

A. Ghose et al. (Eds.): ICSOC 2012, LNCS 7759, pp. 344–355, 2013.
© Springer-Verlag Berlin Heidelberg 2013

An Aspect-Oriented Approach to Enforce Security
Properties in Business Processes

Inaya Yahya1, Sameh Hbaieb Turki1, Anis Charfi2, Slim Kallel3, and Rafik Bouaziz1

 1 MIRACL, University of Sfax, Tunisia
inaya.yahya@gmail.com, turkisameh@yahoo.fr

raf.bouaziz@fsegs.rnu.tn
2 SAP Research, Darmstadt, Germany
first.lastname@sap.com

3 ReDCAD, University of Sfax, Tunisia
slim.kallel@fsegs.rnu.tn

Abstract. Security is an essential requirement for business processes. However,
we observe that security is mostly addressed at the technical implementation
level and not at the design level. In a previous work we motivated the need to
address security already in business process modeling. In this paper, we show
how one could use Aspect-Oriented Programming (AOP) to enforce security
requirements in a modular way. Starting from a business process model where
security requirements are expressed using a profile mechanism we generate As-
pectJ [1] code, which enforces those requirements. This generation is based on
a set of Model-to-Text transformation rules. As security is a typical example for
crosscutting concerns the usage of aspects allows for a modular implementa-
tion, in which the implementation of the business process is separated from the
implementation of the security properties.

Keywords: AOP, security, Web services, Separation of concerns, MDA.

1 Introduction

The development of composite web services is a complex task, as it is based on tech-
nical and low-level languages such as WS-BPEL or programming languages. It re-
quires a high expertise and can therefore not be done by non-technical users. Further,
if a composite web services has to be implemented for different target platforms the
implementation has to start from scratch each time due to the lack of reusable design
models of the composite service. On the other hand, there are many works that use the
model driven architecture (MDA) and model-driven software development to address
such problems by raising the level of abstraction and fostering reuse through using
design models. In a previous work [2], we presented a model-driven approach to
composite web service development, which starts with modeling composite services
using business process models defined in the Business Process Modeling Notation
(BPMN) [3]. Then, these models are enriched with service related details using
BPMN4SOA, which is a service-oriented extension to BPMN that we proposed in [6].
From these models we generate executable service composition code in WS-BPEL or

 An Aspect-Oriented Approach to Enforce Security Properties in Business Processes 345

in java using appropriate transformations and code generators. An Eclipse based tool-
set was developed to support our approach. In [4] we extended our approach to cover
not only the functional side of service composition but also non-functional aspects
such as security, quality of service, etc. In that work, we proposed a profile mechan-
ism for BPMN in a similar way to the profile mechanism of UML. Based on this sev-
eral profiles can be defined to express non-functional properties in BPMN and in
BPMN4SOA. In [4] we also presented a security profile for BPMN.

In this paper, we extend the scope of our coverage for non-functional concerns by
supporting the transition from modeling to implementation. In particular, we focus on
mapping the security properties that can be expressed using the security profile to aspect
code in AspectJ [1]. In addition, we present an Xpand [5] based code generation tool
which implements that mapping and produces aspect code for enforcing the security
properties at runtime. This new generator complements the code generator from
BPMN4SOA to Java, which we implemented in a previous work [6]. With both genera-
tors we support the functional and non-functional aspects of service composition.

The remainder of this paper is organized as follows. Section 2 gives an overview of
our previous work: we start by presenting a generic meta-model to express non-
functional concerns in business processes, then we present the security profile which
allows expressing security properties in BPMN process models. In Section 3 we
present the mapping rules from the security profile to aspect code. In addition, we
report on the code generator, which we built based on that mapping. In Section 4 we
illustrate our proposal by an example. Section 5 discusses related works and Section 6
concludes this paper.

2 Background

In this section, we introduce the profile mechanism and the security profile, which we
proposed in [4]. The non-functional profile that we proposed allows expressing QoS
properties in a simple way. The business developer doesn’t need to knowledge tech-
nical details relied to QoS properties; he just uses some annotations and specifies the
value of their attributes. In opposed to some non-functional profiles which are pro-
posed in the literature and expresses more technical concepts. Understanding those
concepts is necessary for this paper as the security profile is the source for our
mapping and the respective model-to-text transformation. We start by presenting the
proposed profile mechanism and the underlying meta-model for expressing non-
functional profiles. Then we give an overview of the security profile.

2.1 Meta-model for Non-functional Profiles

In analogy to the profile concept in the Unified Modeling Language (UML) [7] we
propose a profile concept for process modeling languages such as BPMN [3]. In Fig-
ure 1 we present a meta-model for non-functional profiles and we detail the concepts
of this meta-model in the following.

346 I. Yahya et al.

Fig. 1. The meta-model of non-functional profiles

NFProfile: represents a given concern that needs to be expressed in business proc-
esses such as security or business performance. It is characterised by two attributes
“name” and “description”.

NFProperty: represents a property that belongs to a concern. Response time and cost
are examples for such properties. It is characterised by three attributes “name”, “ap-
plicable” i.e. applicability constraints which specify for instance to which process
elements a given non-functional property can be applied, and “icon” which specifies
the graphical icon for each non-functional property.

Attribute: a property has zero or more attributes and each attribute has a name and a
value. For example the property cost may have an attribute called metric and an at-
tribute called amount. One Attribute may define several subAttributes which at the
same time can be bound by one of the predefined available values of the parent mean-
ing that they will only be available when the value that binds them is selected.

For applying our approach to BPMN and defining a BPMN profile for modeling non-
functional concerns, we use the extension mechanism proposed in BPMN specification
[3]. BPMN introduces the artifact concept to add non-standard elements. In our case, we
defined two types of artifact: NFProfile and NFProperty as shown in Figure 2.

Fig. 2. Definition of the NFProfile and NFProperty artifacts according to BPMN extensibility
[3]

 An Aspect-Oriented Approach to Enforce Security Properties in Business Processes 347

2.2 Security Profile

As presented in [4], the security profile has been defined for providing a lightweight
extension to BPMN for expressing security properties in business process model. This
profile defines a set of annotations and their attributes. We note that we concentrated
on the modeling and the implementation of the security aspects only side service
composition process and not side partners.

In this paper we will concentrate only on five security properties as shown in the
table below. Other properties can be added in this profile and mapped to aspects. To
enforce security properties, we adopted a service-oriented approach, which
allows invoking a set of web services to realize security aspects. For this reason, we
defined for each security property two attributes: “Operation” and “Service” which
the developer defines their values.

Table 1. Security properties

Security property Additional Attributes Notation
Separation of Duties (SoD): This prop-
erty expresses that two tasks have to be
performed by two different users or user
roles to avoid the risk of frauds.

• Type: The possible value are:
Static SoD, Simple Dynamic
SoD, Object-Based SoD, Opera-
tional SoD, Operational Object-
Based SoD

Binding of Duties (BoD): This property
expresses that two activities must be
performed by the same user or by the
same user role.

No one

Confidentiality: This property expresses
that data is confidential and should be
only accessible to users with appropriate
credentials. Confidentiality is ensured
using an encryption algorithm

• Key: the key used to ensure
encryption/decryption operation.

Integrity: This property expresses that
the data must not be modified by a mali-
cious party when transmitted.

• Key: the key used to ensure
integrity operation.

Authentication: This property expresses
that authentication is required for ac-
cessing some data object or for perform-
ing some activity.

No one

3 Mapping the Security Profile to Enforcement Aspects in
AspectJ

In this section, we first give an overview of AspectJ. Then, we present the mapping
rules from security profile to AspectJ aspects.

348 I. Yahya et al.

3.1 Target Language for Enforcing Security Properties: AspectJ

To separate the functional and non-functional parts we use Aspect-Oriented Pro-
gramming (AOP). The functional part of the composite web service, which is speci-
fied using the BPMN process model, is transformed into java code and the non-
functional part is transformed into executable aspect code in AspectJ [1], which is an
aspect-oriented extension to java. The weaving of these two executable codes is an
automatic AspectJ task.

AspectJ provides the possibility to define aspects with their composition rules into
the base java code. The main concepts in Aspect-Oriented Programming are join
points (which are points in the execution of the program such as method calls), point-
cuts (which allow to select one or more join points) and advices (which are behavioral
units that contain the crosscutting logic similar to methods). The unit of modulariza-
tion used by AspectJ is the aspect which is composed of one or more pointcuts and
advices. Each pointcut is associated with an advice. AspectJ defines three types of
advices: before advice, around advice and after advice. These advice are respectively
executed before, instead, and after of the join point matched by their respective point-
cuts. We show in the Listing 1 the structure of a logging aspect in AspectJ. The point-
cut of this aspect selects all calls to public methods. A before advice is associated
with this pointcut, which will print out a message before each matched join point.

Listing.1. The structure of an aspect in AspectJ

With aspects our approach ensures that the security enforcement code is well mod-
ularized. The security expert needs to focus only on the security aspect to understand
how security policies are enforced. He does not need to look at and understand the
code implementing other concerns. Furthermore, when certain non-properties change,
for example, an encryption module is upgraded or replaced, only the respective secu-
rity aspects must be regenerated and redeployed. The core business processes and
aspects enforcing other concerns remain unchanged.

3.2 Mapping Rules

In the following, we explain how each property in the security profile is mapped to
aspect code in AspectJ and the corresponding java joint point in witch this code will be
weaved. We use the following conventions for presenting the following mapping rules:

- Assuming a service activity that calls a given operation. The respective pointcut of
the enforcement advice will be named according to this pattern:

public Aspect Logging_Aspect {
 pointcut pointcut_Logging(): call(public * *.*(..));
 before(): pointcut_Logging(){
 System.out.println (" call to method " +thisJoinPoint.toLongString());
 }
}

 An Aspect-Oriented Approach to Enforce Security Properties in Business Processes 349

 PropertyName_OperationName_BPMNelement
- The parameters of the generated pointcut correspond to either the input or the output

value of the BPMN element in the business process model.
- We developed a java based library with helper functions which can be used to en-

force the security properties and which can be called from the advice. For each se-
curity property, we call the respective enforcement function according to this nam-
ing pattern: PropertyName_Method().

• The Confidentiality Property: The confidentiality property can be applied to the
messages. It is generally mapped to before advices. Only in the case of end message,
it is mapped to an after advice. Figure 3 illustrates this mapping.

Java code :
outputdata =
ServiceName.OperationName(inputdata)

AspectJ code :
Pointcut Conf_OperationName_sent_msg
(InputData inputdata): call(public *
OperationName(..)) &&args(inputdata);
before (InputData inputdata):
Conf_OperationName_sent_msg (inputdata){
ConfidentialityClass conf=new
ConfidentialityClass ();
Object CryptObj= conf.cryptage
(“cle”,inputdata);}

Fig. 3. Mapping of confidentiality

Java code :
outputdata = service2. OperationName
(inputdata);

AspectJ code :
pointcut integ_ OperationName_sent_msg

(InputData inputdata):

call (public * *. OperationName (InputData))

&&args(inputdata);

before(InputData inputdata):

integ_ OperationName_sent_msg (inputdata){

Integrity_class intg=new Integrity_class();

intg.Addsigne (inputdata); }

Fig. 4. Mapping of integrity

350 I. Yahya et al.

Java code:
outputdata1 = ser-
vice1.OperationName1(inputdata1,user1);
outputdata2= ser-
vice2.OperationName1(inputdata2,user2);

AspectJ code:
pointcut sod_ OperationName1_Activity

(String user):call (public * OperationName1 (..)) ||

(call (public * PperationName12(..))) && args(user);

Object around(String user):

sod_OperationName1_Activity (user){

SOD_class sod=new SOD_class();

Object rslt=new object();

boolean verif=sod.SSOD_Method(user);

if (verif){rslt= proceed();

}else{ System.out.println("error ");}

return rslt;}

Fig. 5. Mapping of separation of duties

Java code:
opdata1 = service1.
opdata1=service1.OperationName1(inputdata1,user1);
opdata2= service2.OperationName2(inputdata2,user2);

AspectJ code:
pointcut bod_OperationName1_Activity

(String user):call (public * OperationName1(..))||

call (public * OperationName2(..)) &&args(user);

Object around(String user):

bod_OperationName1_Activity (user){

BOD_class bod=new BOD_class();

Object rslt=new object();

boolean verif = bod.BOD_Method(user);

if (verif){rslt= proceed();

}else{ System.out.println("error ");}

return rslt;}

Fig. 6. Mapping of binding of duties

 An Aspect-Oriented Approach to Enforce Security Properties in Business Processes 351

Java code:
public OutputData ReceiveActivity (OutputData

outputdata) {…}

AspectJ code:
pointcut authentifier_ReceiveActivity_pool ()

:call(public Service1. ReceiveActivity (..));

before():authentifier_ReceiveActivity_pool (){

Authenticatin_class aut=new Authentication_class() ;

Aut.authentication(); }

Fig. 7. Mapping of authentication

• The Authentication property is mapped to a before advice to guarantee the authen-
tication of the client and the partner before interaction with the service composition
pool. Figure 7 shows this mapping.

• The Integrity Property: The integrity property can be applied to the messages. It is
generally mapped to a before advice. Only in the case of end message, it is mapped to
an after advice, as shown in Figure 4.

• The Separation of Duties Property (SOD) is mapped to an around advice to guar-
antee the respect of this property by all activities of the group. Figure 5 shows this
transformation.

• The Binding of Duties Property: The binding of duties (BOD) property is mapped
to an around advice, which guarantees the respect of this property by all activities of
the group. Figure 6 illustrates this mapping.

3.3 The AspectJ Code Generator

Based on the mapping presented above, we implemented a code generator from the
security profile to AspectJ [1]. This generator is based on the Xpand [5] model-to-text
transformation language. Based on an Ecore meta-model of the security profile and
templates in Xpand implementing the mapping, the generator takes a business process
model annotated by security properties and generates one or more text files with the
AspectJ code. The AspectJ generator was developed as Eclipse plugin. For the defini-
tion of the source model we used the non-functional editor with annotations as shown
in Figure 8. In a previous work [6], we implemented a BPMN to java generator,
which is responsible for generating the functional part of the composite service. Both
generators can be used together with ours to have both the functional code in java
classes and the non-functional code in AspectJ aspects.

352 I. Yahya et al.

4 Case Study

To illustrate our approach we introduce the example of loan approval process (LAP)
as shown in Figure 8. This process starts when the client applies for a loan from his
bank. The bank will then execute two parallel rating activities. The first one ensures
external rating using a credit-reporting agency. The second activity is for internal
rating and it verifies the creditworthiness of the client based on the provided docu-
ments. If the evaluation of the customer creditworthiness is positive, an offer will be
created and subsequently the contract documents will be generated using a contracting
web service. Finally the offer and the contract are sent to the customer by email using
an appropriate mailing web service.

Fig. 8. The Loan Approval Process (LAP) annotated with security properties

In this process we have sensitive data that is transmitted between the different ser-
vices. Several security requirements arise in this scenario, which can be expressed
using the security profile. For example, an authentication property is applied to the
partner that will ensure external rating, as we see in Figure 8. That property is asso-
ciated to the corresponding pool. A separation of duties property is used to express
separation of duties between the two parallel rating activities. In fact, these activities
should be performed by two different users to avoid the risk of fraud. The message
sent to the partner “contracting service” contains confidential information and there-
fore needs to be encrypted before being sent. To specify this requirement we linked
the confidentiality property to that message

Figure 8 shows the LAP process model defined in BPMN and annotated with the
properties of the security profile. After modeling the process and annotating it with
properties of the security profile we use our AspectJ generator to generate security
aspects that enforce the defined security properties. The java generator can be used to
generate java classes that implement the modeled composite service.

The generated code is an executable and complete AspectJ code that is organized
in three aspects for this example: an aspect for each security property. The first

 An Aspect-Oriented Approach to Enforce Security Properties in Business Processes 353

property is authentication, which is enforced using an advice that authenticates the
partner before starting the process. As the process is implemented with a generated
method called main, the pointcut of the advice matched that method as we see in List-
ing 2. The second property in this example is separation of duties and the correspond-
ing aspect code is shown in Listing 3. Here, all activities of the group will be captured
as join points and we need to guarantee that their respective users are different. The
third property in this example is confidentiality and the corresponding aspect is shown
in the Listing 4. The advice encrypts the message of the partner invocation before it is
sent. This invocation is captured as join point by the pointcut associated with the gen-
erated advice. Regarding the advice, we have chosen to implement a java library with
methods that enforce each security properties. The advice simply calls those methods.
The least step is to combine these aspects with the functional java code to obtain an
executable application.

Listing. 2. The Authentication aspect

Listing. 3. The Separation of duties aspect

public aspect Confidentiality_Aspect{
pointcut Confidentiality_CreateContract_outgoingMessage(LoanOffer newLoanOffer,String user)
:(call(public * *.getLoanContract(..))) &args(newLoanOffer,user)&&!within(Confidentiality_Aspect);
before(LoanOffer newLoanOffer,String user): Confidentiali-
ty_CreateContract_outgoingMessage(newLoanOffer,user){
newLoanOffer.setIdClient(Confidentiality_class.Encryption(0001,newLoanOffer.getIdClient()));
newLoanOffer.setamount(Confidentiality_class.Encryption(0001,newLoanOffer.getamount()));
newLoanOffer.setdata(Confidentiality_class.Encryption(0001,newLoanOffer.getdata()));}}

Listing. 4. The Confidentiality aspect

public aspect AuthenticationAspect{

 pointcut Authentication_External Rating():execution(public void main(..));

 before():Authentication_External Rating(){
 Authentication_class authentication_class = new Authentication_class ();
 authentication_class.AuthenticationMethod(); } }

public aspect SOD_Aspect{

 pointcut SOD_Externalrating_Activity(ClientData newClientData , String user):(call(public *
*.getInternalRating(..,String)) || call(public * *.getExternalRating(..,String)))&&
args(newClientData,user)&&!within(LoanApprovalProcessAspect);
 Object around(ClientData newClientData , String user):
SOD_Externalrating_Activity(newClientData,user){
 SOD_class sOD_class = new SOD_class ();
boolean exist= sOD_class.SOD_Method("SSOD",newClientData,user);
Object rslt=new Object();
if (exist){c= proceed(newClientData,user); }else{ System.out.println("error ");}
return c;}}

354 I. Yahya et al.

5 Related Work

The model-driven security in the context of SOA is an emerging research area.
In [8], the authors describe a model-driven architecture that allows the generation

of web service security configurations from an UML model. The business process
model and security intentions are modeled using standard UML diagrams. According
to the MDA approach, the users define the application model enriched by the security
intentions, and then detailed security configurations are generated. That work is based
on transformations over UML constructs and a security environment model. Unlike
our work, the approach presented in [8] does not support composite web services. It
also does not support java code generation.

In [9] the authors define an approach, which ensures the generation of security con-
figurations from business process models. In the first step, the business process model
is annotated with abstract security intents using different models and notations: like
UML’S SOAML profile, UML’s QoS profile, and secureUML. The second step con-
sists in composing functional models with access control models or security models.
The final step consists in the code generation for specific target platforms. The main
limitation of this work is the necessity composing different models, which requires
different weaving associations and composition rules. In our work, we defined a
common meta-model to support all non-functional properties and we can use different
annotations from different profiles for the same business process model.

In [10], the authors propose a model-driven approach that facilitates the transfor-
mation of architecture models annotated with simple security intentions to security
policies. This transformation is driven by security configuration patterns. The authors
propose also a concise domain specific language (DSL) for expressing their security
configuration patterns. A pattern engine is provided to execute security intentions and
provide corresponding solutions. Comparing with our approach, this work is specific
to security aspects and requires the extension of the domain specific language to sup-
port others non-functional concerns. Our approach is more generic and support differ-
ent concerns without requiring any extension. The user can easily define a new
non-functional profile and apply this to the business process model.

In [11], the authors propose a methodology for end-to-end security configuration
for SOA applications and tools for generating security configurations from the re-
quirements specified in previous phases of their approach. It makes it possible to
configure security properly without increasing the workload of the developers.

In [12], the authors propose an extension of BPMN to ensure modeling security re-
quirements into business process models. This extension allow user to incorporate
seven security requirements represented by the same symbol (padlock) and for each
security requirement a specific capital letter is added on the center of the symbol. The
main limitation of this work is that do not provide an approach to generate executable
code from the model.

The major advantage of our work over the works mentioned above is that our ap-
proach is generic and can be applied to any non-functional concern. It is not specific
to security only. A further advantage is the possibility to use multiple non-functional
profiles together. We focused in this paper only on security properties mapping, but
others mappings can be defined for others QoS properties. In addition, we generate a
modular code, which implements non-functional concerns.

 An Aspect-Oriented Approach to Enforce Security Properties in Business Processes 355

6 Conclusion

In this paper, we presented an aspect-oriented approach to mapping the security prop-
erties expressed with a profile mechanism for BPMN to modular enforcement code in
AspectJ. We implemented also an AspectJ code generator, which is based on the
Xpand transformation language.

As future work, we aim to define others mapping rules from others non-functional
profiles such as temporal properties to aspects. Another direction is to generate
aspects in other AOP languages such as AO4BPEL for enforcing non-functional
properties within BPEL process.

References

1. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An Overview
of AspectJ. In: Lindskov Knudsen, J. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 327–353.
Springer, Heidelberg (2001)

2. Charfi, A., Turki, S.H., Chaâbane, A., Bouaziz, R.: A model-driven approach to develop-
ing web service compositions based on BPMN4SOA. J. Reasoning-Based Intelligent Sys-
tems 3(3/4) (2011)

3. Object Management Group: Business Process Modeling Notation (BPMN) 2.0,
http://www.omg.org/spec/BPMN/2.0

4. Turki, S.H., Bellaaj, F., Charfi, A., Bouaziz, R.: Modeling Security Requirements in Ser-
vice Based Business Processes. In: Bider, I., Halpin, T., Krogstie, J., Nurcan, S., Proper,
E., Schmidt, R., Soffer, P., Wrycza, S. (eds.) BPMDS 2012 and EMMSAD 2012. LNBIP,
vol. 113, pp. 76–90. Springer, Heidelberg (2012)

5. Eclipse Xpand Project,
http://www.eclipse.org/modeling/m2t/?project=xpand

6. Chaâbane, A., Turki, S.H., Charfi, A., Bouaziz, R.: From Platform Independent Service
Composition Models in BPMN4SOA to Executable Service Compositions. In: Proc. of
iiWAS, France, pp. 653–656 (2010)

7. OMG.: UML: Superstructure version 2.0 (2005), http://www.omg.org/spec/
UML/2.0/

8. Nakamura, Y., Tatsubori, M., Imamura, T., Ono, K.: Model-driven security based on Web
services security architecture. In: Proc. of SCC, Florida, USA, pp. 7–15 (2005)

9. Gallino, J.P.S., Miguel, M., Briones, J.F., Alejandro, A.: Domain-Specific Multi-Modeling
of Security Concerns in Service-Oriented Architectures. In: Proc. of SCC, Washington,
USA, pp. 761–762 (2011)

10. Menzel, M., Warschofsky, R., Meinel, C.: A Pattern-driven Generation of Security Poli-
cies for Service-oriented Architectures. In: Proc. of ICWS, Florida, USA, pp. 243–250
(2010)

11. Satoh, F., Nakamura, Y., Mukhi, K.N., Tatsubori, M., Ono, K.: Model-Driven Approach
for End-to-End SOA Security Configurations. In: Non-Functional Properties in Service
Oriented Architecture: Requirements, Models and Methods, ch. 12, pp. 269–298 (2011)

12. Rodriguez, A., Piattini, E.F.-M.M.: A BPMN Extension for the Modeling of Security Re-
quirements in Business Processes. J. IEICE - Transactions on Information and Sys-
tems E90-D(4), 745–752 (2007)

	An Aspect-Oriented Approach to Enforce SecurityProperties in Business Processes
	Introduction
	Background
	Meta-model for Non-functional Profiles
	Security Profile

	Mapping the Security Profile to Enforcement Aspects inAspectJ
	Target Language for Enforcing Security Properties: AspectJ
	Mapping Rules
	The AspectJ Code Generator

	Case Study
	Related Work
	Conclusion
	References

