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Abstract. The propose of this paper is to introduce a new Kalman Filter based 
in a Recurrent Neural Network topology (KFRNN) and a recursive Levenberg-
Marquardt (L-M) algorithm. Such algorithm is able to estimate the states and 
parameters of a highly nonlinear continuous fermentation bioprocess in noisy 
environment. The control scheme is direct adaptive and also contains feedback 
and feedforward recurrent neural controllers. The proposed control scheme  
is applied for real-time identification and control of continuous stirred tank  
bioreactor model, taken from the literature, where a fast convergence, noise fil-
tering and low mean squared error of reference tracking were achieved. 

Keywords: Kalman filter, recurrent neural network, recurrent trainable neural 
network controller, real-time backpropagation learning, recursive Levenberg-
Marquardt learning, real-time direct adaptive neural control, continuous stirred 
tank reactor bioprocess. 

1 Introduction 

In a FFNN the signals are transmitted only in one direction, starting from the input 
layer, subsequently through the hidden layers to the output layer, which requires ap-
plying a tap delayed global feedbacks and a tap delayed inputs to achieve a Nonlinear 
Autoregressive Moving Average (NARMAX) neural dynamic plant model. A new 
Kalman Filter Recurrent Neural Network (KFRNN) topology and the recursive Back-
propagation (BP) type learning algorithm in vector-matrix form was derived and its 
convergence was studied, [4], [5]. But the recursive BP algorithm, applied for 
KFRNN learning, is a gradient descent first order learning algorithm which not per-
mits to augment the precision and to accelerate the learning. So, the main contribution 
in this paper is to use a second order learning algorithm for the KFRNN like the Le-
venberg-Marquardt (L-M) algorithm [6]-[8], in order to obtain a fast convergence, 
avoid noise and the effect of unmodeled dynamics as much as possible. The KFRNN 
with L-M learning will be applied for a Continuous Stirred Tank Reactor (CSTR) 
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model, [9], identification and control. In [10], [11] a comparative study of linear, 
nonlinear and neural-network-based adaptive controllers for a CSTR is done. The 
papers proposed to use the neuro-fuzzy and adaptive nonlinear control systems design 
applying FFNNs (multilayer perceptron and radial basis functions NN). The proposed 
control gives a good adaptation to the nonlinear plants dynamics, better with respect 
to the other methods of control. The application of KFRNNs together with the recur-
sive L-M could avoid these problems improving the learning and the precision of the 
plant states estimation. 

2 Topology and Learning of the RTNN 

This section is dedicated to the topology, the BP and the L-M algorithms of the  
Recurrent Trainable Neural Network, [5], [15]-[17] learning. The RTNN topology 
could be obtained from the KFRNN topology removing the output local and global 
feedbacks. The RTNN was used as a feedback and feedforward controller in direct 
adaptive neural control scheme. 

2.1 RTNN Topology 

The RTNN topology is described by the following vector-matrix equations: 

 1( 1) ( ) ( )+ = +X k A X k BU k  (1) 

 [ ]1 0 1 2; ;  ; = =  
T T TB B B U U U  (2) 

 ( )block-diag ,  1= <i iA A A  (3) 

 1( ) [ ( )]=Z k G X k  (4) 

 [ ]1 0 1 2; ;  ; = =  
T T TC C C Z Z Z  (5) 

 ( ) ( )=V k CZ k  (6) 

 ( ) [ ( )]=Y k F V k  (7) 

Where: X, Y, U are vectors of state, output, and augmented input with dimensions N, 
L, (M+1), respectively, Z is an (L+1) –dimensional input of the feedforward output 
layer, where Z1 and U1 are the (Nx1) output and (Mx1) input of the hidden layer; the 
constant scalar threshold entries are Z2 = -1, U2 = -1, respectively; V is a (Lx1)  
pre-synaptic activity of the output layer; the super-index T means vector transpose; A 
is (NxN) block-diagonal weight matrix; B and C are [Nx(M+1)] and [Lx(N+1)]- 
augmented weight matrices; B0 and C0 are (Nx1) and (Lx1) threshold weights of the 
hidden and output layers; F[·], G[·] are vector-valued tanh(·) or sigmoid(·) –activation 
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functions with corresponding dimensions. Equation (3) represents the local stability 
condition imposed on all blocks of A. The dimension of the state vector X of the 
RTNN is chosen using the simple rule of thumb which is: N=L+M. 

3 Backpropagation RTNN Learning 

Following the same procedure as for the KFRNN, it was possible to derive the follow-
ing updates for the RTNN weight matrices: 

 1( ) '[ ( )] ( ); ( ) ( ) ( )= = −pE k F Y k E k E k Y k Y k  (8) 

 1( ) ( ) ( )Δ = TC k E k Z k  (9) 

 '
3 2 2 1( ) [ ( )] ( ); ( ) ( )= = TE k G Z k E k E k C E k  (10) 

 3( ) ( ) ( )Δ = TB k E k U k  (11) 

 3( ) ( ) ( )Δ = TA k E k X k  (12) 

 3( ) ( ) ( )Δ = ⊕vA k E k X k  (13) 

Where Δ A, Δ B, Δ C are weight corrections of the learned matrices A, B, and C, 
respectively; E, E1, E2, and E3 are error vectors; X is a state vector; F’(·) and G’(·) are 
diagonal Jacobean matrices, whose elements are derivatives of the tanh activation 
functions . Equation (12) represents the learning of the full feedback weight matrix of 
the hidden layer. Equation (13) gives the learning solution when this matrix is di-
agonal vA, which is the present case. The initial values of the weight matrices during 
the learning are chosen as arbitrary numbers inside a small range. The stability of the 
RTNN model used as a direct controller is assured by the activation functions [-1, 1] 
bounds and by the local stability weight bound condition given by (3). The stability  
of the RTNN movement around the optimal weight point has been proved by one 
theorem (see the thesis of Mariaca [13] and the paper of Nava, [14]). 

4 Stability Proof of the KFRNN BP Learning (Theorem of 
Stability) 

The Theorem of Stability of the BP RTNN used as a system controller is proven in the 
PhD thesis of Mariaca [13], so it shall be given here in brief. Let the RTNN with Jor-
dan Canonical Structure is given by equations (1)-(7). Under the assumption of 
RTNN identifiability made, the application of the BP learning algorithm for A(·), B(·), 
C(·), in general matricial form, (8)-(13) without momentum term, and the learning 
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rate η (k) (here it is considered as time-dependent and normalized with respect to the 
error) are derived using the following Lyapunov function: 

 ( ) ( ) ( )1 2= +L k L k L k  (14) 

Where: L1 (k) and L2 (k) are given by: 

 ( ) ( )21
1 2  =L k e k

 

 ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )2   = + +     
kk k k k k

T T T
BA A B C CL k tr W W tr W W tr W W  

Where 

 ( ) ( ) ( ) ( ) ( ) ( )
* * *ˆ ˆˆ,   ,   = − = − = −  

A k k B k k C k kW A A W B B W C C  

are vectors of the estimation error and * * *(A ,B ,C )  and ( ) ( ) ( )k k kˆ ˆˆ(A ,B ,C )  denote the 

ideal neural weight and the estimate of neural weight at the k-th step, respectively, for 
each case. 

Let us define: ( )max maxk k=ψ ψ  , and ( )max maxk k=ϑ ϑ . Here: 

( ) ( ) / ( )k o k W k= ∂ ∂ψ , and ( ) ( ) / ( )k y k u k= ∂ ∂ϑ , where W  is a vector composed 

by all weights of the RTNN, used as a system controller, and ⋅  is an Euclidean 

norm in nℜ . 
Then the identification error is bounded, i.e.: 

 ( ) ( ) ( )1 21 1 1 0+ = + + + <L k L k L k  (15) 

 ( ) ( ) ( )1 1+ = + −DL k L k L k  (16) 

Where the condition for L1 (k+1) < 0 is that: 

 max 2 2
max max

2
0 η

ϑ ψ
< <  

and for L2(k+1) < 0, we have: 

 
2

2 max( 1) ( 1) ( 1)Δ + < − + + +L k e k kη β  (17) 

Note that maxη  changes adaptively during the learning process of the network and: 

 { }
3

max i
i=1

η =max η  
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Where all: the unmodelled dynamics, the approximation errors and the perturbations, 
are represented by the β-term, and the complete proof of that theorem is given in [13] 
and the Lemma of convergence of (17) is given by Nava [14]. 

5 Recursive Levenberg-Marquardt Algorithm of RTNN 
Learning 

The general recursive L-M algorithm of learning, [4], [6]-[8], [17], is given by  
the equations (18)-(21), where W is the general weight matrix (A, B, C), under  
modification; Y is the RTNN output vector which depends of the updated weights and 
the input; E is an error vector; Yp is the plant output vector which is in fact the target 
vector. Using the RTNN adjoint block diagram, [4], [5], [15]-[17] we could obtain the 
values of DY for each updated weight propagating D = I through it. 

 ( 1) ( ) ( ) [ ( )] [ ( )]+ = + ∇W k W k P k Y W k E W k  (18) 

 [ ( )] [ ( ), ( )]=Y W k g W k U k  (19) 

 ( )2 2[ ] { ( ) [ ( ), ( )]}= −pE W k Y k g W k U k  (20) 

 
( )

[ ( )] [ , ( )]
=

∂=
∂ W W k

DY W k g W U k
W

 (21) 

Applying equation (21) for each element of the weight matrices (A, B, C) to be up-
dated, the corresponding gradient components are obtained as follows: 

 ( ) ( )1,[ ( )] =ij i jDY C k D k Z k  (22) 

 ( )1, [ ( )]′=i i iD k F Y k  (23) 

 ( ) ( )2,[ ( )] =ij i jDY A k D k X k  (24) 

 ( ) ( )2,[ ( )] =ij i jDY B k D k U k  (25) 

 ( ) ( )2, 1,[ ( )]′=i i i i iD k G Z k C D k  (26) 

So the Jacobean matrix could be formed as: 

 
[ ( )] [ ( ( )), ( ( )), ( ( ))]= ij ij ijDY W k DY C k DY A k DY B k

 

Next the given up topology and learning is applied for CSTR system control. 
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Fig. 1. Block-diagram of the closed-loop neural control 

6 Direct Adaptive Neural Control of CSTR System 

This part described the direct adaptive CSTR control using KFRNN as plant identifier 
and RTNN as two plant controllers (feedback and feedforward). The block-diagram 
of the control system is given on Fig. 1, [5], [15]. Next we described the linearized 
model of the control system. Let us to write the z-transfer function representations  
of the plant, the state estimation part of the KFRNN, the feedback / feedforward  
controllers: 

 ( ) ( ) 1
–

−
=p p p pW z C zI A B  (27) 

 ( ) ( ) 1
–

−=i i iP z zI A B  (28) 

 ( ) ( ) 1

1 1–
−=

Cc cQ z C zI A B  (29) 

 ( ) ( ) 1

2 2–
−=

Cc cQ z C zI A B  (30) 

The control systems z-transfer functions (27)-(30) are connected by the following 
equation, derived from the Fig. 4, and given in z-operational form: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1

 1 2

−
= + +  p p iY z W z I Q z P z Q z R z zθ  (31) 

 ( ) ( ) ( ) ( )1 2= +pz W z z zθ θ θ  (32) 

Where θ(z) represents a generalized noise term. The RTNN and the KFRNN  
topologies were controllable and observable, and the BP algorithm of learning was 
convergent, [5], so the identification and control errors tended to zero: 
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 ( ) ( ) ( ) – 0;  = → → ∞i pE k Y k Y k k  (33) 

 ( ) ( ) ( ) 0;  = − → → ∞c pE k R k Y k k  (34) 

This means that each transfer functions given by equations (27)-(30) is stable with 
minimum phase. The closed-loop system is stable and the RTNN-1 feedback control-
ler compensates the plant dynamics. The RTNN-2 feedforward controller dynamics is 
an inverse dynamics of the closed-loop system one, which assure a precise reference 
tracking in spite of the presence of process and measurement noises. 

7 Description of the CSTR Bioprocess 

The CSTR model given in [10], [11], [18] was chosen as a realistic example for appli-
cation of the KFRNN and the RTNN for solution of system identification and control 
problems. 

The CSTR is described by the following continuous time nonlinear system of ordi-
nary differential equations: 

 
( ) 0

( )
( ) ( )exp

( )

 
= − − − 

 
A

Af A A

dC t Q E
C C t k C t

dt V RT t  
(35)

 

 

( ) ( )( )
( ( )) exp

( )

        ( ) 1 exp ( ( ))
( )

 −Δ
= − +  

 

  −+ − −      

A
f

p

c pc
c ef

p c c pc

H C tdT t Q E
T T t

dt V C RT t

C hA
Q t t T t

C V Q t C

ρ

ρ
ρ ρ

 (36) 

In this model is enough to know that within the CSTR, two chemicals are mixed and 
that they react in order or produce a product compound A at a concentration CA(t), 
and the temperature of the mixture is T(t). The reaction is exothermic and produces 
heat which slows down the reaction. By introducing a coolant flow-rate Qc(t), the 
temperature can be varied and hence the product concentration can be controlled. 
Here CAf is the inlet feed concentration; Q is the process flow-rate; Tf and Tef are the 
inlet feed and coolant temperatures, respectively; all of which are assumed constant at 
nominal values. Likewise, k0, E/R, V, ΔH, ρ, Cpc, Cp , and ρc are thermodynamic and 
chemical constants related to this particular problem. The quantities Qc0, T0, and CA0, 
shown in Table 1, are steady values for a steady operating point in the CSTR. The 
objective was to control the product compound A by manipulating Qc(t). The operat-
ing values were taken from [7] and [8], where the performance of a NN control sys-
tem is reported. 



218 C.-R. Mariaca-Gaspa

Table 1. Par

Parameters 
100   ( / min)Q L=  

1.0   ( / )AfC mol L=  

350   ( )f fCT T K= =  

100   ( )V L=  

Fig. 2. Graphical results of i
plant output (continuous line) 
son of the plant output (contin
d) MSE% of identification. 

8 Simulation Resu

Detailed comparative graph
tion by means of the BP an
white noise is added to the 
tification has been studied a
and L-M learning, which re

ar, J.-C. Tovar Rodríguez, and F. Ortiz-Rodríguez 

rameters and operating conditions of the CSTR 

Parameters Parameters 
3/ 9.95 10    ( )E R K= ×  0 103.41   ( / min)cQ L=  

−Δ = × 52 10 ( / )H cal mol  57 10    ( / min )hA cal K= ×  

1000   ( / )c g Lρ ρ⋅ =  0 440.2   ( )T K=  

1   ( / )p pcC C cal gK=  10
0 7.2 10    (1 / min)k = ×  

 

 

dentification using BP KFRNN learning. a) Comparison of 
and KFRNN output (pointed line); b) state variables; c) comp

nuous line) and KFRNN output (pointed line) in the first insta

ults 

hical simulation results of CSTR KFRNN plant identif
nd the L-M learning are given in Fig.2 and Fig.3. A 1
plant inputs and outputs and the behavior of the plant id

accumulating some statistics of the final MSE% (ξav) for 
sults are given in Tables 3 and 4 for 20 runs respectively

f the 
pari-
ants; 

fica-
10% 
den-
 BP 

y. 



The mean average cost f
dard deviation (σ) with resp
in Table 2 for BP and L-M
the following formulas: 

 1 n

kn =
= Σε

The proposed direct adapt
CSTR plant. The Fig. 4 com
the L-M algorithm of lea
graphical (Fig. 2 and Fig. 
that the convergence of th
given control results (Fig. 
learned RNNs. 

Fig. 3. Graphical results of id
plant output (continuous line) 
son of the plant output (contin
d) MSE% of identification. 

Recurrent Neural Control of a Continuous Bioprocess 

for all runs (ε) of KFRNN plant identification and the st
pect to the mean value and the deviation (Δ) are presen

M algorithm. The computations of these values are done

1 k

n

av=
Σ ξ , 1

n
2

1

n

ii=
= Σ Δσ , –avΔ = ξ ε  (

tive neural control system was applied for the given 
mpared the reference and the plant output signals apply

arning for the KFRNN and both RTNNs. The obtai
3) and numerical (Table 2) identification results show
e L-M learning algorithm outperformed the BP one. T
4) showed a fast reaction and convergence of the L

 

dentification using L-M KFRNN learning. a) Comparison of
and KFRNN output (pointed line); b) state variables; c) comp

nuous line) and KFRNN output (pointed line) in the first insta

219 

tan-
nted 
e by 

(37) 

 up 
ying 
ined  
wed 
The 

L-M 

f the 
pari-
ants; 



220 C.-R. Mariaca-Gaspa

Fig. 4. Detailed graphical sim
RTNN learning a) compariso
signal; c) MSE% of control 

Fig. 5. Comparison between th
algorithm of learning, b) using

Table 2. Standard deviations a
and L-M algorithms of KF RN

BP al
ε  =
σ  =

ar, J.-C. Tovar Rodríguez, and F. Ortiz-Rodríguez 

 

mulation results of CSTR plant direct neural control using 
n between the plant output and the reference signal; b) con

he final MSE% for 20 runs of Identification program: a) using
g L-M algorithm of learning 

and mean average values of identification validation using the
NN learning 

lgorithm L-M algorithm 
= 1.2552 ε  = 1.04374 
= 0.0476 σ  = 0.0193 

LM 
ntrol 

 

g BP 

e BP 



Recurrent Neural Control of a Continuous Bioprocess 221 

Table 3. MSE% of 20 runs of the identification program using the KFRNN BP algorithm 

No 1 2 3 4 5 
MSE% 1.2010 1.3104 1.2025 1.3229 1.2494 

No 6 7 8 9 10 
MSE% 1.3011 1.3356 1.2218 1.2228 1.2439 

No 11 12 13 14 15 
MSE% 1.2041 1.2501 1.2038 1.3111 1.3399 

No 16 17 18 19 20 
MSE% 1.2154 1.2872 1.2186 1.2434 1.2189 

Table 4. MSE% of 20 runs of the identification program using the KFRNN L-M algorithm 

No 1 2 3 4 5 
MSE% 

 

1.0665 
 

1.0162 
 

1.0425 
 

1.0340 
 

1.0624 
No 6 7 8 9 10 

MSE% 
 

1.0533 
 

1.0320 
 

1.0013 
 

1.0575 
 

1.0311 
No 11 12 13 14 15 

MSE% 
 

1.0431 
 

1.0554 
 

1.0645 
 

1.0517 
 

1.0123 
No 16 17 18 19 20 

MSE% 
 

1.0284 
 

1.0467 
 

1.0642 
 

1.0287 
 

1.0626 

9 Conclusion 

The paper proposed a new KFRNN model for systems identification and states esti-
mation of nonlinear plants. The KFRNN is learned by the BP and by the second order 
recursive learning algorithm of Levenberg-Marquardt. The estimated states of the 
recurrent neural network model are used for direct adaptive trajectory tracking control 
systems design. The applicability of the proposed neural control system is confirmed 
by simulation results with a CSTR plant. The results showed good convergence of 
both L-M and BP learning algorithms. It was seen that the L-M algorithm of learning 
is more precise (see Table 2) but more complex than the BP one. The authors thank 
the support of the Mexican Government (CONACYT, SNI, SIP 20120746, COFAA 
and PIFI IPN). 
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