
Separating and Recognizing Gestural
Strokes for Sketch-Based Interfaces

Yougen Zhang, Hanchen Song, Wei Deng and Lingda Wu

Abstract Gestures are widely used as shortcuts to invoke commands in pen-
enabled systems. The pen mode problem needs to be addressed when integrating
gestures into sketching applications. Traditionally, explicit mode switching meth-
ods are widely employed to separate gestural strokes from normal inking strokes.
However, explicit methods may have availability constraints or be inefficient under
many circumstances. In this work, a new gesture interaction paradigm for sketch-
based interfaces was proposed. The lasso stroke, which is widely used for selection,
was modified and used to indicate the entrance of gesture mode. Our approach is
intuitive and efficient; it could be a useful addition to pen-based user interfaces.

Keywords Sketch-based interface � Pen gesture � Mode switching � Gesture
recognition

1 Introduction

Pen-based user interface is a primary kind of post-WIMP (window icon menu
pointer) interface. It allows for fluid and expressive input based on the pen-and-
paper metaphor in tasks such as design sketching, note taking, and computer

Y. Zhang (&) � H. Song
Science and Technology on Information Systems Engineering Laboratory,
National University of Defense Technology, 410073 Changsha, China
e-mail: zhangyougen@nudt.edu.cn

H. Song
e-mail: songhanchen@hotmail.com

W. Deng � L. Wu
Key Laboratory, Academy of Equipment, 101416 Beijing, China
e-mail: dengw_021@163.com

L. Wu
e-mail: wulingda@139.com

F. Sun et al. (eds.), Foundations and Applications of Intelligent Systems,
Advances in Intelligent Systems and Computing 213,
DOI: 10.1007/978-3-642-37829-4_16, � Springer-Verlag Berlin Heidelberg 2014

187

operating. In recent years, with the fast development and growing popularity of
electronic whiteboard, smart phones, PDAs, and Tablet PCs, pen-based interfaces
are becoming more and more prevalent [1]. Gesturing is an important means of
interaction in pen-enabled interfaces. The gesture strokes are widely used as
shortcuts to invoke commands. Compared with traditional GUI elements (menu,
toolbar button, and keyboard shortcut), pen gestures are efficient yet cheap, since
they require little additional hardware resources, like screen space or hardware
buttons.

This work aims at integrating pen gestures into sketching applications. There
are several issues that need to be addressed. Firstly, a set of gestures should be
designed according to the desired functionalities, which is specific to application.
Secondly, the gesture recognizer that distinguish input gestural strokes need to be
constructed. This problem has been extensively studied, and relatively robust
solutions are widely available [2]. Another important issue is the so-called stroke
mode problem.

Since both sketching and gesturing are done stroke by stroke with the pen, input
strokes could be either ink strokes or gestural strokes. The former are data that
should be stored for later processing; the latter are commands that intended for
immediate interpretation and execution by the computer [2]. Therefore, it is
essential to determine whether the system is in ink mode or in gesture mode for
each input stroke, so as to decide how this stroke should be processed. For
example, a design-by-sketch system allows users to draw sketch strokes naturally
and to edit the sketch by issuing editing gestures (copy, paste, delete, etc.). In the
designing process, users may switch between ink mode and gesture mode fre-
quently and irregularly. Obviously, an ineffectual ink/gesture mode switching
technique may become the bottleneck in the system usability.

The mode problem faced by these systems is a classic problem [3]. It has long
been considered as an important source of errors, confusion, unnecessary restric-
tions, and complexity [4]. Traditional solutions to this problem simply require the
user to switch modes explicitly. For example, a toolbar with icons may be
employed, on which the user taps to enter the intended mode. However, the
resulting round-trip time interrupts the user’s attention from his/her work [5]. Pen
barrel button and tablet bezel button are also often used for explicit mode
switching [4] in many existing pen-based applications, usually pressing button for
gesturing. However, these supplementary physical buttons are not always avail-
able. Even if a button is available, mode errors occur if the user forgets to press the
button prior to inputting his/her sketch or command stroke, because the mode
switching action is mentally separated with the gesture actions. That will result in a
spurious ink stroke or an unexpected command recognized and executed,
depending on the error type. To recover from the error, the user has to disrupt his/
her task, check and modify the digital ink content, switch to the right mode, and
then repeat the intended input stroke [3].

In this paper, we proposed a solution of gesture interaction for sketching
interfaces, aiming at reducing the burden of mode switching on users. The main
idea of our design is to use a detectable lasso stroke for indicating the entrance of

188 Y. Zhang et al.

gesture mode in addition to target selection. The remainder of this paper is
organized as follows: Sect. 2 briefly introduces the previous research on ink/
gesture mode switching problem. In Sect. 3, we present the design of our generally
applicable gesture interface; its key design concepts are discussed. Section 4
describes some issues on recognition. In Sect. 5, we conduct a preliminary eval-
uation. Conclusion and future study are discussed in Sect. 6.

2 Related Work

Various methods have been investigated for performing stroke mode switching. As
discussed in the previous section, explicit mode switching methods are simple and
widely employed, but they may have availability constraints or be inefficient under
many circumstances. Therefore, efforts have also been made to the research of
implicit mode switching techniques in recent years.

Implicit mode switching aims at releasing user’s physical and mental burden of
switching between modes manually. Strictly speaking, without knowing the
mental state of the user, the problem of implicitly distinguishing strokes intended
to be gestures from those intended to be ink is not computable; however, by
making assumptions about the likelihood of certain interaction sequences, it is
possible to build actually effective systems [6].

Nijboer et al. [7] explored using frame gestures to control rotation, translation,
and scale of the drawing canvas and of stroke selections. By mapping canonical
transformations (translation, rotation, scaling) of the canvas or of stroke selections
to contextual gestures that are started from the canvas border or the selection
frame, frame gestures enable a fluid switching between normal drawing, interac-
tion with the drawn strokes, and interaction with the canvas, without having to
switch between dedicated operating modes. A limitation of this design is the
restriction by the actual interface border. Furthermore, frame gestures are just
applicable to transformations but not other gesture commands.

Li et al. [4] explored using pen pressure that is available on many tablet devices
to achieve an implicit mode switching. They leave the heavy spectrum of the
pressure space for gesturing and preserve the normal (middle) pressure space for
inking. Since users have differences in their inherent pressure spaces, personalized
pressure spaces are needed. Analogously, 3D orientation of the pen was also
studied to address the mode problem [8].

Saund and Lank [3] present a solution to the mode problem in pen-based
programs. They offered an inferred-mode interaction protocol that avoids the prior
selection of mode during inking. The system tried to infer the user’s intent, if
possible, from the properties and context of the pen trajectory. When the intent is
ambiguous, a choice mediator for the user is offered, which can also be ignored so
as to maximize the fluidity of drawing. A similar design called ‘‘Handle Flags’’
was proposed by Grossman et al. [5]. When the user positions the pen near an ink
stroke, Handle Flags are displayed for the user to perform potential selections.

Separating and Recognizing Gestural Strokes 189

However, their techniques only avoid prior mode selection for the selection sub-
task. Another limitation of Handle Flags is that they rely heavily on the result of
the stroke grouping algorithm, which can be complicated in unstructured diagrams.

Zeleznik and Miller proposed a design, which is called ‘‘Fluid Inking’’ [6], for
disambiguating gestures from regular inking. This design uses two simple patterns:
the prefix flicks (fast straight lines) and post-fix terminal punctuation (fast taps or
short pauses). We also use a lasso stroke as gesture prefix, but it is integrated with
the selection operation, and it is consistent among all gestures.

Guo and Chen investigated the recognition of handwriting-editing gestures and
alphanumeric in a mixed recognition mode [9]. Gestures are mixed directly with
handwriting strokes. As a result, the recognition system is prone to be confused.

3 Our Design of Gesture Interaction

Our goal is to develop a gesture interface for a sketch-based military situation
marking system. As discussed in previous sections, the essence of the stroke mode
problem is a compromise between the freedom of user operation and the com-
plexity of mode inference/recognition for the system. In order to provide users
with an approach of switching stroke modes quickly and conveniently, we focus on
the design of fluid mode transitions according to sketching interaction patterns.

In this section, a simple analysis of gestures in the sketching interface is pro-
vided. We propose to use the lasso stroke, which is widely used as the selection
gesture, to indicate the entrance of gesture mode. The new gesture issuing method
is introduced.

3.1 Gesture Set Analysis

Empirical analysis shows that, besides normal inking of text and graphics, three
major types of operations are desired and frequently performed in the process of
military situation marking: (1)editing objects, including copy, paste, delete, move,
rotate resize, or label objects. Object here may be either raw strokes or recognized
text/symbols; (2) manipulating the background map, such as zoom in/out or
translate the map. Map is often used as the reference in situation plotting; (3)other
commands provided by the system, for example, save, redo, undo, last/next view,
and so on.

We design a set of pen gestures for the sketch-based military situation marking
system, as listed in Fig. 1. The red dot of each stroke is the starting point of the
gesture trajectory.

Selection is one of the most elementary operations in gesture interactions. Most
command involves a selection task explicitly or implicitly. For example, the target
object should be specified when performing editing operations such as copy,

190 Y. Zhang et al.

delete, etc. When pasting an object, the target location should be specified. As long
as most gestures begin with selection, it guided us to the idea of entering gesture
mode by detecting selections.

3.2 Gesture Issuing Method

Lassoing is widely used for selection both in pen-based interfaces and in our daily
life. It allows users to select by drawing an enclosing stroke around target objects.
Lassoing works well especially for small scattered targets [10], which is often the
case in sketched diagrams that contain numerous short strokes.

We hereby set several conventions for issuing gestures. By default, the
sketching system works in ink mode. When a gesture task is required, users can
take the following steps: Firstly, draw a lasso stroke and enclose target objects or
location if necessary. Secondly, draw the gesture command stroke inside the lasso.
This stroke would be fed to the gesture recognizer which outputs the class label of
the gesture. For most gestures, the corresponding command would be executed
then. Besides instantly executable commands, there are also some gestures suitable
for interactive operation. These mainly include object transformation gestures
(move, resize, rotate) and background manipulation gestures (move, zoom in,
zoom out). In this case, users should draw an additional stroke to specify further
parameters of the command. For example, when moving an object, this stroke is
used to drag the object to somewhere interactively. Analogously, the degree of

Last View Next View

Copy Paste Delete-A Label as
Graphic

Label as Text

Redo Undo

Move Object Rotate Object Scale Object Move
Background

Zoom in Zoom out

Delete-B

Fig. 1 Gestures designed for the sketching system

Separating and Recognizing Gestural Strokes 191

other object transformation gestures and background manipulation gestures could
also be determined in this way.

Based on the above interaction conventions, the system can be aware of the
stroke mode transitions. Once a lasso stroke is detected, the system enters gesture
mode from normal ink mode and parses the following one stroke as a gesture
command. Then it executes the command either instantly or interactively in
response to the additional stroke. After that, the system returns to ink mode,
waiting for new ink strokes or gesture interaction sessions.

So far, the problem of detecting gesture strokes comes down to detection of the
lasso stroke. The usual lasso stroke we used is simply a closed stroke, which can be
easily confused with ordinary circle in ink of drawing. Therefore, we use a
modified lasso stroke that is reliably distinguishable from normal inking strokes.
As shown in Fig. 2, our lasso stroke is extended with a straight segment inside the
original closed stroke. This minor modification eliminates most confusion. The
lasso stroke can be drawn either clockwise or counterclockwise, of deformable
shape according to the shape/distribution of the target object(s). The next section
will discuss the detection of the lasso stroke, as well as the recognition of gesture
command strokes.

4 Recognition

Gesture recognition is the process of parsing a hand-drawn stroke as being one of
the predefined gesture types. According to our gesture issuing method described in
Sect. 3, a gesture consists of one lasso stroke and one or two command strokes.

4.1 Lasso Stroke Recognition

The lasso stroke acts as the sign of entering gesture mode and also specifies the
target of the gesture in most cases. Therefore, it is critical to detect the lasso stroke
in the sequence of input strokes quickly and accurately. In order to accommodate
target object(s) and user habits, the lasso stroke is allowed to be deformable and be
either clockwise or counterclockwise. So it is not feasible to detect the lasso stroke

Fig. 2 Examples of lasso stroke

192 Y. Zhang et al.

by matching it to predefined templates. We treat this as a binary classification
problem and used a feature-based method to test whether an input stroke s is a
lasso stroke.

Several features of s were extracted as follows:
SL Stroke length of s
DE Distance between end points of s
LB Diagonal length of the bounding box of s
MR Minimum of the ratio of distance/length. Here, both the distance and the

length are measured from a sample point to the start point. When s is a lasso
stroke, MR locates the turning point between the sub-stroke of circle and
the sub-stroke of straight segment. Thus, we denote the point that takes MR
by tp; denote the sub-strokes before and after tp by scircle and ssegment,
respectively.

PI Percentage of ssegment that lie inside the bounding box of scircle

LT Location of tp, that is, the index of tp among sample points, normalized to
the range of [0,1].

SS Straightness of ssegment, defined as the ratio of the distance between the end
points to the length of ssegment

We collected a set of training strokes. It consists of lasso strokes under different
circumstances, normal inking strokes, and inking strokes that may confuse with the
lasso stroke (for example, circle, symbol h and u). Then a decision tree classifier
was trained. This classifier works well with precision and recalls of 99.4 and
97.2 %, respectively, in 10-fold cross-validation, consuming less than one milli-
second per stroke (Fig. 3).

Once an input stroke was classified as lasso stroke, it would be highlighted in
different color and stroke width. This provides users with instant feedback on the
state of stroke mode switching, allowing users to recover immediately from pos-
sible false rejection or false acceptance of lasso stroke classification. The lasso
stroke is generally distinguishable from normal inking strokes. In rare cases when
a lasso-like inking stroke needs to be drawn, users can draw a check ‘‘H’’ on that
stroke (yet highlighted) immediately after it was drawn (within the time-out per-
iod). Then it would be stored as an inking stroke and displayed in normal color.

segments

circles

tp

Fig. 3 Illustration of feature
extraction

Separating and Recognizing Gestural Strokes 193

For a lasso stroke, we compute its bounding box and convex hull. Then the
enclosed objects would be identified and highlighted, indicating the scope of
selection. The bounding box and convex hull would also be used later to determine
the size and location of the gesture, as well as the relative position between the
lasso stroke and its succeeding command stroke.

4.2 Command Stroke Recognition

Since the work of Rubine, numerous pen gesture recognition methods have been
proposed, falling into one of two main categories: template based and feature
based. Some of the famous methods are Dollar 1, Protractor, and 1¢. The per-
formance of existing methods is reasonably acceptable; therefore, we did not focus
on the recognition of unistroke gesture commands. The method we adopted is
similar to Dollar 1 developed by Wobbrock et al. except for some modifications in
scaling and rotation.

4.3 Gesture Execution

When defining a gesture, each command stroke is mapped to a command. Once the
command stroke is recognized, and the corresponding command could be executed
immediately in case of instant gesture. If the command stroke corresponds to an
interactive gesture, the system waits for the additional stroke, which drives the
gesture execution interactively, providing users with feedback of the operation
result. The way of parsing the additional stroke is gesture specific.

Figure 4 gives two examples of gesture interactions using the proposed method.
The first one is a delete gesture containing a lasso stroke and the command stroke.
It is executed directly. Figure 4b illustrates an interactive gesture. When the
command stroke is recognized as the ‘‘Move,’’ the system moves the selected
strokes following the pen tip in real time when the succeeding stroke is drawn.

5 Evaluation

A preliminary user study was conducted to evaluate the performance of our pro-
posed gesture interface and gain user feedback. We implemented a prototype
sketch-based military situation marking system with our gesture interface. A tra-
ditional gesture interface was also implemented and tested for comparison. It
employs two toolbar buttons for explicit mode switching, and it uses the common
circling stroke for object selection. A set of 16 gesture commands (as listed in
Fig. 1) were tested. However, several of them were not executable. In other words,

194 Y. Zhang et al.

the recognition result of these commands were displayed but not executed, because
the implementation of them is rather tedious and beyond the scope of this paper.

Six participants took part in the evaluation; all of them were experienced in
computer operation, but had little or no experience of using pen-enabled com-
puters except for smart phones. A Lenovo ThinkPad X200 tablet was used as
sketching input device. Participants were instructed about the use of our sketch-
based marking system on the tablet for several minutes. Then they were asked to
perform two gesturing tasks. The first task is to test the supported gestures sepa-
rately on a given sketched diagram. In the second task, participants were asked to
sketch a diagram under textual guidance on operations of inking (draw graphics
and write text labels) and gesturing. Upon completion of the tasks, participants
were encouraged to make comments and suggestions to obtain additional
feedback.

We observed a total of about 400 gesture interactions using each method. When
using the proposed method, twelve lasso strokes were misclassified as ink strokes
(false negatives). They were mainly careless lasso strokes when users had not yet
adapted. There were also three misclassified ink strokes (false positives); they
were all corrected automatically since their subsequent strokes were drawn outside
of them, thus no accidental gesture was triggered. As for the traditional method,
seven mode switching operations were neglected. Thirty-eight gestures were
recognized incorrectly, mainly due to errors of our simplified command stroke
recognition algorithm, which adopts nearest neighbor matching.

(a) (b)

Fig. 4 Two examples of
gesture interactions. a Delete.
b Move

Separating and Recognizing Gestural Strokes 195

According to the comments and suggestions, participants stated that the pro-
posed gesture issuing method is indeed more complex, but it is still quite intuitive
and very easy to memorize and use. Nevertheless, the proposed approach is more
efficient because it saves the round-trip time of mode switching. Moreover, the
traditional method is error prone since mode switching may be neglected, while in
the proposed approach mode, transitions are automatic, allowing users to con-
centrate on inking and gesturing.

The user study also helped us in identifying some limitations and possible
improvements of our approach. A limitation of our lasso-based selection is its poor
performance under extreme conditions. For example, it is difficult to select indi-
vidual objects using a lasso in densely crowded conditions. Furthermore, one
participant stated that it is inefficient to draw a lasso stroke that encloses a large-
size object (like a long curving stroke). In these cases, the tapping-based selection
method is more desirable. We consider adding a select command to our gesturing
framework, so as to support more flexible selection. Moreover, we can identify a
large-size object as selected if it is covered by the lasso stroke in its center over a
certain area. Another suggested improvement is to allow for manual explicit mode
switching as a complement to the proposed approach, so as to address the case of
consecutive gesture interactions.

6 Conclusions and Future Work

We have presented a novel gesturing approach for sketch-based interfaces. The
main advantage over traditional explicit mode switching approaches is that it
supports fluid mode switching without extra hardware requirements. This makes it
applicable to various pen-enabled systems ranging from tablets and smart phones
to electronic whiteboards. Moreover, our gesture issuing method is consistent
among gestures, thus lighten the burden of memory load compared to the method
of [6]. The preliminary evaluation results indicate that participants learned to use
our interface in a short period of time.

Our future work will focus on the personalization of command strokes. Since
we have used template-based approach for recognizing these unistroke gestures, it
is straightforward to define personalized gestures by storing user-specific tem-
plates. However, some issues remain to be studied, for example, how to help user
choosing gestures so as to avoid possible conflict with existing ones and how to
organize templates efficiently. Furthermore, the presented user study was informal
so far, and further study is necessary in order to gain more useful feedback.

Acknowledgments This work is supported by the National Science Foundation of China under
Grant No. 61103081.

196 Y. Zhang et al.

References

1. Johnson G, Gross MD, Hong J, Do EY-L (2009) Computational support for sketching in
design: a review. Found Trends Human Comput Interact 2:1–93

2. Appert C, Zhai S (2009) Using strokes as command shortcuts: cognitive benefits and toolkit
support. 27th international conference on Human factors in computing systems. ACM,
Boston, pp 2289–2298

3. Saund E, Lank E (2003) Stylus input and editing without prior selection of mode. 16th annual
ACM symposium on user interface software and technology, Vancouver, Canada. ACM,
pp 213–216

4. Li Y, Hinckley K, Guan Z, Landay JA (2005) Experimental analysis of mode switching
techniques in pen-based user interfaces. SIGCHI conference on human factors in computing
systems, Portland, OR, USA, pp 461–470

5. Grossman T, Baudisch P, Hinckley K (2009) Handle flags: efficient and flexible selections for
inking applications. Graphics interface 2009, Canadian information processing society,
Kelowna, British Columbia, Canada, pp 167–174

6. Zeleznik R, Miller T (2006) Fluid inking: augmenting the medium of free-form inking with
gestures. Graphics interface 2006. Canadian information processing society, Quebec, Canada,
pp 155–162

7. Nijboer M, Gerl M, Isenberg T (2010) Exploring frame gestures for fluid freehand sketching.
Seventh sketch-based interfaces and modeling symposium. Eurographics Association,
Annecy, France, pp. 57–62

8. Tian F, Jiang Y, Dai G, Wang H (2009) Instruction method based on stroke tail gesture. In:
CAS, I.o.S. CN 200910080176

9. Guo F, Chen S (2010) Gesture recognition techniques in handwriting recognition application.
12th international conference on frontiers in handwriting recognition, Kolkata, pp 142–147

10. Mizobuchi S, Yasumura M (2004) Tapping vs. circling selections on pen-based devices:
evidence for different performance-shaping factors. In: Proceedings of the SIGCHI
conference on Human factors in computing systems. ACM, Vienna, Austria, pp 607–614

Separating and Recognizing Gestural Strokes 197

	16 Separating and Recognizing Gestural Strokes for Sketch-Based Interfaces
	Abstract
	1…Introduction
	2…Related Work
	3…Our Design of Gesture Interaction
	3.1 Gesture Set Analysis
	3.2 Gesture Issuing Method

	4…Recognition
	4.1 Lasso Stroke Recognition
	4.2 Command Stroke Recognition
	4.3 Gesture Execution

	5…Evaluation
	6…Conclusions and Future Work
	Acknowledgments
	References

