
Model-Based Approach for Reporting
System Development

Jinkui Hou

Abstract From the viewpoint of software engineering implementation, a
model-based development approach for reporting systems is proposed systemati-
cally based on the concern of separating application descriptions and UI designs.
The development process consists of four steps: data modeling, report modeling,
model transformation, and code generation. The experiment shows that this
approach enhances the efficiency and quality of reporting system development,
which can be well combined together with other application development
frameworks, and thus can support model-driven software engineering effectively.

Keywords Software engineering �Model-driven development � Reporting system
� Modeling approach

1 Introduction

Reporting system is a very important subsystem in the business application system,
which is used frequently. It is a heavy task to develop embedded reporting system,
and the product is with vulnerability of short life cycle. Therefore, research of
automatic code generation for reporting system can reduce the workload of system
development, and enable the system to meet the complex application environ-
ments. The current Web-based applications are gradually replacing the traditional
C/S mode software, which becomes the mainstream of application software. It is
also an urgent need for reporting system to adapt to this situation. Most of the
existing reporting tools do not have the learning function, in which the versatility
is not enough [1]. It generally cannot generate reports of different styles in the

J. Hou (&)
School of Computer Engineering, Weifang University, 261061 Weifang, China
e-mail: jkhou@163.com

F. Sun et al. (eds.), Knowledge Engineering and Management,
Advances in Intelligent Systems and Computing 214,
DOI: 10.1007/978-3-642-37832-4_19, � Springer-Verlag Berlin Heidelberg 2014

207



same run-time, and cannot meet the needs of generating reports of real-time based
on user requirements. When the report format change greatly, it is difficult to add
new reports to meet user requirements dynamically.

Model-driven development has become a hot topic and main trends of software
engineering, which enhances abstraction level to deal with the complexity of
software development through the application of models and modeling techniques.
OMG’s model-driven architecture (MDA) [2] provides theoretical support for
automatic transformation between models. Through in-depth understanding of
traditional approaches of report generation and basic requirements of reporting
system, this paper provides a MDA-supported development model for Web
reporting system. It can be well combined together with other application devel-
opment frameworks. Thereby, it is a good application development mode with
many merits, such as simple, intuitive, automatic generation of target code, and so
on.

2 MDA-Supported Development Model for Web
Reporting System

On the basis of the model-driven development model named ASLP [3] proposed in
our previous study, a development model for Web reporting system is proposed in
this paper based on the theory of MDA [4, 5]. This model support model-driven
software development, which is shown in Fig. 1.

The model mainly comprises four parts: data model, report model, model
transformation engine, and code generator. Data model is the basis for the whole
framework of the model, which separate the report module from the actual data
source. It reduces the coupling degree of the report module and the actual data
source, and ensures the continuity of the knowledge of specific report definitions.
It also makes the information of report definition to be no longer depended on the
actual database table. Report model describes the realization of the content and
format of the report which is customized by the user, which provide all the
parameter information for target code generation. Model transformation engine is
used to achieve model transformation from abstract model to specific platform
model, while code generator generates final source codes of the report system.

2.1 Data Model

Data model comprises two parts: functional view and data object view. Functional
view is used to determine the requirements of report pages on the inner model and
relationships between interfaces through the analysis of user’s needs. Data object
view is used for modeling domain concepts, which describe the object class used

208 J. Hou



in application systems. It describes the data objects and their relationships required
by the reports from static aspects.

The extended use case diagrams in UML are used in functional view to describe
user requirements. Through analyzing user requirements, functional view can be
used to determine the functions and the framework of user interfaces, the rela-
tionship between user interfaces as well as the requirement on inner models of
interface presentation.

Static view of ASLP describes the composition and behavior of objects from
the view of abstract calculation relationships, which cannot meet the requirements
of establishing interface structure. In order to meet the requirement of the cus-
tomization of report interface, object view is built by expanding static view of
ASLP. In addition to considering the general composition and behavior of objects,
object properties used for interface presentation and code generation is introduced
and the constraints on the realization of specific interactions is minimized to the
maximum extent. Expansion of the data object view includes the following
aspects. Object properties are expanded by adding UI type, default values, labels,
and units of measurement, and the description of data types is also extended in

Architecture
Report 

generator
Component
repository

Data base

Data object 
model

Function 
model

Interaction 
view

Presentation 
view

Report 
Model

Code Generator

PDF

XML

HTML

Report 
Pages

Data 
Model

Transform 
engine

Model 
mapping 

rules

Model 
Transformation

Engine

Abstract Model

Fig. 1 Model-driven
development model for Web
reporting system

Model-Based Approach for Reporting System Development 209



order to provide information of interactive units of user interface. Deduction
relationship and linkage relationship are proposed to respectively represent cor-
relation and association between UI objects. The description of property group is
provided in order to meet the psychological and visual requirements of users.
Object relationships are used to express the navigation between use interfaces.

In the following formal description, the expressions enclosed by {} indicate
optional parts, and those ones enclosed by \[ indicate keywords.

The keyword followed by an asterisk (*) indicates that the object may have zero
or many. The symbol indicates + more than one instances. The symbol = means
the definition. Thus, the structure of classes and objects are defined as follows:

\Class[:=\ClassName[(Group+|\Attribute[+)+\Method[*\Attriblink[*;
\Object[:=\ObjectName[:\ClassName[
In the above expressions, \ClassName[ is the name of class, and \Object-

Name[represents the name of object.\Group[means the set or group of objects,
and \Method[ is represents method of class, and \AttribLink[ is the linkage
relationship between attributes.

The expansion description of properties is defined as the following expression:
\Attribute[:=\AccessType[\DataType[(\AttribName[{=\DefaultValue[})

{\ValueRange[}{\Unit[}{\DataSource[}{\UIType[}{\Label[}
In the above expression, \Attribute[ represents property, and \AccessType[

represents the visibility at runtime. \DataType[ is the type of data, and
\AttribName[ is the name of a property. \DefaultValue[ represents the default
value of a property, and \ValueRange[ represents the range of value. \Unit[ is
used as measurement units. \DataSource[ represents for the source of values.
\UIType[represents the type of visual objects, and\Label[is the label attached
to visual objects.

The concept of attribute groups is also added in the model to support the
generation of user interface. Attributes of the same group can be combined
together by a frame and used as a whole. In complicated situation, the group is
divided into sub-groups, and forms a nested relationship.

Attribute group is a gathering of attributes of sub-groups or properties, which is
depicted with the following manner.

\Group[:=[\GroupName[\Attribute[+]|[\GroupName[{\Attribute[+
|\Group[+}+].

In the above expression, \GroupName[ represents of the group name, and
\Attribute[ represents its properties.

2.2 Report Model

Report model consists of interaction view and presentation view. Interaction view
is used to describe the system from dynamic aspect, which is also an abstract
description of behavior of user interface and provides the internal association
between UI behaviors and system functions. The function of UI presentation view

210 J. Hou



is to show the layout and forms of the interface according to the inner models (data
object view and interaction view) and user requirements for data presentation. It
provides a full description for the intuitive presentation of user interface, and
provides the binding relationship between the interface elements and the visible
elements of interaction view.

Interaction view plays a key role of connecting link between the preceding and
the following in the whole framework, which is shown in Fig. 2. On the one hand,
interaction view, function view, and data object view are organically combined
together to form abstract outline of the interface. On the other hand, the classifi-
cation of interaction views is the basis of the retrieve of interface template in
presentation model. That is to say, the type of interface templates is determined by
the interaction relationship between objects of interaction views. It provides
constraints for the users to select the appropriate interface and ensures the cor-
rectness of UI generation. In addition, the degree of abstraction of interactive view
is lower than that of the functional model and object model. Compared with them,
interaction model is more close to the interface.

Data objects of interactive view is the instance of the data objects defined in
object view. Data object of object view is the concept of class, and data object of
interactive view is the instance of class applied in specific user interface. Data
objects of object view are instantiated in interaction view, which can be further
subdivided to determine the appropriate presentation form according to its role in
the description of different interfaces at the same time. Interactive view is defined
as a triple\V(G), E(G), uG[, where V(G) is a collection of interacting objects, and
E(G) is the set of interactive relations, and uG is a function from the set of
interactions to the set of ordered pair of interactive objects.

Interactive objects is entity objects in UI which can interact with other objects,
such as data object, collection, user, use case, page reference, and so on. Data
objects of interactive view come from data object view and serve for the corre-
sponding user interface. After being presented in UI, the corresponding interface
elements can be in various forms of navigation links and a variety of forms, such as
text box, password boxes, radio buttons, check boxes, and so on. Interactive
relationship is interactions between interactive objects, which emphasize interac-
tive behavior between objects and use cases as well as the influence to the rela-
tionship between UI objects, which including calls, participation, information
access, and navigation. Invoking relationship refers that one object calls the
method of another object and returns the results of the function.

In interactive view, the relationship between user to use case is use case calling,
which reflects on UI is the click on buttons. The calling relations between use
cases and data objects are trigged by causing the behavior of data object or data
collection. Participation relationship is used to express data providing, where the
general pointer is from the object or collection to use cases, which indicates that
the users provide data or parameters. Message connection is used to express
message transfer among objects and visible data objects or data collection. It can
also be message transfer from an event trigger to component, or message transfer

Model-Based Approach for Reporting System Development 211



from visible objects or data collection to component. Navigation relation refers
page forwarding operation inspired by use case.

UI presentation view provides a constraint environment to show the layout of
user interface. Interactive view is the inner basis of UI presentation view, while UI
presentation view is the external depiction of interactive view. UI presentation
view is used to describe the appearance of UI on the basis of interaction view,
which mainly deals with macro layout of UI and display-control, and provide
service for automatic code generation of graphical user interface. It embodies
abstract interface based on the inner model of UI, thus solve the problem of the
overall layout of user interface. UI presentation mainly includes template object,
area object, dividing line object, and template interactive objects. Its compre-
hensive introduction can be seen in [3], and here we are no longer on it.

3 Model Transformation and Code Generation Based
on ASP.NET

ASP.NET is a framework widely used for Web application development [6]. C# is
used as the target code in the experiment introduced in this paper.

Function 
View

Data Object 
View

Interaction 
View

Display 1 Display ...Display 2

A
b
s
t
r
a
c
t

l
e
v
e
l 

Horizontal 
structure

Vertical 
Structure

analyze & integrate

restrict & limit

Fig. 2 The role of interaction view

212 J. Hou



3.1 Model Mapping Relations

The mapping relations from report model to ASP.NET project model are shown in
Fig. 3, in which the corresponding generated codes mainly include project infor-
mation, business processing module, Web forms, and background codes.

Object view is mapped to the business processing module in the generated
ASP.NET project, which provides corresponding support for interactive view and
UI presentation view. The compound use case of functional view is mapped to
functional selection items of the target project. Interaction view combined with
module processing information of UI presentation view are mapped to the back-
ground codes of the generated Web pages (*.aspx.cs files). Use cases of interaction
view are mapped to operations of corresponding UI control objects, such as menu,
button or hyperlink, and so on. Method invoking relations of the source model are
mapped to operation call of the corresponding object. The navigation relations are
mapped to display operations of the target pages. The template object of UI
presentation view are mapped to Web pages, in which object information are
mapped to attribute information of presentation elements of Web forms, such as
the type, location, size, color, and other information (*. aspx files).

3.2 Code Generation

The algorithm of target code generation is mainly responsible for the generation of
reporting framework, interface elements, the target program for print, and preview
of reports. The algorithm flow is shown in Fig. 4.

ASP.NET Project Model

WebForm

Function view

Data object view

Interaction View

UI presentation view

MainForm page(.aspx)

Web form (.aspx)

Background codes (.aspx.cs)

Business process module (.cs)

Report Model

Fig. 3 Mapping relations from report model to target model

Model-Based Approach for Reporting System Development 213



The algorithm for generation of reporting framework is the entrance to the
whole automatic code generation, which is most upper algorithm of the UI gen-
eration for the reporting system. The user interface, interface elements, and the
layout of interface elements are generated according to the information provided
by interface templates. The appropriate background codes are generated on the
basis of interaction view corresponding to UI template. In the algorithm flow, each
region of object UI template is visited and the corresponding code generation
algorithm is invoked according to the data types and presentation form of each
display unit.

The generation algorithm of interface elements is the algorithm for generation
of the basic elements of UI, which is mainly used to generate specific interface
controls. It is a recursive algorithm because some of the controls may also contain
sub-controls, such as Frame, Tabstrip, and so on.

The generation algorithm for report printing and preview is mainly used to
generate the print and preview program codes. The print and preview module is a

Is null?

open UI template

Visit all of the graphics object and convert 
them to objects of interface template

acquire the pointers to region objects

acquire the pointer 
to each form object 

Is null?

generate form controls according to 
the corresponding object description

generate UI codes

Y

Y

acquire next 
region object

N

N

region object pointer down to the next

Fig. 4 The algorithm
flow for generating target
codes

214 J. Hou



core module of the reporting system, which is output part of the whole system. The
basic process to achieve report printing and preview on .NET platform is described
as follows: we should first define the layout of the printed page, and then define
each print area which includes the size of the print area, and the text, graphics, and
images needing to be printed. Finally we call the system methods (e.g., Draw-
String() and DrawRectangle()) to output the corresponding text, graphics, and
images.

4 Conclusion and Future Work

A model-based development approach for reporting systems is proposed system-
atically in this paper, which can be well combined together with other application
development frameworks, and thus can provides reporting capabilities for appli-
cation system and has a certain capacity of software reuse. It can dynamically add
new reports to meet the requirements of users. This approach follows the essence,
process, and requirements of model-driven software development, which can make
an effective support for model-driven software engineering.

Future works are as follows: (1) to further improve the description of interac-
tion view, and enhance its ability of semantic interpretation; (2) to fully abstract
and describe the UI presentation view, and enhance visual attractiveness of the
generated pages; (3) to diversify target platform in order to verify the practicability
of this approach.

Acknowledgments The author is most grateful to the anonymous referees for their constructive
and helpful comments on the earlier version of the manuscript that helped to improve the
presentation of the paper considerably. This research was supported by the foundation of science-
technology development project of Shandong Province of China under Grant No. 2011YD01042
and No. 2011YD01043.

References

1. Hailpern B, Tarr P (2010) Model-driven development: the good, the bad, and the ugly. IBM
Syst J 45(3):451–461

2. Miller J, Mukerji J (2011) MDA guide version 1.0.1 (document number omg/20011-06-01).
http://www.omg.com/mda

3. Hou J, Wan J, Yang X (2006) MDA-based modeling and transformation approach for WEB
applications. In: Proceeding of the sixth international conference on Intelligent System Design
and Applications (ISDA), pp 867–812. IEEE Computer Society, New York

4. Kleppe A, Warmer J, Bast W (2009) MDA explained, the model driven architecture: practice
and promise. Addison-Wesley, Boston

5. Thomas D (2009) MDA: revenge of the modelers or UML utopia? IEEE Softw 21(3):15–17
6. Jeffrey R, Francesco B (2009) Applied Microsoft.NET framework programming. Microsoft

Press, Washington

Model-Based Approach for Reporting System Development 215

http://www.omg.com/mda

	19 Model-Based Approach for Reporting System Development
	Abstract
	1…Introduction
	2…MDA-Supported Development Model for Web Reporting System
	2.1 Data Model
	2.2 Report Model

	3…Model Transformation and Code Generation Based on ASP.NET
	3.1 Model Mapping Relations
	3.2 Code Generation

	4…Conclusion and Future Work
	Acknowledgments
	References


