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Abstract To reduce the computational complexity and improve the performance
of the recurrent wavelet neural network (RWNN), a novel modular recurrent
neural network based on the pipelined architecture (PRWNN) with low compu-
tational complexity is presented in this paper. Its modified adaptive real-time
recurrent learning (RTRL) algorithm is derived on the gradient descent approach.
The PRWNN comprises a number of RWNN modules that are cascaded in a
chained form and inherits the modular architectures of the pipelined recurrent
neural network (PRNN) proposed by Haykin and Li. Since those modules of the
PRWNN can be performed simultaneously in a pipelined parallelism fashion, it
would result in a significant improvement in computational efficiency. And the
performance of the PRWNN can be also further improved. Computer simulations
have demonstrated that the PRWNN provides considerably better performance
compared to the single RWNN model for nonlinear dynamic system identification.

Keywords Recurrent wavelet neural network � Pipelined recurrent neural
network � Real-time recurrent learning � Nonlinear system identification

1 Introduction

Due to the nonlinear signal processing and learning capability by generating
complex mapping between the input and the output space, artificial neural net-
works (ANNs) have become a powerful tool for nonlinear dynamic system iden-
tification [1]. Many research works using multilayer percetron (MLP) networks
[1], radial basis function (RBF) networks [2], functional link ANNs (FLANNs) [3],
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and recurrent neural networks (RNNs) [4] have been reported in nonlinear
dynamic system identification.

Recently, the wavelet neural network (WNN), combing the capability of ANN
in learning from processes and the capability of wavelet decomposition, has
received considerable interest. In [5], a WNN based on the wavelet transform
theory was presented as an alternative to ANNs for approximating nonlinear
functions. Research results have shown that a WNN can approximate any con-
tinuous function over a compact set and have high accuracy and fast learning
ability. However, it has been proved that the NN with the recurrent architecture is
superior to feedforward neural network (FNN) in identifying nonlinear dynamic
system. As a recurrent network, the recurrent wavelet neural network (RWNN)
[6–8], combining the properties of attractor dynamics of the RNN and good
convergence performance of the WNN, can cope with time-varying input or output
through its own natural temporal operation because a mother wavelet layer
composed of internal feedback neurons to capture the dynamic response of a
system. To further improve the performance of the RWNN, the self-recurrent
wavelet neural network (SRWNN) [9] and recurrent fuzzy wavelet neural network
(RFWNN) [10, 11] have been presented to deal with the problems of nonlinear
dynamic system identification. Although the RWNN shows promising results, it
still suffers from the heavy computational loads as the RNN.

In 1995, to reduce the computational complexity of the RNN, a computationally
efficient modular nonlinear adaptive filter-based pipelined recurrent neural net-
work (PRNN) was proposed by Haykin and Li [12]. The design of the pipelined
architecture follows the important engineering principle of divide and conquer and
the biological principle of NN modules. Its significant merit is relatively low
computational complexity [12–20]. As a result, inspired by the pipelined archi-
tecture of the PRNN, a novel modular RWNN based on the pipelined architecture
is proposed to reduce the computational complexity and improve the performance
of the RWNN for nonlinear dynamic system identification in this paper.

2 A Modular RWNN Based on the Pipelined Architecture

To overcome the computational complexity problem of the RWNN, keeping the
views of the pipelined architecture, a novel modular RWNN based on the pipe-
lined architecture (PRWNN) is presented. The PRWNN, inheriting the modular
architectures of the PRNN proposed by Haykin and Li, comprises a number of
RWNN modules that are cascaded in a chained form. Each module is implemented
by a small-scale RWNN with internal dynamics. Since those modules of the
PRWNN can be performed simultaneously in a pipelined parallelism fashion, it
would result in a significant improvement in computational efficiency. In addition,
the nesting module of the pipelined architecture can help to circumvent the
problem of vanishing gradient of the RWNN, and the performance of the PRWNN
can be further improved.
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Figure 1 describes the structure of the PRWNN, which is composed of
M identical modules, and each module is designed as a decision feedback RNN
with q neurons and has q - 1 neuron output decision feedback to its input, and the
remaining neuron output (the first neuron output decision) is applied directly to the
next module. In the case of the PRWNN, module M is a fully connected RNN, and
a one-unit delayed signal of the M module’s output is assumed to be decision
feedback to the input. Information flow into and out of the modules proceeds in a
synchronized fashion. Therefore, all the modules have exactly the same number of
external inputs and internal decision feedback signals.

Figure 2 shows the detailed structure of module i with q neurons and p external
inputs. Note that for module M, its module output decision acts as an external
feedback signal to itself. In addition, all the modules of PRWNN operate similarly
in that they all have exactly the same number of external inputs and feedback
signals, which are properly timed. Moreover, all the modules are designed to have
exactly the same (p ? q ? 1)-by-q synaptic weight matrix WðnÞ; q-by-1 weight
vector WoðnÞ and the parameters of the wavelet function. An element wk;lðnÞ of
this matrix represents the weight of the connection to the kth neuron from the lth
input node. Moreover, the weight matrix W may be written as

WðnÞ ¼ w1ðnÞ; . . .;wkðnÞ; . . .wqðnÞ
� �

: ð1Þ

where wkðnÞ is a (p ? q ? 1)-by-1 vector defined by

wkðnÞ ¼ w1;kðnÞ;w2;kðnÞ; . . .;wpþqþ1;kðnÞ
� �T

: ð2Þ

And the superscript T denotes transposition.
At the nth time, for the ith module, the external input signal is described by the

p-by-1 vector
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Fig. 1 A modular RWNN based on the pipelined architecture with M modules
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XiðnÞ ¼ xðn� iÞ; xðn� ðiþ 1ÞÞ; . . .; xðn� ðiþ p� 1ÞÞ½ �T : ð3Þ

and is delayer by Z�iI at the input of the module i, where Z�i denotes the delay
operator i time units, and I is the p� pð Þ-dimensional identity matrix, and p is the
nonlinear adaptive equalizer order. The other input vector applied to module i is
the q-by-1 decision feedback vector

riðnÞ ¼ yiþ1;1ðnÞ; r̂iðnÞ
� �T

; i ¼ 1; 2; . . .; ðq� 1Þ: ð4Þ

where yiþ1;1ðnÞ is the first neuron’s output in the adjacent module i ? 1, vector r̂i

is the one-step delayed output feedback signals that originate from module i itself
and is defined by

r̂iðnÞ ¼ yi;2ðn� 1Þ; . . .; yi;qðn� 1Þ
� �T

: ð5Þ

The last module of the PRWNN, namely module M, operates as a standard fully
connected RWNN. The vector rM consists of the one-step delayed output decision
signals in module M that are fed back to itself and as shown by

rMðnÞ ¼ yM;1ðn� 1Þ; r̂MðnÞ
� �T

¼ yM;1ðn� 1Þ; yM;2ðn� 1Þ; . . .; yM;qðn� 1Þ
� �T

:
ð6Þ

To accommodate a bias for each neuron, besides the p ? q inputs, the fixed
input +1 is included. Based on the above discussion, an input vector Vi(n) con-
sisting of total (p ? q ? 1) input signals applied to module i is represented

ViðnÞ ¼ XT
i ðnÞ; 1; rT

i ðnÞ
� �T

; i ¼ 1; 2; . . .M: ð7Þ
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Fig. 2 Detailed architecture of module i of the PRWNN
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For the module i, the output yi;lðnÞ of neuron l at the nth time point is computed
by passing ui;lðnÞ through a wavelet function uð�Þ; obtaining

yi;lðnÞ ¼ u
ui;lðnÞ � blðnÞ

alðnÞ

� �
: ð8Þ

With loss of generality, the ‘‘Gaussian-derivative’’ wavelet function given in [6]
is used by

uðxÞ ¼ 1
ffiffiffiffiffiffiffi
alj j

p ð�xÞ exp � x2

2

� �
: ð9Þ

And the net internal activity ui;lðnÞ is given by

ui;lðnÞ ¼ VT
i ðnÞwlðnÞ

¼
XpþMþ1

k¼1

wk;lðnÞvi;kðnÞ

¼
Xp

k¼1

wk;lðnÞxðn� ðiþ k � 1ÞÞ

þ wpþ1;lðnÞ þ
Xpþqþ1

k¼pþ2

wk;lðnÞri;k�ðpþ1ÞðnÞ:

ð10Þ

where

vi;kðnÞ ¼

xðn� ðiþ k � 1ÞÞ; 1� k� p; 1� i�M
1; k ¼ pþ 1; 1� i�M
yiþ1;1ðnÞ; k ¼ pþ 2; 1� i�M � 1
yM;1ðn� 1Þ; k ¼ pþ 2; i ¼ M
yi;k�ðpþ1Þðn� 1Þ; pþ 3� k� pþ 1þ q; 1� i�M

8
>>>><

>>>>:

ð11Þ

and

ri;k�ðpþ1ÞðnÞ ¼
yiþ1;1ðnÞ; k ¼ pþ 2; 1� i�M � 1
yM;1ðn� 1Þ; k ¼ pþ 2; i ¼ M
yi;k�ðpþ1Þðn� 1Þ; pþ 3� k� pþ 1þ q; 1� i�M

8
<

:
ð12Þ

Then, the output of the ith module is given as

yiðnÞ ¼
Xq

j¼1

wo
j ðnÞyi;jðnÞ ¼ HTðnÞWoðnÞ: ð13Þ

Finally, the output signal computed by the PRWNN at time instant n is defined
by

yðnÞ ¼ y1ðnÞ: ð14Þ
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Certainly, yiðnÞ is interpreted as the estimate of desired signal dðn� iÞ com-
puted by the ith module.

3 Training Algorithm for the PRWNN

According to the learning algorithms of the PRNN, adaptive learning algorithm of
the PRWNN is derived by the real-time recurrent learning (RTRL) rule in the
following subsection.

The overall cost function for the PRWNN is defined by

EðnÞ ¼
XM

i¼1

ei�1e2
i ðnÞ: ð15Þ

where e is an exponential forgetting factor that lies in the range of 0\e� 1; the
inverse of ei�1 is a measure of the memory of the PRWNN. And the corresponding
error eiðnÞ of the ith module is given by

eiðnÞ ¼ dðn� iÞ � yiðnÞ: ð16Þ

After every module of the PRWNN finishes its calculations, e1ðnÞ; e2ðnÞ; . . .
and eMðnÞ error signals are obtained. Thus, adjustments to the synaptic weight
matrix WðnÞ and WoðnÞ of each module are made to minimize E(n) in accordance
with the RTRL algorithm.

According to the approach in [12], the change to klth element of the weight
matrix WðnÞ is

Dwk;lðnÞ ¼
g1

2
oEðnÞ

owk;lðnÞ
; 1� l� q; 1� k� pþ 2þ q: ð17Þ

Then, the element of weight matrix WðnÞ is updated as

wk;lðnþ 1Þ ¼ wk;lðnÞ þ Dwk;lðnÞ ¼ wk;lðnÞ �
g2

2
oEðnÞ

owk;lðnÞ
: ð18Þ

Similarly, the parameters alðnÞ and blðnþ 1Þ are updated by, respectively

alðnþ 1Þ ¼ alðnÞ �
g3

2
oEðnÞ
oalðnÞ

: ð19Þ

blðnþ 1Þ ¼ blðnÞ �
g4

2
oEðnÞ
oblðnÞ

: ð20Þ

Furthermore, according to the RTRL rule, the recursive equations of (18, 19)
and (20) can be obtained by
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wk;lðnþ 1Þ ¼wk;lðnÞ þ g2
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�

þ
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:

ð21Þ

bl nþ 1ð Þ ¼blðnÞ � g3
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ð22Þ

alðnþ 1Þ ¼ alðnÞ þ g4
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:
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ð23Þ

In addition, by using the gradient rule, the weight WoðnÞ of the PRWNN is
updated as

Woðnþ 1Þ ¼ WoðnÞ þ g1

XM

i¼1

ei�1eiðnÞHiðnÞ: ð24Þ

where giði ¼ 1; 2; 3; 4Þ is learning rate and controls the convergence performance
of the PRWNN.

4 Simulations

To evaluate the performance of the PRWNN, nonlinear dynamic system identifi-
cation application is carried out in this subsection.

Figure 3 depicted the identification scheme of a nonlinear dynamic system
based on the PRWNN filter. The plant is described by the following difference
equation [6]

ŷðnþ 1Þ ¼ f ŷðnÞ; ŷðn� 1Þ; ŷðn� 2Þ; xðnÞ; xðn� 1Þ½ �: ð25Þ

where the function f ð�Þ is defined by

f x1; x2; x3; x4; x5½ � ¼ x1x2x3x5ðx3 � 1Þ þ x4

1þ x2
3 þ x2

2

: ð26Þ
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During the test phase, the following test signal is used to test the performance of
the PRWNN models:

xðnÞ ¼ sinð2pn=250Þ 1� n� 250
0:8 sinð2pn=250Þ þ 0:2 sinð2pn=25Þ \250n� 600
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Figure 4 shows the actual neural network’s output and error of the nonlinear
dynamic plant for the test signal with the RWNN and PRWNN model. It is
obviously observed that the proposed PRWNN shows much better performance
than the conventional RWNN in this nonlinear dynamic system identification
problem. This result is reasonable due to the fact that the pipelined architecture of
the PRWNN helps to enhance nonlinear processing capability and improve the
performance. Moreover, the computational complexity of the PRWNN is much
lower than that of the RWNN.

5 Conclusion

In this paper, we proposed a nonlinear adaptive filter with a pipelined RWNN to
reduce the computational burden of the RWNN. The network model consists of a
number of modules-based RWNN that are interconnected in a chained form and
inherits the major characteristics (low computational complexity) of the pipelined
architecture. The parameter update rules of the PRWNN are derived according to
the modified RTRL algorithm. The performance of the proposed PRWNN has
been assessed for nonlinear dynamic system identification and compared with that
of the RWNN model. Simulation results show that the proposed PRWNN with
lower computational complexity can outperform the single RWNN model.
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