
Phase Correlation Based Image Alignment

with Subpixel Accuracy

Alfonso Alba�, Ruth M. Aguilar-Ponce,
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Abstract. The phase correlation method is a well-known image align-
ment technique with broad applications in medical image processing,
image stitching, and computer vision. This method relies on estimating
the maximum of the phase-only correlation (POC) function, which is de-
fined as the inverse Fourier transform of the normalized cross-spectrum
between two images. The coordinates of the maximum correspond to
the translation between the two images. One of the main drawbacks of
this method, in its basic form, is that the location of the maximum can
only be obtained with integer accuracy. In this paper, we propose a new
technique to estimate the location with subpixel accuracy, by minimizing
the magnitude of gradient of the POC function around a point near the
maximum.We also present some experimental results where the proposed
method shows an increased accuracy of at least one order of magnitude
with respect to the base method. Finally, we illustrate the application of
the proposed algorithm to the rigid registration of digital images.

1 Introduction

The phase correlation method [1] is a frequency domain technique used to esti-
mate the delay or shift between two copies of the same signal. This technique
is based on the shift properties of the Fourier transform. Specifically, consider
two discrete periodic signals f(x) and g(x), and let F (ω) and G(ω) be their
respective Fourier transforms. The normalized cross-spectrum R(ω) of f and g
is given by

R(ω) =
F (ω)G∗(ω)
|F (ω)G∗(ω)| , (1)

where G∗ is the complex conjugate of G. Note that |R(ω)| = 1 for all ω. Also,
the phase-only correlation (POC) function r(x) is defined as the inverse Fourier
transform of R(ω).

Now suppose g is simply a delayed copy of f ; that is, g(x) = f(x+ d), where
d is an unknown integer. The shift property of the Fourier transform states
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that G(ω) = F (ω) exp{jωd}, where j =
√−1. In this case, it is easy to see that

R(ω) = exp{−jωd} and r(x) = δ(x−d), where δ is the discrete impulse function
(i.e., δ(0) = 1 and δ(x) = 0 for x �= 0). Therefore, one can recover d by simply
locating the maximum of r(x).

This method can be easily extended to 2D and 3D images, and has been suc-
cessfully applied in several image processing and computer vision problems, such
as image registration [2], [3], [4], [5], biometrics [6], [7], [8], stereo disparity esti-
mation [9] [10], motion and optical flow estimation [11], [10], and video encoding
[12], [10].

One of the most important drawbacks of the phase correlation method, at least
in its basic form, is that the recovered displacements have integer accuracy; i.e.,
the coordinates of the maximum of the discrete POC function will be a rounded
version of the components of the true displacement vector. Various alternatives
have been devised to estimate the displacements with non-integer (subpixel) ac-
curacy. Among the most popular are those which rely on local function fitting:
one can first obtain the displacement d0 with integer accuracy using the basic
phase correlation method and fit a simple analytical function f(d) (e.g., a poly-
nomial) to the POC values in a neighborhood of d0; then one maximizes f(d) to
estimate the true maximum. The most common fitting functions are quadratic
polynomials and Gaussian functions [13], cubic splines [6], and Dirichlet or sinc
functions [14], [15], [11]. Most of these methods perform reasonably well under
controlled conditions but their performance is seriously degraded by noise, bor-
der effects, and the presence of multiple motions. This limits the application
of these methods to many computer vision problems, such as stereo depth or
optical flow estimation.

In this paper, we introduce a new method for the estimation of POC maxima
with subpixel accuracy, which is based on finding approximate zeros of the gradi-
ent of the POC function. The proposed method, which is presented in Section 2,
is capable of high-accuracy estimations while maintaining adequate robustness
to noise and multiple motions. In Section 3, we use synthetic data to demonstrate
the advantages of our method for the estimation of rigid image transformations.
Finally, our conclusions are presented in Section 4.

2 Methodology

Instead of relying on local function fitting, the proposed method attempts to
estimate the POC maxima by finding approximate zeros of the POC gradient
near the integer-valued displacements. Throughout rest of the article, we will
use square brackets to denote N -periodic discrete-time signals (e.g., f [x], where
x = 0, . . . , Nx − 1), and parentheses for continuous-time signals (e.g., f(x) with
x ∈ R). Also note that in most cases we will be dealing with periodic signals and
will obviate the need of mod-N indexing (e.g., f [x+N ] = f [x]).
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2.1 Gradient Estimation of the POC Function

Consider again the 1D case of the POC function r[x], which is defined as the
inverse discrete Fourier transform of the normalized cross-correlation R[k]; in
other words,

r[x] =

N−1∑

k=0

R[k] exp {2πjkx/N} , (2)

where N is the period of the signals.
The right-hand side of the above equation provides, in fact, a band-limited,

continuous representation of the phase correlation function. By differentiating
this expression with respect to x, one can obtain an analytical, continuous ex-
pression of the derivative of the POC function r′(x), which is given by

r′(x) = j
2π

N

N−1∑

k=0

kR[k] exp {2πjkx/N} . (3)

Note that, for real-valued input signals f(x) and g(x), the POC function is also
real, so its derivatives must be real as well. This means one can also compute
r′(x) as

r′(x) = −2π

N

N−1∑

k=0

k Im {R[k] exp {2πjkx/N}} , (4)

which in some cases may be computationally more efficient.
The problem of finding the extrema of the POC function with sub-pixel accu-

racy is equivalent to finding the zeros of r′(x). In 1D, the approach is straightfor-
ward: use the integer-valued displacement obtained from the discrete POC func-
tion as a starting point for a root-finding algorithm such as bisection or Newton-
Raphson (the second derivative of the POC, required for Newton-Raphson, is
also easy to obtain, although somewhat unstable). However, generalizing this
idea to 2D (or higher dimensions) carries some difficulties. Since the POC func-
tion is now bivariate (e.g., r(x, y)), its derivative takes the form of a vector-valued
bivariate gradient function, given by

∇r(x, y) =

[
∂r

∂x
(x, y),

∂r

∂y
(x, y)

]
, (5)

with

∂r

∂x
(x, y) = − 2π

Nx

Ny−1∑

l=0

Nx−1∑

k=0

k Im

{
R[k, l] exp

{
2πj

(
kx

Nx
+

ly

Ny

)}}
, (6)

and

∂r

∂x
(x, y) = − 2π

Ny

Ny−1∑

l=0

Nx−1∑

k=0

l Im

{
R[k, l] exp

{
2πj

(
kx

Nx
+

ly

Ny

)}}
, (7)

where Nx and Ny are, respectively, the width and height of the input images.
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Instead of finding the zeros of ∇r(x, y), one can approximate them by mini-
mizing the real-valued magnitude of the gradient. In other words, the estimated
displacement (dx, dy) is given by

(dx, dy) = arg min
(x,y)∈N (x0,y0)

h(x, y), (8)

where h(x, y) = |∇r(x, y)|2, (x0, y0) is a suitable initial solution (e.g., the integer-
valued displacement estimation), and N (x0, y0) is a neighborhood centered at
this point.

2.2 Minimization of Gradient Magnitude

Equation 3 shows that the spectrum of the derivative of the POC function is
obtained as the normalized cross-spectrum R[k] multiplied by the frequency k.
This means that r′(x) will, in general, have an increased high-frequency content
with respect to r(x). If one were to compute the second derivative r′′(x), it would
show even more high-frequency content, making it very sensitive to noise and
border effects. For this reason, we have chosen to avoid methods based on the
derivatives of h(x, y) (i.e., the second-order derivatives of the POC function) such
as gradient or Newton descent methods. Instead, we have chosen two methods
which rely only on the evaluation of the function to be optimized.

Grid Search. The initial solution (x0, y0) is refined by evaluating h(x, y) at the
nodes of a (2n+1)× (2n+1) grid centered at (x0, y0), with a spacing of w units
between adjacent nodes. The node (x̂, ŷ) with the lowest h is chosen as the best
solution. Further refinement is obtained by reducing w and iterating the method
with (x̂, ŷ) as the new center point. We have obtained good results after 2 or 3
iterations with n between 5 and 10. The initial spacing is w = 1/(2n) so that
the initial search area covers exactly 1 pixel; after each iteration, w is divided by
n, restricting the search to an area equivalent to one cell of the previous grid.

Nelder-Mead Optimization. The Nelder-Mead method [16] is a well-known
minimization heuristic which relies only on the evaluation of the function to be
minimized. In order to minimize a function f of n variables, the method requires
n + 1 points, x1, . . . , xn+1 ∈ R

n forming a simplex (i.e., no two points can be
colinear). The method works iteratively by selecting the worst point in the set;
that is, a point xh such that f(xi) ≤ f(xh) for i = 1, . . . , n, and replacing it by
a new, better point x0, which lies along the line defined by xh and the centroid
of the remaining n points. Depending on how good the new point is with respect
to the given points, it can be reflected, expanded, or contracted along the line
(see [16]). When applying this method to minimize the POC gradient h(x, y) one
requires 3 starting points; the first one is the integer solution (x0, y0), and the
remaining two were chosen as (x0±0.5, y0) and (x0, y0±0.5) where the sign was
selected depending on which neighbor was best. The results were very similar
to the grid search method; however, many less points were evaluated with the
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Nelder-Mead approach, making it computationally more efficient. The reflection,
expansion, and contraction coefficients we used were α = 1, γ = 2, and β = 0.5,
respectively, and the method usually converged in less than 100 iterations.

2.3 Bandlimited Phase Correlation

Most of the methods which attempt to estimate the maxima of the POC function
[14], [17], [15] with subpixel accuracy are seriously affected by noise, aliasing,
and border effects, which are mostly present in the higher components of the
frequency spectrum of the signals. Therefore, it is strongly suggested to limit the
bandwidth of the POC function prior to the estimation of the POC maxima. In
many cases, a simple ideal lowpass filter is sufficient and very easy to implement,
since it only requires zeroing those coefficients in R[k] corresponding to higher
frequencies, before taking its inverse Fourier transform. In the proposed method,
we can apply this filter directly in the estimation of the partial derivatives (Eqs.
6 and 7) by summing only those terms with k < κNx and l < κNy, where κ
represents the cutoff frequency of the filter and must be between 0 and 0.5. In
our tests, good results were obtained with κ ≈ 0.3.

2.4 Application to Rigid Image Registration

To demonstrate the applicability of the proposed method, we have implemented
a rigid image registration algorithm based on the one proposed by Reddy et
al. [3], with the exception that the POC maxima are estimated with sub-pixel
accuracy. By definition, a rigid transformation is composed only of rotations
and translations; however, the proposed algorithm can also deal with isotropic
scalings (equal scaling along all axes), and could be easily extended to 3D images
(e.g., MRI volumes). This algorithm can be summarized in the following steps
(see [3] for details):

1. Let I1 and I2 be the input images of equal size, where I2 is assumed to be a
rigidly transformed version of I1.

2. Compute the discrete Fourier transform Îk of each input image Ik.
3. Compute the log-magnitude of the spectra Mk of each image as

Mk[k, l] = W [k, l] log
∣∣∣Îk[k, l]

∣∣∣ , (9)

where W [k, l] is the frequency response of a high-pass filter. Here we use the
one suggested by Reddy, which is given by W [k, l] = (1−X [k, l])(2−X [k, l])
with X [k, l] = cos(πk/Nx) cos(πl/Ny) for −Nx/2 ≤ k < Nx/2 and −Ny/2 ≤
l < Ny/2. It can be shown that Mk is invariant to translation.

4. TransformMk from cartesian coordinates [x, y] to log-polar coordinates [ρ, θ],

where ρ = K
√
x2 + y2, θ = atan2(y, x), and K is an adequate scaling factor

which controls the resolution of the radius (ρ) axis. We have obtained good
results with K = (Nx+Ny)/8, where Nx×Ny is the size of the input images.
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5. Compute the normalized cross-correlation RM [k, l] and the POC function
rM [ρ, θ] between M1[ρ, θ] and M2[ρ, θ].

6. Estimate the maximum of rM with subpixel accuracy using the proposed
method. The coordinates of this maximum correspond to the scaling and
rotation parameters (s and φ, respectively) between I1 and I2.

7. Let Ĩ1[x, y] = I1 (Ts,φ{x, y}), where Ts,φ is a transformation defined as

Ts,φ{x, y} =

[
s cosφ −s sinφ
s sinφ s cosφ

] [
x
y

]
. (10)

In other words, Ĩ1 is a rectified version of I1, rotated and scaled according
to the parameters found in the previous step.

8. Compute the normalized cross-correlation R[k, l] and the POC function
r[x, y] between Ĩ1 and I2.

9. Estimate the maximum of r with subpixel accuracy. The coordinates of the
maximum correspond to the translation between the input images.

3 Results and Discussion

In this section we present some results obtained with the application of our ap-
proach to different image registration situations. To evaluate the accuracy of the
registrations, we take a reference image and perform an artificial transformation
with known parameters. The reference and transformed images are then regis-
tered, and the estimated parameters are compared against the true ones using
the True Mean Relative Error (TRME) [18], defined as

TRME =
1

4

[
s− ŝ

s
+

φ− φ̂

φ
+

dx − d̂x
dx

+
dy − d̂y

dy

]
, (11)

where (s, φ, dx, dy) are the true parameters and (ŝ, φ̂, d̂x, d̂y) the estimated ones.
Note that this error measure is more sensitive to accuracy when the transforma-
tion parameters are relatively small.

3.1 Optimization Approaches

In the first set of experiments we compared the performance of the original
phase correlation approach with integer accuracy, and the subpixel grid search
optimization approach and the Nelder-Mead simplex method.

A set composed of 100 affine transformations was generated assigning random
values for the scale s, 2D rotation φ, and for the translation vector (dx, dy). These
values were sampled uniformly in the following way: s in the interval (2−0.5, 20.5),
φ in the interval (−30◦, 30◦), dx and dy both in the interval (−32, 32) (pixels).
A 260 × 260 T1 MRI image (Fig. 1(a)) was used for registration. Reference
images were created applying the 100 affine transformations described above to
the original image and then computing the estimated transformation through
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Fig. 1. (a) T1 MRI reference image used for registration tests; a test case is generated
by applying a random transformation to this image. (b) TRME error for each test case
and each registration method.

the approach presented in this paper. Fig. 1(b) shows the relative errors for all
the transformations estimated through the (a) POC with integer accuracy, (b)
subpixel grid search, and (c) Nelder-Mead subpixel optimization as they were
described in Section 2. Errors between the grid search and the Nelder-Mead
optimization are very similar and, both of them are smaller than the original
POC approach with integer accuracy.

We consider a successful estimation if the corresponding relative error was
at most 0.1, and we compute the average and the median of all the successful
estimations for the three approaches, and the computation time for each one (see
Table 1). Success mean errors and success median errors are almost the same
for the grid search and Nelder-Mead approaches and they are much smaller
than the corresponding values with integer accuracy. The success rate error was
also improved from 90% at the integer accuracy approach to 100% in the other
two approaches. Neverheless, the main difference between the Grid Search and
Nelder-Mead is the overhead computation time: Nelder-Mead required in average
10.6ms (in addition to the basic POC search method) to get a solution similar
to the one recovered by Grid Search in 184.4ms in this experiment. For this
reason, we have conducted the rest of our experiments using only the Nelder-
Mead optimization.

3.2 Robustness against Transformation Complexity

Nine sets composed of 100 affine transformations were generated assigning ran-
dom values for the transformation parameters. These values were sampled uni-
formly in the following way: s in the interval (1−0.1a, 1+0.1a), φ in the interval
(−10a, 10a) (degrees), dx and dy both in the interval (−10a, 10a) (pixels), where
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Table 1. Results obtained after 100 synthetic registration cases using the three meth-
ods under discussion

Search method Success rate
Success
mean error

Success
median error

Average time
(ms)

Integer accuracy 90% 2.74947% 1.93281% 125.5

Grid Search 100% 0.700544% 0.287313% 309.9

Nelder-Mead 100% 0.700457% 0.292196% 136.1

a = 1, · · · , 9 (each value of a corresponds to one of the nine sets). The a-th set
is called the tranformation complexity of level a. Transformations with higher
complexity are more difficult to be successfully estimated because of possibly
small scale factors, or because parts of the transformed image may be cropped
when they lie outside of the image frame, producing artificial borders and loss
of data.

Fig. 2(a) shows the graph of success rate with respect to the complexity of the
affine transformations. It is observed that subpixel approach based on Nelder-
Mead optimization always improve the success rate with integer accuracy, and
this rate suddenly decreases after level 6. Fig. 2(b) shows that success improve-
ment is better for low complexity transformations. Due to the fact that we use a
relative measurement of the error, it seems logical that the relative error seems
large for low complexity transformations although the absolute error is still pro-
portional to the transformation parameters.

In Fig. 2(c), the median and average errors are shown for both approaches:
integer accuracy and Nelder-Mead. In both approaches, average error is under
the threshold of 0.1 relative error and it increases for complexity level 6 and
larger, and Nelder-Mead always improve the error with respect to the integer
accuracy POC. Moreover, median error remains under the threshold of 0.05
of relative error up to level 7, i.e. more than 50% of the tests are under this
threshold although the average error increases significatively (some estimations
are very far from the expected values).

Fig. 2(d) shows that the improvement on the True Relative Mean Error
(TRME) is better for complexity levels 1 to 3, although the improvement is
still noticeable up to level 6. For this experiment, the improvement ratio on the
best subpixel TRME is approximately 0.2 times the TRME obtained with inte-
ger accuracy, while the improvement ratio on the median of the error is almost
constant for levels 1 to 8, being 0.15 times the median obtained with integer
accuracy.

3.3 Robustness to Noise and Missing Data

In order to test the robustness of the method against noise, we consider additive
noise with Gaussian distribution, which was added to the transformed image.
Then, we vary the standard deviation from 0 to 0.3 in a normalized scale (i.e.,
the gray levels go from 0 to 1). The true transformation was fixed with the
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Fig. 2. Results obtained with transformations of varying complexity: (a) success rate,
(b) success improvement ratio, (c) mean and median error, (d) mean and median error
improvement ratio. See text for details.

following values: horizontal translation of 10.35 pixels, vertical translation of -
20.78 pixels, rotation angle of 30.42 degrees and scale of 1.21. The transformation
was estimated using the three algorithms under study. The results are shown in
Figure 3 for both the T1 MRI image (left) and the Lena image (right). The results
for Lena show that the correct translation can be found well under a standard
deviation of 0.1, while the brain image can only achieve a correct transformation
under a standard deviation of 0.07.

In another experiment, we tested the robustness of the method with respect
to partial/missing data. For the first experiment, we used the Lena image, and
replaced the pixel values within a circumference centered at the center of the
transformed image with zeros, therefore reducing the amount of useful informa-
tion. Figure 4(a) shows a plot of the log-TRME versus the percentage of deleted
data (with respect to the total number of pixels) for four rigid transformations
composed by φ = 30.42◦, dx = 10.35, dy = −20.78, and scaling factors of 0.8,
0.9, 1.0, and 1.1, respectively. We used different scales since a little variation
in their values may affect significantly the amount of matchable pixel informa-
tion. One can observe in this plot that in the case of scales less than 1.0, the
TRME-values remain close to 0.01 even for images with 50% of missing data.
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Fig. 3. Plots of the TRME with respect to the standard deviation of Gaussian noise
added to the input images: (a) results with the T1 MRI image, (b) results with the
Lena image
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Fig. 4. Plots of the TRME with respect to the percentage of missing data. (a) results
with the T1 MRI image, (b) results with the Lena image. Each trace corresponds to a
different value of the scaling parameter (the rotation and translation parameters were
fixed).

The experiment was repeated with the T1 MRI image shown in Fig. 1(a), and
with scaling factors of 0.7, 0.8, 0.9, and 1.0. These results are shown in Figure
4(b). In this case, the matchable data does not cover the full image frame; there-
fore, the deletion of data from the center outwards has a bigger impact on the
registration performance, especially when the scaling factor is small.

3.4 Results with Real Images

We also applied the proposed method to real image pairs where the true trans-
formation is unknown. Figure 5 shows the result obtained from registering two
512× 512 aerial images. Once the transformation was found, it was possible to
build a larger map. Note that, in this case, the overlapping area between both
images is relatively small (about one third of the image size), but the proposed
method is still able to solve the problem accurately.
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Fig. 5. Example of rigid registration of real images, where the true transformation is
unknown. In this example, two aerial images are registered using the proposed method;
once the transformation is found, the images can be stitched to form a larger map.

4 Conclusions

A novel approach to estimate the maxima of the phase-only correlation (POC)
function was presented in this paper. This approach is based on minimizing the
magnitude of the gradient of the POC, which can be done using heuristic tech-
niques that rely only on the evaluation of the function to be minimized. The
proposed method was applied to the rigid registration of two images, where it
was evaluated in terms of precision and robustness to noise and missing data
using synthetic examples. The results of these evaluations are favorable and
demonstrate a significant improvement with respect to the classical phase corre-
lation method where integer-valued translations are estimated. The registration
algorithm was also applied to real image pairs where the true transformation
is unknown, obtaining satisfactory results. A quantitative comparison between
the proposed method and other state of the art methods for accurate estimation
of the POC maxima is currently being performed. We are currently perform-
ing a comparative study between the proposed method and the most relevant
techniques in the literature for the estimation of POC maxima with subpixel
accuracy. Future work will focus on increasing the success rate of these methods
for the rigid registration problem by analyzing multiple maxima of the phase
correlation function.
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