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Abstract The visual information fidelity (VIF) index gained widespread popu-
larity as a tool to assess the quality of images and to evaluate the performance of
image processing algorithms and systems. But VIF is not a map-based quality
metric if its quality map is calculated by traditional sliding window approach. This
map-based property is owned by the other quality metrics such as structural
similarity (SSIM) and mean-squared error (MSE). In this article, we first construct
a novel VIF quality map in pixel domain, which makes VIF become a Minkowski
norm of its quality map. Furthermore, we deduce the gradient of VIF by taking the
derivative of VIF index with respect to the reference image. The gradient of VIF is
easy to calculate and has many useful applications. Experimental results show that
the proposed quality map can provide useful guidance on how local image quality
is similar to reference image.

Keywords Visual information fidelity � Quality map � Structural similarity �
Image quality assessment

1 Introduction

Image quality assessment (IQA) is a fundamental issue in many image processing
applications. It can be applied to optimize and design the image processing sys-
tems and algorithms to improve the visual quality. For an IQA method, its quality
map and gradient are two most important attributes. Quality map measures image
quality locally and is able to capture local dissimilarities when compared to ref-
erence image. In quality map image, the brighter regions mean better quality.
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Traditionally, MSE and SSIM have been widely used not only for the evaluation of
image quality, but also for the design and optimization of signal processing
algorithms and systems [1]. That is because their quality map and gradient can be
easily computed. For instance, the SSIM index [2, 3] is computed locally at each
pixel of the image and can be visualized as an image, often referred to as a SSIM
map, which provides useful information on the localization of distortions. The
gradient of SSIM with respect to the image has been derived in [4–6], and this
gradient is used as a fidelity term in iterative optimization procedures.

The VIF is the most accurate image quality metric according to the performance
evaluation of major image quality assessment algorithms performed in [7]. In spite
of its high level of accuracy, this index has not been given as much consideration
as the SSIM index in a variety of applications, far behind its widespread usage as
purely an assessment or comparison tool in other applications. There has been also
a growing interest of using VIF as an objective function in optimization problems
in a variety of image processing applications [8]. One major problem that could
strongly impede the progress of further applications is the lack of understanding
and desirable mathematical properties of VIF. For example, the VIF is a nonmap-
based quality metric which gives a final score for a distortion image. Unlike the
SSIM and MSE which compute a quality (or distortion) map between the reference
and distorted images to depict the distribution of quality degradation at image
pixels, the overall quality is usually computed as a mean over all the pixels in the
distortion map. Second, SSIM or MSE methods can easily calculate its gradient.
However, due to the high computational complexity of VIF (6.5 times the com-
putation time of the SSIM index according to [9]) and its nonmap-based quality
metric character, it is hard to get the gradient of VIF.

Some researchers are trying to study these two essential properties of VIF. For
instance, Seshadrinathan [10] analyzed the properties of SSIM and VIF and
established a relationship between SSIM and VIF. Li [11] proposed a spatial
information theoretical weighting map for SSIM and VIF. Brighter regions in this
weighting map indicate larger weights during error pooling process of IQA. But
these studies are only qualitative research. According to the best of our knowledge,
there is no complete formula about the quality map and gradient of VIF. In this
article, we first propose a novel quality map for VIF in pixel domain. We convert
the VIF from a nonmap-based quality metric to a map-based quality metric.
Experimental results show that the proposed VIF quality map provides useful
guidance on how local image quality is similar to reference image. Based on the
formulation of VIF quality map, we then deduce the gradient of VIF by taking the
derivative of VIF with respect to reference image. This gradient can be used to
solve the minimization problems with VIF term in image processing field.

This paper is organized as follows. The principle of VIF is introduced in Sect. 1.
Section 3 presents the proposed quality map of VIF, and its gradients are discussed
in Sect. 4. The experiments are analyzed in Sect. 5, and conclusions are drawn in
Sect. 6.
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2 The VIF Metric

The VIF proposed by Sheikh [9] is an IQA method that consistently outperforms
almost all other approaches. It treats the IQA as an information fidelity problem
based on natural scene statistics (NSS) theory. There are two types of VIF: wavelet
domain version and pixel domain version. Considering that wavelet domain ver-
sion VIF is more complex and our proposed quality map is based on pixel domain,
we only discuss the pixel domain version of VIF.

Support C and D denote the random fields (RFs) from the reference and dis-
torted images, respectively. Let CN ¼ ðC1;C2; � � �CNÞ and denote N elements
from C, and let DN ¼ ðD1;D2; � � �DNÞ be the corresponding N elements from D. C
is a product of two stationary RFs that are independent of each other:

C ¼ S � U ¼ fSk � Uk : k 2 Ig; ð1Þ

where I denotes the set of spatial indices for the RFs, S is an RFs of positive
scalars, and U is a Gaussian scalar RFs with mean zero and variance r2

U . The
image distortion model is a signal attenuation and additive Gaussian noise, defined
as follows:

D ¼ GC þ V ¼ fgkCk þ Vk : k 2 Ig; ð2Þ

where G is a deterministic scalar attenuation field and V is a stationary additive
zero-mean Gaussian noise RFs with variance r2

V .
The human visual system (HVS) model in VIF quantifies the impact of the

image that flows through HVS:

E ¼ C þ N;

F ¼ Dþ N;
ð3Þ

where E and F denote the cognitive output of the reference and test images
extracted from the brain, respectively; N represents stationary, white Gaussian
noise RFs with variance r2

n.
VIF utilizes mutual information IðCk;EkÞ to measure the information that can

be extracted from the output of HVS when the reference image is being viewed:
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In addition, information IðCk;FkÞ is measured in the same way when the test
image is being viewed:
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The above mutual information assumes that the distortion model parameters g
and r2

V are known a priori, but these would need to be estimated in practice. An
estimated model replaces the theoretical model in practice. The value of the filed g
over block k is denoted as gk, and the variance of the RFs V over block k is
denoted as rVk , both are estimated from the local variance of pixels based on
maximum likelihood (ML) criteria, which are easily estimated by

ĝ ¼ rCD=r
2
C; ð6Þ

r̂2
V ¼ r2

D � ĝrCD; ð7Þ

where

lC ¼ w � C;

lD ¼ w � D;

r2
C ¼ w � ðC � lCÞ2 ¼ w � C2 � l2

C;

r2
D ¼ w � ðD� lDÞ2 ¼ w � D2 � l2

D;

rCD ¼ w � ðC � lCÞðD� lDÞ ¼ w � ðCDÞ � lClD;

ð8Þ

in which w is a symmetric low-pass kernel (e.g., 11�11 normalized Gaussian
kernel). ‘�’ denotes convolution.

Sheikh [9] uses a more sophisticated vector GSM model for VIF. Rezazadeh
[12] uses scalar GSM instead of vector GSM in modeling the images for VIF
computation. Rezazadeh [13] shows that the first-level approximation subband of
decomposed images plays an important role in improving quality assessment
performance and also in complexity reduction. So we restrict our analysis to a
scalar version of the VIF metric, where the natural scene model is identical to that
used in the scalar IFC (information fidelity criterion) [14] index.

Considering a single subband, we obtain the sample VIF as follows:

VIFðC;DÞ ¼ IðCN ;FNÞ
IðCN ;ENÞ ¼

P

k IðCk;FkÞ
P

k IðCk;EkÞ
¼

PN
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� � : ð9Þ

The denominator of the above equation represents the amount of information
that the HVS can extract from the original image. The numerator represents the
amount of information that the HVS can extract from the distorted image. The
ratio of these two quantities hence is a measure of the amount of information in
the distorted image relative to the reference image and has been shown to correlate
very well with visual quality. The one extra parameter in this model namely the
variance of the neural noise r2

N is hand-optimized in [9] and chosen to be 2.
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As depicted in Fig. 1, VIF first decomposes the image into several blocks. Then,
VIF measures the visual information by computing mutual information in the
different models in each block by Eqs. (4) and (5). Finally, the image quality value
is measured by integrating visual information for all the blocks by Eq. (9).

3 Quality Map of VIF

There is no doubt that quality maps are important to the IQA method. Different
image quality maps can provide a substantially distinct prediction of local image
quality. Although a lot of research effort has been put into investigating the per-
ceptual error map, such as the absolute difference map and the SSIM map, much
less has been done for studying the perceptual error map or quality map of VIF. In
the former case[15], the VIF is only one number that quantifies the information
fidelity for the entire image, whereas in the latter case, a sliding window approach
could be used to compute a quality map that could visually illustrate how the
visual quality of the test image varies over space. However, in contrast to most
previous quality assessment methodologies, the VIF is not a Minkowski norm of
the quality map. In other words, a norm of the VIF quality map is not the
appropriate measure of image quality.

On the right side of the Eq. (9), the numerator is basically IFC and the
denominator can be thought as a content-dependent adjustment. For reference
image X and test image Y, we define the numerator RðX;Y; i; jÞ and denominator
PðXÞ as follows:

Fig. 1 A schematic of VIF
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RðX;Y; i; jÞ ¼ log2 1þ
g2

kr
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� �

; ð10Þ
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log2 1þ
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r2
N

� �

ð11Þ

here, N is the number of pixels in either of the input images.
At each point k with its coordinate ði; jÞ, VIFmap is an indication of the local

similarity between reference image X and test image Y

VIFmapðX;Y; i; jÞ ¼
RðX;Y; i; jÞ

PðXÞ : ð12Þ

The quality map VIFmapðX;Y; i; jÞ is then added up to obtain a single quality
score for the entire image. The VIF for an image Y, with respect to the reference
image X, is given by the following equation:

VIF(X;Y) =
X

8i;j
VIFmapðX;Y; i; jÞ: ð13Þ

This VIF is a Minkowski norm of its quality map. So we convert the VIF from a
nonmap-based quality metric to a map-based quality metric. Though our proposed
approach for computing VIF quality map has a form that is more complicated than
that of SSIM, it still remains analytically tractable as discussed in subsequent
sections. Specifically, we can deduce the deviation of VIF. This makes VIF being
able to produce a spatially varying quality map in which quality varies across the
image. So the final output of the VIF is either a spatial map showing the image
quality at different spatial locations or a single number describing the overall
quality of the image.

4 Gradient of VIF

Based on our formulation of VIF and its quality map given above, we first compute
o VIF/ oYða; bÞ and then rYVIFðX;YÞ.

o

oYða; bÞVIF ¼
X

8i;j

o

oYða; bÞVIFmap ð14Þ

in which

o

oYða; bÞVIFmap ¼
orXY

oYða; bÞ
oVIFmap

orXY
þ or2

Y

oYða; bÞ
oVIFmap

or2
Y

: ð15Þ
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By calculating partial derivatives of the parameters defined in Eq. (8) with
respect to Yða; bÞ, we have

orXY

oYða; bÞ ¼ xði� a; j� bÞ Xða; bÞ � lXð Þ; ð16Þ

or2
Y

oYða; bÞ ¼ 2x i� a; j� bð Þ Yða; bÞ � lYð Þ: ð17Þ

By substituting the partial derivates in Eq. (15) and collecting x i� a; j� bð Þ,
the summation in Eq. (14) turns into a weighted sum of three convolutions:

rYVIF X;Yð Þ ¼ w �M1 + w � oVIFmap

orXY

� �

X + w � oVIFmap

or2
Y

� �

Y ð18Þ

where the simplified auxiliary variable M1 is

M1 ¼ �lX
oVIFmap

orXY
� 2lY

oVIFmap

or2
Y

: ð19Þ

Using Eq. (18), we can compute rYVIF X;Yð Þ for all pixels with just three
convolutions and some element-wise multiplications and additions. The partial
derivatives required in Eq. (19) are given below:

oVIFmap

orXY
=

1
P

1 +
g2r2

X

r2
V þ r2

n

� ��1
2gðr2

V þ r2
nÞr2

X þ 2g2rXY

ðr2
V þ r2

nÞ
2 ð20Þ

oVIFmap

or2
Y

=
1
P

1 +
g2r2

X

r2
V þ r2

n

� ��1 �g2r2
X

ðr2
V þ r2

nÞ
2 ð21Þ

in which P is defined in Eq. (11).
Since VIF can be employed as the data-fidelity term of optimization function in

some image processing field, if having the gradient of VIF, the gradient descent
approach can be used with an iterative procedure to solve the optimization
problem.

5 Experimental Results

Like SSIM map, our proposed VIF map is computed locally at each pixel of the
distorted image and can be visualized as an image, which provides useful infor-
mation on the location of distortions. To validate the proposed VIF map model, we

A Novel Approach for Computing Quality 169



first test its performance using two types of image distortion: Gaussian blur and
additive white Gaussian noise.

Figure 2 illustrates the VIF map of distorted images with different Gaussian blur
levels. First row shows the reference image (a) and distorted images (b–d)
obtained from the reference using Gaussian blur with an incremental variance.
Second row shows the corresponding VIF maps at each pixel displayed as an
image. Figure 3 illustrates the VIF map of distorted images with different noise
levels. First row shows the reference image (a) and distorted images (b–d)
obtained from the reference using additive, white Gaussian noise with an incre-
mental noise level. Second row shows the corresponding VIF maps. In the VIF
map image, bright regions correspond to better quality and dark regions corre-
spond to worst quality. From Figs. 2 and 3, we obviously see that with noise or
blur level increase, the visual quality of distortion image deteriorates gradually,
and its quality map brightness also reduces gradually. The proposed VIF map
clearly displays the regions of the distorted image that are visually annoying to the
human observer.

Figure 4 shows a reference image that has been distorted with three different
types of distortion and its corresponding VIF map. The distortion types illustrated
are contrast stretch, Gaussian blur, and JPEG compression. VIF map of Fig. 4e–h
shows the spread of structural information. In flat image regions such as the sky
area, the information content of the image is low, whereas in textured regions and
regions containing strong edges such as the outline of buildings, the image quality
is high. The contrast-enhanced image Fig. 4b has a brighter quality map than

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2 Illustration the VIF map of distorted images with different blur levels. a Original
image(VIF = 1). b Blured image,Gaussian blur kernelsize = 7 9 7 and r ¼ 0:5 (VIF = 0.674).
c Blured image,Gaussian blur kernelsize = 7 9 7 and r ¼ 1 (VIF = 0.293). d Blured
image,Gaussian blur kernelsize = 7 9 7 and r ¼ 1:5 (VIF = 0.195). e VIF map of (a). f VIF
map of (b). g VIF map of (c). h VIF map of (d)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3 Illustration the VIF map of distorted images with different noise levels. a Original
image(VIF = 1). b Noised image,Gaussian whitenoise with r ¼ 5 (VIF = 0.442). c Noised
image,Gaussian whitenoise with r ¼ 15 (VIF = 0.156). d Noised image,Gaussian whitenoise
with r ¼ 25 (VIF = 0.083). e VIF map of (a). f VIF map of (b). g VIF map of (c). h VIF map
of (d)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4 The VIF map can capture the quality loss or improvement in the distorted image.
a reference image (VIF = 1), b distorted image by contrast stretch (VIF = 1.1), c distorted image
by Gaussian Blur (VIF = 0.07), (d) distorted image by JPEG compression (VIF = 0.10), e–h are
corresponding VIF map of image a–d.
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reference image Fig. 4a, and its VIF value is larger than unity. In contrast, both the
blurred image Fig. 4c and the JPEG-compressed image Fig. 4d have a darker
quality map compared with the reference image, and its VIF value is smaller than
unity. It is interesting to see that the brightness of VIF map reflects its VIF value. It
indicates the relative image information that is present in the distorted image. So
this proposed VIF map captures the improvement or loss of the distorted image in
visual quality and appears to be a good indicator of image quality in the pixel
domain.

6 Conclusion

The goal of this paper was to analyze the properties of recently most widely used
IQA paradigm VIF based on information theoretical framework. We first showed
that the numerator term in VIF, which is the mutual information between the test
image and the reference image, can be interpreted as a quality map for VIF. The
experimental results indicate that the proposed VIF map provides useful guidance
on how local image quality is similar to reference image. Additionally, VIF map
can also predict improvement in quality over space. Based on the formulation of
VIF map, we then deduce the gradient of VIF by taking the derivative of VIF with
respect to reference image. We pointed out that this gradient can be used to solve
optimization problem where there exists VIF term. This VIF value is the sum of
VIF map. In the future, we would like to use other pool strategies to compute the
overall VIF value and extend our analysis to the muti-subband/vector VIF model.
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