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Abstract. A mathematical model based on cellular automata on graphs
to simulate a general epidemic spreading is presented in this paper.
Specifically, it is a SIR-type model where the population is divided into
susceptible, infected and recovered individuals.

1 Introduction

As is well known infectious diseases are those caused by pathogens (virus, bac-
teria, epiphytes) or parasites (protozoans, worms) and which can spread in the
population. They have been an human enemy from time immemorial. Epidemics
and pandemics can place sudden and intense demands on health systems: commu-
nicable diseases such as measles, influenza, tuberculosis, etc. are a common fact
of modern life. Currently, they are events of concern and interest to many people
worldwide: Remember epidemics such as Lyme diseases, toxic-shock syndrome,
hepatitis C and E, AIDS, SARS, the Ebola virus, Avian Flu, and more recently
the outbreak due to N1H1 virus. They can disrupt economic activity and devel-
opment. The effects of high disease mortality on mean life span and of disease
debilitation and mortality on the economy in afflicted countries are considerable.

As a consequence, the importance of understanding the dynamics and evolu-
tion of infectious diseases is steadily increasing in the contemporary world. The
study, design and analysis of mathematical models to simulate epidemic spread-
ing has a long history (see [9,19] although the crucial moment in the mathemati-
cal epidemiology was reached in 1927 when Kermack and McKendrick (see [13])
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introduced its famous model based on a system of ordinary differential equations
to study the transmission of the Great Plague occurred in London from 1665
to 1666. It is the first compartmental model; the population is divided into dif-
ferent compartments or classes: susceptibles (individuals which are susceptible
to the disease), infected (individuals which have been infected by the disease
and are infectious) and recovered (individuals which are removed from infected
compartment). Consequently, it is a SIR model where susceptible individuals are
infected and the individuals leaving the infective compartment become immune,
dead or removed by an isolation policy.

Since then, several mathematical models have been appeared in the literature
(see [12,23] and references therein). The majority of mathematical models to sim-
ulate epidemic spreading are based on the use of differential equations (see, for
example, [6] and references therein). Unfortunately, these models exhibit some
important drawbacks since they do not take into account spatial factors such
as population density, they neglect the local character of the spreading process,
they do not include variable susceptibility of individuals, they cannot compre-
hensively depict complex contagion patterns (which are mostly caused by the
human interaction induced by modern transportation), etc. As a consequence,
this can lead to unrealistic results, such as, for example, endemic patterns re-
laying on very small densities of individuals, which are called “atto-foxes” or
“nano-hawks” (see [16]).

Other mathematical models are based on a particular type of finite state
machines called cellular automata. Cellular automata (CA for short) are simple
models of computation capable to simulate physical, biological or environmental
complex phenomena (see, for example, [22,25]).

CA were introduce by J. von Neumann and S. Ulam in the 50’s and their
motivation was to obtain a better formal understanding of biological systems that
are composed of many identical objects that are relatively simple. The pattern
evolution of a cellular automata is the result of the interactions of its objects.
Cellular automata have been studied from a dynamical system perspective, from
a logic, automata and language theoretic perspective and through ergodic theory.

Roughly speaking, a cellular automaton consists of a discrete spatial lattice
of sites called cells, each one endowed at each time t with a state from a finite
state set. The state of each cell is updated in discrete time steps according to a
local transition function which depends on the states of the cells in some neigh-
borhood around it. As the lattice is finite, some type of boundary conditions
must be imposed. As is mentioned above, the usual topologies of CAs are chains
and regular lattices; nevertheless, particular properties of two-dimensional lattice
space exhibit some drawbacks: connection topology among the cells is restricted
to predetermined homogeneous lattice, etc. As a consequence, although that is
the standard paradigm for cellular automata, other topologies must be consid-
ered when the phenomenon to simulate therefore requires it. In this sense the
topologies based on graphs are very important and useful: the nodes of the graph
stand for the cells of the CA, and the neighborhood of a particular cell/node is
constituted by the nodes adjacent to that one.
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The CA-based models for epidemiological spreading eliminate the last men-
tioned shortcomings exhibited by the models based on ODEs, and are specially
suitable for computer simulations. They have been used by several researches as
an efficient alternative method to simulate epidemic spreading (see, for example,
[1,3,5,7,8,17,18,20,24]), apart from another works appeared in the life sciences
and computing literature). Of special interest are the CA-epidemic proposals
modeling the motion of individuals (see, for example [2,4,14]). In the majority
of these CA models the individuals are assumed to be distributed in the cellu-
lar space (defined as an homogeneous lattice) such that each cell stands for an
individual of the population.

Here, we introduce a new mathematical model to simulate epidemic spreading.
It is a SIR model and is based on cellular automata on graphs. In each cell several
individuals are considered instead of only one individual, as is stated in the
majority of proposals appeared in the literature. Consequently, each cell stands
for a town or a city and its state is obtained from the fraction of the number of
individuals which are susceptible, infected, or recovered from the disease.

The model introduced in this work can be considered as the continuation and
improvement of the models shown in previous works of the authors. Specifically,
in [10,11] a SIS and SIR models based on cellular automata endowed with the
traditional topology (Von Neumann and Moore neighborhoods) was presented.
Also, an improved SIS model was published in [15] considering topologies based
on graphs. There are few works dealing with the use of cellular automata to sim-
ulate epidemic spreading considering each cell as an urban centre or a portion of
land. Maybe the first paper was due to Sirakoulis, Karafyllidis and Thanailakis
(see [21]) and in this work the basis concepts was stated although some draw-
backs (related to the motion of individuals) was also presented.

The rest of the paper is organized as follows: In section 2 the basic theory
about cellular automata on graphs is stated; The mathematical model to simu-
late the epidemic spreading is introduced in section 3. An illustrative simulation
is presented in section 4, and finally, the conclusions and further work is pre-
sented in section 5.

2 Cellular Automata on Graphs

A graph G is a pair (V,E) where V = {v1, v2, . . . , vn} is an ordered non-empty
finite set of elements called nodes (or vertices), and E is a finite family of pairs
of elements of V called edges. Two nodes of the graph, vi, vj ∈ V , are said to
be adjacent (or neighbors) if there exists an edge in E of the form (vi, vj). We
consider undirected graphs, that is, (vi, vj) = (vj , vi) ∈ E. A graph G is called
simple if there is not two edges of G with the same ends and no loops exist, i.e.
edges whose start and end is located at the same node.

If V = {v1, . . . , vn}, the adjacency matrix of G is the n×n matrix, A = (aij),
where

aij =

{
1, if (vi, vj) ∈ E
0, if (vi, vj) /∈ E
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As this work deals with undirected graphs, the adjacency matrix is symmetric.
The neighborhood of a node v ∈ V , Nv, is the set of all nodes of G which are

adjacent to v, that is, Nv = {u ∈ V such that (v, u) ∈ E}. The degree of a node
v, dv, is the number of its neighbors.

A cellular automaton on an undirected graph G = (V,E) is a 4-tuple A =
(V, S,N, f). The set V defines the cellular space of the CA such that each node
stands for a cell the cellular automaton. S is the finite set of states that can be
assumed by the nodes at each step of time. The state of the node v at time step t
is denoted by stv ∈ S, and it changes accordingly to the local transition function
f . N is the neighborhood function which assigns to each node its neighborhood,
that is:

N : V → 2V

vi �→ N (vi) = Nvi =
{
vi1 , vi2 , . . . , vidv

}
Finally, the local transition function f calculates the state of every node at a
particular time step t + 1 from the states of the its neighbors at the previous
time step t, that is:

st+1
v = f

(
stvi1 , s

t
vi2

, . . . , stvidv

)
∈ S,

where Nv =
{
vi1 , vi2 , . . . , vidv

}
.

3 The SIR Mathematical Model

In the mathematical epidemiological model introduced in this work the popula-
tion is divided into three classes: those who are susceptible to the disease, those
who are infected and those who have recovered and are immune to the disease.
Moreover, the population is located at city centres which stand for the nodes of
a graph G. If there is some type of transport connection between two of these
cities, the associated nodes are connected by an edge. The following assumptions
are also made:

1. The population of each node remains constant over time, that is, no births
or deaths are taking into account. Moreover, the population distribution is
inhomogeneous where Pu is the number of individuals of the node u ∈ V ,
and P = max {Pu, u ∈ V }.

2. The transmission of the disease is through direct physical contact: touching
an infected person, including sexual contact.

3. The population are able to move from its node to another one and return to
the origin node at every step of time.

As the model introduced in this work is a SIR model, then the state of the node
u ∈ V at time step t is the triple stu = (St

u, I
t
u, R

t
u) ∈ Q × Q × Q = S, where

St
u ∈ [0, 1] stands for the fraction of susceptible individuals of the node u at time

t, Itu ∈ [0, 1] stands for the fraction of infected individuals of the node u at time
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t, and Rt
u ∈ [0, 1] stands for the fraction of recovered individuals of the node u

at time step t. Consequently, the transition function of the CA is as follows:

stu = f
(
st−1
v1 , . . . , st−1

vdu

)
=

(
St
u, I

t
u, R

t
u

)

=
(
(d ◦ fS)

(
st−1
v1 , . . . , st−1

vγu

)
, (d ◦ fI)

(
st−1
v1 , . . . , st−1

vγu

)
, (d ◦ fR)

(
st−1
v1 , . . . , st−1

vγu

))

The ground where the epidemic is spreading is modeled as a weighted graph
where each node stands for a city or a town, and the arc between two nodes
represents the connection between the corresponding cities. In this sense, the
connection factor between the nodes u and v is the weight associated to the
edge (u, v) ∈ E and it is denoted by wuv. It depends on the transportation
capacity of the public and non-public transport; Consequently:

wuv =
huv

max {hxy, ∀x, y ∈ V } ∈ [0, 1] ,

where huv is the total amount of population wich move from u to v during a
time step.

The infected individuals of u at time step t is given by the sum of the following
terms:

– The infected individuals at the previous time step which have not been
recovered.

– The susceptible individuals which have been infected during the time step. In
this case we have to take into account the recovery rate r ∈ [0, 1]. These new
sick individuals of u can be infected both by the infected individuals of u or
by the infected individuals of the neighbor nodes of u which have moved to u
during the time step. In the first case, only the rate of transmission, p ∈ [0, 1],
is involved, whereas in the second case we have to consider the connection
factors between the nodes, and the population and movement factor of each
node. Moreover we also consider the susceptible individuals of u moved to
a neightbor node during the step of time and infected in this neighbor node
by its corresponding infected individuals; in this case ηu ∈ [0, 1] yields the
portion of moved susceptible individuals from u to its neighbor nodes. Note
that

∑
v∈Vu

ηuv = ηu.

As a consequence the mean-field equation for infected individuals is the following:

fI

(
st−1
v1 , . . . , st−1

vγu

)
= (1− r) It−1

u + p (1− ηu)S
t−1
u It−1

u

+ p (1− ηu)S
t−1
u

∑
v∈Vu

Pv

P
wvuI

t−1
v

+ pSt−1
u

∑
v∈Vu

(1− wvu) ηuvI
t−1
v . (1)

On the other hand, the susceptible individuals of each node is given by the
difference of the susceptible individuals of the node at the previous time step
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and the susceptible individuals which have been infected as is mentioned above.
As a consequence, the following equation holds:

fS

(
st−1
v1 , . . . , st−1

vγu

)
= St−1

u − p (1− ηu)S
t−1
u It−1

u

− p (1− ηu)S
t−1
u

∑
v∈Vu

Pv

P
wvuI

t−1
v

− pSt−1
u

∑
v∈Vu

(1− wvu) ηuvI
t−1
v . (2)

Finally, the recovered individuals of a node at a particular time step is given by
the recovered individuals at the previous time step plus the infected individuals
which have been recovered during the time step, that is:

fR

(
st−1
v1 , . . . , st−1

vγu

)
= Rt−1

u + rIt−1
u . (3)

Note that, as a simple calculus shows:

Itu + St
u +Rt

u = It−1
u + St−1

u +Rt−1
u = Pu, (4)

and consequently equation (3) can be substitute for the following equation:

fR

(
st−1
v1 , . . . , st−1

vγu

)
= 1− Itu − St

u. (5)

Moreover, as

fS

(
st−1
v1 , . . . , st−1

vγu

)
∈ [0, 1] ,

fI

(
st−1
v1 , . . . , st−1

vγu

)
∈ [0, 1] (6)

and fR

(
st−1
v1 , . . . , st−1

vγu

)
∈ [0, 1], then a discretization function d : [0, 1] → Q

must be used in order to get a finite state set. In our case, the discretization
function used is the following:

d : [0, 1] −→ Q (7)

x �−→ d (x) =
[100 · x]
100

where [m] stands for the nearest integer to m. As a consequence,

Q = {0, 0.01, 0.02, . . . , 0.99, 1} . (8)

4 An Illustrative Simulation

In this simulation we will suppose that the epidemic is spreading over n cities
forming a complete graph Kn. A complete graph is a graph in which each pair
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of graph nodes is connected by an edge (that is, each city is connected with each

others). The complete graph with n nodes is denoted by Kn and has n(n−1)
2

edges. The adjacency matrix A of the complete graph Kn takes the particularly
simple form of all 1s with 0s on the diagonal.

For the sake of simplicity this example deals with the complete graphK6, that
is, only n = 6 cities are involved in the spreading of the epidemic: u1, . . . , u6. In
Figure 1 the graph topology of this example is shown.

Fig. 1. Complete graph K6

Moreover, the parameters used in this example are merely illustrative and
they do not correspond to a particular infectious disease. We will consider the
following initial configuration:

S0
u1

= 0.8, I0u1
= 0.2, R0

u1
= 0,

S0
ui

= 1, I0ui
= R0

ui
= 0, 2 ≤ i ≤ n.

That is, there is only one node at time t = 0 with infected population. Moreover,
the parameters used are:

p = 0.5, r = 0.6,

ηui = 0.25, 1 ≤ i ≤ 6 with ηuiv = 0.05 ∀v ∈ Nui .

Note that it is assume that ηuiv = ηui/dui for each i. Moreover, let us suppose
that the population of each node is the same: Pui = 100 with 1 ≤ i ≤ 6, and also
the transport capacity between two nodes is the same: wuiuj = 1 for 1 ≤ i, j ≤ 6.
Note that this example deals with an homogeneous-symmetric case.

In Figure 2, the evolution of the number of susceptible, infected and recovered
individuals is shown.

In Table 1, the necessary conditions for epidemic spreading from a single node
u to a neighbor node v are shown. In the first, second and third column some
different and arbitrary values of the parameters p, ηu and wu are taken. In the
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Fig. 2. Top: Evolution of the proportion of the susceptible, infected and recovered
population in the node u1. Middle: Evolution of the susceptible, infected and recovered
population in the nodes u2, . . . , u6. Bottom: Evolution of total number of susceptible,
infected and recovered individuals.
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fourth column, the minimun state of the node u to produce epidemic spreading
is shown, and finally in the fifth column the state of the neighbor node (when
the spreading occurs) at the following state of time is given.

Table 1. Necessary conditions for epidemic spreading in the case of K6

p ηu wu I0u I1v

0.25 0.25 0.5 0.84 0.08
0.25 0.25 1 0.53 0.1
0.25 0.5 1. 0.8 0.1
0.5 0.25 0.5 0.47 0.09
0.5 0.25 1 0.27 1
0.5 0.5 0.5 0.67 0.09
0.5 0.5 1 0.4 0.1
0.5 0.75 1 0.8 0.1
0.75 0.25 0.5 0.33 1
0.75 0.25 1 0.18 0.1
0.75 0.5 0.5 0.47 1
0.75 0.5 1 0.27 0.1
0.75 0.75 0.5 0.84 0.09
0.75 0.75 1 0.53 0.1
1 0.25 0.5 0.25 0.1
1 0.25 1 0.13 0.1
1 0.5 0.5 0.36 0.1
1 0.5 1 0.2 0.1
1 0.75 0.5 0.67 0.1
1 0.75 1 0.4 0.1

5 Conclusions

In this work a new SIR-epidemiological model based on cellular automata on
graphs has been proposed. The main characteristics of this model are the fol-
lowing:

– Each node of the graph stand for a group of individuals placed on a city or
town.

– These individuals are classified into three compartments: susceptible, in-
fected and recovered. As a consequence, the state of the each node at a
particular time step is the 3-tupla formed by the portion of susceptible,
infected and recovered individuals at this time.

– It is suppose that the transmission of the disease is through direct physical
contact between an infected and a susceptible individual.

– The population is able to move from a node to another one.
– The local transition function of the cellular automata is non-linear and it

involves the following parameters: the recovery rate, the rate of transmis-
sion, the movement factor for susceptible individuals, the connection factor
between the nodes and the population of each node.
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The laboratory simulations obtained seem to be in agreement with the expected
behavior of a real epidemic.

Future work will aim to extend the paradigm presented in this work to other
compartmental models as SIRS, SEIR, etc. Moreover, the study of the introduc-
tion in the model of new parameters and vaccination effect must be taken into
account.
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YA7Y / 463AC06.
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automaton model for epidemic propagation. Physica D 103, 554–563 (1997)
21. Sirakoulis, G.C., Karafyllidis, I., Thanailakis, A.: A cellular automaton model for

the effects of population movement and vaccination on epidemic propagation. Ecol.
Model. 133, 209–223 (2000)

22. Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for
Modeling. The MIT Press (1987)

23. Vynnycky, E., White, R.G.: An Introduction to Infectious Disease Modelling. Ox-
ford University Press (2010)

24. Willox, R., Grammaticos, B., Carstea, A.S., Ramani, A.: Epidemic dynamics:
discrete-time and cellular automaton models. Physica A 328, 13–22 (2003)

25. Wolfram, S.: A New Kind of Science. Wolfram Media Inc. (2002)


	A Graph Cellular Automata Model to Study
the Spreading of an Infectious Disease
	Introduction
	Cellular Automata on Graphs
	The SIR Mathematical Model
	An Illustrative Simulation
	Conclusions
	References




