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Abstract This paper is concerned with the optimal state estimation problem under
linear dynamic systems when the sampling rates of different sensors are different.
The noises of different sensors are cross-correlated and coupled with the system
noise of the previous step. By use of the projection theory and induction
hypothesis repeatedly, a sequential fusion estimation algorithm is derived. The
algorithm is proven to be optimal in the sense of Linear Minimum Mean Square
Error(LMMSE). Finally, a numerical example is presented to illustrate the effec-
tiveness of the proposed algorithm.

Keywords State estimation �Data fusion �Cross-correlated noises �Asynchronous
multirate multisensor

1 Introduction

Estimation fusion, or data fusion for estimation, is the problem of how to best
utilize useful information contained in multiple sets of data for the purpose of
estimating a quantity, e.g., a parameter or process [1]. It originated in the military
field, and is now widely used in military and civilian fields, e.g., target tracking
and localization, guidance and navigation, surveillance and monitoring, etc., due to
its improved estimation accuracy, enhanced reliability, and survivability, etc.
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Most of the earlier works were based on the assumption of cross-independent
sensor noises. Bar-Shalom [2], Chong et al. [3], Hashmipour et al. [4] proposed
several optimal state estimation algorithms based on Kalman filtering, respec-
tively, in which all sensor measurements are fused by use of centralized fusion
structure. In the practical applications, most of multisensor systems often have the
correlated noises when the dynamic process is observed in a common noisy
environment [5]. Moreover, because most of the real systems are described in
continuous forms, discretization is necessary when to get the state estimation on
line, and in the process, the system noise and the measurement noises are shown to
be coupled. Of course, the centralized filter can still be used for the systems with
correlated noises as it is still optimal in the sense of LMMSE. However, the
computation and power requirements are too huge to be practical.

Hence, a few pieces of work deal with coupled sensor noises. Duan proposed
one systematic way to handle the distributed fusion problem based on a unified
data model in which the measurement noises across sensors at the same time may
be correlated [6]. Song also dealt with the state estimation problem with cross-
correlated sensor noises, and proved that under a mild condition it is optimal [5]. A
small amount of papers consider the coupled sensor noises and the correlation
between sensor noises and system noises. Xiao et al. [7] considered the two kinds
of correlations by augmentation and the computation is complex.

In all the papers mentioned above, the sampling rates of different sensors are the
same. Based on the multi-sensor dynamic system in which different sensors
observe the same target state with different sampling rates, Yan et al. [8] put
forward a kind of optimal state estimation algorithm. The algorithm has stronger
feasibility and practicality than the traditional state fusion algorithm, but it does
not take the correlations of noises into account. Shi et al. [9] discussed the esti-
mation when multisensors have multirate asynchronous sampling rates. However,
it does not consider the sensor-correlations either.

In this paper, when the noises of different sensors are cross-correlated and when
they are also coupled with the system noise of the previous step, also, when the
sampling rates of different sensors are different, by use of the projection theory, a
sequential algorithm is formulated. We analyzed the performance of the algorithm,
and it is shown to be optimal in the sense of LMMSE.

The paper is organized as follows. In Sect. 2, the problem formulation is pre-
sented. Section 3 describes the optimal state estimation algorithm. Section 4 is the
simulation results and Sect. 5 draws the conclusion.

2 Problem Formulation

Consider the following generic linear dynamic system,

xðk þ 1Þ ¼ AðkÞxðkÞ þ wðkÞ; k ¼ 0; 1; . . . ð1Þ
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ziðkiÞ ¼ CiðkiÞxðkiÞ þ viðkiÞ; i ¼ 1; 2; . . .;N ð2Þ

where, xðkÞ 2 Rn is the system state, AðkÞ 2 Rn�n is the state transition matrix, and
wðkÞ is the system noise and is assumed to be Gaussian distributed with zero mean
and variance being QðkÞ, where QðkÞ� 0. ziðkiÞ 2 Rmi is the measurement of
sensor i at time ki. Assume the sampling rate of sensor i is Si, and Si ¼ S1=ni,
where ni is known positive integers. Without loss of generality, let the sampling
period of sensor 1 be the unit time, that is, k1 ¼ k. Then, sensor i has measurement
at sampling point nik, in other words, ki ¼ nik. CiðkiÞ 2 Rmi�n is the measurement
matrix. Measurement noise viðkiÞ is zero-mean and is Gaussian distributed with
variance being RðkÞ, and

Efwðki � 1ÞvT
i ðkiÞg ¼ SiðkiÞ ð3Þ

From the above equation, we can see that the measurement noises are coupled with
the previous step system noise. Namely, viðkiÞ is correlated with wðki � 1Þ at time
k ¼ 0; 1; . . .; i ¼ 1; 2; . . .;N. If different sensors have measurements at the same
time, their measurement noises are cross-correlated, i.e., viðkiÞ and vjðljÞ are
coupled when ki ¼ lj. That is, EfviðkiÞvT

j ðkiÞg ¼ RijðkiÞ 6¼ 0 where i; j ¼ 1; 2;

. . .;N. For simplicity, denote RiðkiÞ¼D RiiðkiÞ[ 0; i ¼ 1; 2; . . .;N.
The initial state xð0Þ is independent of wðkÞ and viðkiÞ, where k ¼ 1; 2; . . .,

i ¼ 1; 2; . . .;N, and is assumed to be Gaussian distributed with

Efxð0Þg ¼ x0

covfxð0Þg ¼ Ef½xð0Þ � x0�½xð0Þ � x0�Tg ¼ P0

�
ð4Þ

where covfxð0Þg means the covariance of xð0Þ.
It can be seen from the above description that sensor i will participate in the

fusion process at time nik. Generally speaking, assume there are p sensors that
have measurements at time k with measurements zi1ðkÞ; zi2ðkÞ; . . .;zipðkÞ. Then, to
generate the optimal state estimate of x(k) in the measurement update step, the
above p sensors shall be fused. The estimation of xðkÞ is the information fusion of
the above p sensors.

3 Optimal State Estimation Algorithm

Theorem 1 Based on the descriptions in Sect. 2, suppose we have known the
optimal fusion estimation x̂ðk � 1jk � 1Þ and its estimation error covariance Pðk � 1j
k � 1Þ at time k � 1, then the optimal state estimation of xðkÞ at time k could be
computed as follows,

x̂ijðkjkÞ ¼ x̂ij�1ðkjkÞ þ KijðkÞ½zijðkÞ � CijðkÞx̂ij�1ðkjkÞ� ð5Þ
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PijðkjkÞ ¼ Pij�1ðkjkÞ � KijðkÞ½CijðkÞPij�1ðkjkÞ þ DT
ij�1
ðkÞ� ð6Þ

KijðkÞ ¼ ½Pij�1ðkjkÞCT
ij
ðkÞ þ Dij�1ðkÞ�½CijðkÞPij�1ðkjkÞCT

ij
ðkÞ

þ CijðkÞDij�1ðkÞ þ DT
ij�1
ðkÞCT

ij
ðkÞ��1 þ RijðkÞ

ð7Þ

DijðkÞ ¼
Y1

u¼j

½I � Kiu
ðkÞCiu

ðkiu
Þ�Sijþ1

ðkÞ � Kij
ðkÞRij;ijþ1ðkÞ

�
Xj

q¼2

Yq

u¼j

½I � Kiu
ðkÞCiu

ðkiu
Þ�Kiq�1ðkÞRiq�1;ijþ1ðkÞ

ð8Þ

where j ¼ 1; 2; . . .; p. For j ¼ 0,

x̂i0ðkjkÞ ¼ x̂ðkjk � 1Þ ¼ Aðk � 1Þx̂ðk � 1jk � 1Þ ð9Þ

Pi0ðkjkÞ ¼ Pðkjk � 1Þ
¼ Aðk � 1ÞPðk � 1jk � 1ÞATðk � 1Þ þ Qðk � 1Þ

ð10Þ

Di0ðkÞ ¼ Si1ðkÞ ð11Þ

The above x̂ijðkjkÞ and PijðkjkÞ denote the state estimation of xðkÞ and the corre-
sponding estimation error covariance based on observations of sensors i1; i2; . . .; ij

respectively. When j ¼ p, we have x̂sðkjkÞ ¼ x̂ipðkjkÞ and PsðkjkÞ ¼ PipðkjkÞ,
which are the optimal state fusion estimation and the corresponding estimation
error covariance, where subscript ‘s’ means the sequential fusion.

In addition, from (5), we can see that the sensor with the highest sampling rate
is the first sensor whose sampling period is assumed to be the unit time, so sensor 1
is sensor i1. That is, x̂i1ðkjkÞ ¼ x̂1ðkjkÞ, Pi1ðkjkÞ ¼ P1ðkjkÞ.

Proof The theorem derives from gradually use of the projection theorem. For
i ¼ 1; 2; . . .;N, denote

ZiðkÞ ¼ fzið1Þ; zið2Þ; . . .; ziðkÞg ð12Þ

Zi
1ðkÞ ¼ fz1ðkÞ; z2ðkÞ; . . .; ziðkÞg ð13Þ

�Zi
1ðkÞ ¼ fZi

1ðlÞg
k
l¼1 ð14Þ

where ZiðkÞ is the measurements of sensor i up to time k. If sensor i has no
measurement at time l, we denote ziðlÞ ¼ 0, therefore, the above descriptions are
meaningful. Zi

1ðkÞ is the measurement of sensors 1; 2; . . .; i at time k. �Zi
1ðkÞ is the

measurements of all sensors at time k and before.
In the sequel, we will prove Theorem 1 deductively by applying the projection

theorem. Suppose, we have obtained x̂ij�1ðkjkÞ and the corresponding estimation
error covariance Pij�1ðkjkÞ, next we will show how to get x̂ijðkjkÞ and PijðkjkÞ.
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Applying the projection theorem, we have

x̂ijðkjkÞ ¼ EfxðkÞj�ZN
1 ðk � 1Þ; Zij

1 ðkÞg
¼ EfxðkÞj�ZN

1 ðk � 1Þ; Zij�1

1 ðkÞ; zijðkÞg
¼ x̂ij�1ðkjkÞ þ covf~xij�1ðkjkÞ;~zij�1ðkÞg � varf~zijðkÞg

�1~zijðkÞ

ð15Þ

where ~zijðkÞ ¼ zijðkÞ � ẑijðkÞ, and

ẑijðkÞ ¼ EfzijðkÞj�ZN
1 ðk � 1Þ; Zij�1

1 ðkÞg
¼ EfCijðkÞxðkÞ þ vijðkÞj�ZN

1 ðk � 1Þ; Zij�1

1 ðkÞg
¼ CijðkÞx̂ij�1ðkjkÞ

ð16Þ

So

~zijðkÞ ¼ zijðkÞ � ẑijðkÞ
¼ zijðkÞ � CijðkÞx̂ij�1ðkjkÞ
¼ CijðkÞxijðkÞ þ vijðkÞ � CijðkÞx̂ij�1ðkjkÞ
¼ CijðkÞ~xij�1ðkjkÞ þ vijðkÞ

ð17Þ

Therefore

covf~xij�1ðkjkÞ;~zijðkÞg ¼ Ef~xij�1ðkjkÞ~zT
ij
ðkÞg

¼ Ef~xij�1ðkjkÞ½CijðkÞ~xij�1ðkjkÞ þ vijðkÞ�
Tg

¼ Pij�1ðkjkÞCT
ij
ðkÞ þ Dij�1ðkÞ

ð18Þ

and

varf~zijðkÞg ¼ Ef~zijðkÞ~zT
ij
ðkÞg

¼ Ef½CijðkÞ~xij�1ðkjkÞ þ vijðkÞ� � ½CijðkÞ~xij�1ðkjkÞ þ vijðkÞ�
Tg

¼ CijðkÞPij�1ðkjkÞCT
ij
ðkÞ þ RijðkÞ þ CijðkÞDij�1ðkÞ þ DT

ij�1
ðkÞCT

ij
ðkÞ
ð19Þ

where

Dij�1ðkÞ ¼ Ef~xij�1ðkjkÞvT
ij
ðkÞg ð20Þ

By use of the inductive assumption, we have

~xij�1ðkjkÞ ¼ xðkÞ � x̂ij�1ðkjkÞ
¼ xðkÞ � x̂ij�2ðkjkÞ � Kij�1ðkÞ½zij�1ðkÞ � Cij�1ðkÞx̂ij�2ðkjkÞ�
¼ ~xij�2ðkjkÞ � Kij�1ðkÞ½Cij�1ðkÞxðkÞ þ vij�1ðkÞ � Cij�1ðkÞx̂ij�2ðkjkÞ�
¼ ½I � Kij�1ðkÞCij�1ðkÞ�~xij�2ðkjkÞ � Kij�1ðkÞvij�1ðkÞ

ð21Þ
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Substitute (21) into (20), and by use of the inductive hypothesis, we have

Dij�1ðkÞ ¼ Ef~xij�1ðkjkÞvT
ij
ðkÞg

¼ ½I � Kij�1ðkÞCij�1ðkÞ�Ef~xij�2ðkjkÞvT
ij
ðkÞg � Kij�1ðkÞEfvij�1ðkÞvT

ij
ðkÞg

¼
Y1

u¼j�1

½I � KiuðkÞCiuðkÞ�SijðkÞ � Kij�1ðkÞRij�1;ijðkÞ

�
Xj�1

q¼2

Yq

u¼j�1

½I � KiuðkÞCiuðkÞ�Kiq�1ðkÞRiq�1;ijðkÞ

ð22Þ

Substitute (18), (19) and the second equation of (17) into (15), we have

x̂ijðkjkÞ ¼ x̂ij�1ðkjkÞ þ KijðkÞ½zijðkÞ � CijðkÞx̂ij�1ðkjkÞ� ð23Þ

where

Kij
ðkÞ ¼ covf~xij�1ðkjkÞ;~zij�1ðkÞgvarf~zij�1ðkÞg
¼ ½Pij�1

ðkjkÞCT
ij
ðkÞþDij�1

ðkÞ� � ½Cij
ðkÞPij�1

ðkjkÞCT
ij
ðkÞþRij

ðkÞ

þ Cij
ðkÞDij�1

ðkÞ þ DT
ij�1
ðkÞCT

ij
ðkÞ��1

ð24Þ

The estimation error covariance should be computed by

PijðkjkÞ ¼ Ef~xijðkjkÞ~xT
ij
ðkjkÞg

¼ Ef½xðkÞ � x̂ijðkjkÞ�½xðkÞ � x̂ijðkjkÞ�
Tg

¼ Ef½ðI � KijðkÞCijðkÞÞ~xij�1ðkjkÞ � KijðkÞvijðkÞ�
� ½ðI � KijðkÞCijðkÞÞ~xij�1ðkjkÞ � KijðkÞvijðkÞ�

Tg
¼ ½I � KijðkÞCijðkÞ�Pij�1ðkjkÞ½I � KijðkÞCijðkÞ�

T

þ KijðkÞRijðkÞKT
ij
ðkÞ � ½I � KijðkÞCijðkÞ�Dij�1ðkÞKT

ij
ðkÞ

� KijðkÞDT
ij�1
ðkÞ½I � KijðkÞCijðkÞ�

T

¼ Pij�1ðkjkÞ � KijðkÞ½CijðkÞPij�1ðkjkÞ þ DT
ij�1
ðkÞ

ð25Þ

where Eq. (24) is used.
Combine (22), (23), (24), and (25), we obtain

x̂ijðkjkÞ ¼ x̂ij�1ðkjkÞ þ KijðkÞ½zijðkÞ � CijðkÞx̂ij�1ðkjkÞ� ð26Þ

PijðkjkÞ ¼ Pij�1ðkjkÞ � KijðkÞ � ½CijðkÞPij�1ðkjkÞ þ DT
ij�1
ðkÞ� ð27Þ
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KijðkÞ ¼ ½Pij�1ðkjkÞCT
ij
ðkÞ þ Dij�1ðkÞ�

� ½CijðkÞPij�1ðkjkÞCT
ij
ðkÞ þ RijðkÞ þ CijðkÞDij�1ðkÞ

þ DT
ij�1
ðkÞCT

ij
ðkÞ��1

ð28Þ

DijðkÞ ¼
Y1

u¼j

½I � Kiu
ðkÞCiu

ðkiu
Þ�Sijþ1

ðkÞ � Kij
ðkÞRij;ijþ1ðkÞ

�
Xj

q¼2

Yq

u¼j

½I � Kiu
ðkÞCiu

ðkiu
Þ�Kiq�1ðkÞRiq�1;ijþ1ðkÞ

ð29Þ

Let x̂sðkjkÞ ¼ x̂ipðkjkÞ and PsðkjkÞ ¼ PipðkjkÞ, then we obtain the state estimation
of sequential fusion x̂sðkjkÞ and PsðkjkÞ, and the proof is completed.

4 Simulation

To illustrate the effectiveness of the proposed algorithm, a numerical example is
provided in this section.

A target is observed by three sensors, which could be described by Eqs. (1) and
(2). Sensor 1 has the highest sampling rate S1, and the sampling rates of sensor 2
and sensor 3 are S2 and S3, respectively, which meet S1 ¼ 2S2 ¼ 3S3. And

A ¼
1 1

0 1

� �
;C1 ¼ 1 0½ �;C2 ¼ 1 0½ �;C3 ¼ 0 1½ �

Sensor 1 and sensor 2 observe the position, and sensor 3 observes the velocity.
At time k, the correlations of measurement noises covariance are given by

R1ðkÞ ¼ covðv1ðkÞÞ ¼ 0:048;R2ðkÞ ¼ covðv2ðkÞÞ ¼ 0:064

R3ðkÞ ¼ covðv3ðkÞÞ ¼ 0:064;R12ðkÞ ¼ E½v1ðkÞvT
2 ðkÞ� ¼ 0:032

R13ðkÞ ¼ E½v1ðkÞvT
3 ðkÞ� ¼ 0:016;R23ðkÞ ¼ E½v2ðkÞvT

3 ðkÞ� ¼ 0:016

So, the measurement noises covariance is

RðkÞ ¼
0:048 0:032 0:016

0:032 0:064 0:016

0:016 0:016 0:064

2
64

3
75:

and QðkÞ ¼ covðwkÞ ¼
0:02 0:01
0:01 0:04

� �
: The covariances between the system noise

and the measurement noises are given by
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S1ðkÞ ¼ Efwðk � 1ÞvT
1 ðkÞg ¼

0:0050

0:0025

� �

S2ðkÞ ¼ Efwðk � 1ÞvT
2 ðkÞg ¼

0:0050

0:0025

� �

S3ðkÞ ¼ Efwðk � 1ÞvT
3 ðkÞg ¼

0:0025

0:0100

� �

To derive x̂sðkjkÞ, in the measurement update step, if k could be divided by 2 but
could not be divided by 3, then we will use the observations of sensor 1 and sensor
2. Similarly, if k could be divided by 3 but could not be divided by 2, then the
observations of sensor 1 and sensor 3 should be fused to generate the estimate of
xðkÞ. However, if k could be divided by both 2 and 3, that is, k is a multiple of 6,
the observations of sensor 1, sensor 2, and sensor 3 should be used. Otherwise, we
only use the observations of sensor 1.

The initial conditions are x0 ¼
10
0:1

� �
, P0 ¼ 3 � 1 0

0 1

� �
.

The Monte Carlo simulation results are shown in Figs. 1, 2, 3, and 4. Using
only the measurements of sensor 1, ‘‘KF’’ denotes the Kalman filtering when the
sensor noises are cross-correlated and are coupled with the previous step system
noise, and ‘‘NKF’’ denotes Kalman filtering when the noises are all independent of
each other. Using the measurements of all three sensors, ‘‘SFKF’’ denotes the
algorithm given in Theorem 1, and ‘‘NSFKF’’ denotes the sequential fusion
algorithm when the noises are treated as independent.

(a)

(b)

(c)

Fig. 1 Position and measurements of sensor 1 and 2
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In Fig. 1, from (a) to (c) are the first dimension of the original signal, the
measurement of sensor 1 and the measurements of sensor 2. From the figure, we
can see that sensor 2 only has measurements in the even number points and in odd

(a)

(b)

Fig. 2 Velocity and measurements of sensor 3

(a) (b)

(c) (d)

Fig. 3 Position estimations
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number points the measurements are zero. In Fig. 2, from (a) to (b) are the second
dimension of the original signal and the measurements of sensor 3. Sensor 3 has
measurements only when the sampling points are multiple of 3. It can be seen that
the measurements are corrupted by noises.

Figure 3 shows the state estimations of the position dimension. From Fig. 3 (a)
through (d) are the estimations generated by use of KF, NKF, SFKF, and NSFKF,
respectively. For comparison, the estimations are shown in blue dotted line, while
the original signal is shown in the red real line. From this figure, it can be seen that
all algorithms generate good estimations, whereas the presented algorithm (SFKF)
shows the best performance.

In Fig. 4, the statistical estimation errors of 100 simulation runs are shown,
where, the position estimation errors of KF and NKF are shown in (a) by the lines
of real-blue and dotted-red, respectively. It can be seen from the figure that the
errors of KF are slightly less than that of NKF. And (b) shows the position
estimation errors of SFKF and NSFKF in blue real lines and red dotted lines,
respectively. Also, we can see that the errors of SFKF are less than that of NSFKF.

Briefly, the simulation results in this section illustrate the effectiveness of the
presented algorithm.

(a)

(b)

Fig. 4 The statistical position estimation errors of 100 simulations
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5 Conclusion

When the sampling rates of different sensors are different and when the mea-
surement noises are cross-correlated and are also coupled with the system noise of
the previous step, by use of the projection theory and induction hypothesis
repeatedly, a sequential fusion algorithm is generated. The algorithm is proven to
be optimal in the sense of Linear Minimum Mean Square Error (LMMSE)
mathematically and is applicable to more general cases compared to the existed
algorithms.
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