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1 Sound Localization in Sagittal Planes

1.1 Salient Cues

Human normal-hearing, NH, listeners are able to localize sounds in space in terms of
assigning direction and distance to the perceived auditory image [26]. Multiple mech-
anisms are used to estimate sound-source direction in the three-dimensional space.
While interaural differences in time and intensity are important for sound localiza-
tion in the lateral dimension, left/right, [53], monaural spectral cues are assumed to
be the most salient cues for sound localization in the sagittal planes, SPs, [27, 54].
Sagittal planes are vertical planes parallel to the median plane and include points of
similar interaural time differences for a given distance. The monaural spectral cues
are essential for the perception of the source elevation within a hemifield [2, 22, 24]
and for front-back discrimination of the perceived auditory event [46, 56]. Note that
also the binaural pinna disparities [43], namely, interaural spectral differences, might
contribute to SP localization [27].

The mechanisms underlying the perception of lateral displacement are the main
topic of other chapters. This chapter focuses on the remaining directional dimension,
namely, the one along SPs. Because interaural cues and monaural spectral cues are
thought to be processed largely independently of each other [27], the interaural-
polar coordinate system is often used to describe their respective contributions in the
two dimensions. In the interaural-polar coordinate system the direction of a sound
source is described with the lateral angle, φ ∈ [−90◦, 90◦], and the polar angle,
θ ∈ [−90◦, 270◦)—see Fig. 1, left panel. Sagittal-plane localization refers to the
listener’s assignment of the polar angle for a given lateral angle and distance of the
sound source.
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Fig. 1 Left Interaural-polar coordinate system. Right HRTF magnitude spectra of a listener as a
function of the polar angle in the median SP—left ear of NH58

Although spectral cues are processed monaurally, the information from both ears
affects the perceived location in most cases [39]. The ipsilateral ear, namely, the one
closer to the source, dominates and its relative contribution increases monotonically
with increasing lateral angle [12]. If the lateral angle exceeds about 60◦, the contri-
bution of the contralateral ear becomes negligible. Thus, even for localization in the
SPs, the lateral source position, mostly depending on the broadband binaural cues
[27], must be known in order to determine the binaural weighting of the monaural
spectral cues.

The nature of the spectral features important for sound localization is still subject
of investigations. Due to the physical dimensions, the pinna plays a larger role for
higher frequencies [36] and the torso for lower frequencies [1]. Some psychoacoustic
studies postulated that macroscopic patterns of the spectral features are important
rather than fine spectral details [2, 10, 16, 22–24, 28, 44]. On the other hand, other
studies postulated that SP sound localization is possibly mediated by means of only a
few local spectral features [17, 37, 52, 56]. Despite a common agreement, according
to which the amount of the spectral features can be reduced without substantial
reduction of the localization performance, the perceptual relevance of particular
features has not been fully clarified yet.

1.2 Head-Related Transfer Functions

The effect of the acoustic filtering of torso, head and pinna can be described in terms
of a linear time-invariant system by the so-called head-related transfer functions,
HRTFs, [4, 38, 45]. The right panel of Fig. 1 shows the magnitude spectra of the
left-ear HRTFs of an exemplary listener, NH58,1 along the median SP.

HRTFs depend on the individual geometry of the listener and thus listener-
specific HRTFs are required to achieve accurate localization performance for binaural

1 These and all other HRTFs are from http://www.kfs.oeaw.ac.at/hrtf.

http://www.kfs.oeaw.ac.at/hrtf
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synthesis [6, 35]. Usually, HRTFs are measured in an anechoic chamber by determin-
ing the acoustic response characteristics between loudspeakers at various directions
and microphones inserted into the ear canals. Currently, much effort is put also into
the development of non-contact measurement methods for capturing HRTFs like
numerical calculation of HRTFs from optically scanned geometry [20, 21] and on
customization of HRTFs basing on psychoacoustic tests [16, 34, 46].

Measured HRTFs contain both direction-dependent and direction-independent
features and can be thought of as a series of two acoustic filters. The direction-
independent filter, represented by the common transfer function, CTF, can be cal-
culated from an HRTF set comprising many directions [34] by averaging the log-
amplitude spectra of all available HRTFs of a listener’s ear. The phase spectrum of
the CTF is the minimum phase corresponding to the amplitude spectrum of the CTF.

In the current study, the topic of interest is the directional aspect. Thus, the direc-
tional features are considered, as represented by the directional transfer functions,
DTFs. The DTF for a particular direction is calculated by filtering the corresponding
HRTF with the inverse CTF. The CTF usually exhibits a low-pass filter characteristic
because the higher frequencies are attenuated for many directions due to the head
and pinna shadow—see Fig. 2, left panel. Compared to HRTFs, DTFs usually pro-
nounce frequencies and thus spectral features above 4 kHz—see Fig. 2, right panel.
DTFs are commonly used to investigate the nature of spectral cues in SP localization
experiments with virtual sources [10, 30, 34].

In the following, the proposed model is described in Sect. 2 and the results of its
evaluation are presented in Sect. 3, based on recent virtual-acoustics studies that used
listener-specific HRTFs. In Sect. 4, the proposed model is applied to predict local-
ization performance for different aspects of spatial-audio applications that involve
spectral localization cues. In particular, a focus is put on the evaluation of non-
individualized binaural recordings, the assessment of the quality of spatial cues for
the design of hearing-assist devices, namely, in-the-ear versus behind-the-ear micro-
phones and the estimation and improvement of the perceived direction of phantom

Fig. 2 Left Spatial variation of HRTFs around CTF for listener NH58, left ear. Right Corresponding
DTFs, i.e. HRTFs with CTF removed. Solid line Spatial average of transfer function. Grey area ±1
standard deviation
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sources in surround-sound systems, namely, 5.1 versus 9.1 versus 10.2 surround.
Finally, Sect. 5 concludes with a discussion of the potential of the model for both
evaluating audio applications and improving the understanding of human sound-
localization mechanisms.

2 Models of Sagittal-Plane Localization

This section considers existing models aiming at predicting listener’s polar response
angle to the incoming sound. These models can help to explain psychoacoustic
phenomena or to assess the spatial quality of audio systems while avoiding the
running of costly and time-consuming localization experiments.

In general, machine-learning approaches can be used to predict localization per-
formance. Artificial neural networks, ANNs, have been shown to achieve rather
accurate predictions when trained with large datasets of a single listener [19]. How-
ever, predictions for a larger subpopulation of human listeners would have required
much more effort. Also, the interpretation of the ANN parameters is not straight for-
ward. It is difficult to generalize the findings obtained with an ANN-based model to
other signals, persons and conditions and thus to better understand the mechanisms
underlying spatial hearing.

Hence, the focus is laid on a functional model where model parameters should
correspond to physiological and/or psychophysical localization parameters. Until
now, a functional model considering both spectral and temporal modulations exists
only as a general concept [50]. Note that in order to address a particular research
question, models dealing with specific types of modulations have been designed. For
example, models for narrow-band sounds [37] were provided in order to explain the
well-known effect of directional bands [4]. In order to achieve a sufficiently good
prediction as an effect of the modification of the spectral cues, it is assumed that the
incoming sound is a stationary broadband signal, explicitly disregarding spectral
and temporal modulations.

Note that localization models driven by various signal-processing approaches have
also been developed [3, 32, 33]. These models are based on general principles of
biological auditory systems, they do not, however, attempt to predict human-listener
performance—their outcome shows rather the potential of the signal-processing algo-
rithms involved.

In the following, previous developments on modeling SP localization performance
are reviewed and a functional model predicting sound localization performance in
arbitrary SPs for broadband sounds is proposed. The model is designed to retrieve
psychophysical localization performance parameters and can be directly used as a
tool to assess localization performance in various applications. An implementation
of the model is provided in the AMToolbox, as the baumgartner2013 model
[47].
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Fig. 3 General structure of a template-based comparison model for predicting localization in SPs

2.1 Template-Based Comparison

A common property of existing sound localization models based on spectral cues is
that they compare an internal representation of the incoming sound with a template
[13, 24, 55]—see Fig. 3. The internal template is assumed to be created by means
of learning the correspondence between the spectral features and the direction of
an acoustic event [14, 49], based on feedback from other modalities. The localiza-
tion performance is predicted by assuming that in the sound localization task, the
comparison yields a distance metric that corresponds to the polar response angle of
the listener. Thus, template-based models include a stage modeling the peripheral
processing of the auditory system applied to both the template and incoming sound
and a stage modeling the comparison process in the brain.

Peripheral Processing

The peripheral processing stage aims at modeling the effect of human physiology
while focusing on directional cues. The effect of the torso, head and outer ear are
considered by filtering the incoming sound by an HRTF or a DTF. The effect of ear
canal, middle ear and cochlear filtering can be considered by various model approxi-
mations. In the early HRTF-based localization models, a parabolic-shaped filter bank
was applied [55]. Later, a filter bank averaging magnitude bins of the discrete Fourier
transform of the incoming sound was used [24]. Both filter banks, while being compu-
tationally efficient, were drastically simplifying the auditory peripheral processing.
The Gammatone, GT, filter bank [40] is a more physiology-related linear model of
auditory filters and has been used in localization models [13]. A model accounting
for the nonlinear effect of the cochlear compression is the dual-resonance nonlinear,
DRNL, filter bank [25]. A DRNL filter consists of both a linear and a non-linear
processing chain and is implemented by cascading GT filters and Butterworth low-
pass filters, respectively. Another non-linear model uses a single main processing
chain and accounts for the time-varying effects of the medial-oliviocochlear reflex
[57]. All those models account for the contribution of outer hair cells to a different
degree and can be used to model the movements of the basilar membrane at a par-
ticular frequency. They are implemented in the AMToolbox [47]. In the localization
model described in this chapter, the GT filter bank is applied focusing on applications
where the absolute sound level plays a minor role.
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The filter bank produces a signal for each center frequency and only the relevant
frequency bands are considered in the model. Existing models used frequency bands
with constant relative bandwidth on a logarithmic frequency scale [24, 55]. In the
model described in this chapter, the frequency spacing of the bands corresponds to
one equivalent rectangular bandwidth, ERB, [9]. The lowest frequency is 0.7 kHz,
corresponding to the minimum frequency thought to be affected by torso reflections
[1]. The highest frequency considered in the model depends on the bandwidth of the
incoming sound and is maximally 18 kHz, approximating the upper frequency limit
of human hearing.

Further in the auditory system, the movements of the basilar membrane at each
frequency band are translated into neural spikes by the inner hair cells, IHCs. An
accurate IHC model has not been considered yet and does not seem to be vital
for SP localization. Thus, different studies used different approximations. In this
model, the IHC is modeled as half-wave rectification followed by a second-order
Butterworth low-pass with a cut-off frequency of 1 kHz [8]. Since the temporal effects
of SP localization are not considered yet, the output of each band is simply temporally
averaged in terms of RMS amplitude, resulting in the internal representation of
the sound. The same internal representation and therefore peripheral processing is
assumed for the template.

Comparison Stage

In the comparison stage, the internal representation of the incoming sound is com-
pared with the internal template. Each entry of the template is selected by a polar
angle denoted as template angle. A distance metric is calculated as a function of the
template angle and can be interpreted as a potential descriptor for the response of
the listener.

An early modeling approach proposed to compare the spectral derivatives of var-
ious orders in terms of a band-wise subtraction of the derivatives and then averaging
over the bands [55]. The comparison of the first-order derivative corresponds to the
assumption that the overall sound intensity does not contribute to the localization
process. In the comparison of the second-order derivatives, the differences in spectral
tilt between the sound and the template do not contribute. Note that the plausibil-
ity of these comparison methods had not been investigated at that time. As another
approach, the cross-correlation coefficient has been proposed to evaluate the similar-
ity between the sound and the template [13, 37]. Later, the inter-spectral differences,
ISDs, namely, the differences between the internal representations of the incoming
sound and the template, calculated for each template angle and frequency band, were
used [34] to show a correspondence between the template angle yielding smallest
spectral variance and the actual response of human listeners. All these comparison
approaches were tested in [24] who, distinguishing zeroth-, first- and second-order
derivatives of the internal representations, found that the standard deviation of ISDs
best described their results. This configuration corresponds to an average of the first-
order derivative from [55], which is robust against changes in the overall level in the
comparison process.
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Fig. 4 Example of the comparison process for a target polar angle of 30◦. Left Inter-spectral
differences, ISDs, as a function of the template angle. Right Spectral standard deviation, STD, of
ISDs as a function of the template angle

The model proposed in this study also relies on ISDs calculated for a template
angle and for each frequency band—see Fig. 4, left panel. Then, the spectral standard
deviations of ISDs are calculated for all available template angles—see Fig. 4, right
panel. For band-limited sounds, the internal representation results in an abrupt change
at the cut-off frequency of the sound. This change affects the standard deviation of
the ISDs. Thus, in this model, the ISDs are calculated only within the bandwidth of
the incoming sound.

The result of the comparison stage is a distance metric corresponding to the pre-
diction of the polar response angle. Early modeling approaches used the minimum
distance to determine the predicted response angle [55], which would nicely fit the
minimum of the distance metric used in the example reported here—see Fig. 4, right
panel. Also, the cross-correlation coefficient has been used as a distance metric and
its maximum has been interpreted as the prediction of the response angle [37]. Both
approaches represent a deterministic interpretation of the distance metric, resulting
in exactly the same predictions for the same sounds. This is rather unrealistic. Lis-
teners, repeatedly listening to the same sound, often do not respond to exactly the
same direction [7]. The actual responses are known to be scattered and can be even
multimodal. The scatter of one mode can be described by the Kent distribution [7],
which is an elliptical probability distribution on the two-dimensional unit sphere.

2.2 Response Probability

In order to model the probabilistic response pattern of listeners, a mapping of the
distance metric to polar-response probabilities via similarity indices, SIs, has been
proposed [24]. For a particular target angle and ear, they obtained a monaural SI by
using the distance metric as the argument of a Gaussian function with a mean of zero
and a standard deviation of two—see Fig. 5, U = 2. While this choice appears to be
somewhat arbitrary, it is an attempt to model the probabilistic relation between the
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Fig. 5 Left Mapping function of similarity index, top, for various uncertainties, U , and the resulting
PMVs, bottom—corresponding to the example shown in Fig. 4. Right Predicted response PMV of
the localization model as a function of the target angle, i.e. prediction matrix, for the baseline
condition in the median SP for listener NH58. Response probabilities are encoded by brightness

distance metric and the probability of responding to a given direction. Note that the
resulting SI is bounded by zero and one and valid for the analysis of the incoming
sound at one ear only.

The width of the mapping function, U in Fig. 5, actually reflects a property of an
individual listener. A listener being more precise in the response to the same sound
would need a more narrow mapping than a less precise listener. Thus, in contrast to
the previous approach [24], in the model described in this chapter, the width of the
mapping function as a listener-specific uncertainty, U , is considered. It accounts for
listener-specific localization precision [34, 42, 56] due to factors like training and
attention [14, 51]. Note that for simplicity, direction-dependent response precision
is neglected. The lower the uncertainty, U , the higher the assumed sensitivity of the
listener to distinguish spectral features. In the next section, this parameter will be
used to calibrate the model to listener-specific performance.

The model stages described so far are monaural. Thus, they do not consider bin-
aural cues and have been designed for the median SP where the interaural differences
are zero and thus binaural cues do not contribute. In order to take into account the
contribution of both ears, the monaural model results for both ears are combined.
Previous approaches averaged the monaural SIs for both ears [24] and thus were able
to consider the contribution of both ears for targets placed in the median SP. In the
model described in this chapter, the lateral target range is extended to arbitrary SPs
by applying a binaural weighting function [12, 29], which reduces the contribution
of the contralateral ear, depending on the lateral direction of the target sound. Thus,
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the binaural weighting function is applied to each monaural SI, and the sum of the
weighted monaural SIs yields the binaural SI.

For an incoming sound, the binaural SIs are calculated for all template entries
selected by the template angle. Such a binaural SI as a function of the template angle
is related to the listener’s response probability as a function of the response angle.
It can be interpreted as a discrete version of a probability density function, namely,
a probability mass vector, PMV, showing the probability of responding at an angle to
a particular target. In order to obtain a PMV, the binaural SI is normalized to have a
sum of one. Note that this normalization assumes that the template angles regularly
sample an SP. If this is not the case, regularization by spline interpolation is applied
before the normalization.

The PMVs, calculated separately for each target under consideration, are repre-
sented in a prediction matrix. This matrix describes the probability of responding
at a polar angle given a target placed at a specific angle. The right panel of Fig. 5
shows the prediction matrix resulting for the exemplary listener, NH58, in a baseline
condition where the listener uses his/her own DTFs, and all available listener-specific
DTFs are used as targets. The abscissa shows the target angle, the ordinate shows the
response angle and the brightness represents the response probability. This represen-
tation is used throughout the following sections. It also allows for a visual comparison
between the model predictions and the responses obtained from actual localization
experiments.

2.3 Interpretation of the Probabilistic Model Predictions

In order to compare the probabilistic results from the model with the experimental
results, likelihood statistics, calculated for actual responses from sound localiza-
tion experiments and for responses resulting from virtual experiments driven by the
model prediction, can be used—see Eq. (1) in [24]. The comparison between the two
likelihoods allows one to evaluate the validity of the model, because only for similar
likelihoods the model is assumed to yield valid predictions. The likelihood has, how-
ever, a weak correspondence with localization performance parameters commonly
used in psychophysics.

Localization performance in the polar dimension usually considers local errors
and hemifield confusions [35]. Although these errors derived by geometrical aspects
cannot sufficiently represent the current understanding of human hearing, they are
frequently used and thus enable comparison of results between studies. Quadrant
errors, QEs, that is the percentage of polar errors larger or equal to 90◦, represent the
confusions between hemifields—for instance, front/back or up/down—without con-
sidering the local response pattern. Unimodal local responses can be represented as
a Kent distribution [7], which, considering the polar dimension only, can be approx-
imated by the polar bias and polar variance. Thus, the local errors are calculated
only for local responses within the correct hemifield, namely, without the responses
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Fig. 6 Structure of the proposed SP localization model—see text for the description of the stages

yielding the QEs. A single representation of the local errors is the local polar RMS
error, PE, which combines localization bias and variance in a single metric.

In the proposed model, QEs and PEs are calculated from the PMVs. The QE is the
sum of the PMV entries outside the local polar range defined by the response-target
difference greater or equal to 90◦. The PE is the discrete expectancy value within
the local polar range. In the visualization of prediction matrices—see for example
right column of Fig. 5—bright areas in the upper left and bottom right corners would
indicate large QEs, a strong concentration of the brightness at the diagonal would
indicate small PEs. Both errors can be calculated either for a specific target angle or
as the arithmetic average across all target angles considered in the prediction matrix.

Figure 6 summarizes the final structure of the model. It requires the incoming
signal from a sound source as the input and results in the response probability as
a function of response angle, namely PMV, for given template DTFs. Then, from
PMVs calculated for the available target angles, QEs and PEs are calculated for a
direct comparison with the outcome of a sound-localization experiment.

3 Listener-Specific Calibration and Evaluation

Listeners show an individual localization performance even when localizing broad-
band sounds in free field [31]. While the listener-specific differences in the HRTFs
may play a role, also other factors like experience, attention, or utilization of auditory
cues might be responsible for differences in the localization performance. Thus, this
section is concerned with the calibration of the model for each particular listener. By
creating calibrations for 17 listeners, a pool of listener-specific models is provided.
In order to estimate the use of this pool in future applications, the performance of
this pool is evaluated in two experiments. In Sect. 4, the pool is applied to various
applications.
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3.1 Calibration: Pool of Listener-Specific Models

The SP localization model is calibrated to the baseline performance of a listener in
terms of finding an optimal uncertainty, U . Recall that the lower the uncertainty, U ,
the higher the assumed efficiency of the listener in evaluating spectral features. An
optimal U minimizes the difference between the predicted and the listener’s actual
baseline performance in terms of a joint metric of QE and PE, namely, the L2-norm.

The actual baseline performance was obtained in localization experiments where
a listener was localizing sounds using his/her own DTFs presented via headphones.
Gaussian white noise bursts with a duration of 500 ms and a fade-in/out of 10 ms
were used as stimuli. The acoustic targets were available for elevations from −30◦
to 80◦ in the lateral range of at least ±30◦ around the median SP. Listeners responded
by manually pointing to the perceived direction of a target. For more details on the
experimental methods see [10, 30, 51].

The model predictions were calculated considering SPs within the lateral range of
±30◦. The targets were clustered to SPs with a width of 20◦ each. For the peripheral
processing, the lower and upper corner frequency was 0.7 and 18 kHz, respectively,
resulting in 18 frequency bands with a spacing of one ERB.

Table 1 shows the values of the uncertainty, U , for the pool of 17 listeners. The
impact of the calibration becomes striking by comparing the predictions based on the
listener-specific, calibrated pool with the predictions basing on the pool using U = 2
for all listeners as in [24]. Figure 7 shows the actual and predicted performance as a
comparison with a pool calibrated to U = 2 for all listeners and a listener-specific
calibrated pool. Note the substantially higher correlation between the prediction
with the actual results in the case of the listener-specific calibration. The correlation
coefficients in the order of r = 0.85 provide evidence for sufficient power in the
predictions for the pool.

Table 1 Values of the uncertainty U for the pool of listener-specific models identified by NHn

NHn 12 15 21 22 33 39 41 42 43 46 55 58 62 64 69 71 72
U 1.6 2.0 1.8 2.0 2.3 2.3 3.0 1.8 1.9 1.8 2.0 1.4 2.2 2.1 2.1 2.1 2.2

3.2 Evaluation

In order to evaluate the SP localization model, the experimental data from two studies
investigating stationary broadband sounds are modeled and compared to the exper-
imental results. Only two studies were available because both the listener-specific
HRTFs and the corresponding responses are necessary for the evaluation. For each
of these studies, two predictions are calculated, namely, one for the listeners who
actually participated in that experiment and one for the whole pool of listener-specific,
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Fig. 7 Localization performance in baseline condition. Bars Model predictions. Asterisks Actual
performance obtained in sound localization experiments. Top Model predictions for U = 2 as in
[24]. Bottom Model predictions for listener-specific calibration. r…Pearson’s correlation coefficient
with respect to actual and predicted performance

calibrated models. For the participants, the predictions are done on the basis of the
actual targets, whereas for the pool, all targets are considered by randomly drawing
from the available DTFs.

Effect of the Number of Spectral Channels

A previous study tested the effect of the number of spectral channels on the localiza-
tion performance in the median SP [10]. While that study was focused on cochlear-
implant processing, the localization experiments were done on listeners with normal
hearing using a Gaussian-envelope tone vocoder—for more details see [10]. The
frequency range of 0.3–16 kHz was divided into 3, 6, 9, 12, 18, or 24 channels,
equally spaced on the logarithmic frequency scale. The top row of Fig. 8 shows three
channelized DTFs from an exemplary listener.

The bottom row of Fig. 8 shows the corresponding prediction matrices including
the actual responses for this particular listener. Note the correspondence of the local-
ization performance for that particular listener between the actual responses, A, and
the model predictions, P. Good correspondence between the actual responses and
prediction matrices was found for most of the tested listeners, which is supported by
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Fig. 8 Effect of the number of spectral channels for listener, NH42. Top Channelized left-ear
DTFs of median SP with brightness-encoded magnitude as in Fig. 1, right panel. Bottom Prediction
matrices with brightness-encoded probability as in Fig. 5, right panel, and actual responses, open
circles. Left Unlimited number of channels. Center 24 spectral channels. Right 9 spectral channels.
A…actual performance from [10], P…predicted performance

Fig. 9 Localization performance for listener groups as functions of the number of spectral channels.
Open circles Actual performance of the listeners replotted from [10]. Filled circles Performance
predicted for the listeners tested in [10] using the targets from [10]. Filled squares Performance
predicted for the listener pool, using randomly chosen targets. Error bars ±1 standard deviations
of the average over the listeners. Dashed line Chance performance corresponding to guessing the
direction of the sound. CL…unlimited number of channels, broadband clicks
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the overall response-prediction-correlation coefficients of 0.62 and 0.74 for PE and
QE, respectively.

Figure 9 shows the predicted and the actual performance as averages over the
listeners. In comparison to the actual performance, the models underestimated the
PEs for 12 and 18 channels and overestimated them for 3 channels. The predictions
for the pool seem to follow the predictions for the actually tested listeners showing
generally similar QEs but slightly smaller PEs. While the analysis of the nature of
these errors is outside of the focus of this chapter, both predictions, those for the
actual listeners and those for the pool, seem to well represent the actual performance
in this localization experiment.

Effect of Band Limitation and Spectral Warping

In another previous study, localization performance was tested in listeners using their
original DTFs, band-limited DTFs and spectrally warped DTFs [51]. The band lim-
itation was done at 8.5 kHz. The spectral warping compressed the spectral features
in each DTF from the range 2.8–16 kHz to the range 2.8–8.5 kHz. While the focus of
that study was to estimate the potential of re-learning sound localization with drasti-
cally modified spectral cues in a training paradigm, the experimental ad-hoc results
from the pre-experiment are used to evaluate the proposed model. Note that, for
this purpose, the upper frequency of the peripheral processing stage was configured
to 8.5 kHz for the band-limited and warped conditions.

The top row of Fig. 10 shows the DTFs and the bottom row the prediction matri-
ces for the original, band-limited and warped conditions for the exemplary listener,
NH12. The actual responses show a good correspondence to the prediction matrices.
Figure 11 shows group averages of the experimental results and the corresponding
predictions. The group averages show a good correspondence between the actual and
predicted performance. The correlation coefficient between the actual responses and
predictions was 0.81 and 0.85 for PE and QE, respectively. The predictions of the
pool well reflect the group averages of the actual responses.

4 Applications

The evaluation from the previous section shows response-prediction correlation coef-
ficients in the order of 0.75. This indicates that the proposed model is reliable in pre-
dicting localization performance when applied with the listener-specific calibrations.
Thus, in this section, the calibrated models are applied to predict localization perfor-
mance in order to address issues potentially interesting in spatial-audio applications.
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Fig. 10 Listener, NH12, localizing with different DTFs, namely, original, left column, band-limited,
center column, and spectrally warped, right column. Top Left-ear DTFs in the median SP. Bottom
Prediction matrices with actual responses from [51], /open circles/. All other conventions are as in
Fig. 8

Fig. 11 Localization performance for listener groups in conditions broadband, BB, band-limited,
LP, and spectrally warped, W. Open circles Actual performance of the tested listeners from [51].
All other conventions are as in Fig. 9

4.1 Non-Individualized Binaural Recordings

Binaural recordings aim at creating a spatial impression when listening via head-
phones. They are usually created using either an artificial head or mounting micro-
phones into the ear canal of a listener and, thus, implicitly use HRTFs. When listening
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Fig. 12 Left-ear DTFs of different listeners in the median SP. Left NH12. Center NH58. Right
NH33. Brightness Spectral magnitude—for code see Fig. 1, right panel

Fig. 13 Listeners’ localization performance for non-individualized versus individualized DTFs.
Bars Individualized DTFs. Circles Non-individualized DTFs averaged over 16 DTF sets. Error
bars ±1 standard deviation of the average. Dashed line Chance performance corresponding to
guessing the direction of the sound

to binaural recordings, the HRTFs of the listener do not necessarily correspond
to those used in the recordings. HRTFs are, however, generally highly listener-
specific and the relevant spectral features differ across listeners—see Fig. 12. Usu-
ally, SP localization performance degrades when listening to binaural signals created
with non-individualized HRTFs [34]. The degree of the performance deterioration
can be expected to depend on the similarity of the listener’s DTFs with those actually
applied. Here, the proposed model is used to estimate the localization performance for
non-individualized binaural recordings. Figure 13 compares the performance when
listening to individualized recordings with the average performance when listening
to non-individualized recordings created from all other 16 listeners. It is evident that,
on average, listening with other ears results in an increase of predicted localization
errors.

Thus, the question arises of how a pool of listeners would localize a binaural
recording from a particular listener, for instance, NH58. Figure 14 shows the listener-
specific increase in the predicted localization errors when listening to a binaural
recording spatially encoded using the DTFs from NH58 with respect to the errors
predicted for using individualized DTFs. Some of the listeners like NH22 show only
little increase in errors, while others like NH12 show large increase.



Assessment of Sagittal-Plane Sound Localization Performance 109

Fig. 14 Bars Listener-specific increase in predicted localization errors when listening to the DTFs
from NH58 with respect to the errors predicted when listening to individualized DTFs. Dashed
lines Chance performance, not shown if too large

Fig. 15 Localization performance of the pool listening to different DTFs. Bars Individualized
DTFs. Circles DTFs from NH12. Squares DTFs from NH58. Triangles DTFs from NH33. Dashed
line Chance performance

Generally, one might assume that the different anatomical shapes of ears produce
more or less distinct directional features. Thus, the quality of the HRTFs might
vary, having effect on the ability to localize sounds in the SPs. Figure 15 shows
the performance of the pool, using the DTFs from NH12, NH58 and NH33. The
DTFs from these three listeners provided best, moderate and worst performance,
respectively, predicted for the pool listening to binaural signals created with one of
those DTF sets.

This analysis demonstrates how to evaluate across-listener compatibility of bin-
aural recordings. Such an analysis can also be applied for other purposes like the
evaluation of HRTFs of artificial heads for providing sufficient spatial cues for bin-
aural recordings.

4.2 Assessing the Quality of Spatial Cues in Hearing-Assist Devices

In the development of hearing-assist devices, the casing, its placement on the head,
and the placement of the microphone in the casing play an important role for the
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Fig. 16 Impact of the microphone placement. Top Left-ear DTFs of median SP from NH10. Bottom
Prediction matrices. Left ITE microphone. Right BTE microphone. All other conventions are as in
Fig. 8

effective directional cues. The proposed SP localization model can be used to assess
the quality of the directional cues picked up by the microphone in a given device.
Figure 16 shows DTFs resulting from behind-the-ear, BTE, compared to in-the-ear,
ITE, placement of the microphone for the same listener. The BTE microphone was
placed above the pinna, pointing to the front, a position commonly used by the BTE
processors in cochlear-implant systems. The bottom row of Fig. 16 shows the cor-
responding prediction matrices and the predicted localization performance, namely,
PE and QE. For this particular listener, the model predicts that if NH10 were lis-
tening with the BTE DTFs, his/her QE and PE would increase from 12 to 30% and
from 32 to 40◦, respectively. This can be clearly related to the impact of degraded
spatial cues. Note that in this analysis it was assumed that NH10 fully adapted to the
particular HRTFs. This was realized by using the same set of DTFs for the targets
and the template in the model.

The impact of using BTE DTFs was also modeled for the pool of listeners using
the calibrated models. Two cases are considered, namely, ad-hoc listening where
the listeners are confronted with the DTF set without any experience in using it,
and trained listening where the listeners are fully adapted to the respective DTF set.
Figure 17 shows the predictions for the pool. The BTE DTFs result in performances
close to guessing and the ITE DTFs from the same listener substantially improve the
performance. In trained listening, the performance for the ITE DTFs is at the level of
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Fig. 17 Localization performance of the pool listening to different DTFs. Bars Individualized
DTFs. Open symbols Ad-hoc listening. Filled symbols Trained listening. Hexagrams ITE DTFs
from NH10. Diamonds BTE DTFs from NH10. Avg... average performance over all listeners.
Error bars ±1 standard deviation. Dashed line Chance performance

the individualized DTFs, consistent with the potential of the plasticity of the spectral-
to-spatial mapping [13]. The BTE DTFs, however, do not allow performance at the
same level as the ITE DTFs, even when full adaptation is considered.

This analysis shows a model-based method to optimize the microphone place-
ment with respect to the salience of directional cues. Such an analysis might be
advantageous in the development of future hearing-assist devices.

4.3 Phantom Sources in Surround-Sound Systems

Sound synthesis systems for spatial audio have to deal with a limited number of loud-
speakers surrounding the listener. In a system with a small number of loudspeakers,
vector-based amplitude panning, VBAP [41], is commonly applied in order to cre-
ate phantom sources perceived between the loudspeakers. In a surround setup, this
method is also commonly used to position the phantom source along SPs, namely,
to pan the source from the front to the back [11] or from the eye level to an elevated
level [41]. In this section, the proposed model is applied to investigate the use of
VBAP within SPs.

Amplitude Panning Along a Sagittal Plane

Now a VBAP setup with two loudspeakers is assumed, which are placed at the same
distance, in the horizontal plane at the eye level, and in the same SP. Thus, the
loudspeakers are in the front and in the back of the listener, corresponding to polar
angles of 0◦ and 180◦, respectively. While driving the loudspeakers with the same
signal, the amplitude panning ratio can be varied from 0, front speaker only, to 1,
rear speaker only, with the goal of panning the phantom source between the two
loudspeakers.
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Fig. 18 Predicted response probabilities, PMVs, as a function of the amplitude panning ratio.
Left Results for NH22. Center Results for NH64. Right Results for the pool of listeners. Circle
Maximum of a PMV. Panning ratio of 0: Only front loudspeaker active. Panning ratio of 1: Only
rear loudspeaker active. All other conventions are as in Fig. 5, right panel

Figure 18 shows the predicted listener-specific response probabilities in terms
of the PMV as a function of the panning ratio for two loudspeakers placed at the
lateral angle of 30◦. The PMVs are shown for two individual listeners and also
for the pool of listeners. The directional stability of phantom sources varies across
listeners. For NH22, the prediction of perceived location abruptly changes from front
to back, being bimodal only around the ratio of 0.6. For NH64, the transition seems
to be generally smoother, with a blur in the perceived sound direction. Note that
for NH64 and a ratio of 0.5, the predicted direction is elevated even though the
loudspeakers were placed in the horizontal plane. The results for the pool predict an
abrupt change in the perceived direction from front to back, with a blur indicating
a listener-specific unstable representation of the phantom source for ratios between
0.5 and 0.7.

Effect of Loudspeaker Span

The unstable synthesis of phantom sources might be reduced by using a more ade-
quate distance in the SP between the loudspeakers. Thus, it is shown how to inves-
tigate the polar span between two loudspeakers required to create a stable phantom
source in the synthesis. To this end, a VBAP setup of two loudspeakers placed in the
median SP, separated by a polar angle and driven with the panning ratio of 0.5, is
used. Note that a span of 0◦ corresponds to a synthesis with a single loudspeaker and
thus to the baseline condition. In the proposed SP localization model, the target angle
describes the average of the polar angles of both loudspeakers, which, in VBAP, is
thought to correspond to the direction of the phantom source. The model was run for
all available target angles resulting in the prediction of the localization performance.
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Fig. 19 Predictions for different loudspeaker spans and NH12. Left Span of 0◦, single-loudspeaker
synthesis, baseline condition. Center Span of 30◦. Right Span of 60◦. All other conventions are as
in Fig. 8

Figure 19 shows prediction matrices and predicted localization performance for
NH12 and three different loudspeaker spans. Note the large increase of errors from
30 to 60◦ of span, consistent with the results from [5]. Figure 20 shows the aver-
age increase in localization error predicted for the pool of listeners as a function of
the span. The increase is shown relative to the listener-specific localization perfor-
mance in the baseline condition. Note that not only the localization errors but also
the variances across the listeners increase with increasing span.

This analysis shows how the model may help in choosing the adequate loudspeaker
span when amplitude panning is applied to create phantom sources. Such an analysis
can also be applied when more sophisticated sound-field reproduction approaches
like Ambisonics or wave-field synthesis are involved.

Fig. 20 Increase in localization errors as a function of the loudspeaker span. Circles Averages over
all listeners from the pool. Error bars ±1 standard deviation
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Fig. 21 Loudspeaker positions of three typical surround-sound systems. Drivers for the low-
frequency effect, LFE, channels not shown

Results for Typical Surround-Sound Setups

The most common standardized surround-sound setup is known as the 5.1 setup
[18]. In this setup, all loudspeakers are placed in the horizontal plane at a constant
distance around the listener. Recently, other schemes have been proposed to include
elevated speakers in the synthesis systems. The 10.2 setup, known as Audyssey DSX
[15] and the 9.1 setup, known as Auro-3D [48], consider two and four elevated
loudspeakers, respectively. Figure 21 shows the positions of the loudspeakers in those
three surround-sound setups. The model was applied to evaluate the localization
performance when VBAP is used to pan a phantom source at the left hand side
from front, L, to back, LS. While in the 5.1 setup only loudspeakers L and LS are
available, in 10.2 and 9.1 the loudspeakers LH2 and LH1 & LSH, respectively, may
also contribute even to create an elevated phantom source.

VBAP was applied between the closest two loudspeakers by using the law of
tangents [41]. For a desired polar angle of the phantom source, the panning ratio was
R = 1

2 − tan(δ)
2 tan(0.5β)

with β denoting the loudspeaker span in polar dimension and δ

denoting the difference between the desired polar angle and the polar center angle
of the span. The contributing loudspeakers were not always in the same SP, thus, the
lateral angle of the phantom source was considered for the choice of the SP in the
modeling by applying the law of tangents on the lateral angles of the loudspeakers
for the particular panning ratio, R.
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Fig. 22 Predictions for VBAP applied to various surround-sound systems. Left 5.1 setup, panning
between the loudspeakers L and LS. Center 10.2 DSX setup panning from L, polar angle of 0◦, via
LH2, 55◦, to LS, 180◦. Right 9.1 Auro-3D setup panning from L, 0◦, via LH1, 34◦, and LSH, 121◦,
to LS, 180◦. Desired polar angle Continuous scale representing VBAP across pair-wise contributing
loudspeakers. All other conventions are as in Fig. 18

Figure 22 shows the predicted pool averages of the PMVs as a function of the
desired polar angle of the phantom source. The improvements due to the additional
elevated loudspeakers in the 10.2 and 9.1 setups are evident. Nevertheless, the pre-
dicted phantom sources are far from perfectly following the desired angle. Especially
for the 9.1 setup, in the rear hemifield, the increase in the desired polar angle, namely,
decrease in the elevation, resulted in a decrease in the predicted polar angle, namely,
increase in the elevation.

The proposed model seems to be well-suited for addressing such a problem.
It is easy to show how modifications of the loudspeaker setup would affect the
perceived angle of the phantom source. As an example, the positions of the elevated
loudspeakers in the 9.1 setup were modified in two ways. First, the lateral distance
between the loudspeakers, LH1 and LSH, was decreased by modifying the azimuth
of LSH from 110 to 140◦. Second, both loudspeakers, LSH and LS, were placed
to the azimuth of 140◦. Figure 23 shows the predictions for the modified setups.
Compared to the original setup, the first modification clearly resolves the problem
described above. The second modification, while only slightly limiting the lateral
range, provides an even better representation of the phantom source along the SP.

5 Conclusions

Sound localization in SPs refers to the ability to estimate the sound-source eleva-
tion and to distinguish between front and back. The SP localization performance is
usually measured in time-consuming experiments. In order to address this disadvan-
tage, a model predicting SP localization performance of individual listeners has been
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Fig. 23 Predictions for two modifications to the 9.1 Auro 3D setup. Left Original setup, loudspeak-
ers LS and LSH at azimuth of 110◦. Center LSH at azimuth of 140◦. Right LS and LSH at azimuth
of 140◦. All other conventions are as in Fig. 22

proposed. Listener-specific calibration was performed for a pool of 17 listeners, and
the calibrated models were evaluated using results from psychoacoustic localiza-
tion experiments. The potential of the calibrated models was demonstrated for three
applications, namely,

1. The evaluation of the spatial quality of binaural recordings
2. The assessment of the spatial quality of directional cues provided by the micro-

phone placement in hearing-assist devices
3. The evaluation and improvement of the loudspeaker position in surround-sound

systems

These applications are examples of situations where SP localization cues, namely,
spectral cues, likely play a role. The model is, however, not limited to those appli-
cations and it hopefully will help in assessing spatial quality in other applications as
well.
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