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Abstract Composite rough set aims to deal with multiple binary relations
simultaneously in an information system. In this paper, probabilistic composite
rough set is presented by introducing the probabilistic method to composite rough
set. Then, the distribution attribute reduction method under probabilistic composite
rough set is investigated. Examples are given to illustrate the method.

1 Introduction

Rough Set Theory (RST) proposed by Pawlak is an important theory to deal with
inconsistent and uncertain information [1, 2]. In Traditional Rough Set (TRS), the
information system is complete, the data type in the information system is nominal
and the relationship between objects is an equivalence relation. However, in real-
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life applications, data missing may exist, data type may be various, and preference
order in attributes’ values may exist. Then, TRS has been extended to deal with
different data types, data missing, and preference ordered data in Extended Rough
Set (ERS) by replacing the equivalence relation with other binary relations [3–11].
Different binary relations, e.g., tolerance relations, partial order relations in
interval valued information system, set-valued information system, and hybrid
data information system have been defined in different conditions. In most ERS,
there is a supposition that there exists only one data type and one relationship in an
information system.

Some works have been done considering multiple relations or hybrid data types.
When considering hybrid data types (nominal data and numerical data) in an
information system, Hu et al. proposed Neighborhood Rough Set (NRS) to deal
with homogeneous feature selection [12, 13]. Neighborhood relation and nearest
neighborhood relation have been defined in NRS. Wei et al. studied the hybrid data
in the framework of fuzzy rough set [14]. When considering multiple binary
relations may exist in an information system, An and Tong proposed global binary
relation and they further defined the approximation on upper and down union [15].
Abu-Donia proposed new types of rough set approximations using multi knowl-
edge base, that is, a family of finite number of (reflexive, tolerance, dominance,
equivalence) relations by two ways [16]. Zhang et al. defined composite relation
and Composite Rough Set (CRS) model in [17]. Then, they investigated matrix-
based rough set approach in CRS. However, the attributes reductions in an
information system with multiple relations have not been investigated in the
literatures.

Probabilistic rough set is an important extension of TRS by considering con-
ditional probability between equivalence classes in TRS [18]. Yao and Wong
proposed a Decision-Theoretic Rough Set model (DTRS) based on well estab-
lished Bayesian decision procedure [21]. The parameters in DTRS are decided by
loss function. Ziarko proposed Variable Precision Rough Set (VPRS) to deal with
the errors in data [19, 20]. Slezak and Ziarko investigated Bayesian Rough Set
(BRS) when considering the prior probability of an event [22]. Probabilistic rough
set have been successfully applied to data mining [23].

In this paper, we investigate the extended model of CRS by introducing
probabilistic method. Then, Probabilistic Composite Rough Set (PCRS) is pro-
posed. Considering the arbitrary binary relation existing in PCRS, distribute
attribute reduction in PCRS is discussed. Examples are given to illustrate the
method presented in the paper.

The paper is organized as follows. In Sect. 1 , we review the basic concepts of
CRS. In Sect. 2, PCRS is defined and its properties are discussed. In Sect. 3, we
study the distribute reduction method in PCRS. In Sect. 4, we conclude the paper
and outline the direction of future work.
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2 Composite Rough Set

In this section, we first review some concepts in CRS [17].
The definition of Multi-Data Type Decision Information system (MDTDISÞ is

given as follows:

Definition 21 A quadruple MDTDIS ¼ ðU;A;V ; f Þ is an decision information
system, where U is a non-empty finite set of objects, called the universe. A is a
non-empty finite set of attributes, A ¼ C [ D;C \ D ¼ ;; where C and D denote
the sets of condition attributes and decision attributes, respectively. V ¼

S

Ci2C
VCi ,

VCi is domain of attributes set Ci, VCi \ VCj ¼ ;ði 6¼ jÞ, C ¼ [Ci, Ci \ Cj ¼ ;. The
data type of VCi and VCj is different. f : U � A! V is an information function,
which gives values to every object on each attribute, namely, 8a 2 A, x 2 U,
f x; að Þ 2 Va.

Definition 22 MDTDIS ¼ ðU;A;V ; f Þ is an decision information system, 8x 2 U,
B ¼ [Bk � C, Bk � Ck, the composite relation CRB is defined as

CRB ¼ fðx; yÞ ðx; yÞ 2 \
Bk2B

RBk

�
�
�
� g ð1Þ

where RBk � U � U is an binary relation defined by an attribute set Bk on U. Let
½x�CRB

¼ fy y 2 U; 8Bk 2 B; yRBkj xg denotes the composite class of x.

Definition 23 Let MRBi
¼ ½rBi

ij �n�nðBi � CÞ is the relation matrix of binary rela-
tion RBi , where

rBi
ij ¼

rBi
ij ¼ 1; if xi RBi xj;

rBi
ij ¼ 0; if xi =RBi xj:

(

ð2Þ

Then, the relation matrix of composite relation CRB is MCRB ¼ ½zij�n�n, where

zij ¼ ^
k

i¼1
rBi

ij : ð3Þ

Table 1 An Multi-data type decision information system

U a 1 a 2 a 3 a 4 d

x1 2 0.2 [2.17, 2.86] {0, 1} 1
x2 4 0.85 [3.37, 4.75] {2} 2
x3 3 0.31 [2.56, 4.10] {1, 2} 0
x4 1 0.74 [3.55, 5.45] {1} 1
x5 1 0.82 [3.46, 5.35] {1} 0
x6 2 0.72 [2.29, 3.43] {1} 1
x7 1 0.6 [2.22, 3.07] {0, 2} 1
x8 3 0.44 [2.51, 4.04] {1, 2} 0
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For convenience, three kinds of binary relations used in Example 21, e.g.,
neighborhood relation between numerical objects, partial relation between interval
valued objects, and tolerance relation in between set-valued objects are introduced
briefly as follows [6, 7, 11].

If 8v 2 VB (B � C), v is set-valued, then the tolerance relation between set-
valued objects is

R\B ¼ fðy; xÞ 2 U � U f ðy; aÞ \ f ðx; aÞ 6¼ ;ð8a 2 BÞj g

If 8v 2 VB, v is a set of interval numbers, f ðx; aÞ ¼ ½f Lðx; aÞ; f Uðx; aÞ�, where
f Lðx; aÞ, f Uðx; aÞ 2 R, f Lðx; aÞ, and f Uðx; aÞ are lower and upper limits of the
interval number, respectively. Then the partial order relation between interval
valued objects is

R�IB
¼fðy; xÞ 2 U � U f Lðy; aÞ� f Lðx; aÞ;

�
�

f Uðy; aÞ� f Uðx; aÞ; f Lðy; bÞ� f Lðx; bÞ;
f Uðy; bÞ� f Uðx; bÞ; a 2 A1; b 2 A2g

ð4Þ

If 8v 2 VB (B � C), v is a numerical value, then 8x 2 U and B � C, the neigh-
borhood dBðxÞ of x in B is defined as:

dBðxÞ ¼ fy y 2 U;DBðx; yÞ
�
� � dg ð5Þ

where D is a distance function. The formula of D is

DPðx; yÞ ¼
XN

i¼1

f ðx; aiÞ � f ðy; aiÞj jP
 !1=P

ð6Þ

In the following, we illustrate CRS by an example.

Example 21 Table 1 is an example of MDTDIS, where U ¼ fxi; 1� i� 8g,
C ¼ fai; 1� i� 4g, D ¼ fdg, Va1 ¼ f1; 2; 3; 4g is nominal values, Va2 ¼
f0:2; 0:85; 0:31; 0:74; 0:82; 0:72; 0:6; 0:44g is numerical values, Va3 ¼
f½2:17; 2:86�; � � � ; ½2:51; 4:04�g is interval values, Va4 ¼ ff0; 1g; � � � ; f1; 2gg is se-t
valued. Suppose the relationship in different attributes are equivalence relation,
neighborhood relation (d= 0.26 , Euclidean distance) [11], partial relation [7],
tolerance relation [6] on a1 to a6, respectively.

The relation matrixes of Raið1� i� 4Þ are given as follows:
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MRa1
¼

1 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 1

0 0 0 1 1 0 0

0 0 0 1 1 0 1 0

1 0 0 0 0 1 0 0

0 0 0 1 1 0 1 0

0 0 1 0 0 0 0 1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

; MRa2
¼

1 0 1 0 0 0 0 1

0 1 0 1 1 1 1 0

1 0 1 0 0 0 0 1

0 1 0 1 1 1 1 0

0 1 0 1 1 1 1 0

0 1 0 1 1 1 1 0

0 1 0 1 1 1 1 1

1 0 1 0 0 0 1 1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

MRa3
¼

1 1 1 1 1 1 1 1

0 1 0 1 1 0 0 0

0 1 1 1 1 0 0 0

0 0 0 1 0 0 0 0

0 0 0 1 1 0 0 0

0 1 1 1 1 1 0 1

0 1 1 1 1 1 1 1

0 1 1 1 1 0 0 1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

; MRa4
¼

1 0 1 1 1 1 1 1

0 1 1 0 0 0 1 1

1 1 1 1 1 1 1 1

1 0 1 1 1 1 0 1

1 0 1 1 1 1 0 1

1 0 1 1 1 1 0 1

1 1 1 0 0 0 1 1

1 1 1 1 1 1 0 1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

Then, MCRC ¼

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 1

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

.

Then, ½x1�CRC
¼ fx1g; ½x2�CRC

¼ fx2g; ½x3�CRC
¼ fx3g; ½x4�CRC

¼ fx4g; ½x5�CRC
¼

fx4; x5g; ½x6�CRC
¼ fx6g; ½x7�CRC

¼ fx7g; ½x8�CRC
¼ fx3; x8g:

3 Probabilistic Composite Rough Set

In this section, we present a new extended rough set model, Probabilistic Com-
posite Rough Set (PCRS), by introducing probability method in CRS.

MDTDIS ¼ ðU;A;V ; f Þ is an Multi-Data Decision Information system, CRBðxÞ
is a composite class of x, for 8X 2 U, then PðX; ½x�CRB

Þ ¼ X\½x�CRBj j
½x�CRB
j j is the condi-

tional probability. Probabilistic Composite Rough Set (PCRS) is defined as
follows:
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Definition 31 Given a quadruple MDTDIS ¼ ðU;A;V; f Þ, 8X 2 U, 0� l� l� 1,

aprl

CRB

ðXÞ ¼ xjPðX; ½x�CRB
Þ� l

n o
ð7Þ

aprl
CRB
ðXÞ ¼ xjPðX; ½x�CRB

Þ� l
n o

ð8Þ

Definition 32 For any X � U, the approximation accuracy of X is defined as
follows:

al;l
CRB
ðXÞ ¼

aprl
CRB

ðXÞ
�
�
�

�
�
�

aprl
CRB
ðXÞ

�
�
�

�
�
�

ð9Þ

The roughness of X is defined below:

ql;l
CRB
ðXÞ ¼ 1� al;l

CRB
ðXÞ ð10Þ

Property 31 For aprl
CRB

ðXÞ and aprl
CRB
ðXÞ, we have

1. If l1� l2, then aprl1
CRB

ðXÞ 	 aprl2
CRB

ðXÞ;
2. If l1� l2, then aprl1

CRB
ðXÞ 	 aprl2

CRB
ðXÞ;

3. If l1� l2, l1� l2, then al1;l1
CRB
ðXÞ� al2;l2

CRB
ðXÞ,

4. If l1� l2, l1� l2, then al1;l1
CRB
ðXÞ� al2;l2

CRB
ðXÞ, ql1;l1

CRB
ðXÞ� ql2;l2

CRB
ðXÞ;

Example 31 For Table 1, Rd is an equivalence relation on decision attributes.
U=Rd ¼ fD1;D2;D3g;D1 ¼ fx1; x4; x6; x7g;D2 ¼ fx2g;D3 ¼ fx3; x5; x8g:Then;
PðD1; ½x1�CRB

Þ ¼ 1;PðD1; ½x2�CRB
Þ ¼ 0;PðD1; ½x3�CRB

Þ ¼ 0;PðD1; ½x4�CRB
Þ ¼ 1;

PðD1; ½x5�CRB
Þ ¼ 0:5;PðD1; ½x6�CRB

Þ ¼ 1;PðD1; ½x7�CRB
Þ ¼ 1;PðD1; ½x8�CRB

Þ ¼ 0:

If l ¼ 0:6, l ¼ 0:3, then aprl
CRB

ðD1Þ ¼ fx1; x4; x6; x7g, aprl
CRB
ðD1Þ ¼

fx1; x4; x5; x6; x7g, al;l
CRB
ðD1Þ ¼ 0:8, ql;l

CRB
ðD1Þ ¼ 0:2.

4 Attribute Reduction in Probabilistic Composite
Rough Set

Attribute reduction is an important task in data mining. RST has been applied
successfully in attribute reduction [24]. In this section, distribution reduction
method in [25] is extended to CRS. RD is an equivalence relation on the decision
attribute D. Then U=Rd

¼ fD1;D2; . . .;Dj; . . .;Drg forms a partition on the uni-
verse U. ½x�RD

¼ fy yRDx; x; y 2 Uj g . If ½x�
CRB
� ½x�RD

, then MDTDIS is a consistent
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information system; If ½x�
CRB
6
 ½x�RD

, then MDTDIS is an inconsistent information

system.

Let PðDj; ½x�CRB
Þ ¼ Dj\½x�CRBj j

½x�CRBj j be the conditional probability of ½x�CRB
on D. Let

lBðxÞ ¼ ðPðD1; ½x�CRB
Þ;PðD2; ½x�CRB

Þ; . . .;PðDr; ½x�CRB
ÞÞ denote the distribution

function of x on B. Then the distribution reduction on MDTDIS is given.

Definition 41 In MDTDIS ¼ ðU;C [ D;V ; f Þ, B � C, if 8x 2 U, lBðxÞ ¼ lCðxÞ,
and :9E 
 B, lEðxÞ ¼ lCðxÞ, then B is the distribution reduction of C.

Definition 42 The discernibility matrix of distribution reduction MDis ¼ ½mij�n�n

is

mij ¼
DisAtrij ½xi�CRB

; ½xj�CRB

� �
2 D�

C ½xi�CRB
; ½xj�CRB

� �
62 D�

8
><

>:
ð11Þ

where D� ¼ ð½xi�CRB
; ½xj�CRB

Þ : lCðxiÞ 6¼ lCðxjÞ
n o

, DisAtrij ¼ ak; ak 2 Bi : xiRBi xj.

Definition 43 The discernibility formula of distribution reduction is

M ¼ ^f_fak : ak 2 DisAtrijggði; j� nÞ ð12Þ

The minimum disjunction form is

Mmin ¼ _
p

k¼1
ð ^

qk

i¼1
aiÞ ð13Þ

Let Bk ¼ fas : s ¼ 1; 2; � � � ; qkg. Then RED ¼ fBk : k ¼ 1; 2; � � � ; pg is the set of
distribution reduction.

Example 41 (Continuation of Examples 2.1 and 3.1) We compute the reducts of
the information system.

1. Firstly, the distribution function of xið1� i� 8Þ is lCðx1Þ ¼ f1; 0; 0g,
lCðx2Þ ¼ f0; 1; 0g, lCðx3Þ ¼ f0; 0; 1g, lCðx4Þ ¼ f1; 0; 0g, lCðx5Þ ¼ f0:5; 0;
0:5g, lCðx6Þ ¼ f1; 0; 0g , lCðx7Þ ¼ f1; 0; 0g, lCðx8Þ ¼ f0; 0; 1g.

2. Next, by Definition 4.3, the discernibility matrix MDis is
3. Then, M ¼ fa1g ^ fa3g. Mmin ¼ fa1; a3g.
4. There is a reduct for the information system, i.e., B1 ¼ fa1; a3g.

MDis ¼

C a1; a2; a4f g a1f g C a1; a2f g C C a1f g
a1; a2; a3; a4f g C a2; a3f g a1; a4f g a1; a4f g a1; a3; a4f g a1; a3f g a1; a3f g

a1; a3f g a1; a2f g C a1; a2f g a1; a2f g a1; a2; a3f g a1; a2; a3f g C

C a1; a2; a3; a4f g a1; a3f g C a3f g C C a1; a2; a3f g
a1; a2; a3f g a1; a3; a4f g a1; a2; a3f g C C a1; a3f g a3; a4f g a1; a2; a3f g

C a1; a4f g a1; a2f g C a1f g C C a1; a2f g
C a1f g a1; a2f g C a1f g C C a1f g

a1; a3; a4f g a1; a2f g C a1; a2f g a1; a2f g a1; a2f g a1; a3; a4f g C

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5
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5 Conclusions

In this paper, we proposed the PCRS which aims to deal with multiple binary
relations in a MDTDIS in the framework of probabilistic method. Then, the dis-
tribution attribute reduct is investigated. Examples are given to illustrate the
method proposed in the paper. In the future work, we will develop algorithms to
verify the efficiency of the approach in real-life applications.
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