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Abstract. This paper describes a novel algorithm for numerical op-
timization, which we call Simple Adaptive Climbing (SAC). SAC is a
simple efficient single-point approach that does not require a careful fine-
tunning of its two parameters. Our algorithm has a close resemblance to
local optimization heuristics such as random walk, gradient descent and,
hill-climbing. However, SAC algorithm is capable of performing global
optimization efficiently in any kind of space. Tested on 15 well-known un-
constrained optimization problems, it confirmed that SAC is competitive
against representative state-of-the-art approaches.

1 Introduction

Global optimization is the task of finding the point x∗ with the smallest (mini-
mization case) or biggest (maximization case) function value f(x∗). In general,
global optimization is a complex task that has remained unsolved until now.
Optimizers are efficient tools used for a wide range of tasks such as: file com-
pression [14], scheduling of an aircraft’s engine maintenance [9], optimization
of financial portfolios [20], evolution of neural networks for walking robots [16],
among many others. Most of the recent efficient optimizers for solving uncon-
strained nonlinear optimization, such as restart CMA-ES [8], can be considered
complex approaches because they use the Hessian and covariance matrix, which,
in most cases, are very expensive to obtain. Those methods are very effective
and greatly overcome simple heuristic approaches [11] [21].

However, we need to close the performance gap between simple heuristics
and more complex approaches. This paper, presents a novel approach based on
the idea of simplicity: Simple Adaptive Climbing (SAC). SAC is a single-point
approach similar to hill-climbing or random walk algorithms.

The contents of this paper are organized as follows: First, we give a brief
introduction to hill-climbing algorithm in Section 2. Section 3 describes the SAC-
algorithm. Section 4 discusses the experimental design. Section 5 presents a
comparison of SAC against four state-of-the-art approaches: Elitist Evolution,
micro-Particle Swarm Optimization, Simple Adaptive Differential Evolution and
Restart CMA-ES. Finally, Section 6 draws some conclusions.
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2 Brief Review of the Hill Climbing-Like Algorithms

A hill-climbing like algorithm performs its search by moving an explorer (single
point) through a mountain having a really thick fog (the target function). The
explorer performs jumps for landing to a new point. If the new point is better,
then the explorer stays in the new position. If the new point is not better, the
explorer returns to its previous position and tries to perform a smaller jump. The
jump range is known as step size and represents the current algorithm search
ratio. This way, the explorer continues jumping until the jump range diminishes.

Hill-climbing like techniques are known for being fast on optimizing local
optimum values, i.e. they are very good on descending/ascending a single hill
function (unimodal functions). However, this strength is also its greater flaw:
they could fail solving functions with multiple hills (multimodal funcions). Three
main reasons have been detected behind this behavior [2]:

1. The foothill problem: the algorithm gets stuck in a local optimum, i.e. an
optimum value that is not the global one.

2. The plateau problem: the algorithm gets stuck in mostly flat surfaces with
few sharp peaks.

3. The ridge problem: the algorithm gets stuck because the ascent direction is
not within the possible search directions.

On the other hand, population-based algorithms such as Differential Evolution
and Genetic Algorithms have the capability of easily finding optimal value re-
gions. However, they have a relatively slow local optimization speed. For this
reason, hill-climbing algorithms are commonly used in combination with popu-
lation algorithms to create efficient memetic algorithms [3,7].

3 Simple Adaptive Climbing

SAC is a single-point optimizer designed to be simple and competitive. The main
idea is to modify the step size according to the current state of the search space.
Further, a reinitialization process is added. Particularly, SAC general ideas are:
(1) to increase search ratio while improving the solution, (2) to decrease search
ratio when no improvements are made, and, (3) to restart the process when no
improvements are made for a predetermined number of trials. The algorithm 1
shows the SAC technique for minimization. SAC requires the configuration of
two parameters:

1. Base step sizes (B ∈ [0.0,0.5]): B is the search space percentage to be ex-
plored in both directions of each dimension. For example, if B = 0.5 means
that SAC will search half of the search space to the right and half to the left,
meaning the whole search space to be explored. Figure 1 shows an example
of the B search ratio in a 2D function.

2. Maximum consecutive errors (R > 0): indicates the maximum consecutive
errors necessary to restart the search process. Figure 3 shows an example of
a restart in a 2D function.
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SAC search by performing alterations in a random dimension subset as shown
in Figure 2. It uses adaptive step sizes (as shown in lines 4-12 of Algorithm
1 where bj , j = 1, . . . , D, and D is the dimensionality of the problem) that is
the key of exploration process. SAC adjusts its size accordingly to the current
success/failure of the search:

– When a best point is found, b values became greater to encourage exploration
of new search areas (see line 15 on Algorithm 1 and Figure 5 for an example).

– When no best point is found, b values became equal to the change between
current and former points, encouraging exploration of nearby areas (see line
22 on Algorithm 1 and Figure 6 for an example).

In SAC, the search space is considered as a cincunference (Figure 4). So, if SAC
tries to explore outside a variable bound, let us say the the upper limit, then
it will explore a valid region near the variable lower limit. To avoid premature
convergence on some functions, SAC keeps track of the consecutive unsuccessful
explorations (restart variable on Algorithm 1). When restart reaches the user-
defined limit R, the step-sizes and the current position are restarted as seen in
line 24 on Algorithm 1.

Fig. 1. B represents the initial and maximum search space. A B = 0.1 is depicted by
the gray rectangle in this picture.

Fig. 2. SAC could search in any dimension subset of this 3D function with a maximum
ratio of bj
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Data: B ∈ [0.0, 0.5] (initial step size), R > 0 (maximum number of consecutive
errors) and MaxFEs (maximum number of function evaluations )

Result: Xbest (best solution found)
1 Set X as a random initial point and Xbest = X as the best known solution;
2 Set bj = B, j = 1, . . . , D as the initial step sizes and restart = 0;
3 for g=1 To MaxFEs do

4 Set Pa = rnd(1,D)
D

;
5 if flipj(Pa), j = 1, . . . , D then
6 Set Oj = Xj + rndreal(−bj, bj)× (upj − lowj);
7 if Oj > upj then
8 Set Oj = lowj + (Oj − upj);

9 if Oj < lowj then
10 Set Oj = upj − (lowj −Oj);

11 else
12 Oj = Xj ;

13 if f(O) < f(X) then
14 Set restart = 0;
15 Set bj = rndreal(bj , B) for all j dimensions where Oj �= Xj ;
16 Set X = O;
17 if f(O) < f(Xbest) then
18 Set Xbest = O;

19 else
20 Set restart = restart+ 1;
21 if restart < R then

22 Set bj =
∣
∣
∣

Xj−Oj

upj−lowj

∣
∣
∣ for all j dimensions where Oj �= Xj ;

23 else
24 Set restart = 0, X = O and bj = B, j = 1, . . . , D;

Algorithm 1. Algorithm for SAC (minimization case)

Fig. 3. Position and step sizes are restarted when SAC reaches R iterations without
improving the solution. SAC keeps memory of the best solution found (represented as
a gray dot in the second picture).
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Fig. 4. Function are over a circunference in SAC, i.e., if SAC tries to explore outside
the lower limit it will explore a valid region near the upper limit

Fig. 5. When improving SAC increases the step sizes

Fig. 6. When failing (white dot) SAC decreases the step sizes
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Table 1. Test functions [12] [15]

Unimodal functions Multimodal functions

Separable

fsph Sphere model fsch Generalized Schwefel’s problem 2.26
f2.22 Schwefel’s problem 2.22 fras Generalized Rastrigin’s function
f2.21 Schwefel’s problem 2.21
fstp Step function
fqtc Quartic function

Non-separable

f1.2 Schwefel’s problem 1.2 fros Generalized Rosenbrock’s function
fack Ackley’s function
fgrw Generalized Griewank’s function
fsal Salomon’s function
fwhi Whitley’s function

fpen1,2 Generalized penalized functions

4 Experimental Setup

Tests aim to confirm that the proposed algorithm is competitive in solving uncon-
strained functions. A comparison against some state-of-the-art was performed.
The Error and Evaluation values for each trial was measured in a similar way to
the one proposed in the test suite for CEC 2005 special session on real-parameter
optimization [10]:

– Error = F (xo) − F (x∗), where xo is the best reported solution for the
corresponding algorithm and x∗ is the global optimum value.

– Evaluation is the number of function evaluations (FEs) required to reach
an error value of 10−8.

The benchmark functions are specified in table 1. Thirty trials per test func-
tion were conducted and the number of successful trials that reached the target
accuracy value were measured. The stop condition criterion for all approaches
was MaxFEs = 3E+5 function evaluations (FEs). The results were compared
against two micro-EAs and two state-of the-art-approaches. Micro-population
algorithms were selected because they are considered in between hill-climbers
algorithms and other population algorithms. Also, they are competitive against
their standard counterparts [1] [6] and are used to create memetic algorithms
also [5] [17]. The selected approaches are:

– Elitist Evolution (EEv) [19]: The best micro-population algorithm as far as
the authors knowledge.

– Micro Particle Swarm Optimization (µ-PSO) [13]: The micro population
counterpart of PSO, that maintains the original algorithm performance.

– Simple Adaptive Differential Evolution (SaDE) [18] selected because it is a
competitive Differential Evolution [4] variant representative of the state-of-
the-art techniques.



A Simple Adaptive Algorithm for Numerical Optimization 121

– Restart CMA-ES [8] selected for measuring the gap against a technique that
uses Hessian and covariance matrices. This was also the best technique on
CEC 2005 special session on real-parameter optimization.

All the experiments were performed using a Pentium 4 PC with 512 MB of RAM,
in C language over a Linux environment. The parameter sets for the techniques
were:

1. SAC: R = 150, B = 0.5.
2. µ-PSO: P = 6, C1 = C2 = 1.8, Neighborhoods = 2, Replacement generation

= 100, Replacement particles= 2, Mutation % = 10, based on [13].
3. EEv: P = 5, B = 0.5
4. SADE: set as in [18].
5. Restart CMA-ES: set as in [8].

5 Test Results and Analysis

5.1 Performance Evaluation on Functions with 30 Dimensions

A comparison of SAC against EEv, was performed µ-PSO, SADE and Restart
CMA-ES. Tables 3 and Figure 7 show more detailed test results. Table 2 gives
statistical significance to test results. Tests allow us to confirm the following:

1. SAC has a competitive performance in global optimization problems with a
high dimensionality without requiring the fine-tuning of its two parameters.

2. SAC outperforms EEv and µ-PSO on most functions. It have more success
rate and overall speed.

3. The difference between SAC’s performance and EEv and µ-PSO’ perfor-
mances is statistical significant on most functions.

4. SAC is competitive against a state-of-the-art approach like SADE.
5. SAC’s success rates competitively against CMA-ES’. However, CMA-ES is

faster than SAC.

Table 2. Results of Mann-Whitney U paired test between SAC and other techniques.
+ means that the improvement is statistically significant. − means that the other
technique outperforms SAC. = means that the difference is not statistically significant.

μ-PSO EEv CMA-ES SADE μ-PSO EEv CMA-ES SADE

fsph + + − = fros = = − −
f2.22 + + − − fack + + − =
f2.21 + + − + fgrw = = − −
fstp + = − − fpen1 + + − +
fqtc + + − + fpen2 + + + =
fsch + + + + fsal = = = =
fras + + + + fwhit + + + +
f1.2 = = − −
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Table 3. Mean Error values obtained on functions with D = 30. A � value means
that 10−8 was reached in all runs (100% success rate). On values like X.XE+X(Y) Y
represents the success rate (only when Y ∈ [1%, 99%]).

D = 30 SAC μ-PSO EEv CMA-ES SaDE

fsph � � � � �
f2.22 � � � � �
f2.21 � 1.3E-2 9.1E-3 � 4.5E+0
fstp � � � � �
fqtc � � � � �

f1.2 3.2E-4 1.9E-2 6.1E-3 � �

fsch 4.8E-7(96%) 1.3E+3 1.5E+3 1.2E+4 3.9E+0(96%)
fras � 8.1E+0 � 3.3E+0(10%) 7.9E-1(63%)

fros 1.3E+1 1.6E+1 4.1E+1 � 3.9E-1(63%)
fack � � � � 3.1E-2(96%)
fgrw 2.3E-2(33%) 2.3E-2(30%)2.6E-2(23%) � 2.7E-3(83%)
fpen1 � � � � 6.9E-3(93%)
fpen2 � � � 1.4E-3(86%) �
fsal 6.6E-1 4.5E-1 6.3E-1 2.1E-1 2.0E-1

fwhit 6.9E+0(43%) 1.0E+2 1.0+1(40%) 4.8E+2 5.9E+1(20%)

Fig. 7. Speed comparison (Evaluation values) on 30D functions

5.2 Sensibility to Parameter Adjustments

Tests with different B and R values were made to observe the effects of parameter
configuration on SAC’s performance. Results are shown in Figures 8 and 8, and,
Tables 4 and 5. Tests allow observing that:

– SAC does not need complex configuration of its parameters.
– B is the reference search ratio of SAC. Greater B values encourage global

exploration and smaller values encourage local exploitation.
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Table 4. Changes in the success rates when using different B values. Only the functions
with different success rates are shown. Best results are obtained with a B = 0.5.

B = 0.1 0.2 0.3 0.4 0.5

fsch – 1% 76 86 96
fras – 63 90 93 100

fgrw 20 16 13 36 10
fwhit 10 23 43 26 43

Table 5. Changes in the success rates when using different R values. Only the functions
with different success rates are shown.

R = 15 50 150 300 500 R = 15 50 150 300 500

fsph — 100% 100 100 100 fros — 3 — 3 3
f2.22 — — 100 100 100 fack — — 100 100 100
f2.21 — — 100 100 100 fgrw — 30 10 30 30
fstp — 100 100 100 100 fpen1 — 100 100 100 100
fqtc — 100 100 100 100 fpen2 — 100 100 100 100
fsch — 60 96 96 90 fwhit — 46 43 46 100
fras — 100 100 96 93

Fig. 8. Evaluation values registered with different B values on 30D functions

– R controls SAC’s searching time over the current location. Smaller values
allow SAC to move often, while bigger values provoke best exploitation of
the current area.

– Smaller B values increase SAC performance on unimodal problems and de-
crease performance on the multimodal ones (SAC behaves more like a hill-
climbing algorithm).
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Fig. 9. Evaluation values registered with different R values on 30D functions

– Bigger B values have the best overall performance.
– Smaller R values have poor performance.
– Bigger R values have best performance on multimodal non-separable prob-

lems.

6 Conclusions and Future Work

This paper presented a novel optimizer called simple adaptive climbing ((SAC))
and tested it on 15 benchmark functions. SAC is a simple technique that uses a
single exploration point and adaptive step sizes. Its main features are: (1) easy
implementation, (2) state-of-the-art performance competitive against techniques
such as: µ-PSO and SADE, (3) easy parameter configuration, (4) fast solution
speed, and, (5) high success rate.

SAC uses 2 parameters: B and R. B is reference search ratio of SAC. Big
B values encourage global exploration and small B values encourage local ex-
ploitation. R controls SAC’s searching time over the current location. Small R
values allow SAC to move often, while bigger values necessitate a more extensive
exploration over the current search area.

More comparative studies and further analysis should be carried out to provide
a more detailed understanding of SAC. It is planned to test SAC in constrained
and in multi-objective optimization problems.
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