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1 Introduction

In the seventies, the word robot mainly termed a manipulator arm installed in a
workshop. It was designed to perform repetitive and/or high-precision tasks, such
as pick-and-place, assembly, welding or painting. Its environment was fully con-
trolled with no human around, and its behavior was fully programmed in advance.
Since then, robotics has dramatically evolved. Nowadays, a robot is endowed with
advanced perception, decision and action capabilities. In essence, it is in interac-
tion with its environment with humans and/or with other robots and is capable of
autonomy and adaptation—full or shared. The spectrum of applications has kept
broadening, and spans not only manufacturing and supply chain, but also explo-
ration, health—such as in surgery, rehabilitation, assistance—and professional and
personal-service robotics as, for instance, in mining, agriculture, transports, moni-
toring, rescue, guidance, cleaning, assistance, and games. Among the hot topics, one
may cite robot deployment in uncontrolled and dynamic environments, Human–robot
interaction, task-oriented behaviors and networked robotics devices in smart envi-
ronments, or ubiquitous robotics [16]. For the last years, one could observe growing
two-way connections between robotics and neurosciences, with the methods, models
and experimental achievements of each discipline being a source of inspiration and
strengthening for the other one [64].

Perception is a key requirement to robot autonomy, adaptation and self-awareness.
Traditionally, a distinction is made between proprioception, that is, the ability for
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a robot to sense its own internal status, for instance, in terms of wheels angular
positions/velocities, joint angles, odometry, gyroscope- and exteroception, which
provides the robot with information on its environment. Among others, one can cite
exteroceptive modalities, such as bumpers for emergency stop, ultrasound/infrared/
laser scanning devices for range sensing, microphones, force sensors, tactile sensors
and cameras—be it in the visible, infrared or multispectral range.

So far, the visual modality has undoubtedly received greatest interest. This is due
to the richness of the information brought by images and to the high performance, low
cost and embeddability of visual sensors. Vision has been used for decades in nearly
all kinds of robotic tasks—from control loops and tracking routines to localization,
map building, or scene modeling and interpretation. Numerous vision-based func-
tions run nowadays in industry, for instance, non-destructive testing, scene/process
monitoring, robot guidance, and other areas of application [5]. Besides, computer
vision is a discipline by itself that does not take into account the specificities of
robotics, such as real time constraints or changes in experimental conditions but,
nevertheless, enriches the field.

Like vision, audition is a key sense in humans that plays a fundamental role
in language and, consequently, in learning and communication. Quite surprisingly,
robot audition was identified as a scientific topic of its own only since about the
year 2000 [53], though related work existed before as part of bigger projects [12,
28, 30]. The reasons may be cultural as regards the importance of images in our
society and also physiological—think of the predominance of vision in primates.
More pragmatically, they are also certainly related to the difficult fulfillment of con-
straints like embeddability, high-performance acquisition, or real time processing.
Consequently, while many theoretical results have long been developed in acoustics
and signal processing, the literature on audition for robotics has remained scarce
until recently. Fortunately, the timely topics of cognitive robotics and Human–robot
interaction have promoted the field [25].

In its early days, robot audition benefited from developments in computational
auditory-scene analysis, CASA [75]. Thereafter, Okuno et al. [63] identified the
three main functions that any auditory robot should implement. These are

• Source localization, which may include a tracking system
• Separation of audio flows or source extraction
• Source recognition, which includes but is not limited to automatic speech recog-

nition and can extend to scene interpretation

These functions encompass low-level issues as well as higher-level skills like emotion
understanding or acoustic-scene meta-description.

In an attempt to provide a state of the art of binaural systems in robotics, this paper
is structured as follows. The paradigms and constraints of robot audition are first sum-
marized. Then the most prominent binaural approaches to canonical low- and high-
level auditory functions are presented. After a review of robotics platforms, research
projects and hard- and software related to the field, some novel active approaches
developed by the authors are outlined, namely, combining binaural sensing and robot
motion. A conclusion ends the chapter.
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2 Paradigms and Constraints of Robot Audition

Two main paradigms for robot audition exist in the literature. On the one hand, micro-
phone arrays have been used in a lot of applications. Various geometries have been
selected, such as a line, a circle, a sphere, or the vertices of a cube. The redundancy
in the sensed data is known to improve the acoustic-analysis performance and/or
robustness [85]. Specific contributions have been concerned with

• The detection of the number of active sources, for example, through statistical
identification [21]

• Source localization, for instance, through beamforming [59] or broadband beam-
space MUSIC [2]

• Source extraction, for example, through geometrical source separation [84]
• Online assessment of uncontrolled dynamic environments
• Adaptation of speaker/speech recognition techniques to the robotics context [37]

On the other hand, binaural approaches have been developed.1 These rely on a single
pair of microphones that can be in free field, mounted inside an artificial pinna—not
necessarily mimicking a human outer ear—and/or placed on a dummy head. From
an engineering viewpoint, the possible use of cheap and efficient commercial stereo
devices and drivers greatly eases the implementation. However, this simplification
may imply an increased computational complexity.

Even though there is no fundamental need to restrict an acoustic sensor to only
two microphones, for instance, when advanced data-acquisition and processing units
are available, other arguments justify the binaural paradigm. First, robotics can be
advocated as a privileged context to the investigation of some aspects of human
perception. Indeed, as robots are endowed with locomotion and can incorporate
multiple sensory modalities, they constitute a versatile experimental test bed to the
validation/refutation of assumptions regarding the sensing structures as well as the
processing and cognitive functions in humans. Conversely, these functions can be
a source of inspiration for engineering approaches to perception. Last, there is an
increasing demand for symbiotic interaction between humans and robots. This may
imply the design of humanoid platforms, endowed with bioinspired perception and
able to acceptably interact with humans in uncontrolled environments. Important
constraints are, however raised by the robotics context, such as

Embeddability In the field of array processing, a large antenna involving a high
number of microphones is often used. If such a sensor is to be embedded on a
mobile robot, then a tradeoff must be handled between its size and, thus, aperture,
and potential performances. Binaural sensors do not suffer from this geometrical
constraint. Whatever the number of microphones is, the size and power consump-
tion of the data acquisition and processing unit also constitute an important issue.

Real time Significantly distinct computation times are sometimes required by algo-
rithms targeting the same goal. In robotics, low-level auditory functions such as

1 Single-sensor approaches exist, such as [76, 83], but are rarely addressed in the literature.
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binaural-cue calculation or source detection/localization must often run within a
guaranteed short-time interval. Typically, up to 150 ms are demanded when their
output is needed in reflex tasks such as exteroceptive control or people tracking.
Specific processing units may have to be designed in order to guarantee real time
behavior.

Environment Robotics environments are fundamentally dynamic, unpredictable
and subject to noise, reverberation, or spurious sound sources. In order to ensure
a guaranteed performance, adaptive or robust auditive functions must be designed.

Sources Most meaningful sound sources involved in robotics are broadband, with
a spectrum spreading over the whole audible frequency bandwidth. This pre-
cludes the direct use of narrowband approaches developed elsewhere. Source
non-stationarity is also an important issue. In addition, specific methods may be
required depending on the source distance. Last, source motion can complexify
the processing of the sensed signals, for example, when it breaks their assumed
joint stationarity.

Robot Robot parts and robot motion generate so-called self-noise, or ego-noise,
which may of course disturb the acoustic perception. Besides, in so-called barge-
in situations, some sounds emitted intentionally by the robot may be interrupted,
for example, by human utterance during a spoken dialog. Hence, they must be
filtered-out online for not to damage the analysis of the scene.

Historically, most initial contributions to robot audition took place within the bin-
aural paradigm. However, the results remained mixed when facing wideband non-
stationary sources in noisy environments. Nevertheless, the last years have witnessed
a renewal of interest for such approaches. A particular focus is put on active variations,
which, thanks to the coupling of binaural sensing and robot motion, can overcome
limitations of their passive counterparts. In computer vision, the coupling between
visual perception and behavior has long been envisaged [1, 6]. The usefulness of
active processes in hearing is discussed in [17, 53]. Importantly, the increased avail-
ability of cheap and accurate head-tracking solutions has given rise to related research
amongst the hearing community with the potential of contributing to robot-listening
strategies—see, for instance Ref. [11].

3 Binaural Auditory Functions in Robotics

As aforementioned, a robot should be able to understand several sources at a time by
using its own ears in a daily environment, that is, with permanent background noises,
intermittent acoustical events, reverberation, and so on. This challenging environment
may be dynamic, due to sound sources moving or changing their acoustic properties.
Additionally, the robot ego-noise is part of the problem. Whatever the conditions,
most embedded auditory systems in robotics aim at generating an acoustic map of
the robot’s surroundings in real time. This map can then be used as an input to higher
cognitive/decisional layers of the robot’s software architecture in order to gaze or
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Fig. 1 Bottom-up working flow representation of classical robot audition systems

move towards the source of interest, answer to an interacting human partner, and other
related issues. Such elementary behaviors can of course be enriched by considering
low-level-reflex actions or multimodal approaches to artificial sound perception [80]
or [81], this volume.

Acoustic maps of the environment are generally obtained along the bottom-up,
signal-driven, workflow illustrated in Fig. 1. The successive computational steps are
often split into two categories, namely low-level and high-level auditory functions,
which are

Sound localization This stage is probably the most important low-level auditory
function. Lots of efforts have been made to provide efficient binaural sound local-
ization algorithms suited to robotics.

Extraction Once localized, each sound source can be separated so as to provide
clean speech signals, noise signals, etc.

Ego-noise cancellation Its importance was acknowledged in the early days of
active audition. Indeed, the noise of the motors enabling the robot motion may
significantly degrade the robot’s auditory perception.

Voice-activity detection, speaker recognition, speech recognition The need of
these functions comes from the fact that most robotics systems are concerned
with speech signals for interaction purposes.

High-level scene description Finally, all the above extracted information are gath-
ered to accurately describe the acoustic scene.

Elements of this traditional bottom-up approach are reviewed in the following.
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3.1 Sound Localization

In binaural robot audition, the azimuth and elevation of the multiple sources in the
environment, and possibly their distance, are inferred from cues extracted from left
and right signals. The literature reports the use of binaural cues, namely, interau-
ral time/phase difference, ITD/IPD, interaural level difference, ILD, and monaural
cues, that is, spectral information, and further characteristics, for instance, distance-
related, [74]. In [94] various cue-extraction methods are reviewed. Whatever the
localization policy, the problem is then to inverse the transformation that relates the
spatial source locations to such cues. This requires a-priori knowledge about the prop-
agation of an acoustic wave onto the robot’s scatterers. This knowledge is generally
captured in a simplified analytical model, or comes as experimental measurements of
sound source properties, such as frequency contents, positions and induced auditory
cues.

Considering source-azimuth estimation, the first model proposed in robotics was
the auditory epipolar geometry, AEG [53]. It expresses the interaural phase differ-
ence, IPD, as a function of the source azimuth measured with the two microphones
in the free field. As AEG does not take into account the shadowing effect of the head
on sound propagation, some alternatives were proposed. Among them, one can cite
the revised auditory epipolar geometry, RAEG [57], inspired by the Woodworth–
Schlosberg formula [90]. These models are now commonly used in robotics, but are
shown to be not so robust to changes in the environment. For instance, Nakadai et al.
[56] showed that the simulated ITD obtained from RAEG is consistent with experi-
mental measurements gathered in an anechoic room in the range of 500–800 Hz. Yet,
if the comparison is made in a real robotics environment including reverberation and
noises, then the basic models do not fit real-life data anymore.

Another analytical model, based on scattering theory, ST, was proposed in [55],
considering the scattering induced by a perfectly-spherical head. In comparison with
previous models, ST provides a more reliable closed-form model of the IPD as a
function of the source azimuth. Of course, room acoustics is still not taken into
account, so that the measured IPD remains heavily influenced by the environment.
A similar approach was exploited in [27] and experimentally tested in [26] on a
spherical plastic head.

In humans, source elevation is inferred from monaural cues taking the form of
spectral notches. These are induced by the interference of the direct path of the wave
to the concha and its reflections brought by the pinna. They are reproduced in robot-
ics by artificial pinnae in charge of collecting the sound wave to the microphones.
Importantly, both the placement of conchas on a robotics dummy head and the shape
of pinnae can be optimized to maximize localization sensitivity to the source posi-
tion. A solution to the first problem was proposed in [79]. The second one related to
pinnae design has been more deeply investigated [41, 42, 76]. Yet, so far, both prob-
lems remain open. Numerical simulations may be required, which complicates the
design. At large, the only emerging rule of thumb consists in designing an irregular
or asymmetric pinna shape to provide elevation-dependent spectral cues.
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Most of the previous approaches aim at getting closed-form equations of inter-
aural or monaural cues. Such models could also involve the head-related transfer
functions, HRTFs, of the robot that is, the transfer functions from the center of the
head if it were absent and the two microphones. An HRTF captures all the effects
exerted by the robot’s body, head and pinnae on the incoming sound waves. In such
a way it subsumes all the above head models. As closed-form HRTF expressions
are very difficult to obtain for a generic mobile platform, a prior identification step
is mandatory. It must be performed in an anechoic room, thus limiting its applica-
bility to robotics. Nevertheless, in the case of well-identified environments, some
HRTF-related applications to localization in robotics were developed. For instance,
[50] estimated the position of a single talker in a known environment. This work
was extended in [37] to simulate a moving talker. In [29] a learning approach is
proposed for sound localization based on audio-motor maps that implicitly captures
the HRTF. Self-organizing feature maps were also used in [60] to fuse binaural and
visual information so as to estimate the 3-D position of a sound source. In the same
vein, a multimodal approach to sound localization based on neural networks was
proposed in [93], where vision is also combined with auditory cues to estimate the
source azimuth. Further, a gaussian-mixture model, GMM, approach is proposed
in [51], this volume, to evaluate the position of multiple sound sources. Learning
approaches thus seem a promising generic tool to adapt an HRTF to various acoustic
conditions.

3.2 Source Extraction

Once the sound sources have been localized in the robot’s environment, the subse-
quent steps in low-level auditory analysis generally consist in extracting the sound
sources of interest. Depending on the authors, source localization and extraction
can be inverted or even gathered into a single function. Though binaural extrac-
tion of sources was addressed in the early days of robot audition, the number of
approaches has remained quite small. One of the most famous solution is the active
direction-pass filter, ADPF [57]. It works by collecting frequency sub-bands that are
presumably linked to the same sound source in order to generate the extracted signal.
This fusion of sub-bands is performed only if their associated binaural cues, that is,
IPDs/ILDs, are spatially coherent according to a given head model, for instance,
AEG or RAEG—see Sect. 3.1—taking into account the better spatial-discrimination
ability for sources in front of the robot. This system has been proven to be effective
to extract and recognize three simultaneous speakers [58].

One of the main advantages of ADPF is that it requires no a-priori knowledge
of the signal contents. The same applies to other recent binaural separation tech-
niques based on localization cues. Well-known approaches based on independent-
component analysis [70] that can separate two sources at most from the output of a
binaural sensor, are then generally overcome. For instance, Weiss et al. [89] proposed
to combine binaural cues with higher-level information related to speaker identity



232 S. Argentieri et al.

in order to separate more than two sources in the presence of reverberation. Another
solution, already explored with ADPF, that outperforms beamforming approaches in
reverberant scenes, is to derive time-frequency masks on the basis of binaural cues—
see for instance [77]. In [23], multiple-speaker joint detection and localization was
recasted as a probability-based spatial clustering of audio–visual observations into
a common 3-D representation. Cooperative estimates of both the auditory activity
and the 3-D position of each object were then deduced from a substantiated variation
of the expectation-maximization algorithm. Experiments were conducted with the
POPEYE platform—see Sect. 4.4—on single or multiple speakers in the presence of
other audio sources.

Whatever the approach, it is still very difficult to extract multiple sources cover-
ing the same frequency range. In such cases, some extracted signals may mistakenly
come from unrelated sources and may thus present missing or uncertain sections.
In the downstream pattern-matching algorithms, for example, for speaker/speech
recognition purposes, such problems can be handled within the missing-feature the-
ory, MFT [18, 19, 45], which consists in tagging the missing sections by a null
confidence weight, as will be shown further down.

3.3 Ego-Noise Cancellation

Two very restrictive solutions to ego-noise cancellation are generally proposed for
the binaural case. On the one hand, loud enough sources can mask ego-noises during
a movement, thus improving the signal-to-noise ratio, SNR, of the perceived signals.
On the other hand, stop-and-listen approaches are sometimes used, so as to process
sounds while the robot is at rest. Both approaches are unsatisfactory, and recent
developments have tried to overcome these limitations.

Canceling the noise originating from the robot can be considered by source sep-
aration techniques. But existing studies mainly rely on microphone arrays, which
makes them inappropriate for the binaural context. Additionally, as motors are gen-
erally placed in the vicinity of the microphones, a diffuse sound field should be used
to model the noise, precluding the direct use of standard state-of-the-art approaches
to source separation.

One of the first solutions to the specific ego-noise-cancellation problem in robotics
was proposed in [54] on the SIG humanoid robot—see Sect. 4.2. It relies on two pairs
of microphones, one of them being dedicated to the perception of the interior of the
robot. With the help of these inner transducers, the method was able to classify
spectral bands as being related either to ego-noise or to the source of interest, but
could not suppress the noise from the perceived signals. Other approaches consist in
predicting the noise to be emitted on the basis of the generated motion. For instance,
Ito et al. [35] did this on a time-frame basis with a neural network. The most promising
solution relies on noise patterns. In this vein, joint noise templates related to specific
movements were stored offline into a large ego-noise database [32, 62], then were
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identified online according to the robot motion to be performed, and subsequently
subtracted from the perceived signals [31].

3.4 Voice-Activity Detection

When considering Human–robot interaction applications, the perceived signals are
mainly composed of speech information, non-informative signals, and various types
of noise. Efficient speech extraction is necessary to decrease the error rate in high-
level auditory analysis. It can be performed by detecting speech segments in the
sensed signals, prior to localizing the corresponding sources of interest and spatially
filtering them out of the noise. Voice-activity detection, VAD, algorithms have often
been used, which generally classify signal snippets as either noise-and-speech or
only-noise. Again, multiple solutions to VAD have been proposed in the literature,
such as energy feature, zero-cross rate [71] or higher-order statistics [61]. However,
very few of them are specifically dedicated to binaural audition and/or suited to
robotics. Energy feature can hardly cope with individual differences and dynamic
volume changes. Zero-cross rate is better in this respect, but is more sensitive to
noise. Statistics show good behavior but their performance decrease in an acoustic
environment which shows significant differences with the one used to learn the
statistics. As a solution suited to robotics, Kim et al. [37] proposed an enhanced
speech detection method that can be used to separate and recognize speech in a noisy
home environment. Nevertheless, the detected utterances should take place in front of
the robot. Another approach is outlined in [20], inspired by wireless sensor network
applications in the context of hearing aids. Therein, a basic energy-based VAD was
combined with a cross-correlation based VAD to detect speech in the two signals.
But again, the speaker should be uttering in front of the system. Besides, a Bayesian
network based integration of audio–visual data for VAD was proposed in [91] as the
first layer of an automatic speech recognition system.

3.5 Speaker and Speech Recognition

In robotics, speaker and speech recognition are probably the key high-level auditory
functions required to perform natural Human–robot interaction. Traditional auto-
matic speech recognition, ASR, algorithms are known to be very sensitive to the
speech signal-acquisition conditions, such as quality of the microphones, distance
to the speaker, environmental noise, and so on. Therefore, considering this prob-
lem at large, the robotics context requires a trade-off between large-vocabulary and
multiple-speaker applications in the well-known framework of the cocktail-party
problem.

Environmental noise is probably the most prominent challenge to be faced by ASR
systems in robotics. This is probably the reason why most recent studies have focused
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on noise removal from the speech signals, that is, speech enhancement. The aim here
is to retrieve ideal acquisition conditions, generally by applying a set of spatial filters
which enable the attenuation of noisy sources or echoes in the perceived signal
in order to use traditional ASR systems. In this topic, the aforementioned missing
features approaches are of particular interest. They are able to cope with additive,
possibly non-stationary noise sources [72, 78] by discarding specific regions in the
speech spectrogram with low SNRs. Likewise, one can mention missing-feature
compensation techniques, which are able to accurately estimate the omitted regions
of these incomplete spectrograms. These approaches were used in [82] in order to
separate two speakers uttering simultaneously from the front of a humanoid robot
endowed with a binaural sensor, on the basis of an independent-component analysis
based source-separation technique. This allows for improving the speech-recognition
rates by 15 % with respect to a state-of-the-art-based hidden Markov model, HMM,
recognition system. Recent developments in the missing-features framework were
concerned with adaptive recognition systems, that is, with MFT–ASR approaches
which allow to change the weight of those spectrogram sections that are considered
damaged [73]. In this domain, Ince et al. [33] exploits an MFT–HMM approach
to cancel ego-noise by applying a time-frequency mask. This makes it possible to
decrease the contribution of unreliable parts of distorted speech in signals extracted
from a microphone array. Such an approach can also be applied in binaural systems.

Compared to speech recognition, speaker recognition has rarely been addressed in
robotics. Like speech recognition, it is usually analyzed for the monaural case under
similar recording conditions. Initially, the subject was already addressed by means
of microphones arrays [44]. For applications to robotics, one can refer to [36], and
to the recent preliminary study [95]. The latter paper shows that in a reverberant and
noisy environment, the success rate of binaural speaker recognition is much higher
than with monaural approaches.

3.6 High-Level Scene Description

Several studies have been conducted in order to endow a user with auditory aware-
ness about a complex auditory scene. A basic, though incomplete, solution consists in
applying 3-D acoustic spatialization techniques to an extracted and labeled source in
such a way that the users sense better where the corresponding message comes from.
Intuitive tools exist in our daily lives to obtain awareness on a visual scene, such as
overviewing, zooming, scrutinizing, (re)playing at various places, browsing, index-
ing, etc. In the same vein, a 3-D auditory scene visualizer according to the mantra
“overview first, zoom and filter—and then detail on demand” was developed on top
of face-tracking and auditory functions [40] and integrated into the HARK robot-
audition toolbox—Sect. 4.2. This system has been improved to get better immersive
feeling. Though a microphone array is assumed, the underlying concepts extend to
binaural techniques.
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4 Platforms and Research Projects

This section reviews some notable auditory robots and/or research projects. Asso-
ciated hard- and software dedicated to robot audition are also mentioned as far as
available.

4.1 Cog

The upper torso humanoid Cog, from MIT, is probably the first platform endowed
with audition2 It was targeted towards the scientific goal of understanding human
cognition and the engineering goal of building a general purpose flexible and dex-
trous robot. Interestingly, the authors pointed out in their manifesto [12] that the
first goal implied the study of four essential aspects of human intelligence that, by
themselves, involve manufacturing a human-like platform. These topics, discarded
in conventional approaches to artificial intelligence, were

• Development Considering the framework by which humans successfully acquire
increasingly more complex skills and competencies

• Social interaction Enabling humans to exploit other humans for assistance, teach-
ing, and knowledge

• Physical embodiment and interaction Humans use the world itself as a tool for
organizing and manipulating knowledge

• Integration Humans maximize the efficacy and accuracy of complementary sen-
sory and motor systems

Cog was endowed with an auditory system, comprising two omni-directional micro-
phones mounted on its head, and crude pinnae around them to facilitate localization.
The sound acquisition and processing units were standard commercial solutions.
Companion development platforms were built, similar in mechanical design to Cog’s
head with identical computational systems. One of them, oriented towards the inves-
tigation of the relationships between vision and audition, complemented the binaural
auditory system with one single color camera mounted at the midline of the head.
Visual information was used to train a neural network for auditory localization [34].

4.2 SIG/SIG2 and HARK

The SIG Project [54] was initiated by Kitano Symbiotic Systems, ERATO and JST
Corp., Tokyo. The pioneering program has then been pursued further in collaboration
of Kyoto University and the Honda Research Institute.3 In an effort to understand

2 http://www.ai.mit.edu/projects/humanoid-robotics-group/cog/
3 http://winnie.kuis.kyoto-u.ac.jp/SIG/

http://www.ai.mit.edu/projects/humanoid-robotics-group/cog/
http://winnie.kuis.kyoto-u.ac.jp/SIG/
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high-level perceptual functions and their multi-modal integration towards intelligent
behavior, an unprecedented focus was put on computational auditory-scene analysis,
CASA, in robotics. The authors promoted the coupling of audition with behaviors
also known as active audition for CASA, so as to dynamically focus on specific
sources for gathering further multimodal information through active motor control
and related means. This approach paved the road to many developments, the first one
being ego-noise cancellation.

SIG is an upper-torso humanoid. It has a plastic cover designed to acoustically
separate its interior from the external world. It is fitted with a pair of CCD cam-
eras for stereo vision and two pairs of microphones—one in the left and right ears
for sound-source localization and the other one inside the cover, mainly for cancel-
ing self-motor noise in motion. A second prototype, named SIG2, was designed to
solve some problems in SIG, such as the loud self-noise originating from motors,
an annoying sound reflection by the body, sound resonance and leakage inside the
cover, and the lack of pinnae. This implied changes in the material and actuators, as
well as the design of human-shaped ears. Many striking achievements were obtained
on SIG/SIG2, such as multiple sound-source localization and tracking from binau-
ral signals while in motion, multiple-speaker tracking by audio–visual integration,
human–robot interaction through recognition of simultaneous speech sources.

Subsequently and importantly, array-processing techniques for source localiza-
tion and source separation were designed and implemented on SIG/SIG2. This gave
rise to the open-source robot-audition toolbox, HARK,4 that gathers a comprehen-
sive set of functions enabling computational auditory-scene analysis with any robot,
any microphone configuration and various hardware. Within the recent revival of
active binaural audition, HARK has been complemented with a package for binau-
ral processing.

4.3 iCub

An open-source platform, comprizing hardware and software, well suited to robot
audition is the iCub humanoid robot. iCub has been developed since 2004 within
the RobotCub project,5 and disseminated into more than twenty laboratories. Sized
as a 3.5 year-old child, it is endowed with many degrees of freedom and human-like
sensory capabilities, including binaural audition. It has also been designed towards
research in embodied cognition, including study of cognition from a developmental
perspective in order to understand natural and artificial cognitive systems.

Two electret microphones are placed on the surface of its 5-DOF head and plastic
reflectors simulate pinnae. The shape of these ears has been kept simple, so as to
ease their modeling and production while preserving the most prominent acoustic
characteristics of the human ear. To better manage the frequencies of the resonances
and notches to be used for vertical localization, a spiral geometry was selected [29].

4 HRI-JP audition for robots with Kyoto University, http://winnie.kuis.kyoto-u.ac.jp/HARK/. In
Ariel’s Song, The Tempest, from Shakespeare, hark is an ancient english word for listen.
5 http://www.icub.org/projects.php

http://winnie.kuis.kyoto-u.ac.jp/HARK/
http://www.icub.org/projects.php
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Small asymmetries between right and left pinnae, namely, a rotation of 18◦, enable
to tell the notches due to the source contents from these due to its spatial location just
by comparing the binaural spectral patterns. A supervised learning phase matches
the (ITD, ILD, notches)-tuples extracted from binaural snippets with sound-source
positions inside audio-motor maps. These maps are then used online to drive the
robot by sound. The maps are seamlessly updated using vision to compensate for
changes in the HRTFs as imposed by ears and/or environment. Experiments show
that the robot can keep the source within sight by sound-based gaze control, with
worst-case errors of pan and tilt below 6◦.

4.4 POP and HUMAVIPS, and Their Associated
Platform/Datasets

A recent milestone in robot-audition research is undoubtedly the perception-on-
purpose, POP, project.6 This European scientific collaboration in 2006–2008 was
oriented towards the understanding and modeling of the interactions between an
agent and its physical environment from the biological and computational points
of view, concentrating on the perceptual modalities of vision and audition. Aside
from a fundamental investigation of cognitive mechanisms of attention on the basis
of measures of brain physiology brought about by functional magnetic-resonance
imaging, fMRI, and electro/magneto-encephalography, EEG/MEG, a sound mathe-
matical framework was targeted, enabling a robot to feature purposeful visio–auditive
perception by stabilizing bottom-up perception through top-down cognition. A spe-
cific focus was put on crossmodal integration of vision and audition along space and
time, the design and development of methods and algorithms to coordinate motor
activities and sensor observations, the design and thorough evaluation of testable
computational models and on the provision of an experimental testbed.

The following achievements can be mentioned. A two-microphone binocular
robotic platform, POPEYE, was built [15]. This highly repeatable system can undergo
high velocities and accelerations along 4-DOFs, namely, pan, tilt, and the two camera-
independent pan angles. POPEYE allows the use of a dummy head for binaural
audition but is not fully bio-mimetic since the binaural axis is higher than the stere-
ovision axis. Novel algorithms for real-time robust localisation of sound sources in
multisource environments were proposed, based on a fusion of interaural time differ-
ence and pitch cues, using source-fragment methods inspired by glimpsing models
of speech perception. Active-listening behaviors were defined that can use planned
movement to aid auditory perception, namely, head rotation in order to maintain a
tracked source in the auditory fovea, judgement of distance by triangulation, and
others. As mentioned in Sect. 3.2, an original approach to detection and localization
of multiple speakers from audio–visual observations was also developed and exper-
imented on POPEYE [23].

6 http://perception.inrialpes.fr/POP/

http://perception.inrialpes.fr/POP/
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The dataset CAVA, which stands for computational audio–visual analysis of
binaural–binocular recordings [3] was made freely available for non-profit applica-
tions. It was recorded from sensors mounted on a person’s head in a large variety of
audio–visual scenarios, such as multiple speakers participating in an informal meet-
ing, static/dynamic speakers, presence of acoustic noise, and occluded or turning
speakers.

The subsequent HUMAVIPS project, humanoids with auditory and visual abili-
ties in populated spaces, runs from 2010 to 2013 and concerns multimodal perception
within principled models of Human–robot interaction and humanoid behavior.7 In
this project coordinated audio–visual, motor and communication abilities are tar-
geted, enabling a robot to explore a populated space, localize people therein, assess
their status and intentions, and then decide to interact with one or two of them by
synthesizing an appropriate behavior and engaging a dialog. Such cocktail-party and
other social skills are being implemented on an open-source-software platform and
experienced on a fully-programmable humanoid robot.

Open-source datasets have also been disseminated in this framework. Two of them
have been recorded with the aforementioned POPEYE system. To investigate audio–
motor contingencies from a computational point of view and to experiment with
new auditory models and techniques for computational auditory-scene analysis, the
CAMIL dataset, computational audio–motor integration through learning, provides
recordings of various motionless sources, like random spectrum sounds, white noise,
speech, music, from a still or moving dummy head equipped with a binaural pair of
microphones.8 Over 100 h of recordings have been elaborated, each of them being
annotated with the ground-truth pan-and-tilt motor angles undergone by the robot.

Likewise, to benchmark Human–robot interaction algorithms, the RAVEL cor-
pora, robots with auditory and visual abilities, provides synchronized binaural audi-
tory and binocular visual recordings by means of a robocentric stable acquisition
device in realistic natural indoor environments.9 It gathers high-quality audio–visual
sequences from two microphone pairs and one camera pair in various kinds of scenar-
ios concerning human-solo- action recognition, identification of gestures addressed
to the robot, and human–human as well as Human–robot interaction. The scenes may
be affected by several kinds of audio and visual interferences and artifacts. To ease the
statement of ground truth, the absolute position and utterances of actors in the scene
are also recorded by external cross-calibrated and synchronized devices, namely, a
commercial 3-D tracking system and four distributed headset microphones.

7 http://humavips.inrialpes.fr/
8 http://perception.inrialpes.fr/~Deleforge/CAMIL_Dataset/index.html
9 http://ravel.humavips.eu

http://humavips.inrialpes.fr/
http://perception.inrialpes.fr/~Deleforge/CAMIL_Dataset/index.html
http://ravel.humavips.eu
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4.5 BINAAHR

BINAAHR, binaural active audition for humanoid robots, was established as a
french–japanese collaboration focused on two accepted concepts of active (binaural)
robot audition.10 On the one hand, a low-level auditory function is said to be active
if it combines, and is improved by, the perception and the motor commands of the
sensor. On the other hand, a high-level interaction is active if it is bidirectional and
involves the robot and multiple parties. The project has contributed to the design of
artificial binaural systems, active binaural localization (Sect. 5.2), binaural separa-
tion of more than two sources, ego-noise cancellation, binaural speaker recognition,
audio–visual speech recognition and other significant issues.

A separate line of research in BINAAHR champions robotics, because of its
locomotion and multimodal-sensing capabilities, as a privileged context to investi-
gate psychology-of-perception theories of active human perception, that is, theories
that hypothesize an interweave of human perception and action. In this context,
some innovative developments have been tightly connected with the sensorimotor
contingency theory [65, 66]. These developments enable the analysis of the senso-
rimotor flow of a naive agent, be it endowed with hearing only or with both vision
and audition, in order to characterize the dimension of the rigid group of the space
underlying its input–output relationship, that is, the dimension of its physical space—
see Sect. 5.1. Experimental issues concern unitary testing of low-level functions on
binaural prototypes as well as the integration of functions on a HRP-2 humanoid
robot.

4.6 Further Hardware

Further specific hardware suited to the needs of robot audition has been developed
with the aim of pushing forward the integration of auditory functions on embed-
dable autonomous sensors. Corresponding achievements have mainly been oriented
towards array processing, partly because off-the-shelf multichannel data-acquisition
devices are often unsatisfactory because of limited embeddability, and high cost
due to a too high genericity and other reasons. Although suitable commercial stereo
devices can be used for binaural acquisition, array processing-oriented hardware may
still constitute an inspiration, for example, for computational issues.

The active direction-pass filter (Sect. 3.2, [57]) was integrated in a dedicated recon-
figurable processor and could separate a mixture of sounds in real time with good
accuracy [43]. A more generic low-cost low-consumption sound card was developed
in order to fit the requirements of the ManyEars project, which features an array
based source localization, tracking and separation system [52]. This board, named
8-Sounds-USB, performs an eight-channel synchronous audio capture and embeds
computational power. Likewise, the embedded audition for robotics, EAR, sensor,

10 http://projects.laas.fr/BINAAHR

http://projects.laas.fr/BINAAHR
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based on a fully programmable eight-channel data-acquisition board and a pow-
erful FPGA, has recently been revisited within a system-on-a-programmable-chip
approach [47], namely, a C/C++ compatible soft-processor has been implemented
on the FPGA, together with dedicated hardwired modules such as co-processing
units, memory controllers, communication and data acquisition modules. A release
suited to binaural audition is under development. Several complex and intensive oper-
ations will be hardwired. The device will process data sensed by MEMS microphones
and be compatible with standard audio interfaces.

4.7 Conclusion

While robot audition is a fairly recent field of research, various solutions have been
proposed to cope with the constraints of robotics. In the above, most low- or high-
level functions have been reviewed independently, yet many contributions have been
considering them jointly—see for instance Ref. [23] in Sect. 3.2 for joint source
localization and separation. The same holds for higher-level auditory functions. For
instance, it was shown in [92] that the design of a recognition system should take
into account a trade-off between the recognition rates and the sensitivity to speaker
locations. Last, the order of the successive computation steps involved in a com-
plex auditory task can differ from one author to another. To conclude, no universal
strategy is available at this time and the optimal architecture for a CASA system in
robotics is still a matter of debate. Some related activities were conducted in Europe,
for example, in the context of the research cluster CoTeSys, cognition for technical
systems. For instance, a multi-modal robotics head, Mask-Bot, was built [67] to fea-
ture face animation, speech communication and basic sound localization. A generic
comprehensive model of binaural listening that could also be of high interest for
robotics is proposed in [10], this volume.

5 Active Approaches to Perception: Applications to Binaural
Audition in Robotics

Theoretical approaches to perception are many, and some of them show signifi-
cant divergences. For instance, Marr’s celebrated computational approach to visual
perception [48], which prevailed in the development of artificial intelligence, pro-
poses a viewpoint of passive perception where the representation is predominant and
behavioral aspects are overlooked. Nowadays, it is still a debate whether this concep-
tion should be traded off for another theory, namely, one that hypothesizes percep-
tion and action to be interweaved. The latter viewpoint is usually related to Gibson’s
theory, which puts forward the active and exploratory nature of perception [24].
Such considerations also apply to robotics, which has for long considered percep-
tion as a bottom-up process in the sense that action are results of sensory analysis.
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This historical viewpoint on perception is currently being questioned experimentally,
all the more since the exploratory abilities of robotics platforms can be exploited to
improve analysis and understanding of the environment. In this context, the cur-
rent section gathers two original contributions of the authors with regard to binaural
auditive perception. Both entail an active behavior of the robotic platform but along
distinct approaches.

In a first subsection, an active strategy for auditory-space learning is proposed
together with its application to sound source localization. It relies on a general theoret-
ical approach to perception, grounded in sensorimotor theory. In a second subsection,
a stochastic-filtering strategy for active binaural sound localization is introduced,
where it is shown how the motor commands of a moving binaural sensor can be fused
with the auditive perception to actively localize a still or moving intermittent sound
source in the presence of false measurements.

5.1 Active Hearing for Auditory-Space Learning
and Sound-Source Localization

Action in robotics is usually viewed as a high-level process and is mostly used to
address problems that cannot be solved by passive strategies alone, such as front-
back disambiguation or distance perception. The method proposed here investigates
an alternative paradigm, where the action is envisaged at the same level as perception.
In this framework, action and perception interact so as to build an internal represen-
tation of the auditory space. As a first step, an active hearing process is used during
the learning of an auditory-motor map. Next, this map is used for a-priori passive
sound localization. In what follows the approach is introduced for azimuthal local-
ization by considering a mobile listener endowed with a binaural auditory system
and perceiving a single stationary sound source of random azimuth in a ±90◦ range.

A Sensorimotor Definition of Source Localization

The present method is grounded in the sensorimotor theory [65, 68], claiming that
the brain is initially a naive agent that interacts with the world via an unknown set
of afferent and efferent connexions, with no a-priori knowledge about its own motor
capacities or the space it is immersed in. The agent therefore extracts this knowledge
by analyzing the consequences of its own movements on its sensory perceptions,
building a sensorimotor representation of its embodying space. Generally speaking,
consider that all the environments, motor states and sensations that an agent can
experiment are depicted as the respective manifolds, E , M and S [66].

A sensory state, s ∈ S, is given as a function of the current motor and environment
states, m ∈ M and e ∈ E , through a sensorimotor law, Φ, so that s = Φ(m, e). Here e
models the scene acoustics and spatial and spectral properties of the sound source, m
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models the agent’s body configuration, whereas Φ represents the body-environment
interactions and neural processing that gives rise to the sensation, s. Moreover the
sensory space, S, lies on a low-dimensional manifold whose topology is similar to
the embodying space and, consequently, the learning of spatial perception becomes
the learning of such a manifold. Such a process has been applied to auditory-space
learning using non-linear dimensionality-reduction techniques [4, 22]. Nevertheless
the knowledge of this auditory space is not sufficient for sound localization—an
association of a percept in this space and a spatial location have still to be done.

Classical localization methods express a source location in terms of angle or
range in an Euclidean physical space. As the sensorimotor approach directly links
perception and action in an internal representation of space, a spatial position is
here directly expressed as a motor state and as such does not implies any notion of
space [68]. Given a motor space, M, and an environment state, e ∈ E , the source
localization problem can thus be defined as the estimation of the motor state, m̃, as
follows:

m̃ = argmin
m∈M

|Φ(m, e) − Φ(m0, e0)| , (1)

where |.| denotes a distance metric and Φ(m0, e0) represents a reference sensory state
that has to be approximated. In the case of sound-source localization, Φ(m0, e0)

corresponds to a source localized in front of the listener with the head in the rest
position, which is the most obvious case of azimuthal localization.

Evoked Behavior for Active Hearing

An evoked or reflex behavior is a simple hard-wired behavior allowing a naive agent
to react to a stimulus. Considering active hearing, a simple behavior enabling head-
to-source orientation can be implemented from ILD cues in a simple way as follows.
Once a sound is perceived, the agent orients its head toward the loudest side while the
ILD is non-zero. Once the behavior is completed, that is, when the ILD reaches 0,
the head of the agent has arrived at an orientation facing the sound source. Because
the source azimuth is in a range of ±90◦ only, the agent is not exposed to front-
back ambiguity—although front-back disambiguation has also been addressed in the
literature, for instance, Ref. [9]. This active hearing process allows an a-posteriori
localization, m̃ being given after motion as the difference between the initial and final
motor states. Moreover, the agent’s final configuration with the source in front of the
head corresponds to the reference sensory state, Φ(m0, e0), as introduced in (1). This
reference state, initially unknown, is approximated through successive executions
of the behavior. The orientation behavior has been successfully demonstrated on a
robotic platform and been extended to phonotaxis, that is, allowing for a reactive
approach of the robot towards the source [8].
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Autonomous Online Learning of Sound Localization

The evoked behavior that links the initial sensory state in S to the final motor state
in M, provides the sensorimotor association required for an a-priori passive local-
ization. Figure 2 shows an auditory space representation after the learning of high
dimensional ILD cues from 1000 auditory stimuli. Each point, corresponding to a
different sensory state, is associated with its localization estimation, m̃, computed
after the orientation behavior.

After learning of such an association, it becomes possible to localize new percepts
based on neighborhood relationships. Suppose a new stimulus corresponding to a
sensory state, s ∈ S, perceived by the agent. s is firstly projected in the sensory-
space representation and, if this projection has close neighbors—s1 in Fig. 2—its
corresponding motor state, m̃, is interpolated from the neighborhood, giving a passive
localization estimation. If the projection is outlying in an area with no neighbors —
s2 in Fig. 2—this sensory state is not yet represented and m̃ can not be estimated
passively. In this case the orienting behavior is executed, giving an active estimation
of m̃.

Instead of learning an auditory space representation from a database, an iterative
process can be used by mixing the dimensionality reduction with the evoked behav-
ior. This allows therefore the representation to be learned online, experience after
experience. Thus each new percept which projection is outlying in the representation
is learned (s2 in Fig. 2): its related sensory state is added in an updated representation
and is associated with its related active estimation of m̃. Reference [9] provide more
details on this learning algorithm and the auditory system used. The authors propose
a simulated experiment where a mean localization error of about 1◦ is reached after
an online learning of 200 iterations.
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Discussion

The above method has, to be sure, been illustrated for a very simple case, namely, a
single stationary sound source in the azimuthal plane. Yet, it seems to be basically
suitable for hearing systems in autonomous robotics. In fact, the dimensionality
reduction used for the computation of the auditory-space representation allows for
unsupervised learning of scene non-linearities, such as reverberation or HRTF filter-
ing. Also, this method requires almost no a-priori knowledge of either the agent or
the environment. It mainly depends on the knowledge of the auditory-space repre-
sentation dimension, typically 2-D or 3-D, and on a dimension-reduction technique
robust enough to estimate the non-linear embedding of complex environments in
an efficient hard-wired evoked behavior. Active hearing, binaural processing, rep-
resentation learning and online estimation have the potential to be integrated into
a single model that could be applied to more complex problems, thus opening new
perspectives for sensorimotor approach to binaural robot audition.

5.2 A Stochastic-Filtering Strategy for Active Binaural Sound
Localization

While the above approach aims at estimating the source position from a binaural
sensor with no assumption regarding the environment, this chapter will now be con-
cluded with a strochastic-filtering approach to binaural sound localization from a
moving platform. As to this field, reference is due to cite [14, 46], where tracking
algorithms based on the particle filtering framework are exploited to detect utterer
changes and infer speaker location, respectively. The work presented in this section
shows how binaural perception and motor commands of the sensor can be fused to
localize an intermittent source in the presence of false measurements.

In the context of binaural audition, sound-source localization relies prominently
on time-delay estimation, TDE, that is, on an estimation of the arrival-time differences
of the sound signals at the two acoustic sensors. The topic of TDE has been widely
addressed. In robotics, the most common approach is undoubtedly generalized cross-
correlation, GCC [38], which consists in cross-correlating truncated and filtered
versions of the raw sensed signals and picking the argmax of the resulting function.
However, given a state vector, X , that is, a vector fully characterizing the sensor-
to-source relative position, the time delay comes as a nonlinear and noninvertible
function, h, of X . Without any additional information it is not possible to recover
the complete state vector from just a time-delay estimate. For instance, consider for
simplification, that source and microphones lie on a common plane parallel to the
ground, and let the Cartesian coordinates vector, X = (x, y)T , represent the source
position in a frame, (R, eX , eY ), rigidly linked to the microphone pair, {Rl , Rr },
with Rl R = Rl Rr

2 and eY = R Rl|R Rl | . It can be shown that given a time delay, τ , all
the pairs, (x, y), satisfying h(x, y) = τ , describe a branch of hyperbola, referred in
the literature as cone of confusion. In other words, given a time delay, one cannot
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locate the true sound source on the associated hyperbola branch. However, with the
microphones being mounted on a mobile robot, its motor commands, for instance,
translational and rotational velocities, can be fused with audio perception to infer
sound localization. Similarly, when the source is moving, prior knowledge about its
dynamics can be used. One way to tackle this problem is to use a Bayesian filtering
framework. In this context and in the presence of relative motion, X is now considered
as a discrete hidden-Markov process, characterized by a dynamic equation of the form

X[k+1] = f (X[k], u1[k], u2[k]) + W[k]. (2)

Therein, X[k] is a random vector describing the process X at time step k. u1[k] is a
deterministic vector gathering information about the robot’s motor commands. u2[k]
is a vector composed of the source velocities. u2[k] can be deterministic or random,
depending on whether the source motion is fully described beforehand or not. W[k]
is an additive random noise accounting for uncertainty in the relative motion. At
each time, k, the time delay measurement, hereafter referred as Z[k], is a memoryless
function of the state vector, according to

Z[k] = h(X[k], u1[k], u2[k]) + V[k], (3)

with V[k] being an additive noise representing the TDE error. Given an initial
probability-density function, pdf, of p(x[0]) and a sequence of measurements,
z[1:k] � z[1], . . . , z[k], considered as samples of Z[1:k] � Z[1], . . . , Z[k], the optimal
Bayesian filter consists in the recursive computation of the posterior state probability-
density function, that is, p(x[k]|Z[1:k] = z[1:k]). When f, g are nonlinear functions
and/or W, V are non-gaussian processes, the optimal filter has no closed-form expres-
sion. Approximate solutions are thus needed, such as the extended/unscented Kalman
filter, EKF/UKF, particle filters, PF, or grid-based methods. Whatever the chosen
strategy is, certain issues have to be dealt with, such as

Modeling The state space model must be defined in such a way that the state vector
gathers a minimal set of parameters. For a still source—or a moving source with
known velocities with respect to the world—the state vector can be made up
with, for example, its Cartesian coordinates in the sensor frame. If the source is
moving at unknown speed, an autonomous equation describing the structure of
its motion in the world frame must be introduced, whose initial condition and
parameters complete the vector X to be estimated. For the localization of human
utterers, typically used models are Langevin processes or random walks [13, 86].
However that may be, the mathematical transcription of the prior knowledge of
the source dynamics is of crucial importance.

Consistency and tuning Generally, the statistics of the dynamic and measurement
noise processes are unknown, so they must be hypothesized. Setting a too-high
covariance leads to too pessimistic conclusions, while setting them too low may
result in an overconfident filter. In general, the noise statistics are set in an ad-hoc
manner. However, inconsistency, that is, overconfidence or underconfidence, can
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arise independently of the noise statistics. Indeed, the approximation of the true-
state posterior density function propagated recursively by the filter can become
inaccurate when the nonlinearities are not smooth enough and/or the filtering
technique is not suited to the model and its parameters. For instance, the runs
of basic particle filtering strategies conducted by the authors on simulated and
experimental measurements showed that these estimation strategies are not suited
to active binaural localization.

Initialization When no prior knowledge about the source location is available, one
usually set the initial prior p(x[0]) as a flat prior, that is, a probability distribution
with zero-mean and infinite covariance matrix. However, due to the non-linearities
involved in the considered source localization problem, the propagation of widely
spread distributions often leads to overconfident conclusions. As a solution, the
posterior state pdf can be approximated by a Gaussian mixture, GM, (GM) whose
hypotheses are recursively propagated using a bank of non-interactive filters [7].

Time-delay extraction At each time, k, the measurement, Z[k], is obtained from a
TDE algorithm using audio data collected over a finite time window. Generally,
this time window is of short duration for distinct reasons. First, TDE algorithms
rely on the hypothesis that the two windowed signals can be regarded as sample
sequences of individually and jointly wide-sense stationary, WSS, processes.
Individual stationarity implies that the source signal is itself WSS, while speech,
for instance, cannot be considered as WSS unless the time window is sufficiently
short. Joint stationarity implies that the time delay must be approximately constant
over the time window. This is of crucial importance when source and sensor move.
Classical TDE algorithms do not provide reliable and meaningful estimates if
this hypothesis is not satisfied—unless the time-delay variations are specifically
taken into account and compensated in the algorithm, like in [39]. Finally, in an
embedded application, a cross-correlation cannot have an unreasonable length,
due to finite time and space resources.

Because of the environment noise, the non-stationarity of the source and the short
duration of TDE windows, the TDE statistics may change significantly over time,
namely, if at a considered instant, the SNR and time-bandwidth product, TBP, of the
signals are sufficiently high, then the TDE algorithm outputs an accurate estimate of
the genuine time delay. If not, the estimate might be unreliable, that is, drawn from a
process with large variance or, in the worst case, uncorrelated with the state [87, 88].
Such spurious measurements must be taken into account in order to prevent filter
inconsistency/instability. They can be handled in a hard manner with an external
decision rule that selects, according to some criteria, such as estimated SNR, the
measurements that are to be incorporated into the filter—or in a probabilistic way,
for example, by probabilistic data association.

Taking all these considerations into account, a filtering strategy was proposed
in [69]. It relies on a multiple hypothesis UKF with probabilistic data association
and a source-activity detection, SAD, system based on generalized likelihood-ratio
test, GLRT. The results from an experiment conducted in an acoustically prepared
room are shown in Fig. 3. Each subfigure represents a time snapshot, the left figure
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Fig. 3 Localization results from an experiment conducted in an acoustically prepared room. Each
figure represents a time snapshot. Far left initial time. Far right final time. The results show that the
motion of the sensor allowed to disambiguate front and back and to provide information regarding
source distance. For more explanations and details see [69]

corresponding to initial time, and the right figure corresponding to final time. At the
beginning, the filter is initialized with 24 hypotheses so that the union of the 99 %
probability ellipsoids defined from the 24 modes of the initial GM-prior-pdf covers
a 4 m-radius circular region around the sensor. In the second snapshot, a part of the
hypothesis is spread along the source-to-sensor direction, while another part is spread
along the symmetric direction with respect to the (Rl Rr )-axis. This behavior depicts
that so far there is a large uncertainty on the distance to the source and there is a front-
back ambiguity. This originates from the aforementioned time-delay characteristics.
In the third snapshot, the loudspeaker is switched off, and the transition from on to
off has been detected by the filter. In the fourth snapshot, the loudspeaker is emitting
again, and the transition from off to on has been detected correctly. Note that the
state pdf is now very sharp around the true-source location. In other words, thanks
to motion, front and back have been disambiguated and the distance uncertainty has
significantly decreased. The experimental results show that the standard deviation
of the errors at the end of the listener’s motion is about ±2◦ in terms of azimuth
and ±5 cm in terms of range. However, the good performance of the system is
partially due to the favorable experimental conditions, namely, the sensor speeds
were precisely known, and the acoustic environment was particularly clean—that is,
with only little reverberation and noise. Experiments should be performed in a more
realistic environment such as an office, with possibly non-negligible background
noise. This is subject to future work.
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6 Conclusion

This chapter has discussed binaural systems in robotics along several dimensions.
After the statement of key constraints raised by this context, the canonical binaural
functions underlying the analysis of any auditory scene were detailed. Prominent
platforms and research projects were then reviewed. Finally, two recent approaches
to binaural audition developed by the authors were presented. These are termed to
be active because they consider the coupling of binaural sensing and robot motion.

As mentioned before, binaural audition is an attractive paradigm, regarding engi-
neering issues, cross-fertilization between robotics and neurosciences, as well as
Human–robot interaction. Though the field is studied by only very few laborato-
ries as compared to binocular vision, it has now reached a certain level of maturity.
But there remains ample space for methodological and technological contributions,
particularly, to the end of better coping with uncontrolled and dynamic environ-
ments. This could then allow to better understand how to use binaural audition as a
mechanism for acoustic-scene analysis in general.

To conclude, some broader research areas connected to binaural audition have
been mentioned that hopefully bring new researchers to the field. First, the coupling
of bottom-up and top-down processes in active audition and, to a larger extent, to
active perception, deserves attention. As shown above, two distinct viewpoints have
been developed towards purposeful auditory perception. One addresses the definition
of top-down feedback from symbolic levels, while the other approaches—including
those developed by the current authors—have addressed this topic right at the sen-
sorimotor level. In the authors’ opinion, these two lines of research are to be rein-
forced and must join each other in order to define a comprehensive computational
architecture for active analysis of auditory scenes. Some subtopics should finally
be mentioned, such as, the definition of binaural audition based control/estimation
strategies that explicitly include an exploration goal to collect information about the
source location, their interlinking with decision processes, the assimilation of avail-
able data over space and time, the generality of such an approach and its ability to
tackle multimodality, adaptive approaches to binaural cues extraction and exploita-
tion where auditory cues and algorithms are dynamically changed according to the
context, just to name a few. A second fruitful broad research area is the involve-
ment of binaural audition in ubiquitous robotics. The idea here is to outfit rooms
with embedded sensors, such as microphone arrays, cameras and/or RFID antennas.
These areas would be shared by humans and robots interacting with each other, using
binaural audition, vision and maybe, further available modalities. The mobility of
the robots enables the possibility of combining their motor commands with binaural
perception, not only to improve a local binaural function, but also to dynamically
reconfigure the global network constituted by the microphone arrays and the bin-
aural heads—possibly including prior knowledge. Some contributions have already
been developed in this field on the basis of dynamically reconfigurable microphone
arrays [49]. They could constitute a valuable source of inspiration for enhancing
binaural robot audition.
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