
Chapter 19
Stability Analysis and Limit Cycles of High
Order Sigma-Delta Modulators

Valeri Mladenov

Abstract. In this chapter we present an unified approach for study the stability and
validation of potential limit cycles of one bit high order Sigma-Delta modulators.
The approach is general because it uses the general form of a Sigma-Delta modula-
tor. It is based on a parallel decomposition of the modulator and a direct nonlinear
systems analysis. In this representation, the general N-th order modulator is trans-
formed into a decomposition of low order, generally complex modulators, which
interact only through the quantizer function. The developed conditions for stability
and for validation of potential limit cycles are very easy for implementation and this
procedure is very fast.

19.1 Introduction

Sigma-Delta modulation has become in recent years an increasingly popular choice
for robust and inexpensive analog-to-digital and digital-to-analog conversion [1, 2].
Despite the widespread use of Sigma-Delta modulators theoretical understanding
of Sigma-Delta concept is still very limited. This is a consequence of the fact that
these systems are nonlinear, due to the presence of a discontinuous nonlinearity - the
quantizer. Since the pioneering work of Gray and his co-workers beginning with [3],
a number of researchers have contributed to the development of a theory of Sigma-
Delta modulation based on the principles of nonlinear dynamics [4, 5, 6]. That work
and references there, has succeeded in explaining many fundamentally nonlinear
features of this system. The stability of high order interpolative Sigma-Delta (ΣΔ)
modulators based on nonlinear dynamics has been considered in a couple of papers
[7, 8]. The authors present a technique, which in many cases simplifies the analysis.
The technique involves a transformation of the state equations of a modulator into
a form in which the individual state variables are essentially decoupled and interact
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only within the quantizer function. In [9, 10, 11] and [12] a stability (in the sense of
boundness of the states) analysis approach based on decomposition of the general
N-th order modulator is presented. This decomposition is considered for all cases
of poles of the transfer function of the modulator loop filter. Using this presentation
the modulator could be considered as made up of N first order modulators, which
interact only through the quantizer function. Based on this decomposition the sta-
bility conditions of high order modulators are extracted. They are determined by the
stability conditions of each of the first order modulators but shifted with respect to
the origin of the quantizer function. Limit cycles are well known phenomena that
often appear in practical ΣΔ modulators. For data processing applications it is very
important to predict and describe possible limit cycles. Main results concerning the
limit cycles for low order Sigma-Delta modulators are presented in [6, 13, 14] and
[15]. In [16, 17] authors use state space approach and present a mathematical frame-
work for the description of limit cycles in 1-bit Sigma-Delta modulators for constant
inputs. In [18] and [19] an approach for validation of potential limit cycles for high
order modulators with constant input signals is presented. The approach is based on
the same decomposition of the general N-th order modulator presented in [7, 9, 10,
11] and [12]. The conditions for the existence of limit cycles given in [18] and [19]
are easily to be checked and they are basis of a searching procedure for possible
limit cycles. In this contribution we do extend both techniques and present unified
approach for study the stability and limit cycles of high order sigma-delta modula-
tors. The study is organized as follows. In the next section we describe the parallel
decomposition technique for different cases of poles of the loop filter transfer func-
tion. Then we present the stability analysis study for first and high order modulators
together with an example. In Section 19.5 we present the limit cycle analysis and
also give several examples to show the applicability of the presented techniques.
The concluding remarks are given in the last section.

19.2 Parallel Decomposition of a Sigma Delta Modulator

The structure of a basic ΣΔ modulator is shown in Figure 19.1, and consists of a
filter with transfer function G(z) followed by a one-bit quantizer in a feedback loop.
The system operates in discrete time.

The input to the loop is a discrete-time sequence u(n) ∈ [−1,1], which is to ap-
pear in quantized form at the output. The discrete-time sequence x(n) is the output

Fig. 19.1 Basic structure of the sigma-delta modulator
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of the filter and the input to the quantizer. Let us consider a N-th order modulator
with a loop filter with a transfer function (TF) in the form

G(z) =
a1z−1 + ... + aNz−N

1 + d1z−1 + d2z−2 + dNz−N (19.1)

Suppose the transfer function has N real distinct roots of the denominator. Then
using partial fraction expansion we get

G(z) =
a1z−1 + ... + aNz−N

(1− λ1z−1)...(1− λNz−1)
=

b1z−1

1− λ1z−1 + ... +
bNz−1

1− λNz−1 (19.2)

where the coefficients bi, i = 1,2, ..., N of the fractional components can be found

easily using the well known formula bi =
(1−λiz−1)

z−1

∣∣∣
z=λi

G(z) .

The corresponding block diagram of the modulator is given in Figure 19.2.
Based on this presentation the state equations of the ΣΔ modulator are

xk(n + 1) =λkxk(n) +

[
u(n)− f

(
N

∑
i=1

bixi(n)

)]
=

=λkxk(n) +

⎡
⎢⎣u(n)− f

⎛
⎜⎝bkxk(n) +

N

∑
i=1
i �=k

bixi(n)

⎞
⎟⎠
⎤
⎥⎦

k =1,2, ..., N

(19.3)

where λ1, λ2 . . . ,λN are poles (or modes) of the loop filter and the quantizer func-
tion f is a sign function. Equation (19.3) also can be rewritten in the form

Fig. 19.2 Block diagram of the modulator using parallel form of the loop filter
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xk(n + 1) =λkxk(n) +

[
u(n)− f

(
N

∑
i=1

bixi(n)

)]
=

λkxk(n) +
[

u(n)− f
(

bTx(n)
)]

=

λkxk(n) + [u(n)− y(n)] k = 1,2, ..., N

(19.4)

where b = (b1,b2, ...,bN)
T is the vector of fractional components coefficients and

x = (x1, x2, ..., xN)
T is the state vector. The above presentation indicates that high

order modulators could be considered as built up of first order modulators, which
interact only through the quantizer function. To simplify the notations, we will drop
the indexes and will rewrite equation (19.3) in the following form

xk(n + 1) = λx(n) + [u(n)− f (bx(n) + α(n))] = (19.5)

where

α(n) =
N

∑
i=1
i �=k

bixi(n) (19.6)

and

y(n) = f

(
N

∑
i=1

bixi(n)

)
= f

(
bTx(n)

)
=

{
1 bTx(n)≥ 0
−1 bTx(n)< 0

(19.7)

Equation (19.4) describes a first order shifted by α(n) modulator. A detailed analysis
of the stability of these modulators will be presented in the next chapter.

In the general case the loop filter transfer function can have complex conjugated
roots. Without loss of generality we will consider only one pair of complex conju-
gated roots. In this case (19.2) becomes

G(z) =
b1z−1

(1− λ1z−1)
+ ... + G2(z) =

b1z−1

(1− λ1z−1)
+ ...

BN−1z−1 + BNz−2

1− d1z−1 − d2z−2

(19.8)

The denominator of the last part of (19.8) has a complex conjugated pair of roots.
The main idea is to use a complex form of expansion of the last part of G(z). There-
fore (19.8) becomes

G(z) =
b1z−1

(1− λ1z−1)
+ ... +

bN−1z−1

(1− λN−1z−1)
+

bNz−1

1− λNz−1 (19.9)

where
λN−1 = α + jβ,λN = α− jβ

bN−1 = δ− jγ,bN = δ + jγ
(19.10)

i.e. λN−1, λN and bN−1, bN are complex conjugated numbers. Because of this we
can use the same parallel presentation given in figure 2. However, the values of the
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last two blocks are complex. It should be stressed that the output signal of these two
blocks is real. In order to make things more clear and without loss of generality we
will consider only these blocks. They correspond to a second order ΣΔ modulator
with complex conjugated poles of the loop filter transfer function G(z). The block
diagram of this modulator is given in figure 19.3.

Here both signals x1 and x2 are complex conjugated, namely

x1(k + 1) = m(k + 1) + jn(k + 1)
x2(k + 1) = m(k + 1)− jn(k + 1)

(19.11)

Because of this the input of the quantizer is real i.e.

(δ− jγ)x1(k) + (δ + jγ)x2(k) = 2δm(k) + 2γn(k) (19.12)

As in the case of real poles, the modulator could be considered as two first order
modulators interacting only through the quantizer function. The difference now is
that the signals connected with both modulators are complex, but the input and
output signals (u and y) are the “true” signals of the modulator. This model will help
us to make analysis simple. We will consider the state of the first order modulators
as a point in a complex plane (m,n). Depending on whether the input 2δm + 2γn of
the quantizer is positive or negative the state equation of the second order modulator
could be described as follows:

x1(k + 1) = (α + jβ)x1(k) + [u(k)− 1],2δm(k) + 2γn(k) ≥ 0
x2(k + 1) = (α + jβ)x2(k) + [u(k)− 1],2δm(k) + 2γn(k) ≥ 0

(19.13)

and
x1(k + 1) = (α + jβ)x1(k) + [u(k) + 1],2δm(k) + 2γn(k) < 0
x2(k + 1) = (α + jβ)x2(k) + [u(k) + 1],2δm(k) + 2γn(k) < 0

(19.14)

Fig. 19.3 Block diagram of second order modulator with complex conjugate pair of roots of
the loop filter transfer function
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where x1 and x2 are given by (19.11). In fact 2δm + 2γn is a line through the
origin in the plane (m,n) and depending on in what half the point x1 is (because
x1 = m + jn), the description of the modulator is (19.13) or (19.14).

19.3 Stability of Shifted First Order Sigma-Delta Modulators

The shifted first order modulator is described by equation (19.5). Because of the
ideal quantizer, the system can be viewed as two linear systems connected at point
- α(n)/b and thus the equations describing the dynamics of the first order Sigma-
Delta modulator from (19.5) are

x(n + 1) = λx(n) + [u(n)− 1], x(n)≥ −α(n)/b;b > 0
x(n + 1) = λx(n) + [u(n) + 1], x(n)< −α(n)/b;b > 0

(19.15)

The fixed points of the system are x′ = u(n)−1
1−λ , x′′ = u(n)+1

1−λ .
In what follows we will consider the input signal u(n) to be from the interval

u(n) ∈ [−Δu,Δu],Δu > 0 and because of this the shift α(n) belongs to the interval
[−Δα,Δα],Δα > 0. The flow diagram of the system is given in Figure 19.4.

Stable Mode, λ < 1

Depending on the parameters b,α(n) and input signal u(n) the system can have
two stable virtual fixed points (the case given in the figure) and a compact region
exists between them (in fact this is an invariant set in state space, which has the
property that all subsequent states lie in the original set for a certain class of input
signals). For another set of parameters one of the virtual fixed points becomes a real
fixed point. In each of the cases the system is stable but in the second one, there is

Fig. 19.4 Flow diagrams of the first order system for the case of λ ≤ 1 and λ > 1
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no compact region. The system moves towards a single attractor at the stable fixed
point. Anyway, if the initial condition is between the origin and the real fixed point
of system (19.5) the state flow finishes at the equilibrium point (due to asymptotic
movement to the single equilibrium point). It should be noted that this is not a de-
sired Sigma-Delta modulator behavior. The Sigma-Delta modulator behavior appear
when the first order system has two virtual fixed points and the state of (19.5) jumps
between them. Thus the desired bitstream appear at the output of the quantizer.

Unstable Mode, λ > 1

The stability in this case is connected with existence of a compact region between
the unstable fixed points (not virtual). It is important to point out that b > 0. Other-
wise the dynamic of the system is described by

x(n + 1) = λx(n) + [u(n)− 1], x(n)< −α(n)/b;b < 0
x(n + 1) = λx(n) + [u(n) + 1], x(n)≥ −α(n)/b;b < 0

(19.16)

and it is easy to observe that the above system is always unstable, because at least
one of the fixed points is virtual. Let’s consider the map (19.5), given by (19.15)
depicted in Figure 19.5. For a compact region (CR), to exists the fixed point should

not be virtual i.e. − α(n)
b < u(n)−1

(1−λ)
and − α(n)

b > u(n)+1
(1−λ)

This should be true for the worst case i.e. − α(n)
b < Δu−1

(1−λ)
and − α(n)

b > −Δu+1
(1−λ)

.

Taking into account that (1− λ) < 0 and b > 0 we get

b
λ− 1

Δu− b
(λ− 1)

< α(n) < − b
λ− 1

Δu +
b

(λ− 1)
(19.17)

The second condition for the existence of a compact region is that it has to be in-
cluded into the region between the fixed points i.e. the stable region. The max-
imum jump of the variable x(n) from the Negative Half Line (NHL), with re-
spect to –α(n)/b, to the Positive Half Line (PHL), with respect to –α(n)/b,
is [–α(n)/b]λ + [u(n) + 1] and the maximum jump from PHL to NHL is
[–α(n)/b]λ + [u(n)− 1]. Hence in the worst case

−α(n)
b

λ + [Δu + 1]<
Δu− 1
(1− λ)

, −α(n)
b

λ + [−Δu− 1]>
−Δu + 1
(1− λ)

Solving the above inequalities with respect to α(n) we find that a compact region
can only exist if b > 0 and

b > 0

b
λ− 1

Δu− b(2− λ)

λ(λ− 1)
< α(n) < − b

λ− 1
Δu +

b(2− λ)

λ(λ− 1)
(19.18)

Because the above should be valid for all y and for y = 0 as well then (2−λ)/λ > 0
or λ < 2, i.e. 1 < λ < 2. Due to this (2 − λ)/λ < 1 and hence if (19.18) is
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Fig. 19.5 Map (19.5) given by (19.15) for the case of λ > 1

satisfied then (19.17) will be satisfied as well. Considering again these two con-
ditions, the maximal shift of the input signal Δu, which ensures that the compact
region is included into the region between the fixed points i.e. the stable region is
given by

Δu < −Δα(λ− 1)
b

+
2− λ

λ
(19.19)

Note that condition (19.18) is a sufficient but not necessary condition. It has been
derived for the worst case and if satisfied, the first order modulator is stable for
the range of input signal given by (19.19). However, if (19.18) is not satisfied the
modulator could be stable for certain input signal.

19.4 Stability of High Order Sigma-Delta Modulators

Stability of High Order Sigma-Delta Modulators with Real Poles

Taking into account the parallel presentation given in Section 19.2, the stability of
the high order Sigma-Delta modulator depends on the stability of each of the first
order modulators. If all modes λk, are stable, i.e. λk < 1 then the corresponding
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high order Sigma-Delta modulator is stable in the sense of boundness of the states.
If there exists even one unstable mode λk, i.e. 1 < λk < 2, the stability conditions
for shifted modulators given above should be applied. In this case the shift αk(n)
depends on the values of the other variables xi(n) i.e.

λk(n) =
N

∑
i=1
i �=k

bixi(n) (19.20)

From (19.18), we have

N

∑
i=1
i �=k

bixi(n) < − bk

λk − 1
Δu +

bk(2− λk)

λk(λk − 1)

N

∑
i=1
i �=k

bixi(n) >
bk

λk − 1
Δu− bk(2− λk)

λk(λk − 1)
,

k = 1,2, ..., N

(19.21)

The above should still be true when xk makes the maximal ”jumps” into the PHL
or into the NHL. Without loss of generality we will consider the first p modes λk of
the high order Sigma-Delta modulator to correspond to 1 < λk < 2,k = 1,2, . . . , p
whereas the remaining N − p modes correspond to λk < 1,k = p + 1, . . . , N. In
this case only the first p coefficients bk must be positive and the remaining N − p
coefficients could have any real value. The maximal ”jumps” of the state variables

corresponding to the first p modes in the PHL and the NHL are u(n)−1
1−λk

and u(n)+1
1−λk

,
respectively (the fixed points of the system with respect to xk,k = 1,2, . . . , p). Sim-
ilarly, the maximal ”jumps” of the state variables corresponding to the last N − p
modes in the PHL and the NHL, are u(n)+1

1−λk
and u(n)−1

1−λk
, respectively (the virtual or

real fixed points of the system with respect to xk,k = p + 1, . . . , N). Therefore from
(19.21) for the worst case with respect to the input signal one can obtain

p

∑
i=1
i �=k

bi
−Δu− 1

1− λi
+

N

∑
i=p+1

|bi|Δu + 1
1− λi

< − bk

λk − 1
Δu +

bk(2− λk)

λk(λk − 1)

p

∑
i=1
i �=k

bi
Δu + 1
1− λi

+
N

∑
i=p+1

|bi|−Δu− 1
1− λi

>
bk

λk − 1
Δu− bk(2− λk)

λk(λk − 1)

k = 1,2, ..., p

(19.22)

Note that we apply (19.22) only for the shifts connected to the first p modulators.
The other N − p first order modulators are stable, because for their corresponding
λk,λk ≤ 1,k = p + 1, . . . , N. If there exists a region [−Δu,Δu]⊆ [−1,1], such that
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u ∈ [−Δu,Δu] and for this region conditions (19.22) are satisfied, then the Sigma-
Delta modulator will be stable for all input signals from this region. Taking into
account equation (19.22) we get[

p

∑
i=1

bi

λi − 1
−

N

∑
i=p+1

|bi|
λi − 1

]
Δu <

N

∑
i=p+1

|bi|
λi − 1

−
p

∑
i=1
i �=k

bi

λi − 1
+

bk(2− λk)

λk(λk)− 1

k = 1,2, ..., p
(19.23)

More detailed considerations of the above inequality shows that in order to ensure a
consistent solution of (19.23) with respect to Δu

p

∑
i=1
i �=k

bi

λi − 1
−

N

∑
i=p+1

|bi|
λi − 1

− bk(2− λk)

λk(λk − 1)
< 0, k = 1,2, .., p (19.24)

Hence the maximal shift of input signal Δu ensuring the stability is given by

Δu <

∑N
i=p+1

|bi|
λi−1 −∑

p
i=1
i �=k

bi
λi−1 +

bk(2−λk)
λk(λk−1)

∑
p
i=1

bi
λi−1 −∑N

i=p+1
|bi|

λi−1

, k = 1,2, ..., p (19.25)

Note that inequalities (19.25) should be valid simultaneously for each k,k =
1,2, . . . , p. Therefore, together with bk > 0,k = 1,2, . . . , p, equation (19.24) gives
the sufficient conditions for the stability of the Sigma-Delta modulator, namely

(2− λk)

λk

bk

(λk − 1)
>

p

∑
i=1
i �=k

bi

λi − 1
−

N

∑
i=p+1

|bi|
λi − 1

, k = 1,2, ..., p (19.26)

For the poles outside the unit circle, k = 1,2, . . . , p, we have that (2− λk)/λk < 1.
This implies that the inequality, Eq. (19.26), can only hold for one value of k. Hence,
Eq. (19.26) provides a sufficient condition for stability when p = 1 i.e. there is at
most one unstable mode, and this sufficient condition cannot hold when there is
more than one pole outside the unit circle. It is clear now that in the case of repeated
poles (λ1, . . . ,λm = λ) of the loop transfer function, the Sigma-Delta modulator
is stable only when the corresponding modes are stable i.e. λ ≤ 1. Let us consider
more precisely the case of identical poles. Without losing the generality we will
consider that the pole λ1 is repeated with order 2 i.e. λ1 = λ2 = λ. In this case (2)
becomes

G(z) =
b1z−1

1− λz−1 +
b2z−2

(1− λz−1)2 + ... +
bNz−1

1− λNz−1 (19.27)
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And the state equations may be given as

x1(n + 1) = λx1(n) + u(n)− sgn[b1x1(n) +
N

∑
i=2

bixi(n)]

x2(n + 1) = x1(n) + λx2(n)

xk(n + 1) = λkxk(n) + u(n)− sgn[bkxk(n) +
N

∑
i=1
i �=k

bixi(n)]

k = 3, .., N

(19.28)

If λ is an unstable mode, i.e. 1 < λ < 2 then the corresponding first and second
modulators should be stable in the sense of boundedness of the states. The first one
can satisfy the conditions given by (19.18). The second one in fact is a linear system
described by

x2(n + 1) = λx2(n) + x1(n) (19.29)

where the state variable x1 could be considered as an input signal for this system. If
1 < λ < 2 then all possible symbolic sequences represent admissible periodic orbits
of x1. Because of this, depending on the initial conditions a certain periodic orbit of
x1 could influence the instability in x2.

Stability of High Order Sigma-Delta Modulators with Complex
Poles

In the particular case of two complex conjugated poles given in Figure 19.3, the
dynamics of the Sigma-Delta Modulator is described by (19.13) or (19.14). The
analysis of the behavior of both first order ”complex” modulators is similar to the
analysis of the first order ”real” modulators, given in Section 19.3. Here we always
should keep in mind that both modulators work cooperative, because their signals
are conjugated. These modulators do not exist in the real Sigma-Delta modulator.
They are introduced (like in the “real” case as well) to help us to carry out the
analysis of the behavior of the whole system.

Stable Mode, |λ1| = |λ2| < 1

In this case both modulators have two stable equilibrium points (in every half plane):

first modulator: u−1
1−λ1

and u+1
1−λ1

i.e. (u−1)[(1−α)+jβ]
(1−α)2+β2 and (u+1)[(1−α)+jβ]

(1−α)2+β2

second modulator: u−1
1−λ2

and u+1
1−λ2

i.e. (u−1)[(1−α)−jβ]
(1−α)2+β2 and (u+1)[(1−α)−jβ]

(1−α)2+β2
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These fixed points could be virtual or real. Taking into account equations (19.12),
(19.13) and (19.14), the fixed points of both modulators are ”virtual” when 2δ(1−
α) + 2γβ > 0 and ”non-virtual” when 2δ(1− α) + 2γβ < 0. Both complex modu-
lators are stable and the second order modulator is stable as well. As was mentioned
in section 19.3, the Sigma-Delta modulator behavior appears when the first order
system has two virtual fixed points and the states of (19.13), (19.14) jump between
them. Thus the desired bitstream appears at the output of the quantizer. According
to [12], in the general case, when the last two first order modulators are ”complex”,
i.e. correspond to a stable complex conjugated pair of roots; condition (19.26) has
the form

(2− λ1)

λ1

b1

(λ1 − 1)
> −

N−2

∑
i=2

|bi|
λi − 1

+
2|δ(1− α) + γβ|
(1− α)2 + β2 (19.30)

and the maximal range of input signal Δu ensuring the stability is expressed by

Δu <
∑N−2

i=2
|bi|

λi − 1
+

2|δ(1− α) + γβ|
(1− α)2 + β2 +

b1(2− λ1)

λ1(λ1 − 1)
b1

λ1 − 1
−∑N−2

i=2
|bi|

λi − 1
+

2|δ(1− α) + γβ|
(1− α)2 + β2

(19.31)

Unstable Mode, |λ1| = |λ2| > 1

In this case both modulators have two unstable fixed points (in every half plane).
Depending on parameters, these points could be ”non-virtual” or ”virtual”. In the
case of virtual fixed points, both ”complex” modulators are unstable and the whole
system is unstable. In the case of real fixed points, the possibility for Sigma-Delta
modulator behavior is connected with the existence of a compact region in the com-
plex plane.

To summarize the results on stability of high order Sigma-Delta modulators from
this section, we have the following: 1. Any Sigma-Delta modulator comprised en-
tirely of parallel sections with poles inside the unit circle is inherently stable. 2. Any
Sigma-Delta modulator with only real poles is guaranteed to be stable if (19.26)
holds and (19.25) provides the maximum input for stability. Equation (19.26) also
implies that the sufficient conditions for stability are violated if at least 2 real poles
are outside the unit circle. 3. Any Sigma-Delta modulator comprised entirely of
parallel sections with poles inside the unit circle and one complex conjugate pair
inside the unit circle is inherently stable. 4. Any Sigma-Delta modulator comprised
entirely of parallel sections with some real poles outside the unit circle and one
complex conjugate pair inside the unit circle is guaranteed to be stable if (19.30)
holds, and (19.31) provides the maximum input for stability. Equation (19.30) also
implies that the sufficient conditions for stability are violated if at least 2 real poles
are outside the unit circle. It should be emphasized, that present theoretical study in-
cludes only the cases considered above; real poles not equal to 1, or complex poles
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inside the unit circle. To demonstrate the applicability of the presented conditions
we consider a ΣΔ modulator with the following loop filter transfer function

G(z) =
b1z−1

1− λ1z−1 +
2r cosθz−1 − r2z−2

1− 2r cos θz−1 + r2z−2 , λ1 > 1

In this case λ2 = α + jβ, λ3 = α − jβ; b2 = δ − jγ, b3 = δ + jγ where
α = r cos θ, β = r sin θ, δ = r cos θ; γ = r cos2θ

2sinθ , Then the stability condition
becomes

(2− λ1)

λ1

b1

(λ1 − 1)
>

2r cos θ − r2

1− 2r cos θ + r2 (19.32)

Let’s consider two different modulators with the following set of parameters: r =
0.9,θ = 15◦,λ1 = 1.05,b1 = 0.5 and r = 0.9,θ = 15◦,λ1 = 1.05,b1 = 1. One can
simulate numerically the behavior of both modulators and could observe that the
first modulator is unstable, whereas the second one is stable for a certain range of
input signal (given by (19.31)) because stability condition (19.32) is satisfied.

19.5 Analysis of Limit Cycles in High Order Sigma-Delta
Modulators

In what follows, the following case will be considered:

1. The input signal u = u(n) is constant from interval [-1, 1]

u = const.,u ∈ [−1,1] (19.33)

2. The poles of the loop filter λ1,λ2, . . . ,λn are in the unit circle

(∀N
k=1 : |λk| < 1) (19.34)

One of the important observations in [4] is that the case of pairs of complex con-
jugated poles can be considered on similar way with the help of presentation given
in Figure 19.2. However, in this case the corresponding signals and coefficients are
complex conjugated. As it has been stressed the contribution of the state variables
corresponding to every pair of complex conjugated poles, to the input of the quan-
tizer is real. In the next investigations we are going to skip also the case of real
repeated roots. This assumption is practical, because it is very difficult to have this
case due to unavoidable noise in every sigma-delta modulator realization. Without
loss of generality we will consider the case with real distinct poles. Thus the discrete
time sequence for state variables x1, x2, . . . , xN is given by:
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xk(1) =λkxk(0) + [u(0)− y(0)],

xk(2) =λkxk(1) + [u(1)− y(1)] = λ2
kxk(0)+

+ [u(0)− y(0)]λ1
k + [u(1)− y(1)]

......
xk(n) =λkxk(n− 1) + [u(n− 1)− y(n− 1)] =

λn
k xk(0) + [u(0)− y(0)]λn−1

k + [u(1)− y(1)]λn−2
k + ...

[u(n− 2)− y(n− 2)]λ1
k + [u(n− 1)− y(n− 1)] =

λn
k xk(0) +

n−1

∑
i=0

[u(i)− y(i)]λn−i−1
k

k = 1,2, ..., N

(19.35)

The limit cycles correspond to periodic solutions in time domain. The periodic
solutions can be observed at the output of the modulator as repetitive sequences
of 1’s and -1’s. Let’s consider a periodic sequence y(0),y(1), . . . ,y(M− 1) with
length M at the output of the modulator. In this case y(M) = y(0),y(M + 1) =
y(1), . . . ,y(2M− 1) = y(M− 1), etc. Every periodic output sequence corresponds
to a periodic sequence in the states i.e. every state variable xk is periodic. This can
be observed easily if we write the state variable xk after L periods.

xk(L.M) = λL.M
k xk(0) +

LM−1

∑
i=0

[u(i)− y(i)]λLM−i−1
k

k = 1,2, ..., N

(19.36)

Taking into account that every [u(i) − y(i)] is the same after each M samples,
(19.36) can be rewritten as

xk(L.M) =λL.M
k xk(0) +

LM−1

∑
i=0

[u(i)− y(i)]λLM−i−1
k

λL.M
k xk(0) +

L−1

∑
p=0

λ
p.M
k

(
M−1

∑
i=0

[u(i)− y(i)]λM−i−1
k

)
=

λL.M
k xk(0) +

1− λLM
k

1− λM
k

(
M−1

∑
i=0

[u(i)− y(i)]λM−i−1
k

)

k = 1,2, ..., N

(19.37)

The above is correct, because ∑L−1
p=0 λ

p.M
k is a partial sum of the first L terms of

a geometric series with value
1−λLM

k
1−λM

k
. If |λk| < 1, for every L that is large enough

(after enough time) xk(L.M) = 1
1−λM

k

(
∑M−1

i=0 [u(i)− y(i)]λM−i−1
k

)
, i.e. xk(L.M)

does not depend on L. This means repetition of the value of state xk after every



19 Stability Analysis and Limit Cycles of High Order Sigma-Delta Modulators 357

M instances, i.e. the states are periodic. If |λk| > 1, from (19.37) follows that the
boundness of the states is ensured if

xk(0) =
1

1− λM
k

(
M−1

∑
i=0

[u(i)− y(i)]λM−i−1
k

)
(19.38)

and thus xk(L.M) = xk(0). This means that the initial condition with respect to xk,
should be taken in accordance with (19.38), in order to ensure stability of the solu-
tion. This fits with the results in concerning the stability of high order modulators
when λk > 1. If λk = 1, xk(L.M) = xk(0) for every L and every xk(0), because
at the periodic orbit ∑M−1

i=0 [u− y(i)] = 0 for constant input signal u. This actually
means that periodicity with respect to xk is ensured. In the case of complex pair of
poles the results are similar, but the initial conditions connected with the complex
conjugated pair of poles are also complex conjugated. We should stress again that
the contribution of the state variables corresponding to these poles, to the input of
the quantizer is real. The obtained results have been derived without matching the
time sequence of the states xk(0), xk(1), . . . , xk(M− 1),k = 1,2, . . . N with the time
sequence of the output signal y(0),y(1), . . . ,y(M− 1) in the framework of one pe-
riod. In fact to have a valid output sequence y(0),y(1), . . . ,y(M− 1) condition
(19.7) should be satisfied. Thus,(

N

∑
k=1

bkxk(n)

)
= (bTx(n))≥ 0, i f y(n) = 1

(
N

∑
k=1

bkxk(n)

)
= (bTx(n))< 0, i f y(n) = −1

n = 1,2, ..., M

(19.39)

or
N

∑
k=1

bkλn
k xk(0) ≥−

N

∑
k=1

bk

(
n−1

∑
i=0

[u(i)− y(i)]λn−i−1
k

)
, i f y(n) = 1

N

∑
k=1

bkλn
k xk(0) <−

N

∑
k=1

bk

(
n−1

∑
i=0

[u(i)− y(i)]λn−i−1
k

)
, i f y(n) = −1

n = 1,2, ..., M
(19.40)

Hence

N

∑
k=1

bkλn
k xk(0)≥ −

n−1

∑
i=1

(
[u(i)− y(i)]

N

∑
k=1

bkλn−i−1
k

)
, i f y(n) = 1

N

∑
k=1

bkλn
k xk(0)< −

n−1

∑
i=1

(
[u(i)− y(i)]

N

∑
k=1

bkλn−i−1
k

)
, i f y(n) = −1

n = 1,2, ..., M
(19.41)
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In the case of a complex pair of poles λi,λi+1 the result has the same form. It should
be noted that the left and right parts of inequalities (19.41) are real. The strategy for
searching the limit cycles that correspond to a given output sequence of 1’s and
-1’s with arbitrary length M is based on finding the appropriate initial conditions
xk(0),k = 1,2, . . . , N with respect to state variables that ensure periodicity after
the first period. Afterward the validity of the corresponding output sequences has
to be checked. To simplify conditions (19.41) for validation of a given limit cycle
connected with the corresponding vector of initial conditions xk(0),k = 1,2, . . . , N
obtained by (19.38), we are going, substitute (19.38) in all conditions (19.41). Thus
taking into account (19.7) we get

N

∑
k=1

bkλn
k

1
1− λM

k

(
M−1

∑
i=0

[u− y(i)]λM−i−1
k

)
≥ −

n−1

∑
i=0

(
[u− y(i)]

N

∑
k=1

bkλn−i−1
k

)
,

i f y(n) = 1
N

∑
k=1

bkλn
k

1
1− λM

k

(
M−1

∑
i=0

[u− y(i)]λM−i−1
k

)
< −

n−1

∑
i=0

(
[u− y(i)]

N

∑
k=1

bkλn−i−1
k

)
,

i f y(n) = −1
n = 1,2, ..., M

(19.42)

Conditions (19.42) can be combined in one, multiplying both sides by y(n) that is
either 1 or -1.

y(n).
N

∑
k=1

bkλn
k

1
1− λM

k

(
M−1

∑
i=0

[u− y(i)]λM−i−1
k

)
≥

− y(n).
n−1

∑
i=0

(
[u− y(i)]

N

∑
k=1

bkλn−i−1
k

)

n = 1,2, ..., M

(19.43)

The above inequalities (19.43) can be developed further as follows

y(n).
N

∑
k=1

bkλn
k

1
1− λM

k

(
M−1

∑
i=0

[u− y(i)]λM−i−1
k

)
≥

− y(n).
N

∑
k=1

bk

n−1

∑
i=0

[u− y(i)]λn−i−1
k

n = 1,2, ..., M

(19.44)

or
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y(n).
N

∑
k=1

bkλn
k

u
1− λM

k

(1 + λk + λ2
k + ... + λM−1

k )−

y(n).
N

∑
k=1

bkλn
k

u
1− λM

k

(y(0)λM−1
k + y(1)λM−2

k + ...+ y(M− 2)λk + y(M− 1)) ≥

− y(n)
N

∑
k=1

bku.(1 + λk + λ2
k + ...+ λn−1

k )+

+ y(n).
N

∑
k=1

bk(y(0)λ
n−1
k + y(1)λn−2

k + ... + y(n− 2)λk + y(n− 1))

n = 1,2, ..., M
(19.45)

Taking into account that the value of the sum (1+ λk + λ2
k + ...+ λM−1

k ) is
1−λM

k
1−λk

and the value of the sum (1 + λk + λ2
k + ... + λn−1

k ) is
1−λn

k
1−λk

, inequalities (19.45)
become

y(n).
N

∑
k=1

bkλn
k

u
1− λk

+ y(n)
N

∑
k=1

bku
1− λn

k
1− λk

≥

y(n).
N

∑
k=1

bkλn
k

u
1− λM

k

(y(0)λM−1
k + y(1)λM−2

k + ...+ y(M− 2)λk + y(M− 1))+

+ y(n).
N

∑
k=1

bk(y(0)λ
n−1
k + y(1)λn−2

k + ... + y(n− 2)λk + y(n− 1))+

n = 1,2, ..., M
(19.46)

Thus we get

y(n).u.
N

∑
k=1

bk
1

1− λk
≥

y(n).
N

∑
k=1

bk

1− λM
k

(y(0)λn+M−1
k + y(1)λn+M−2

k + ... + y(M− 2)λn+1
k + y(M− 1)λn

k )+

+ y(n).
N

∑
k=1

bk(y(0)λ
n−1
k + y(1)λn−2

k + ... + y(n− 2)λk + y(n− 1))+

n = 1,2, ..., M
(19.47)

Further investigations on (19.47) leads to
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y(n).u.
N

∑
k=1

bk
1

1− λk
≥

y(n).
N

∑
k=1

bk

[(λn+M−1
k

1− λM
k

+ λn−1
k

)
y(0) +

(λn+M−2
k

1− λM
k

+ λn−2
k

)
y(1)+

...+
( λM

k

1− λM
k

+ 1
)

y(n− 1) +
λM−1

k

1− λM
k

y(n) + ... +
λn+1

k

1− λM
k

y(M− 2) +
λn

k

1− λM
k

y(M− 1)
]

n = 1,2, ..., M

and hence

y(n).u.
N

∑
k=1

bk
1

1− λk
≥

y(n).
N

∑
k=1

bk

[( λn−1
k

1− λM
k

)
y(0) +

( λn−2
k

1− λM
k

)
y(1)+

... +
( 1

1− λM
k

)
y(n− 1) +

λM−1
k

1− λM
k

y(n)+

... +
λn+1

k

1− λM
k

y(M− 2) +
λn

k

1− λM
k

y(M− 1)
]

n = 1,2, ..., M

Therefore, with respect to the output bitstream sequence y(0),y(1), . . . ,y(M− 1)
the inequalities that have to be satisfied are M linear inequalities in form

y(n).u.
N

∑
k=1

bk
1

1− λk
≥
(

y(n).
N

∑
k=1

bkλn−1
k

1− λM
k

)
y(0)+

+

(
y(n).

N

∑
k=1

bkλn−2
k

1− λM
k

)
y(1) + ... +

(
y(n).

N

∑
k=1

bk

1− λM
k

)
y(n− 1)+

+

(
y(n).

N

∑
k=1

bkλM−1
k

1− λM
k

)
y(n) + ... +

(
y(n).

N

∑
k=1

bkλn+1
k

1− λM
k

)
y(M− 2)+

+

(
y(n).

N

∑
k=1

bkλn
k

1− λM
k

)
y(M− 1)

n = 1,2, ..., M
(19.48)

Inequalities (19.48) have a geometrical interpretation. In the M dimensional space
of the output sequences y(0),y(1), . . . ,y(M− 1) with length M, every output bit-
stream of 1’s and -1’s is a vertex of the M dimensional hypercube in this space.
Such a vertex represents a possible limit cycle if it is on the corresponding side of
all M hyperplanes, given by (19.48) that are equivalent to this vertex.



19 Stability Analysis and Limit Cycles of High Order Sigma-Delta Modulators 361

In extended form the inequalities (19.48) could be rewritten as follows. For n = 1

y(1).u.
N

∑
k=1

bk
1

1− λk
≥
(

y(1).
N

∑
k=1

bk

1− λM
k

)
y(0) +

(
y(1).

N

∑
k=1

bkλM−1
k

1− λM
k

)
y(1)+

... +

(
y(1).

N

∑
k=1

bkλ2
k

1− λM
k

)
y(M− 2) +

(
y(1).

N

∑
k=1

bkλk

1− λM
k

)
y(M− 1)

For n = 2

y(1).u.
N

∑
k=1

bk
1

1− λk
≥
(

y(2).
N

∑
k=1

bkλk

1− λM
k

)
y(0) +

(
y(2).

N

∑
k=1

bk

1− λM
k

)
y(1)+

+

(
y(2).

N

∑
k=1

bkλM−1
k

1− λM
k

)
y(2) + ...+

+

(
y(2).

N

∑
k=1

bkλ3
k

1− λM
k

)
y(M− 2) +

(
y(2).

N

∑
k=1

bkλ2
k

1− λM
k

)
y(M− 1)

n = 1,2, ..., M

For n = M,y(M) = y(0), because the limit cycle is with length M

y(0).u.
N

∑
k=1

bk
1

1− λk
≥
(

y(0).
N

∑
k=1

bkλM−1
k

1− λM
k

)
y(0)+

+

(
y(0).

N

∑
k=1

bkλM−2
k

1− λM
k

)
y(1) + ... +

(
y(0).

N

∑
k=1

bk

1− λM
k

)
y(M− 1)

Taking into account that at the limit cycle y(0) = y(M),y(1) = y(M +
1), . . . ,y(M− 1) = y(2M− 1),y(M) = y(2M) = y(0) or y(p) = y(p + M) for
p = 1,2, . . . , M− 1, we can rewrite conditions (19.48) in more general form:

y(n).u.
N

∑
k=1

bk

1− λk
≥
(

y(n).
N

∑
k=1

bkλM−1
k

1− λM
k

)
y(n)+

+

(
y(n).

N

∑
k=1

bkλM−2
k

1− λM
k

)
y(n + 1) +

(
y(n).

N

∑
k=1

bkλM−3
k

1− λM
k

)
y(n + 2) + ...+

(
y(n).

N

∑
k=1

bkλk

1− λM
k

)
y(n + M− 2) +

(
y(n).

N

∑
k=1

bk

1− λM
k

)
y(n + M− 1)

n = 1,2, ..., M
(19.49)

This result simplify conditions (19.41) for validation of a given limit cycle con-
nected with an output bitstream y(0),y(1), . . . ,y(M− 1) with length L, because
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directly incorporates the values of the bitsteram sequence, the constant input sig-
nal u and the parameters of parallel presentation of the loop filer of the sigma-
delta modulator considered. It should be stressed that the coefficients ∑N

k=1
bk

1−λk
,

∑N
k=1

bkλM−1
k

1−λM
k

, ∑N
k=1

bkλM−2
k

1−λM
k

,. . . , ∑N
k=1

bk
1−λM

k
are common for all inequalities and

thus the conditions (19.49) could be checked very easy.
For better understanding the validation formulas (19.49) we are going to present

a particular case for verification of limit cycles with length M = 4 for a sigma-delta
modulator with a third order loop filter N = 3. In this case formulas (19.49) become

y(1).u.
3

∑
k=1

bk

1− λk
≥
(

y(1).
3

∑
k=1

bkλ3
k

1− λ4
k

)
y(1) +

(
y(1).

3

∑
k=1

bkλ2
k

1− λ4
k

)
y(2)+

+

(
y(1).

3

∑
k=1

bkλk

1− λ4
k

)
y(3) +

(
y(1).

3

∑
k=1

bk

1− λ4
k

)
y(0)

y(2).u.
3

∑
k=1

bk

1− λk
≥
(

y(2).
3

∑
k=1

bkλ3
k

1− λ4
k

)
y(2) +

(
y(1).

3

∑
k=1

bkλ2
k

1− λ4
k

)
y(3)+

+

(
y(2).

3

∑
k=1

bkλk

1− λ4
k

)
y(0) +

(
y(1).

3

∑
k=1

bk

1− λ4
k

)
y(1)

y(3).u.
3

∑
k=1

bk

1− λk
≥
(

y(3).
3

∑
k=1

bkλ3
k

1− λ4
k

)
y(3) +

(
y(3).

3

∑
k=1

bkλ2
k

1− λ4
k

)
y(0)+

+

(
y(3).

3

∑
k=1

bkλk

1− λ4
k

)
y(1) +

(
y(3).

3

∑
k=1

bk

1− λ4
k

)
y(2)

y(0).u.
3

∑
k=1

bk

1− λk
≥
(

y(0).
3

∑
k=1

bkλ3
k

1− λ4
k

)
y(0) +

(
y(0).

3

∑
k=1

bkλ2
k

1− λ4
k

)
y(1)+

+

(
y(0).

3

∑
k=1

bkλk

1− λ4
k

)
y(2) +

(
y(0).

3

∑
k=1

bk

1− λ4
k

)
y(3)

Based on considerations here, given periodic output sequence of 1’s and -
1’s with arbitrary length M, corresponds to a limit cycle if the inequalities
(19.49) are satisfied. The application of the approach considered consists of
checking inequalities (19.49) for every possible output sequence of 1’s and -1’s
with length M. The number of these sequences is 2M. Developed conditions
(19.49) are M inequalities for every output sequence. Because the coefficients

∑N
k=1

bk
1−λk

,∑N
k=1

bkλM−1
k

1−λM
k

,∑N
k=1

bkλM−2
k

1−λM
k

,. . . ,∑N
k=1

bk
1−λM

k
are common for all inequal-

ities, conditions (19.49) are checked very fast and easy. This result accelerates the
validation check for the limit cycles in the general case considered in this section.
To demonstrate applicability of the new conditions (19.49), we consider a second
order sigma-delta modulator with the following loop filter transfer function [4]



19 Stability Analysis and Limit Cycles of High Order Sigma-Delta Modulators 363

Fig. 19.6 Output bitstream of the second order Sigma-Delta modulator with loop filter trans-
fer function given by (19.50)

G(z) =
2r cos θz−1 − r2z−2

1− 2r cosθz−1 + r2z−2 (19.50)

In this case λ1 = α+ jβ, λ2 = α− jβ, b1 = δ− jγ, b2 = δ+ jγ, where α = r. cos θ,
β = r. sin θ, δ = r. cos θ, γ = r.(cos2θ)/(2sin θ). When r = 0.9 and θ = 30◦, λ1 =
0.7794+ j0.4500, λ2 = 0.7794− j0.4500, b1 = 0.7794− j0.4500, b2 = 0.7794+
j0.4500 and the initial conditions that lead to a periodic output sequence y(0) =
1, y(1) = 1, y(2) = −1 without transient are x1(0) = 0.779− j0.123, x2(0) =
0.779 + j0.123 [18], [19]. When the constant input is u = 0.4, the periodic output
sequence with length M = 3 is y(0) = 1, y(1) = 1, y(2) =−1, and can be detected
in Figure 19.6.

In this case the inequalities (19.49) have the form

y(1).u.
2

∑
k=1

bk

1− λk
≥
(

y(1).
2

∑
k=1

bkλ2
k

1− λ3
k

)
y(1)+

(
y(1).

2

∑
k=1

bkλk

1− λ3
k

)
y(2) +

(
y(1).

2

∑
k=1

bk

1− λ3
k

)
y(0)

y(2).u.
2

∑
k=1

bk

1− λk
≥
(

y(2).
2

∑
k=1

bkλ2
k

1− λ3
k

)
y(2)+

(
y(2).

2

∑
k=1

bkλk

1− λ3
k

)
y(0) +

(
y(2).

2

∑
k=1

bk

1− λ3
k

)
y(1)

y(3).u.
2

∑
k=1

bk

1− λk
≥
(

y(3).
2

∑
k=1

bkλ2
k

1− λ3
k

)
y(0)+

(
y(3).

2

∑
k=1

bkλk

1− λ3
k

)
y(1) +

(
y(3).

2

∑
k=1

bk

1− λ3
k

)
y(2)

where y(3) = y(0).

The coefficients ∑2
k=1

bk
1−λk

= 2.9816, ∑2
k=1

Bkλ2
k

1−λ3
k
= 0.4775, ∑2

k=1
bkλ2
1−λ3

k
=

1.0578, ∑2
k=1

bk
1−λ3

k
= 1.4463 are common for the above 3 inequalities that are sat-

isfied for the output bitstream sequence y(0) = 1, y(1) = 1, y(2) = −1.
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y(1).u.
2

∑
k=1

bk

1− λk
−
[(

y(1).
2

∑
k=1

bkλ2
k

1− λ3
k

)
y(1) +

(
y(1).

2

∑
k=1

bkλk

1− λ3
k

)
y(2)+

(
y(1).

2

∑
k=1

bk

1− λ3
k

)
y(0)

]

= 0.3267 ≥ 0

y(2).u.
2

∑
k=1

bk

1− λk
−
[(

y(2).
2

∑
k=1

bkλ2
k

1− λ3
k

)
y(2) +

(
y(2).

2

∑
k=1

bkλk

1− λ3
k

)
y(0)+

(
y(2).

2

∑
k=1

bk

1− λ3
k

)
y(1)

]

= 0.8340 ≥ 0

y(3).u.
2

∑
k=1

bk

1− λk
−
[(

y(3).
2

∑
k=1

bkλ2
k

1− λ3
k

)
y(0) +

(
y(3).

2

∑
k=1

bkλk

1− λ3
k

)
y(1)+

(
y(3).

2

∑
k=1

bk

1− λ3
k

)
y(2)

]

= 1.1037 ≥ 0

19.6 Conclusions

In this chapter we present an unified approach for study the stability and valida-
tion of potential limit cycles of one bit high order Sigma-Delta modulators. The
approach is general because it uses the general form of a Sigma-Delta modulator. It
is based on a parallel decomposition of the modulator and a direct nonlinear systems
analysis. In this representation, the general N − th order modulator is transformed
into a decomposition of low order, generally complex modulators, which interact
only through the quantizer function. The developed conditions for stability and for
validation of potential limit cycles are very easy for implementation and this proce-
dure is very fast. The reported results can be elaborated further for some particular
cases, and investigating the possibilities to skip the check of some output bitstream
sequences and thus to accelerate extra the limit cycle validation procedure. Further-
more it is an open problem how to use the developed conditions for Sigma-Delta
modulators design, i.e. to design a Sigma-Delta modulator working on a desired
limit cycle.
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