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Abstract In this paper, a real-time implementation of simultaneous localization
and mapping (SLAM) and navigation is described based on a mobile service robot
platform, which consists of two driving wheels, a laser, and a Kinect. The main
algorithm is extended Kalman filter (EKF) which is combined with feature
extraction from laser scan data and extended beam curvature method for obstacle
avoidance.
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1 Introduction

Mobile service robots are very promising application of robotics. They should help
people to deal with various tasks. The autonomous movement is the primary
capability, so to let robot know where it is and how to achieve the goal would be
fundamental problems of the mobile robot. To solve this problem, there are several
simultaneous localization and mapping (SLAM) approaches, such as Kalman
filter–based algorithm [1], Monte Carlo localization algorithm [2].

Monte Carlo localization algorithm is a probabilistic method which utilizes a
samples set (particles) to approximate the probability density functions from a
Bayesian perspective. This method had successfully introduced several indoor
navigation applications. But the disadvantage is the high computational
requirements.

Kalman filters are a efficient algorithm and widely introduced to solve the
SLAM [3, 4]. However, the regular Kalman filter only can cope with linear
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problem. In Smith, Self, Cheeseman paper [5], they proposed the extended Kalman
filter(EKF) to incrementally estimate the posterior distribution over robot pose
along with the positions of the landmarks, through a Taylor expansion to linearize
nonlinear system.

Obstacle avoidance is an another importance issue studied by researchers.
Artificial potential field method [6], the neural network method [7], vector field
histogram method (VFH ) [8], the curvature velocity method (CVM) [9], the lane
curvature method (LCM) [10], and the beam curvature method (BCM) [11] are
typical techniques for obstacle avoidance. Among these techniques, beam curva-
ture method is a simple and efficient method to find the promising forward path,
which combined the LCM with CVM.

In this paper, we combine several methods to implement our algorithm. First,
we utilize split–merge method to extract the essential features as the landmarks.
Then, a EKF is used to solve the SLAM problem. Moreover, a modified BCM is
adopted to avoid obstacles. At last, a kinematic control law is used to command the
motion of the robot.

2 The Proposed Robot System

2.1 Mobile Service Robot

The main task of proposed system is to help operators to collect external envi-
ronment information and build environment map in real time without collisions in
the whole process. Our developed mobile robot platform is illustrated in Fig. 1. It
equips two sensors, SICK LMS111 Laser Finder and Kinect, to grasp external
information. The two wheels are driven by servo motors, and each servo motor is
controlled by an ELMO driver which communicates with host through Kvaser
CAN device.

3 Simultaneous Localization and Mapping

SLAM is a process which estimates the robot’s pose and landmark’s position at the
same time, namely location and mapping. The fundamental step is to obtain
external information to search proper features (landmarks). After landmarks’
extraction, it is essential to match the observed landmarks with the existed land-
marks in map. The heart of our SLAM process is correlating the mean and
covariance matrix of system state through EKF technique.
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3.1 Feature Extraction

For the indoor environment, there exist many line features; accordingly, we choose
the corners as landmarks. There are several common methods to extract line
features [12]. In this paper, we use split–merge method [13] to extract lines and
compute the corners’ position.

The basic idea of split–merge is to repeatedly search a point with the maximum
distance dp to a line, which is decided by the start and end points of a dot set, and
compare dp with the threshold dthreshold. If dp is lesser than dthreshold, the point P is
considered as the point in the line, otherwise divide the dot set into two new sets at
point P. After split, we utilize least square method to fit corresponding lines.

We can consider the fitting problem as a regression problem under polar
coordinate using the raw laser data. So we can describe line as

L : q ¼ x cos ðaÞ þ y sin ðaÞ; ð1Þ

where q is the perpendicular distance from the origin to the line and a is the angle
between the x axis and the normal of the line. So the mean-squared error of
distance is obtained as follows:

XN

i¼1

di
2 ¼

XN

i¼1

�
q� xicosðaÞ þ yisinðaÞð Þ2; ð2Þ

Fig. 1 The developed mobile
service robot

SLAM and Navigation of a Mobile Robot for Indoor Environments 153



where di is the distance from point ðxi; yiÞ to the line L. xi and yi, respectively, are
the positions of samples in Cartesian coordinates. a and q can be computed as
follows [14]

tanð2aÞ ¼ 2
PN

i¼1 ðxi � �xÞðyi � �yÞ
PN

i¼1

�
ðxi � �xÞ2 � ðyi � �yÞ2

� ; ð3Þ

q ¼ �x cos aþ �y sin a; ð4Þ

�x ¼ 1
N

XN

i¼1

xi;�y ¼
1
N

XN

i¼1

yi: ð5Þ

Combining with these two methods, we obtain the extracted line features.
Through computing the cross dot of every two lines and comparing its position
with the laser data, we can decide which cross dot could be corner. Moreover, we
make some constraints, for example, a line should not be extracted if its length is
under 1 meter or the number of contained dot is lesser than 10. The extracted
results are shown in Figs. 2 and 3.

In Fig. 2, the blue dots are the raw laser data, the red circle represents robot, the
red lines are extracted lines, and the green dot is the computed corner.

3.2 Data Association

In SLAM applications, when the robot detects a feature, it must be associated with
a landmark in the existed map or incorporated as a new landmark. Data association
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is the process that deals with the matching problem between observations and
existed landmarks. A typical data association algorithm is composed of two ele-
ments: compatibility test to find potential pairs between observation and landmarks
and a selection rule to choose the best matchings among the set of compatible
matchings.

Generally, the gated nearest neighbor (NN) algorithm is used to associate data.
The main process of NN algorithm is compatibility test through utilizing the
Mahalanobis distance to determine whether a feature corresponds to a landmarks
and then find the one with the minimum Mahalanobis distance. However, in this
paper, due to that the landmarks are set exactly, we use a simple method to
determine the correspondence between features and landmarks. We compute the
degree of matching through a simple computation as follows:

Match ði; jÞ ¼ j error rj cos ð error bÞ; ð6Þ

where error r and error b are the error of range and bearing between feature i and
landmark j, respectively. Then, we regard the feature with the minimum match as
the best match of corresponding landmark.

3.3 Extended Kalman Filter

Extended Kalman filter is a repetitive process of prediction and correction to
estimate the system state. In our implementation, we can estimate the pose of robot
by observing several set landmarks.

xnðkÞ ¼ xðkÞ; yðkÞ; hðkÞ½ �T ð7Þ
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where xnðkÞ is the posture of robot, xðkÞ and yðkÞ are the current robot positions,
hðkÞ is the heading angle, and k is the current time. The developed robot platform
is a nonholonomic two-wheeled driven mobile robot, and its velocity motion
model is shown in Fig. 4. In Fig. 4, D is the distance between two wheels. So
velocity motion model can described as

gðx; u; k þ 1Þ ¼
xðkÞ þ DtVðkÞ cosðhðkÞÞ
yðkÞ þ DtVðkÞ sinðhðkÞÞ

hðkÞ þ DtxðkÞ

2
4

3
5 ð8Þ

where VðkÞ and xðkÞ are the linear velocity and angular velocity, respectively.
To fit EKF, we should linearize the motion model to acquire the Jacobian

matrices dg
dx

and dg
du

as follows:

Gx ¼
dg

dx
¼

1 0 � DtVðkÞ sinðhðkÞÞ
0 1 DtVðkÞ cosðhðkÞÞ
0 0 1

2
64

3
75 ð9Þ

Gu ¼
dg

du
¼

R
2 Dt cosðhðkÞÞ R

2 Dt cosðhðkÞÞ
R
2 Dt sinðhðkÞÞ R

2 Dt sinðhðkÞÞ
R

2D Dt � R
2D Dt

2
64

3
75: ð10Þ

The global framework of robot is described as shown in Fig. 5.
Then, we can easily obtain the measurement model that shown as

hðxÞ ¼
q

a

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxl � xÞ2 þ ðyl � yÞ2

q

arctanðyl�y
xl�xÞ � ðh� p

2Þ

2

4

3

5; ð11Þ

Fig. 4 The motion model

156 S. Lei and Z. Li



where xl; yl are the Cartesian coordinates of landmarks, x and y are the positions of
robot, and h is the heading angle. Similarly, by linearizing the measurement
model, we obtain the Jacobian matrix Hx of measurement model that shown as

Hx ¼
x�xl

q
y�yl

q 0
yl�y
q2

x�xl
q2 � 1

" #
: ð12Þ

3.4 Motion Plan and Obstacle Avoidance

Collision avoidance has been widely studied in autonomous mobile system, and
several techniques has been proposed to tackle with collision avoidance. In this
paper, we utilize a extended beam curvature method. The details are illustrated as
follows:

Obtain the environmental information The laser’s range is from 0� to 270�

with 1� resolution. As a result, in every step, we obtain 271 values and every value
di represents the distance of the ith beam.

Evaluate each beam To find the best beam, we evaluate the beams through a
equation [11]:

feðdi; piÞ ¼ adi cosðj dpi jÞ � ð1� aÞ j dpi

p
j; ð13Þ

where pi is defined as the angle between the X axis and the ith beam and pG is
defined as the angle between the X axis and the goal direction in the coordinates
system which is illustrated in Fig. 6. dpi ¼ pG � pi, di cosðj dpi jÞ may be regarded
as the projected distance on the goal direction, and a and b are constants.

Searching the instant goal candidate and safe path In order to find the proper
instant goal, it is essential to find the potential safe area. The safe area could be
searched by [11]:

Fig. 5 The global framework
of robot
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p1safe ¼ max
ðPi;diÞ

ðPi þ
dsafe

di
Þ;�p\Pi\Pbest; ð14Þ

p2safe ¼ min
ðPi;diÞ

ðPi �
dsafe

di
Þ;Pbest\Pi\p; ð15Þ

where p2safe; p1safe are the top angle and the bottom angle of the safe area and dsafe

is a safe threshold adjusted in experiments. Then, we decide the heading angle
through comparing the angle between robot’s position and goal’s position with the
limits of safe area [11]:

hheading ¼
p0; p0 2 ½p1safe; p2safe�
p1safe; p0\p1safe

p2safe; p0 [ p2safe

8
><

>:
ð16Þ

Determining velocity According to the instant goal and safe path, we deter-
mine angular velocity x such that the heading angle of the robot is approaching the
instant goal.

x ¼ kxðhi � hheadingÞ ð17Þ

where kx is a adjustable constant, hi is the angle between the robot and the instant
goal, and hheading is the heading angle of the robot. Moreover, in order to make sure
that the robot will not deviate from the safe path suddenly, it is essential to limit
the maximum linear speed tMAX. The linear velocity t can be defined as follows:

t ¼
tMAX � kt j x j t[ 0

0 t\0

�
ð18Þ

tr ¼
2tþ xD

2
ð19Þ

Fig. 6 The beam appraise
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tl ¼
2t� xD

2
; ð20Þ

where t is the linear velocity of the robot and tr and tl are the forward velocities of
the right and left wheels.

Detecting goal We detect whether robot has arrived the goal position through
the distance constraints

jx� xgoalj\re; ð21Þ

jy� ygoalj\re; ð22Þ

where xgoal, ygoal are the position of goal and re is the error tolerance.

4 Experiments

In the experiments, the parameters of the robot are set as R ¼ 0:10 m, D ¼ 0:6 m,
kt ¼ 1:0, kx = 0.4, a = 0.05, b= 0.95, and re = 0.2 m, and the sampling interval is
DT=0.1 s.

4.1 Estimate Start Position

Placing the robot at different initial positions, we begin to estimate the start
position, and the result is shown in Table 1.

In the table, x; y are the practical positions, xe; ye are the estimated positions,
and ex, ey are the relative errors. From the table, we can see that the results are
acceptable for extended Kalman filter algorithm.

4.2 Obstacle Avoidance

The pulse number per circle is 2048, and if the control input is angular velocity, we
should turn it into angular velocity. The laser’s accuracy is 0:01 m and 1�.

Table 1 Estimated result

x xe ex(%) y ye ey(%)

-5.4 -5.4865 1.601 0.92 0.9665 5.054
-5.4 -5.4738 1.367 1.20 1.2882 6.846
-4.8 -4.8729 1.518 1.20 1.2715 5.958
-4.8 -4.8830 1.729 0.60 0.6429 7.150
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So we initialize the measurement noise covariance matrix Q and control noise
covariance matrix R as follows:

R ¼ ð1:0=2048=p=DTÞ2 0

0 ð1:0=2048=p=DTÞ2

" #
; Q ¼ ð0:01Þ2 0

0 ð1:0 � p=180Þ2

" #
:

After initialized these matrices, we place the robot at ð�5:4; 1:0Þ and set the goal
position at ð�3:0; 2:1Þ and then run our program. Finally, we obtain the map of our
experimental environment as shown in Fig. 7.

In Fig. 7, the blue and green circles are the original position and the goal
position, respectively. The red circle represents the robot position. The motion

Fig. 7 The built map of
SLAM
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trajectory is shown in Fig. 8. During the overall process, robot moves toward left
to acquire the enough diameter to bypass the desk on the right. Then, robot turns
right to avoid the desk and moves to the goal. From the motion trajectory and the
velocity trajectory, we can see that the whole process is smooth and continuous
and the final errors are 0.1882 and 0.1044 m, which are within re.

5 Conclusions

In this paper, a mobile system which integrates SLAM and obstacle avoidance is
implemented. In SLAM, through comparing the detected features with landmarks
which set previously in global coordinate system, we utilize EKF to estimate the
pose of robot. Meanwhile, an obstacle avoidance algorithm is planning the motion
path to ensure that the robot will safely arrive the goal position. In the imple-
mentation, the results are satisfying.
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