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Abstract Classic static code analysis for malware is ineffective when challenged
by diverse variants. As a result, dynamic analysis based on malware behavior is
becoming thriving in malware research. Most current dynamic analysis systems
are provided as online services for common users. However, it is inconvenient and
ineffective to use online services for the analysis of a big malware dataset. In this
paper, we propose a framework named CBM enabling tailored construction of an
automated system for malware analysis. In CBM, API call sequences are extracted
as malware behavior reports by dynamic behavior analysis tool, and then API calls
will be transformed to byte-based sequential data for further analysis by a novel
malware behavior representation called BBIS. The peculiar characteristic of CBM
is that it can be customized freely, contrary to current online systems, which
supports local deployment and runs mass malware analysis automatically.
Experiments were carried out on a large-scale malware dataset, which have
demonstrated that CBM is more efficient in reducing storage size and computation
cost while keeping a high precision for malware clustering.
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1 Introduction

Malware, as malicious software, is the basement for attackers to implement
intrusions and maintain them. Conventional methods disassemble the malware to
carry out detailed analysis on the malware at the assembly code level. There are
two prerequisites in such situation: one is that the researchers should have deep
technical insights of assembly, the other is that the analysis processes should be
efficient enough to cope with the constant renewal and variation of the malware.
However, the widespread packing and obfuscation technology utilized by malware
make it even more challenging.

Fortunately, dynamic analysis based on behaviors provides a new perspective to
analyze malware, different from static code analysis, it runs malware in a con-
trolled environment called sandbox and captures the behaviors triggered upon
operation systems. With such technique, we can perform the malware analysis
automatically at a large scale. Several systems have been implemented, such as
CWSandbox [1], Anubis [2], Norman,1 ThreatExpert,2 et al. Usually, most of them
provide free service for the submission and online analysis of malware binaries.

Unfortunately, source codes or packages for local installation are not available
for those systems. Moreover, above tools have limitations on the number of
submissions and the size of executable applications, which limits their usage in
large-scale analysis. Therefore, in this paper we will introduce a locally deployable
system for automatic malware analysis. This framework would enable a fully
controllable analysis procedure under your control as our framework is based on
two open source systems: Cuckoo sandbox3and Malheur [3]. Our contributions can
be listed as follows:

• Reasonable integration solution. We proposed an automatic malware analysis
framework CBM based on the improvement and integration of the existed open
source system Cuckoo sandbox and Malheur. CBM can abstract the analysis
reports from Cuckoo sandbox and encode the reports to sequential data for
Malheur to perform clustering and classification analysis.

• BBIS (Byte-based Behavior Instruction Set) and CARL (Compression Algo-
rithm of high Repeatability in Logarithmic level). We designed BBIS to
transform Cuckoo sandbox’s analysis reports and make them recognizable by
Malheur. In theory, BBIS can maintain a minimum size of reports while keeping
the full messages needed. CARL can further compress the reports by means of
reducing the high repeatability in API calling while keeping or improving the
malware clustering performance.

1 http://www.norman.com/
2 http://threatexpert.com/
3 http://www.cuckoobox.org/
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• Evaluation on a large-scale malware data set. We have achieved bigger then
90% precision of clustering while using less computation time and less storage
size.

2 Related Works

One of the first approaches for analysis and detection of malware was introduced
by Raymod [4] in 1995. Malware binaries are manually analyzed by extracting
static code signs, indicative for malicious activity. Those features are then applied
for detection of other malware samples. This approach has been improved further
by Christodorescu [5] and Preda [6] et al. and became a semantics-aware analysis
method. On the attackers’ side, Popov [7], Ferrie [8] et al. proposed obfuscation
techniques to thwart static analysis. Although Martignoni [9],Sharif [10] have
proposed several systems to generically unpack malware samples, human inter-
vention is still needed.

Dynamic analysis of malware has attracted lots of attention recently. Multiple
systems have been proposed, such as CWSandbox [1], Anubis [2], BitBlaze [11].
Those systems can execute malware binaries within an instrumented environment
and monitor their behaviors for analysis and development of defense mechanisms.
For further analysis, Konard [3] developed Malheur to cluster and classify mal-
ware by processing the malware behaviors, he employed the CWSandbox for
monitoring malware behavios and represented the results in MIST [12] format, by
means of n-grams algorithm and several related approaches. Malheur can classify
the malware to a predefined set of classes and find novel classes by clustering.
Unfortunately CWSandbox and MIST are not open-source, so we use Cuckoo
sandbox and BBIS as the replacement.

Mamoun [13] and Xiaomei [14] adopted API call sequences to reflect malware
system behaviors. We adopt the same methodology and it turns out to be feasible
and efficient.

3 CBM: Build your Own System for Automatic Malware
Analysis

Our system is named CBM since it consists of three major components: Cuckoo
Sandbox4, BBIS and Malheur. The relationship among the three modules is
demonstrated in Fig. 1. The workflow is summarized below:

4 We will use Cuckoo as the shorthand of Cuckoo Sandbox later in this article.
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1. CBM first executes and monitors multi malware binaries in Cuckoo simulta-
neously. Based on the analysis results, CBM extracts the API call sequences as
each binary’s behavior report.

2. CBM encodes the API call sequences to byte-based behavior reports using
BBIS and CARL algorithms.

3. CBM uses Malheur to embed the sequential data in a high-dimensional vector
space by n-gram algorithm, and then calculates the similarity of vectors, at last
machine learning techniques for clustering and classification are applied on the
vectors.

In the following sections, we will discuss each step in detail, including: how to
improve Cuckoo’s monitoring capabilities by adding API hooks, the design of
BBIS and CARL, and the extensions in Malheur.

3.1 The Use and Improvement of Cuckoo

Cuckoo can deploy multi-VMs on one single host and run them simultaneously.
This guarantees the efficiency of Cuckoo to analyze massive malware binaries
quickly. Another advantage is that Cuckoo’s new hook engine cHook.dll5

embedded in cmonitor.dll has implemented a new technique called trampoline
which can make the monitoring upon malware more difficult to be discovered.
CBM use Cuckoo to obtain the malware binaries’s behavior reports composed of
API call sequences. A number of API hooks are needed to fetch the individual

Fig. 1 The framework of CBM

5 http://honeynet.org/node/755
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behaviors. We compared Cuckoo with CWSandbox and found that Cuckoo’s
monitoring scope is not comprehensive and should be improved.

Improvement in Cuckoo by adding Hooks. Cmonitior.dll is a kernel component
of Cuckoo, which will be injected into malware’s memory space to hook the
original API calls for tracking. Herein, we improve Cuckoo’s monitoring capa-
bilities by adding API hooks in cmonitior.dll. cmonitior.dll is written in CPP
language and compiled by VisualStudio 2010, in which 42 windows API functions
were hooked and tracked. Thus, we can extract malware behaviors brought about
by these API calls. Table. 1 lists the differences between Cuckoo and CWSand-
box’s hooking number and categories.

The number of hooks in Cuckoo are much less than that in CWSandbox with an
approximate number of categories, which means that Cuckoo can hold the basic
monitoring ability from 11 categories. However, Table. 1 also shows that Cuckoo
does not set hooks in Winsock API, ICMP API and SystemInfo API. Since the
malware like bots, worms et al. always have similar behavior in network com-
munication, therefore, it is not wise to ignore those related API calls. In CBM, we
have selected 18 additional API functions in these three aspects to be hooked.

To add hooks on API functions, specific hooking processes in cmonitor.dll need
to clarified. Figure. 2 demonstrates the differences between regular API calls and
API calls hooked by comnitor.dll.

We can see from Fig. 2 that chook.dll is responsible for the preservation of
specific API functions’ pointer, the transfer of the calls to new functions, and the
return of the original results to invoker. We can add hooks in three steps: (1)
Append real API function pointers for applying virtual memory space; (2) append
customized functions to call the real API functions inside and record the corre-
sponding message including timestamp, operation parameters, and returning
results; (3) install hooks by invoking the output function Hookattach() from
chook.dll. The space is limited to give adequate coverage of these detailed pro-
cesses, we will publicize a full version report including the comprehensive
solution.

Obtaining API call sequences. In Cuckoo’s results folder, each process of
malware was assigned a csv file that contains the detailed API call messages.
However, CBM does not care about intricate things like the arguments, the process
ID, the return value, and so on. CBM only extracts the lists of the API calls from
all of the csv files that correspond to the process and concatenates them to be one
sequence. CBM employs three rules to make the concatenation. First, the API call
list within the same process are ordered by timestamp, with the earlier one coming

Table 1 The differences
between cuckoo and
CWSandbox’s hooking
objects

Cuckoo CWSandbox

API Hooks 42 120
Categories 11 14
Winsock API No Yes
ICMP No Yes
SystemInfo No Yes
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first; second, API call lists from different processes will be connected from head to
tail in the whole sequence; finally, different lists of multi-process will be ordered
by the first timestamp of each API call list, with the earlier one coming first.

3.2 The Design of BBIS and CARL

BBIS is designed to transfer API call sequences to byte-based sequential data
recognizable by Malheur in order to do clustering and classification.

Currently, Malheur only supports MIST [12] and byte-based sequential data.
MIST can transfer the Malware original behavior reports to multi-level instruc-
tions, reflecting behaviors with different degree of granularity. For example, the
category and operation are classified into the level 1 in MIST, followed by the
arguments. Those considerations are good at recoding the whole messages of
behaviors. However, testing results of Malheur showed that MIST with more
levels consistently got worse results than with only one level in clustering and
classification computations. Therefore, in CBM we only extract the API names and
in BBIS we do not set multi-levels. We only need to build a suitable mapping table
to change the API call sequence to a byte-based sequence. Byte-based here means
each byte or fixed length of bytes will reflect one feature in the sequence. For
instance, abc can reflect three API calls. In CBM, we utilize the following rules to
build the mapping table.

Mapping rules of BBIS. There are two parameters that should be set up first.
One is IsVisible, which indicates whether visible characters are used or not in the
mapping table. The other UpFeatures is the upper limit of amount of unique
features in all of the sequences. For example, Cuckoo has hooked 42 API functions
by default, so the UpFeatures here is 42, CBM has improved the number of API
hooks to 60, so the UpFeatuers will be 60 in CBM. Once the two parameters are
specified, BBIS can build the mapping table in following way:

Fig. 2 Hooking processes in
cmonitor.dll
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(1) If IsVisible is TRUE, visible characters will be chosen to build the table. In
the ASCII coding table, one byte can represent 94 different visible characters
(from 33 to 126 in decimal system). When UpFeatures\ ¼ 94, we can select
characters randomly with the number of UpFeatures to map the features in
sequences. If UpFeatures [ 94, BBIS need more bytes to map one feature, the
number of bytes needed can be calculated by Eq. (1):

94n�1\UpFeatures� 94n ð1Þ

(2) If IsVisible is FALSE, It is not necessary to choose the visible characters to
map the features. In such case, one byte can represent 28 ¼ 256 features. Con-
sequently, in the map table, we can use the hexadecimal characters (from 00 to FF)
to map the features and write the hexadecimal sequence to report file in binary
mode. If UpFeatures [ 256, BBIS also needs more bytes to map one feature by
calculating Eq. (2):

256n�1\UpFeatures� 256n ð2Þ

Since in CBM, the UpFeatures ¼ 60, which is less then 94, we can select the
visible mode to build the mapping table. For example, the left column of Table. 2
demonstrates the part of mapping table we used in CBM. BBIS is a common way
to represent features, not only designed for CBM. For example, MIST has 120
features, since 120 [ 94, thus we can use 2 bytes to represent MIST code, just like
the right column of Table. 2 which uses the 2 hexadecimal characters to map the
MIST code, it is interesting that the 2 hexadecimal characters can also be written
to file in binary mode within one byte size if isVisible is set to FALSE.

CARL - Compression Algorithm of high Repeatability in Logarithmic
level. During the process of dynamic analysis of malware, one notable thing is that
some API functions can be continuously invoked thousands of times in a single
analysis. Usually, this can be attributed to mistakes in coding or unsuitable exe-
cution environment for the malware. The API functions like ReadFileW, Virtu-
alAllocEx, RegOpenKeyW are found many times with such situations. However, if
parts of malware in the family have high repeatability problem, the similarity
between malware will be greatly affected and much more redundant computation
might be introduced. Therefore, we proposes an algorithm called CARL in CBM
to reduce the repeatability.

Table 2 Part of BBIS
mapping table

API Function BBIS-1 MIST BBIS-2

LoadLibraryA a 02 02 | ... 06
CreateFileW b 03 01 | ... 08

RegQueryValueExW p 09 05 | ... 2D
bind # 12 06 | ... 68
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Definition 1 REPEAT. For a sequence Seq and a subsequence SSeq, if SSeq is
composed of consistent characters and the length of it is more than one, we define
the length as the REPEAT of the SSeq.

Definition 2 SN and NL. For a sequence Seq and a subsequence SSeq, SN is a
start number to run the CARL process, NL is the new length of SSeq. If the
REPEAT of SSeq is bigger then SN, the length of SSeq will be reduced to NL by
Eq. (3).

The calculation of CARL is illustrated in the following Equation:

NL ¼ SN þ b � RoundðlogcðREPEAT � SNÞÞ ð3Þ

In Eq. (3), b and c are used as the adjustment coefficients. Usually, c is set as 2, b
is set as 1. For example, if S ¼ faQcQQQQQQQQQQQQQddhhhddddg, we can
get sub-sequences:SSeq1 ¼ fQQQQQQQQQQQQQg, SSeq2 ¼ fddg,
SSeq3 ¼ fhhhg, SSeq4 ¼ fddddg, which REPEAT are bigger then 1. If we define
SN ¼ 5 here, the only subsequence that needs to be reduced is SSeq1, we can see
the REPEAT of Seq1 is 13, so we bring the parameters to Eq. (3) and get the new
length of Seq1 as: NL SSeq1 ¼ 5þ Roundðlog2ð13� 5ÞÞ ¼ 5þ 3 ¼ 8. In this
case, the length of this subsequence has changed from 13 to 8, which is not an
obvious reduction. However, if the REPEAT is a big number like 1000, the new
length of the subsequence will be NL SSeq ¼ 5þ Roundðlog2ð1000� 5ÞÞ ¼
5þ 10 ¼ 15 with a huge amount of reduction.

3.3 The Use and Improvement of Malheur

CBM uses Malheur to perform clustering and classification analysis. Malheur can
embed the byte-based sequential data in a high-dimensional vector space using n-
gram algorithm, and then extract the prototypes for clustering and classification.
Konrad et al. [3] has introduced brief details of the algorithms related to Malheur.
Here we focus on the modification of Malheur. CBM has made two changes in
Malheur. First, to accommodate the features of multi-byte, CBM improves the
function in Malheur to parse the contents from sequential data. Second, in order to
use historical data, CBM adds database function to Malheur for analysis upon
global malware reports. Once the database system is set up, Malheur can analyze
single behavior based on historic data. Limited to the space, we will talk about this
part in detail in our public report.
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4 Empirical Evaluation

We carried out a systematic evaluation of CBM. For this evaluation, we consider a
total number of 3131 malware binaries obtained from the website http://
pi1.informatik.uni-mannheim.de/Malheur/. The malware binaries have been col-
lected over a period of three years via various sources, including honeynets,
spamtraps, anti-malware vendors and security researchers. Those binaries have
also been assigned a known class of malware by the majority of six-independent
anti-virus products.

In the following experiments, the 3131 malware binaries are executed and
monitored using Cuckoo, CuckooEx6 individually. We compare CBM to the state-
of-the-art analysis framework CMM(CWSandbox/MIST/Malheur) throughout our
experiments.

In the following experiments, we will evaluate clustering results of CBM. To
assess the performance of clustering, we employ the evaluation metrics of preci-
sion and recall [3]. The precision P reflects how well individual clusters agree with
malware classes and the recall R measures to what extent classes are scattered
across clusters. Formally, we define precision and recall for a set of clusters C and
a set of malware classes Y as:

P ¼ 1
n

X

c2C

#c and R ¼ 1
n

X

y2Y

#y ð4Þ

where #c is the largest number of reports in cluster c sharing the same class and
#y the largest number of reports labelled y within one cluster. Consequently, the
goal is to seek an analysis setup which maximizes precision and recall. An
aggregated performance score is adopted for our evaluation, denoted as F-mea-
sure, which combines precision and recall. A perfect discovery of classes yields
F ¼ 1, while either a low precision or recall results in a lower F-measure.

F ¼ 2 � P � R
Pþ R

ð5Þ

Experiment 1: Comparisons of CBM and CMM
Results for the evaluation of clustering are presented in Fig. 3, with CBM using

Cuckoo yields an best F-measure 88.4% corresponding to a discovery of 28 known
malware classes in the malware data set while using CuckooEx yields a best F-
measure 90.9% corresponding to a discovery of 25 known malware classes very
close to the real 24 classes. Compared with CBM, CMM performs better with a
best F-measure 95.0% corresponding to a discovery of 24 malware classes. But we
find that CBM using CuckooEx can achieve a better clustering performance even

6 In the following experiments,we use CuckooEx to represent the improved Cuckoo.
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the minimum distance between clusters is bigger than 1. Overall, CBM can
achieve a competitive performance compared with CMM and it is more robust.

Experiment 2: Comparisons of BBIS and (BBIS + CARL) for clustering
In this experiment we evaluate the performance of clustering by using BBIS

with or without CARL algorithm. Figure. 4 shows that all three systems have
achieved nearly the same results by using CARL to compress the behavior reports.
It seems that CARL is an effective way to reduce the computation cost by reducing
the size of reports while keeping the performance of clustering.

Experiment 3: Time consumption
From the experiments, CBM uses 8.9 s per clustering on average while 11.6 s

for CMM, which demonstrates that CBM is more efficient then CMM at time
consumption.

Experiment 4: The storage size of Reports
From the statistic of the storage size of reports from above experiments, we get

that BBIS can approximately reduce the MIST reports size to a 15% proportion
and CARL algorithm can further reduce the size by half, which demonstrates that
BBIS can reduce the size of behavior reports to a large extent, which is a huge
advantage over MIST in terms of storage and computation. Moreover, CARL is
useful to further reduce the size while keeping the inherent features of reports as
testified by the clustering results illustrating in experiments 2.

(a) (b) (c)

Fig. 4 Comparisons of BBIS and (BBIS + CARL) for clustering

(a) (b) (c)

Fig. 3 Clustering result

234 Y. Qiao et al.



5 Conclusion

In this article, we have introduced a framework named CBM, which utilizes and
connects the open-source software tools to construct an automated malware
analysis system. In CBM, we use Cuckoo to extract the API call sequences
obtained from monitoring malware dynamic execution and create a new repre-
sentation method of malware behaviors called BBIS to convert the API calls to
byte-based sequential data. We have introduced how to improve Cuckoo’s mon-
itoring capability by appending new API hooks. The CARL algorithm proposed
for reducing the high repeatability in API call sequences can effectively reduce the
computation cost without a significant loss in performance. Serious experiments
demonstrate that our framework is a competitive alternate to the state-of-the-art
analysis framework CMM and easy to be realized. However, the main advantage
of CBM is its ability in supporting local deployment. We hope CBM can replace
the non-open source online services in large-scale malware dynamic analysis.
CBM needs to be improved in several aspects including the monitoring range, the
stability to various malware, and so on.
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