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Abstract The ability to regulate and even target mutagenesis is an extremely 
valuable cellular asset. Enzyme-catalyzed DNA cytosine deamination is a molec-
ular strategy employed by vertebrates to promote antibody diversity and defend 
against foreign nucleic acids. Ten years ago, a family of cellular enzymes was first 
described with several proving capable of deaminating DNA and inhibiting HIV-1 
replication. Ensuing studies on the apolipoprotein B mRNA-editing enzyme cata-
lytic polypeptide-like 3 (APOBEC3) restriction factors have uncovered a broad-
spectrum innate defense network that suppresses the replication of numerous 
endogenous and exogenous DNA-based parasites. Although many viruses pos-
sess equally elaborate counter-defense mechanisms, the APOBEC3 enzymes offer 
a tantalizing possibility of leveraging innate immunity to fend off viral infection. 
Here, we focus on mechanisms of retroelement restriction by the APOBEC3 fam-
ily of restriction enzymes, and we consider the therapeutic benefits, as well as the 
possible pathological consequences, of arming cells with active DNA deaminases.
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1  DNA Deaminase Evolution

Central to nucleic acid metabolism is the near-ubiquitous process of enzymatic 
deamination of adenine and cytosine bases, individually or in the context of larger 
nucleic acid constituents (Conticello et al. 2005; Grosjean 2009). For instance, 
in most species, the wobble base in several of the tRNA anti-codons is frequently 
changed by deamination of adenosine to inosine (A-to-I), which can then base pair 
with cytosine and thereby increase the flexibility and decoding capacity of the tRNA 
anti-codon (Gerber and Keller 1999). These enzymes belong to the adenosine deami-
nase acting on tRNA (ADAT) family. Related proteins in most metazoans from nem-
atodes and flies to humans catalyze A-to-I editing of a variety of RNA targets (Kim  
et al. 1994; Nishikura 2010). These enzymes are called, appropriately, adenosine 
deaminases acting on RNA (ADAR). Editing events that occur in the coding region 
of an mRNA can result in amino acid substitutions in the resulting protein. However, 
the majority of editing events occur in non-coding regions of mRNA or in non- 
coding RNAs, and these A-to-I editing events can alter RNA secondary structure, 
stability, function, and/or capacity to be bound by regulatory RNAs such as siRNAs 
(Morse et al. 2002; Levanon et al. 2004; Agranat et al. 2008; Li et al. 2009).

Cytosine to uracil (C-to-U) deamination is almost as ancient as A-to-I editing 
(Conticello et al. 2007b; Grosjean 2009). The pyrimidine salvage pathways of most 
organisms use cytidine deaminase (CDA) to produce the essential RNA and DNA 
building blocks of uridine directly and thymidine after additional enzymatic steps 
(Zrenner et al. 2006). However, at some point near the root of the vertebrate tree, pol-
ynucleotide cytosine deaminases emerged, with the lamprey CDA being a present-day 
example (Rogozin et al. 2007). This enzyme is thought to underpin a unique form of 
adaptive immunity in which the DNA segments that encode arrays of highly diverse 
leucine-rich repeats are assembled into mature variable lymphocyte receptor genes by 
a recombination-mediated process. It is thought that an ancestor of the present-day 
lamprey enzyme served as the original substrate for expansion of the polynucleotide 
cytosine deaminase gene family during vertebrate evolution (Fig. 1a) (Rogozin et al. 
2007; Conticello 2008). The result in most vertebrates alive today is a much larger 
repertoire of polynucleotide C-to-U editing enzymes that execute diverse biological 
functions from lipid metabolism to adaptive and innate immunity (Figs. 1 and 2).

All vertebrate polynucleotide cytosine deaminases belong to the so-called 
‘APOBEC’ family. The defining feature of this family is a conserved His-X-Glu-
X25–31-Pro-Cys-X2–4-Cys zinc (Z)-coordinating motif, which is strictly required 
for deaminase activity (where X can be a variety of amino acids) (Wedekind  
et al. 2003; Harris and Liddament 2004; Conticello et al. 2005; LaRue et al. 2009). 
As described in more detail below, key residues within this motif position zinc at 
the active site of the enzyme (Fig. 1c). The protein sequences within these motifs 
enable phylogenetic groupings into three subfamilies: APOBEC1, AID, and the 
APOBEC3s. The APOBEC3s can be further subdivided into three subgroups: 
Z1, Z2, and Z3 (Fig. 1a) (Conticello 2008; LaRue et al. 2009). Importantly, the 
number and organization of the A3 Z-domains can vary dramatically from branch 
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to branch throughout the mammalian portion of the vertebrate phylogenetic tree 
(e.g., human versus mouse loci depicted in Fig. 1a).

Apolipoprotein B mRNA-editing catalytic subunit 1 (APOBEC1) has provided 
the namesake to the larger family. It was discovered as an enzyme that catalyzes 
the deamination of a specific cytosine within the APOB mRNA (Figs. 1b and 2a) 
(Teng et al. 1993). This produces a premature translation stop codon and a smaller 
secondary gene product. These two APOB proteins (APOB100 and APOB48) dif-
ferentially regulate the secretion of lipoproteins from the liver (Chan 1992). Many 
mammalian APOBEC1 enzymes also possess DNA C-to-U deaminase activity 
(Harris et al. 2002; Ikeda et al. 2008; Petit et al. 2009; Ikeda et al. 2011). Taken 
together with the fact that earlier vertebrate lineages, such as the one represented 
by birds and lizards, lack an APOB-like gene, it is probable that the DNA-editing 
function preceded involvement in RNA editing (Severi et al. 2011).

Fig. 1  Evolution and structure–function of APOBEC cytosine deaminases. a Expansion of the 
modern primate APOBEC3 locus encoding seven APOBEC3 genes with eleven zinc-coordinat-
ing (Z) domains (reprinted with permission from Lackey et al. 2012). b Deamination of C-to-U 
plays a central role in innate immunity. c Three-dimensional structures of the APOBEC3G C- 
terminal domain and APOBEC3C. A zinc ion (purple) is shown coordinated in both proteins by 
one histidine and two cysteine residues in the α2-β3-α3 core
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The most conserved DNA cytosine deaminase in vertebrates is activation-
induced deaminase (AID; gene name AICDA) (Fig. 1a). AID has a central role 
in adaptive immunity by seeding somatic hypermutation, gene conversion, and 
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Fig. 2  The physiological functions of the APOBEC family. a RNA editing by APOBEC1 gen-
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class switch recombination with its DNA deaminase activity (Figs. 1b and 2b) 
[(Muramatsu et al. 1999, 2000; Di Noia and Neuberger 2002; Petersen-Mahrt 
et al. 2002); reviewed by (Longerich et al. 2006; Di Noia and Neuberger 2007; 
Conticello 2008)]. Interestingly, the genes that encode APOBEC1 and AID are 
positioned adjacent to each other in the genomes of most vertebrates (an inver-
sion has placed the human gene farther away on the same chromosome). This sug-
gests that an ancestral AID gene duplicated and diverged to produce APOBEC1 
(Fig. 1a). It is likely that duplication of an ancestral AID/APOBEC1 locus pro-
duced the genetic seeds for the mammal-exclusive APOBEC3 subfamily (Fig. 1a) 
(Jarmuz et al. 2002; Harris and Liddament 2004).

In humans, the seven APOBEC3 proteins are encoded by a tandemly arranged 
gene cluster (Fig. 1a) (Jarmuz et al. 2002). These present-day genes are the prod-
ucts of continual evolution, in which an ancestral cluster of three Z-domains is 
predicted to have undergone a minimum of eight duplication events over the past 
100 million years to produce the locus found in most primates (LaRue et al. 2008; 
Münk et al. 2012). These domains are either expressed singly or one enzyme 
may consist of two Z-domains (LaRue et al. 2009). In contrast, the ancestral 
APOBEC3 locus experienced a deletion in the rodent lineage of one of the ances-
tral Z-domains, leading to the present-day two domain loci, which encodes a sin-
gle protein quite distinct from any of the primate enzymes (Fig. 1a).

One possible explanation for why some mammalian lineages, like primates, 
have many APOBEC3s, while other lineages, such as rodents, have few is that 
these enzymes have overlapping innate immune functions to protect the host from 
a variety of parasitic elements (e.g., in HIV-1 restriction, Fig. 2c; mechanism elab-
orated in Sect. 3, below). Because multiple distinct innate immune mechanisms 
serve to suppress the spread of such parasitic elements, it is reasonable to postulate 
that some mammals will be fortified at the APOBEC3 locus and weaker at other 
loci, with each mammalian lineage being distinct. For instance, primates encode 
a single TRIM5α protein, whereas mice have the capacity to encode a total of 
eight TRIM5α-like proteins (Sawyer et al. 2007; Tareen et al. 2009; Chap. 13 in 
Lever et al. 2010). It is likely that each species’ present-day innate immune forti-
fications were independently shaped by past pathogenic pressures, which one can 
only speculate may have been the ancestors of present-day viruses and transpos-
able elements.

2  Biochemical and Structural Insights

Zinc-dependent deaminases, such as the APOBECs, catalyze the conversion of 
C-to-U in polynucleotide substrates (Fig. 1b). This reaction requires the activation 
of water by a zinc ion coordinated by the enzyme (Fig. 1c). A glutamic acid in the 
active site of the enzyme protonates N3, priming the nucleophilic attack on the C4 
position of the pyrimidine ring, followed by the removal and subsequent protona-
tion of an amino group (NH2) that results in the release of ammonia (NH3) and 
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uracil as products. This conversion can theoretically occur within both RNA and 
single-stranded DNA substrates. However, apart from APOBEC1, which has both 
RNA and DNA-editing activities, AID and the APOBEC3s have proven specific to 
DNA substrates in vitro and in vivo.

The extent of amino acid homology to APOBEC1 originally suggested that 
the APOBEC3 enzymes might be a family of RNA-editing proteins (Jarmuz et al. 
2002). Three lines of evidence, however, demonstrated that this view was incorrect 
and established the APOBEC3 enzymes as single-stranded DNA cytosine deami-
nases. First, APOBEC3 has a high degree of homology to AID, and experiments 
in E. coli demonstrated AID, APOBEC3C, and APOBEC3G are capable of induc-
ing high levels of mutation in an antibiotic resistance gene (Harris et al. 2002; 
Petersen-Mahrt et al. 2002). This was clearly due to DNA editing because muta-
tion levels rose synergistically in a bacterial strain deficient for uracil DNA gly-
cosylase (UDG), an enzyme that initiates base excision repair by recognizing and 
removing uracil exclusively from DNA (Lindahl 2000; Di Noia and Neuberger 
2002; Harris et al. 2002). Second, unambiguous evidence for DNA versus RNA 
editing comes from head-to-head biochemical studies using recombinant enzymes. 
AID and APOBEC3G have a strong preference for single-stranded DNA sub-
strates, with no detectable RNA-editing activity (Bransteitter et al. 2003; Iwatani 
et al. 2006). Third, a strong preference for single-stranded DNA substrates is also 
evident in sequencing studies of retroviruses produced in the presence of a given 
APOBEC3 protein, such as APOBEC3G (Fig. 2c) (Harris et al. 2003; Lecossier 
et al. 2003; Mangeat et al. 2003; Zhang et al. 2003). In this experimental system, 
each APOBEC3 protein presumably has a chance to deaminate viral genomic 
RNA cytosines before the reverse transcription process converts it to a single-
stranded cDNA intermediate and then to the double-stranded DNA required for 
integration. However, the most common APOBEC3-dependent mutations detected 
in integrated viral DNA that has survived this process are genomic strand G-to-A 
mutations, entirely attributable to cDNA minus strand C-to-U deamination events. 
Genomic strand C-to-T editing events possibly due to RNA editing are rarely 
detected. Importantly, APOBEC3 DNA-editing activity is required to explain pre-
viously reported G-to-A mutation biases in HIV-1 substrates in vivo (Vartanian et al. 
1994; Janini et al. 2001).

The solved structures of bacterial and yeast cytidine and cytosine deaminases 
were used to inform early functional and structural studies of various APOBEC3 
family members (Betts et al. 1994; Ireton et al. 2003; Ko et al. 2003; Johansson  
et al. 2004; Xie et al. 2004). Each of these bacterial and yeast proteins, in mono-
meric form, is globular with a hydrophobic β-stranded core and several surround-
ing α-helices. The most conserved structural feature is the active site, which is 
defined by a histidine and two cysteines in the yeast enzyme and three cysteines 
in the bacterial enzymes (Xiang et al. 1997; Ireton et al. 2003; Ko et al. 2003). 
In both instances, these residues are positioned similarly by alpha helices and 
they serve to coordinate a zinc ion in the active site, which, as described above, 
is essential for the deamination reaction (Fig. 1b). Although these conserved fea-
tures have been useful for generating models of APOBEC3 structures, they have 
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also been misleading because the oligomeric state of each enzyme is variable. For 
instance, the E. coli CDA is homodimeric and the yeast enzyme is homotetrameric 
(Betts et al. 1994; Johansson et al. 2002). This has fuelled (likely incorrect) specu-
lation that APOBEC3 family members must also function as oligomers.

Generating high-resolution structures of APOBEC3 family members has 
proved challenging in large part due to insolubility at higher protein concentra-
tions [e.g., (Iwatani et al. 2006)]. However, several NMR and crystal structures 
have been achieved for the APOBEC3G catalytic domain (representing Z1-type 
deaminases), and crystal structures were obtained recently for APOBEC3C and 
the APOBEC3F catalytic domains (representing Z2-type deaminases) (e.g., 
Fig. 1c) (Chen et al. 2008; Holden et al. 2008; Furukawa et al. 2009; Shandilya  
et al. 2010; Kitamura et al. 2012b; Li et al. 2012; Bohn et al. 2013).

These structures have several conserved features that provide insight into how 
these enzymes may function. First, these proteins are all globular with a hydro-
phobic core consisting of five beta strands surrounded by six alpha helices and the 
hallmark α2-β3-α3 zinc-coordinating motif that defines the larger cytosine deami-
nase superfamily. Second, β-strands 3, 4, and 5 are arranged in parallel, similar 
to the RNA-editing enzyme TadA (an ADAT) but different from the antiparallel 
arrangement found in bacterial and yeast CDAs. This parallel β3-β4-β5 organi-
zation may be a key feature that distinguishes polynucleotide from non-polynu-
cleotide deaminases. Third, although many potential oligomeric interfaces have 
been captured in the crystal lattices, none have proven critical for enzymatic activ-
ity and no common themes have emerged (Furukawa et al. 2009; Shandilya et al. 
2010; Kitamura et al. 2012b; Bohn et al. 2013). This is consistent with a num-
ber of other studies, indicating that oligomerization may not be essential for bind-
ing and deaminating single-stranded DNA substrates (Opi et al. 2006; Nowarski 
et al. 2008; Shlyakhtenko et al. 2011, 2012). However, more work on this topic 
is clearly needed to define the role of oligomerization in vivo, because several of 
the family members, including APOBEC3G, elicit such a property in living cells 
(Bransteitter et al. 2003; Chiu et al. 2006; Soros et al. 2007; Chen et al. 2013 in 
preparation). Finally, it is notable that the majority of structural and amino acid 
differences between APOBEC3 structures are confined to non-catalytic loop 
regions. Such differences likely relate to substrate targeting and possible cofactor 
binding, ultimately reflecting physiological function.

A significant remaining question in our understanding of APOBEC3 function 
is how these enzymes bind single-stranded DNA substrates. A current work-
ing model proposes a positively charged brim in the region surrounding the 
active site consisting of R213, R215, R313, and R320 in APOBEC3G (Chen  
et al. 2008; Shindo et al. 2012). These residues are predicted to position single-
stranded DNA substrates in a manner that allows the target cytosine to enter the 
active site (Chen et al. 2008). This model also predicts that in order to access 
to the catalytic glutamic acid, the target C will be flipped out with respect to 
the phosphodiester backbone. A base-flipping mechanism is in good agreement 
with the structure of the adenosine deaminase TadA complexed with its RNA  
substrate (Losey et al. 2006).
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Finally, the brim-domain model and TadA structures suggest an explanation for 
the different local single-stranded DNA deamination preferences among APOBEC 
family members (Conticello et al. 2007a; Chen et al. 2008). Unlike bacterial restric-
tion enzymes with 4, 6, or 8 base palindromic recognition sequences, APOBEC3 
family members have a notable preference for the base immediately 5′ of the target 
C (Harris et al. 2002, 2003; Mangeat et al. 2003; Zhang et al. 2003; Bishop et al. 
2004; Liddament et al. 2004; Wiegand et al. 2004; Yu et al. 2004a, b; Zheng et al. 
2004; Doehle et al. 2005a; Langlois et al. 2005; Dang et al. 2006; Aguiar et al. 2008; 
Harari et al. 2009; Stenglein et al. 2010). Specifically, AID prefers a 5′ purine base 
(5′-AC or GC), APOBEC3G a 5′ cytosine (5′-CC), and all other family members 
a 5′ thymine (5′-TC). Several studies have recently mapped this activity to a loop 
adjacent to the active site, positioned between β4 and α4 secondary structural ele-
ments (Conticello et al. 2007b; Chen et al. 2008; Holden et al. 2008; Kohli et al. 
2009, 2010; Rathore et al. 2013 in preparation). This is most dramatically evidenced 
by loop grafting experiments, in which this loop in AID can be replaced by the 
homologous loop from APOBEC3G or APOBEC3F resulting in a complete switch 
of the preferred base immediately 5′ of the target cytosine (Kohli et al. 2009, 2010; 
Carpenter et al. 2010; Wang et al. 2010). Moreover, exchanging the same loop (or 
even a single amino acid) between APOBEC3A and APOBEC3G completely swaps 
the dinucleotide preference of these enzymes (Rathore et al. 2013 in preparation). 
Despite this progress, the field still anxiously awaits high-resolution structures of 
enzyme–substrate complexes that will more precisely define the substrate binding 
mechanism and advance our understanding of how these enzymes function in vivo.

3  Biological Functions

3.1  APOBEC3 Proteins in HIV Restriction

Pathogens including the retrovirus HIV-1 (hereafter HIV) must both engage and 
avoid numerous host factors to replicate and cause disease. Genome-wide knock-
down and proteomic studies suggest that up to 10 % of human proteins either 
directly or indirectly impact HIV replication (Brass et al. 2008; Konig et al. 2008; 
Zhou et al. 2008; Yeung et al. 2009; Jäger et al. 2012a, b). The majority of these 
proteins are required in some capacity for virus replication (i.e., dependency fac-
tors). In contrast, a small number of these cellular proteins are dominant proteins 
that directly suppress virus replication (i.e., restriction factors). Restriction factor 
hallmarks include the capacity to potently inhibit virus replication, signatures of 
rapid evolution (positive selection), responsiveness to interferon, and neutralization 
by at least one viral counter-restriction strategy (Malim and Emerman 2008; Harris 
et al. 2012; Malim and Bieniasz 2012). Here, we focus on the mechanism of HIV 
restriction by APOBEC3 DNA cytosine deaminases, and we encourage readers to 
see chapters on equally interesting restriction and counter-restriction mechanisms 
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(TRIM5α in the Chap. 2 by A.J. Fletcher and G.J. Towers, Tetherin/BST-2 in the 
Chap. 3 by S.J.D. Neil, and SAMHD1 in the Chap. 4 by M. Sharkey, this volume).

Original studies showed that the viral infectivity factor (Vif) protein of HIV is 
required for virus replication in primary CD4+ lymphocytes and in several common 
laboratory T cell lines (e.g., CEM, H9, so-called non-permissive), but it was dis-
pensable in several others (e.g., CEM-SS, SupT1, or permissive lines) (Fisher et al. 
1987; Strebel et al. 1987; Gabuzda et al. 1992). This phenotypic difference led to the 
cloning of APOBEC3G as one cDNA sequence expressed differentially (of many) 
between CEM and CEM-SS (Sheehy et al. 2002). However, APOBEC3G proved 
remarkable as it could convert a permissive cell line to a non-permissive phenotype 
(Sheehy et al. 2002). Taken together with the independent and near-simultaneous 
discoveries of APOBEC3G as a putative RNA-editing factor and as a DNA-editing 
enzyme, an editing mechanism of restriction was predicted and shortly after demon-
strated (Harris et al. 2002, 2003; Lecossier et al. 2003; Mangeat et al. 2003; Zhang 
et al. 2003).

Over five hundred papers have now been published on APOBEC3G and the 
related APOBEC3 proteins that have culminated in a current Trojan horse-like 
model for HIV restriction as shown in Fig. 2c. To be effective as an HIV restric-
tion factor, APOBEC3G must first be expressed in the cytoplasmic compartment 
of an infected virus-producing cell (Mangeat et al. 2003). Second, cytoplasmic 
APOBEC3G is thought to interact with a Gag ribonucleoprotein complex, and 
this interaction is required for APOBEC3G packaging (Alce and Popik 2004; Luo  
et al. 2004; Schafer et al. 2004; Svarovskaia et al. 2004; Khan et al. 2005; Burnett 
and Spearman 2007; Bogerd and Cullen 2008). This interaction can be disrupted 
by RNase treatment and is therefore thought to involve a bridging RNA between 
APOBEC3G and the nucleocapsid region of Gag (Cen et al. 2004; Svarovskaia  
et al. 2004; Iwatani et al. 2007; Bogerd and Cullen 2008). The identity of the 
bridging RNA is still an active area of investigation; while several reports indi-
cate a role for the Alu-like 7SL RNA, a role for viral genomic RNA has not been 
excluded (Khan et al. 2005, 2007; Tian et al. 2007; Wang et al. 2007; Bogerd and 
Cullen 2008). Third, by an ill-defined mechanism, packaged APOBEC3G must 
breach the nucleocapsid core of the viral particle. This is a genetically (but not 
mechanistically) defined step, as various chimeric constructs have the capacity to 
be packaged into viral particles, yet do not enter the core or restrict (Haché et al. 
2005; Martin et al. 2011; Song et al. 2012).

Once an APOBEC3G-loaded viral core is deposited into a target cell, reverse 
transcription proceeds and a susceptible single-stranded cDNA intermediate is 
generated. Here, APOBEC3G deaminates C-to-U (Harris et al. 2003; Mangeat  
et al. 2003; Zhang et al. 2003; Yu et al. 2004b). The uracilated cDNA is either sub-
jected to degradation or templates the second-strand synthesis, preceding integra-
tion into the target cell’s genome (Kaiser and Emerman 2006; Mbisa et al. 2007; 
Yang et al. 2007). The uracils in the cDNA strand template the insertion of ade-
nines in the nascent plus strand and thereby immortalize G-to-A mutations that 
limit subsequent rounds of viral replication (Harris et al. 2003; Lecossier et al. 
2003; Mangeat et al. 2003; Zhang et al. 2003).

http://dx.doi.org/10.1007/978-3-642-37765-5_2
http://dx.doi.org/10.1007/978-3-642-37765-5_3
http://dx.doi.org/10.1007/978-3-642-37765-5_4
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Human T cell lines that express near-physiological levels of an APOBEC3G cata-
lytic mutant do not suppress the replication of a Vif-deficient virus, indicating that the 
predominant mechanism of HIV restriction depends upon deaminase activity (Bishop 
et al. 2004; Miyagi et al. 2007; Schumacher et al. 2008; Browne et al. 2009). However, 
a component of APOBEC3G’s capacity to restrict HIV may be deaminase independent 
(Newman et al. 2005; Bishop et al. 2006, 2008; Iwatani et al. 2006; Opi et al. 2006; 
Iwatani et al. 2007; Mbisa et al. 2007). The most convincing of these studies has shown 
that APOBEC3G is capable of binding viral genomic RNA and sterically hindering 
the processivity of reverse transcriptase (Bishop et al. 2006, 2008). Nevertheless, the 
importance of deaminase-independent mechanisms, at least for APOBEC3G and HIV, 
is questionable given the aforementioned results at physiological expression levels.

Soon after the initial discovery and functional characterization of APOBEC3G, 
attention turned toward its six, most closely related family members. Proviral sequences 
isolated from HIV-infected individuals exhibit two distinct patterns of G-to-A muta-
tion consistent with APOBEC3-mediated deamination, both 5′-GG-to-AG and 
5′-GA-to-AA (Fitzgibbon et al. 1993; Janini et al. 2001; Caride et al. 2002; Kieffer  
et al. 2005; Pace et al. 2006; Gandhi et al. 2008; Land et al. 2008). As mentioned 
previously, APOBEC3G has a demonstrated preference for deaminating 5′-CC dinu-
cleotides on the viral minus strand resulting in 5′-GG-to-AG mutations and is there-
fore the most likely source of this mutational pattern (Harris et al. 2003; Mangeat et 
al. 2003; Zhang et al. 2003; Liddament et al. 2004; Yu et al. 2004b). However, high 
levels of proviral 5′-GA-to-AA mutation in patients’ proviral sequences suggested 
the involvement of at least one additional family member. Unfortunately, all six other 
APOBEC3 family members prefer to deaminate a 5′-TC, therefore excluding the 
possibility of identifying an additional APOBEC3 source based solely on mutational 
preference [e.g., (Bishop et al. 2004); reviewed in (Albin and Harris 2010)].

In cell-based model systems with forced cDNA expression, all seven 
APOBEC3s have reported activity [e.g., (Bishop et al. 2004; Liddament et al. 
2004; Wiegand et al. 2004; Yu et al. 2004a; Zheng et al. 2004; Doehle et al. 2005a; 
Rose et al. 2005; Dang et al. 2006, 2008; Goila-Gaur et al. 2007; OhAinle et al. 
2008); reviewed in (Albin and Harris 2010)]. However, cellular expression pat-
terns, ability to encapsidate into viral particles, and restriction in relevant T cell 
models indicate not all the APOBEC3s function in vivo as HIV restriction fac-
tors. For example, in primary CD4+ T lymphocytes, a major target of HIV in 
vivo, six APOBEC3s are expressed at appreciable levels, but APOBEC3A mRNA 
is undetectable (Koning et al. 2009; Refsland et al. 2010). In addition, only four: 
APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H (but not APOBEC3A, 
APOBEC3B, and APOBEC3C) package into viral-like particles and inhibit viral 
replication when stably expressed in human T cell lines (Hultquist et al. 2011). 
Finally, endogenous APOBEC3D and APOBEC3F combine to explain the 
5′-GA-to-AA mutation pattern observed in the non-permissive T cell line CEM2n 
(Refsland et al. 2012). Of note, CEM2n does not express appreciable levels of 
APOBEC3H mRNA; therefore, the endogenous contribution of this protein could 
not be evaluated. Seven variants of APOBEC3H have been reported, and cell-
based studies indicate only a subset of these haplotypes are stable at the protein 
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level and capable of HIV restriction (Dang et al. 2008; OhAinle et al. 2008; Harari 
et al. 2009; Wang et al. 2011). The significance of this natural variation in human 
populations and the relevance of it to HIV restriction require further investiga-
tion. Taken together, while all the APOBEC3s can be compelled to deaminate a 
single-stranded viral DNA in vitro or in heterologous cell lines by gross overex-
pression, only four APOBEC3s—APOBEC3D, APOBEC3F, APOBEC3G, and 
APOBEC3H—appear to have the capacity to function as HIV restriction factors in 
T lymphocytes.

All successful viruses have evolved sophisticated immune suppression and/or 
evasion mechanisms to neutralize the cellular defense systems they must face. One 
of the best-studied APOBEC3 counter-restriction mechanisms is orchestrated by 
the HIV Vif. This protein is small (23 kDa), highly basic, and strictly required for 
pathogenesis in vivo as well as for virus replication ex vivo in monocytes, mac-
rophages, primary CD4+ T lymphocytes, and non-permissive T cell lines (Kan  
et al. 1986; Lee et al. 1986; Sodroski et al. 1986; Fisher et al. 1987; Strebel et al. 
1987; Gabuzda et al. 1992; von Schwedler et al. 1993). Vif recruits a multiprotein 
E3 ubiquitin ligase complex consisting of CUL5/NEDD8, ELOB, ELOC, RBX2, 
and CBFβ to mediate proteasomal degradation of the cellular APOBEC3 restric-
tion factors (Fig. 2c) (Conticello et al. 2003; Marin et al. 2003; Sheehy et al. 2003; 
Yu et al. 2003; Mehle et al. 2004; Jäger et al. 2012b). In addition to this primary 
role, it has been suggested that Vif can relieve APOBEC3G-mediated restriction 
by alternative mechanisms such as directly blocking deaminase activity, prevent-
ing encapsidation, sequestering the protein in catalytically inactive conformations, 
or impeding APOBEC3G translation (Mariani et al. 2003; Stopak et al. 2003; 
Kao et al. 2004; Santa-Marta et al. 2005; Opi et al. 2007; Goila-Gaur et al. 2008; 
Britan-Rosich et al. 2011). The extent to which these mechanisms function to 
counteract APOBEC3 during a productive infection warrants further investigation 
but is likely to be secondary to the proteasomal degradation mechanism.

3.2  APOBEC3 Proteins in General Innate Immune Defense

Exogenous retroviruses are rare in humans, consistent with the idea that the mul-
tifaceted APOBEC3 defense provides robust protection against this type of patho-
gen. HIV is one exception to this rule. It is successful, at least in part, due to Vif 
and degradation of the cellular APOBEC3s. However, evidence for a long history 
of positive selection acting on the human APOBEC3 locus suggests this family 
has been defending the genomic integrity of its host’s cells long before HIV was 
transmitted into the human population (Sawyer et al. 2004; Zhang and Webb 2004; 
Sanville et al. 2010). Given the significant presence of endogenous retroelements 
in the genomes of mammals (nearly 50 %), suppression of these elements may 
represent the subfamily’s true raison d’être and the primary source of the positive 
selection that has shaped the complex present-day locus and the diverse functions 
of these innate immunity factors.
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Endogenous retroelements, including those containing long terminal repeats 
(LTR) like endogenous retroviruses, as well as non-LTR elements like long 
interspersed nuclear elements (LINEs) and short interspersed nuclear elements 
(SINEs), may have provided the evolutionary pressure necessary for the main-
tained expansion of the APOBEC3 locus in primates. Additionally, the differences 
in retrotransposition frequency between rodents and primates could be attributa-
ble to possessing an arsenal of seven APOBEC3 proteins versus only a single one 
(Maksakova et al. 2006; Stenglein and Harris 2006). In support of this hypoth-
esis, human APOBEC3s have demonstrated activity on LTR retrotransposons 
from mice and yeast (Dutko et al. 2005; Esnault et al. 2005, 2006; Schumacher 
et al. 2005; Bogerd et al. 2006a; Chen et al. 2006; Lee and Bieniasz 2007; Jern 
and Coffin 2008; Lee et al. 2008). Additionally, some endogenous retroviruses 
exhibit the characteristic scars from APOBEC3F and APOBEC3G activity in their 
genomes (Anwar et al. 2013 in press). Non-LTR elements, including LINE1 and 
Alu, are also restricted by human APOBEC3s but, in contrast to the HIV restric-
tion mechanism described above, this mechanism appears entirely deamina-
tion independent (Bogerd et al. 2006b; Chiu et al. 2006; Muckenfuss et al. 2006; 
Stenglein and Harris 2006; Carmi et al. 2011).

The generation of a single-stranded DNA intermediate in the life cycle of a 
parasitic element may render it susceptible to APOBEC3 restriction. In addition 
to HIV, other viruses including simian immunodeficiency virus, murine leuke-
mia virus, foamy virus, porcine endogenous retrovirus, human T cell leukemia 
virus, and hepatitis B virus have all been reported to be susceptible to APOBEC3-
mediated editing of their genomes (Harris et al. 2003; Mangeat et al. 2003; 
Mariani et al. 2003; Kobayashi et al. 2004; Turelli et al. 2004; Yu et al. 2004a; 
Doehle et al. 2005b; Lochelt et al. 2005; Russell et al. 2005; Suspène et al. 2005; 
Abudu et al. 2006; Delebecque et al. 2006; Jonsson et al. 2007). Whether or not 
the APOBEC3-mediated restriction of all of these viral pathogens is part of a natu-
ral innate immune response or a by-product of the particular model systems used 
awaits further investigation.

Endogenous retroelements and their mobility are believed to have played a cen-
tral role early in shaping the human genome during speciation (Kazazian 2004; 
Carmi et al. 2011). However, this process has its associated costs. Ultimately, cells 
have devised strategies to defend and preserve genomic integrity by curbing the 
movement of these genetic elements. The evolution of the APOBEC3 family has 
likely played a prominent role in this defense and in diversifying the retroelements 
to make them more useful for the host species [e.g., (Carmi et al. 2011)].

4  Pathological Consequences of DNA Deamination

Although DNA cytosine deamination has obvious benefits for individual cells and 
the organism as a whole, this process may have considerable pathological conse-
quences, most notably cancer. For instance, overexpression of APOBEC1 in the 
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liver of mice has been shown to cause hepatocellular carcinoma and liver dyspla-
sia (Yamanaka et al. 1995). Likewise, AID transgenesis also causes cancer, and it 
has been implicated in initiating the chromosomal translocations responsible for 
some lymphocyte neoplasias including the hallmark c-myc/IgH rearrangement in 
Burkitt’s lymphoma [(Okazaki et al. 2003; Ramiro et al. 2004; Unniraman et al. 
2004); reviewed by (Perez-Duran et al. 2007)]. AID may also promote resistance 
to the chemotherapeutic drug imatinib (Klemm et al. 2009). However, the over-
all impact of APOBEC1 and AID on human cancer is questionable because their 
expression is largely limited to tissues associated with their biological functions, 
APOBEC1 in the enterocytes of the small intestine and AID in B cells (Fig. 3a) 
(Powell et al. 1987; Teng et al. 1993; Muramatsu et al. 1999, 2000).
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In contrast, most APOBEC3s have much broader expression ranges that span 
most tissues in the human body (Fig. 3a) (Koning et al. 2009; Refsland et al. 2010; 
Burns et al. 2013). Broad expression profiles, potent DNA deaminase activity, and 
C-to-T transition biases in tumor genome sequences strongly suggested that one or 
more of the APOBEC3 proteins may be a source of mutation in different cancers 
(Harris et al. 2002; Nik-Zainal et al. 2012; Roberts et al. 2012; Burns et al. 2013). 
APOBEC3B became a leading candidate as it uniquely and constitutively local-
izes to the nucleus by inheriting a nuclear import mechanism from AID (Bogerd 
et al. 2006b; Bonvin et al. 2006; Muckenfuss et al. 2006; Stenglein and Harris 2006; 
Kinomoto et al. 2007; Stenglein et al. 2008; Hultquist et al. 2011; Pak et al. 2011; 
Lackey et al. 2012, 2013). Recently, APOBEC3B was found overexpressed in some 
laboratory breast cancer cell lines, but not in available control cell lines (Fig. 3a; 
for example, compare HCC1569, MCF-MB-453, and MCF-MB-463 to telomer-
ase immortalized human mammary epithelial cells, hTERT HMECS) (Burns et al. 
2013). APOBEC3B up-regulation was shown to be responsible for elevated genomic 
uracil levels and increased mutation rates in breast cancer cell lines (Burns et al. 
2013). APOBEC3B up-regulation was similarly robust in the majority of human 
breast tumors, in contrast to barely detectable levels in normal breast tissue (Burns 
et al. 2013). Remarkably, APOBEC3B overexpression correlated with a doubling in 
the tumor genomic mutation loads, and the majority of C-to-T transition mutations 
occurred within the preferred motif of recombinant APOBEC3B (Burns et al. 2013).

Overall, a model is emerging for how APOBEC3B provides genetic fuel for 
tumorigenesis, which, coupled with selection, may help explain many hallmarks of 
cancer such as increased DNA damage, elevated proliferation, decreased apoptosis, 
and massive heterogeneity (Fig. 3b). In particular, APOBEC3B up-regulation cor-
relates with inactivation of the tumor suppressor gene TP53, which strongly sug-
gests that it may be an early tumor-initiating event (Burns et al. 2013). Obviously, 
the potential benefits to encoding APOBEC3B must outweigh potential costs of 
carcinogenesis. An attractive explanation for this apparent conundrum may be 
that its innate immune function is important early in life and for the health of the 
species, for instance, in germ cells or early development (Bogerd et al. 2006b; 
Wissing et al. 2011), whereas the toll of cancer is not imposed in most instances 
until after the reproductive years. In any event, much more work is now justified on 
APOBEC3B and its role in breast and, potentially, other human cancers.

5  Possible Avenues to APOBEC3-Based Therapeutics

5.1  Therapy by Hypermutation

If left unimpeded by Vif, APOBEC3 proteins such as APOBEC3G can convert up to 
10 % of viral cDNA cytosines into uracils in a single round of virus replication [e.g., 
(Harris et al. 2003; Yu et al. 2004b)]. The resulting massive levels of G-to-A muta-
tions effectively ruin the genetic potential of the retrovirus in a process called lethal 



15The APOBEC3 Family of Retroelement Restriction Factors

mutagenesis (Loeb et al. 1999; Haché et al. 2006). Moreover, the preferred context 
of APOBEC3G deamination events often results in the conversion of the tryptophan 
codon TGG into a premature stop codon TAG, which is more detrimental to the 
virus than a simple amino acid change. Overall, physiological levels of APOBEC3 
proteins largely, if not fully, suppress the replication of Vif-deficient HIV.

This remarkable potency therefore raises the prospect of developing drugs to lev-
erage the APOBEC3 restriction mechanism against HIV (Fig. 4a). Direct inhibition 
of Vif is certainly one strategy, but such an approach is destined to be susceptible to 
problems imposed by extensive natural HIV variation and the rapid evolution of drug 
resistance. A more appealing alternative may be to develop a drug toward one of the 
more genetically stable cellular proteins recruited to the APOBEC3 degradation com-
plex. In particular, Vif requires at least four heterologous protein–protein interactions 
to successfully counteract the APOBEC3 proteins. The first strategy, of course, is 
targeting the direct interaction with the APOBEC3 proteins themselves, which may 
occur through conserved structural motifs (Albin et al. 2010; Kitamura et al. 2012a). 
Second is targeting the recently discovered interaction with CBFβ, which is essential 
for Vif stability and function (Jäger et al. 2012b; Zhang et al. 2012). Third and fourth 
are targeting the distinct Vif interaction motifs in ELOC (the SLQ motif) or CUL5, 
which are also essential for activity of the APOBEC3 Ub ligase complex (Marin et al. 
2003; Yu et al. 2003). Finally, it may be possible to target an upstream component of 
the proteasomal pathway involved in APOBEC3 degradation [e.g., (Kim et al. 2013)].

However, despite these clear opportunities for drug development, progress has 
been relatively underwhelming. Proof-of-concept experiments have been achieved 
through cell-based screens for preservation of APOBEC3G-GFP fluorescence 
in the presence of HIV Vif (Nathans et al. 2008). The lead molecule from these 
studies, RN18, however, has only been subject to modest additional development 
(Ali et al. 2012). An additional concern holding back development of RN18 is the 
major challenge of identifying the molecular target, which is essential for struc-
tural studies and rational improvements through medicinal chemistry.

Independent lead compounds have also been identified based on predicted fit 
into the Vif-binding pocket in ELOC, which would effectively outcompete the SLQ 
motif of Vif (Huang et al. 2013a; b). However, the best of these indolizine-type com-
pounds has a modest IC50 value of 11 μM. This will likely need improvements in 
potency and solubility before efficacy can be achieved in live cell studies. In any 
event, much more work in this area is needed, including larger-scale cellular screens, 
biochemical screens, and computational screens, followed by a comprehensive set of 
secondary and tertiary screens to narrow in on the most effective drug candidates.

5.2  Therapy by Hypomutation

Vif efficiently counteracts the HIV-relevant APOBEC3 repertoire (Conticello et al. 
2003; Kao et al. 2003; Marin et al. 2003; Sheehy et al. 2003; Stopak et al. 2003; 
Hultquist et al. 2011). Nonetheless, evidence of APOBEC3 activity is found in the 
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proviral sequences derived from infected patients [e.g., (Janini et al. 2001)]. This 
raises the possibilities that either Vif cannot completely neutralize all of the cyto-
plasmic APOBEC3 before encapsidation or HIV regulates its high mutation rate, 
in part, through controlled degradation of the APOBEC3 proteins with Vif acting 
as a molecular rheostat optimizing the levels of cytosine deamination necessary for 
immune evasion and potentially drug resistance (Haché et al. 2006; Harris 2008).

A counterintuitive but potentially more effective strategy to decrease the 
pathogenesis of HIV may be to inhibit the enzymatic activity of the APOBEC3s, 
thereby eliminating a potential source of variation for the virus (Fig. 4b) (Harris 
2008; Li et al. 2012; Olson et al. 2013). Toward this end, high-throughput screens 
have resulted in proof-of-concept experiments that APOBEC3G activity can be 
blocked with small molecules (Li et al. 2012; Olson et al. 2013). However, much 
additional work is still necessary to improve the solubility, potency, and bio-
availability of APOBEC3 inhibitors, and efficacy will need to be demonstrated in 
cell-based studies before critical animal experiments can be done. Nevertheless, 
a hypomutation strategy is attractive because decreasing the HIV mutation rate 
has the potential to limit the diversity of the viral population and render it sus-
ceptible to normal immune clearance mechanisms (Fig. 4b). Indeed, the adaptive 
T cell- and B cell-mediated immune responses manage to keep the virus in check 
initially in most patients, and it is tempting to speculate that even a slight tip in 
favor of host immunity may enable complete virus clearance (i.e., analogous to 
most other viral infections). Given the fact that existing anti-retroviral drugs are 
numerous and largely effective, a big challenge facing the field is the development 
of a curative therapy. It remains possible that promoting either virus hypermuta-
tion or hypomutation could be part of such a cure.
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