
Supporting Business and IT through Updatable

Process Views: The proView Demonstrator

Jens Kolb and Manfred Reichert

Ulm University, Germany
{jens.kolb,manfred.reichert}@uni-ulm.de

http://www.uni-ulm.de/dbis

Abstract. The increasing adoption of process-aware information sys-
tems (PAISs) has resulted in large process model collections. To support
business and IT users having different perspectives on processes, a PAIS
should provide personalized views on process models. Especially, chang-
ing process models is frequent use case due to evolving processes or un-
planned situations. This demonstration presents the proView framework
for changing large process models through updating process views, while
ensuring up-to-dateness and consistency of all related process views.
More precisely, update operations can be applied to a process view and
are correctly propagated to the underlying process model. Further, all
views related to this process model are then correctly migrated to its new
version. Overall, the proView framework enables users to evolve process
models over time based on appropriate model abstractions.

1 Introduction

Process-aware information systems (PAISs) separate process logic from appli-
cation code relying on explicit process models [1]. This separation of concerns
increases maintainability and reduces costs of change. The increasing adoption
of PAISs has resulted in large process model collections. In turn, each process
model may refer to different domains and user roles as well as dozens or even
hundreds of activities. Usually, the different user roles (e.g., business or IT) need
customized views on process models, enabling personalized process abstraction
and visualization [2]. For example, managers rather prefer an abstract overview,
whereas the IT department needs a detailed view of process parts implemented
by a PAIS [3]. Hence, providing personalized process views is a much needed
feature. Existing approaches for creating process abstractions, however, do not
consider change and evolution, which are fundamental for PAISs [4]. In addition
to view-based process abstractions, users should be allowed to change large pro-
cess models through updating respective process views. However, this must not
be accomplished in an uncontrolled manner to avoid inconsistencies or errors.

The proView1 framework provides powerful view-creation operations [5]. The
operations allow abstracting process models through reduction and aggregation
of process elements. In addition, update operations allow adapting process views

1 http://www.dbis.info/proView

A. Ghose et al. (Eds.): ICSOC 2012, LNCS 7759, pp. 460–464, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.uni-ulm.de/dbis

The proView Demonstrator 461

Fig. 1. Credit Application Process

and propagating the changes to the underlying process model as well as to other
related process views [6]. We will demonstrate these aspects of the proView
framework in an integrated way.

Section 2 introduces a scenario. Section 3 sketches the proView framework
and the view operations it supports. Section 4 describes how the scenario can
be supported by using the proView framework. Section 5 concludes the paper.

2 Application Scenario

Figure 1 shows a credit request process modeled in terms of BPMN. The process
involves human activities referring to three user roles (i.e., customer, clerk, and
manager) as well as automated activities (i.e., services) executed by the PAIS.
Assume that the process is started by the customer filling out a credit request
form (Step 1©). Afterwards, the PAIS checks whether for this customer an entry
in the CRM exists (Step 2©). In this case, customer data is retrieved. Then,
the clerk reviews the credit request (Step 3©), calculates the risk, and checks
creditworthiness (Step 4©). After completing these tasks, he decides whether
to reject the request (Step 5©) or to forward it to his manager who decides
about the request (Step 6©). If the manager rejects, an email is sent (Step 7©).
Otherwise, a confirmation email is sent, the CRM is updated, the clerk calls the
customer (Step 8©), and the process completes. Assume that a process change is
required: Before filling out the credit form, the customer shall select the desired
credit type. For this purpose, the clerk adds an activity to the process model.
Obviously, this change is relevant for all participants.

The proView framework addresses such a user-centered visualization and
adaptation of large process models. Hence, it enables personalized views of the
credit request process for each user role, i.e., customer, clerk, and manager. The
following requirements must be met in order to properly support such a scenario:

R1: For each user role, it should be possible to provide specific process views
on a process model as well as flexibly defining those views.

R2: Based on personalized process views and visualizations, elementary model
adaptations shall become possible, e.g., to insert or delete activities in a
user-centered process model (i.e., process view).

R3: If an authorized user changes his process view other process views may
have to be updated to ensure up-to-dateness of all process participants.

462 J. Kolb and M. Reichert

R4: Since domain experts hardly have technical process knowledge, high-level
operations for creating and adapting user-centered process views are re-
quired.

3 proView Framework

Figure 2 gives an overview of the implemented proView framework, which consists
of two major components: proViewServer and proViewClient. The proViewClient
is instantiated for each user and handles the interactions with the user as well
as the visualization of his process models and views. In turn, the proViewClient
is based on the vaadin web-framework and interacts with the proViewServer us-
ing a RESTful protocol. The proViewServer implements the logic of the proView
framework and provides engines for visualization, change, and execution & moni-
toring [7]. It captures a business process through a Central Process Model (CPM);
additionally, so-called creation sets (CS) are defined, with, each CS specifiying the
schema and appearance of a process view [6].

The visualization engine generates a specific process view based on a given
CPM and creation set CS, i.e., the CPM is transformed to the view by applying
the view-creation operations specified in CS (Step 5©). Afterwards, the obtained
view is simplified by applying well-defined refactoring operations (Step 6©). Fi-
nally, Step 7© customizes the visual appearance of the view; e.g., by creating a
tree-, form-, or flow-based visualization).

When a user updates a view, the change engine is triggered (Step 1©). First,
the view-based model change is propagated to the CPM using well-defined
propagation algorithms (Step 2©). Next, the CPM is simplified (Step 3©), i.e.,
behaviour-preserving refactorings are applied to foster model comprehensibility
(e.g., by removing gateways not needed anymore). Afterwards, the creation sets
of all views associated with the CPM are migrated to the new CPM version (Step

4©). This becomes necessary since a creation set may be contradicting with the
changed CPM. Finally, all views are recreated (Steps 5©- 7©).

Visualization Engine

Change Engine

CS2CS1 CS3

Migrate
Views

Create
Appearance

Create
Schema Refactor

Business Process 1

View2

14

5 6 7

E
xe

cu
tio

n
&

 M
on

ito
rin

g
E

ng
in

e

ex
ec

ut
e

visualize

change

...

Refactor3 Update
CPM2

PAIS1

PAIS2

PAISn

View3

View1

CPM

Fig. 2. The proView Framework

4 proView Demonstration

We revisit our scenario from Section 2 and show how the described requirements
can be addressed by the proView framework.

The proView Demonstrator 463

Requirement R1 : The proViewServer allows creating an arbitrary number of
process views by applying aggregation and reduction operations specified in a
creation set; e.g., a reduction removes an activity from the respective view, while
an aggregation combines a set of connected activities to one node.

Requirement R2 : The proViewServer provides view-update operations which al-
low inserting and deleting activities as well as AND/XOR branchings [6]. These
operations can be applied by an end-user to his process view. Furthermore,
parametrization allows for automatically resolving ambiguities when propagat-
ing view changes; i.e., change propagation behaviour can be customized.

Requirement R3 : Updates triggered by users are applied to the CPM as well as
to associated process views. Their view creation sets are then migrated to the
new version of the CPM. Hence, all affected views will be re-created.

Requirement R4 : The proViewServer supports high-level operations to create
process views. For example, one may create a view can showing all technical
activities or activities of a specific user role.

All these aspects are illustrated in a screencast: www.dbis.info/proView.

5 Conclusion

In our demonstration, we present the proView framework and its operations;
proView supports the creation of personalized process views as well as the view-
based change of business processes, i.e., process abstractions not only serve visu-
alization purpose, but also lift process changes up to a higher semantical level.
A set of change operations enables users to update their view. The respective
change is then propagated to the CPM representing the overall business process
and other process views are migrated to the CPM.

The proView framework is implemented as a client-server application to con-
currently edit a process model based on views. The implementation of the
proView framework has proven the applicability of our approach. Further, the
proView demonstrator shall be extended to also execute process views in a PAIS.
Overall, we believe that the proView framework offers promising perspectives to
users for evolving their business processes.

References

1. Reichert, M., Weber, B.: Enabling Flexibility in Process-aware Information Systems
- Challenges, Methods, Technologies. Springer (2012)

2. Rinderle, S., Bobrik, R., Reichert, M., Bauer, T.: Businesss Process Visualization -
Use Cases, Challenges, Solutions. In: Proc. ICEIS 2006, pp. 204–211 (2006)

3. Bobrik, R., Reichert, M., Bauer, T.: Requirements for the Visualization of System-
Spanning Business Processes. In: Proc. DEXA 2005 Workshops, pp. 948–954 (2005)

4. Weber, B., Reichert, M., Rinderle, S.: Change Patterns and Change Support Fea-
tures - Enhancing Flexibility in Process-Aware Information Systems. Data & Knowl-
edge Engineering 66(3), 438–466 (2008)

464 J. Kolb and M. Reichert

5. Reichert, M., Kolb, J., Bobrik, R., Bauer, T.: Enabling Personalized Visualization of
Large Business Processes through Parameterizable Views. In: Proc. 26th Symposium
on Applied Computing (SAC 2012), Riva del Garda (Trento), Italy (2012)

6. Kolb, J., Kammerer, K., Reichert, M.: Updatable Process Views for User-Centered
Adaption of Large Process Models. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q.
(eds.) ICSOC 2012. LNCS, vol. 7636, pp. 484–498. Springer, Heidelberg (2012)

7. Kolb, J., Hübner, P., Reichert, M.: Automatically Generating and Updating User
Interface Components in Process-Aware Information Systems. In: Proc. 10th Int’l
Conf. on Cooperative Information Systems (CoopIS 2012), pp. 444–454 (2012)

	Supporting Business and IT through Updatable Process Views: The proView Demonstrator
	Introduction
	Application Scenario
	proView Framework
	proView Demonstration
	Conclusion
	References

