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Abstract. The Cyclic Bandwidth problem (CB) for graphs consists in
labeling the vertices of a guest graph G by distinct vertices of a host cycle
C (both of order n) in such a way that the maximum distance in the cycle
between adjacent vertices in G is minimized. The CB problem arises in
application areas like VLSI designs, data structure representations and
interconnection networks for parallel computer systems.

In this paper a new Branch and Bound (B&B) algorithm for the CB
problem is introduced. Its key components were carefully devised after an
in-depth analysis of the given problem. The practical effectiveness of this
algorithm is shown through extensive experimentation over 20 standard
graphs. The results show that the proposed exact algorithm attains the
lower bounds for these graphs (of order n ≤ 40) expending a reasonable
computational time.
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1 Introduction

The Cyclic Bandwidth problem (CB) was first stated by Leung et al. in 1984 [1] in
relationwith the design of a ring interconnectionnetwork for a set of computers (V )
whose communication pattern was described by a graphG(V,E) where {u, v} ∈ E
if computer u communicates with computer v. They were interested in finding an
arrangement of these computers on a cycle so that everymessage sent can arrive at
its destination in at most k steps. The CB problem arises also in other application
areas like VLSI designs [2], data structure representations [3], code design [4] and
interconnection networks for parallel computer systems [5].

The CB problem can be formally defined as follows. Let G(V,E) be a finite
undirected graph, where V (|V | = n) defines the set of vertices and E ⊆ V × V
= {{u, v} | u, v ∈ V } is the set of edges. Given a bijective labeling function for
the vertices of G, ϕ : V → {1, 2, . . . , n}, the cyclic bandwidth (the cost) for G
with respect to the labeling ϕ is defined as:

Bc(G,ϕ) = max
(u,v)∈E

{|ϕ(u)− ϕ(v)|n} , (1)

where |x|n = min{|x|, n − |x|} for 0 < |x| < n, which is called cyclic dis-
tance. Then the CB problem consists in finding a labeling ϕ∗, which minimizes
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Bc(G,ϕ∗), i.e.,
Bc(G,ϕ∗) = min{Bc(G,ϕ) : ϕ ∈ L } , (2)

where L is the set of all possible labelings.
For instance, consider the graph G(V,E) depicted in Fig. 1(a), consisting of

ten vertices with a labeling ϕ given by the numbers shown inside each vertex. The
cyclic distance between each pair of adjacent vertices (u, v) ∈ E can be calculated
using the expression min{|ϕ(u)−ϕ(v)|, n−|ϕ(u)−ϕ(v)|}. These cyclic distances
are represented by the numbers associated to the edges in the graph. For this
particular labeling ϕ, Bc(G,ϕ) = 4. On the other hand, if the labels 1 and 9
are exchanged a new labeling ϕ′ is obtained (see Fig. 1(b)), which produces a
smaller (better) cyclic bandwidth value (Bc(G,ϕ′) = 3). The embedding of this
new labeling of the graph G in a cycle is presented in Fig. 1(c) for illustrative
purposes.
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Fig. 1. Example of a Cyclic Bandwidth problem instance

It was demonstrated that finding the cyclic bandwidth is NP-complete for
general graphs [6]. It is important to note that the CB problem is a natural
extension of the well-known bandwidth minimization problem for graphs [7],
which consists in embedding the vertices of a guest graph G in a host path P
(both of order n) in such a way that the maximum distance in the path between
adjacent vertices in G is minimized.

In this paper, a new Branch and Bound (B&B) algorithm for finding exact
solutions for the CB problem for general graphs is presented. The proposed
B&B algorithm is based on a lowest-cost search strategy, i.e., branches having
the lowest cost are explored while branches with higher cyclic bandwidth are cut.
It implements the Hungarian method [8] for solving the problem of efficiently
computing the cost of assigning every available label in a partial solution to
each possible non-labeled vertex. The practical usefulness of the proposed B&B
is assessed experimentally using a test-suite, composed by 20 standard graphs
belonging to 4 different classes. The computational results from this experiments
show that our algorithm is able to attain the lower bounds for these graphs (of
order n ≤ 40) expending a reasonable computation time.
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The remainder of this paper is organized as follows. In Sect. 2 a brief review is
given to present some representative related work. The main components of the
proposed B&B algorithm are presented in detail in Sect. 3. Section 4 describes
the experimental methodology used for assessing the practical usefulness of the
proposed B&B algorithm, while the computational results produced by these
experiments are presented in Sect. 5. Finally, the conclusions of this work and
some possible directions for future research are provided in Sect. 6.

2 Relevant Related Work

In spite of its practical and theoretical importance, less attention has been paid
to the CB problem with respect to other graph labeling problems. Up to now,
most of the research on this important labeling problem has been devoted to
the theoretical study of its properties with the aim of finding exact solutions for
certain specific cases. Next, we present a brief review of these studies.

In 2002 Zhou [9] proposed a systematic method for obtaining lower bounds
for the bandwidth and cyclic bandwidth problems in terms of some distance-
and degree-related parameters of the graph. The main idea of this method is
to relax the condition of embedding the graph G on the host graph with the
aid of a graphical parameter possessing some kind of monotonic property. This
method has been demonstrated to be efficient when the parameters are chosen
appropriately. The author concludes that this method yields a number of lower
bounds for the ordinary and cyclic bandwidths. In both cases, it gives rise to
new estimations, as well as improvements of some known results.

Later, de Klerk et al. [10] proposed two new semidefinite programming (SDP)
relaxations of the bandwidth and cyclic bandwidth based on the quadratic as-
signment problem (QAP) reformulation. The bounds produced by this method
were tested for some special graphs showing that they are tight for paths, cliques,
complete bipartite graphs. However, these bounds are not tight for hypercubes,
rectangular grids and complete k-level t-ary trees.

In 1995 Yuan and Zhou [11] demonstrated that for unit interval graphs, there
exists a labeling which is simultaneously optimal for the following seven labeling
problems: bandwidth, cyclic bandwidth, profile, cutwidth, modified cutwidth and
bandwidth sum. Following this idea, in [12] Lam et al. made a characterization
of graphs with equal bandwidth and cyclic bandwidth which includes planar
graphs, triangulation meshes and grids with some specific characteristics.

To the best of our knowledge, there has been no previous research investigating
Branch and Bound based algorithms for solving the CB problem in the case of
general graphs. Therefore, this paper presents an original contribution in this field.

3 A New Branch and Bound Algorithm

In this section, we present a new exact algorithm, based on Branch and Bound
(B&B), for solving the CB problem. This algorithm employs a lowest-cost search
strategy, where branches having the lowest cost are explored while branches
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with higher cost are cut. The following subsections describe in detail the main
components of our algorithm.

3.1 Branching Strategy

Every possible labeling ϕk, for k = {1, 2, 3, ..., (n − 1)!/2}, must be tested. In
our algorithm, the labelings are tested in lexicographic order, beginning with
ϕ1 = {1, 2, 3, ..., n} and ending with ϕ(n−1)!/2 = {n, n − 1, n − 2, ..., 1}. Each
individual label in ϕk is assigned to vertices, one at a time, producing three
different sets: V ′ the set of already labeled vertices, V ′′

k the set of unlabeled
vertices which are adjacent to those in V ′ and ϕ′′

k the lexicographic order set of
available labels.

The cyclic bandwidth (cost) Bc(G,ϕ′
k) for every particular partial labeling

is computed considering V ′ in G. If all labels in ϕk have been assigned, then a
labeling ϕ′

k with a value Bc(G,ϕ′
k) smaller than the prefixed bound b has been

found. The algorithm then stores this new best solution in ϕσ.
According to Leung [1], the upper bound for the CB is n/2, so at the beginning

b = n/2. When a labeling ϕσ is found, the search retakes a new bound b =
Bc(G,ϕσ)− 1.

The algorithm performs a depth-first search, so if a certain label is assigned
to a vertex and Bc(G,ϕ′

k) > b, the branch is cut. Then, a backtrack to the
parent label is applied and then the algorithm advances to the next child label.
The search process stops when all labelings have been analyzed. A detailed
description of the proposed B&B method is summarized in Algorithm 1.

3.2 Assignment Strategy

Two important issues are considered when adding a new label to a partial so-
lution ϕ′

k: the cost generated by that new label, and the lowest cost which can
be produced by assigning the available labels ϕ′′

k to the set V ′′
k of unlabeled ver-

tices adjacent to those in V ′. The latter provides information allowing to know
if the adjacent vertices can be labeled without exceeding the current bound b in
further iterations.

The Hungarian method is an algorithm which solves the assignment problem
in polynomial time [8]. Our implementation employs this algorithm to compute
the cost of assigning each label l ∈ ϕ′′

k to each possible vertex v ∈ V ′′
k . However,

if the cost of an assignment becomes higher than the current bound b, then the
evaluation of ϕk is not completed.

For instance, consider the partial representation of a graph G = (V,E) de-
picted in Fig. 2, which consists of five vertices labeled with the number shown
within each vertex. Let n = 10 and b = 3 for this example. Since the vertices in
the set V are taken following a lexicographic order, then the last labeled vertex
was V6 ← 5, therefore V ′ = {...V5, V6}, ϕ′

k = {..., 3, 5} and V ′′
k = {V7, V8, V9}.

Suppose that ϕ′′
k = {1, 4, 9, 10} and for this partial labeling Bc(G,ϕ′

k) < b. Us-
ing the Hungarian method the costs of assigning the labels in ϕ′′

k to the vertices
in V ′′

k are estimated and presented in Table 1. From this table it is clear that
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Algorithm 1. B&B for the CB problem

1 B&B(G(E, V ))
2 b = n

2

3 i← 1
4 ϕi = {1, 2, 3, ..., n}
5 V ′ ← ϕ′ ← ϕσ ← ∅
6 while i ≤ (n− 1)!/2 do
7 Vi ← ϕi

8 ϕ′ ← ϕ′ ∪ {ϕi}
9 V ′ ← V ′ ∪ {Vi}

10 c← Bc(G,ϕ′)
11 if c > b then
12 j ← backtracking (ϕ′, i)
13 if j > 0 then
14 i← j
15 Vi ← ϕ′

i

16 V ′ ← V ′ ∪ {Vi}
17 else return ϕσ

18 V ′′ ← {v ∈ (V \V ′)|(v, u) ∈ E, u ∈ V ′}
19 ϕ′′ ← {l ∈ (ϕ\ϕ′)}
20 assignment (V ′′, ϕ′′)
21 c← Bc(G,ϕ′)
22 if c > b then
23 j ← backtracking (ϕ′, i)
24 if j > 0 then
25 i← j
26 Vi ← ϕ′

i

27 V ′ ← V ′ ∪ {Vi}
28 else return ϕσ

29 if i = n then
30 ϕσ ← ϕ′

31 b← b− 1
32 j ← backtracking (ϕ′, i)
33 if j > 0 then
34 i← j
35 Vi ← ϕ′

i

36 V ′ ← V ′ ∪ {Vi}
37 else return ϕσ

38 i← i+ 1

V7 and V8 could be labeled without exceeding the current bound b in further
iterations. However, Bc(G,ϕ′

k) ≤ b could not be guaranteed for V9. In this case,
the evaluation of ϕk is stopped making a backtracking which produces the next
possible labeling ϕk+1 in lexicographic order.
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Fig. 2. Example of a partially labeled graph

Table 1. Table assignment vertex-label

ϕ′′
k

V ′′
k 1 4 9 10

v7 2 1 5 3

v8 4 1 4 5

v9 4 1 4 5

After preliminary experimentation with this basic assignment strategy we have
observed that it could be improved. The amelioration consists in also analyzing
the assignments of the adjacencies between the vertices belonging to the set V ′′

k .
Although it represents an additional computational effort, it permits to find at
this step vertices producing a cost which exceeds the current bound b. The main
advantage of this improved assignment strategy is that it is able in certain cases
to stop the evaluation of ϕk earlier than the basic assignment strategy, which
reduces importantly the size of the search space.

3.3 Backtracking Strategy

A backtracking occurs if the cyclic bandwidth of the partial labeling ϕ′
k exceeds

the current bound b when its i-th label is added. This backtracking procedure is
performed as described in Algorithm 2. First, the best element in the set ϕ′′

k of
available labels is identified. It is the first label l ∈ ϕ′′

k which guarantees that the
resulting cyclic bandwidth Bc(G,ϕ′

k) is lower than the current bound b when
this label is assigned to the i-th position of the partial labeling ϕ′

k. If there is
no such label meeting this condition, the (i− 1)-th position of ϕ′

k is analyzed (a
backtracking occurs), the set ϕ′′

k is updated and its best label is searched again.
This process is repeated until the best label is found or the complete set ϕ′

k was
analyzed.
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Algorithm 2. Backtracking strategy

1 backtracking (ϕ′, i)
2 ϕ′′ Available labels

3 while true do
4 ϕ′

i ← best(ϕ′′)
5 if ϕ′

i = ∅ then
6 i← i− 1
7 if i > 0 then
8 ϕ′′ ← ϕ′′ ∪ {ϕ′

i}
9 ϕ′

i ← ∅
10 else return i

11 else return i

4 Experimental Setup

In order to assess the performance of the proposed B&B algorithm introduced
in Sect. 3 it was was coded in C and compiled with gcc using the optimization
flag −O3. It was run sequentially into a cluster composed of 4 processors Xeon
X5650 equipped with six cores at 2.66 GHz, 32 GB of RAM and Linux operating
system.

Due to the deterministic nature of the algorithm, it was executed only one
time over each of the selected benchmark instances. The maximum CPU time
allowed for each execution was predefined to 36 hours.

4.1 Compared Algorithms

For the computational experiments two different versions of the B&B algorithm
described in Sect. 3 were implemented. The main difference between these two
versions is the assignment strategy employed. The first one, denoted B&B1,
employs the basic assignment strategy, which employs the Hungarian method to
solve the problem of finding the cost (cyclic bandwidth) of assigning each label
l ∈ ϕ′′

k to each possible vertex v ∈ V ′′
k . The second version, called B&B2, uses

the improved assignment strategy which also analyzes the assignments of the
adjacencies between the vertices belonging to the set V ′′

k (see Sect. 3.2).

4.2 Benchmark Instances and Performance Assessment

As it was mentioned at the end of Sect. 2, there has been no previous research in-
vestigating neither exact nor approximate algorithms for solving the CB problem
in the case of general graphs. There exists no standard test-suite reported in the
literature for evaluating the performance of this kind of algorithms. For this reason
a test-suite composed of 20 benchmark instances is proposed in this paper.
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Table 2. Characteristics of the test-suite used in the experiments. It consists of 20
instances representing 4 different classes of graphs.

Graph |V | = n |E| = m ED = 2m/n(n− 1) T
cycle20 20 20 0.105 1

cycle25 25 25 0.083 1

cycle30 30 30 0.069 1

cycle35 35 35 0.059 1

cycle40 40 40 0.051 1

grid5x4 20 31 0.163 4

grid5x5 25 40 0.133 5

grid5x6 30 49 0.113 5

grid5x7 35 58 0.097 5

grid5x8 40 67 0.086 5

path20 20 19 0.100 1

path25 25 24 0.080 1

path30 30 29 0.067 1

path35 35 34 0.057 1

path40 40 39 0.050 1

tree21 21 20 0.095 3

tree25 25 24 0.080 4

tree31 31 30 0.065 4

tree33 33 32 0.061 4

tree35 35 34 0.057 4

The test-suite comprises 4 different classes of standard graphs: cycles, grids,
paths and perfect binary trees. All these instances have a number of vertices
between 20 and 40 and are publicly available1. The characteristics of these
instances are detailed in Table 2, where the first three columns indicate the
name of the graph as well as its number of vertices and edges. The edge density
(2|E|/|V |(|V |− 1)) of each graph is depicted in Column 4, while the last column
presents the theoretical lower bounds T reported in [10,13,12].

The criteria used for evaluating the performance of the compared B&B algo-
rithms are the same as those used in the literature [14,15]: the total number of
partial solutions (ϕ′

k) examined during the search process, the total number of
backtracking operations occurred and the expended CPU time in seconds. For
these criteria smaller values are better.

5 Computational Results

The experimental comparison between the two versions of the Branch and Bound
algorithm introduced in this paper (B&B1 and B&B2) was performed over the

1 http://www.tamps.cinvestav.mx/~ertello/cbmp.php

http://www.tamps.cinvestav.mx/~ertello/cbmp.php
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benchmark instances described above and employing the same computational
platform introduced in Sect. 4.

The results from this experiment are summarized in Table 3, which lists in the
first column the name of the benchmark instance. For each compared algorithm
this table presents: the total number of partial solutions ϕ′

k evaluated during
the search process (#ϕ′

k), the total number of backtracking operations occurred
(B), and the CPU time in seconds (time) expended for finding the optimal
solution ϕ∗. Instances marked with the symbol “—” indicate that they could
not be solved within the maximum allowed time of 36 hours. Given that we are
comparing exact algorithms, it is not necessary to report the cyclic bandwidth
achieved as it is always the optimum value.

Table 3. Performance comparison between two different versions (B&B1 and B&B2)
of the Branch and Bound algorithm proposed in Sect. 3

B&B1 B&B2

Graph #ϕ′ B time #ϕ′ B time

cycle20 2331 2042 0.01 586 487 0.01

cycle25 12900 11867 0.12 627 514 0.01

cycle30 88516701 81990664 1007.90 2223754 2089272 43.10

cycle35 465326343 431788129 4184.05 46183164 43443834 449.58

cycle40 397409592 372614337 4996.08 23409592 22614337 531.08

grid5x4 123230 113472 0.82 18280 17002 0.16

grid5x5 2674635 2517186 29.32 562911 532316 8.43

grid5x6 144312826 135950146 3016.46 3253192 3099321 84.63

grid5x7 — — — 18490735 17431435 426.32

grid5x8 — — — 160963339 155466427 14144.13

path20 695 585 0.01 559 457 0.01

path25 19997 18023 0.07 2498 2227 0.01

path30 101821 93156 7.63 2847814 2513041 0.60

path35 74072 70352 0.83 10393 9815 0.13

path40 — — — 10045277883 9116835089 34023.25

tree21 147232 133651 0.47 61483 56644 0.23

tree25 223355577 204264652 763.27 28450274 26320726 110.92

tree31 707968183 663767447 3552.96 220801934 208577566 1240.82

tree33 2248823425 2121853157 10965.57 882035992 836064022 4588.00

tree35 — — — 16419099889 15388330578 11288.81

Analyzing the data presented in Table 3 lead us to the following main ob-
servations. First, the most time-consuming algorithm is B&B1, despite B&B2
employs the improved assignment strategy which demands an additional compu-
tational effort. This is possible because the improved assignment strategy used
by B&B2 is able to importantly reduce the size of the explored search space (see
column #ϕ′

k).
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Second, one observes that B&B1 was not able to find a solution within the
time limit of 36 hours for the following classes of graphs with n ≥ 35: grids,
paths and perfect binary trees. On the contrary, B&B2 found an exact solution
for all the selected instances employing at most 9.45 hours and consistently a
lower number of backtrack operations (B) than B&B1.

The comparison of the computational time expended by B&B1 and B&B2 is
better illustrated in Fig. 3. The plot represents the studied instances (ordinate)
against the CPU time in seconds expended by the two compared algorithms
using a log10 scale (abscissa). From this graph one clearly observes that B&B2
consistently expends much less CPU time than B&B1.
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Fig. 3. Consumed CPU time comparison between two different versions (B&B1 and
B&B2) of the proposed Branch and Bound algorithm

6 Conclusions and Further Work

In this paper a new Branch and Bound (B&B) algorithm for the Cyclic Band-
width (CB) problem was introduced. It is based on a lowest-cost search strategy
which explores the branches having the lowest cost while it cuts the branches
with higher cyclic bandwidth.

Two different versions of this B&B algorithm, employing slightly different
assignment strategies, were implemented. The main difference between these
two versions is that the first one, denoted B&B1, employs a basic assignment
strategy based on the Hungarian method [8] for efficiently finding the cost of
assigning every available label in a partial solution to each possible non-labeled
vertex; while the second, called B&B2, uses an improved assignment strategy
which additionally analyzes the assignments of the vertices belonging to the set
of unlabeled vertices adjacent to those in the set of already labeled vertices.



A New B&B Algorithm for the Cyclic Bandwidth Problem 149

Given the lack in the literature of a standard test-suite for evaluating the per-
formance of algorithms for solving the CB problem, a new benchmark composed
of 20 instances, comprising 4 different classes of standard graphs (cycles, grids,
paths and perfect binary trees), was proposed in this work.

A performance experimental comparison between the two versions of the
Branch and Bound algorithm introduced in this paper (B&B1 and B&B2) was
performed over the benchmark instances proposed. The results from this com-
parison show that B&B2 consumes much less CPU time (up to 97% in some
cases), because it analyzes fewer partial solutions before finding the lower bound
of the instances. This gives us the opportunity to find exact solutions for graphs
than B&B1 was unable to solve.

This work opens up a range of possibilities for future research. Currently, we
are interested in hybridizing our B&B algorithm with some kind of metaheuristic
in order to speed the convergence time of the resulting algorithm, inspired in the
ideas presented in [15]. The parallelization of the B&B algorithm introduced in
this paper also represents an interesting issue for future work.
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