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Abstract. The development of a new software system involves exten-
sive tests on the software functionality in order to identify possible fail-
ures. It will be ideal to test all possible input cases (configurations),
but the exhaustive approach usually demands too large cost and time.
The test suite reduction problem can be defined as the task of generat-
ing small set of test cases under certain requirements. A way to design
test suites is through interaction testing using a matrix called Covering
Array, CA(N ; t, k, v), which guarantees that all configurations among
every t parameters are covered. This paper presents a simple strategy
that reduces the number of rows of a CA. The algorithms represent a
post-optimization process which detects wild cards (values that can be
changed arbitrarily without the CA losses its degree of coverage) and
uses them to merge rows. In the experiment, 667 CAs, created by a
state-of-the-art algorithm, were subject to the reduction process. The
results report a reduction in the size of 347 CAs (52% of the cases). As
part of these results, we report the matrix for CA(42; 2, 8, 6) constructed
from CA(57; 2, 8, 6) with an impressive reduction of 15 rows, which is
the best upper bound so far.

Keywords: Combinatorial testing, Test suite reduction, Covering ar-
rays, Wild cards, IPOG-F.

1 Introduction

Software systems are widely used in our society and they are present in such
daily activities as social networking and mobile devices; furthermore they take
an important role in scientific and technological development. Therefore, the
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quality of life of our society is greatly influenced by the software reliability; on
the contrary, software failures can cause large losses in the economy [22] or even
affect the health or life of people, as stipulated in the records of the Therac 25
crash [18] and the failure of the Ariane 5 rocket [19].

The quality of a software system is highly related to software testing [12].
Software testing has the aim to detect existing defects in a software system,
such that the bugs can be corrected before it begins to be used.Various kinds of
techniques and methods to ensure software quality have been developed in or-
der to detect different types of failures, one classification involves the white-box
and the black-box test strategies [4]. The white-box approach uses an internal
perspective of the software. This approach requires that the tester has program-
ming skills to identify all execution paths through the source code. In contrast,
black-box is a functional testing technique, it takes an external perspective of the
test object to derive test cases. Taking into account the input configuration, the
tester determines if the output is the correct, i.e. the software component must
correctly process the input data and provides the expected output depending
on the specific task that it performs. In this paper, the term software testing is
referred to black-box testing.

During software testing each test case indicates a configuration. In this con-
text, a software system is constituted by components that contain a set of k
parameters. A parameter is defined as an element that serves as software input,
receiving an unique value from a set of v possible values; therefore each software
component has vk possible configurations. A configuration indicates the setting
values for each of the k parameters to execute a test case. It will be ideal to test
all input cases; however the exhaustive approach is usually infeasible in terms
of time and budget because if the number of parameters increases, the number
of configuration grows exponentially. Due to this reason, another alternative to
create an effective test suite has to be used.

The test suite reduction problem can be defined as the task of generating a
set of test cases, as small as possible, under certain requirements that must be
satisfied to provide the desired testing coverage of a system. A way to design
test suites is through interaction testing (also called Combinatorial Testing), in
which a matrix that involves all the possible combination of symbols that the
factors of a system can take, under a certain interaction level.

Combinatorial Testing (CT) is an alternative that can be used for software
testing which has been widely applied to construct different instances [5,11]. CT
is based on empirical results of different kinds of software which indicate that
all their identified failures were triggered by unexpected interactions among at
most 6 parameters [14,15]. Based on this premise, CT implements a model-based
testing approach using combinatorial objects where a covering array (CA) is one
of the most used. A CA(N ; t, k, v) is an N×k matrix that contains the test suite
for the software under test. Every row indicates a test case and the columns
represent the k parameters of the software, which can take v symbols. CAs offer
a level of coverage t (strength), since every N × t sub-array includes, at least
once, all the ordered subsets from v symbols of size t.
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Even a CA significantly reduces the number of test cases, the problem to con-
struct optimal CAs, also known in the literature as Covering Array Construction,
is consider highly combinatorial [6].

Due to the complexity of the CAC, several techniques have been implemented
although they do not necessarily provide the optimal number of rows. Among
these strategies are: a) algebraic methods [13,7], b) recursive methods [9,8], c)
greedy methods [10,3], d) metaheuristics [23,24] and e) exact methods [1]. A
most detailed explanation of all these approaches can be found in recent surveys
[16,17].

Among the techniques that provide the fastest results are greedy methods,
being one of the best known the IPOG-F algorithm (In-Parameter-Order Gen-
eral). IPOG-F is the primary algorithm used in ACTS tool (Advanced Combina-
torial Testing System). It was developed by the NIST, an agency of the United
States Government that works to develop tests, test methodologies, and assur-
ance methods; and which within its programs includes a research committee
allocated to CT1.

A post optimization process can be developed through the identification of
symbols that are unnecessary in the test suite already constructed, those sym-
bols (which will be named as wild cards), can be substituted by any other one
without affecting the coverage of the matrix. In this paper we present a post-
optimization process to reduce the size of CAs. This test suite reduction uses
two algorithms refereed as wcCA and FastRedu. The algorithm wcCA detects wild
cards (symbols that can be changed arbitrarily such that a CA does not lose its
level of coverage). If the number of wild cards is greater than zero, FastRedu
tries to merge compatible rows (two rows are compatible if for each column the
two symbols involved are identical or one of them is a wild card) this action
allows the reduction of rows from the original CA.

Test suite reduction has been widely studied by several researchers [2,21];
however, the proposed techniques are primary focused on test suites constructed
by approaches different to CT, so the features of those test suites do not include
the level of coverage of a CA which indicates that every vt tuples appear in
the

(
k
t

)
combinations of parameters at least once. To our knowledge, the only

other work that advocates to reduced the size of a CA using a post-optimization
process is presented by Colbourn [20].

To test the performance of this approach, the algorithms were tested using
667 CAs created by the deterministic algorithm IPOG-F and obtained from the
NIST website 2.

This paper is organized in the following Sections. Section 2 presents the defini-
tions of CA and wild cards, Section 3 provides an explanation of one technique
that has been used for post-optimization process of CAs. Section 4 gives an
overview of the proposed algorithms wcCA and FastRedu. After that, Section 5
shows the design of the experiment and the results. Finally, Section 6 summarizes
the main contribution of this paper.

1 http://csrc.nist.gov/groups/SNS/acts/index.html
2 http://math.nist.gov/coveringarrays/

http://csrc.nist.gov/groups/SNS/acts/index.html
http://math.nist.gov/coveringarrays/
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2 Background of Covering Arrays

2.1 Definition of CA

A CA, denoted by CA(N ; t, k, v), is a matrix of size N × k and strength t where
each column has v distinct symbols; and every N × t sub-array contains all
combinations of vt symbols at least once. When a CA is used for software testing,
every column indicates the corresponding parameter of the software under testing
and the symbols in the column specify the values for such parameter. Each row
represents a test case, i.e. the configuration for an experimental run. A CA is
optimal if it has the smallest possible number of rows, the value of N is known
as the Covering Array Number and is formally defined as

CAN(t, k, v) = min{N |∃ CA(N ; t, k, v)}
To illustrate the use of CAs suppose that we have a system with 3 parameters
each with 2 possible values labeled as 0 and 1 respectively as shown in Table 1.

Table 1. System with 3 parameters each with 2 possible values

O.S. Web browser Database

0 → Linux Mozilla Firefox MySQL

1 → Windows Internet Explorer Oracle

The exhaustive approach demands 23 = 8 configurations, but instead of this,
we can use a CA with t = 2, i.e. it covers all configurations between pairs of
parameters, thus we only need 4 test cases as shown in Table 2. Every row
indicates the configuration of a test case.

Table 2. Mapping of the CA(4;2,3,2) to the corresponding pair-wise test suite

1 1 0 →
1 0 1 →
0 1 1 →
0 0 0 →

O.S. Web browser Database

Linux Internet Explorer MySQL

Linux Mozilla Firefox Oracle

Windows Internet Explorer Oracle

Windows Mozilla Firefox MySQL

In the example shown in Table 2 the total of combinations between pairs of
parameters is

(
k
t

)
=

(
3
2

)
= 3 being these {O.S., Web browser}, {O.S., Database}

and {Web browser, Database}. Each parameter has 2 settings giving 4 possible
combinations for each pair of them. The definition of a CA implies that every
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N × t sub-array contains all possible combinations of vt symbols at least once,
based on this fact, for the tuple {O.S., Web browser} all the combinations {0,0},
{0,1}, {1,0}, {1,1} (mapped to the corresponding settings) are covered, the same
way for any pair of selected parameters.

2.2 Detection of Unnecessary Symbols (Wild Cards) in a CA

Within the definition of CA, the indication at least once means that a combi-
nation can be covered more than once, i.e. there is the possibility that some
symbols be changed arbitrarily without the CA losses its degree of coverage.
These symbols are referred as wild cards. They are exemplified in Table 3 using
asterisks *.

Table 3. Detection of wild cards in the CA(5;2,3,2)

A B C A B C
0 0 0 0 0 0
1 0 1 1 0 1
0 1 1 → 0 1 1
1 0 0 * * *
1 1 0 1 1 0

The array on the right side is still a CA due to for all pairs of columns {A, B},
{A, C} {B, C} the combinations {0,0}, {0,1}, {1,0}, {1,1} are covered. In this
example all symbols in the third row are wild cards, it means that the row can
be deleted to obtain a new CA(4;2,3,2) which improves the size of the original.

Wild cards have different applications, one of them is the possibility to merge
compatible rows in a CA (reducing its number of rows), in this way, many CAs
can be constructed by strategies that demand less time than exact approaches
with the possibility of reducing their size through a post-optimization strategy.
Another alternative to use wild cards is shown in the work of Colbourn, et al. [9]
which explains how use them to construct CAs with larger number of columns
respect to the input ones through algebraic constructions.

3 Related Work

An algorithm to find wild cards was presented in Nayery et al. [20]. The main
idea consists in searching elements of the initial array CA(N ; t, k, v) that do
not affect coverage of tuples of cardinality t. These elements can be replaced
by symbol *, after that, the row containing the greatest number of * is moved
to the last place in the array. This number is stored. For all remaining rows
containing *, look through all elements of row r where * occurs (let this element
occur in column c). If the value in the last row of column c is *, replace element
of row r in column c by a random value. Otherwise, replace it by the value in the
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last row of column c. 8. Permute all rows, except for the last one, in a random
way to obtain a new initial array. The detailed explanation of this algorithm is
presented in [20].

4 Proposed Approach

The methodology in this paper involves the use of two algorithms. The purpose
of the first one is to find wild cards in a given CA using a greedy strategy. The
second algorithm reduces the number of rows of the CA resulting of the first
step. The next sections describe in detail both algorithms.

4.1 Wild Card Identification Algorithm (wcCA)

This section presents the Wild Card Identification Algorithm (or wcCA) for
the identification of wild cards. The process to find wild card symbols in a
CA(N ; t, k, v) is simple and it is described in the following paragraphs.

The algorithm first determines the number of rows that covers the different
combinations of symbols for each t-way interaction (a t-way interaction is a
combination of t columns of the CA). Whenever a combination of symbols in a
t-way interaction is solely covered by a row, the elements of the row involved in
the corresponding columns are marked as fixed. Finally, it selects in a greedy
way one covering row for those combination of symbols that are covered more
than once; the result of the selection will produce that the chosen row will have
fixed the columns for that combination of symbols. Those columns that weren’t
fixed during this process are wild cards of the input matrix. The Algorithm 2
presents the pseudocode for wcCA.

The input for wcCA is a matrix MN×k that is a CA(N ; t, k, v). The output is a
matrixM′

N×k where each cellm
′
i,j is a wild card if it is assigned an UNFIXED value.

The functionFixing identifieswhich combination of symbols are covered once.The
structuresMC and MR refer to the sets of columns and rows of M, respectively.
The variable M is a combination of t columns (tuples); it is used in combination
with the structuresolelyCoverednc to keep trackofwhich combinationof symbols
nc are covered only once (the value of solelyCoverednc contains the row that cov-
ers nc). The function SymbolCombination(M, r,M) returns an integer value that
identify which combination of symbols is located in the t columns identified byM
in the row r. The function fixSymbols(M′, r,M) set to the value FIXED the set of
columns M in the row r. The function Fixed(M′, r) returns the number of fixed
columns. Finally, the structure coveredBync is filled with the result of the greedy
criterion to untie combination of symbols and selects one row to cover them. In
general, the algorithm wcCA can identify wild cards in time O(N

(
k
t

)
).

4.2 Reduction Algorithm Using Wild Cards (FastRedu)

The size of a CA can be reduced by merging compatible rows. Two rows are
compatible if for each column they have the same symbol or at least one of the
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Algorithm 1. Function Fixing, procedure prior to the wcCA Algorithm
Fixing(MN×k, N, t, k, v)1

Output:M′
N×k

M′
N×k ← UNFIXED;2

solelyCoveredvt ← ∅;3
foreach {M|M ⊂MC , |M| = t} do4

foreach r ∈ MR do5
v ← SymbolCombination(M, r,M);6
if solelyCoveredv = ∅ then7

solelyCoveredv ← r;8
end9
else10

solelyCoveredv ← NOT;11
end12

end13

foreach v ∈ V t do14
if solelyCoveredv �= NOT then15

r ← solelyCoveredv;16

fixSymbols(M′, r,M);17

end18

end19

end20

returnM′;21

Algorithm 2. Algorithm for the identification of wild cards in a CA
wcCA(MN×k, N, t, k, v)1

Output:M′
N×k

M′
N×k ← Fixing(M, N, t, k, v);2

coveredByvt ← ∅;3
foreach {M|M ⊂MC , |M| = t} do4

foreach r ∈ MR do5
v ← SymbolCombination(M, r,M);6
r∗ ← coveredByv;7

if Fixed(M′, r) > Fixed(M′, r∗) then8
coveredByv ← r;9

end10

end11

foreach v ∈ V t do12
r ← coveredByv;13

fixSymbols(M′, r,M);14

end15

end16

returnM′;17

rows has a wild card. Example of compatible rows are shown in Table 4; here,
a wild card is identified by an asterisk *. The example presents two rows that
are compatible and the row resulting from merging both rows. The row resulting
from the merging process will be the one with the greatest number of wild cards.

Algorithm 3 presents the pseudocode for the reduction algorithm (FastRedu).
This algorithm is quite simple. It tests every combination of two rows (ri, rj)
(lines 3 and 4), where i < j and ri, rj ∈ MR, and verifies if they are compatible
(line 5). Whenever a combination of rows (ri, rj) is compatible, they are merged
in row rj and the other row is marked as unnecessary in the CA (lines 6 and
7). All the rows marked as unnecessary will be deleted.



134 L. Gonzalez-Hernandez et al.

Table 4. Example of pairs of compatible rows

(a)

1 1 0 1

0 1 1 0 1

0 1 1 0 1

(b)

0 1 1 0 1

0 1 1 * 1

0 1 1 * 1

(c)

0 * * 0 1

0 1 1 0 1

0 * * 0 1

(d)

* 1 1 0 1

* 1 1 0 1

* 1 1 0 1

Algorithm 3. Algorithm to merge compatible rows in order to reduce the
size of a CA

FastRedu(MN×k, N, t, k, v)1

Output:M′
N×k

M′
N×k ← wcCA(M, N, t, k, v);2

M′
N×k ← markFixed(M,M′);3

for i = 1 to N do4
for j = i + 1 to N do5

if areCompatible(M′
i,∗,M′

j,∗) then6
mergeRows(M′

i,∗,M′
j,∗);7

markRow(M′
i,unnecesary);8

end9

end10

end11

returnM′;12

The algorithm FastRedu runs in O(N2) time, where N is the number of rows
of the CA.

5 Experimental Design

The wcCA and FastRedu algorithms were implemented in C language and com-
piled with gcc. The experiment was carried out in a CPU Intel Core 2 Duo
at 1.5 GHz, 2 GB of RAM and Ubuntu 8.10 Intrepid Ibex Operating System.
The CAs used in the experiment were generated by the deterministic algorithm
IPOG-F [10] and obtained from the NIST webpage 3. The alphabets v of the
instances vary from 2 to 6, columns k from 3 to 32 and strengths t from 2 to 6
giving a whole of 667 CAs.

The experiment was conducted using the algorithms wcCA and FastRedu in
the following post-optimization process: firstly, we use wcCA to find wild cards in
the 667 CAs; after that, the resulted matrices from wcCA are given to FastRedu

to merge compatible pairs of rows.
A summary of the main results obtained from the experiment is shown in

Table 5. It can be seen more than 52% (347/667) of the input CAs reduced their
size through the post-optimization process. Note the increasing trend on the
percentage of improvements respect to the strength (t) of the CA; this suggests

3 http://math.nist.gov/coveringarrays/ipof/ipof-results.html

http://math.nist.gov/coveringarrays/ipof/ipof-results.html
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Table 5. Improved cases over the total of input CAs after the post-optimization process

(a) Improved cases

v t=2 t=3 t=4 t=5 t=6 Total

2 0/30 3/29 9/28 11/27 20/26 43/140
3 0/30 6/29 14/28 25/27 25/26 70/140
4 2/30 5/29 18/28 26/27 26/26 77/140
5 3/30 13/29 25/28 27/27 19/19 87/133
6 3/30 13/29 27/28 27/27 - 70/114

Total 8/150 40/145 93/140 116/135 90/97 347/667

(b) Percentage of improved CAs

v t=2 t=3 t=4 t=5 t=6 Total

2 0 10.34 32.14 40.74 76.92 30.71
3 0 20.69 50.00 92.59 96.15 50.00
4 6.67 17.24 64.29 96.30 100 55.00
5 10.00 44.83 89.29 100 100 65.41
6 10.00 44.83 96.43 100 - 61.40

Total 5.33 27.59 66.43 85.93 92.78 52.02

Table 6.Minimum and maximum spent time (in sec.) for the post-optimization process

(a) Spent time by the algorithm wcCA

�
��v
t 2 3 4 5 6

min | max min | max min | max min | max min | max

2 0 | 0.02 0 | 0.03 0 | 0.5 0 | 8.91 0.01 | 109.89
3 0 | 0.02 0 | 0.08 0 | 2.9 0 | 79.81 0 | 1653.1
4 0 | 0.01 0 | 0.18 0 | 9.34 0.01 | 414.87 0.02 | 12783.4
5 0 | 0.03 0.01 | 0.41 0 | 25.18 0.01 | 1658.21 0.06 | 8615.71
6 0 | 0.03 0 | 0.65 0.01 | 68.64 0.03 | 4548.92 —

(b) Spent time by the algorithm FastRedu

�
��v
t 2 3 4 5 6

min | max min | max min | max min | max min | max

2 0 | 0 0 | 0 0 | 0.01 0 | 0.01 0 | 0.03
3 0 | 0 0 | 0 0 | 0.01 0 | 0.08 0 | 1.08
4 0 | 0 0 | 0.01 0 | 0.07 0 | 1.54 0 | 67.53
5 0 | 0 0 | 0.01 0 | 0.29 0.02 | 19.18 0.04 | 384.66
6 0 | 0 0 | 0.03 0 | 1.2 0.03 | 157.89 —

that the possibility of decreasing rows in CAs (constructed by IPOG-F) grows
along with the value of t.

Table 7 shows an alternative analysis of the results derived from our exper-
iment. In this new analysis we group the CAs by the number of their columns
and their strength. Every group of t contains the different values of the alphabet
for each CA. Every cell of the this Table shows the number of rows reduced in
the corresponding CA. As seen in the last column, the number of improved cases
is mostly concentrated in k ≤ 12.

The results in Table 7 indicate an impressive reduction in the case CA(57;2,8,6),
whose size was reduced by 15 rows. These cases are an example of the reduction of
size for CAs that can be obtained through an algorithm to merge rows using wild
cards (like wcCA, presented in this paper) using as input CAs constructed by the
deterministic algorithm IPOG-F. The CA(42;2,8,6) which was obtained by this
process is shown in Table 8.

Summarizing, the performance of FastRedu as a post-optimization algorithm
to reduce CAs shows an improvement in the CA size when the value of v and/or
the value of t increases, i.e. the greater the values of t or v are, the higher the
possibility to reduce rows from a CA generated by IPOG-F.
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Table 7. Number of reduced rows for each CA

t=2 t=3 t=4 t=5 t=6 Improved

�
��k
v

2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 cases

3 0 0 0 0 0 - - - - - - - - - - - - - - - - - - - 0
4 0 0 0 1 0 0 0 1 1 1 - - - - - - - - - - - - - - 4
5 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 - - - - - - - - - 9
6 0 0 0 1 0 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 - - - - 16
7 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16
8 0 0 0 0 15 1 0 0 1 1 1 2 1 1 1 1 3 1 1 1 1 1 1 2 18
9 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 16
10 0 0 0 0 0 0 1 1 1 1 1 2 1 1 5 1 1 1 1 1 1 1 2 3 18
11 0 0 0 0 0 0 0 0 0 0 0 2 1 5 1 0 1 1 4 1 1 2 2 5 12
12 0 0 0 1 0 0 1 1 1 1 0 1 2 3 1 1 3 4 2 1 1 5 1 1 18
13 0 0 0 0 1 0 0 0 0 0 0 2 3 1 1 0 1 1 1 1 6 2 6 1 13
14 0 0 0 0 0 0 0 0 0 0 1 1 5 1 1 1 5 1 2 1 1 1 1 3 14
15 0 0 0 0 1 0 0 0 0 1 0 1 2 1 12 0 1 4 1 1 1 1 2 1 14
16 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 6 2 1 1 1 2 3 1 12
17 0 0 0 0 0 0 0 0 0 0 0 0 3 1 1 0 1 1 1 3 1 3 4 1 11
18 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 4 1 1 1 7 2 3 13
19 0 0 0 0 0 0 0 0 1 1 0 1 1 2 1 0 2 2 3 1 1 4 5 2 14
20 0 0 0 0 0 0 0 0 0 1 0 0 0 2 6 1 3 6 5 1 1 8 2 1 12
21 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 2 1 1 0 7 5 1 11
22 0 0 0 0 0 0 0 0 0 1 0 0 0 2 1 0 1 2 6 1 1 3 3 1 11
23 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 3 3 1 1 0 3 15 1 9
24 0 0 1 0 0 0 0 0 0 1 0 0 1 1 2 0 1 1 2 1 0 2 3 1 12
25 0 0 1 0 0 1 0 0 1 0 0 0 0 3 1 1 2 1 4 2 1 1 1 1 14
26 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 1 2 0 6 0 5
27 0 0 0 0 0 0 0 0 1 0 0 0 0 2 1 0 1 3 1 1 1 3 2 0 10
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 3 10 13 0 1 1 0 6
29 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 2 4 4 1 3 2 0 11
30 0 0 0 0 0 0 1 0 0 0 1 0 1 1 2 0 2 1 2 1 1 2 6 0 12
31 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 1 1 1 2 7 0 2 3 0 9
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 2 4 2 0 1 12 0 7

Improved
cases 0 0 2 3 3 3 6 5 13 13 9 14 18 25 27 11 25 26 27 27 20 25 26 19 347

Table 8. The CA(42;2,8,6)T that was created after the reduction of CA(57;2,8,6) using
wcCA and FastRedu

* * * * * * 0 2 2 1 1 1 5 2 4 0 4 4 0 0 3 2 4 5 5 5 0 3 5 2 4 4 5 3 0 1 1 2 3 3 3 1
* * * * * * 0 5 4 4 3 2 4 2 2 5 0 1 1 2 4 1 3 0 2 3 3 3 1 0 4 5 5 1 4 0 5 3 0 5 2 1
5 0 3 2 4 1 0 1 5 2 1 4 0 0 3 3 5 1 4 2 3 2 0 2 1 4 5 2 3 4 4 2 5 0 1 3 0 3 1 4 5 5
5 4 0 2 3 1 0 4 2 1 0 4 3 1 5 1 1 4 2 3 4 0 2 4 2 1 4 5 5 5 0 3 0 1 5 2 5 3 3 2 0 3
5 4 3 0 2 1 0 0 4 3 4 5 5 2 0 5 4 2 1 4 0 5 5 1 3 0 3 2 4 3 1 3 2 3 2 2 1 1 5 4 1 0
5 4 3 2 1 0 0 5 0 4 2 0 2 3 4 2 1 2 4 5 1 1 3 3 1 5 1 0 0 2 5 0 4 5 3 5 1 4 4 3 2 3
5 4 3 2 0 1 0 0 3 0 5 2 1 5 1 4 2 3 5 3 5 1 0 5 4 3 1 4 0 4 4 5 2 2 2 1 3 2 3 1 0 4
0 4 3 2 5 1 0 3 5 0 5 3 3 2 5 5 3 0 3 1 1 4 1 5 0 4 2 3 2 1 2 4 1 5 4 4 2 0 2 0 4 1

6 Conclusions

We present a post-optimization strategy to reduce the size of a CA. The post-
optimization process reduces the number of rows of a CA through the merging
of rows. The strategy to merge rows is performed in two steps. The first one
consists on identifying wild cards (symbols that can be changed arbitrarily such
that a CA does not lose its level of coverage) with wcCA algorithm. The second
step merges compatible pairs of rows through FastRedu algorithm; two rows are
compatible if they share the same symbols in each of their columns or at least
one of them is a wild card.
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The algorithm to identify wild cards (wcCA) runs in O(N
(
k
t

)
) steps, where N

is the size of the CA, and t is the strength. The algorithm to merge rows runs
in time O(N2).

The post-optimization process was tested with 667 CAs constructed by the
state-of-the-art algorithm IPOG-F. The results show a reduction in 52% of the
instances. The CA(57;2,8,6) reduced its size by 15 rows, an impressive reduction
if we consider that the new CA(42;2,8,6) is the best upper bound so far.

The improved cases were analyzed in terms of t, k, v. The improvement that
can be achieved by the FastRedu algorithm increased with the strength t. An
slightly small improvement can also be perceived when the alphabet v is in-
creased. With respect to the number of columns k, the best improvements are
concentrated in values of k ≤ 12.

In conclusion, the quality of the CAs generated by IPOG-F can be improved
significantly through our approach with a high probability when the values of t
and v are large.
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