changes. In their proposed method, they determined when migration
should be done but they did not specify the details of how the reallocation will
occur.

A fundamental shortcoming of the most existing research is that they consider
complete VM migration to overcome overload VM and achieve system load
balance. To improve previous approaches and reduce time and cost consumption
in such situation, we proposed a new TBSLB approach which migrate tasks from
overloads VMs instead of whole VM migration, and to decrease power con-
sumption, a set of VMs on active PMs will be chosen as a new tasks’ host. In
addition, our approach not only eliminates the process suspend and resume which
will happen in VM migration, but also omits precopy mechanism and producing
dirty memory in live VM migration.

3 A Conceptual Model and Main Algorithm for Task
Based System Load Balancing

In this section, we describe proposed TBSLB approach. This approach contains a
conceptual model and TBSLB algorithm which are designed to achieve whole
system load balancing by migrating tasks from overloaded VMs. In this approach to

Task Based System Load Balancing Approach in Cloud Environments 35

decrease energy consumption and costs, we avoid choosing idle PMs or Computer
Nodes (CNs) as a new PM host, because if we transfer tasks to an idle PM, we have
to turn it on and this action will increase energy consumption and costs [9].

As cloud computing has the advantages of delivering a flexible, high-perfor-
mance, pay-as-you-go, on-demand offering service over the Internet, common
users and scientists can use cloud computing to solve computationally complex
problems (complex applications). The complex applications can be divided into
two classes. The one is computing intensive, the other is data intensive. For
transferring data intensive applications, the scheduling strategy should decrease
the data movement which means decreases the transferring time; but for trans-
ferring computing intensive tasks, the scheduling strategy should schedule the data
to the high-performance computer [18]. In this paper, we consider bandwidth as a
variable to minimize the tasks transferring time for data intensive applications. In
addition to enhance performance utilization for computing intensive applications,
we consider new host PM’s properties (memory, hard disk, etc.).

In cloud environment, there are some tasks schedulers that consider task types,
priorities, and their dependencies to schedule tasks in optimal way considering
their specific VM’s resources. In our proposed system, we design a schedulers’
blackboard, where all cloud schedulers (which manage VMs on clouds (see
Fig. 1)) share their information about VMs, their features, and their tasks. We
apply the information of this blackboard to find an appropriate host VM for the
task. Furthermore, the criteria of QoS as SLA information are mentioned in this
blackboard.

Every VM has already some tasks to execute and they have limited workload.
To determine the time of tasks migration from an overloaded VM, we have to
determine online remained workload capacity of a VM (VMs workload infor-
mation), we defined it as:

VM, = VM,, — VM, (1)

where VM,, is VM workload, and VM, is the number of executing tasks in VM.
The VM will be overload and arrival tasks should be migrated to another similar
VM to execute, when:

VM, < 1 2)

Considering all these facts, we propose a novel TBSLB algorithm which pre-
pares another scheduler to transfer tasks from an overhead VM to a new similar
and appropriate VM according to following steps:

Step 1 Gathering data and information about VMMs, VMs, PMs, and SLA
information, in the global blackboard as inputs of TBSLB algorithm as follow:

1. VMs tasks information:

1.1 The number of executing tasks
1.2 Tasks’ execution time
1.3 Tasks’ performance model

36 F. Ramezani et al.

Cloud Customer

|

=
£
s i1
ax Y
= VMM for VMM for VMM for VMM for
Machine A Machine B Machine C Machine D
¢
:
e
=
=
2
L

VM Migration from Server
AtoD

Fig. 1 Cloud architecture

1.4 Tasks’ locations
1.5 Tasks’ required resources (number of required processors)

2. PMs’ Criteria (total/current)

2.1 CPU (number and speed of the processors)
2.2 Free Memory and Hard disk

2.3 Bandwidth

2.4 1dle or active

2.5 Its host VMM

(O8]

SLA information
4. The objectives of the tasks migration optimization model and their information:

4.1 Minimizing cost
4.1.1 Cost information
4.2 Minimizing execution time and transferring time

4.2.1 Execution information
4.2.2 Bandwidth information

Task Based System Load Balancing Approach in Cloud Environments 37

Step 2 Monitoring data and information to determine VMs’ workflow situation
and determining:

1 VMs workload information

2 Overloaded VMs

3 The tasks which should be migrated from overloaded VM’s
4 Migration time

Step 3 Finding optimal homogeneous VMs as a new host for executing the tasks
of the overloaded VMs, which is a multi-objective task migration problem,
applying MOGA (this step will be described in Sect. 5).

Step 4 Considering obtained optimal tasks migration schema, determining
following information as the outputs of TBSLB algorithm:

1 New optimal cost
2 New optimal execution time
3 Current VMs properties (Executing tasks, CPU, etc.)

Step 5 Transferring tasks and their corresponding data to the optimal host VMs

Step 6 Updating blackboards and schedulers’ information according to the
outputs of Step 4.

Step 7 End.

The conceptual model of the proposed approach is summarized in Fig. 2.

4 A Multi Objective Genetic Algorithm

In Step 3 of the algorithm, a multi-objective problem which is described in Sect. 5,
should be solved to optimize tasks migration from overload VM and find the best
VMs as new tasks hosts. In multi-objective optimization problems, each objective
function interacts on each other; they almost cannot be optimal at the same time. In
other words, one objective function optimization often means a bad developing
direction of other objective functions. Therefore, a compromise strategy can be
used among the objective functions so as to make them reach optimization at the
same time. Now the most popular MOGAs abroad are Corne’s PESA2 [19] and
PAES [20], SPEA2 [21] proposed by Ziltler, Deb’s NSGAII, and so on. Among
them, Deb’s NSGAII not only has good convergence and distribution but also has
higher convergence speed, and solve the shortcomings that shared parameters are
difficult to determine [22].

According to MOGA, first initial population whose scale is N is generated
randomly. The first generation child population is gained through non-dominated
sorting [23] and basic operations such as selection, crossover and mutation. Then,
from the second generation on, the parent population and the child population will
be merged and sort them based on fast non-dominated. Calculate crowding dis-
tance among individuals on each non-dominated layer. According to non-dominant
relationship and crowding distance among individuals, select the appropriate

38 F. Ramezani et al.

Step 2: Monitoring VMs’ workflow situation

Determine:
e VMs workload information
e Overloaded VMs

e Time of migration ;
e The tasks which should be migrated (S D58 (E -)
ep 3,4, : Central tas!
¢ Host VMs scheduler
: . Solving tasks scheduli Iti-
[Step 1: Data gathering and updating (Blackboard)] (Se v1r;gbj:;isvch§)b1;:§ mut
Objectives SLA information
1. Minimizing cost . CPU 1. Determine:
) M‘.‘ (?"_St "m)rma_mm. : Memory o Tasks migration destinations
. mimizing execution time
e Execution information - — (new host VM)

e New optimal cost
PMs’ Criteria (total/current) P

e New optimal execution time
VMs tasks information ® CPU (number and speed of >

the processors) o Current VMs properties

Tasks’ locations
Tasks’ required resources (number of
required processors)

Idle or active
Its host VMM

7y
[Scheduler m] [Scheduler m]' mEmmmEn Scheduler m *

)
! T E—]

— — N node _~ —
Guest Guest L= T = =— Guest
e S LI LI |:._.:|

Fig. 2 The conceptual model of TBSLB approach

o The number of tasks Memory (CPU, ...)

o Tasks’ execution time Hard disk

e Tasks’ performance model Bandwidth 2. Transfer tasks and their
.

.

corresponding data to the host

e o 0 0 0 o

VMs

individuals to form a new parent population. Finally, new child population is
generated through basic operations of genetic algorithm. And so on, until the
conditions of the process end can be met [22].

5 An Algorithm for Solving Multi-Objective Tasks
Migration Problem Using MOGA

In this section, we will describe the sub-TBSLB algorithm which is developed to
complete the Step 3 of TBSLB algorithm and solve Multi-objective tasks migra-
tion problem. This sub-algorithm will determine the most appropriate VMs to
assign the tasks of the overloaded VMs and find optimal tasks scheduling model
applying MOGA.

This sub-algorithm applies data and information which are determined in Step 1
and Step 2 of the TBSLB algorithm as its inputs. In this algorithm, we first
eliminate those VMs which do not satisfy all constraints to reduce the population

Task Based System Load Balancing Approach in Cloud Environments 39

of the candidate solution set. Then we apply MOGA method to find the optimal
solution.

According to sub-TBSLB algorithm, to find optimal host VMs to assign new
overloaded VMs’ tasks, following steps should be conducted:

Step 3.1 Determining candidate host VMs set by choosing the set of VMs which
satisfy the constraints about host VMs’ properties as VMg, = {vmy,...,vm,,}

Step 3.2 Determining overloaded VMs applying Eq. 2, and eliminating them
from candidate host VMs set.

Step 3.3 Determining the set of tasks which should migrate from overloaded
VMs as immigrating tasks set: Tsey = {f1,...,%,}

Step 3.4 Applying MOGA to solve multi-objective problem and assign the
immigrating tasks to the optimal host VMs minimizing execution time, transfer-
ring time and processing cost. To achieve this goal, following steps should be
conducted:

Step 3.4.1 Initializing population P, which is generated randomly

Step 3.4.2 Assigning rank to each individual based on non-dominated sort

Step 3.4.3 Implementing binary tournament selection, crossover and mutation
on the initial population and creating a new population Oy and set
t=0

Step 3.44 Merging the parent P, and the child Q, to form a new population
R, =P, UQ,

Step 3.4.5 Adopting non-dominated relationship to sort population and calculate
the crowding distance among population on each layer

Step 3.4.6 Selecting the former N individuals as the parent population, namely
P,y = P,y [1: N] (Elite strategy)

Step 3.4.7 Implementing reproduction, crossover and mutation on population
P,;1 to form population Q.

Step 3.4.8 If the termination conditions are met, output results as optimal tasks
migration schema; otherwise, update the evolutionary algebra counter
t = t+1 and go to step 3.4.4

Step 3.5 End.

6 Evaluation

We determine two parameters to evaluate our proposed TBSLB approach and
compare it with traditional whole VM migration methods. The first parameter is
related to “power consumption”. As, the less number of active PM means the less
power consumption [9], we applied following ratio to compare power consumption
after load balancing:

R — Number of active PM
PE ™" Number of overloaded VMs

3)

40 F. Ramezani et al.

In proposed approach, to execute some tasks of overloaded VM, we need to find
a new similar VM on an active PM as a new host and there will be no need to turn
a new PM on. In contrast, for whole VM migration, more hardware capacity will
be needed and it is impossible for every case to avoid choosing idle PM. So, in our
approach, R, should be less than whole VM migration attitude for load balancing.
Therefore, we will have less “power consumption” after load balancing and:

R >R

PCofline vM —

>R

PCOnline VM PCNewApproach

To compare the efficiency of TBSLB approach, we applied “downtime VM
pause time)” as second parameter and estimate the amount of “idle memory”
which is prepared during the time of solving the problem of overloaded VM as:

Mim(t) = OriginalVM,, (¢) + HostVM,(7) (4)

where OriginalVM,,, and HostVM,, are the amount of original VM memory and
host VM, respectively.

In offline VMs migration method, during VM migration time, the original VM
should be suspend and its memory and the amount of memory in new host PM
which is determined for host VM will be idle. In online VMs migration method,
although VM will not be suspended during migration process, the amount of
memory in new host PM will be idle in this time. Meanwhile, in TBSLB approach,
we eliminate process of suspend and resume in primary VM migration which is
mentioned in [8] and there will be no downtime for VMs and no idle memory. As
the results:

Mim (I)Ofﬂine VM > Mim(t)Online VM > Mim(t)NewApproach

7 Conclusion and Future Work

VM migration has been applied for flexible resource allocation or reallocation, by
moving overload VM from one PM to another to achieve stronger computation
power, larger memory, fast communication capability, or energy savings.

This paper proposed a new TBSLB approach to confront with the problem of
overload VM by migrating arrival tasks to another homogeneous VM. This
algorithm contains multi-objective tasks migration model subject to minimizing
cost, execution time, and transferring time. In proposed approach, there is no need
to pause VM during migration time. In addition, as contrast to tasks migration, VM
live migration takes longer to complete and needs more idle capacity in host PM,
the proposed approach will significantly reduce time, downtime memory, and cost
consumption. Furthermore, proposed approach will decrease energy consumption

Task Based System Load Balancing Approach in Cloud Environments 41

by avoiding choosing idle PMs or CNs as a new host PM. In our future work, we
will propose a method to predict the time of task migration from an overload VM
to accelerate load balancing process in our proposed approach.

References

—_—

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Buyya R, Broberg J, Goscinski A (eds) (2011) Cloud computing: principles and paradigms
. Celesti A, Fazio M, Villari M, Puliafito A (2012) (VM) provisioning through satellite

communications in federated cloud environments. Future Gener Comput Syst 28(1):85-93

. Rochwerger B, Breitgand D, Epstein A, Hadas D, Loy I, Nagin K, Tordsson J, Ragusa C,

Villari M, Clayman S (2011) Reservoir-when one cloud is not enough. Comput 44(3):44-51

. Goiri I, Guitart J, Torres J (2010) Characterizing cloud federation for enhancing providers’

profit. In: IEEE 3rd international conference on cloud computing (CLOUD), pp 123-130

. Ranjan R, Buyya R (2008): Decentralized overlay for federation of enterprise clouds, Arxiv

preprint arXiv:0811.2563

. Clark C, Fraser K, Hand S, Jacob GH (2005) Live migration of (VM)s. In: Proceedings of

2nd ACM/USENIX symposium on network systems, design and implementation (NSDI)

. Jun C, xiaowei C(2011): IPv6 (VM) live migration framework for cloud computing, Energy

procedia, vol 13(0):5753-5757

.Jin H, Gao W, Wu S, Shi X, Wu X, Zhou F (2011) Optimizing the live migration of (VM) by

CPU scheduling’. J of Netw and Comput Appl 34(4):1088-1096

. Liao X, Jin H, Liu H (2012) Towards a green cluster through dynamic remapping of (VM)s.

Future Gener Comput Syst 28(2):469—477

Jain N, Menache I, Naor J,.Shepherd F(2012) Topology-aware VM migration in bandwidth
oversubscribed datacenter networks, automata, languages, and programming, pp 586-597
Kozuch M, Satyanarayanan M (2002) Internet suspend/resume, Mobile computing systems
and applications. Proceedings fourth IEEE workshop on, pp 40—46

Sapuntzakis CP, Chandra R, Pfaff B, Chow J, Lam MS, Rosenblum M (2002) Optimizing the
migration of virtual computers. ACM SIGOPS operating systems review, vol 36, no. SI,
pp 377-390

Whitaker A, Cox RS, Shaw M, Gribble SD(2004) Constructing services with interposable
virtual hardware. In: Proceedings of the Ist symposium on networked systems design and
implementation (NSDI), pp 169-182

Osman S, Subhraveti D, Su G, Nieh J (2002): The design and implementation of Zap: A
system for migrating computing environments, ACM SIGOPS Operating systems review, vol
36, no. SI, pp 361-376

Nelson M, Lim BH, Hutchins G (2005) Fast transparent migration for (VM)s, pp 25-25
Travostino F, Daspit P, Gommans L, Jog C, De Laat C, Mambretti J, Monga I, Van
Oudenaarde B, Raghunath S, Yonghui Wang P (2006) Seamless live migration of (VM)s over
the MAN/WAN. Future Gener Comput Syst 22(8):901-907

Lin W, Wang JZ, Liang C, Qi D (2011) A threshold-based dynamic resource allocation
scheme for cloud computing. Proced Eng 23:695-703

Guo L, Zhao S, Shen S, Jiang C (2012) Task scheduling optimization in cloud computing
based on heuristic algorithm. J Netw 7(3):547-553

Corne DW, Jerram NR, Knowles JD, Oates MJ (2001) PESA-II: Region-based selection in
evolutionary multiobjective optimization, Citeseer

Knowles JD, Corne DW (2000) Approximating the nondominated front using the Pareto
archived evolution strategy. Evolut compu 8(2):149-172

Zitzler E, Laumanns M, Thiele L(2001) SPEA2: Improving the strength pareto evolutionary
algorithm

42

22.

23.

24.

25

F. Ramezani et al.

Zhang Y, Lu C, Zhang H, Han J(2011) Active vibration isolation system integrated
optimization based on multi-objective genetic algorithm, computing, control and industrial
engineering (CCIE), IEEE 2nd international conference on, vol 1, pp. 258-261

Srinivas N, Deb K (1994) Muiltiobjective optimization using nondominated sorting in
genetic algorithms. Evol Comput 2(3):221-248

Amazon Elastic Compute Cloud (Amazon EC2), http://aws.amazon.com/ec2/

. Azure: Microsoft’s service Cloud platform, http://www.microsoft.com/windowsazure

http://aws.amazon.com/ec2/
http://www.microsoft.com/windowsazure

	4 Task Based System Load Balancing Approach in Cloud Environments
	Abstract
	1…Introduction
	2…Related Works for VM Migration
	3…A Conceptual Model and Main Algorithm for Task Based System Load Balancing
	4…A Multi Objective Genetic Algorithm
	5…An Algorithm for Solving Multi-Objective Tasks Migration Problem Using MOGA
	6…Evaluation
	7…Conclusion and Future Work
	References

