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Abstract Thirty years have passed since Robert Axelrod and William Hamilton
published their influential contribution to the problem of cooperation. They
showed, with the help of both an experiment and analytical techniques, that
cooperation is the most likely evolutionary outcome of a Prisoner’s Dilemma game
when individuals interact repeatedly. Building on Hamilton’s earlier work they
also demonstrated that, when pairing of individual is not completely random,
cooperating behavior can evolve in a world initially dominated by defectors. In
this paper, Computer simulations are used to study the relation between non-
random pairing and the maintenance of cooperative behavior under evolutionary
dynamics. We conclude that cooperation can survive also when the possibility of
repeated interaction and reciprocity is ruled out.
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1 Introduction

The paper by Axelrod and Hamilton [1] has inspired much theoretical and
empirical work on the problem of cooperation. Their famous model of cooperation
is based on letting individuals interact repeatedly over time and that each member
of a pair has the opportunity to provide a benefit to the other at a cost to himself by
cooperating. Now consider a population of Tit-for-Tatters which cooperates on the
first interaction and keeps on cooperating only as long as their partner cooperates.
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Axelrod and Hamilton [1] showed that Tit-for-Tatters can resist invasion by
defectors who never cooperate as long as the long-run benefit of mutual cooper-
ation is greater than the short-run benefit that a defector gets by exploiting a
cooperator. However, as shown by Axelrod and Hamilton [1], a population of Tit-
for-Tatters is not the only one that is evolutionary stable. In fact, a population
where all are defectors is also evolutionary stable. If (almost) all players in a
population are defectors, a cooperator will have no one to cooperate with.
Therefore, a player cannot do any better than playing defect. The long-run benefit
associated with sustained cooperation becomes irrelevant. This raises the problem
concerning initiation of cooperation from a previous asocial state. How could an
evolutionary trend towards cooperative behavior have started in the first place?

To study this question more closely Axelrod and Hamilton introduce the
concept of segregation. Segregated interaction means that the probability for a
Tit-for-Tatter to meet another Tit-for-Tatter is higher than the proportion of Tit-
for-Tatters in the population. Axelrod and Hamilton then show that if there are
few Tit-for-Tatters in the population, and if the long-run benefit of cooperation is
big, only a small amount of segregation is needed in order to secure Tit-for-Tatters
a higher expected payoff than defectors. An evolutionary trend towards universal
cooperation can then start. The results established by Axelrod and Hamilton are
generated within a setup where pairs of individuals interact repeatedly over time,
and where everybody is able to remember the action taken by each member of the
population in previous interactions. However, in many human social environ-
ments, Axelrod and Hamilton’s conditions favoring cooperation can be ques-
tioned. Individuals do not always interact repeatedly over long periods of time,
and in large groups it can be difficult to remember the action taken by a potential
exchange partner in previously interactions. This leads us to the main question of
this paper: Since segregation is a powerful mechanism for the promotion of
cooperation in a repeated Prisoner’s Dilemma game, can segregation also promote
the evolution of cooperation in a non-repeated version of the game? If so, how
much segregation is needed, and how does cooperative behavior evolve over time
depending on the degree of segregation?

2 The Problem of Cooperation

Consider a large population of players who interact in pairs with available actions
and payoffs describing a Prisoner’s Dilemma game. We have the following payoff
matrix, where a [ b [ c [ d.

Cooperate Defect

Cooperate b , b d , a
Defect a , d c , c
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If both players cooperate, they both receive a payoff of b. If both defect, they
both receive payoffs of c. If one cooperates and the other defects, the cooperator
receives a payoff of d, while the defector does very well with a payoff of a.
Assume further that individuals in the larger population are either (perhaps due to
cultural experiences, perhaps due to genes) cooperators Cð Þ or defectors Dð Þ in a
single period Prisoner’s Dilemma. Let p denote the proportion of the population
that are cooperators and ð1� pÞ the proportion of defectors. If the members of the
population are randomly paired, the expected payoffs are given by

VðCÞ ¼ pbþ ð1� pÞd ð1Þ

VðDÞ ¼ paþ ð1� pÞc ð2Þ

where VðCÞ and VðDÞ are the expected payoff for a cooperator and a defector
respectively. Equation (1) says that with probability p a cooperator is paired with
another cooperator producing a payoff b, and with probability 1� pð Þ is paired
with a defector producing a payoff d. Equation (2) has a similar interpretation:
With probability p a defector is paired with a cooperator producing a payoff a, and
with probability 1� pð Þ is paired with a another defector producing a payoff c.

Assume now the following simple evolutionary dynamics: At any time, the
growth rate of the proportion of cooperators (p) is positive or negative, depending
on whether the expected payoff for cooperators is higher or lower than the
expected payoff for defectors. The population distribution (p) will be unchanging,
producing an equilibrium, if

VðCÞ ¼ VðDÞ ð3Þ

It is easy to see from (1) and (2) that the only evolutionary stable equilibrium in
this game is p ¼ 0, where all members of the population defects.

This result follows from the fact that a [ b and c [ d, which gives VðCÞ\VðDÞ
for all p 2 0; 1ð Þ. Cooperators cooperate irrespective of the type of player whom
they meet. Defectors take advantage of such indiscriminate cooperative behavior
and get a higher expected payoff compared to cooperators. Defectors increase in
numbers, and in the long run take over the whole population. This result motivated
Axelrod and Hamilton to examine more closely conditions, not captured in the
situation just studied, that can lead to the evolution of cooperation when cooper-
ators and defectors meet to play the Prisoner’s Dilemma game.
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3 Evolution of Cooperative Behavior

3.1 Repeated Interaction

Assume that the Prisoner’s Dilemma game introduced above is repeated with an
unknown number of rounds. After each round there is a probability b that another
round will be played. Hence, the expected number of rounds is 1= 1� bð Þ. Assume
also that the population consists of two types of players, unconditional defectors
and conditional cooperators. The unconditional defectors always defect, while the
conditional cooperators are endowed with the Tit-for-Tat strategy. The Tit-for-Tat
strategy dictates cooperators to cooperate on the first round, and on all subsequent
rounds do what the partner did on the previous round. The fraction of the popu-
lation adopting Tit-fot-Tat is p, while the remaining is adopting unconditional
Defect. The expected payoff for cooperators adopting Tit-for-Tat and defectors,
respectively, are then

VðCÞ ¼ p
b

1� b

� �
þ 1� pð Þ d þ cb

1� b

� �
ð4Þ

VðDÞ ¼ p aþ cb
1� b

� �
þ 1� pð Þ c

1� b

� �
ð5Þ

Equation (4) says that when two Tit-for-Tatters meet, they will both cooperate on
the first interaction and then continue to do so until the interaction terminated,
giving a expected payoff of b= 1� bð Þ. When a Tit-for-Tatter meets a defector, the
former gets d on the first interaction while the defector gets a. Then both will defect
until the game terminates, the expected number of iterations after the first round
being ð1=ð1� bÞÞ � 1 ¼ b=ð1� bÞ. Equation (5) has a similar interpretation.

According to (3) the condition for equilibrium is that the expected payoff for the
two types is equal, giving

p� ¼ c� d
b�cb
1�b þ c� d � a

ð6Þ

Since the nominator is positive, the denominator of (6) must also be positive. In
addition, for p� 2 0; 1ð Þ, the denominator must be greater than the nominator. Both
conditions are satisfied if

b� cb
1� b

� a [ 0 ð7Þ

which gives

b [
a� b

a� c
ð8Þ
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When (8) holds, p� is an interior equilibrium. This situation can be explained as
follows: Suppose that the initial frequency of cooperators is lower than p�, when
there are many defectors, rare cooperators are likely to be paired with defectors,
producing a low payoff for cooperators. If, however, the initial frequency of
cooperators is higher than p�, then VðCÞ[ VðDÞ. Cooperators often meet other
cooperators with whom to associate. Expected payoff for Tit-for-Tatters is higher
than that of the defectors, which causes cooperating behavior to spread. Hence, p�

is an interior unstable equilibrium (a tipping point) which marks the boundary
between the ranges of attraction of the two stable equilibrium, p ¼ 0 and p ¼ 1.

We can then draw the following conclusion from the model: In a population
where defecting behavior is not too common, the cooperating Tit-for-Tat strategy
leads to universal cooperation if pairs of individuals are likely to interact many
times. From (6) we get

dp�

db
¼

p� c�b
1�bð Þ2

b�cb
1�b þ c� d � a

\0 ð9Þ

saying that an increase in the probability for the game to be continued moves p� to
the left. A smaller fraction of Tit-for-Tatters is then needed in order to secure an
evolutionary stable survival of cooperative behavior.

However, even if b is high we still need a certain fraction of Tit-for-Tatter in
order to start a process where Tit-for-Tatters increase in numbers. This illustrates
that the model fails to answer what many consider as the most fundamental
problem related to the evolution of cooperation: How could cooperation ever have
started from a previous asocial state where (almost) all are defectors? To solve this
puzzle Axelrod and Hamilton introduce the concept of segregation (or clustering
as they name it). When there is some segregated interaction, Tit-for-Tatters are
more likely paired with each other than chance alone would dictate. If the long-run
benefit of cooperation is big, even a small amount of segregation can cause the
expected payoff of Tit-for-Tatters to exceed the expected payoff of defectors.
An evolutionary trend towards universal cooperation can then get started.

3.2 Segregation

A main result in the work by Axelrod and Hamilton is that segregation can be very
effective for the evolution of cooperation in a repeated Prisoner’s Dilemma game.
But what about the no-repeated version of the game ? Can segregation also
promote the evolution of cooperation when the players meet to play the one-shot
Prisoner’s Dilemma game, that is when b ¼ 0. It is immediately clear that
complete segregation of cooperators and defectors within a large population secure
cooperation. Complete segregation means that cooperators always meet coopera-
tors, and defectors always meet defectors. Cooperators get a payoff of b, while
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defectors get c. Since b [ c cooperating behavior will spread, and in the long run
take over the whole population.

The case where cooperators and defectors are only partly segregated can be
modeled by using the following formulation, adopted from Boyd and Richerson
[3]. Let r 2 0; 1ð Þ be a measure of the degree of segregation. When p is the fraction
of cooperators in the population, the probability that a cooperator meets another
cooperator is no longer p but r þ 1� rð Þp. Correspondingly, the probability that a
defector meets another defector is r þ 1� rð Þ 1� pð Þ. If r ¼ 1, we have complete
segregation, implying that cooperators never interact with defectors. If r ¼ 0, we
are back to the situation with random matching. Adopting this formulation, the
expected payoff for cooperators and defectors, respectively, are

VðCÞ ¼ ½r þ ð1� rÞp�bþ ½ð1� rÞð1� pÞ�d ð10Þ

VðDÞ ¼ ½ð1� rÞp�aþ ½r þ ð1� rÞð1� pÞ�c ð11Þ

From (10) and (11) we see that with random matching r ¼ 0ð Þ, we are back to the
situation analyzed in Sect. 2. Defectors do it better than cooperators for every
p 2 0; 1ð Þ, giving p ¼ 0 as an evolutionary stable equilibrium. With complete
segregation r ¼ 1ð Þ, we reach the complete opposite conclusion, as noted above.
Cooperators do it better than defectors for every p 2 0; 1ð Þ, giving p ¼ 1 as an
evolutionary stable equilibrium. In the simulation we are therefore interested in
analyzing the situation where the segregation parameter rð Þ lies between these two
extreme cases. In particular we are interesting in finding out how small r can be in
order to support an evolutionary stable proportion of cooperators. However, as it
has been shown in earlier work, in addition to r, the expected payoffs are also
influenced by the proportion cooperators pð Þ and defectors 1� pð Þ in the popu-
lation. In the simulation we therefore have to vary both the segregation parameter
and the initial proportion of cooperators and defectors in the population. This
makes it possible to study how different combinations of r and p affect the evo-
lution of cooperators and defectors.

4 The Simulation

There has been a lot of research on the simulation of the PD [2–4]. As a simulation
model, we use an agent-based simulation approach in which an agent represents a
player with a predefined strategy. The basic activity of the agent is to play the
iterated Prisoner’s Dilemma. Each agent is identified using a unique label.
The label C is used to identify the agents choosing the cooperative strategy, while
the label D is used for those choosing the defective strategy. Each agent’s label can
be viewed as a mapping from one state of the game to a new state in the next
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round, and the simulation experiments searches for the ability of an agent to
survive the evolution process.

The simulation of the iterated Prisoner’s Dilemma is described as follows.
Initially, a population of agents is generated. A user-defined parameter will
determine the percentage of agents playing the cooperative strategy against those
playing the defective strategy. The payoff of all agents is set to 0. The next step of
the algorithm proceeds by pairing off agents to play one game of PD. This step can
be viewed as a matching process. To begin with, a random number random is
drawn uniformly on the interval (0,1). Thereafter, an agentk is drawn randomly
from the set of unmatched agents. If agentk is assigned the label C, then the
matching scheme will select a randomly unmatched agent with the label C pro-
vided the following inequality ðrandom\r þ ð1� rÞ � pcÞ holds, otherwise the
matching mate of agentk will be a randomly chosen unmatched agent with the
label D. The value of pc represents the proportion of agents playing the cooper-
ative strategy. On the other hand, if agentk is assigned the label D, then its
matching mate will be chosen with the label D provided the inequality
ðrandom\r þ ð1� rÞ � ð1� pcÞÞ holds, otherwise the matching mate of agentk

will be selected with the label C. If by the chance, the matching scheme is unable
to locate the matching mate with the required label, then agentk will be left
unmatched. At the end of each tournament, the agents of the current population Pt

are transformed into a new population Ptþ1 that engages in a new round of PD
based on each agent’s payoff. In the simulation we use the same payoff parameters
as Axelrod and Hamilton [1]. These are shown in the payoff matrix below.

Cooperate Defect

Cooperate 3, 3 0, 5
Defect 5, 0 1, 1

The payoff received will determine whether an agent is removed from the game
or allowed to continue. It is assumed that the size of the entire population stays
fixed during the whole simulation process. All the unmatched agents from Pt will
automatically be allowed to be part of the new population Ptþ1. The agents that
were engaged in the one-shot Prisoner’s Dilemma game are ranked according to
their payoff from best to worse ( i.e., sorting agents to decreasing payoff values)
and those with the highest payoff will be allowed to proceed to the next round and
multiplies by cloning a duplicate agent with similar strategy. Each agent resets its
payoff to 0 before starting a new round of PD. The simulation process is assumed
to have reached a stabilization of its convergence when all the agents have similar
strategy.
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5 Experiments

5.1 Experimental Setup

The simulation model has a number of user-defined parameters such as the seg-
regation parameter, and the starting initial conditions (i.e., percentages of coop-
erators and defectors). We perform several simulations using instances defined by
the 4-duple \n; pc; pd; r [ , where n denotes the number of agents, pc denotes the
percentage of cooperators, pd denotes the percentage of defectors, and r the seg-
regation parameter. We set the number of agents to 1; 000. In order to obtain a
more fair understanding of the simulation process, we vary the parameters r and pc

from 0:1 to 0:9 with a step size of 0:1, and pc from 10 to 90 % with a step size of
10. Thereby, producing 81 different pairs of r and pc. Because of the stochastic
nature of the simulation process, we let each simulation do 100 independent runs,
each run with a different random seed. In this way every result we present is
averaged over 100 runs. The simulation process ends when the population of
agents converges to either 100 % C’s or 100 % D’s, or a maximum of 106

generations have been performed.

5.2 The Benchmark Case

In this section, we conduct an experiment using pc ¼ 90, pd ¼ 10 and setting the
segregation parameter r to 0. Figure 1 shows one typical run of the simulation
experiment. The course of the percentage function suggests an interesting feature
which is the existence of two phases. The first phase starts with a steady decline of
agents with the cooperative strategy over the first generations before it flattens off
as we mount the plateau, marking the start of the second phase. The plateau spans
a region where the percentage of C’s and D’s fluctuates around 50 %. The plateau
is rather short and becomes less pronounced as the number of generation increases.
Then the percentage of C’s start to decrease before finally it jumps to 0 %. This
example illustrates how agents tend to evolve strategies that increasingly defect in
the absence of the segregation. The explanation is rather a simple one. The agents
evolve in a random environment, and therefore the agents that manage to survive
the simulation process are those willing to always defect.

5.3 Phase Transition

Table 1 gives the results of the simulations with different values of r and pck.
A quick look at this table reveals the existence of three different regions. The first
region lies in the upper left corner where the values of pc and r are low shows that
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the result of the simulation converges globally to D’s with a success ratio equal to 1.
This region starts in the classes where pc ¼ 10 and r� 0:4, pc ¼ 20 and r� 0:3, and
finally pc ¼ 30 and r� 0:2.

Table 1 Convergence ratios for cooperates and defects

Segregation : r

C pc C,D 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10 C 0 0 0 0 1 1 1 1 1

D 1 1 1 1 0 0 0 0 0
20 C 0 0 0 0.86 1 1 1 1 1

D 1 1 1 0.14 0 0 0 0 0
30 C 0 0 0.70 0.85 1 1 1 1 1

D 1 1 0.30 0.15 0 0 0 0 0
40 C 0 0.65 0.72 0.86 1 1 1 1 1

D 1 0.35 0.28 0.14 0 0 0 0 0
50 C 0.53 0.62 0.70 0.85 1 1 1 1 1

D 0.47 0.38 0.30 0.15 0 0 0 0 0
60 C 0.56 0.64 0.71 0.84 1 1 1 1 1

D 0.44 0.36 0.29 0.16 0 0 0 0 0
70 C 0.55 0.61 0.72 0.84 1 1 1 1 1

D 0.46 0.39 0.28 0.16 0 0 0 0 0
80 C 0.56 0.62 0.69 0.85 1 1 1 1 1

D 0.44 0.38 0.31 0.15 0 0 0 0 0
90 C 0.53 0.63 0.67 0.82 1 1 1 1 1

D 0.47 0.64 0.33 0.18 0 0 0 0 0
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The second region lies in the right corner where r� 0:5. In this region,
the simulation converges to C’s with a success ratio equal to 1 regardless of the
starting percentage of cooperators. Finally, a third region which lies between the
two other regions where for every pair of pc and r, the result of the simulation
process includes a mixture of C’s and D’s. This region starts in the classes where
pc ¼ 20 and r ¼ 0:4, pc ¼ 30 and 0:3� r� 0:4, pc ¼ 0:4 and 0:2� r� 0:4, and
finally 50� pc� 90 and 0:1� r� 0:4: In this region the success ratio is equal to 0,
and for each pair of pc and r lying in this region, the figure shows the final
percentages of C’s and D’s which may differ depending on the maximum number
of generations allowed to be performed.

These experiments show the existence of a phase transition which refers to the
phenomenon that the probability that the simulation process converges to C’s or
D’s decreases from 1 to 0 when the parameters r and pc are assigned values within
a given interval.

The next three figures will show the course of the simulation process regarding
the percentage of C’s and D’s in the three regions. Figure 2 shows a plot of the
simulation process representing a case in the region where the convergence results
always in favor of the agents choosing the defect strategy. The result shows a rapid
rise of D’s before it reaches 100 % at about the sixteenth generation. Choosing the
values of r and pc in this region prevent agents with the cooperative strategy to
develop leading to a random working environment where the agents with the
defect strategy proliferate. Figure 3 shows a plot of the simulation process rep-
resenting a case in the phase transition with r ¼ 0:3 , 50 %, and pd ¼ 50 %, where
the convergence results always in a mix population of C’s and D’s. Notice the
rapid increase in the percentage of C’s and the rapid decline in the percentage of
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D’ during the first generations. Both strategies reach a peak value at about 400
generations and periodically fluctuates between a low and a high percentage range
and remain there indefinitly. Finally, Fig. 4 shows a plot representing a case in the
third region characterized by a convergence resulting always in favor of the agents
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choosing the cooperative strategy. The plot shows an upward trend in the
percentage of C’s and the possibility of having the chance to develop due to the
right choice of the segregation parameter value. Accordingly, in subsequent
generations, the population of agents becomes increasingly dominated by C’s.

6 Conclusion

Most game-theoretic treatments of the problem of cooperation adopt the
assumption of random pairing. But this is somewhat strange since social interac-
tion is hardly ever random. As discussed in previous research articles, non-random
interaction constitutes an important aspect of our social architecture. In most
societies there is a strong tendency that members are structured in more or less
homogeneous groups. A ‘‘group’’ can for example be a village, a neighborhood, a
class, an occupation, an ethnic group or a religious community. Members of these
groups interact more frequent with each other than with members of the society at
large. Hence, since non-random pairing plays an important role in most social
interaction, it should be taken into consideration when the evolution of behavior
and norms are analyzed. The paper has shown that segregated interaction is a
powerful mechanism for the evolution of cooperation in a Prisoner’s Dilemma
game, where cooperators interact with defectors. This conclusion holds even if we
drop the possibility of repeated interaction and reciprocity, which was essential for
the results generated in Axelrod and Hamilton’s influential paper.
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