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1 Introduction

Cochlear implants, CIs, are the most successful neuroprostheses available today, with
approximately 219,000 people implanted worldwide—as of December 2010 [60].
Modern CIs often provide good speech intelligibility, but there is room for improve-
ment. Due to the limited number of independent channels [71], the spectral repre-
sentation of music is less detailed for cochlear-implant users than for normal-hearing
subjects, and they perform more poorly in adverse acoustic environments, such as
in a cocktail-party scenario with multiple simultaneous sound sources [12, 50]. To
sustain communication in such conditions, humans have developed the remarkable
ability to focus on a single speaker even within a highly modulated background noise
consisting of concurrent speakers and/or additional noise sources. In such scenarios
binaural hearing plays a major role. Time and level differences between the right
and left ear are exploited by the auditory system to localize the sound sources and
segregate the acoustic information focused upon [3].

As CIs were initially developed for unilateral implantation only, they lack some
important prerequisites required for precise sound localization. Automatic gain con-
trol, AGC, in CIs is required to compress the large dynamic range of acoustic signals
to the limited dynamic range available for electric stimulation of the auditory nerve.
Automatic gain-control systems in CIs reflect a compromise between conflicting
requirements. Actually, they must handle intense transients but at the same time
minimize disturbing side effects such as “breathing” or “pumping” sounds and dis-
tortions of the temporal envelope of speech. This conflict can be solved with a dual
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time constant compression system [78]. However, in contemporary CIs, AGCs in
bilateral cochlear implants work independently from each other, which can degrade
the coding of interaural level differences ILDs. In addition, the accuracy of temporal
coding in CIs clearly does not yet come close to the precision reached in the intact
hearing organ. Given the many limitations involved in the artificial electrical stimu-
lation of the auditory nerve, especially the effects of severe channel crosstalk, it is
unclear if and which changes of the coding strategies will improve spatial hearing.

To answer these questions, quantitative models have been developed that help
better understand the complex mechanisms involved in the electrical excitation of
neurons. Pioneering model-based investigations [17, 35, 54, 63, 64] were initiated
with the goal to improve CIs. They tried to optimize stimulus parameters like the
stimulation frequency, pulse width and shape. The investigation of Motz and Rattay
[55] harnessed the models to improve coding strategies implemented in a speech
processor. The modeling approaches can be separated in three different categories,
namely, point neuron models, multi-compartment models and population models.

• Point neuron models try to capture the detailed dynamic properties of the neurons.
Motz and Rattay used them to explain neuronal responses to sinusoidal stimuli and
current pulses [54, 64]. Dynes [20] extended these models to capture the refractory
period of the neurons more precisely. With the introduction of CI-coding strate-
gies with high stimulation rates, it became important to investigate the stochastic
behavior of the auditory nerve to electric stimulation [8, 9] and rate-dependent de-
synchronization effects [69]. Mino et al. [53] captured channel noise by modeling
the stochastic open- and closed states of the sodium-ion-channel population with
Markov chains. Most recent models aimed to describe the adaptation of the audi-
tory nerve to electric stimulation at high stimulation rates [37, 85].

• Multi-compartment models are an extension of point neuron models and were
introduced by McNeal [51]. They are important for investigating effects of elec-
trode position and configuration, for instance, monopolar versus bipolar. Multi-
compartment models can predict how and where action potentials are elicited in
the axon of a neuron [52, 85]. They are also essential for investigating how cell
morphology affects their dynamical properties [67, 74], and how the field spread
in the cochlea affects the stimulation of neurons along the cochlea [7, 25, 27].

• Population models are required to replicate neuronal excitation patterns along the
whole cochlea. Therefore, they usually require modeling of thousands of neurons.
For electrical stimulation, large populations of neurons are required to investigate
rate-intensity functions [9] and neuronal excitation patterns for speech sounds
[32]. Due to the large number of modeled neurons, these population models were
implemented with computationally less expensive stochastic spike response mod-
els. Nevertheless, the increasing computational power of modern computer clus-
ters has enabled us to model also large neuron populations based on biophysically
plausible Hodgkin-Huxley-like ion-channel models [58]. In these models refrac-
toriness and spike rate adaptation result from ion-channel dynamics.

Modeling higher levels of neuronal processing is hindered by the large complexity
involved and therefore is limited to a few special cases. Basic perceptual properties
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like intensity perception [8] or forward masking [32] can be captured by deriving
a neuronal representation that corresponds to the respective psychophysical data.
More cognitive processes can usually not be predicted with models based on single
neurons. However, in recent years, machine-learning techniques based on neuronal
features [23, 59] were adopted to tackle highly complex tasks such as the prediction
of speech understanding in noise.

The investigation reported in this chapter focuses on a similarly complex task,
namely, sound localization. The ability to localize sound sources in complex listening
environments has fascinated researchers over decades. Models developed in the fifties
have been extended and improved by many researchers, but their basic concepts
remain valid until today. The models can be divided into two basic groups, namely,
coincidence models and equalization-&-cancellation models—see [43], this volume.

• Coincidence models Jeffress postulated neuronal coincidence detectors fed by
two delay lines with signals traveling in opposite directions within each tonotopic
center-frequency channel [38]. This model was extended to predict basic ILD
sensitivity [11]. The coincidence model was combined with a simplified inner-ear
model to model the basilar membrane and inner hair cells, consisting of a filter
bank, an automatic gain control, AGC, a low-pass filter, and a rectifier. References
[13–15, 76, 77] provide quantitative predictions on binaural interaction. Blauert
and his colleagues Lindemann and Gaik [46] used a complementary approach
adding ILD sensitivity to the Jeffress model. Later in this chapter this model will
be applied to predict sound-source localization.

• Equalization-&-cancellation models These models have primarily been devel-
oped to predict binaural masking differences [19, 42]. Recently, cancellation fea-
tures were added to the Jeffress-Colburn model [4–6].

2 Modeling Hearing in Cochlear Implant Users

This chapter presents a modular model framework to simulate auditory nerve
responses elicited by a cochlear implant. The framework is schematically depicted in
Fig. 1. It consists of a speech processor, a model of the electrical field spread caused by
the implanted electrode array and a model of auditory nerve fibers along the inner ear.

The model was duplicated for the case of two ears to evaluate binaural interaction—
see Sects. 2.5 and 3.1. The nerve responses are then evaluated by “cognitive” stages,
which, for example, can be an automatic speech-recognition system or a system that
estimates the position of a sound source. Every part of the model can be exchanged by
a more or less computationally expensive realization, where the complexity required
depends on the scientific question.
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Fig. 1 Sketch of the model that simulates hearing in cochlear implant users

2.1 Speech Processor

In the speech processor input signals, in this model audio-files in .sph and .wav
format, are processed by a coding strategy that converts the physical sound signals
into electric-current pulse trains—compare Fig. 2. The pulse trains are fed into the
inner ear via the electrode array. The coding strategy replaces the processing steps
that usually take place in the inner ear and translate the physical sound signal into a
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envelopes, FS channels code fine structure information with zero crossing detectors. Electrodes are
stimulated with interleaved biphasic, that is, charge-balanced, rectangular pulses



Modeling Sound Localization with Cochlear Implants 313

representation that can be processed by the neuronal system. Because of the limited
information-transmission capacity between implant and the neural system, coding
strategies are predominantly optimized for speech coding. They process a limited
frequency range, usually between 100 Hz and 8 kHz in 12–22 frequency bands. The
large dynamic range of natural sounds requires effective AGC systems. Whereas
many coding strategies were developed by the different manufacturers [87], in this
chapter a generic implementation of one of the most successful coding principles,
the continuous interleaved sampling, CIS, strategy [84] is introduced. In the CIS
strategy, the signal is first filtered into frequency bands, then the spectral envelope
is extracted. The temporal fine structure is discarded. The spectral envelope is then
sampled using biphasic rectangular pulses, which are delivered to one electrode at a
time, that is, interleaved.

This implementation applied a dual-time-constant front-end AGC [78], followed
by a filter bank. The envelope was extracted in each channel with a Hilbert transfor-
mation. The amplitudes of the envelopes are mapped individually for each CI user
and electrode between threshold level, THR, and maximum comfort level, MCL.
Note that the dynamic range for electrical stimulation is extremely narrow. The dif-
ference between THR and MCL is only in the order of 10–20 dB [28, 86]. Mapping is
implemented using power-law or logarithmic-compression functions [48]. The small
dynamic range that is available for electric stimulation causes another severe limi-
tation, namely, if two electrodes were stimulated simultaneously, their overlapping
fields would sum up and cause overstimulation of neurons. The electrodes in CIs are
therefore stimulated one after the other, that is, interleaved. Extensions of the CIS
concept try to reconstruct the phase locking, as is observed in neuronal responses at
low frequencies [41]. In CIs, this can be achieved by implementing a filter bank fol-
lowed by slope-sensitive zero-crossing detectors—compare Fig. 2—that trigger the
stimulation pulses [88].1 This technique is used in the fine structure coding strategies
(FSP, FS4, FS4-p) in the MED-EL MAESTRO cochlear implant system.

In summary, the FS strategies transmit the envelope information with their basal
electrodes at high temporal resolution and code additional FS phase information with
their most apical electrodes—which is conceptually similar to what happens in the
intact inner ear. With this model framework it is now possible to estimate how much
of this additional phase information is actually transmitted by the auditory nerve
fibers and available for sound localization, and how much of it is corrupted by the
limitations of electrical stimulation.

2.2 Electrode Model

One of the most severe limitations in modern cochlear implants is imposed by the
electrical crosstalk between stimulation electrodes. The CI electrode array is usually

1 This concept is realized in the MAESTRO cochlear implant system by MED-EL in the lowest-
frequency channels, which stimulate the most apical electrodes.



314 M. Nicoletti et al.

inserted in scala tympani and immersed in perilymph—which has a conductivity
of approx. 0.07 k�mm [30, 66]. The neurons of the auditory nerve are inside the
modiolar bone, which has a much higher conductivity of approx. 64 k�mm [26, 30,
66]. Due to these anatomical constraints, the current spreads predominantly along the
cochlear duct [30, 83]. This problem limits the number of independent electrodes to a
value of about 7–8 [18, 24, 36] and a single electrode can excite auditory nerve fibers
almost along the whole cochlea [30]. The amount of channel crosstalk is dependent
on many factors and varies from CI user to CI user [21]. Different methods to measure
the spread of excitation provide values between 1 and 4 dB/mm [33, 44, 57, 62]. The
electrode array was modeled with 12–22 contacts as electrical point sources. The
electrical excitation of a neuron in an electrical field is governed by the activating
function [64], which is the second derivative of the electrical potential in the direction
of the axon.

For a point current source, I , in a homogeneous isotropic medium, the activating
function can be calculated as

d2Vex

dx2 = I
ρ

4π

2x2 − y2 − z2

[
x2 + y2 + z2

]5/2
, (1)

where Vex is the extracellular potential field, ρ the mean conductivity of the surround-
ing tissue—3 k�mm [67]. x , y and z are the coordinates according to Fig. 3. The
value of this function was calculated at a distance x of 500µm from the electrode
in the modiolus, where the electrical stimulation most likely elicits the action poten-
tials in the auditory nerve fibers. Because of the coiling of the cochlea, the current
spread can only be solved with three-dimensional models [7, 66, 83]. For simplicity,
coiling of the cochlear ducts was neglected and therefore no across-turn stimula-
tion occurred in this model. As the activating function for a homogeneous medium
underestimates current spread, which would lead to unrealistic focal stimulation of a
neuron population, the activating function was calculated only at the position of the
electrode z = 0. For the current spread in the z direction an exponential decay with
1 dB/mm was assumed, which was found experimentally [33, 44, 57, 62]—worst-
case scenario.
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Fig. 3 Electrical field spread and channel crosstalk of an electrode array in the cochlea
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2.3 Model of a Single Nerve Fiber

One of the most important steps in this model is the excitation of the auditory nerve.
The theory behind this model is reviewed in [29, 49]. A biophysically plausible model
was implemented that is based on Hodgkin-Huxley-like ion channels—including
hyperpolarization-activated cation channels, HPAC, high-threshold potassium chan-
nels, K H T , and low-threshold potassium channels, KLT . Such ion channels are also
found in cochlear nucleus neurons. Due to their large time constants, the auditory
nerve exhibits adaptation to electrical stimulation [56]. Conductances and time con-
stants were corrected for a body temperature of 37 ºC. The electrical equivalent circuit
of the model is shown in Fig. 4.

The equations and parameters for the models are taken from [68] (see also
Table 1)—with the units ms and mV. VM denotes the trans-membrane voltage. The
gating variables of the different channels, x ∈ {w; z; n; p; r}, are voltage-dependent
and they converge with a time constant of τx to their equilibrium value x∞ as
described by the following differential equation.

dx

dt
= 1

τx
(x∞ − x). (2)

The behavior of the ion channels is described in the next equations.
(i) Low threshold, K +-channel, KLT ,

iK LT = ḡK LT · w4z · (Vm − EK ), (3)

w∞ =
⎡

⎣ 1

1 + exp
(
− Vm+48

6

)

⎤

⎦

0.25

, (4)

iNa ilihiKLT iKHT iC iEx

ENa ElEhEK EK

Vm

gNa glghgKLT gKHT

Cm

iNoise

Fig. 4 Electrical equivalent circuit of a neuron
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τw = 100

6 · exp
(

Vm+60
6

)
+ 16 · exp

(
− Vm+60

45

) + 1.5, (5)

z∞ = 1 − 0.5

1 + exp
(

Vm+71
10

) + 0.5, (6)

τz = 1000

exp
(

Vm+60
20

)
+ exp

(
− Vm+60

8

) + 50. (7)

(ii) High-threshold, K +-channel K H T ,

iK H T = ḡK H T · (0.85 · n2 + 0.15 · p) · (Vm − EK ), (8)

n∞ =
[

1 + exp

(
− Vm + 15

5

)]−1/2

, (9)

τn = 100

11 · exp
(

Vm+60
24

)
+ 21 · exp

(
− Vm+60

23

) + 0.7, (10)

p∞ =
[

1 + exp

(
− Vm + 23

6

)]−1

, (11)

τp = 100

4 · exp
(

Vm+60
32

)
+ 5 · exp

(
− Vm+60

22

) + 5. (12)

(iii) Hyperpolarization-activated cation current, ih ,

ih = ḡh · r · (Vm − Eh), (13)

r∞ =
[

1 + exp

(
− Vm + 76

7

)]−1

, (14)

τr = 100,000

237 · exp
(

Vm+60
12

)
+ 17 · exp

(
− Vm+60

14

) + 25, (15)
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(iv) Fast Na+ current, iNa ,

iNa = ḡNa · m3h · (Vm − ENa), (16)

m∞ =
[

1 + exp

(
− Vm + 32

7

)]−1

, (17)

τm = 10

5 · exp
(

Vm+60
18

)
+ 36 · exp

(
− Vm+60

25

) + 0.04. (18)

The electrical stimulation of neurons in an electric field was analyzed according to
Rattay [65] as

τ
dVm

dt
= λ2 d2Vm

dx2 + λ2 d2Vex

dx2 + Vm . (19)

In this equation, τ = ρmcm denotes the time constant of the passive membrane and
λ = √

ρm/ρa the length constant of an axon. If a long axon is assumed in the field, the
term d2Vm/dx2 can be neglected if the neuron is at rest. Then the external electrical
stimulation acts like a virtual internal current source, which is proportional to d/4ρa ,
d2VEx/dx2, with axon diameter d. Therefore the equation for a section of the axon
can be described by the equation

Cm
dVm

dt
= d

4 ρa

d2VEx

dx2 − [iK LT + iK H T + ih + INa + il ] . (20)

If the analysis is restricted to the compartment, where the action potential is elicited,
it is not necessary to solve the equations for all compartments—this would require
a computationally intensive multi-compartment model. Instead, it is sufficient to
check if this compartment—that is, the compartment where the activating function
has its maximum—elicits an action potential. This would then, in the case of a
multi-compartment model, propagate along the axon. Following this analysis, it is
possible to reduce the model complexity to a single-compartmental model, which
allows to calculate the response of a large number of neurons. The nonlinear ion-
channel equations are solved in the time domain with the exponential Euler rule
[10]. The model presented so far is deterministic and has therefore a fixed, although
dynamic, threshold. Recordings from the auditory nerve in laboratory animals show
that neurons exhibit a stochastic behavior also for electrical stimulation. This behavior
was modeled by including a stochastic current source—compare Fig. 4. Physiological
recordings show that a single neuron exhibits a dynamic range in the order of 1–5 dB
[72, 73]. In this model a dynamic range of 2.5 dB was modeled by adjusting the
current amplitude of the white noise source accordingly. However, the dynamic
range of a single neuron is still too small to explain the dynamic range observed in
CI users.
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Table 1 Parameters of the auditory nerve fiber model

Parameter Value Description References

ρm 0.02 [k�cm2] Specific membrane resistance [1, 79]
ρa 0.14 [k�cm] Specific axial resistance [1, 81]
ENa 66 [mV] Reverse potential for sodium [53, 56]
EK −88 [mV] Reverse potential for potassium [53, 56]
Eh −43 [mV] Reverse potential for iH [53, 56]
El −62.5 [mV] Reverse potential for leak current
gNa 324 [mS/cm2] Specific conductance of Na channels
gK H T 105 [mS/cm2] Specific conductance of K H T channels
gK LT 27 [mS/cm2] Specific conductance of KLT channels
gh 16 [mS/cm2] Specific conductance of HPAC
gl 0.006 [mS/cm2] Specific leak conductance
cm 1 [µF/cm2] Specific membrane capacitance [67]
d 1 · 10−4–2 · 10−4 [cm] Axon diameter [45]

2.4 Population Model of the Auditory Nerve: Individual Model
for CI Users

The analysis of the coding of complex sounds like speech requires a large population
of neurons along the cochlea. When the stimulation current increases more neurons
are excited, which extends the dynamic range for electrical stimulation. Surviving
neurons in the spiral ganglion have variations in their axonal diameters, namely, 1.2–
2.5µm [45], and are located at different distances from the stimulating electrode—
compare Fig. 5.

Factors which extend the dynamic range of the spiral ganglion neuron, SGN
population comprises of the channel noise from an individual neuron and differ-
ent thresholds of the single fibers due to different axon diameters and the varying
distances between electrodes and cells. The dynamic range due to channel noise
is about 2.5 dB, variations of the diameter contribute up to 6 dB, and the distance
between electrode and SGNs up to 12.5 dB. With appropriate SGN populations, CI
users with dynamic ranges between 3 and 21 dB can be modeled. A larger dynamic

Fig. 5 Cartoon of the popula-
tions composition: SGN with
different sizes and distances
respect to the electrode

SGN
Population

Scala 
tympani

Electrode
Bone
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range requires a larger SGN population and in turn longer computing times. The SGN
are distributed along the length of the basilar membrane according to cell counts by
[22, 75] in hearing impaired subjects. Given that SGNs degenerate further in deaf
subjects [2, 40] and limitations in computational power, the model results presented
here include up to 6.000 SGNs. SGNs were randomly distributed along the length of
the cochlea and also the distance of the cells to the electrode, therefore the population
was not uniformly distributed—Fig. 5.

2.5 Sound-Localization Model

For sound localization experiments, left- and right-ear signals were processed with
normal-hearing, NH or CI-listening models, which provide auditory-nerve-fiber,
ANF, responses for further evaluations. Here the inner ear model from Wang [82]
was selected as the NH reference. In the case of CI hearing, the acoustic input was
processed by two independent models of speech processors, followed by two models
of electrically evoked ANF/SGN responses—see Fig. 6.

Commonly a speech processor uses an AGC to scale the input signal to the limited
dynamic range of electrical hearing—see Sect. 2.1. Then a designated coding strategy
translates the acoustic input into stimulation patterns for each electrode. Note that
there is no common synchronization between the two CIs. As a result, the AGC
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Fig. 6 Schematic of the used framework. Each channel of a binaural acoustic signal is scaled and
analyzed by both speech processors independently and transformed into firing patterns for each of
the implant electrodes, according to the used coding strategy. The spike trains of the ANFs are then
calculated from the electric field gradients. The Lindemann model, as binaural back end, performs
the localization task in one frequency band
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and stimulation delivered to the electrodes at the two ears run independent on both
implants. Applying independent gains to the left and right CI alters ILD cues in
the acoustic signals and unsynchronized firing patterns obscure ITD cues. In the
following a best case scenario, where both implants are synchronized will be further
investigated.

Lindemann developed a binaural model [46, 47] originally intended for NH lis-
teners. This model is based on the Jeffress model [38] and assumes that coincidence
neurons receive input from a tapped delay line from each side of the tonotopic rep-
resentation of the cochlea. The coincidence detecting neurons are located along the
delay lines such that they fire at specific ITDs.

l(n) ⊗ r(n) =
+∞∫

−∞
l(τ ) · r(n + τ ) dτ (21)

This process is mathematically described as a cross-correlation function, as defined
in Eq. 21. l(n) and r(n) denote the discrete left and right input signals. The cross-
correlation output is a value of signal energy as a function of time delay.

The Lindemann model extends the correlation delay line of the Jeffress model
by introducing inhibitory elements, which adds ILD sensitivity to the model. This
is modeled with attenuation elements along the delay-line. By this arrangement,
ILDs are mapped to a corresponding cross-correlation time. The model does not
consider any correlation between different frequency bands in the hearing system.
The sharpness of the correlation peaks depends on the inhibition parameter. Larger
values will sharpen the peaks. In addition, the model features a temporal integration
element to stabilize the output for non stationary input signals. For further details
see [47].

3 Testing the Model

3.1 Test Set-Up

For testing purposes a binaural signal generator was implemented (Fig. 7), which
provides an acoustic two channel signal carrying ITD and ILD information.

The simulated listening setup consists of a sound source that is circling around
the listener’s head at 1 Hz. The distance between the two ears was set to 150 mm. An
emitted wavefront will reach both ears at different times and thus invoke location-
dependent ITDs. ILDs were evoked with a frequency-independent attenuation com-
ponent, when required. By intention, no head shadow effect was included to control
ILD and ITD independently from each other.
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Fig. 7 Binaural signal generator

3.2 Results

ANF-Response Patterns

Figure 8 shows smoothed response patterns for 6,000 auditory nerve fibers in response
to the spoken utterance /ay/ from the ISOLET database [16]—female speaker fcmc0-
A1-t, upper trace, 72.8 dB(A). Smoothing was achieved with a 10 ms Hamming
window as low-pass filter.

Figure 9 shows spike patterns with high temporal resolution for the acoustic sig-
nals, CIS and FS4. The high-resolution figures for the normal-hearing model show
very strong phase locking to the fundamental frequency of approx. 220 Hz of the
speech signal—which is not coded at all by the CIS strategy. In the case of FS4 strat-
egy, there are phase-locked responses, which are, however, obscured by additional
spikes that are elicited by other nearby electrodes due to electrical crosstalk.

Lindemann Example with Rectified Bandpass-Filter Input

Adapting the original example from the Lindemann model, a loudspeaker playing
a 500 Hz pure tone was circling the listener at a rate of 1 Hz, in a virtual anechoic
listening scenario. The signal pre-processing for the original Lindemann NH model
consists of a filter bank with half-wave rectification and low-pass filtering to mimic
the output of an inner hair cell.

The output of the model is shown in Fig. 10a, which shows that the model localizes
the sound source with ease. The signal started with an interaural delay of 0 ms,
corresponding to a source location of 0◦, and performed two clockwise rotations.
The maximum time delay of +0.4 ms was reached at 0.25 and 1.25 s for the right
side and −0.4 ms at 0.75 and 1.75 s for the left side, which corresponded to a location
at ±90◦. The 500 Hz-analysis shows that the model analyzes the simulated time delay
correctly. Note that for a 500 Hz sinusoidal input, the cross-correlation time delay
has a repetition period of 2 ms. Nevertheless, only delays smaller than 1 ms are
considered, as the distance between the ears is only 150 mm.
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The electrode positions are shown schematically on the left hand side. The electrical field spread,
here 1 dB/mm, see Sect. 2.2, limits the spatial resolution of electrical stimulation

Lindemann Model with Spike Count Input

The Lindemann model can be used with spike-count data of the ANF as well. By
use of the NH-listener-ANF model as described in Sect. 2.4, the spike response of
two ANF populations from the left and right cochleae was calculated and processed
by the Lindemann model. Figure 10b shows the Lindemann cross-correlation for the
circling source emitting a 500 Hz pure tone, when using spike counts derived from
the Wang model—see [82]. The circling can be clearly seen, although the image
looks noisier than the original model, what results from the probabilistic nature of
the spikes.
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bins. Left intact ear. Middle implanted ear with CIS, Right with FS4 coding strategy. Upper traces
show the response probabilities of a population of neurons at the position of the most apical electrode
in a time bin
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Fig. 10 Output of the Lindemann cross-correlation for a low-frequency pure tone of 500 Hz, a
original input, b spike-trains derived from an auditory model. A positive/negative Lindemann cross-
correlation time-delay indicates a sound-source positioned right/left of the median-sagittal plane of
the head. A sound source, circling the head once per second leads to a deviation of max. 0.441 ms
in the cross-correlation time-delay

As the localization of a pure sine wave is a somewhat artificial example, the
model was also tested with speech sounds. Results are illustrated in Fig. 11a. When
this sentence is radiated from the moving speaker, it can be well localized using the
Lindemann cross-correlation even with ANF spike count inputs simulated with the
NH-listener model in the 200-Hz low-frequency region.
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Fig. 11 NH-listener localization of a moving speaker saying the German sentence “Britta gewann
drei schwere Steine”. b Short-time spectrogram of the acoustic input signal in a 200-Hz band,
a corresponding Lindemann cross-correlation using ANF spike counts. Note the fricatives /s/ and
/sch/ occurring at 1 and 1.4 s in the 200-Hz-band spectrogram, do not provide enough energy for
the Lindemann model to localize

Localization with Cochlear Implants

As sound localization in complex acoustic environments is still poor for most of
the CI users, the question arises if—and if yes, how well—today’s coding strategies
can preserve binaural cues. In the following, two commercial coding strategies are
compared, namely, MED-EL’s former CIS strategy and their current FS4 strategy.

Speech samples derived from the binaural signal generator were processed with
the speech processor and the two coding strategies—see Fig. 7. The ideal assumption
was made that both ears, implants and fittings were identical. Before the electrically-
evoked spike responses of the ANF is calculated, the electrode-stimulation patterns
can be used as inputs to the Lindemann cross-correlation. This is advantageous when
comparing coding strategies as no neuronal model is required yet, allowing us to track
the point at which the binaural localization cues are compromised.

Figure 12 shows that the Lindemann model fails to localize the speech sample
in the case of the CIS strategy, but succeeds in the case of FS4. Therefore, it can
be concluded that FS4, with its fine structure channels, preserves the temporal-fine-
structure-ITD cues needed for localization, but CIS does not. In the case of the CIS
strategy, the Lindemann cross-correlation only outputs values at multiples of 0.6 ms,
which is due to the CIS stimulation rate of ≈1,600 pulses per second in each channel.
For FS4, the Lindemann correlation shows a time-delay resolution of ≈0.2 ms. This
is possible because the FS4 strategy breaks-up the CIS rule and dedicates a higher
sampling rate to the FS channels.

The FS4 coding strategy itself preserves localization cues. However, it is still pos-
sible that the CI-electrode crosstalk—see Sect. 2.2—deteriorates sound localization
cues. For that reason the ANF module was added to the model, and the response for
the electrically-evoked hearing was processed further with the Lindemann module.
Figure 13 shows results from two different locations, the first next to electrode #2 at
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Fig. 12 Speech-localization comparison of different coding strategies with the German speech
sample from Fig. 11b. The output of apical electrode #2 of CIS and FS4 coding strategies is used
as input to the Lindemann cross-correlation module. Whereas the model is unable to localize the
moving sound source using the CIS strategy, the FS4 clearly manages to provide cues required for
sound localization to the CI user. a CIS electrode 2. b FS4 electrode 2
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Fig. 13 Lindemann cross-correlation with ANF-spike-count input of two locations. Location (a) is
directly at electrode #2 at 26.9 mm from base, and (b) between electrodes #3 and 4 at 23.8 mm
from the base. The speech-sample input was processed by the FS4-coding strategy. From that
data the circling source movement can be identified, but the Lindemann cross-correlation is much
more distorted than the NH-listener example from Fig. 11a. The channel crosstalk occurring in
electrical stimulation—see Sect. 2.2—is one of the reasons for deterioration of the Lindemann
cross-correlation

26.9 mm from the base and the second between electrodes #3 and 4 at 23.8 mm from
the base. Compared to the NH case and to electrode-stimulation patterns, results are
worse, but the main shape is still observable—which is indeed a major breakthrough
for a fully-featured coding strategy for speech input. In less ideal cases, the location
cues deteriorate. This is visible at the more basal location, which lies between two
electrodes and also gets more input from the CIS electrodes due to electrical crosstalk.
If left and right electrodes were inserted at different depths, position mismatch could
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further reduce correlations. However, as yet it not clear how much mismatch can be
counterbalanced by the brain’s ability to adapt to unusual cues as long as they are
consistent.

4 Discussion and Conclusion

This chapter describes a framework to evaluate the extent as to which features
required for sound localization are preserved by cochlear-implant coding strate-
gies. Where a correlation model similar to the one proposed by Jeffress [38] is most
likely implemented in the barn owl, investigations of the mammalian neuronal sound-
localization pathway indicate that humans probably have two systems that extract
ILDs and ITDs separately, and probably not with coincidence neurons to estimate the
interaural cross correlation—for a review see [31]. Nevertheless, even if the neuronal
processing schemes to extract cues for sound localization are still not yet completely
understood, it is quite clear that ILDs and ITDs are extracted somehow. This inves-
tigation focused on the evaluation of ITD cues and used the model proposed by
Lindemann. Thus, there is little doubt that the fundamental findings derived from
this procedure hold true even if actual neuronal systems process localization cues
somewhat differently.

The Lindemann model was adopted in such a way so that it can process electrical
pulse-trains and neuronal spike trains. The analysis was limited to the low-frequency
range where neuronal responses exhibit strong phase-locking. At low frequencies,
level differences are usually small and ITD processing is assumed to be often dom-
inant in human sound localization [3]. The results presented here show that ITD
coding works well also for neuronal spike trains despite their probabilistic behavior.
For auditory-nerve spike trains, the Lindemann cross-correlation is more variable as
compared to its original input—see Fig. 10a—nevertheless, ITDs are clearly coded.
This holds true not only for pure tones but also for complex speech sounds—compare
Fig. 11a.

When electrical pulse trains delivered from a CIS coding strategy for one cochlear
implant channel was analyzed, it was observed that ITD coding breaks down
completely—compare Fig. 12a. This is not surprising, because the pulse train deliv-
ered to a single channel, here 1,600 Hz, codes the temporal envelope of the filtered
sound signal and was never intended to provide ITD cues with sufficient precision.
Given that the left and right processors are not synchronized, the time difference
between left and right pulse train is arbitrary and is likely to change over time due
to small deviations of the internal clock frequencies.

However, it is known that CI users are indeed able to localize sound sources, albeit
less precisely than normal-hearing subjects [39, 61]. CI users almost exclusively use
ILDs [70, 80], which was excluded in this investigation. The model results coincide
partly with these findings. The Lindemann model was not able to predict sound
localization based on ILD cues for CIS strategies, because the cross-correlation
mechanism locked on the temporal structure of the signal—see Fig. 12. The temporal
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precision of the pulse trains from a CIS strategy is not sufficient for, and may even
be detrimental to, sound localization. Therefore, ITDs must be ignored by CI users
with CIS strategies, if the neuronal system is able to extract them at all at the high
stimulation rates used in contemporary CIS strategies.

Nevertheless, FS coding strategies might indeed be able to transmit ITDs with
sufficient temporal precision. For instance, the FS4 strategy tested here was found
to provide useful ITDs coding, at least at the level of the pulse train of a single
electrode—compare Fig. 12. The temporal precision is ≈0.2 ms, which is consid-
erable higher than for the CIS strategy due to the higher sampling rate dedicated
to the FS channels. When the responses at the level of neuronal spike trains were
analyzed—compare Fig. 13—a large degradation of the ITD coding caused by chan-
nel crosstalk was found. Therefore, channel crosstalk does not only lead to a spectral
smearing of the information but also affects the precision of temporal coding. Where
this model predicts that, at least in the best case scenario, there is at least some ITD
information left in the neuronal excitation pattern of the auditory nerve, it is unclear if
and to what extent this information can actually be extracted by the auditory system.

In summing up, the model proposed in this chapter generates spiking auditory
nerve responses and provides a quantitative evaluation of temporal cues for sound
localization. The ability of the sound-localization model to process neuronal spike
trains makes the model very versatile. It is possible to evaluate not only responses
of the intact ear but also of the deaf inner ear provided with a cochlear implant.
The model delivers quantitative data and therefore enables comparisons between
different cochlear implant coding strategies. As the model of electric excitation of
the auditory nerve also includes effects such as channel crosstalk, neuronal adaptation
and mismatch of electrode positions between left and right ear,2 its predictive power
goes far beyond pure analysis of the output patterns of implants, which is how
contemporary coding strategies were developed. Nevertheless, up to now, this model
only extends up to the level of the auditory nerve and can, thus, not answer the question
of whether ITDs can still be processed by higher levels of the auditory pathway.
Where this final evaluation always has to be done with CI users, this framework
provides important answers to the question of how well binaural cues are coded
at the first neuronal level, and it allows the design and even the emulation of the
required listening experiments. Given the long development cycles including design,
fabrication, approval, implantation, and finally extensive measurements in a large
group of CI users to yield statistically significant results, the benefit of this approach
cannot be overestimated.
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