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Abstract. A field of research in Automatic Speech Recognition (ASR)
is the development of assistive technology, particularly for people with
speech disabilities. Diverse techniques have been proposed to accomplish
accurately this task, among them the use of Metamodels. In this paper we
present an approach to improve the performance of Metamodels which
consists in using a speaker’s phoneme confusion matrix to model the pro-
nunciation patterns of this speaker. In contrast with previous confusion-
matrix approaches, where the confusion-matrix is only estimated with
fixed settings for language model, here we explore on the response of
the ASR for different language model restrictions. A Genetic Algorithm
(GA) was applied to further balance the contribution of each confusion-
matrix estimation, and thus, to provide more reliable patterns. When
incorporating these estimates into the ASR process with the Metamod-
els, consistent improvement in accuracy was accomplished when tested
with speakers of mild to severe dysarthria which is a common speech
disorder.

Keywords: Genetic Algorithms, Disordered Speech Recognition, Meta-
models.

1 Introduction

Dysarthric speech is different from normal speech as it is affected by breathing
and articulation abnormalities which cause performance in Automatic Speech
Recognition (ASR) to decrease considerably [9,10,13,15,18]. These abnormal-
ities decrease the speaker’s intelligibility and restrict the speaker’s phonemic
repertoire, thus some sounds or phonemes cannot be uttered or articulated cor-
rectly. In ASR this leads to an increase of deletion, insertion, and substitution
of phonemes [8,14,15,16].

Most speaker adaptation algorithms are based on the principle that it is possi-
ble to apply a set of transformations to the parameters of the acoustic models of
an ASR system to move them closer to the voice of an individual [20]. Whilst this
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has been shown to be successful for normal speakers, it is less successful in cases
where phonatory dysfunction is present (and the phoneme uttered is not the one
that was intended but is substituted by a different phoneme or phonemes) as
often happens in dysarthric speech [7].

In [3] it was proposed that, instead of adapting the acoustic models of the ASR
system, the errors made by the speaker at the phonetic level could be modelled
to attempt to correct them. This was a concept that was previously proposed
in [11] to correct the phoneme output of an ASR system, and in [3] this was
further extended to accomplish improvement at the word recognition level. This
approach, which made use of a phoneme-confusion matrix to get the estimates
of the speaker’s pattern of phonetic errors, was also explored in [12], [19], and
[17].

In the field of artificial intelligence, a confusion-matrix is a visualization tool
typically used in supervised learning. Each column of the matrix represents the
instances in a recognised class, while each row represents the instances in an
actual class. One benefit of a confusion matrix is that it is easy to see if the
system is confusing two classes (e.g., commonly mislabelling or classifying one
as another).

As implementation techniques to incorporate the phoneme confusion-matrix
estimates into the ASR process are Weighted Finite-State Transducers (WFSTs)
[3,11,17], and Hidden Markov Models (HMMs, Metamodels) [3,12]. However an
important issue has remained within these studies, which is the ASR’s phoneme
output used to estimate the phoneme confusion-matrix.

From the mathematical model of the ASR process:

Ŵ = max
W∈L

P (O|W )P (W ) (1)

the most likely sequence of words Ŵ given some acoustic observation O can
be estimated as the product of two probabilities: P (W ), the prior probability,
which is obtained from the Language Model (L); and P (O|W ), the observation
likelihood, which is obtained from the acoustic model.

P (W ) is usually estimated by using N -gram grammars, and P (O|W ) is usu-
ally modelled by using Hidden Markov Models (HMMs), or Artificial Neural
Networks (ANN). For word recognition tasks, the ASR system estimates the
sequence of the most likely phoneme models (HMMs) that represent the speech
O. Then, this sequence is restricted to form words by incorporating a lexicon.
Finally, these words are restricted by the information of the language model
P (W ) to form valid sequences of words.

The influence of P (W ) is very important for the final result, and hence, of
the output generated for confusion-matrix estimation. The performance of the
implementation techniques (HMMs, WFSTs) [3,12,17] rely critically on the ac-
curacy of the phoneme output sequences used for confusion-matrix estimation
[4]. In the studies using the confusion-matrix modelling approach, usually a sin-
gle confusion-matrix is used for training purposes. In [11] the phoneme sequences
were obtained with unrestricted phoneme language. In [4] the training phoneme
sequences were obtained from the phonetic transcriptions of the word output of
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the ASR system. It was found that these sequences were more accurate than
those obtained directly at the phonetic level (with a phoneme language model).

However, with this approach, high accuracy in phoneme recognition does not
always correlate with high accuracy in word recognition. This is because of the
different language models restrictions used for confusion-matrix estimation and
word recognition evaluation. Another issue is related to the problem observed
when the data available for confusion-matrix estimation is small, which leads to
poor estimates, and in practice, this is the normal situation.

In this paper, we propose an extended approach to obtain better estimates of
a phoneme confusion-matrix to increase ASR performance for dysarthric speech.
Instead of just considering a confusion-matrix estimated with a single language
model (either phoneme-based or word-based), we consider a dynamic estimation
of diverse confusion-matrices with different language model restrictions. These
matrices then are weighted and integrated into a single confusion-matrix, which
would have more information about the behaviour of the speaker’s confusion
patterns across different language model scenarios. The implementation tech-
nique for the incorporation of the confusion-matrix into the ASR process is
the extended version of the Metamodels (discrete HMMs) [3,12] which was pre-
sented in [2]. The weights to balance the contribution of each confusion-matrix
are estimated by means of a Genetic Algorithm (GA), which also performs op-
timization on the structure of the extended Metamodel. When evaluating this
approach with a well known database of dysarthric speech, performance was
significantly higher when compared with the single confusion-matrix estimation
approach, and also, when compared with a Speaker Adaptive (SA) ASR system.

Hence, this paper is structured as follows: in Section 2 information about the
integration of the confusion-matrix estimates into the ASR process is reviewed.
Then, we present the details of the dynamic estimation of the confusion-matrices.
In Section 3 the extended Metamodel for implementation is reviewed, and then
in Section 4 the Genetic Algorithm for optimization of the contributions of the
dynamic confusion-matrices and the Metamodel is presented. In Section 5 the
details of the experiments are presented, which involves the training and evalua-
tion procedures. Finally, in Section 6, the results and future work are discussed.

2 Phoneme Confusion-Matrix as Resource for Error
Correction

In Figure 1 an example of a phoneme confusion-matrix is shown, where rows
represent the phonemes intended or uttered by the speaker (Stimulus), and the
columns represent the decoded phonemes given by the ASR system (Response).
The classification of phonemes to estimate a phoneme confusion - matrix is
performed by the alignment of two phoneme strings (or sequences):

– P , the reference (correct) phoneme transcription of the sequence of words
W uttered by a speaker.

– P̃ ∗, the sequence of phonemes decoded by the ASR system.
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Fig. 1. Example of a phoneme confusion-matrix

As P̃ ∗ is the system’s output, it might contain several errors. Based on the
classification performed by the aligner, these are identified as substitution (S),
insertion (I), and deletion (D) errors. Thus, the performance of ASR systems is
measured based on these errors, and two metrics are widely used for phoneme
and word ASR performance: Word Accuracy (WAcc) = N−D−S−I

N , and the Word
Error Rate(WER) = 1−WAcc. Where N is the number of elements (words or
phonemes) in the reference string (P ). Thus, the objective of the statistical
modelling of the phoneme confusion-matrix is to estimate W from P̃ ∗. This can
be accomplished by the following expression [3]:

W ∗ = max
P

M∏

j

Pr(pj)Pr(p̃∗j |pj) (2)

where pj is the j’th phoneme in the postulated phoneme sequence P , and p̃∗j
the j’th phoneme in the decoded sequence P̃ ∗ (of length M). Eq. 2 indicates
that the most likely word sequence is the sequence that is most likely given
the observed phoneme sequence from a speaker. The term Pr(p̃∗j |pj) represents
the probability that the phoneme p̃∗j is recognized when pj is uttered, and is
obtained from a speaker’s confusion-matrix. This element is integrated into the
recognition process as presented in Figure 2.

This information then can be modelled by techniques to improve the base-
line ASR’s output. Evaluation is performed when P̃ ∗ (which now is obtained
from test speech) is decoded by using the “trained” techniques into sequences of
words W ∗. The correction process is done at the phonetic level, and by incor-
porating a word-language model a more accurate estimate of W is obtained. In
this work, the extended Metamodels are the technique used for the modelling of
the confusion-matrix and implementation fo the ASR process. This is presented
in Section 3.
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Fig. 2. Training and testing process of the confusion-matrix approach

Fig. 3. Comparison of performance of Metamodels trained with different phoneme
sequences

2.1 Dynamic Estimation of the Phoneme Confusion-Matrix

As presented in Section 1, the studies that have used the phoneme confusion-
matrix as resource for error modelling have only used a single baseline condition
to estimate the confusion patterns. This is, a single language model restriction
(either phoneme-based or word-based). We consider necessary to study the be-
haviour of the ASR for different language model restrictions as this affects the
phoneme/word output, which is the base for confusion-matrix estimation.

For example, consider Figure 3, which shows the performance of the sin-
gle phoneme confusion-matrix approach when trained and tested with different
number of phoneme sequences generated with different language model restric-
tions. These results were obtained during a previous exploratory study with
the Nemours database of dysarthric speech [1], which is presented in Section 5.
The baseline (BASE) represents the adapted word output from a standard ASR
system (with continuous HMMs for acoustic modelling). META1 represents the
performance of the implementation technique of the Metamodels (see Section
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3) trained with the confusion-matrix estimated from phoneme sequences gen-
erated with a phoneme-based (PB) language model with no probability restric-
tions 1(s=0). META2 and META3 are the performance of the same Metamodels
with different levels of restrictions for the PB language model (s=10 and s=25).
META4 is the performance when the confusion-matrix is estimated from the
phoneme transcriptions of the word output generated with a highly restricted
word-based (WB) language model (i.e., s >30). As it is presented, there are
significant differences in performance.

Also it was observed that there was variability in the patterns of phoneme con-
fusions observed with different levels of language model restrictions. In Figure
4 is shown a sequence of confusion-matrices estimated from phoneme sequence
obtained with different grammar scale factors for the language model. In the
matrix estimated from phoneme sequences obtained from the transcriptions of
words obtained with a WB language model, there are missing confusion pat-
terns that are present in the matrices obtained with a PB language model with
different restrictions (s=1,5). These estimates are considered to be important,
especially when training data is sparse and estimation of unseen data is required.
These confusion patterns potentially can be present in the unseen test set.
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Fig. 4. Comparison of phoneme confusion-matrices obtained with different language
model conditions

By considering this information, a more complete confusion-matrix can be
estimated. Note however that, incorporating all this information in a single
confusion-matrix is not an easy task. This is because some patterns do not
contribute in the same way as others. For example, if just a number of matrices
are estimated and averaged to get a single matrix, the most dominant patterns
across all the matrices will be reinforced in the single matrix. On the other
hand, the less dominant, but still important, will be reduced even further. This
was considered to be a problem similar to the mixture of gaussian distributions
where, in this case, would be a mixture of phoneme confusion-matrices.

We start by taking as reference the definition of the emission probabilities
of the HMMs, B = {bi(ot)}, where each term represents the probability of an
observation vector ot being generated from a state j:

1 The grammar scale factor is a variable used to set the influence (or restriction) of
the language model on the ASR process[20] and is identified as s ∈ (0, 30).
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bj(ot) =

K∑

k=1

CjkN(ot,μjk,Σjk) (3)

In Eq. 3, K denotes the number of mixture-components, Cjk is the weight for the

k-th mixture component satisfying
∑K

k=1 Cjk = 1, and N(ot,μjk,Σjk) denotes
a single Gaussian density function with mean vector μjk and covariance matrix
Σjk for state j.

For this work, K would be the number of confusion-matrices to consider, each
one obtained from a different language model condition. Ck the weight which
would measure the contribution, or importance, of each k-th confusion-matrix.
And Pr(p̃∗j |pj)k the discrete distribution probabilities associated to the k-th
phoneme confusion-matrix (see Eq. 2). Hence, the estimated dynamic phoneme
confusion-matrix can be expressed as:

Pr(p̃∗j |pj)dyn =
K∑

k=1

CkPr(p̃∗j |pj)k (4)

In Section 4 the algorithm designed to estimate the weights Ck is presented.

3 Extended Metamodels

The Metamodels are a technique proposed to model a speaker’s confusion-matrix
Pr(p̃∗j |pj) and to incorporate this information into the ASR process [3,12]. These
consist of discrete HMMs with the structures shown in Figure 5, which allow the
modelling of insertion and deletion patterns. Each state of a metamodel has a
discrete probability distribution over the symbols for the set of phonemes (i.e.,
Pr(p̃∗j |pj)), plus an additional symbol labelled DEL (deletion). The central state
(C) of a metamodel for a certain phoneme models correct decodings, substitu-
tions and deletions of this phoneme made by the ASR system. States BF and
AT model (possibly multiple) insertions before and after the phoneme.

Fig. 5. Original and Extended Metamodels
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The extended version of the Metamodels was taken for this work as it was
reported to perform better than the original version [2] for the modelling of
insertion patterns. Hence, the difference to the original Metamodels is the ex-
tension of the insertion states to model the insertion-context associated to each
phoneme: the states Bq model the q-th insertion-before a phoneme, and Ar the
r-th insertion-after a phoneme. These q = 1 . . .Q and r = 1 . . . R indexes iden-
tify the contexts of such insertions, where Q and R represent the length of the
contexts. More details about this technique can be found in [2].

4 Optimization Method: Genetic Algorithm

A Genetic Algorithm (GA) is a search heuristic that mimics the process of nat-
ural evolution and generates useful solutions to optimization problems [6]. In
a GA, the solutions for an optimization problem receive a penalization score
based on their quality or “fitness”, which determines their opportunities for re-
production. It is expected that parent solutions of very good quality will produce
offsprings (by means of reproduction operators such as crossover or mutation)
with similar or better characteristics, improving their fitness after some genera-
tions. For our problem, we need to find the following:

– a vector of values Ck for the weights of the K phoneme confusion-matrices
used to dynamically obtain a representative matrix for error modelling;

– the grammar scale factor s more suitable to obtain representative phoneme
confusion-matrices;

– the length of the insertion-contexts Q and R for the extended Metamodels.

The coding scheme and GA implementation are discussed in the following sec-
tions.

4.1 Chromosome Representation and Fitness Evaluation

The chromosome of the GA is presented in Figure 6. The first 10 elements
(genes) consist of the weights of Ck, where each one is estimated initially as
Ck = rand(1, 10)/10 (hence,K=10 phoneme confusion-matrices are considered).
Note that these values are not integers, and that the initial set of values for Ck

may not sum to 1.0 because each one is estimated individually. Thus, these values
must be normalized after the last value is estimated.

Fig. 6. Chromosome representation of the parameters for the Metamodels and the
estimation of the dynamic confusion-matrix
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From the 10 phoneme confusion-matrices to be used, the first 9 are estimated
from the ASR system’s phoneme sequences obtained with a phoneme-based (PB)
language model. The last one is estimated from the transcription of the word
output of the same ASR system, which is obtained with a word-based (WB)
language model. Thus, if the following 10 genes correspond to the grammar
scale factors sk ∈(0,20) (which have integer values) for the estimation of each
k-th confusion matrix, the first 9 are for the PB language model, and the last
one for the WB language model. Finally, in the last two genes (21, 22) are stored
the lengths of the insertion-contexts Q and R (∈ (0,10)).

The initial population for the GA consists of 10 individuals, where the first
element is the extended metamodel built with the single confusion-matrix ap-
proach (hence, genes 1 - 10, 11-20, and 21-22 remain constant with their original
values), and the remaining individuals are randomly generated within the range
of values specified above.

The fitness value was measured as the Word Recognition Accuracy (%WAcc)
obtained by the built Metamodel with the single or dynamic confusion-matrix
approach on a “control” speech set (see Section 5).

4.2 Operators: Selection and Reproduction

– Selection: How to choose the eligible parents for reproduction was based
on the Roulette Wheel and was implemented as follows:
1. For each of the 10 best individuals in the population, compute its fitness

value.
2. Compute the selection probability for each xi individual as: pi =

fi∑
H
k=1 fk

,

where H is the size of the population (sub-set of 10 individuals), and fi
the fitness value of the individual xi.

3. Compute the accumulated probability qi for each individual as: qi =∑i
j=1 pj.

4. Generate a uniform random number r ∈ {0, 1}.
5. If r < qi, then select the first individual (x1), otherwise, select xi such

that qi−1 < r ≤ qi.
6. Repeat Steps 4 and 5 H times (until all H individuals are selected).

– Crossover: Uniform crossover was used for reproduction of parents chosen
by the Roulette Wheel method. A template vector of dimension 1×22 was
used for this, where each of its elements received a random binary value (0,
1). Offspring 1 is produced by copying the corresponding genes from Parent
1 where the template vector has a value of 0, and copying the genes from
Parent 2 where the template vector has a value of 1. Offspring 2 is obtained
by doing the inverse procedure. 10 offsprings are obtained by crossover from
the 10 individuals in the initial population. This increased the size of the
population to 20.

– Mutation: The mutation scheme consisted in randomly changing all chro-
mosome values in the best 5 individuals. In this way, a population of 25
individuals is obtained for the GA.

– Stop Condition: The algorithm was performed for 20 iterations as it was
observed that convergence was stable by that point.
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5 Experiments on Dysarthric Speech

5.1 Speech Data and Baseline Recogniser

For the experiments with dysarthric speech, the Nemours database [1] was
used. This database consists of a collection of 814 short sentences spoken by
11 american-english speakers (74 sentences per speaker) with varying degrees of
dysarthria resulting from either Cerebral Palsy or head trauma (data from only
10 speakers was used as some data is missing for one speaker). The sentences
are nonsense phrases that have a simple syntax of the form “the X is Y the Z”,
where X and Z are monosyllabic nouns (74 in total) and Y is a bisyllabic verb
(37 in total) in present participle form (for instance, the phrases “The shin is
going the who”, “The inn is heaping the shin”, etc.).

In addition, data from a reference speaker with normal speech is included. This
speaker utters each one of the 740 sentences spoken by the dysarthric speakers.
Hence, a baseline speech recogniser was built with this speaker’s data. This
task was accomplished with the HTK Toolkit [20]. In general, 39 monophone
acoustic HMMs were constructed with a standard three state left-right topology
with eight mixture components per state. The front-end used 12 MFCCs plus
energy, delta and acceleration coefficients. A frame period of 10 msec with a
Hamming window of 25 msec and 26 filter-bank channels were used.

To adapt the baseline system to each dysarthric speaker, a common prac-
tice when using commercial ASR systems for people with speech disorders, the
Maximum Likelihood Linear Regression (MLLR) technique was used [20]. The
language models for the baseline, the GA, and the Metamodels, consisted of WB
and PB bigrams estimated from all the 740 sentences in the database.

From each dysarthric speaker, 18 randomly selected sentences were used for
speaker adaptation and phoneme confusion-matrix estimation. Then, a different
set of 18 sentences was selected for fitness evaluation of the GA (control). Finally,
the resulting Metamodels of the GA optimization were tested with the remaining
38 sentences.

5.2 Convergence of the GA

Figure 7 shows the mean graph of fitness convergence across 20 executions of the
GA and all dysarthric speakers. The Initial Metamodels are those built with the
single confusion-matrix approach, the Baseline HMM is the performance of the
adapted ASR system, and the Dyn-GA Metamodels are those built with the dy-
namic confusion-matrix approach optimized with the GA. As it is observed, the
Initial Metamodels perform better than the baseline, something that is consis-
tent with the results obtained in [3] and [12]. The Dyn-GA Metamodels increase
their performance as the GA iterates, achieving a stable convergence after 10 it-
erations. It’s important to mention that all of the Dyn-GA Metamodels obtained
on each of the 20 executions of the GA achieved the same results on the test set.
Hence, the results presented in Table 1 were obtained with a single execution of
the GA.
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Fig. 7. Convergence of the GA

5.3 Results on Test Data

The mean recognition results across all dysarthric speakers on the test set (380
sentences) are presented in Table 1. A gain of 3.3% (4.5% absolute over the
Initial Metamodels performance) is achieved with the Metamodels built with
the proposed appoach. This gain was statistically significant as measured by the
matched-pairs test described in [5] obtaining a p-value < 0.05.

Table 1. Mean %WAcc across all speakers on the test set

6 Conclusions and Future Work

In this paper we present an approach to obtain phoneme confusion-matrix es-
timates to improve the performance of Metamodels, a technique for dysarthric
ASR. The approach consists of the dynamic estimation of confusion-matrices
across different language model restrictions. A single confusion matrix then is
estimated from the weighted confusion matrices previously obtained. The weights
and other parameters of the Metamodels were optimized by means of a Genetic
Algorithm (GA).

As presented in Section 5, with the proposed approach statistically signifi-
cant gains were achieved over a standard baseline system and Metamodels when
tested with a well known dysarthric speech database.

Future work will be aimed at (1) evaluating the performance of the approach
with larger language models and other speech databases (TED, WSJ); (2) im-
proving the GA with other operators for reproduction and selection; (3) to apply
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the GA on other HMM parameters as the number of states and the observation
probabilities associated to each HMM state; and (4) to explore the use of the
dynamic phoneme confusion-matrices for speaker identification purposes.
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