

A. Ghose et al. (Eds.): ICSOC 2012, LNCS 7759, pp. 447–450, 2013.
© Springer-Verlag Berlin Heidelberg 2013

BPMashup: Dynamic Execution of RESTful Processes

Xiwei Xu1, Ingo Weber1,2, Liming Zhu1,2, Yan Liu3,2, Paul Rimba1,2,
and Qinghua Lu1,2

1 Software System Research Group, NICTA, Australia
2 School of Computer Science and Engineering, UNSW, Australia

3 Pacific Northwest National Laboratory, USA
{first.last}@nicta.com.au, Yan.Liu@pnnl.gov

1 Introduction

While WS*-based Service-Oriented Architecture (SOA) is employed heavily in the
enterprise application & integration space, end-user-oriented organizations such as
Facebook, Google or Yahoo! adopted the REST paradigm. Web service ecosystems
[1] have been established around web service offerings like social networking, where
open platforms enable third-party developers to easily leverage the infrastructure
provided by the social networks, to build web applications and plugged-in services for
a massive user base. Such a web service ecosystem typically comprises a service pro-
vider opening up their product public service platform, a set of external value-added-
resellers, and a community of users building and sharing customizations [2]. The
lower layers of the traditional SOA-based WS* standards stack provide a loosely
coupled infrastructure for Web service ecosystems. However, process layers on top of
the standards stack introduce a comparatively tight coupling between the process
logic and the WSDL interface definition [3], which tends to be brittle.

Composition of RESTful web services is usually achieved as light-weight Mashups
– focusing on combining data from various sources, or handling events – or by using
textual documentation to allow developers to understand processes involved. Tradi-
tional process-centric composition methods hardly fit the new paradigm.

REST and Resource-Oriented Architecture principles [4] are well established, and
have been applied to web-based cross-enterprise business processes [5, 6] as an alter-
native way of implementing Web services. However, most existing approaches focus
on building a RESTful facade to traditional service technologies without fundamen-
tally using the REST principles. In traditional SOA, many approaches have been
proposed to extend BPEL, e.g., with adaptation mechanisms using aspect-oriented
programming [7] or rules [8]. These approaches still introduce tight coupling between
process definition and Web service description. Some approaches [9] use WSDL-like
descriptions for RESTful services, which arguably means losing most of the benefits.

In contrast, we present BPMashup in this demonstration: a framework that tailors
REST principles towards process-aware information systems. BPMashup consists of
the previously published server component, RESTfulBP [10], as well as a novel
client-side JavaScript library – the Localized Process Execution Engine, LPEE – for
executing processes and rendering UI widgets referring to individual service invoca-
tions. It has previously been shown that RESTfulBP can improve the adaptability and

448 X. Xu et al.

interoperability of process-aware systems [10]. Through the comprehensive frame-
work of BPMashup, these benefits are applied also to processes combining services
from more than one source. This is achieved by splitting business processes into
distributed process fragments that are transferred dynamically at runtime.

A demonstration video and a technical report are available1. The report gives in-
depth details on related work and technology, such as built-in security and encryption
mechanisms and the coverage of workflow patterns.

2 BPMashup Overview

BPMashup provides a RESTful infrastructure for mashing up processes in web ser-
vice ecosystems, using process fragments and dynamic next-step pointers that link to
other services. A client-side process execution engine allows the processes to be
executed at the edge of the system, to enable local decision making and improve
adaptability of the business processes. While this demonstration focuses on the
process execution phase, a BPMN-based modeling tool has been implemented2, in-
cluding a translation from BPMN to the artifacts required for process execution in
BPMashup. Fig. 1 provides an overview of the system.

Fig. 1. BPMashup architecture

The business platform exposes parts of the internal business processes of a com-
pany, as far as this is needed for partners and customers of the company to interact
with a given process. The process coordination mechanism of BPMashup defines the
exposed parts of processes as a set of loosely connected process fragments that can be
transferred among participants to enable localized process execution.

1 http://nicta.info/bpmashup

Core business platformCompany

Third party
applications

End user LPEE

Internal process

Exposed process fragments

RESTful API

Process
fragments

BA

A
B

 BPMashup: Dynamic Execution of RESTful Processes 449

Third-party applications in a web service ecosystem based on BPMashup allow
the external development of applications, faster co-creation and execution of cross-
enterprise processes. The extensions are available as fragments as well.

BPMashup supports end-users through client-side process execution and localized
decision making by providing LPEE (Localized Process Execution Engine). The end-
users can thus drive the process execution, by selecting the most suitable process
fragment from a group of candidate fragments in the current execution state.

Most notably, LPEE executes an overall composition (shown on the right in Fig.
1), which can include sub-processes that are provided by third-party applications
(examples A and B in Fig. 1). A sub-process can be an atomic service invocation or a
process fragment, which, in turn, may refer to other sub-processes. Furthermore, the
messages exchanged with a service include both payload information and a process
fragment’s control flow. As such, sub-process implementations can be modified at
any point in time, without breaking the overall composition. Process fragments from
third-party applications can be included in the overall composition (e.g., fragments A
and B in Fig. 1). However, due to the same-origin policy implemented in most brows-
ers, all traffic of the JavaScript-based LPEE has to go through the platform.

3 Example Scenario

For illustration purposes, we demonstrate BPMashup via the Virtual Travel Agent
(VTA) example, as shown in Fig. 2. In BPMashup’s VTA solution, all participating
providers platformize their business as process fragments. For existing services, this
means implementing a BPMashup wrapper. The hotel and airline partners are the third-
party application providers, offering availability/price checking and booking in process
fragments. The travel agent provides the platform’s composition of these fragments,
along with an integrated payment system. Messages from BPMashup include payload
data, process fragments, and visualization information for steps. LPEE renders the
process fragments according to the visualization instructions, as shown in Fig. 3, where
the areas highlighted in red correspond to the enumerated fragments in Fig. 2.

Fig. 2. Process model of travel agent, with enumeration of some areas

450 X. Xu et al.

Fig. 3. Snapshot of hotel and flight selection page, where red boxes highlight certain snippets

4 Conclusion

The BPMashup framework enables executing process-centric compositions of REST-
ful web services. Following REST principles, BPMashup decouples the relationships
between the process participants, while allowing to hide internal business logic behind
exposed process fragments. The process fragments are executed on the client side,
allowing flexible process definitions which can be adapted dynamically: fragments can
be changed at runtime, as long as the overall composition remains intact.

References

1. Veryard, R.: Ecosystem SOA. In: Richard Veryard on Architecture (2009)
2. Jansen, S., et al.: A Sense of Community: A Research Agenda for Software Ecosystems.

In: 31st International Conference on Software Engineering, ICSE 2009 (2009)
3. Pautasso, C., Wilde, E.: Why is the web loosely coupled? A multi-faceted metric for ser-

vice design. In: 18th International Conference on World Wide Web (WWW 2009) (2009)
4. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media (2007)
5. Overdick, H.: Towards Resource-Oriented BPEL. In: The 2nd ECOWS Workshop on

Emerging Web Services Technology (WEWST 2007) (2007)
6. Pautasso, C.: BPEL for REST. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM

2008. LNCS, vol. 5240, pp. 278–293. Springer, Heidelberg (2008)
7. Charfi, A., Mezini, M.: AO4BPEL: An Aspect-oriented Extension to BPEL. Journal of

World Wide Web 10(3), 309–344 (2007)
8. Baresi, L., Guinea, S.: Self-Supervising BPEL Processes. IEEE Transactions on Software

Engineering 37(2), 247–263 (2011)
9. WADL, http://www.w3.org/Submission/wadl/ (accessed October 06, 2010)

10. Xu, X., Zhu, L., Kannengiesser, U., Liu, Y.: An Architectural Style for Process-Intensive
Web Information Systems. In: Chen, L., Triantafillou, P., Suel, T. (eds.) WISE 2010.
LNCS, vol. 6488, pp. 534–547. Springer, Heidelberg (2010)

	BPMashup: Dynamic Execution of RESTful Processes
	Introduction
	BPMashup Overview
	Example Scenario
	Conclusion
	References

