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1 Room Reverberation

When a sound is emitted by a source in an enclosed space, a listener will initially
receive the direct sound followed by multiple reflections from the walls or objects
placed in the room—see Fig. 1.

The energy of the reflected sound will be attenuated according to the frequency-
dependent absorption of the reflecting surfaces. Moreover, assuming an omni-
directional source, the sound pressure of both the direct and the reflected sounds
will decrease according to the 1/r distance law [83]. Although the sound energy
decays over time, t , roughly following an exponential function, the reflection den-
sity increases with t3, forming an increasingly diffuse sound field [83]—see also [42].
The required time for the energy in a room to decrease by 60 dB after the sound source
has stopped emitting sound is the reverberation time, T60, being the most commonly
used parameter for specifying the acoustic properties of a given room [83, 110].

Assuming that the room acoustics are modeled as a linear, time-invariant, LTI,
system, the room impulse response, RIR, provides a complete description of the
direct and reflective paths in a room from a sound source to the receiver. In a general
multichannel scenario with one source and i receivers, the reverberant signal, xi (n),
for each specific source-receiver position in the room can be expressed as the convo-
lution of the anechoic signal, s(n), with the corresponding RIRs, hi (n), as follows,

xi (n) =
Jh−1∑

j=0

hi ( j)s(n − j) , (1)
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Fig. 1 A human listener and a
sound source in a reverberant
room
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where n represents the discrete time index and Jh is the length of the impulse response.
In the binaural scenario the room response is combined with the related left-

and right-ear head-related impulse responses, HRIRs. The latter are measured in
anechoic conditions. As a consequence, assuming an ideal omni-directional source,
a binaural room impulse response, BRIR, for the left-ear channel, hL(n), can be
expressed as

hL(n) = g(rs)δ(n − ns) ∗ hH RI R,L ,θd ,φd (n)

+
Jhm −1∑

m=0

hm,L(n) ∗ hH RI R,L ,θm ,φm (n) , (2)

where g(rs) is a gain reduction that depends on the source-receiver distance rs , δ(n)

refers to a Kronecker-delta function, ns is the delay mainly depending on the source-
receiver distance, rs , and the physical characteristics of the propagation medium.
hH RI R,L ,θd ,φd (n) is the left HRIR for the direct sound, corresponding to θd and φd ,
namely, the horizontal and vertical angles between source and receiver. The value
hm(n) denotes the response of the m-th reflection. Jhm is the number of individual
reflections. hH RI R,L ,θm ,φm is the HRIR corresponding to such a reflection. Finally, θm

and φm are the horizontal and vertical angles between receiver and m-th reflection.1

A similar equation also applies for the BRIR, h R(n).

Hence, the reverberant signal at the left and right ear of a listener, xL(n) and
xR(n), can be described as a convolution of the anechoic source signal, s(n), with
the left- and right-ear binaural room impulse responses, hL(n) and h R(n), that is,

xL(n) =
JhL −1∑

j=0

hL( j)s(n − j) , (3)

xR(n) =
Jh R −1∑

j=0

h R( j)s(n − j) . (4)

Examples of BRIRs measured in a stairway with a reverberation time of approx-
imately 0.86 s are shown in Fig. 2 for the left and right ear [67]. The initial delay
before the arrival of the first peak of each RIR depicts the delay, ns , due to the

1 In some cases ns is a fractional delay, and the delta function is not well defined.
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Fig. 2 Binaural room impulse responses in a stairway having a reverberation time of approximately
0.86 s. Left left-ear room impulse response. Right right-ear room impulse response

source-receiver distance, rs . After the direct sound, the early reflections arrive. The
early reflections are considered relatively sparse and span a short time interval of
about 50–80 ms after the arrival of the direct sound. The last part of the RIR is called
late reverberation and results to the reverberant tail of the signal [58, 77]. Due to the
interaction of body, head and torso of the listener with the reverberant sound field,
the RIRs at the left and right ear exhibit frequency-dependent interaural differences
in arrival time and level. These interaural differences are essential parameters for
binaural dereverberation algorithms, as is further described in Sects. 3.4 and 4.

In room acoustics and, consequently, in speech- and audio-enhancement appli-
cations, RIRs are often modeled as the sum of two components, one denoting the
direct path and the early reflections, hi,e(n), and the other one the late reverberation,
hi,l(n), as

hi (n) = hi,e(n) + hi,l(n). (5)

By combining (1) and (5), each reverberant signal can be written as the sum of a
signal part affected by early reflections only, xi,e(n), and a signal part affected by
late reverberation, xi,l(n), namely,

xi (n) =
Jh−1∑

j=0

hi,e( j)s(n − j)

︸ ︷︷ ︸
xi,e(n)

+
Jh−1∑

j=0

hi,l( j)s(n − j)

︸ ︷︷ ︸
xl,e(n)

. (6)

As will be further discussed in Sect. 2.2, these two components of room reverberation
affect the received signal in a different way and are thus treated separately in most
dereverberation applications.



362 A. Tsilfidis et al.

2 Speech Signals in Rooms

2.1 Auditory Perception in Rooms

In an anechoic environment, where only the direct sound is present, a normal hearing
listener can accurately localize arbitrary sound sources due to the presence of unam-
biguous interaural-time and -level cues as well as spectral cues that are provided by
interaction of pinnae, head and torso with the sound field—see [13]. In particular due
to the presence of interaural binaural cues, the auditory system is also able to sup-
press interfering sounds that arrive from different locations than a target sound and,
thereby, for instance, improve speech intelligibility significantly. This phenomenon
is commonly referred to as spatial release from masking [20].

In the case that a sound is presented in a reverberant environment, the direct sound
is accompanied by early reflections and reverberation—see Sect. 1. This results in
distortion of the available auditory cues and, typically, leads to reduced auditory
performance, for instance, in localization or speech intelligibility. Whereas the early
reflections, which arrive within a time window of about 50–80 ms after the direct
sound, improve speech intelligibility [4, 17], late reverberation generally has a neg-
ative effect on speech intelligibility [61].

Auditory localization in rooms is aided by auditory mechanisms that are associated
with the precedence effect [13, 88] and may be linked to a cue-selection mechanism
that takes advantage of a measure of interaural coherence [36]. In particular, early
reflections change the timbre of a sound and introduce perception of coloration [11,
23], a phenomenon that is significantly suppressed by the binaural auditory system
[22, 130]. Also, late reverberation, which is mainly perceived within the temporal
gaps inherent in the source signal, is reduced by the binaural system [26]. In [19]
it has been shown that familiarization with a reverberant environment can result in
enhanced speech intelligibility. Finally, it should be mentioned that auditory masking
renders many reflections to be inaudible [24].

Besides the aforementioned detrimental effects of room reverberation on auditory
performance, which are partly compensated by different auditory mechanisms, the
room also introduces a number of additional cues that are utilized by the auditory
system. The direct-to-reverberant energy ratio, for instance, provides a very reliable
cue for distance perception [128]. Such mechanisms are described in detail in this
volume [42]. Moreover, early lateral reflections extend the apparent width of a sound
source [6] and late lateral reverberation energy makes a listener feel enveloped in an
auditory scene [18]. The latter two phenomena are highly appreciated when listening
to music [46]. The perceived spaciousness introduced by a room has often been
related to interaural coherence, whereby, as can be stated as a rule, the lower the
interaural-coherence, the higher is the perceived spaciousness [13].

When considering signal processing methods that aim at reducing room rever-
beration for applications with human listeners, such as in hearing aids or telecom-
munication devices, it is important that binaural cues are preserved. When binaural
cues are distorted, the listener may not be able to correctly localize sound sources
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any more, although this is obviously very important for the orientation in an audi-
tory scene as well as for perceiving warnings from potential threats. Moreover, with
binaural cues being preserved, the binaural system may provide additional benefit
by suppressing coloration, reverberation and interfering sound sources. Finally, suc-
cessful dereverberation methods will increase the direct-to-reverberant energy ratio
and, thus, may modify the perceived distance of a sound source and/or also modify
the perception of apparent source width and envelopment.

2.2 Early- and Late-Reverberation Effects

The typical effects of reverberation in speech spectrograms are presented in Fig. 3,
obtained with a fast fourier transform (FFT) length of 23.2 ms. Figure 3a shows

(a)

(b)

(c)

(d)

Fig. 3 Spectrograms illustrating the effects of reverberation on speech. a Anechoic input signal.
b Reverberant signal. c Reverberant signal due to early reflections only. d Reverberant signal due
to late reverberation only
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an anechoic speech signal of a male speaker, and Fig. 3b shows the corresponding
reverberant signal. The reverberant signal is produced via convolution with an RIR
recorded in a lecture hall with a reverberation-time value of T60 =1 s at a distance of
4 m from the source. A comparison of Fig. 3a,b reveals that a large number of tempo-
ral gaps and spectral dips that can be seen in the anechoic speech are now filled due
to the reverberation, that is, reverberation leads to a smearing of both temporal and
spectral features. Moreover, the reverberation produced by signal components with
high energy may mask later components with lower energy. In Fig. 3c the effect of
early reflections on the reverberant signal is shown in isolation, obtained by convolv-
ing the anechoic signal with only the first 50 ms of the impulse response, since for
speech applications this is considered to be the boundary between early reflections
and late reverberation. Obviously, the early reflections alone do not significantly alter
the anechoic speech spectrogram, but more careful observation reveals a smearing
of the spectral speech profile. In Fig. 3d only the late-reverberant speech is shown,
produced by convolving the anechoic signal with an artificially-modified impulse
response where the first 50 ms were set to 0. It is evident that late reverberation
significantly distorts the spectrogram of the anechoic signal and generates a rever-
beration tail between temporal speech gaps.

The effects of early and late reflections on the long-term speech spectrum
(smoothed in 1/6 octave bands) can be observed in Fig. 4. The FFT length for these
illustrations was equal to the signal length, namely, 7.8 s. In Fig. 4a the spectrum of
the anechoic signal is compared to the spectrum of the same signal, contaminated by
early reflections. In Fig. 4b the long-term spectrum of the anechoic signal is presented
along with the spectrum of the same signal, contaminated by late reverberation. It
is obvious that the early reflections significantly degrade the long-term speech spec-
trum, especially in the lower frequencies. This distortion is perceived as coloration
of the sounds. In contrast, late reverberation introduces a more flat, white-noise like
effect for the same frequency band of the signal.

Finally, Fig. 5 depicts speech spectrograms as obtained via convolution of an ane-
choic speech excerpt with (a) a left-ear impulse response and (b) a room impulse
response obtained from an omni-directional microphone at exactly the same posi-
tion. Both impulse responses were recorded in a lecture hall with T60 = 0.79 s at a
source-receiver distance of 10.2 m [67]. It clearly appears that the spectrogram of the
received speech signal is not significantly different for the binaural scenario. Such
observation relates especially to the late reverberation signal components which are
usually generated by diffuse reflections and, hence, are less susceptible to binaural
cues. These late-reverberation effects can be treated by adapting single-channel dere-
verberation methods to the binaural scenario.

2.3 Interaural Coherence

An often used measure of similarity between two binaural signals or BRIRs is the
interaural coherence, IC, defined as



Binaural Dereverberation 365

(a) (b)

Fig. 4 Effect of early and late reflections on the long-term speech spectrum, smoothed in 1/6 octave
bands. a spectrum of anechoic speech signal and of the signal contaminated by early reflections.
b spectrum of anechoic speech signal and of the signal contaminated by late reverberation

(a)

(b)

Fig. 5 Speech spectrograms obtained by convolving an anechoic speech sample. a Left-ear room
impulse response measured in a lecture room with T60 = 0.79 s at 10.2 m from the source. b Room
impulse response measured with an omni-directional microphone in the same room at exactly the
same position [67]

I CX L ,X R (k) = |〈X L(k) · X∗
R(k)〉|

√〈X L(k) · X∗
L(k)〉〈X R(k) · X∗

R(k)〉 , (7)

with k being the frequency band. X L (k) is the Fourier transform of xL(n). X R(k) is the
Fourier transform of xR(n). “∗” denotes the complex conjugate. 〈s〉 is the expected
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value of s. The magnitude-squared coherence, MSC, is referred to the square of
(7). The IC behavior of speech in rooms is highlighted here with four examples—
taken from [123] and [124]. The IC is estimated using the method described by
(11). Figure 6a shows the IC plot for speech presented in a reverberation chamber,
dominated by diffuse reflections and calculated from the binaural recordings of [51].
First, the algorithm defined in Sect. 4.1 was applied to obtain a 6.4 m short-term IC
of the binaural representation of an entire sentence spoken by a male talker. From the
resulting coherence values, the coherence plots were derived. The gray-graduation
scale reflects the number of occurrences in a given frequency channel. As expected
for the ideally diffuse sound field, an increased coherence is observed below 1 kHz.
Above 1 kHz, most coherence values are between 0.1 and 0.3, whereby the minimum
coherence that can be derived is limited by the duration of the time window applied
in the coherence estimate.

Figure 6b–d shows examples of coherence plots for 0.5, 5 and 10 m source-
receiver distances in an auditorium with T60 = 1 s. The overall coherence decreases
with increasing distance between the source and the receiver. This results from the

(a) (b)

(c) (d)

Fig. 6 a Interaural-coherence plots of speech presented in a diffuse field as a function of frequency.
b–d Interaural-coherence plots in an auditorium at different distances from the sound source. The
histograms summed across frequency are shown in the side panels
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decreased direct-to-reverberant energy ratio at longer source-receiver distances. At
very small distances—Fig. 6b—most coherence values are close to one, indicating
that mainly direct-sound energy is present. In addition, coherence values arising from
the diffuse field, having values between 0.1 and 0.3, are separated from those arising
from the direct sound field. For the 5 m distance, frames with high coherence values
are no longer observed. This is because frames containing direct-sound information
are now affected by reverberation, and there is no clear separability between frames
with direct and diffuse energy. At a distance of 10 m, this trend becomes even more
profound as the coherence values drop further and the distribution resembles the one
as found in the diffuse field, where very little direct sound information is available.

3 Review of Dereverberation-Techniques Literature

Since the early works of Flanagan and Lummis [37], Mitchell and Berkley [95]
and Allen, Berkley and Blauert [2], many blind- or non-blind-dereverberation tech-
niques have been developed, utilizing single or multiple input channels. As was
shown in Sect. 2.2, early and late reverberation have different effects on anechoic
signals. Hence, most of the research efforts handle early and late-reverberant-signal
components separately, enhancing either xi,e(n) or xi,l(n). In the following sections,
a summary of the existing literature on devererberation is presented.

3.1 Suppression of Early Reflections and Decoloration

Inverse Filtering

Inverse filtering of the RIR [97–99, 104] is used to minimize the coloration effect
produced by the early reflections. In theory, an ideal RIR inversion will completely
remove the effect of reverberation—both early and late reflections. However, the
RIR is known to have non-minimum phase characteristics [104] and the non-causal
nature of the inverse filter may introduce significant artifacts. In addition, exact
measurements of the RIR must be available for the specific source-receiver room
position, even if the RIRs are known to present common features in different room
positions, as in [50]. The above limitations can be avoided by compensating exclu-
sively for the broad spectral-coloration effect. For this, many single or multichannel
techniques have been proposed, such as based on minimum-phase inverse [104],
least-squares [100], frequency warping [52, 53, 111], complex smoothing [54, 55],
Kautz filters [71, 107], frequency-dependent regularization [75] and filter clustering
[10, 99]. Many of them are already incorporated in commercial room-correction
systems, which rely on in-situ RIR measurements. However, results from perceptual
tests show that some of these techniques do not always achieve the desired perceptual
effect [56, 105].
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Cepstral Techniques

In 1975, Stockham restored old Caruso recordings through cepstral blind decon-
volution [106, 113]. The technique was based on homomorphic signal processing,
exploring the fact that deconvolution may be represented as a subtraction in the log-
frequency domain. Similar dereverberation techniques based on the same principle
were later proposed in [8, 100, 108].

LP-Residual Enhancement

Using the source-filter production model, the speech can be represented as a convo-
lutive mixture of the linear-prediction, LP, coefficients and the LP residual [29]. The
fundamental assumption of the LP-residual dereverberation techniques is that the
excitation signal is distorted by the room reflections, while the LP coefficients are
not significantly affected from reverberation. Hence, the above techniques enhance
the LP residual and recover the speech by applying the reverberant LP coefficients
[40, 43, 45, 81, 102, 127].

3.2 Late-Reverberation Suppression

Temporal-Envelope Filtering

A class of techniques mostly aiming at compensating for late reverberation is based
on temporal envelope filtering [5]. They are motivated by the concept of modulation
index [62]. The modulation index is reduced when the late-reverberation tails fill the
low-energy regions of a signal [84]. Mourjopoulos and Hammond [101] have shown
that dereverberation of speech can be achieved by temporal envelope deconvolution
in frequency sub-bands. Furthermore, the temporal envelope-filtering principle has
been found to be advantageous when used in combination with other techniques
such as LP-residual enhancement [127] and spectral subtraction [81]. Further, in
[119], a sub-band temporal envelope-filtering technique, based on a computational
auditory-masking model [21], has been proposed.

Spectral Enhancement

A number of dereverberation techniques based on spectral-enhancement techniques
have been developed inspired by a multi-microphone reverberation-reducing method
proposed by Flanagan and Lummis [37]. The same concept was later explored in the
dereverberation method proposed by Allen et al. [2]. Spectral subtraction was mainly
explored for denoising applications [9, 16, 29, 33, 89]. The classical technique is
implemented in the STFT domain. Its main principle is to subtract an estimate of
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the noise-power spectrum from the power spectrum of the noisy signal. Usually,
a speech-activity detector is involved in order to update the estimation of noise
characteristics during the non-speech frames.

The most common processing artifact introduced by spectral enhancement is the
so-called musical noise. It is generated when spectral bins of the noisy signal are
strongly attenuated, because they are close to or below the estimated noise spectrum.
As a result, the residual noise contains annoying pure-tone components at random
frequencies. Most spectral-enhancement methods are trying to accurately estimate
the noise spectra and avoid or reduce the musical noise [25, 89, 118, 120].

As indicated by (3), reverberation is a convolutive distortion. However, late rever-
beration can be considered as an additive degradation with noise-like characteristics—
see (6). Hence, in the dereverberation context spectral subtraction has been adapted
for the suppression of late reverberation. The basic principle of spectral-subtraction
dereverberation for single-channel signals, originally presented in [86], is estimating
the short-time spectrum of the clean signal, Se(m, k), by subtracting an estimation of
the short-time spectrum of late reverberation, R(m, k), from the short-time spectrum
of the reverberant signal, X (m, k), that is,

Se(m, k) = X (m, k) − R(m, k) , (8)

where k and m are the frequency bin and time frame index respectively. Following an
alternative formulation, the estimation of the short-time spectrum of the clean signal
can be derived by applying appropriate weighting gains, G(m, k), to the short-time
spectrum of the reverberant signal, such as

Se(m, k) = G(m, k)X (m, k) , (9)

where

G(m, k) = X (m, k) − R(m, k)

X (m, k)
. (10)

Further examples of spectral enhancement dereverberation methods can be found in
[34, 38, 47, 48, 118, 126].

3.3 Dereverberation Methods Based on Multiple Inputs

Multichannel dereverberation may be considered as a somewhat easier task than the
single-channel dereverberation, since the spatial diversity of the received signals can
be further exploited. A set of such multichannel techniques is based on beamforming
[121]. They explore the directivity properties of microphone arrays and require some
a-priori knowledge of the array configuration. For a given system, the improvement
depends on the microphone arrangement and the source-receiver positions, but it is
independent of the reverberation time, T60, of the room [41]. In simple implemen-
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tations, the beamforming microphone arrays may present fixed-directivity charac-
teristics such as in fixed-beamforming techniques, however adaptive beamforming
setups where the processing parameters are adjusted to the environment also exist.
Most beamforming algorithms assume that the noise and the source signal are sta-
tistically independent. This assumption does not stand for reverberation, which is a
convolutive distortion. Therefore, the performance of such algorithms is poor in the
dereverberation context [12].

Some early methods for multichannel dereverberation were presented in [2, 15,
37]. Miyoshi et al. [96] have shown that in non-blind multichannel systems perfect
inverse filtering can be achieved when the captured RIRs do not share any common
zeros. A technique that performs multiple-point room equalization using adaptive
filters has been presented in [31]. Complete reverberation reduction may be theoret-
ically achieved by applying blind deconvolution [59]. However, in order to perform
blind deconvolution, the signal and the RIR must be irreducible, that is, they cannot
be expressed as the convolution of two other signals [82]. The LTI systems are usu-
ally reducible and hence in principle blind deconvolution cannot be applied. In order
to overcome the above limitation, single or multichannel blind-deconvolution imple-
mentations often involve a very low channel order and the number of reflections in
the tested RIRs is unrealistically low—being based on simulations, as in [32, 39, 59,
60]. A set of room impulse response shortening techniques has been also proposed
[70, 94, 129].

Further, multichannel blind-deconvolution methods for speech based on the LP
analysis have been developed, based on the following principle. When the input of
a system is white it can be equalized through multichannel LP. For speech dere-
verberation, the reverberant speech signal is pre-whitened in order to estimate a
dereverberation filter. Then this filter is applied to the reverberant signal [28, 38,
74, 114]. A multichannel combined noise- and reverberation-suppression technique
based in matched filtering has been presented in [30].

3.4 Binaural Techniques

Dereverberation is particularly important for binaural applications, for example, in
digital hearing aids, binaural telephony, hands-free devices, and immersive audio [49,
91, 125]. However, developing models for binaural dereverberation and/or adapting
single or multichannel techniques for binaural processing is not a trivial task. Binaural
dereverberation cannot be considered as just a subset of the multichannel dereverber-
ation techniques. Apart from the challenging task of reducing reverberation without
introducing audible artifacts, binaural dereverberation methods should preserve the
interaural-time-difference, ITD, and interaural-level-difference, ILD, cues, because
it has been shown that bilateral signal processing can otherwise adversely affect
source localization [49].

As was already discussed earlier in this section, such methods can be historically
related to Allen et al. [2], who proposed a binaural approach where gain factors
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are determined by the diffuseness of the sound field between two spatially-separated
microphones—see also [14, 15]. The technique involves two methods for calculating
gain factors, one of which representing the coherence function of the two channels.
However, because of a cophase-and-add stage that combines the binaural channels,
only a monaural output was provided by this early method. Kollmeier et al. extended
the original approach by applying the original coherence-gain factor separately to
both channels, thus providing a binaural output [80]. A binaural variant of the original
Allen et al. algorithm was also presented in [85].

In [112], a coherence-based Wiener filter was suggested that estimates the rever-
beration noise from a model of coherence between two points in a diffuse field. The
method was further refined in [93] and [69] where acoustic shadow effects from a
listener’s head and torso were included. Jeub et al. [68] proposed a two-stage dere-
verberation algorithm that explicitly preserves binaural cues. They demonstrated that
synchronized spectral weighting across binaural channels is important for preserving
binaural cues. In [91] and also in [68], a binaural version of the single-channel spectra-
subtraction technique presented in [86] is employed. In [115], a unified framework
for binaural spectral subtraction dereverberation has been discussed. Lee et al. [87]
presented a semi-blind method where they estimated a dereverberation filter from a
pre-trained whitening filter and a whitened signal. Note that despite the great impor-
tance of binaural dereverberation, only few studies have been published up to now
in the existing literature.

4 Examples of Dereverberation Algorithms

4.1 Method Based on Interaural Coherence

Historically, coherence-based methods (see 3.4) directly apply the coherence esti-
mates as a gain to both binaural channels. Considering the processing as a mapping
between coherence and gain, these methods apply a frequency-independent linear
coherence-to-gain mapping. However, the strong source-receiver distance depen-
dency observed in Fig. 6 and the inherent variations of the coherence across fre-
quency highlights the necessity for applying acoustic scenario specific coherence-
to-gain mapping functions. While for close source-receiver distances—Fig. 6b—a
rather shallow mapping function is already able to suppress reverberant components
and to preserve direct sound components, a much steeper function is required for
larger distances—Fig. 6c,d. Therefore, a method is proposed here, taken from [123],
which applies a parameterized mapping function that is controlled by an estimate of
the present coherence statistics. The signal-processing steps for this dereverberation
method are illustrated in Fig. 7. Two reverberant time signals, recorded at the left
and right ear of a person or a dummy head, xL(n) and xR(n), are transformed to the
time-frequency domain using short-time fourier transform, STFT [3]. This results in
complex-valued short-term spectra, X L(m, k) and X R(m, k), where m denotes the
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Fig. 7 Block diagram of a dereverberation method utilizing IC. The signals recorded at the ears,
xL (n) and xR(n), are transformed via the STFT to the time-frequency domain, resulting in X L (m, k)

and X R(m, k). The IC is calculated for each time-frequency bin and third-octave smoothing is
applied. Statistical long-term properties of the IC are used to derive parameters of a sigmoidal
mapping stage. The mapping is applied to the IC to realize a coherence-to-gain mapping, and
subsequent temporal windowing is performed. The derived gains or weights are applied to both
channels, X L (m, k) and X R(m, k). The dereverberated signals, ŝL (n) and ˆsR(n), are reconstructed
by applying an inverse SFTF

time frame and k the frequency band. For the STFT, a Hanning window of length L ,
including zero-padding of length L/2, and a 75 % overlap between successive win-
dows are used. For each time-frequency bin, the absolute value of the IC, referred
also as coherence, is calculated according to (7), which is implemented as follows

CL R(m, k) = |ΦL R(m, k)|√
ΦL L(m, k)ΦR R(m, k)

, (11)

withΦL L(m, k),ΦR R(m, k) andΦL R(m, k) representing the exponentially-weighted
short-term cross-correlation and auto-correlation functions, namely,

Φll(m, k) = αΦll(m, k − 1) + ∣∣Xl(m, k)
∣∣2 (12)

Φrr (m, k) = αΦrr (m, k − 1) + ∣∣Xr (m, k)
∣∣2 (13)

Φlr (m, k) = αΦlr (m, k − 1) + Xr (m, k)X∗
l (m, k) (14)

where α is the recursion constant.
The resulting IC estimates are spectrally smoothed using third-octave smooth-

ing [57]. From the long-term statistical properties of the smoothed IC estimates, the
parameters of a sigmoidal mapping function are derived. This mapping is subse-
quently used to transform the coherence estimates to the gain function, Gsig(m,k).
In order to suppress potential aliasing artifacts that may be introduced, temporal
windowing is applied [72]. This is realized by applying an inverse STFT to the
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derived filter gains and then truncating the resulting time-domain representation to a
length of L/2+1. The filter response is then zero-padded to a length of L and another
STFT is performed. The resulting filter gain is applied to both channels, X L(m, k),
and, X R(m, k). The dereverberated signals, ŝL(n), and, ˆsR(n), are finally recon-
structed by applying the inverse STFT and then adding the resulting overlapping
signal segments [3].

Coherence-to-Gain Mapping

In order to cope with the different frequency-dependent distributions of the IC
observed in different acoustic scenarios—see Sect. 2.3—a coherence-distribution
dependent gain-to-coherence mapping is introduced. This is realized by a sigmoid
function which is controlled by an online estimate of the statistical properties of the
IC in each frequency channel. The function is derived from a normal sigmoid and
given by

Gsig(m, k) = (1 − Gmin)

1 + e−kslope(k)(CL R(m,k)−kshift(k))
+ Gmin , (15)

where kslope and kshift control the sigmoidal slope and the position. The minimum
gain, Gmin, is introduced to limit signal-processing artifacts.

In order to calculate the frequency-dependent parameters of the sigmoidal map-
ping function, coherence samples for a duration defined by tsig are gathered in a
histogram. The method yields best performance with a tsig in the range of several
seconds, assuming that the source-receiver locations are kept constant. For moving
sources and varying acoustic environments, the method for updating the sigmoidal
mapping function might need revision. The mapping functions are determined as
two predefined points, Q1 and Q2, corresponding to the 1st and 2nd quartiles of the
estimated IC-histogram distributions. A coherence histogram shown as a Gaussian
distribution for illustrative purposes is exemplified in Fig. 8a by a gray curve together
with the corresponding 1st and 2nd quartiles. An example sigmoidal coherence-to-
gain mapping function is represented by a black solid curve. The linear mapping
function as applied by [2] is indicated by the black dashed curve.

The degree of processing is determined by kp, which directly controls the slope
of the sigmoidal mapping function. The parameters kslope and kshift of the mapping
function can be derived from ς(Q1) = Gmin + kp and ς(Q2) = 1 − kp as follows,

kshift =
(

ln(ς(Q1)
−1)

ln(ς(Q2)−1)
Q2 + Q1

)
·
(

1 − ln(ς(Q1)
−1)

ln(ς(Q2)−1)

)−1

(16)

kslope = ln(ς(Q1)) − 1

Q1 − kshift
, (17)
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Fig. 8 a Idealized IC histogram distribution in one frequency-channel (gray curve). The coherence-
to-gain relationship in the specific channel is calculated to intersect ς(Q1) = Gmin + kp and
ς(Q2) = 1−kp . Thereby, Gmin denotes the maximum attenuation and kp determines the processing
degree. b IC histogram distribution of speech presented in an auditorium with 0.5 m source-receiver
distance (top panel) and 5 m source-receiver distance (bottom panel). Sigmoidal coherence-to-gain
relationship for three different processing degrees of kp are shown

whereby Q1 and Q2 are estimated in each frequency channel from the measured
coherence histograms and kp a predetermined parameter—see Fig. 8a. In addition,
Gmin is introduced to avoid signal artifacts related to applying infinite attenuation.

For speech presented in an auditorium with source-receiver distances of 0.5 m and
5 m—see Sect. 2.3—examples of sigmoidal mapping functions are shown in Fig. 8b
for different values of kp in the 751.7 Hz frequency channel. It can be seen that the
coherence-to-gain mapping steepens as kp increases. In addition, with the distribu-
tion broadening, that is, from 5 m to 0.5 m, the slope of the coherence-to-gain map-
ping decreases. Hence, in contrast to the original coherence-based-dereverberation
approach in [2], which considered a linear coherence-to-gain mapping—plotted with
dashed line in Fig. 8—the approach presented here provides a mapping function with
added flexibility that can be adjusted by the parameter kp and to any given acoustic
condition.

4.2 Spectral-Subtraction Framework

As shown in (8), in the spectral-subtraction framework, the dereverberation problem
is deduced to an estimation of the late-reverberation short-time spectrum. Several
single-channel techniques have been introduced to blindly provide such estimates.
Under specific conditions, as discussed later in this section, such blind dereverber-
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ation methods may be also adapted for binaural processing. For instance, Lebart
et al. [86] proposed a method, referred to in the following as LB, that is based on
exponential-decay modeling of the RIR, h(n), as

h(n) = b(n) exp(−3 ln10/T60, n) , (18)

where b(n) is a zero-mean Gaussian stationary noise. T60 is the reverberation time in
seconds [83].2 The short-time spectral magnitude of the reverberation is estimated
as

|R(m, k)| = 1√
SN Rpri (m, k) + 1

|X (m, k)| , (19)

where SN Rpri (m, k) is the a-priori signal-to-noise ratio that can be approximated by
a moving average relating to the a-posteriori signal-to-noise ratio, SN Rpost (m, k),
in each frame,

SN Rpri (m, k) = βSN Rpri (m − 1, k)+
(1 − β)max(0, (SN Rpost (m, k) − 1)) , (20)

where β is a constant taking values close to one. The a-posteriori SNR is defined as

SN Rpost (m, k) = |X (m, k)|2
E[|X (m, k)|] . (21)

Thus, Se(m, k) is estimated by subtraction and is combined with the phase of the
reverberant signal, so that the dereverberated signal in the time domain is finally
obtained through an overlap-add process.

An alternative method, as proposed by Wu and Wang [126], referred to hereinafter
as WW, is motivated by the observation that the smearing effect of late reflections
produces a smoothing of the signal spectrum in the time domain. Hence, similarly to
the approach of [86], the late-reverberation power spectrum is considered a smoothed
and shifted version of the power spectrum of the reverberant speech, namely,

|R(m, k)|2 = γw(m − ρ) ∗ |X (m, k)|2 , (22)

where ρ is a frame delay. γ is a scaling factor and “*” denotes convolution. The
term w( j) represents an assymetrical smoothing function given by the Rayleigh
distribution

w(m) =
⎧
⎨

⎩

m + α

α2 exp

(−(m + α)2

2α2

)
if j < −α ,

0 otherwise ,

(23)

2 Note that this model holds when the direct-to-reverberant ratio is smaller than 0 dB [48].
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where α represents a constant number of frames. The phase of the reverberant speech
is combined with the spectrum of the estimated clean signal and overlap-add is used
to extract the time domain estimation.

Alternatively, Furuya and Kataoka [38] proposed a method, referred to hereinafter
as FK, where the short-time power spectrum of late reverberation in each frame can
be estimated as the sum of filtered versions of the previous frames of the reverberant
signal’s short time power spectrum, that is,

|R(m, k)|2 =
M∑

l=1

|al(m, k)|2|X (m − l, k)|2 , (24)

where M is the number of frames that corresponds to an estimation of the T60. al(m, k)

are the coefficients of late reverberation. The FK method assumes that an inverse fil-
tering step, which reduces spectral degradation produced by the early reflections,
precedes the spectral subtraction. Hence, in such a case the short-time power spec-
trum of the reverberant signal is considered to roughly approximate the short-time
power spectrum of the anechoic signal. The coefficients of late reverberation are
derived from

al(m, k) = E

{
X (m, k)X∗(m − l, k)

|X (m − l, k)|2
}

. (25)

With these coefficients an estimation of the clean signal in the time domain can
be derived through overlap-add from the short-time spectrum of the dereverberated
signal, Se(m, k), as follows,

Se(m, k) =
{ |X (m, k)|2 − |R(m, k)|2

|X (m, k)|2
}

X (m, k) . (26)

Overlap-add is finally applied in order to estimate the time-domain dereverberated
signal.

Although the above methods were originally employed for single-channel dere-
verberation, they can be adapted for binaural processing. For such case, as discussed
in Sect. 3.4, in order to preserve the binaural ITD and ILD cues identical processing
should be applied to the left and right signal channels. Similar principles apply to
the binaural noise reduction, as in [72]. An effective approach for extending the LB
method to a binaural context is to derive a reference signal using a delay-and-sum
beamformer, DSB [68], where the time delays are estimated utilizing a method based
on the generalized cross-correlation with phase transform as proposed in [76]. The
reference signal is then calculated as the average of the time aligned left and right
reverberant signals. Using the reference, appropriate weighting gains are derived,
and identical processing is applied to both left and right channels. In [115], the DSB
approach is also implemented for both the WW and FK methods in order to evaluate
the efficiency of different late-reverberation-estimation techniques in a binaural sce-
nario. However, in binaural applications, the time delay between the left and right
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channels of the speech signal is limited by the width of the human head. There-
fore, it can be assumed to be shorter than the length of a typical analysis window
used in spectral-subtraction techniques. Hence, in [115], it was shown that the time
alignment stage can be omitted.

A different approach in order to adapt single channel spectral subtraction derever-
beration in the binaural scenario is to process the left and right-ear channel signals
independently. This results in the corresponding weighting gains, GL(m, k) and
G R(m, k). These two gains can be combined, and different adaptation strategies
have been investigated for each algorithm, namely,

(a) The binaural gain can be derived as the maximum of the left and right-channel
weighting gains,

G(m, k) = max(GL(m, k), G R(m, k)) . (27)

This approach, maxGain, achieves moderate late-reverberation suppression, but
it is also less likely to produce overestimation artifacts.

(b) The binaural gain can be derived as the average of the left and right channel
weighting gains,

G(m, k) = (GL(m, k) + G R(m, k))

2
. (28)

This gain-adaptation strategy, avgGain, compensates equally for the contribution
of the left and right channels.

(c) The binaural gain can be derived as the minimum of the left and right channel
weighting gains,

G(m, k) = min(GL(m, k), G R(m, k)) . (29)

This adaptation technique, minGain, results in maximum reverberation attenua-
tion, but the final estimation may be susceptible to overestimation artifacts.

After the derivation of the adapted gain, a gain-magnitude regularization, GMR,
technique can be applied. The purpose of such as step is twofold. Firstly, the GMR
has been proved to be a low-complexity approach reducing annoying musical-noise
artifacts [79, 117]. Furthermore, the GMR is utilized in order to constrain the sup-
pression and thus, to prevent from overestimation errors. An overestimation of the
late reverberation is less likely to happen in spectral regions with a high signal-to-
reverberation-ratio, SRR, such as signal steady states [118]. Yet, such problem is more
likely to affect the low SRR regions. Therefore a low SRR detector is employed [68]
and GMR is applied only on the lower-gain parts. Consequently, the new constrained
gain, G ′(m, k), is derived as
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G ′(m, k) =
⎧
⎨

⎩

G(m, k) − θ

r
+ θ when ζ < ζth and G(m, k) < θ ,

G(m, k) otherwise ,
(30)

and

ζ =

K∑

k=1

G(m, k)|Y (m, k)|2

K∑

k=1

|Y (m, k)|2
, (31)

where θ being the threshold for applying the gain constraints, r is the regularization
ratio, ζ is the power ratio between the enhanced and the reference signal, ζth the
threshold of the low-SRR detector. K is the total number of frequency bins.

The effect of the GMR is further explained in Fig. 9. In Fig. 9a, a typical illustration
of a frequency domain binaural gain is shown. In Fig. 9b–d the effect of the GMR
step on the binaural gain is presented for θ = 0.2, r = 4, for θ = 0.2, r = 8
and for θ = 0.6, r = 4 respectively. It can be observed that larger regularization
ratios, r , result in larger gain values—in other words, the method suppresses less
reverberation. Moreover, a constraint of the reverberation reduction is observed for
larger thresholds, θ. By comparing Fig. 9b–d, it becomes clear that the effect of the

(a) (b)

(c) (d)

Fig. 9 a Typical binaural gain in the frequency domain. b Effect of the GMR step for θ = 0.2 and
r = 4. c Effect of the GMR step for θ = 0.2 and r = 8. d Effect of the GMR step for θ = 0.6 and
r = 4
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Fig. 10 Block diagram of the spectral-subtraction binaural-dereverberation approach that preserves
the interaural cues. The late-reverberation estimation can be based on either of the techniques
described in Sect. 4.2

regularization ratio, r , of (30) is more subtle than the effect of the threshold, θ.
Therefore, the parameter r can be used for fine-tuning purposes.

To conclude this section, Fig. 10 presents a block diagram of the framework
applied for binaural spectral-substraction, as described above.

5 Evaluation Methods

5.1 Objective Measures of Dereverberation

The evaluation of the potential improvement of speech or audio enhancement tech-
niques has proven to be a rather difficult task. Many objective measures have been
developed and often they can predict the perceived quality of the enhanced signals
accurately enough [89]. However, there are cases where such objective measures fail
to correctly evaluate the performance of a reference algorithm [90]. The evaluation
of the performance of dereverberation algorithms has proven to be more difficult.
This happens for the same reason that dereverberation is generally more demanding
than denoising: the reverberation noise is correlated with the anechoic signal. For
the above reasons, denoise measures are not always appropriate for dereverberation
evaluation.

This difficulty increases further for the evaluation of binaural dereverberation
methods. In this case, apart from the assessment of the output signal’s temporal
and spectral characteristics, the binaural qualities of the processed output must be
also taken into account. Unfortunately, the development of objective or perceptual
dereverberation evaluation metrics that explicitly take into account the binaural con-
ditions and cues is still an open research issue. Therefore, single-channel measures
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are adapted in the binaural scenario by combining through simple addition the left
and right-channel results. Hence, one must be very careful when interpreting the
values of such metrics.

Most dereverberation-evaluation measures require a-priori knowledge of the
anechoic signal. In principle they calculate some type of distance between the
dereverberated and the anechoic signal. Such metrics are, for example, the signal-
to-reverberation-ratio, SRR, the frequency-weighted signal-to-reverberation-ratio,
fwSRR, the weighted-slope spectral distance, WSS, the Itakura-Saito distance, IS,
the Bark spectral distortion, BSD, the cepstral distance, CD, and the log-spectral
distortion, LSD [44, 63, 103, 122]. Moreover, metrics based on auditory modeling
have been also used for the evaluation of dereverberation algorithms, such as the
perceptual evaluation of speech quality, PESQ, the noise-to-mask ratio, NMR, the
perceptual-similarity measure, PSM, and the non-intrusive speech-to-modulation-
energy ratio, SRMR [35]. In order to improve the overall evaluation performance,
some researchers have modified and/or combined subsets of the above metrics, as in
[27, 78].

5.2 Perceptual Measures of Dereverberations

When listening inside reverberant spaces, the auditory system applies several mecha-
nisms assisting both intelligibility and localization. These include monaural/binaural
decoloration, binaural auditory dereverberation [13, 22, 130] and the precedence
effect [88]. Objective measures of dereverberation processing often do not incorpo-
rate or take account of these mechanisms or other features of the auditory system. In
addition, these objective measures have shown varying correlation with perceptual
measures [78, 122]. If signals processed via dereverberation algorithms are intended
for human listeners, such a discrepancy needs to be taken into account.

Until now, the literature has only sporadically used perceptual evaluation for eval-
uation of dereverberation algorithms. In [38] and [118] a mean opinion score, MOS,
of signal quality was used. In [68] a preference comparison task was implemented for
the different processed signals. A modified version of the ITU P.835 test has been also
employed for perceptual evaluation of dereverberation [66]. The test evaluates (i) the
speech signal naturalness, (ii) the reverberation intrusiveness and (iii) the overall sig-
nal quality [35, 64, 116]. Similar tests have been extended to cover multiple attributes,
such as the amount of reverberation, source width and sound envelopment [92].

The multiple-stimuli-with-hidden-reference-and-anchor test, MUSHRA, [109]
has been also applied for dereverberation [105, 119]. This test is especially success-
ful at detecting small signal impairments, since stimuli are presented simultaneously
and evaluated on a scale. For future evaluation of dereverberation algorithms this test
can be extended in order to include attributes such as amount of reverberation and
overall quality. One dilemma faced when designing a MUSHRA test are the anchors.
Anchors are an inherent trait of MUSHRA experiments to increase the reproducibil-
ity of the results and to prevent contraction bias—see [7]. These are normally made
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by low-pass filtering the reference signal. To evaluate the quality of speech, the
anchor should be implemented by introducing distortions similar to those resulting
from the dereverberation processing, for example, by using an adaptive multi-rate,
AMR, speech coder, available from [1], but other distortion types could be also
applied. Anchors for judging the amount of reverberation can be created by applying
a temporal half cosine to the BRIRs and thereby artificially reducing the result-
ing reverberation while keeping direct sound and early reflections. Pilot studies have
shown that presenting the unprocessed reference stimulus as a hidden anchor resulted
in significant compression bias of the listeners—for further details, see [7]. There-
fore, this hidden anchor can be omitted and replaced by a separate reference-button
which allows listeners to hear the unprocessed signal. This test could be employed
and combined with reference-processing methods for more reliable results, as shown
later in this chapter.

6 Tests and Results

6.1 Results for the Coherence-Based Algorithm

Signal-to-Reverberation Ratio

In this section, the objective results of the coherence-based algorithm (using the
processing parameters in Table 1) , described in Sect. 4.1, are presented. The method
was compared with the method of Allen et al. [2] and a binaural version of the
Lebart et al. [86] spectral subtraction method. Hereinafter the IC-based algorithm of
Sect. 4.1 will be referred to as WB, to the Allen et al. method as AB and to the Lebart
et al. method as LB. Figure 11 shows the signal-to-reverberation ratio, ΔsegSRR,
for the different processing schemes. All algorithms show a significant reduction of
the amount of reverberation, as all exhibit positive values.

For the 0.5 m distance—left panel—the WB algorithm for kp = 0.2 provides the
best performance. For the lowest degrees of processing, kp = 0.35, the performance
is slightly below the one attained for the LB algorithm. For the 5 m distance—right
panel—the WB method shows a performance that is comparable to the LB method

Table 1 Processing parameter values for the coherence-based method at f s = 44.1 kHz

Parameter Value

Frame length (L) 6.4 ms
Recursion constant (α) {0.01; 0.2; 0.35}
Recursion constant (α) 0.97
Gain threshold (Gmin) 0.1
Mapping updating time (tsig) 3 s
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Fig. 11 Estimates of reverberation suppression, ΔsegSRR, and loss of quality, ΔNMR, between
the clean signal and the processed reverberant signal for different methods. Left panel 0.5 m source-
receiver distance. Right panel 5 m source-receiver distance

for the highest processing degree, kp = 0.01. As expected, the performance of the
WB method generally drops with decreasing processing degree—that is, increasing
kp value. The AB method shows the poorest performance in general and provides
essentially no reverberation suppressions in the 0.5 m condition.

Noise-to-Mask Ratio

The noise-to-mask ratio, NMR, is an objective measure that determines the audi-
ble non-masked noise components. Lower NMR values denote better signal quality
[119]. In Fig. 11, also ΔNMR is shown, whereby smaller values correspond to less
audible noise. For the different processing conditions, the AB approach shows the
best quality overall for both source-receiver distances. Considering the very small
amount of dereverberation provided by this algorithm—see Fig. 11—this observation
is not surprising since the algorithm only has a minimal effect on the signal. The NMR
performance of the WB method for high degrees of processing, that is, kp = 0.01, is
similar or slightly better than that obtained with the LB approach. The sound quality
of the WB method increases with decreasing degree of processing, namely, kp = 0.2
and 0.3. However, at the same time, the strength of dereverberation, as indicated by
segSRR, also decreases—see the gray bars in Fig. 11. Considering both measures,
segSRR and the NMR, the WB method is superior for close sound sources, in our
case the 0.5 m condition with kp = 0.2, and exhibits performance similar to the LB
method for the 5 m condition.
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Perceptual Evaluation

For the perceptual evaluation of the different dereverberation methods, binaural sig-
nals were presented to 10 listeners via headphones. The signals were generated
by convolving anechoic sentences with BRIRs, measured in an auditorium with
T30 = 1.9 s. A MUSHRA test was applied to measure (i) strength of dereverberation
and (ii) overall loss of quality. As described in Sect. 5.2, an AMR speech coder at
7.95 kbits/sec was used as anchor in the quality measure and a 600 ms long cosine
window was applied to the measured BRIRs to generate the anchor for the dere-
verberation measure. Further details are described in [123]. The results from the
perceptual evaluation for each processing method are shown in Fig. 12. For bet-
ter comparison with the objective results, the measured data were inverted, that is,
100—original score. Considering the strength of dereverberation—indicated by the
gray bars—the WB approach exhibited the best performance for kp = 0.01 at both
distances. As the degree of processing decreases, that is, for increasing values of
kp, the strength of dereverberation decreases. The improvement relative to the LB
approach is considerably higher for the 0.5 m distance—left panel—than for the 5 m
distance—right panel. The AB approach of [2] produced the lowest strength of dere-
verberation for both source-receiver distances. The differences in scores between the
AB approach and the others were noticeably larger for the 0.5 m distance than for
5 m. This indicates that, for very close sound sources, the other methods are more
efficient than the AB approach.

The overall quality loss of the signals processed with the WB method were found
to be substantially higher for the 0.5 m condition compared to the 5 m condition.
This difference is not as large with the AB approach as well as the LB method,

Fig. 12 The mean and standard deviation of perceptual results judging Strength of dereverberation
and Overall loss of quality for the 0.5 m source-receiver distance (left panel) and 5 m source-receiver
distance (right panel)
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indicating that the WB is particularly successful for very close sound sources. As in
the objective quality evaluation, increasing the degree of dereverberation processing,
that is, by decreasing kp, results in a drop of the overall quality. However, this effect
is not as prominent when decreasing kp from 0.35 to 0.2 at the 0.5 m distance.

Considering the combination of reverberation reduction and overall quality, the
WB method with kp = 0.2 exhibits a clearly superior performance at the 0.5 m
distance. Even when applying the highest degree of processing, namely, kp = 0.01,
the quality is similar to that obtained with LB, but the strength of dereverberation
is substantially higher. For the 5 m distance, increasing the degree of processing
has a negligible effect on the strength of dereverberation but is detrimental for the
quality. However, for kp = 0.35, the performance of the WB method is comparable
to that obtained with the LB approach. An analysis of variance, ANOVA, showed
significance for the sample effect at source-receiver distances of 0.5 m, namely, (F =
97.65, p < 0.001) and 5 m, (F = 41.31, p < 0.001). No significant effect of
listeners was found.

6.2 Results for the Spectral-Subtraction Framework

In this section, the results of the binaural spectral-subtraction framework are shown—
for details see Sect. 4.2. The presented dereverberation methods LB [86], WW [126]
and FK [38] are binaural extensions of the original single-channel methods.

A first evaluation has been made for 16 kHz signals [115]. Eight anechoic phrases
uttered by both male and female speakers of the TIMIT database were convolved
with real BRIRs. Four BRIRs measured in a Stairway Hall with a reverberation time
of T60=0.69 s at a source-receiver distance of 3 m and azimuth angles of 0, 30, 60 and
90◦ were chosen from the Aachen database [68]. In addition, three BRIRs measured
in a Cafeteria with a T60 = 1.29 s at source-receiver distances of 1.18, 1 and 1.62 m
and azimuth angles of approximately −30, 0 and 90◦ were chosen from the Olden-
burg database [73]. The authors made informal tests to select optimal values for the
analysis parameters, that is, 16 kHz, 16 bit—see Table 2. The θ and ζth values of the
GMR step, described by (30) in Sect. 4.2, were set to 0.15, the regularization ratio, r ,
was 4. The T60 was calculated from the impulse responses. All parameter values that
are not detailed here were set according to the values proposed by the authors of the

Table 2 Processing parameter values for comparing the spectral subtraction based methods at
f s =16 kHz

Parameter LB WW FK

Total frame length 1024 1024 2048
Zero padding 512 128 128
Frame overlap 0.125 0.25 0.25
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original works. In addition, for the FK and LB techniques, two additional relaxation
criteria were imposed [118] as they were previously found by the authors to have
advantageous effects on the performance. The WW and FK methods assume that
an inverse-filtering stage precedes the spectral subtraction implementation. Here,
however, the implementation of an 1/3-octave RIR minimum-phase inverse filtering
was not found to notably alter the relative improvement achieved by the tested meth-
ods. Therefore, a generalized case where the spectral subtraction is applied directly
to the reverberant signals is presented.

The produced signals were evaluated by means of the PESQ variation [65], com-
pared to the reverberant signals. PESQ was not originally developed to assess the
dereverberation performance—see Sect. 5—and it implements a perceptual model in
order to assess the quality of a processed speech signal. Rating is performed accord-
ing to the five-grade mean-opinion-score, MOS, scale. The results are presented in
Table 3 with the bold values denoting optimum performance. For the case of the
Stairway Hall the bigger PESQ improvement is achieved utilizing the WW method
with the minGain adaptation technique. The same gain adaptation technique seems
to be also the optimal choice when used in conjunction with the LB method. It can
be assumed that in a scenario where bilateral late-reverberation estimations are suc-
cessful this technique presents superior performance. However, it is not beneficial
when used with the FK method where probably the bilateral processing resulted to
inferior results. The FK method produces better results when used with the avg-
Gain technique. In general, the WW method shows a significant PESQ improvement
for all tested adaptation techniques. For the Cafeteria, the LB method produces a
relatively stable PESQ improvement independent of the employed binaural adap-
tation. On the other hand, better results are derived with the WW method for all
binaural-adaptation schemes—although the best results are achieved with the avg-
Gain approach. The FK method seems to produce processing artifacts despite the
utilized binaural-adaptation scheme and decreases the PESQ values in every case.
Finally, note that the DSB implementation has the advantage of lower computa-
tional cost as it involves calculations in a single channel for the estimation of the
weighting-gain functions. This is in contrary to the binaural-adaptation schemes that

Table 3 PESQ improvement for the binaural spectral subtraction framework, showing results for
various binaural gain adaptation options—see Sect. 4.2

Method BSD maxGain avgGain minGain

Stairway hall
LB 0.153 0.142 0.147 0.158
WW 0.206 0.160 0.208 0.258
FK 0.160 0.180 0.186 −0.029
Cafeteria
LB 0.133 0.136 0.135 0.133
WW 0.205 0.208 0.216 0.198
FK −0.235 −0.141 −0.228 −0.428
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require dual-channel calculations. On the other hand, the gain-adaptation techniques
discussed in Sect. 4.2 involve bilateral processing but do not necessitate the initial
time-delay estimation.

For the perceptual test, the methods were applied for broadband signals, sampled at
44100 Hz [116]. A modified version of the ITU P.835 test was used for the perceptual
evaluation, as explained in Sect. 5.2. Note that the listeners were not guided to directly
rate the binaural qualities of the output signals. However, some listeners reported that
they were inherently taken them into account in their assessments. Four phrases from
two male and two female speakers along with three BRIRs measured in a Stairway
Hall with T60 = 0.69 s, at a source-receiver distance of 3 m and azimuth angles of
0, 45 and 90◦ were used [68]. The original single-channel dereverberation methods,
LB, WW and FK, were optimized for lower signal resolutions. Here, the optimal
values for their application in broadband signals were extracted through informal
listening tests. The STFT analysis parameters, that is, total frame length, zero padding
and frame overlap, for each tested method are detailed in Table 4, the θ and ζth values
of the GMR step according to (30) were set at 0.15 and 0.8, respectively, while the
regularization ratio r was 4. For the FK and LB techniques, the two additional
relaxation criteria proposed in [118] were also implemented. In order to reduce the
experimental conditions the authors conducted informal listening tests to choose
the optimum gain-adaptation scheme for each dereverberation method. Hence, the
avgGain adaptation has been chosen for the LB and WW methods while the maxGain
has been used for the FK method. Twenty self-reported normal-hearing listeners
participated in the tests and a training session preceded the formal experiment.

Figure 13 presents the perceptual scores in terms of speech naturalness, reverber-
ation reduction and overall signal quality for the proposed binaural dereverberation
techniques. The results were subjected to an ANOVA analysis of variance and a
highly significant effect for the tested method was revealed for the speech natu-
ralness, namely, F(3, 228) = 112.7, p < 0.001, for the reverberation reduction,
F(3, 228) = 62.1, p < 0.001 and for the overall quality, F(3, 228) = 38.8, p <

0.001. No significant effect was found for the tested azimuth angles. Following the
ANOVA multiple Tukey’s, HSD tests were made to reveal significant differences
between algorithms.

In all cases, listeners rated that the unprocessed reverberant signals were signif-
icantly more natural than the dereverberated signals—p < 0.001. This was due to
the artifacts introduced from the dereverberation processing. On the other hand, the
FK method performed significantly worse than the other two methods in terms of

Table 4 Analysis parameter values for the employed methods at f s = 44.1 kHz

Parameter LB WW FK

Total Frame Length 2048 8192 8192
Zero padding 1024 4096 4096
Frame Overlap 0.5 0.25 0.25
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Fig. 13 Perceptual results for
speech naturalness, reverber-
ation reduction and overall
signal quality for unprocessed
signals and the three derever-
beration methods tested

speech naturalness. No significant difference was noticed between the LB and WW
methods—p > 0.05.

Furthermore, the three dereverberation methods have significantly reduced the
reverberation—p < 0.001. The FK method performed significantly better than the
WW method in terms of perceived reverberation suppression—p < 0.05. However,
no significant difference between the FK and the LB or the LB and WW methods
was found—p > 0.05. Finally, the LB, the WW methods and the reverberant signals
were rated significantly better in terms of overall quality than the FK method—
p < 0.001—, but no significant quality difference was found between the LB method,
the WW method and the reverberant signals—p > 0.05.

From the objective and perceptual results it appears that all methods suppress
reverberation significantly, but the introduced processing artifacts reduce the natu-
ralness of the speech signals. The FK method achieves greater reverberation suppres-
sion than the LB and WW methods; however, it appears that the produced signals
are more degraded. On the other hand, the LB and WW dereverberation methods
moderately reduce the reverberation, but they preserve the perceptual signal quality.

7 Conclusions

Binaural dereverberation is rapidly evolving as a significant and unique research
field having assimilated signal-processing methods and algorithms introduced pre-
viously into the broader areas of acoustic signal enhancement and noise suppression
but also from more specialized areas such as speech dereverberation, correction of
room acoustics, auditory-scene analysis, and from a wealth of perceptual studies
and models related to auditory mechanisms. In contrast to some of the mostly single-
input-channel methods as were introduced in the signal-enhancement-research fields
and were targeted towards machine listening and automatic speech recognition,
or were geared towards speech-intelligibility improvements, binaural dereverber-
ation attempts to utilize concepts and optimize processing specifically tailored to
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binaurally-received signals by human listeners. As is well known, during everyday
life, the human auditory system has an impressive ability to analyze, process and
select individual source signals from complex acoustic environments, significantly
so from signals contaminated by room reflections and reverberation. It has been well
established by earlier research that this ability is to a large extend due to auditory and
cognitive mechanisms which rely on the binaural signals as these allow the listeners
to analyse auditory scenes and suppress unwanted signal components.

Recently, technological and other developments dictate the ever expanding use
of portable devices for receiving auditory information via headphones or earpieces
and in many such applications binaural dereverberation is an essential preprocess-
ing step in order to ensure reception comparable or better to that of normal listen-
ing. Such applications are currently mostly driven by the digital-hearing-aid sector
where the problem of reverberation intrusion is prohibitive to speech intelligibility
and auditory-scene interpretation. At the same time, the processing capabilities of
the commercially available hearing aids allow the real-time implementation of the
emerging methods. However, other applications such as binaural telephony, telecon-
ferencing, hands-free devices and interfaces, immersive-audio rendering, and so on,
seem to rapidly adopt such binaural dereverberation processing.

Given the extensive capabilities of the hearing system, any binaural dereverber-
ation method is facing significant challenges. Traditionally, most acoustic-signal
enhancement methods aim at suppressing some unwanted interference and poten-
tially improve speech intelligibility, and/or audio signal quality. However, the percep-
tion of room reverberation is inherently linked to many cues useful to the listener that
are generated by room reflections and relate to source position, listener orientation,
room size, and further properties that must be retained after processing. Hence, bin-
aural dereverberation methods appear to aim at retaining some useful auditory cues
and signal qualitative features, thus compromising their ability to suppress rever-
beration. From this discussion it is becoming clear that the prominent aims of the
binaural methods appear as follows: improving the ratio of direct-to-reverberant sig-
nal energy, removing unwanted timbral coloration due to room reflections, removing
late-reverberant effects and energy during temporal signal gaps, improving source
localization and separation, and suppressing unwanted sound sources and noise.
However, after processing, it is imperative that binaural cues necessary for source
localization and auditory-scene analysis must be fully preserved or even enhanced.
Further, it is sometimes desirable that important cues such as the precedence effect,
spectral qualities, as well as room size and envelopment, are retained.

In the previous sections of this chapter it is shown that binaural dereverberation
is largely relying on a linear-system model of the room, described via the binau-
ral impulse responses between source(s) and the listener’s ears and that often this
function is separated into the direct path, early reflection and late-reverberation com-
ponents. Given that different physical and perceptual effects can be identified due to
each of these response components, many dereverberation methods attempt to com-
pensate specifically for effects due to those parts. Another common theme during
the evolution of the binaural-dereverberation methods is that some of those methods
were based on dual-input-channel processing and others on bilateral adaptation of
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single channel dereverberation methods, those typically relying on spectral subtrac-
tion, a technique which has been widely used for noise suppression. Significantly, all
binaural dereverberation must be implemented without any prior measurement of the
room response, thus being blind, or at least semi-blind, when some broad parameters
related to the acoustic environment have to be known.

Starting from those earlier dual-channel dereverberation methods—for example,
[2], the significance of the interchannel/interaural coherence function as an indicator
of the direct-path-signal contribution in the received signals has been established,
leading to techniques that can effectively enhance this signal component in the
short-term spectral domain, improving thus the direct-to-reverberant ratio in the
processed signal. In this chapter, a detailed presentation of a recent IC based method
is given [123, 124]. In contrast to the earlier method [2], where a linear coherence-
to-gain function for the spectral modification was proposed, this recent method has
introduced a flexible parametric sigmoidal function that can easily be adjusted to
the desired filtering-gain form appropriate for specific room-acoustical and source-
receiver configurations. Furthermore, the form of the IC estimates and hence the
parameters of the filter can be directly obtained from long-term spectral analysis of
the received signals. The performance of this IC method was evaluated by testing
and comparing the change in the ΔsegSRR, the change in the ΔNMR, as well as via
perceptual-evaluation tests. It was found that the method achieved superior overall
quality compared to the original IC-based method, as well as to a spectral-subtraction
based method. The method was also found to perform better for dereverberating
signals from closely located sound sources, for instance, at 0.5 m, instead of those
derived from distant sources, for instance, at 5 m. This illustrates that dereverberation
gains via IC-based methods depend largely on the degree of the direct-signal energy
within the received signals, typically this happening for shorter source-listener dis-
tances. For such cases, the overall quality of the processed signal is superior to the
results obtained via other processing methods. When this condition is not satisfied,
then processing may result in signal-quality loss.

Apart from enhancing the direct signal components, many further single chan-
nel dereverberation methods have been developed, based on the concept of spectral
subtraction. Although reverberation is a convolutive distortion, late reverberation
has usually exponentially decaying white-noise-like properties and, hence, it may be
effectively modeled as additive-noise distortion. Traditionally, spectral-subtraction
methods suppress such additive noise by subtracting in the short-term spectral
domain its estimate and, following this line of thinking, they were also adopted for
late-reverberation suppression. For the blind estimation of the late reverberation,
essential for deriving the short-term spectral filter gains, a number of established
methods exist, originally proposed for speech applications. These methods have
either employed an exponentially-decaying noise-like estimate function—compare
the LB method, [86]—or an estimate based on smoothed-shifted version of the rever-
berant speech spectrum—WW method, [126]—or an estimate based on a sum of
filtered versions of earlier reverberant speech spectra—FK method, [38].

For adopting such methods for the binaural case, their bilateral application to
each signal channel may be followed. Given that the relevant ITD and ILD cues
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must be preserved in the processed dereverberated signals, identical processing must
be applied on the left- and right-ear signals by using appropriately adapted common
gains derived from the received signals in each channel, since it is likely that filter-
gain estimates may vary for the two different paths to the ears. Such alternative gain-
adaptation strategies were studied in [115] and were presented in detail in Sect. 4.2
of this chapter—along with an optimized GMR stage [79, 116] that restricts via
a parametric function the extend of spectral modifications during processing. For
the perceptual performance tests, described in detail in [115, 116], the PESQ was
employed along with perceptual tests based on the MOS and a modified version
of the ITU P.835 test. The results indicate that a trade-off between the degree of
dereverberation and the perceptual quality of the processed signal, with the estimators
derived via the LB and WW methods, achieve the best performance. For these two
methods it was also found that average-gain weighting of the individually estimated
gains for the left- and right-ear paths, was the best way for adapting these functions
to the binaural processing scenario.

In this chapter, an analysis of the concepts involved in human sound reception and
perception inside reverberant rooms has been presented, along with a literature review
concerning past attempts on the open problems of signal dereverberation. A focus was
put on more detailed presentation of two recent blind binaural-dereverberation meth-
ods, the first one based on interaural coherence to enhance the direct-to-reverberant
ratio and the second one geared towards optimal adaptation of single channel, spec-
tral subtraction based methods for suppressing late reverberation. In both cases, as
is the case with most other signal enhancement methods, it was found that reverber-
ation suppression and processed signal quality are two mutually exclusive items that
restrict the overall performance of the methods. In comparison with the performance
achieved by the human auditory system in similar tasks, such as for the precedence
effect, signal decoloration and reverberation suppression, the performance of the
current dereverberation methods is clearly inferior, in particular, when being consid-
ered under all possible acoustic and source-listener configurations. Furthermore, a
unique problem facing all these dereverberation methods is the definition of the desir-
able results that should be aimed at by such processing. The difficulty of adapting
existing objective and perceptual-performance measures and methodologies into the
binaural-dereverberation case, especially with respect to retaining the complex cues
associated by auditory-scene analysis performed by human listeners inside enclosed
spaces, as well as the challenge of dealing with both noise and reverberation likewise,
illustrates the complexity and the open issues facing this promising and relatively
young research field.
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