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1 Introduction and Overview

Binaural hearing in humans has been investigated for more than a century. Thompson
[63] and Rayleigh [52] identified differences in arrival time and in intensity between
the left and the right ear to be the dominating cues for direction estimation. These
cues are commonly termed as interaural time differences (ITD) and interaural level
differences (ILD). Thompson [62] suggested that binaural sensitivity is not caused
by acoustic interference, for instance, via the Eustachian tubes, but rather by neural
processing in the brain. It took more than 50 years before the first conceptual model of
neural ITD coding was suggested by von Békésy [65]. He suggested a model, where
a population of neurons is excited by signals from one ear and inhibited by those
from the other. The total population response then codes the interaural differences;
this concept is referred to as rate code. Another two decades later Jeffress [28] sug-
gested an alternative coding concept stating that the neural signals from each ear are
delayed on counterdirected pathways, which act as delay lines. Along the pathways
the two differently delayed signals are compared by coincidence neurons, which are
activated if the signals arrive in coincidence. Due to the increase in relative delay
along the delay lines, the position of the active coincidence neuron along the line
indicates the ITD, what is known as place coding. Coincidence detection along coun-
terdirected delay lines mathematically resembles cross-correlating the left and right
signals. Probably because of these conceptual and mathematical simplicities the Jef-
fress model became the standard model type for developing and evaluating binaural
processing models—see, for example, [35, 59, 60]—which became computationally
tractable with the advent of digital computer. These models were able to explain a
vast range of the binaural phenomena known experimentally from binaural psychoa-
coustics in humans. Variants of this model concept, for instance a subtraction of left
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and right input along counterdirected delay lines have also been applied successfully
[5] but all of these models are based on delay lines.

Physiological evidence for the existence of axonal delay lines was first found by
Carr and Konishi [8] in the brainstem of barn owls. Although the auditory system
of mammals was known to be significantly different from that of birds, the Jef-
fress model remained the standard approach for modeling binaural processing in
mammals—see [41] for a review. However, recent evidence from physiology [42],
functional magnetic resonance imaging [61], evoked potential measurements [53]
and psychoacoustics [50] indicates that it is difficult to explain the mammalian data
with the Jeffress model of place coding. Physiological data [4, 42] suggest that ITD
might be coded in terms of the rate of firing of binaurally sensitive neurons—so-
called rate coding—thus rather supporting the original hypothesis of von Békésy
[65]. Based on these findings, Dietz et al. [17] developed a computational rate-
coding model of binaural processing in humans that did not use any delay lines and
that was based on the interaural phase difference (IPD) instead of the ITD. In line with
recent models—for example, [20]—and psychoacoustical findings, but in contrast
to earlier models that included an explicit temporal integration to model binaural
sluggishness, this model reflects the high temporal resolution of the binaural system.
Furthermore, it processes envelope and carrier IPDs in different channels, explain-
ing psychoacoustic experiments that traded binaural cues of the envelope and carrier,
respectively [14]. A further binaural processing model with the same motivation of
rate coding has recently been suggested by Pulkki and Hirvonen [51].

All models of binaural processing in humans simulate the frequency selectivity
initially provided by the cochlea by processing binaural information in frequency
subbands. For this, many models use a linear Gammatone filterbank with auditory
frequency and time resolution—see [27]. From a signal processing point of view, this
renders the distinction between delay-line models and the IPD model by Dietz et al.
[17] difficult: The subband signals are, on short time scales, almost sinusoidal, which
means that ITD, as measured by cross-correlation, and IPD, as measured by the IPD
model, are almost indistinguishable. A recent study designed to disambiguate these
two approaches by studying the ability to lateralize stimuli with an ITD only in the
second order envelope [16] does indeed hint towards the non-existence of long inter-
nal delays. Van der Heijden and Trahiotis [64] deduced from human psychoacoustic
data of tone detection in double delayed noise stimuli that short internal delays up
to 750 µs are indeed in operation. However, neither of these psychoacoustic experi-
ments can distinguish between the general concepts of rate and/or place coding.

In the experimental study presented below, the IPD model [17] is used as a
front-end, because it provides the required high temporal resolution for detecting
short glimpses of robust binaural information. Similar results, however, can also be
achieved with a cross-correlation model [20, 37, 54] or with the subtraction-based
Breebaart model—[34], this volume.

Whereas binaural models mimic many of the distinguished capabilities of binaural
hearing and have extensively been applied to investigate and simulate psychoacoustic
data of binaural perception of artificial stimuli—see references above—as well as of
speech—for example, [2]—their technical application to audio processing in hearing
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aids, mobile audio devices, robotics, hands-free audio communication and speech-
based computer interfaces is still limited. The hypothesis underlying this chapter
is that this limitation is due to a missing link between basic binaural capabilities,
as modeled by the binaural models mentioned above, and audio processing and
interpretation of difficult acoustic conditions characterized by superposed speech,
noise and reverberation. The latter requires inference about the causes of the observed
auditory input in order to be able to decode the acoustic scene, that is, to identify and
segregate different sources, or to select desired sound sources. This cognitive part of
the processing is the missing link and constitutes enabling technologies for technical
applications of binaural models. In this study, the possibilities of filling the missing
gap by extending a binaural model towards interpreting the acoustic scene, that is,
computational binaural scene analysis, are demonstrated by improving automatic
speech recognition (ASR), of superposed spatially-moving speech signals.

Auditory scene analysis (ASA), in the sense of low-level cognitive processing
of acoustic input in humans, has extensively been investigated in the literature, and
many inference principles of the auditory system have been identified [6]. The most
important acoustic cues used by the hearing system were identified to be harmonicity,
periodicity, common onset—namley, synchronous increase in level across several
auditory frequency bands—and the frequency-dependent binaural cues. Each of these
cues only provides a small part of the information needed to decode the acoustic
scene, namely, regarding sources being present, spatial configuration of the sources,
room characteristics etc. Therefore, evidence from many of these different cues has to
be integrated for scene interpretation, including integration across auditory frequency
subbands and time. Evidence from electrophysiological, EEG data and functional
magnetic resonance imaging (fMRI) in humans has led to the interpretation that
the cognitive system, including the hearing system, performs cue integration by
comparing the current sensory input to hypotheses about the expected observation
[47, 70]. The system adapts via neural adaption to the expected input and codes only
deviations of the input from the expectation—see [45]. This means that basically
only novelty is processed by the nervous system, that is, sensory information that
deviates from the hypotheses. Deriving hypotheses about the expected observation
from earlier observations of the input requires a dynamic predictive model of the
auditory scene and is thus part of recent cognitive inference models—see [66] for a
recent approach of modeling novelty processing in auditory evoked EEG responses,
and [21] for modeling cortical inference circuits.

Recent evidence from fMRI experiments in humans show that the premotor cortex
is active during the perception of distorted speech, but not active when music is
played. This suggests that premotor activity may facilitate interpreting speech when
the input is sparse [46]. In the light of the proposed hypothesis-driven inference
model, results are consistent with the notion that the premotor areas responsible for
speech production might be used to generate the hypotheses when perceiving speech
in difficult conditions—compare the motor theory of speech perception [69]. In other
fMRI experiments, Bushara et al. [7] examined the neural binding between hearing
and vision. Correlation of auditory and visual stimuli was found to be correlated
with reduced brain activity when binding occurred. This suggested that the cognitive
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system explores several hypotheses about the expected observation across modalities
at a time, that is, generates competing hypotheses, and that their representations have
mutually inhibitory interactions.

From a signal processing point of view, the principle of novelty processing agrees
well with Bayesian inference methods, which are frequently used in computational-
auditory-scene analysis (CASA) approaches—compare [68]. In particular, infer-
ence from competing hypotheses can be implemented numerically by sequential
Monte-Carlo methods, which will be briefly introduced in the framework of com-
putational binaural scene analysis in the next section. It is argued that CASA based
on hypothesis-driven computing using predictive models is a key to successfully
applying binaural models to decoding the acoustic scene. Three major limitations
requiring this approach will be briefly outlined in the following.

• Ambiguity of the source separation problem If the acoustic scene is composed of
more than two sources and is received by only two sensors, left and right ear, the
separation problem becomes ambiguous. In other words, the source signals can-
not be reconstructed from the superposition using linear methods, such as linear
microphone-array processing. Disambiguation is possible, however, by predic-
tive models that limit the number of possible explanations of the scene—see, for
example, [44].

• Random fluctuations of signal-derived parameters Diffuse background noise and
reverberation impose statistical fluctuations on all signal-derived features, strongly
reducing the statistical evidence provided by a single observation of the respective
feature—see, for example, [43]—for a quantification of the fluctuations of bin-
aural features in real acoustic conditions. Predictive statistical models explicitly
model the noise and perform a statistical combination of several noise-deteriorated
parameters, allowing a noise-robust extraction of information [43].

• Missing information Superposed daily-life signals overlap significantly in the time-
frequency domain. Thus, a significant part of the information on the different
sources is completely masked in the time-frequency domain. In order to sepa-
rate the sources, predictive models are required to fill the missing information—
compare [11].

Every natural or artificial cognitive system has to deal with these limitations and
thus requires some structure that collects evidence from noisy, ambiguous and partly
missing information. In this study, the principle of competing hypotheses based on
a predictive model is applied, in order to achieve this task.

The remainder of this chapter is organized as follows: First, the basic approach to
implement principles of computational binaural scene analysis is described in Sect. 2,
and existing studies on the subject are reviewed in Sect. 3. Then, the approach to
improve ASR using computational binaural scene analysis is introduced in Sect. 4.
For this, the binaural model of Sect. 4.1, the statistical properties of its output with
respect to sound source localization, see Sect. 4.3, the multidimensional statistical
filter that tracks the location of superposed moving speakers, Sect. 4.4, the beam-
former that is directed to the desired speaker and its adaptation by the location
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tracks, Sect. 4.5 and, finally, the ASR system that recognizes speech at the output of
the beamformer, Sect. 4.6, are described. Results from an ASR task are detailed in
Sect. 4.7. Last, the chapter is summarized and conclusions are given in Sect. 5.

2 Computational Binaural Scene Analysis

In this section the focus is on computational binaural scene analysis systems that
are based on competing hypothesis. Figure 1 shows the principle processing blocks
of the proposed system that builds upon the model proposed by Nix and Hohmann
[44]. Key to this approach is the use of a priori knowledge about the sound sources
S that compose the current acoustic scene to generate a set of hypotheses H. Each
hypothesis develops in time and represents a possible state of the sound sources, that
is, a set of parameters that describe the exact configuration of all sources, such as,
source position, pitch, formant frequencies or vocal tract parameters—depending on
the type of source. In each time frame, hypotheses are checked against the observa-
tion, which is composed of a number of signal features O computed from the binaural
audio input.1 The likelihood of the observation to occur under the assumption that
the hypothesis is true is computed and assigned to each hypothesis. This means that
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Fig. 1 Block diagram of a computational binaural scene analysis system based on competing
hypothesis. See the text for details

1 Note that this approach can be extended to more inputs, for example, multiple microphones or
audiovisual input, or might be restricted to a single input.The current study covers its application
to binaural input signals like recordings from a dummy head.
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evidence from many features O is integrated and merged into a single likelihood
value, such as feature integration across frequency. The definition of this likelihood
function is challenging and its complexity depends on the number of state para-
meters and the number of observed features. It should reflect the relation between
source parameters and observation as good as possible. Note that the likelihoods
are stochastically distributed, because the observation is generally fuzzy, even if the
state of the sound source is fixed, for instance, binaural features fluctuate even for
fixed location of the source, as pointed out above. Note also that assigning likeli-
hoods can be described as extracting the novelty about the sound sources embedded
in the observation. If the novelty is high for a specific hypothesis, the observation
does not match the expectation set by the hypothesis, and it will be assigned a low
likelihood. If the novelty for a specific hypothesis is low, the hypothesis will be
assigned a high likelihood. The set of hypotheses and their assigned likelihoods
represents the distribution of possible states and thus the current estimate of the
auditory scene.

Finally, based on the likelihood and a priori known dynamics of the sound sources,
which is restricted by physical constraints, such as smooth pitch and location con-
tours or limited rate of change of vocal tract parameters, each hypothesis is updated,
that is, the parameter set associated with the hypothesis is changed. By this, the
expectation about the state present in the next time step is established. This update
function also employs a stochastic factor in most applications, for instance, the
location of a sound source might be updated according to a random-walk process.
Note that two identical hypotheses develop differently in time due to this random
component.

The set of hypotheses and their assigned likelihoods represents the inference
about the causes of the sensory input. In many applications, the hypothesis that was
assigned the maximum likelihood is taken as the best hypothesis. The functioning of
the approach very much depends on whether the applied source models S match the
sources present in the audio input. A mismatch automatically means a fundamental
misinterpretation of the scene. For example, if the system would erroneously select
a speech signal to be present in the scene, parameters like formant frequencies, pitch
and the temporal evolution of these parameters would be estimated and interpreted
as the state of a speech signal—which is actually not present. Therefore, the model-
selection block in Fig. 1 is most relevant. A biological system has to select or estimate
the appropriate models based on information present in the sensory input. Many
technical applications assume that the appropriate source models are a priori known,
that is to say, they omit the model-selection block. In this case, models are fixed and
only the hypotheses are being updated dynamically.

Common mathematical approaches to implementing a system according to Fig. 1
are so-called sequential Monte-Carlo methods, in particular particle filtering.
Arulampalam et al. [1] provide a tutorial on generic particle filters, which shall
be introduced briefly here—for mathematical details the reader is referred to the
literature. Figure 2 shows a block diagram of a generic particle filter. The circle of
processing blocks is performed for each time instance. A state is a mathematical
description of the current configuration of each sound source and corresponds to the
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Fig. 2 Block diagram of a particle filtering algorithm. See the text for details

hypothesis from Fig. 1. It is assigned a weight that corresponds to the likelihood from
Fig. 1. The combination of a state and its weight is called a particle. At system onset,
before the first input is taken, a set of particles is initialized, for instance, by sampling
the states from an equal distribution across all possible states and assigning random
weights. System dynamics implements a dynamic model of each sound source by a
random mathematical function and represents the update function from Fig. 1. Updat-
ing the hypotheses—Fig. 1—is implemented by predicting the future state from the
current state and the system dynamics separately for each particle. In the next step,
the weight of each particle is updated by an observation statistics, which corresponds
to the likelihood computation from Fig. 1. The observation statistics links the input,
namely, the observation, and the weights by increasing the weight for states that are
likely given the input, and vice versa. Even if the observation statistics is not iden-
tical to the true likelihood function, the set of particles, namely, the states and their
normalized assigned weights, represents a sampled version of the true likelihood
function under very general constraints [19]. State estimation means the selection
of the particle with the highest weight, which denotes the filter output. Some imple-
mentations output the expected value across the set of particles instead. The last step
in the processing chain is the resampling step, which does not find a correspondence
in Fig. 1. Resampling means that particles are discarded if their weights fall below a
certain minimum and are replaced by randomly selected particles that are similar to
the particles with the highest weights. The processing chain then begins again with
the prediction step, that is, time is taken one step forward.
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3 Examples from Literature

In the following, some examples of computational binaural scene analysis are briefly
reviewed. Note that this review is far from complete; the studies presented here, how-
ever, will ease the access to the large body of literature on this topic. A comprehensive
overview of CASA techniques—not necessarily binaural—can be found in the book
edited by Wang and Brown [68].

A very early approach of binaural scene analysis was introduced by Lyon [36].
Peaks of the subband interaural cross-correlation function identified the location
of sounds and time-varying filters steered by these peaks segregated a directional
source. The approach pursued here is similar, but relies on a different binaural model
and includes particle filtering for modeling source continuity.

Nix and Hohmann [44] presented a binaural-scene-analysis algorithm that tracked
the azimuthal direction of arrival (DOA), and the power spectrogram of each of two
superposed and moving speech signals. As the observation, short-term FFT-spectra
and frequency-specific binaural parameters, ILD and ITD, derived from the spectra
were used. As a source model, a first-order Markov process was used that could
generate a plausible succession of speech spectra from a random process. For this,
typical speech spectra and their transition probabilities were derived using a cluster
analysis method from a large speech database that contained many hours of speech.
N = 10,000 typical spectra were used in the Markov process, that is, the transition
matrix contained N × N entries. For tracking the time-course of source location and
spectra, a particle filtering approach was used. 100,000–1,000,000 particles were
used in the different experiments. Each particle contained the source configura-
tion, namely, azimuth directions and current short-time spectra of both sources. The
authors reported that, on the same signal, some runs of the filter succeeded in track-
ing the sources correctly, whereas other runs failed. This shows the dependence of
the system on the random initialization of the particles and shows that the particle
filter may fail even if the source model perfectly matches the sources present in the
input signal. For the successful runs of the filter, the algorithm was able to track
azimuth and magnitude spectra from two superposed speech signals. Evaluations of
the signal-to-noise ratio (SNR) showed that the algorithm was able to improve the
SNR at input SNRs around zero or below, which is difficult to achieve with algorithms
that do not use speech models—compare [44]. The computational effort, however,
was very high.

Dietz et al. [15] used the perceptually and physiologically inspired IPD model for
estimating the azimuthal DOA of superposed directional sound sources, including
free field conditions with up to five concurrent speakers, three concurrent speakers
in background noise and one speaker in reverberation. Key to the IPD model is that
only those time-frequency segments contribute to the DOA estimate that have a high
interaural coherence, similar to Faller and Merimaa [20] and [34] this volume. Those
segments usually occur during short instances of time, often in the order of a few tens
of milliseconds, when one sound source dominates the binaural input. By processing
each of these high-coherence segments as a single event called glimpse, a sparse
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representation of the binaural features is generated, which is in accordance with
recent physiological evidence. A glimpsing representation is especially reasonable
in strongly modulated signals such a speech [11]. Tracking of the sound sources, that
is, estimating its DOA from the sequences of glimpses was achieved using a particle
filter by Särkkä et al. [55] that handles sparse input. This filter implementation solves
the linear parts of the estimation process with a Kalman filter and leaves the nonlinear
parts to the particle filter. This approach is called Rao-Blackwellized particle filter.
The IPD model in combination with the particle filter by [55] is used as the basis
for the experimental study presented in this chapter. An elaborate analysis of DOA
estimates from the model is given below.

Woodruff and Wang [71] describe a binaural localization framework for multiple
sources in noisy and reverberant conditions. Monaural source segregation was used to
increase the robustness of azimuth estimates from a binaural input and was shown to
improve performance relative to binaural-only methods. This framework also allows
model selection or adaption in the sense that an azimuth-dependent model of binaural
features allows for adaptation to new environments.

Christensen et al. [10] introduce a speech fragment approach to localizing multiple
speakers in reverberant environments. Key to this approach is that binaural and pitch
information is sampled from time-frequency regions, so-called fragments, that are
likely to be dominated by one of the speakers. This method is reported to improve
localization performance by up to 24 % compared to a state-of-the-art localizer.

3.1 Application to Automatic Speech Recognition

Mel-frequency cepstral coefficients (MFCCs) are one of the standard features for
today’s ASR systems [13]. They effectively encode the spectral envelope of short-
time segments of speech, perform well for acoustically clean conditions and reflect
properties of the auditory system only to a limited extent. Auditory-inspired pre-
processing of speech signals, however, has also been shown to be a useful approach in
automated speech processing tasks. Applications include the identification of speak-
ers [40], this volume and [38, 39] as well as automatic speech recognition, ASR, for
which auditory frontends have been shown to increase the robustness in the presence
of noise and reverberation [58]. Examples of the large number of studies following
this approach range from the integration of signal processing strategies known to
be employed in the inner ear [26] to the application of filters resembling pattern
observed in the primary auditory cortex of mammals [31].

Across-frequency binaural processing has also been investigated in the framework
of binaural speech recognition. Palomäki and Brown [48] compare across-frequency
and within-frequency processing in combination with internal noise in a computa-
tional model of binaural speech recognition. Palomäki et al. [49] use the statistics of
binaural features to identify unreliable spectro-temporal segments. Unreliable seg-
ments are treated as missing data by the speech recognition system. In other words,
no evidence is provided by this segment and the system’s speech model re-generates
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the missing data in the estimation process. These missing data techniques have been
elaborated further [23, 32] and have been shown to be very successful in render-
ing ASR more robust in noisy conditions. In this chapter, these techniques are not
employed, but it would be possible to use a missing data recognizer directly on the
output of the binaural model, which establishes a means to define missing data due
to its sparseness. Instead, following the philosophy of the AABBA project, auditory-
inspired processing is employed in form of the binaural model described in the next
section. Note that [40], this volume, elaborate further on missing data techniques.

4 ASR in Multi-Speaker Conditions Using Binaural Scene
Analysis

Figure 3 shows a block diagram of the whole processing chain from the raw speech
data to the ASR system. Speech data is used to generate moving speakers by con-
volving it with recorded 8-channel HRIRs—2 in-ear channels and 3 channels from
each of two behind-the-ear (BTE) hearing aids. The in-ear signals are fed into the
binaural model that is employed to estimate the direction of arrival of spatially dis-
tributed speakers—compare Fig. 1 block Observation. A particle filter is then used to
keep track of the positions of the moving speakers. This relates to the blocks Source
Model, Hypotheses, Likelihood, Update and Select best hypotheses in Fig. 1. The
particle filter’s output is used to steer a beamformer, enhancing the 6-channel speech
signal that is to be transcribed by an ASR system. In the following sections each of
these processing steps is described in more detail.

4.1 Binaural Model Structure

The main aim of this study was to apply an auditory binaural model, the IPD model
[17], to automatic speech recognition. The IPD model has previously been extended
and applied to direction of arrival (DOA) estimation [15] which, in turn, has been

Particle Filters:
Speaker Tracking

Automatic speech 
recognizer

Binaural Model:
DOA estimation

Speech Data BeamformerSimulation of 
moving speakers

Fig. 3 Block diagram of the experimental setup. See the text for details
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applied for binaural synthesis [57]. The model extracts binaural parameters such as
IPD and ILD in a way that mimics the performance of the human auditory system.
Four specific aspects of temporal auditory processing were of specially in the focus
of the IPD model, particularly,

• High temporal resolution.
• Limited phase-locking range.
• Use of temporal envelope disparities.
• A limited internal ITD range.

For the sake of consistency the implementation was kept unchanged from Dietz et al.
[15], even though further improvements such as DC-offset free modulation filters
[16] and aspects of pre-binaural adaptation—for example, [18, 30]—have recently
been suggested to model psychoacoustic performance of envelope ITD sensitivity
and binaural tuning of single cells more realistically.

Figure 4 gives an overview of the processing stages of the IPD model. For the
stages up to the extraction of the interaural transfer function, ITF, the IPD and the
ILD were adopted from [17]. Later stages of Fig. 4, from interaural vector strength
(IVS) to DOA glimpse extraction, belong to the binaural cue selection. Both the IPD
model and the binaural cue selection are described in [15]. In the following only the
conceptually relevant aspects are briefly reviewed.

Most importantly, the signals were analyzed in 23 auditory filters in the range of
200 Hz to 5.0 kHz. Considering the human limit to binaurally exploit fine-structure
information above ∼1.4 kHz, the fine-structure filter is only implemented in the 12
lowest auditory filters below 1.4 kHz. Envelope IPDs are derived from all 23 filters,
but are not exploited in the current study.

A problem occurring especially for fine-structure IPDs in filters above 700 Hz is
that their corresponding ITDs do no longer cover the whole range of possible interau-
ral delays, resulting in an ambiguity of direction. Inspired by psychoacoustic findings
such as time–intensity trading—for instance, [33]—the sign of the ILD is employed
here to extend the unambiguous range of IPDs from [−π, π] to [−2π, 2π]. Accord-
ingly, the frequency range for unambiguous fine-structure IPD-to-azimuth mapping
is extended from ∼700 to 1400 Hz. IPD-to-azimuth mapping itself is performed with
a previously learned mapping function.

As argued in [15], the IPD model does not rely on cross-correlation, and, thus,
interaural coherence (IC) is not directly assessable. However, Goupell and Hartmann
[22] have shown that the temporal fluctuations of the interaural functions are possibly
an even better measure for psychoacoustic decorrelation sensitivity. Therefore, in the
IPD model, the IPD fluctuations are directly accessible and are specified in the form
of the interaural vector strength (IVS). The IVS was used to derive a filter mask which
consists of a binary weighting of the interaural parameters based on a threshold value
of IVS0 = 0.98.

By processing each of these high-coherence segments as a single event called
glimpse, a sparse representation of the binaural features is generated from the median
value of the azimuth estimation of this segment. If the IVS constantly exceeds IVS0
for more than 20 ms, a new glimpse is assigned from the same segment. Depending
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Fig. 4 Processing stages of the IPD model from [15]. Peripheral processing splits the input signal up
into 23 frequency channels from 200 to 5000 Hz. Only one of these channels is drawn for the further
processing blocks. IPDs and interaural vector strength (IVS) are derived from one fine-structure and
from several modulation filters. Fine-structure information is only derived in the 12 lowest frequency
channels from 200 to 1400 Hz. In addition, the ILD is derived at the output of an envelope low-pass
filter. The azimuth is derived from the IPDs with a previously stored frequency dependent mapping
function. For fine-structure channels from 700 to 1400 Hz additional ILD information is employed
to unwrap the IPD—see main text. Those azimuth estimates that occur during IVS > 0.98, result
in so-called glimpses, which represent expectedly salient and sparse estimates of the direction of
arrival. Within the current study only glimpses from fine-structure channels are considered

on the application it is decided whether the segments are grouped together to form
a glimpse, or not. Here, for DOA estimation of stationary sounds, Sect. 4.3, it is not
necessary, while it is highly beneficial for tracking applications such as the tracking
of moving speakers, Sect. 4.4, in order to reduce the computational load.
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4.2 Multi-Channel Speech Material

This section describes the multi-channel speech material used for the experiments.
The first and second subsection describe the monaural speech corpus and the gen-
eration of the spatial multi-channel signals, respectively. The simulation of moving
sources is presented in the last subsection.

Speech Data

The speech data used for the experiments consists of sentences produced by ten
speakers—four male, six female. The syntactical structure and the vocabulary were
adapted from the Oldenburg Sentence Test (OLSA) [67], where each sentence con-
tains five words with ten alternatives for each word and a syntax that follows the pat-
tern <name><verb><number><adjective><object>, which results in a vocab-
ulary size of 50 words. The original recordings with a sampling rate of 44.1 kHz
were downsampled to 16 kHz and concatenated—using three sentences from the
same speaker. This resulted in sentences with a mean duration of 6.44 s, suitable for
speaker tracking. For ASR experiments, the speech material was split into training
and test sets with a total duration of 30 and 88 min, respectively. With this amount of
speech data, a good ASR performance can be expected in relatively clean acoustics,
whereas the estimation of acoustic models from noisy observations usually requires
a larger database even for a relatively small vocabulary. Hence, the experiments pre-
sented in this chapter concentrate on the performance with one competing, moving
speaker. The generation of training and test material is based on processing with a
beamformer and is described in more detail in Sect. 4.6.

Generation of Multi-Channel Signals

Spatially localized and diffuse sound sources are simulated using a database of head-
related impulse responses, the HRIR database, which features impulse responses
recorded with three microphones from each of two behind-the-ear (BTE) hearing
aids attached to left and the right ear and two in-ear microphones. The HRIRs used
in this study are a subset of the database described in [29]: Anechoic free-field
HRIRs from the frontal horizontal half-plane measured at a distance of 3 m between
microphones and loudspeaker were selected. The HRIRs from the database were
measured with a 5◦ resolution for the azimuth angles, which was interpolated to
obtain a 0.5◦ resolution. The coordinate system is illustrated in Fig. 5.

Moving Speakers

The signals used throughout the experiments contain data of two moving speakers
without interfering noise sources. Initial and final speaker positions were randomly
drawn from a −90◦ to +90◦ azimuth interval, which represents the valid azimuth
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Fig. 5 Available azimuth range of the generated signals

range of the binaural model. The speakers moved linearly from the start to the end
point for the duration of the respective stimulus and crossed their tracks with a 50 %
probability. A frame-wise processing scheme was employed by applying 64 ms Hann
windows with 50 % overlap and convolving each time frame with the respective
HRIR. Since a source separation cannot be performed with a beamformer when
the signals come from the same direction, boundary conditions were defined that
guaranteed an average angle difference of at least 10◦. Additionally, the minimal
distance between the start and end points was set to 10 and 20◦ for non-crossing and
crossing speakers, respectively.

4.3 Statistical Analysis of Binaural Features

As demonstrated in [15], the IPD model can be employed to localize several con-
current speakers. While the model suffers stronger from reverberation than normal
hearing human listeners, its accuracy and performance is very good in free field
multi speaker conditions. Even three speakers in noise at −6 dB SNR with same
frequency characteristics as speech were robustly localized. While the number of
speakers was only increased up to five in this previous study, Fig. 6 shows that even 6
concurrent speakers can be localized by analyzing the azimuth distribution in the 12
fine-structure channels over a few seconds. The time course of the azimuth estimate
of an exemplary channel, fc = 1000 Hz, is plotted in Panel (b). It can be seen that
the estimate quickly oscillates between the six speaker positions. Over ten groups of
glimpses per second indicate robust DOA estimates while transition periods that can
contain any azimuth value are reliably suppressed by the IVS filter.2

2 A demo folder containing the file exp_spille2013 used to run the IPD model and to generate Fig. 6
is available in the AMToolbox [56].
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Fig. 6 Model output for six simultaneously speaking stationary speakers at −75, −45, −10, +10,
+45, and +75◦. The speech duration was 5.5 s. Grey color indicates all DOA estimates without
IVS filtering, black color indicates DOA estimates with IVS filtering, IVS0 = 0.98. a Azimuth
histogram of the fine-structure channel centered at fc = 1000 Hz. b Time course of the azimuth
estimation for the same channel and input signal as in panel (a). c Azimuth histogram of the fine-
structure channel centered at fc = 236 Hz with the same format and input signal as in (a). d Mean
azimuth histogram of the twelve fine-structure channels. Same format and same input signal as in
(a). It can be seen that the position of the speaker at +75◦ can only be determined with IVS filtering

4.4 Tracking Superposed Speakers

In the framework of the current application, the knowledge of the speaker positions
is used to steer a beamformer that enhances the selected speaker by spatial filtering
of the six BTE-microphone signals, that is, a binaural multi-channel beamformer.
A tracking algorithm for multiple-speaker conditions was already implemented in
[15], but only as a proof of concept. Here a more elaborate version is presented and
its precision in several two-speaker scenarios is demonstrated.

Particle Filters and Monte-Carlo Data Association

The main challenge in the tracking of multiple targets is the mapping from
observations—in this case, of DOA glimpses—to a specific target, which is a
prerequisite for the actual tracking. In this chapter, an algorithm provided by
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Särkkä et al. [55] is applied to solve this problem.3 The main idea of the algorithm
is to split up the problem into two parts—so-called Rao-Blackwellization. First,
the posterior distribution of the data association is calculated using a equential-
importance resampling SIR, particle-filtering algorithm. Second, the single targets
are tracked by an extended Kalman filter that depends on the data associations. Rao-
Blackwellization exploits the fact that it is often possible to calculate the filtering
equations in closed form. This leads to estimators with less variance compared to
the method using particle filtering alone [9]. For more details of the algorithms see
[25, 55].

Application to Speaker Tracking

The tracking toolbox described in the previous section was applied to tracking the
speakers from the DOA glimpses given by the IPD model. To apply the filter to the
signals, the so-called dynamic model and the measurement model have to be defined.
The dynamic model defines the temporal dynamics of the system and implements the
block state prediction of Fig. 2. The state x of the system is determined by the actual
position of the target, α, and velocity, v. x is a vector consisting of the elements α
and v. The dynamic model is then given by

xk = Ak−1xk−1 + qk−1. (1)

The matrix, A, is the transition matrix of the dynamic model and reflects the dynamics
of the system. In this case it is given as

Ak =
(

1 Δtk
0 1

)
, (2)

where Δtk = tk+1 − tk is the time step between two states of the system. This means
that the system’s state at time step k is a linear progression of the system at time k −1
with constant speed plus some process noise, qk , which is introduced to account for
uncertainties in the system’s development

xk =
(

αk−1 + Δtk−1 vk−1
vk−1

)
+ qk−1. (3)

The process noise is assumed to be a multivariate Gaussian with zero mean and
covariance matrix

qk =
(

1
3Δt3

k
1
2Δt2

k
1
2Δt2

k Δtk

)
q f , (4)

which is calculated using the previously mentioned toolbox [24]. q f is a process-
noise factor that was set to 0.1 in this case.The prior distribution of the state x0 (see

3 The algorithm is part of a Matlab-Toolbox provided by [25].
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block initialization of states in Fig. 2), is also a multivariate Gaussian of the form

x0 ∼ N (m0, P0),

where m0 denotes the prior mean of the state and P0 its prior covariance matrix
containing the variances of the system’s position and velocity that is set to

P0 =
(

50 0
0 15

)
,

In other words, the actual position α has a variance of 50 deg2 and the variance of the
velocity is 15 m2/s2. The Kalman filter predicts the mean and the covariance of the
state using the prior values together with the transition matrix, A, and the covariance
matrix of the process noise, q. The equations for the predicted mean mk and the
predicted covariance Pk are as follows,

mk = Ak−1mk−1

Pk = Ak−1 Pk−1 AT
k−1 + qk−1. (5)

Note that the process noise is only used for predicting the new covariance matrix.
During the update step—block weight update in Fig. 2—these predictions are updated
using the actual measurement, that is, glimpses, at time step k as well as the mea-
surement model which describes the relation between the measurement and the state
of the system. The measurement model is given by

yk = Hk xk + rk, (6)

where yk is the actual measurement at time k, Hk is the measurement model matrix
and rk is the Gaussian measurement noise, rk ∼ N (0, R). In the measurement
model used here, only the position of the target is measured. This measurement can
be corrupted by some noise reflecting the variance of the DOA estimation. Thus, the
measurement model matrix, H , and the noise variance, R, are given by

H = (1 0) R = 50 deg2.

As the glimpses are sparse and occur with varying distance in time, the choice of the
sampling interval is crucial. A sampling frequency equal to 1/Δt was chosen for the
tracking algorithm and each glimpse was assigned to the nearest sampling point at
this sampling rate. Glimpses were sampled at the original rate of the speech material.
In the very rare cases that more than one glimpse fell in one bin, all but one glimpse
were discarded.

Several sampling frequencies were tested and the minimum median-squared-error
of the tracking was derived. For this, a dataset consisting of 71 sentences was used.
A final sampling frequency of 500 Hz was chosen based on the results in Table 1.
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Table 1 Median-squared-errors and their roots for the different sampling frequencies

Sampling frequency Median-squared-error Root median-squared-error

50 6.6615 2.5810
100 2.8361 1.6841
200 2.1954 1.4817
400 1.9353 1.3912
500 1.4857 1.2189
1000 1.5297 1.2368
1600 1.8244 1.3507

Speaker Tracking

The particle filter was initialized with a set of 20 particles using a known starting
position of the first speaker, that is, the location variable of the first target was set to
the position for all particles. The location variable of the second target was altered
for each particle in equidistant steps throughout the whole azimuth range. Initial
velocities were set randomly between ±2 m/s for each target in each particle. The
covariance matrix was equal for both targets and was set to P0 as above.

If no glimpse is observed at time step t , the update step of the Kalman filter was
skipped for this time step and the prediction was made based on the internal particle
states. The range of the predicted angles was limited to the interval [−90, 90] by
setting all predictions outside that range to −90◦ or 90◦, respectively.

Figure 7 presents two exemplary tracking results. The figure shows that the particle
filter is able to track speakers even when they cross tracks, left panel. The tracking
algorithm was evaluated by calculating the root median-squared error for each of the
9 data sets. On average the error was below 1.5◦.
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Fig. 7 Tracking results of a two-speaker scenario. Light-grey circles represent the glimpses pro-
duced by the binaural model—see text. Dark-grey lines represent the real azimuth angles of the
speakers. Solid black lines show the smoothed estimates obtained by tracking
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4.5 Steerable Beamformer for Source Selection

In the proposed application, a position estimate for both the target and concurrent
speaker are required to control the beamformer parameters to either enhance the
speech of a certain speaker or block out a concurrent speaker, thereby increasing
the overall signal-to-noise ratio and subsequently lower the word error rates of an
automatic speech recognizer. The beamformer employed here is a super-directive
beamformer based on the minimum-variance distortionless-response principle [12]
that used the six BTE microphone inputs jointly—three channels left and three chan-
nel from the right ear. In general, it suppresses the noise coming from all directions
while not affecting the speech of the desired speaker. Additionally, the beamformer
strongly suppresses the speech of the concurrent speaker which, in this setup, is has
a higher impact than the enhancement of the desired source. Let W be the matrix
containing the frequency domain filter coefficients of the beamformer, d1 and d2 the
vectors containing the transfer functions to the microphones of speakers one and
two respectively and ΦV V the noise power-spectral density, PSD, matrix. Then, the
following minimization problem has to be solved,

min
W

W H ΦV V W, with W H d1 = 1 and W H d2 = 0. (7)

The solution to this is the minimum-variance distortionless-response beamformer [3].
The transfer functions in vectors d1 and d2 result from the impulse responses that are
chosen based on the angle estimation of the tracking algorithm. The coherence matrix
which is required to solve (7) is also estimated using the impulse responses used for
generating the signals. Note that relying on the true impulse responses implies the use
of a-priori knowledge not available in a real-world application, for which the impulse
responses need to be estimated. The beamforming by itself therefore represents an
upper bound, and will be extended to be used with estimated impulse responses in
future work. However, since the IPD model, the tracking algorithm and the ASR
system do not use such a-priori knowledge in reflecting realistic conditions, and
robust methods for estimation of impulse responses exist, the results should still be
transferable to real-world applications.

4.6 ASR System

Feature Extraction and Classifier

The benefits of the proposed processing chain for speech processing are analyzed
by performing automatic speech recognition (ASR) on the output signals of the
beamformer. The ASR system consists of a feature extraction and a classification
stage.

The features extracted from speech should represent the information required to
transcribe the spoken message and ideally suppress unwanted signal components.
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For the experiments, the feature type most commonly applied in ASR, namely, Mel-
frequency cepstral coefficients (MFCCs) [13] was chosen. These features effectively
encode the smoothed short-time Fourier transform (STFT) magnitude, which is com-
puted every 10 ms using overlapping analysis windows of 25 ms duration. Each frame
of the STFT is processed by a mel-filterbank that approximates the frequency sensi-
tivity of the human ear, compressed with the logarithm and transformed to cepstral
parameters using a discrete cosine transformation. By selecting twelve lower cepstral
coefficients, only the coarse spectral structure is retained. By adding an energy value
and calculating an estimate for the first and second derivative, the so-called delta and
double-delta features, to include some information about temporal dynamics on the
feature level, 39-dimensional feature vectors were finally obtained.

The feature vectors are used without normalization to train and test the Hidden-
Markov model (HMM) classifier, which has been set up as word model with each
word of the vocabulary corresponding to a single HMM. During testing, the likeli-
hoods of each HMM generating the observed sequence of feature vectors are com-
pared and the word with the highest likelihood is selected. A grammar reflecting
the fixed syntax of OLSA sentences is used to ensure a transcription with a valid
OLSA sentence structure, in particular the following, <name><verb><number>
adjective><object>, repeated three times due to the concatenation of sentences.
The HMM used ten states per word model and six Gaussians per mixture and was
implemented using the Hidden-Markov Toolkit (HTK) decribed in [72].

Training and Test Material

ASR training was carried out using sentences with one moving speaker, which were
processed with the beamformer. The steering vectors of the beamformer were set
to the true azimuth angles of the desired speaker instead of using the output of
the complete processing chain including DOA estimation. This resulted in signals
containing some beamforming artifacts, that is, the classifier was able to adapt to the
resulting feature distortions and still carried the relevant information to create proper
word models. The effects of speaker-dependent (SD) versus speaker-independent
(SI) recognition was investigated by creating two training sets with the test speaker
being either included in the training data, SD, or excluded from training, SI. The
original data contained 71 long sentences each of which was used several times for the
simulation of moving speakers, thereby increasing the amount of training material.
Each sentence was processed four times with random start and end positions of the
speakers, which resulted in 284 training sentences or 30 min, repectively, for the SD
system and approximately 250 training sentences or 27 min for the SI system.

For testing, signals with two moving speakers were processed by the complete
chain depicted in Fig. 3, one being the target source and the other one the suppressed
source, and the recognition rate for the words uttered by the target speaker was
obtained. To increase the number of test items, each speaker was selected as the
target speaker once and the training/testing procedure was carried out ten times. As
for the training set, the original 71 sentences were used for movement simulation
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several times to further increase the number of test items and hence the significance
of the results. For testing, a factor of 11 was chosen due to computational constraints.
This resulted in a total number of 781 sentences or 88 min with randomised start and
end positions for two speakers.

4.7 ASR Results

When using the complete processing chain that included the DOA estimation, track-
ing, beamforming, and ASR, a word-recognition rate (WRR) of 88.4 % was obtained
for the speaker-dependent ASR system. When using a speaker-independent system,
a word-recognition rate of 72.6 % was achieved. The data presented in the following
were obtained with the speaker-dependent ASR system. When the ASR system can-
not operate on beamformed signals, but is limited to speech that was converted to
mono signals by selecting one of the eight channels from the behind-the-ear or in-ear
recordings, the average WRR was 29.4 %. The variations of WRRs between channels
were relatively small, ranging from 28.1 to 30.8 %. When the best channel for each
sentence was selected, that is, the channel that resulted in the highest WRR for that
specific sentence to simulate the best performance when limited to one channel, the
average WRR was increased to 38.8 %.

It is interesting to note that the WRRs were very similar when analyzing crossing
and non-crossing speaker tracks separately, namely, 88.3 and 88.4 %, respectively. An
analysis of the average separation of speakers in ◦ showed that the overall accuracy
was nearly constant for spatial distances ranging from 40 to 100◦—Fig. 8a—but will
definitely drop down for smaller distances. The average distance was, of course, sig-
nificantly higher for non-crossing speakers, namely, 64.9◦, than for crossing speak-
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Fig. 8 a Word-recognition rate, WRR, of the ASR system to be dependent on the average separation
of sources. The dashed line denotes the average WRR for all speaker tracks. b WRR for crossing
speakers to depend on the difference speed of competing speakers. The dashed black line shows
the recognition rate that was obtained for crossing speaker tracks
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Fig. 9 Word-recognition rate versus average tracking error. The range of the tracking error was dev-
ided in equidistant bins. Data points denote the mean tracking error and the mean word-recognition
rate. Error bars show the corresponding standard deviations

ers, 41.0◦. But, due to the constraints in the case of crossing speakers, the average
distance was high enough to not reduce the WRR. The parameter determining the
average distance of crossing speakers is the relative velocity of speakers, where high
relative velocities correspond to short durations of spatially close speakers—Fig. 8b.
The constraints for starting and end positions that were chosen for crossing speakers
resulted in an average relative speed difference of 1.2 m/s. Hence, the comparable
high WRRs for crossing tracks can be attributed to the high relative velocity of
speakers ensured by the contraints in signal generation.

The word-recognition rate also depends strongly on the localization accuracy: The
overall localization accuracy was quantified by calculating the average tracking error,
which is the root median squared error between the smoothed tracking estimates and
the real azimuth angles of the speakers—see Table 1. Figure 9 shows that the WRR
is highly dependent on the average tracking error where higher traking errors cause
significantly lower WRRs.

5 Summary and Conclusions

This study provided an overview of computational auditory scene analysis based on
binaural information and its application to a speech recognition task. The usability
of the IPD model in automated speech processing was demonstrated by perform-
ing a DOA estimation for stationary and moving speakers. For the moving-speaker
scenario, it was also shown that the binaural model enables efficient tracking and
greatly increases the performance of an automatic speech recognition system in situ-
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ations with one interfering speaker. The word-recognition rate (WRR) was increased
from 30.8 to 88.4 %, which shows the potential of integrating models of binaural hear-
ing into speech processing systems. It remains to be seen if this performance gain
in anechoic conditions can be validated in real-world scenarios, that is, in acoustic
conditions with strong reverberation, several localized noise sources embedded in a
3D-environment compared to the 2D simulation presented here or with a changing
number of speakers. Follow-up studies are suggested that explore a combination of a
binaural model, a tracking system and beamforming for other problems in speech and
hearing research, such as speaker identification, speaker diarization or the improve-
ment of noise reduction in hearing aids.
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