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Series Preface for Modern Acoustics and Signal Processing

In the popular mind, the term ‘‘acoustics’’ refers to the properties of a room or
other environment—the acoustics of a room are good or the acoustics are bad. But
as understood in the professional acoustical societies of the world, such as the
highly influential Acoustical Society of America, the concept of acoustics is much
broader. Of course, it is concerned with the acoustical properties of concert halls,
classrooms, offices, and factories—a topic generally known as architectural
acoustics, but it is also concerned with vibrations and waves too high or too low to
be audible. Acousticians employ ultrasound in probing the properties of materials,
or in medicine for imaging, diagnosis, therapy, and surgery. Acoustics includes
infrasound—the wind-driven motions of skyscrapers, the vibrations of the earth,
and the macroscopic dynamics of the sun.

Acoustics studies the interaction of waves with structures, from the detection of
submarines in the sea to the buffeting of spacecraft. The scope of acoustics ranges
from the electronic recording of rock and roll and the control of noise in our
environments to the inhomogeneous distribution of matter in the cosmos.

Acoustics extends to the production and reception of speech and to the songs of
humans and animals. It is in music, from the generation of sounds by musical
instruments to the emotional response of listeners. Along this path, acoustics
encounters the complex processing in the auditory nervous system, its anatomy,
genetics, and physiology—perception and behavior of living things.

Acoustics is a practical science, and modern acoustics is so tightly coupled to
digital signal processing that the two fields have become inseparable. Signal
processing is not only an indispensable tool for synthesis and analysis, it informs
many of our most fundamental models about how acoustical communication
systems work.

Given the importance of acoustics to modern science, industry, and human
welfare Springer presents this series of scientific literature, entitled Modern
Acoustics and Signal Processing. This series of monographs and reference books is
intended to cover all areas of today’s acoustics as an interdisciplinary field. We
expect that scientists, engineers, and graduate students will find the books in this
series useful in their research, teaching, and studies.

July 2012 William M. Hartmann
Series Editor-in-Chief



The ASA Press

The ASA Press imprint represents a collaboration between the Acoustical Society
of America and Springer dedicated to encouraging the publication of important
new books in acoustics. Published titles are intended to reflect the full range of
research in acoustics. ASA Press books can include all types of books published by
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Acoustical Society of America

The mission of the Acoustical Society of America (www.acousticalsociety.org) is
to increase and diffuse the knowledge of acoustics and promote its practical
applications. The ASA is recognized as the world’s premier international scientific
society in acoustics, and counts among its more than 7,000 members professionals
in the fields of bioacoustics, engineering, architecture, speech, music, oceanog-
raphy, signal processing, sound and vibration, and noise control.

Since its first meeting in 1929, The Acoustical Society of America has enjoyed
a healthy growth in membership and in stature. The present membership of
approximately 7500 includes leaders in acoustics in the United States of America
and other countries. The Society has attracted members from various fields related
to sound including engineering, physics, oceanography, life sciences, noise and
noise control, architectural acoustics; psychological and physiological acoustics;
applied acoustics; music and musical instruments; speech communication; ultra-
sonics, radiation, and scattering; mechanical vibrations and shock; underwater
sound; aeroacoustics; macrosonics; acoustical signal processing; bioacoustics; and
many more topics.

To assure adequate attention to these separate fields and to new ones that may
develop, the Society establishes technical committees and technical groups
charged with keeping abreast of developments and needs of the membership in
their specialized fields. This diversity and the opportunity it provides for inter-
change of knowledge and points of view has become one of the strengths of the
Society.

The Society’s publishing program has historically included the Journal of the
Acoustical Society of America, the magazine Acoustics Today, a newsletter, and
various books authored by its members across the many topical areas of acoustics.
In addition, ASA members are involved in the development of acoustical standards
concerned with terminology, measurement procedures, and criteria for determin-
ing the effects of noise and vibration.
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Preface

For more than six decades, scientists have developed binaural models of the human
auditory system. Some of them, for instance, the so-called coincidence model and the
so-called equalization-and-cancellation model, have indeed been quite successful in
explaining basic functions of binaural localization and signal detection.

Recently, advances in digital signal processing and the availability of suitable
hardware have prepared the ground for applying binaural models in the context of
modern technology in many stimulating ways. Recognizing this situation, in 2009
15 laboratories in Europe and the US have founded the research group AABBA,
with the aim of setting up ‘‘Aural Assessment by Means of Binaural Algorithms.’’
Now, after its first 4-year term of activity, the group presents their most relevant
results in the form of this book.

All chapters underwent the same rigorous review process as known from
international archival journals. In other words, each chapter was reviewed by three
members of the AABBA group plus by at least two anonymous external reviewers.

Yet, unlike usual journal papers, the chapters have been written with the
intention to provide, besides their scientifically new content, illustrative intro-
ductions to their respective areas. In addition, there is an introductory chapter on
binaural modeling at large and a chapter that gives an outlook to the future of these
models. The volume further provides a MATLAB toolbox that enables readers to
construct binaural models of their own, tailored to their specific demands. These
features make the book suitable for teaching and a versatile source of references.

Current members of AABBA are research labs at Universities/Technical Univer-
sities in Helsinki, Boston, Cardiff, Oldenburg, Lyon, Troy NY (Rensselaer), Bochum,
Berlin, Copenhagen (Lyngby), Dresden, Eindhoven, Munich, Paris (Pierre et Marie
Curie), Patras, Rostock, Toulouse, and at the Austrian Academy’s Acoustics Research
Institute in Vienna. Altogether, 50 coauthors participated in writing this volume.

It is hoped that the book, which is indeed the first and only of its kind so far,
will pave the way to many further advanced applications of binaural models in
technology in the near future. AABBA intends to stay part of this exciting devel-
opment and has just started on a second 4-years term of joint R&D activity.

Bochum, March 2013 Jens Blauert
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An Introduction to Binaural Processing

A. Kohlrausch, J. Braasch, D. Kolossa and J. Blauert

1 Introduction

Immanuel Kant has been quoted [63] with the statement that “Blindness separates us
from things but deafness from people”, which emphasizes that hearing is a prominent
social sense of human beings. Further, hearing provides us with relevant informa-
tion about the state of our environment and activities around us, including those
in locations beyond our field of vision. Thus, hearing is indeed of high relevance
for our orientation in the world and our situational awareness. Also, in contrast to
vision, hearing doesn’t ever completely sleep and therefore has an effective warning
function.

Engineers like to think of the auditory system as a kind of multi-purpose computer
with two input ports. The input ports are the two ears, at equal height on both sides
of a solid ellipsoid, the head. The head serves as an effective antenna holder, which
can move about with six degrees of freedom relative to the main body, whereby the
body itself can also move in three-dimensional space and can change its orientation
relative to a reference position.

The auditory system receives its input in form of the elastic vibrations and waves
of the surrounding fluids and solids, with which it is in mechanical contact. The

A. Kohlrausch
Human-Technology Interaction, TU Eindhoven, Eindhoven, The Netherlands

A. Kohlrausch
Philips Research Europe, Eindhoven, The Netherlands

J. Braasch
Center Cognition, Communication and Culture,
Rensselaer Polytechnic Institute, Troy NY, US

D. Kolossa (B) · J. Blauert
Institute of Communication Acoustics, Ruhr-Universität Bochum,
Bochum, Germany
e-mail: dorothea.kolossa@rub.de

J. Blauert (ed.), The Technology of Binaural Listening, Modern Acoustics 1
and Signal Processing, DOI: 10.1007/978-3-642-37762-4_1,
© Springer-Verlag Berlin Heidelberg 2013



2 A. Kohlrausch et al.

contact to the receptive organs, the “microphones” of the auditory system, is provided
either by air conduction via the ear canals or by bone conduction via the skull.
Bone conduction is usually neglected when dealing with listening in air, since it is
attenuated by roughly 60 dB with respect to the air-conduction, which represents a
power ratio of 1000000.

We can hear with one ear only, for instance, with one ear being impaired or plugged
[105], but hearing with two functioning ears, binaural hearing, offers a number of
important advantages over monaural hearing. This is due to the fact that binaural
hearing provides additional information, which is encoded in the differences of the
input signals to the two ears. In addition, having two ears placed at slightly different
positions in the sound field offers the possibility to focus attention to the ear with a
better signal-to-noise ratio, indicated as better-ear listening.

Under the assumption that these differences are represented by a linear, time-
invariant system, the only interaural differences possible are interaural arrival-time
differences, ITDs, and interaural level differences, ILDs—both frequency depen-
dent. Yet, note that the assumption of linearity and time invariance is not always
sufficiently fulfilled, for instance, when objects in the sound field move quickly,
such as sound sources, reflective surfaces and/or the listeners, or when there are
turbulences in the air. Nevertheless, even then binaural hearing offers substantial
advantages.

2 Performance of Binaural Hearing

A selection of more relevant advantages of binaural hearing is listed and discussed in
the following—for more details see, for instance, [7]. All these advantages can easily
be tested by plugging one ear firmly with a finger and open it again alternatingly.

2.1 Sound Localization

Auditory events, that is, whatever we hear, exist at specific positions and with specific
extensions in space. The totality of auditory events defines the aural space. The aural
space when listening binaurally is substantially different from the aural space when
listening monaurally.

When listening binaurally, the auditory events are less spatially blurred than
in the monaural case. For instance, two auditory events that are only 1◦ apart in
azimuth can be discriminated binaurally for frontal sound incidence, while in monau-
ral listening the respective localization blur is at least 10 times larger. Higher spa-
tial distinction in the binaural case also holds for elevation and distance. Further,
in binaural hearing, the spatial extent of auditory events is more clearly defined,
that is, there is a clear distinction between spatially compact and spatially diffuse
ones. In monaural hearing, the auditory events are much more spatially diffuse in
general.
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2.2 Dealing with Reflections

When listening to a sound source in a room with reflective walls, the auditory system
receives the direct sound from the source plus multiple reflections from different
directions. Nevertheless, as long as the time delay of the reflections with respect to the
direct sound is within certain limits, there is only one auditory event. In other words,
the direct sound gains localization dominance [73] over the reflected sounds such that
only one auditory event appears, called fusion. The center of gravity of the auditory
event usually lies in the direction of the sound source. This combination of fusion and
localization dominance is called the precedence effect in psychoacoustics, formerly
known as rule of the first wavefront—for details see [8]. The effect is fundamental to
proper formation of the aural space in rooms with reflective walls, since it supports
the identification of the sound source, among other things. If the time delay between
direct and reflected sounds at the ears is less than about 1 ms, fusion occurs as well,
but the reflective sounds codetermine the direction of the auditory event. This effect,
called summing localization, provides the basis for technical applications such as
stereophony and surround sound. If the delay is too large, more than one auditory
event appears, whereby those originating from the reflections are heard as repetitions,
called echoes, of the one which originates from the direct sound. The minimum
delay at which echoes are heard is called the echo threshold. This threshold is signal
dependent; it varies from roughly 1 ms for short impulses through 50 ms for ongoing
speech to 80 ms for classic/romantic music.

Figure 1 illustrates the three effects for the simple case of a direct sound plus
one coherent delayed sound, the reflection. They are, in this case, realized by two
loudspeakers. The lead speaker emits the same signal as the lag one, but the latter
one is delayed. The signals in this example are broadband sounds of equal level, such
as classical music or traffic noise.

At zero delay the auditory event of the listener appears at the midline between
the two loudspeakers. Introducing a delay of up to 1 ms causes the auditory event
to shift laterally with increasing delay toward the direction of the lead speaker. For
delays above 1 ms up to the echo threshold, the auditory event has its center of
gravity in the direction of the lead speaker. Thereby, the listener may well sense
the presence of reflected sound—the auditory event is louder, its timbre changes,
so-called coloration, and it becomes more spacious, but its position is dominated
by the lead-speaker sound. For delays above the echo threshold, the auditory event
splits into a direct part in the direction of the lead speaker and a repetition of it in the
direction of the lag speaker.

A further advantage of binaural hearing versus monaural hearing is that the sense
of reverberance and coloration is reduced. Reverberance is perceived when the sound
field contains manifold reflections of increasing temporal density, usually decaying
exponentially when the primary sound ceases. With one ear plugged, these sound
fields sound distinctly more reverberant than with two ears open. The effect is called
binaural dereverberation [99].
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Fig. 1 Demonstration of summing localization, precedence effect and echo threshold with two
coherent sound sources, the lag one emitting with a delay, τL , relative to the lead one

Reflections with delays of a few milliseconds give rise to spectral changes, since
the addition of the direct sound with these reflections causes comb-filter effects. As a
result, the auditory events sound colored. This coloration is clearly smaller with two
ears open than with one ear plugged, because the exact position of spectral peaks in
the two ears will usually differ and the peaks will therefore be somewhat averaged.
This effect is known as binaural decoloration [28].

2.3 Auditory Stream Segregation

Listening in a sound field generated by several different sound sources and their
reflections leads to a so-called aural or auditory scene in the aural world. Aural scenes
contain multiple concurrent auditory events. The auditory system, in the process of
forming these different auditory events, analyzes the acoustic ear-input signals with
respect to what belongs to the individual sound sources. This process, called auditory
stream segregation, is an important area of current research in psychoacoustics and
perceptual psychology [26]. With one ear plugged, auditory stream segregation is
profoundly impaired, that is, fewer sound sources are identified and fewer distinct
auditory events are formed, with the consequence that the aural world becomes
muddy.

Once auditory stream segregation has been performed successfully and distinct
auditory events have been formed, the listeners can focus their attention on specific
auditory events while suppressing the information rendered by the other ones. For
example, a listener in a concert can concentrate on a specific instrument, such as a
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clarinet, and attend selectively to the melody that this instrument plays, disregarding
the other instruments.

Further, in situations where many concurrent talkers are active simultaneously, lis-
teners are able to concentrate on one voice and, hence, understand it clearly, ignoring
the other voices. This effect, known as cocktail-party effect—compare, for example,
[13]—may provide an enhancement of speech intelligibility relative to monaural
listening. This enhancement can be quantified by measuring the speech-reception
threshold gain or SRT gain and it is often expressed as the BILD—where BILD
stands for binaural intelligibility-level difference [12]. For this measure the additional
amount of noise that can be added to a speech signal to compensate the positive effect
of binaural rather than monaural presentation regarding speech recognition is deter-
mined. With all localization cues available, that is, ITDs and ILDs, the gain in SRT
can amount to 2 to 8 dB, depending on the number and positions of the interfering
speech sources [27].

The basic perceptual effect behind the cocktail-party effect is known as binaural
release from masking. For example, a target signal that would otherwise be masked
by other sounds may reach the perception threshold once it is presented 180◦ out-of-
phase to both ears [70]. This effect can be quantified by considering the difference
in allowable interferer SNR for the sound to remain perceptible, presenting once
monaurally and once binaurally. This change in allowable SNR is termed binaural
masking-level difference, BMLD [54]. One should, however, be aware that the ability
to detect the presence of a signal in a binaural scene does not necessarily imply the
ability to identify its properties, as is needed for speech understanding or source
identification—see, for instance, [101]. In general, the BMLD in a given spatial
configuration will be larger than the BILD.

The ability to concentrate on relevant auditory events and discount other ones can
be exploited by listeners to partially suppress noise and other undesired signals. In
these cases, the common term for the effect is binaural noise suppression. This may,
for instance, become important when dealing with the audibility of warning signals
in noisy surroundings.

In order to understand these effects, the ascending auditory pathway is the first
place to look—see Sect. 4 of this chapter.

3 Application Areas for Binaural Models

The astonishing performance of the binaural auditory system has caught the interest
of scientists as well as engineers for a long time. Among other efforts, they have
started to build models of the auditory system or parts of it. Although models are not
the thing itself, they are able to mimic certain functions of the real auditory system
and, thus, help to understand this system better and often trigger further research
into it.

Besides this research aspect, models have the potential to be applied, since they
mimic specific, technologically interesting functions of the auditory system. As early
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as 1989,1 one of the current authors had proposed to apply binaural models for the
purposes listed in the following.

Source-position finders, tools for architectural-acoustics evaluation, (e.g., such as echo detec-
tors, spaciousness meters), tools for sound-quality evaluation (e.g., binaural-loudness meters,
binaural sensory-consonance meters), tools for editing binaural recordings (e.g., binaural
mixing consoles and control rooms), cocktail-party processor (e.g., for hearing aids and as
front ends for speech recognizers), adaptive pick-up devices for hands-free telephones, intel-
ligent microphones for acoustically adverse conditions (e.g., to reduce noise, reverberance
and coloration), tele-surveillance systems (automatic source identification and assessment)
and, last but not least, experimental tools for psychoacoustic research.

In retrospective, it can be stated that all these application ideas have been tackled by
now and a number of them have lead to successful products. However, microelec-
tronics and signal processing have made substantial progress in the meantime and it
may be time to reconsider the application possibilities of models of binaural hearing.

To this end, the AabbA grouping, formed in 2009, discussed the following poten-
tial applications to define their activities [10], arriving at the following application
categories.

Audio technology Binaural-cue selector, quality assessment of audio channels,
quality assessment of loudspeakers, automatic surveillance of transmission qual-
ity.

Audiology Assessment of disorders of binaural hearing, assessment of binaural
dereverberation and binaural decoloration, assessment of speech-understanding
capabilities in acoustically adverse surroundings, binaural-loudness meter.

Aural virtual environments Auditory-scene mapping, identification of virtual so-
urces, assessment of the perceived room size.

Hearing aids: Fitting of binaural hearing aids, diagnosis of dysfunctions of hearing
aids.

Product-sound quality Assessment of spatial properties of product sounds.
Room acoustics Echo detector, spaciousness meter, detectors of image shifts,

assessment of the sense of envelopment and immersion, assessment of the prece-
dence effect, assessment of a global “quality of the acoustics”.

Speech technology Speaker-position mapping, binaural speech intelligibility, asse-
ssment of speech recognition in adverse acoustical conditions, assessment of the
cocktail-party effect.

Binaural models as a research tool To be employed for the evaluation, assessment
and analysis of human spatial hearing in a multimodal world, for instance, with
listeners moving in space and/or receiving additional visual and/or tactile cues.

Analysis of the results of this discussion lead to the identification of four prominent
generic applications areas for binaural models as follows [10].

1. Spatial scanning and mapping of auditory scenes: Estimation of the position
and the spatial extents of auditory events forming an aural scene. This could

1 among other occasions, at a public lecture at the University of Florida, Gainesville.
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be a natural scene as in room acoustics or a virtual scene as in virtual-reality
applications or at the play-back end of audio systems—including spatially diffuse
auditory events, often perceived as components of reverberance.

2. Analysis of auditory scenes with the aim of deriving parametric representations
at the signal level: When estimated, these parameters may be intended to be used,
for example,
(a) For coding and/or re-synthesis of auditory scenes.
(b) For speech-enhancement in complex acoustic environments—incl. hearing

aids.
(c) For systems to enhance the spatial perception in sound fields, such as better

localization, a better sense of envelopment and/or decoloration and derever-
beration.

(d) For the identification of perceptual invariances of auditory scenes.
3. Analysis of auditory scenes with the aim of deriving parametric representations

at the symbolic level, for example,
(a) Identification of determinants of meaning contained in binaural-activity

maps.
(b) Assignment of meaningful symbols to the output of binaural models.

4. Evaluation of auditory scenes in terms of quality: Whereby quality is judged
strictly from the users’ point of view, for instance,
(a) Quality of the so-called acoustics of spaces for musical performances.
(b) Quality of systems for holophonic representation of auditory scenes, such as

auditory displays and virtual-reality generators.
(c) Spatial quality of audio-systems for recording, transmission and play-back,

including systems that employ perceptual coding, or
(d) Performance of speech-enhancement systems—including hearing aids.

Since 2009, AabbA has been active with regard to these application areas, particu-
larly areas 1, 2 and 4. The current book presents a selection of relevant results of this
endeavor.

4 The Physiology of Binaural Hearing

For engineering models of binaural hearing, the functional adequacy of the system
elements and processes is more relevant than biological fidelity. Nevertheless, these
models are to a large extent inspired by the respective processes in the human auditory
system. Consequently, an introduction into the structure of the human auditory system
is offered here.

The auditory system can be divided into two parts, firstly, the “mechanical” side of
hearing, that is, the conversion of sounds into firing patterns of the auditory nerve, AN,
and secondly, the connectivity and functional mechanisms of neural processing—as
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Fig. 2 Schematic of relevant
components of the binaural
system.
CL…cochlea,
AN…auditory nerve,
SO…superior olivary complex
including LSO and MSO,
IC…inferior colliculus,
A1…primary auditory cortex

far as a biological description of these can already be given with sufficient confidence.
Figure 2 provides an overview of more relevant components of the binaural system.

4.1 From Sounds to Firing Patterns

The human ear can be seen as consisting of three separate parts, the external, the
middle, and the inner ear or cochlea.

The external ear spectrally shapes the sound according to the direction of inci-
dence and passes it on through the ear canal. The eardrum acoustically connects the
external to the middle ear, and protects the sensitive mechanisms of the middle ear,
in which some of the smallest bones in the human body provide for the necessary
impedance adjustment to transmit sufficient energy from the air-filled external ear to
the liquid-filled inner ear, the cochlea. After the sound waves have been transmitted
to the oval window of the cochlea via the three bones composing the middle ear—
malleus, incus, and stapes—they are propagated onwards in the form of traveling
waves, deforming the surface of the basilar membrane, which spans the length of the
cochlea.

A rather precise mapping of sound frequency to the place of excitation on the
basilar membrane is achieved by an elaborate active resonance mechanism, pro-
viding feedback resonance enhancement at the boundary between basilar and tec-
torial membrane. This mapping of frequency to place, the so-called tonotopy, has
the consequence of a sinusoidal wave leading to neural excitation at only a rather
narrow part of the basilar membrane. This neural excitation is the input stimulus
to the auditory nerve, which transmits it onwards to the higher stages of neural
processing.
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4.2 From the Auditory Nerve to the Auditory Cortex

The function of the inner ear can be described quite well by the frequency selectivity
observed in the ascending part of auditory nerve fibers connected to it, that is, by
their so-called tuning curves, together with their refraction times and with some well-
studied temporal and spectral masking effects. In contrast, the functional mechanisms
of higher-level neural processing have not yet led to a similarly consensual model.

There is, however, some agreement on a suitable intermediate representation at
the auditory-nerve level—compare the following section. Using these auditory-nerve
firing patterns as input, the first stages of the auditory system where binaural process-
ing takes place, are the superior olivary complex, SO, and the inferior colliculus, IC.

Intermediate Neural Representations

Throughout the length of the cochlea, about 3500 inner hair cells are arranged along
the basilar membrane in the organ of Corti. All neural representations of auditory
events originate here, where the inner hair cells elicit neural activation patterns in
response to the traveling-wave maxima on the basilar membrane. As the cochlea in
effect performs a frequency analysis of its input signal, every location on the basilar
membrane and thus every inner hair cell has its unique best frequency to which it
responds most strongly. But since the response to one incoming single frequency is
not limited to one point on the basilar membrane, the overall effect of the organ of
Corti is often modeled by a set of adjacent bandpass filters—see, for example, [2]
for details on the characteristics of these auditory filters.

A good overall prediction of the single-frequency response of one auditory nerve
fiber at a specific location on the basilar membrane can be obtained when each
bandpass filter is followed by a neural-response model that includes refractoriness and
adaptation properties [106]. This model also describes several masking effects [80].

The neural activation is phase-locked to the stimulus maxima at low frequencies,
but due to the refraction time of involved neural cells, this phase locking ceases grad-
ually at frequencies between 800 Hz and 2 kHz [92], and response timing becomes
more and more determined by refraction times rather than by stimulus maxima. In
effect this means that the neural activity represents the carrier signal at low frequen-
cies and the envelope at higher ones.

All in all, the activation of the auditory nerve is therefore usually analyzed in
the form of a spectro-temporal response pattern. Examples of these patterns have
been measured for many species and can be found in [89] for anesthetized cats.
After attempts to separate the temporal and the spectral response characteristic, it
was shown that the full spectro-temporal representation encodes significantly more
information, and is thus necessary for a full representation of the neural response [44].

In addition to the previously discussed bottom-up processes in the ascending
auditory pathway, top-down controlled processes have also been shown to be signif-
icant in auditory processing [53]. However, the understanding of such processes is
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still developing, and it will be of great interest to see how physiological data, such
as in [98], can be used to develop a clearer understanding of attention-driven and
learned responses in animals and humans. Modeling aspects of top-down processes
are addressed in [93], this volume.

In the ascending auditory pathway, the superior olivary complex, SO, is the first
place where massive binaural interaction takes place, where the lateral superior olive,
LSO, processes interaural level differences, ILDs, using input from the ipsilateral
and the contralateral cochlear nucleus, and the medial superior olive, MSO, of non-
echolocating mammals predominantly, but not solely, processes interaural time and
phase differences [56]. At a higher level of the auditory pathway, as shown in Fig. 2,
the inferior colliculus, IC, receives input from both cochlear nuclei as well as from
the nearby superior colliculus, which processes visual inputs—leading to the IC’s
potential of performing not only aural-object localization but possibly also multi-
sensory integration.

There is, therefore, a focus in current research work on attempting to determine and
characterize response patterns of IC neurons, in many cases by testing on anesthetized
mammals. A typical representation used here to determine the neural response, r ,
as a convolution of the spectro-temporal stimulus, S, and a gain function, g, is the
so-called spectro-temporal receptive field [106] according to

r(t) =
∑

f

∑

x

g( f, x)S( f, t − x). (1)

While this model is monaural in nature, it needs not be formulated as such, but
can rather consider both ear signals as inputs. For example, [90] have shown that
the ITD sensitivity of single neurons in the IC is compatible with the results of
just-noticeable-ITD measurements on human listeners, making accurate IC-neuron
models an attractive and simple candidate for explaining localization performance.

5 Binaural Modeling

Binaural modeling tries to replicate specific behavioral aspects of binaural hearing by
means of computer algorithms. The different models resulting from these efforts can
be classified in various ways. One can order such models according to the complexity
of the situations they handle. A relatively simple model could be one that localizes
a single sound source in an anechoic environment—see Sect. 5.1. A more complex
counterpart could be a model that indicates the direction of a sound source in a context
of several other competing sound sources and in the presence of reverberation—see
[75], this volume.

Another way is to categorize models according to the aspects of spatial scenes
they are extracting, such as, spatial direction, distance, spatial sound source and room
properties, apparent source width, listener envelopment, the detection of sound source
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or listener movement, and/or statements about the spatial fidelity of reproduction
systems. Finally, a distinction can be made whether models focus on replicating
human performance, independent of the technical means, or whether models are
strongly inspired by replicating components of the human auditory system. The
former models are often strongly based in the discipline of digital signal processing,
for instance, blind source separation [103], while models from the latter type are
much more linked to knowledge of physiology and modular models of the peripheral
hearing system, for example, [60]. The descriptions in this chapter will mostly address
models of the latter type and will be organized in terms of their main emphasis,
namely, firstly binaural localization models and secondly binaural detection models.

5.1 Localization Models

Acoustic localization models typically mimic the human auditory system to some
degree to estimate the positions of sound sources. In robotic applications, knowl-
edge about the human hearing system is only applied as far as it can support the
model performance. In other cases, where the goal is to better understand the human
auditory system, it is important to accurately simulate the functionality or even the
physiological structure of the auditory pathway. Localization models utilize binaural
cues, which are divided into interaural cues—those cues that require both ears to
be analyzed—and monaural cues that can be extracted using only one ear. Interau-
ral cues are often more robust than monaural cues. They play an important role in
judging the lateral position, but provide less salient cues for the discrimination of the
front/back direction and elevation.

Interaural Cues

Interaural cues consist of interaural time differences, ITDs, and interaural level
differences, ILDs. For historic reasons, the models for ITDs are introduced here first,
because the ITD-based Jeffress model [58] was the first localization model. The core
idea of the Jeffress model is the combination of delay lines and coincidence cells. In
this model, two separate delay lines exist for each ear that run parallel. The signals
propagate on each line in opposite direction as shown in Fig. 3. At one point the
signals traveling along both delay lines meet at a coincidence cell, which then sends
a signal to the next stage. If a sound signal is impinging for a sideways direction,
the signal arrives first at the ipsilateral side due to path-length differences from the
sound source to each of the two ears. The signal at the ipsilateral side enters the delay
line first and has more time to travel before it meets the signal from the contralateral
ear. Consequently, both signals will evoke a laterally displaced coincidence cell, the
location of which is tuned to the lateral angle of the sound source. The Jeffress model
is able to predict the lateral position of a sound source, because each cell is tuned to
a specific angle of incidence.
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Fig. 3 Coincidence mechanism as first proposed by Jeffress [58]

Most current localization models, see, for example, [11, 15, 81], use the interaural
cross-correlation, IACC, method that was introduced by Cherry and Sayers [31] to
estimate ITDs. The normalized IACC is defined as:

Ψyl,r (τ ) =

+∞∫
t=−∞

yl(t) · yr (t + τ ) dt

√
+∞∫

t=−∞
y2

l (t) dt ·
+∞∫

t=−∞
y2

r (t) dt

, (2)

with the internal delay, τ , and the left and right sound pressure signals, yl(t) and
yr (t).

Stern and Colburn [94] have shown that this method is a good representation of
Jeffress’ concept, if delay lines and coincidence cells consist of larger cell populations
and stochastic processes. Blauert and Cobben [11] and Stern and Colburn [94] started
to compare the left and right ear signals within frequency bands of approximately one-
third-octave width to simulate the auditory system in greater detail. The segregation
of the signals into narrow frequency bands, the so-called auditory bands, simulates
the mechanics of the basilar membrane of the auditory pathway. The processing of
the hair cells is typically simulated as well, often by applying a half-wave rectifier
and a subsequent low-pass filter—usually of first order with a limiting frequency of
about 1 kHz.

Figure 4 shows the general structure of a binaural model. The model receives input
from both ears that are first processed through middle-ear modules, A. Modules B1..n

represent the bandpass filters and hair-cell processing. In the modules C, the IACC
functions are computed separately for each frequency band before the ILDs are
calculated in modules D. Finally, the model predicts the position of the auditory
event(s) based on available frequency-wide cues contained in the binaural-activity
map, E.

The left panel of Fig. 5 shows an example of an IACC function of a broadband
noise signal for three different positions for a frequency band centered at 434 Hz.
The peak of the solid cross-correlation function is located at 0µs which corresponds
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Fig. 4 Architecture of the bottom-up part of a model of binaural signal processing—from [9]. A. . .

middle-ear modules, B1..n . . . cochlea modules—working in spectral bands, C. . .modules to identify
and assess interaural arrival-time differences, ITDs, in bands, D. . . modules to assess interaural level
differences, ILDs, in bands, E. . . running binaural-activity map with the three dimensions intensity,
sideward deviation and time

Fig. 5 Left Interaural cross correlation functions for a sound source at three different positions in
the horizontal plane. The sound sources at 0◦ and 30◦ azimuth are fully correlated, the sound source
at 270◦ is partly decorrelated. Right Interaural cross correlation functions for a sound source at three
different positions in the horizontal plane. The same stimuli as in the left panel are used, but this
time a two-channel model was applied with delay lines for ±45◦. The actually measured values, x−
for the −45◦-phase condition and x+ for the +45◦-phase condition, are shown by the ‘×’ symbols.
The simulated IACC curves were compensated for half-wave rectification. The gray curves show
the actual IACC curves from the left panel. The normalized cross-correlation curves were estimated

using standard trigonometric sine–cosine relationships for magnitude A =
√

x2− + x2+ and phase
θ = arctan(x−/x+)

to the position at 0◦. The peak of the dashed IACC function is located at 400µs,
which indicates an azimuth of 30◦. The height of the peak depicts the coherence, that
is, the degree to which both signals are similar when shifted by the corresponding
internal delay, τ . In both cases, the signal is fully correlated. In the third example,
depicted by a dash-dotted line, the signal is partly decorrelated as indicated by the
lower peak height of 0.6. The peak location at −750µs belongs to an azimuth angle
of 270◦.
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A few years ago the Jeffress model and with it the cross-correlation approach was
challenged by physiological studies on gerbils and guinea pigs. McAlpine and Grothe
[77] and others [49, 76, 78, 83] have shown that the ITD cells for these species
are not tuned evenly across the whole physiologically relevant range, but heavily
concentrate on two phases of ±45◦. Consequently, their absolute best-ITD values
vary with the center frequency that the cells are tuned to. Dietz et al. [37, 38] and
Pulkki and Hirvonen [84] developed lateralization models that draw from McAlpine
and Grothe’s [77] findings. It is still under dispute whether the Jeffress delay-line
model or the two-channel model correctly represents the human auditory system,
since the human ITD mechanism cannot be studied directly on a neural basis. For
other species, such as owls, a mechanism similar to the one proposed by Jeffress
has been confirmed by Carr and Konishi [30]. Opponents of the two-channel theory
point out that the cross-correlation model has been tested much more rigorously than
other ones and is able to predict human performance in great detail—for instance
[5]. From a practical standpoint the result for both approaches are not as different
as one might think. For the lower frequency bands, the cross-correlation functions
always have a sinusoidal shape, due to the narrow width of the auditory bands—see
the right panel of Fig. 5. Consequently, the whole cross-correlation function is more
or less defined by two phase values 90◦ apart.

Interaural level differences are the second major localization cue. They occur
because of shadowing effects of the head, especially when a sound arrives sideways.
Typically, ILDs reach values of up to±30 dB at frequencies around 5 kHz and azimuth
angles of ±60◦. At low frequencies the shadowing effect of the head is not very
effective and ILDs hardly occur, unless the sound sources comes very close to the
ear-canal entrance [8, 29]. This led Lord Rayleigh [74] to postulate his duplex theory,
which states that ILDs are the primary localization cue for high frequencies and
ITDs for low frequencies. In the latter case, Lord Rayleigh assumed that unequivocal
solutions for the ITDs can no longer exist for high frequencies. Then, the wave length
of the incoming sound is much shorter than the width of the head, which determines
the physiological range for ITDs of approximately ±800µs.

Mills [79] later supported the duplex theory by demonstrating that the auditory
system can no longer detect ITDs from the fine structure of signals above 1500 Hz.
This effect results from the inability of the human auditory system to phase lock the
firing patterns of auditory cells with the waveform of the signal at these frequencies.
Meanwhile, however, it has been shown that the auditory system can extract ITDs at
high frequencies from the signals’ envelopes [61, 62], and the original duplex theory
had to be revised accordingly.

ILDs, α, can be computed directly from the left and right ear signals—which is
typically done for individual frequency bands,

α = 10 log10 (Pl) − 10 log10 (Pr) , (3)

with Pl the power of the left and Pr the power of the right signal. Reed and Blum
[86] introduced a physiologically-motivated algorithm to compute ILDs based on
the activity, E(α), of an array of excitation/inhibition, EI, cells:
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Fig. 6 Bottom EI-cell structure. Top output of the EI cells for a signal with an ILD of −12 dB

E(α) = exp

[(
10α/ILDmax

√
Pl − 10−α/ILDmax

√
Pr

)2
]

, (4)

with Pl, Pr, being the power in the left and right channels and ILDmax the maximal
ILD magnitude that the cells are tuned to. Each cell is tuned to a different ILD.
Figure 6 shows an example for a sound with an ILD of −12 dB. The curve depicts
how the response of each cell is reduced the further the applied ILD is away from
the value the cell is tuned to.

Localization in the Horizontal Plane

Several methods to calculate sound source positions from the extracted binaural
cues exist. One method of achieving this is to create a database to convert measured
binaural cues, namely, ITDs and ILDs, into spherical coordinates. Such a database
or map can be derived from a measured catalog of head-related transfer functions,
HRTFs, of a large number of sound source directions. Here, the binaural cues are
calculated frequency-wise from the left- and right-ear HRTFs of each position. Using
this database, the measured binaural cues of a sound source with unknown positions
can be mapped to spherical angles. The application of the remapping method to
localize a signal in the horizontal plane is discussed in detail in [19], this volume.
Figure 7 shows the results of remapped cross-correlation functions and ILD-based
EI cell-array functions for different frequency bands.

An ongoing challenge has been to figure out how the auditory system combines
the individual cues to determine the location of auditory events—in particular to
answer how the auditory system performs the following tasks.

• Combining different cue types, such as ILDs and ITDs.
• Integrating information over time.
• Integrating information over frequency.
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Fig. 7 Left Interaural time differences. Right Interaural level differences. Plotted for different
frequency bands: Band 5, fc = 234 Hz (solid line); Band 15, fc = 1359 Hz (dashed line); Band
25, fc = 5238 Hz (dotted line)
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Fig. 8 Results for the position-variable model [94] for a 500 Hz sinusoidal signal with different
combinations of ITD and ILD, namely, 0 ms/0 dB (black solid line), 0 ms/15 dB (grey solid line),
and 0.5 ms/15 dB (black dashed line): a interaural cross-correlation functions, b delay-line weighted
function of (a) to emphasize small ITD values, c ILD functions, d combined ITD and ILD analysis
by multiplying (b) with (c) and calculating the centroid as represented by the vertical lines

• Discriminating between concurrent sources.
• Dealing with room reflections.

Much of how the auditory system combines cues has been learned from so-called
trading experiments [36, 51], where test participants were confronted with conflicting
localization cues—for example, the ILD would point to one side, the ITD to the
opposite side. It turns out that the auditory system often places the auditory event in
between the positions the separate ILD and ITD cues would point to by trading off
both cues. Stern and Colburn’s [94] position variable model, shown in Fig. 8, is able
to simulate cue trading by remapping the ILD cue to a function of internal delay and
centering a broad bell-shaped curve at the remapped ILD position. The position of
the combined auditory event is then determined by multiplying the ITD-based cross-
correlation pattern with the ILD curve and calculating the centroid of this curve to
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determine the source position. Gaik [47] later demonstrated that test participants
can learn to discriminate between ITD and ILD cues to indicate the source position
based on either cue. He developed a model based on the Lindemann algorithm [71]
that can demonstrate how auditory events fall apart into two separate events if the
localization-cue mismatch between ILDs and ITDs exceeds a threshold.

A number of detailed overviews [17, 95, 96] have been written on cue weighting
and only a brief introduction will be given here. One big question is how the auditory
system weights cues temporally. The two opposing views are that the auditory system
primarily focuses on the onset part of the signal versus the belief that the auditory
system integrates information over a longer signal duration. Researchers have worked
with conflicting cues—such as trade off between early onset and later ongoing cues—
and it is generally agreed upon that the early cues carry a heavier weight [46, 50,
109]. This phenomenon can be simulated with a temporal weighting function. More
recently it was suggested that the auditory system does not simply blindly combine
these cues, but also evaluates the robustness of these cues and discounts unreliable
cues. A good example for this approach is a model by Faller and Merimaa [45]. In their
model not only the positions of the cross-correlation peaks are calculated to determine
the ITDs but also the coherence—as, for example, determined by the maximum value
of the interaural cross-correlation function. Coherent time-frequency segments are
considered to be more salient and weighted higher assuming that concurrent sound
sources and wall reflections that can produce unreliable cues decorrelate the signal
and thus show low coherence.

Frequency weighting also applies and, in fact, the duplex theory can be seen as
an early model where ITD cues are weighted high at low frequencies, and ILD cues
dominate at higher frequencies. Newer models have provided a more detailed view
of how ITDs are weighted over frequency. Different curves have been obtained for
different sound stimuli [1, 85, 97].

Matters become more complicated if it is not clear how many sound sources
currently exist. Then the cues do not only have to be weighted properly but also
assigned to the corresponding source. Here one can either take a target+background
approach [81], where only the target sound parameters are quantified and everything
else is treated as noise, or one can attempt to determine the positions of all sound
sources involved [15, 16, 88]. Often in models that segregate the individual sounds
from a mixture, the positions of the sources are known a priori, such as in [13, 87].

Dealing with room reflections remains to be one of the biggest challenges in
communication acoustics across a large variety of tasks including sound localiza-
tion, sound source separation as well as speech and other sound feature recognition.
Typically, models use a simplified room impulse response, often only consisting
of a direct sound and a single discrete reflection to simulate the precedence effect.
Lindemann [71, 72] took the following approach to the inhibition of location cues
coming from reverberant information. Whenever his contralateral inhibition algo-
rithm detects a signal at a specific interaural time difference, the mechanism starts to
suppress information at all other internal delays or ITDs and thus solely focuses on
the direct source signal component. The Lindemann model relies on onset cues to be
able to inhibit reflections, but fairly recently Dizon and Colburn [39] have shown that
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the onset of a mixture of an ongoing direct sound and its reflection can be truncated
without affecting the precedence effect.

Based on their observation that human test participants can localize the on-
and offset-truncated direct sound correctly in the presence of a reflection, Braasch
and Blauert recently proposed an autocorrelation-based approach [18]. The model
reduces the influence of the early specular reflections by autocorrelating the left
and right ear signals. Separate autocorrelation functions for the left and right chan-
nels determine the delay times between the direct sound source and the reflection
in addition to their amplitude ratios. These parameters are then used to steer adap-
tive deconvolution filters to eliminate each reflection separately. It is known from
research on the apparent source width of auditory objects that our central nervous
system is able to extract information about early reflections [3], which supports this
approach. The model is able to simulate the experiments from Dizon and Colburn’s
[39] study.

Localization Using Monaural Cues

A model proposed in 1969/1970 [6] analyzes monaural cues in the median plane as
follows. The powers in different frequency bands, the directional bands, are analyzed
and compared to each other. Based on the signal’s angle of incidence (front, above, or
back), the pinnae enhance or de-emphasize the power in certain frequency regions,
which are the primary localization cues for sound sources within the median plane.
Building on this knowledge, Blauert’s model uses a comparator to correctly predict
the direction of the auditory event for narrowband signals.

Zakarauskas and Cynader [107] developed an extended model for monaural local-
ization, which is based on the assumption that the slope of a typical sound source’s
own frequency spectrum only changes gradually with frequency, while the pinnae-
induced spectral changes vary more with respect to frequency. The model primarily
uses the second-order derivative of the spectrum in frequency to determine the ele-
vation of the sound source—assuming that the sound source itself has a locally
constant frequency slope. In this case, an internal, memorized representation of a
sound source’s characteristic spectrum becomes obsolete.

Baumgartner et al. [4], this volume, created a probabilistic localization model
that analyzes inter-spectral differences, ISDs, between the internal representations
of a perceived sound and templates calculated for various angles. The model also
includes listener-specific calibrations to 17 individual listeners. It had been shown
earlier that, for some cases, ISDs can be a better predictor for human localization
performance than the second-order derivative of the spectrum [67]. By finding the
best ISD match between the analyzed sound and the templates, Baumgartner et al.’s
model is able to demonstrate similar localization performance as human listeners.

In contrast to models which do not require a reference spectrum of a sound source
before it is altered on the pathway from the source to the ear, it is sometimes assumed
that listeners use internal representations of a variety of everyday sounds to which
the ear signals are compared to in order to estimate the monaural cues. A database
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with the internal representations of a high number of common sounds has not been
implemented in monaural model algorithms so far. Some models exist, however, that
use an internal representation of a single reference sound, that is, for broad-band
noise [52] and for click trains [57].

5.2 Detection Models

A second major capacity of binaural hearing, besides localizing sound sources, lies in
its ability to improve the detectability of signals in spatial scenes. Where localization
of individual sound sources is enabled by similarity between right and left ear signals
[45], improvements in detectability of sound sources in spatial scenes are made pos-
sible by dissimilarities in these signals. In a spatial aural scene, such reductions in
coherence indicate the presence of several simultaneous sound sources at different
directions from the position of the listener, or the effect of strong room reflections
and reverberation. One of the application-relevant aspects here is the question of how
similarity and dissimilarity need to be defined in order to model and mimic human
behavior. This question is closely related to the method of how the sound is actually
presented to the listeners. Binaural signal detectability has for a long time mainly been
studied in headphone experiments. Here, dissimilarity between the signals reaching
the right and the left ear coincides with inter-channel dissimilarity. This is in con-
trast to two-channel loudspeaker reproduction, where due to crosstalk, each channel
reaches both ears. This aspect becomes relevant if configurations from headphone
experiments are replicated with loudspeakers. A recent application in which this
distinction between interaural and inter-channel similarity has become relevant, was
the development of efficient stereo and multichannel coding algorithms—see [21].

In headphone experiments, a binaural signal detection paradigm can be realized by
combining two stimulus components, a masker and a signal and by presenting these
two components with different interaural parameters. For this type of configuration,
a particular notation has been introduced, namely, NαN ,θN ,τN SαS ,θS ,τS . Here, N and
S indicate the noise and signal components, respectively. The first index indicates the
interaural level difference between the noise and signal components at the ears, where
α stands for the interaural amplitude ratio, θ indicates the (broadband) interaural
phase difference and τ indicates an interaural delay. An additional parameter, used
to modify noise maskers, is the interaural correlation, indicated by the index κ. The
extreme cases of correlation values of ±1 agree with the extreme values of the
interaural phase difference, being 0 or π.

In many basic signal-detection experiments, interaural differences have been
restricted to interaural phase differences, that is,α = 1 and τ = 0, and choices for the
interaural phase difference focused on the values 0 andπ. A specific case of interaural
differences is the presentation of masker or signal only monaurally, a condition, for
which the index m is being used. These early experiments focused on the improve-
ment in signal detectability and, much less so, on the resulting detection thresholds in
terms of signal level or signal-to-noise ratio. Therefore, results of binaural detection
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experiments were typically reported in terms of threshold differences, using thresh-
olds in a typical monaural condition as reference. Monaural in this context refers to
any condition in which masker and signal components are presented with the same
interaural difference, like N0S0 NπSπ , or Nm Sm—but see [68] for exceptions of the
widely assumed performance identity in the conditions N0S0 and Nm Sm . The most
widely studied conditions resulting in a binaural-detection advantage were N0Sπ ,
NπS0, N0Sm and NπSm—see for example [100]. For the usually positive difference
in detection thresholds in a true binaural condition, the term binaural masking-level
difference, BMLD, is used.

Distinguishing Interaural Differences and Similarities

As mentioned in Sects. 4 and 5.1, the binaural system has two different ways of
interaural interaction at the level of individual neurons. These are indicated by letter
combinations EE and EI to describe purely excitatory interaction or the combination
of excitatory and inhibitory interaction. In a functional way, these two modes of
interaction can be associated with the mathematical relation of establishing similarity
via a correlation, or coincidence process, that is, EE-type interaction, and the relation
of establishing dissimilarity, that is, EI-type interaction, which is strongly associated
with the equalization and cancellation (EC) modeling approach—see next section.

These two ways of physiological interaction have channeled two independent
families of binaural models. They have been characterized in the extensive overview
by [32] as cross-correlation models, EE, on the one hand and as noise suppression
models, EI, on the other hand. The resulting binaural mechanisms differ in their
phenomenological properties and physiological basis, yet, they can actually be con-
sidered as closely related, with an EI-based representation being the activity-inverted
version of an EE-based representation. In fact, Colburn and Durlach [32] and Green
[48] stated that the decision variables based on a correlation and on an EC mech-
anism are linear functions of one another, and thus lead to identical predictions of
signal detectability. Consequently, as written in [32], the effect of interaural parame-
ters of both the masker and signal can be accounted for independently of whether
the decision variable is derived from the interaural correlation or from interaural
differences.

This equivalence of the two modeling approaches on the level of a mathematical
analysis does, however, not necessarily hold if it comes to a concrete implemen-
tation in terms of signal-processing models—for a discussion, see [23]. First of
all, several authors showing equivalence between different detection variables make
the explicit or implicit assumption that the masker is a Gaussian noise—see, for
instance, [40]. Therefore, binaural detection experiments using maskers with non-
Gaussian statistics have been instrumental in challenging these conclusions, because
they allow for stimulus conditions where, for instance, the interaural correlation and
the width of the distribution of ILDs and ITDs can be changed independently; this
is in contrast to standard binaural masking conditions using Gaussian noise maskers
and sinusoidal signals. In one such experiments using multiplied noise maskers,
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[22] investigated masking conditions with both static and dynamically varying
interaural differences. The conclusion was that their data could not be explained
by a simple cross-correlation model, and also not on the basis of the standard devia-
tions or the rms values of the interaural differences. The authors proposed a model
based on the intensity difference between the internal representations in the right
and left ear, after equalizing the masker in terms of mean interaural time and level
differences. This approach is related to the EC theory [41], see next section, but
was an attempt to go beyond the initial theory by not only predicting differences
in masked thresholds, but to predict masked thresholds directly. Although being far
removed from a satisfying way to model all their data, this interaural-difference-based
approach was the most promising of all tested and strongly supported the authors in
choosing an EC-based central interaction component in their later development of a
signal-processing model for binaural unmasking [23–25].

For the purpose of this introductory chapter, the description concentrates on bin-
aural detection models based on the EC type of interaction. The primary reason for
this is that in the past 15 years much more effort has been put into developing bin-
aural detection models based on this basic function, compared to efforts focused on
cross-correlation models of binaural signal detection. This concentration of research
efforts is also reflected in the level of detail with which the different model types
have been described and evaluated, and in their applicability to real-world tasks—
compare, for example, the following Ph.D. theses from the past decade [14, 20,
59, 69, 82, 102, 108]. Last but not least, this development is also reflected in the
collection of algorithms included in the AabbA toolbox, as introduced in [91], this
volume.

EC Theory

One of the oldest analytical approaches to model changes in signal detectability
in binaural conditions is the EC theory, introduced by Durlach [41, 42]. The EC
theory in its original form was conceptually a black-box model, as it was primarily
defined with the goal to predict BMLD values. Its internal components and elements
were not based on known structures of the auditory pathway. It allowed to predict the
difference in detection thresholds, that is, the BMLD, relative to a monaural reference
condition. This change in detectability was reached by two basic operations. In a first
equalization step, indicated by the letter “E”, the stimuli presented to the right and the
left ear are equalized. Given that, for binaural masking conditions, the signal-to-noise
ratio at detection threshold is clearly negative, this equalization step basically results
in equalized masker components in the two ears. The equalization transformations
that Durlach considered for the conditions investigated in [42] comprise adjustments
of the interaural amplitude ratio and of the interaural time difference. In the second
step, the cancellation, the signals in the left and right hearing pathways are subtracted
from each other, ideally eliminating the masker completely. In consequence, the
signal-to-noise ratio after the cancellation step is improved relative to the input,
which, in turns, leads to lower detection thresholds.
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These transformations in the E step are performed with some random errors to
reflect that the whole process of equalization and cancellation is realized in a bio-
logical system. In consequence, the two masker components will never be perfectly
equal and, after subtraction, a certain amount of internal noise remains present in the
model. The errors caused in the internal transformation were defined by Durlach as
errors in amplitude and in time, and, in fitting the model to a large set of experimental
data, these errors were quantified in terms of their standard deviation. The best fit was
reached for an amplitude error with βζ = 0.25 and a time error with βδ = 105µs.

This concept has mostly been interpreted as a way for predicting binaural
unmasking, but Durlach pointed out from the beginning that it had a close link
to localization [42]. After all, as part of the E step, the interaural differences in time
and level of the masker need to be determined first in order to be able to equalize
right- and left-ear maskers. Thus, both localization models and a binaural detection
algorithm based on the EC concept are dependent on components or processes that
determine the values of these two interaural parameters. Given the black-box nature
of the concept, this process of determining the optimal transformations in the “E”
step was not addressed in the early descriptions of the EC theory.

The outcome of the EC process is a value for the predicted BMLD that can be
analytically derived by computing the EC factor for the reference condition and the
condition under test, and transforming it into a dB value. For the four main conditions
mentioned before, the EC factor is predicted as follows [43].

f (N0Sπ) = K + 1

K − 1
, (5)

f (N0Sm) = K

2(K − 1)
for K ≤ 2,

= 1 for K > 2, (6)

f (NπS0) = K + 1

K − γ(π/ξ0)
with

ξ0

2π
= f0 = signal frequency, (7)

f (NπSm) = K

2(k − γ(π/ξ0))
for K ≤ 2γ(π/ξ0),

= 1 for K > 2γ(π/ξ0). (8)

In these equations, the term K comprises all internal processing errors

K = (1 + β2
ζ )exp((ξ0βδ)

2). (9)

It is this term that leads to a frequency dependence of the BMLD. This is due to the
fact that the timing error component has a frequency-independent value in terms of
time, which means that this value increases with frequency in terms of signal phase.
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Signal-Processing Models Incorporating the EC Concept

As pointed out above, the EC theory was a first, albeit black-box approach, to
quantify the binaural advantage in signal detectability. The EC theory was, how-
ever, far removed from a true model for binaural processing to be applicable to a
wide variety of experimental conditions without restrictions regarding signal prop-
erties. Already in 1974, the year in which their seminal review chapter on Models of
Binaural Interaction was written, Colburn and Durlach had formulated five require-
ments for binaural detection models, and directly added that, at that point in time,
none of the published models fulfilled all these requirements. They stated—[32],
p. 514—“Aside from the general fact that none of the existing models is capable of
predicting more than a small portion of all the existing data on binaural interaction,
they are all deficient in at least one, and often all, of the following areas.

1. Providing a complete quantitative description of how the stimulus waveforms are
processed and how this processing is corrupted by internal noise.

2. Deriving all the predictions that follow from the assumptions of the model and
comparing these predictions to all the relevant data.

3. Having a sufficiently small number of free parameters in the model to prevent
the model from becoming merely a transformation of coordinates or an elaborate
curve fit.

4. Relating the assumptions and parameters of the model in a serious manner to
known physiological results.

5. Taking account of general perceptual principles in modeling the higher-level,
more central portions of the system for which there are no adequate systematic
physiological results available”.

In the following, some of the steps that have happened since then will be outlined
to indicate how some of these deficits are being dealt with in present-day binaural
detection models.

One of the questions that has been addressed by several authors is how, in the EC
process, the system chooses the compensation values in the “E” step. Durlach [43]
had assumed that if the binaural system has complete a priori information about the
stimulus characteristics it can select the appropriate elements before the test stimulus
is presented. Otherwise, it needs to evaluate a variety of alternative choices and, in
the case of interaural stimulus parameters, the lack of a priori knowledge would
affect the amount of binaural unmasking.

In a series of experiments, one of the present authors specifically tested this
prediction about the influence of a priori information, by presenting subjects with
unpredictable dichotic signal-masker configurations [64, 65]. The experiments indi-
cated that subjects had little difficulties to achieve maximum binaural unmasking
also in such conditions, implying that, in terms of the EC theory, different equal-
ization transformations must be realized in parallel. Thus, there was no need for
an actual adjustment of the optimal equalization strategy and there did not exist an
analyzer sluggishness in monitoring different EC channels at the same time [65].
These conclusions extended earlier arguments by von Hövel that the binaural system



24 A. Kohlrausch et al.

must be capable of realizing different equalization transformations simultaneously
in different frequency bands [104]. From the discussion in [65] it becomes obvious
that at that point in time, around 1990, correlation-based models comprising a central
binaural-activity map with the dimensions frequency and interaural delay allowed
for a much more intuitive explanation for binaural unmasking in dynamic conditions
than the EC theory.

A first step forward with respect to transforming the EC theory into a signal-
processing model was provided by Culling and Summerfield [34]. They studied the
role of across-frequency grouping of interaural time differences in the perceptual
separation of concurrent vowel sounds. To describe their experimental findings, they
developed a model incorporating the following components.

• A Gammatone filterbank to include peripheral frequency separation.
• A nonlinear haircell model including compression and rectification of the filtered

waveforms.
• A linear array of interaural delays.
• The computation of the difference function for each interaural delay, as the integral

over an exponentially tapering window of the absolute differences between the
corresponding filter outputs.

The output of this model thus corresponds to the residue after the cancellation step
of the EC theory [43]. Figure 9, replotted from [34], shows such an output for four

Fig. 9 Internal spectra generated by the model of Culling and Summerfield [34] for the vowel /a/
presented in pink noise at an S/N of −15 dB for four different binaural conditions. Reprinted with
permission from [34], pg. 794. Copyright (1995), Acoustical Society of America
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binaural conditions. The stimulus was composed of the vowel /a/ and pink noise
at such a low signal-to-noise ratio that insufficient information was available in the
two monaural conditions. In contrast, for the two binaural conditions N0Sπ and
NπS0, the formant positions are clearly visible along the frequency axis, indicating
the possibility to recognize the actual vowel.

An up-to date description of this line of binaural modeling can be found in [33],
this volume.

A major step towards a signal-processing binaural model was realized in the work
of Breebaart and colleagues [20, 23–25]. They built on the time-domain monaural
model by [35] and extended it with a binaural processing unit. This unit was realized
as a two-dimensional array of EI elements, where each element was characterized
by a specific interaural delay and an interaural amplitude ratio. Thus, this central
binaural processing unit integrated

• Parallel processing in auditory-filter subbands.
• The interaural delay axis found in cross-correlation models, including the p(τ )

weighting function—see Fig. 3.
• A second axis of interaural intensity differences inspired by [86]—see (4).
• The computation of a difference intensity, as proposed before by [22] and [34].
• A temporal integration of the intensity differences as motivated by experiments

on binaural sluggishness [55, 66].
• A compressive nonlinearity working on the temporally-smoothed output, which

had a linear transformation for small output values, that is, small deviations from
perfect coherence, and converged to a logarithmic transformation for high output
values, which indicate low coherence values.

• Finally, to limit the performance of the model, an additive noise component which
had the same value for all EI elements.

Figure 10 shows as an example the model output in a typical binaural masking con-
dition. The left panel represents the activity within one auditory filter for a diotic

Fig. 10 Left Activity at the output of the binaural processor from [23] within the 500 Hz auditory
filter. The stimulus is a wideband diotic noise up to 4000 Hz, with an overall level of 70 dB SPL.
Right Change in activity when a 500 Hz Sπ signal is added with a level of 50 dB SPL. Reprinted
with permission from [23] pg. 1082. Copyright (2001), Acoustical Society of America
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noise, with a minimum activity at internal delay, τ , and internal level difference,
α, both equal to zero. The right panel shows the increase in activity at the output,
when a low-level Sπ signal is added to the masker. It becomes clear that the biggest
change is visible at those positions where the masker activity is minimal, reflecting
the concept of equalization and cancellation as proposed by Durlach.

This model has been evaluated for a constant set of all parameters across a wide
range of binaural masking conditions [24, 25] and this analysis revealed that indeed,
many aspects of temporal and spectral properties in binaural unmasking could be
described with a fixed set of model parameters. By keeping the model parameters
constant, the authors could also pinpoint those aspects of the model where the agree-
ment was unsatisfactory and where further improvements were needed.

Instead of a detailed discussion of the strong and the weak points of this model,
for which the reader is referred to the original papers from 2001, this section is
concluded by considering, to what extent the five requirements for binaural models
as formulated by Colburn and Durlach nearly 40 years ago [32] have been realized
with this newest generation of binaural signal detection models.

1. Quantitative description of model stages: The model was conceived as a signal
processing model which allowed computing the multi-dimensional internal rep-
resentation for any type of binaural stimulus configuration. In fact, including a
validated version of this model in the AabbA toolbox is a perfect answer to this
requirement.

2. Applying the model in all relevant conditions: In the set of three back-to-back
papers that described the model and its predictions, the same model with a fixed
parameter set was applied to a wide range of experimental conditions, includ-
ing some where the model failed. Nevertheless, for all practical purposes, this
requirement can only be met partially.

3. Small number of free parameters: The two evaluation papers indicated how good
the model predictions across a wide range of experimental conditions were for a
fixed value of all model parameters.

4. Relation to physiological properties: The peripheral, monaural, part of the model
is closely related to properties found in the peripheral neural pathway. An obvious
step to further improvements is the inclusion of a nonlinear auditory filterbank.
The central, EI-type, interaction is inspired by neural elements found in, for
instance, the LSO, although there exists the debate of how prominent EI-type
neurons are in the mammalian auditory system.

5. Modeling principles for central parts without clear physiological models: For the
purpose of signal detectability, the concept of an ideal observer, as realized in the
models by Dau and colleagues, was also incorporated in the binaural model. This
decision unit needs to be adapted to the tasks of the listeners. Thus, the model
as proposed for binaural signal detection cannot directly be applied to signal
localization, despite the fact that information about interaural differences of the
dominant source are clearly visible in the binaural-activity map rendered by the
model.
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6 Conclusion

Since Jeffress [58] proposed his delay line model in 1948, binaural models have
grown in complexity and are now able to address a large set of perceptual phenomena
to perform localization, detection, and feature recognition tasks. Current models are
able to simulate the auditory periphery in great detail and master the extraction
of ITD, ILD as well as monaural cues. A sophisticated set of weighting methods
exist for temporal and frequency weighting to simulate auditory event parameters.
Specialized algorithms exist to deal with multiple and reverberant sound scenarios.
Nevertheless, a holistic model that can simulate a complete set of spatial hearing
tasks does not yet exist. Even if such a model would exist, the non-linear behavior
of the auditory system would make it extremely difficult to calibrate the model to a
very large acoustic data set. Further research is also needed for handling complex
room geometries as current models are typically bound to very simple rooms, often
consisting of a single reflection, while those that attempt to work with any room
geometry are easily outperformed by the human auditory system. Arguably the best
current practice is to build on a modular approach, where a task-specific model
is generated to meet the given requirements. In [91], this volume, such a modular
system, based on the programming environment Matlab, will be introduced that
includes a number of algorithms that have been discussed in this chapter.
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The Auditory Modeling Toolbox

P. L. Søndergaard and P. Majdak

1 Introduction

An auditory model is a mathematical algorithm that mimics part of the human
auditory system. There are at least two main motivations for developing auditory
processing models: First, to represent the results from a variety of experiments within
one framework and to explain the functioning of the auditory system. In such cases,
the models help to generate hypotheses that can be explicitly stated and quantitatively
tested for complex systems. Second, models can help to evaluate how a deficit in
one or more components affects the overall operation of the system. In those cases,
some of the models can be useful for technical and clinical applications, such as
the improvement of human-machine communication by employing auditory mod-
eling based processing techniques, or the development of new processing strategies
in hearing-assist devices. The auditory modeling toolbox, AMToolbox, is a freely
available collection of such auditory models.1

Often a new auditory model aims at improving an already existing one. Thus,
auditory modeling begins with the process of comprehending and reproducing
previously published models. Imagine a thesis adviser who wants to integrate a
new feature Y into an existing model X . The student might spend months on the
implementation of X , trying to reproduce the published results for X , before even
being able to integrate the feature Y . While already the re-implementation of old
models sounds like re-inventing the wheel, sometimes, it is even not possible to
validate the new implementation of the old model because of lack of the original

1 Much of the cooperation on the AMToolbox takes place within the framework of the AabbA
group, an open group of scientist dealing with aural assessment by means of binaural algorithms.
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data as used in the original publication. This problem is not new, it has already been
described in [9] as follows.

An article about computational science in a scientific publication is not the scholarship
itself, it is merely advertising of the scholarship. The actual scholarship is the complete
software development environment and the complete set of instructions which generated the
figures.

In order to address this problem, the manuscript publication must go with the software
publication, allowing to reproduce the published research, a strategy called repro-
ducible research [10]. Reproducible research is becoming more and more popular—
see for instance [76]—and the AMToolbox is an attempt to promote the reproducible
research strategy within the hearing science by pursuing the following three virtues.

• Reproducibility in terms of

– Valid reproduction of the published outcome like figures and tables from selected
publications

– Trust in the published models with no need for a repetition of the verification
– Modular model implementation and documentation of each model stage with a

clear description of the input and output data format

• Accessibility, namely, free and open source software, available to download, use,
and contribute by anyone

• Consistency, achieved by all functions written in the same style, using the same
names for key concepts and conventions for conversion of physical units to
numbers

In the past, other toolboxes concerning auditory models have been published
[60, 63, 71]. The auditory toolbox [71] was an early collection of implementations
focused on auditory processing. It contains basic models of the human peripheral
processing, but the development of that toolbox seems to have stopped. The auditory-
image-model toolbox, AIM, [63] comprises a more up-to-date model of the neural
responses at the level of the auditory nerve. It seems to be still actively developed.
The development system for auditory modeling, DSAM, [60], includes various audi-
tory nerve models including the AIM. Written in C, it provides a great basis for the
development of computationally efficient applications. Note that while the source
code of the DSAM is free, the documentation is only commercially available. In
contrast to those toolboxes, the auditory modeling toolbox, AMToolbox, comprises
a larger body of recent models, provides a rating system for the objective evalua-
tion of the implementations, is freely available—both code and documentation—and
offers high proficiency gain when it comes to understanding and further developing
existing model implementations.
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2 Structure and Implementation Conventions

The AMToolbox is published under the GNU general public license version 3, a free
and open source license2 that guarantees the freedom to share and modify it for all
its users and all its future versions. The AMToolbox, including its source code, is
available from SourceForge.3 AMToolbox works not only in Matlab,4 versions 2009b
and higher, but is in particular developed for Octave,5 version 3.6.0 and higher, in
order to avoid the need for any commercial software. The development is open and
transparent by keeping the source files in the software repository Git6 allowing for
independent contributions and developments by many people. AMToolbox has been
tested on 64–bit Windows 7, on Mac OSX 10.7 Lion, and on several distributions of
Linux. Note that for some models, a compiler for C or Fortran is required. While
Octave is usually provided with a compiler, for Matlab the compiler must be installed
separately. Therefore, binaries for major platforms are provided for Matlab.

AMToolbox is build on top of the large time-frequency-analysis toolbox, LTFAT,
[72]. LTFAT is a Matlab/Octave toolbox for time-frequency analysis and multichan-
nel digital signal processing. LTFAT is free and open source. It provides a stable
implementation of the signal processing stages used in the AMToolbox. LTFAT is
intended to be used both as a computational tool and for teaching and didactic pur-
poses. Its features are basic Fourier analysis and signal processing, stationary and
non-stationary Gabor transforms, time-frequency bases like the modified discrete
cosine transform, and filterbanks and systems with variable resolution over time and
frequency. For all those transforms, inverse transforms are provided for a perfect
reconstruction.

Further, LTFAT provides general, not model-related auditory functions for the
AMToolbox. Several phenomena of the human auditory system show a linear fre-
quency dependence at low frequencies, and an approximately logarithmic depen-
dence at higher frequencies. These include the just-noticeable difference in fre-
quency, giving rise to the mel scale [74] and its variants [26]. The concept of critical
bands giving rise to the Bark scale [82], and the equivalent rectangular bandwidth,
ERB, of the auditory filters giving rise to the ERB scale [58]—later revised in [31].
All these scales, including their revisions, are available in the LTFAT toolbox as
frequency-mapping functions.

2 http://www.gnu.org/licenses/gpl.html, last viewed on 9.1.2013.
3 http://sourceforge.net/projects/amtoolbox, last viewed on 9.1.2013.
4 http://www.mathworks.de/products/matlab/ last viewed on 9.1.2013.
5 http://www.gnu.org/software/octave/, last viewed on 9.1.2013.
6 http://git-scm.com/, last viewed on 11.1.2013.
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2.1 Structure

AMToolbox consists of monaural and binaural auditory models, as described in the
latter sections of this chapter, complemented with additional resources. The addi-
tional resources are

• Data from psychoacoustic experiments and acoustic measurements, used in and
retrieved from selected publications

• Experiments, that is, applications of the models with the goal of simulating exper-
imental runs from the corresponding publications

• Demonstrations of a simple kind, for getting started with a model or data

By providing both the data and the experiments, two types of verifications can be
applied, namely,

• Verifications where the human data serve to reproduce figures from a given paper
showing recorded human data

• Verification where experiment functions simulate experimental runs from a given
paper and display the requested plots. Data collected from experiments with human
can then be compared by visual inspection

Demonstrations are functions beginning with demo_. The aim of the demonstrations
is to provide examples for the processing and output of a model in order to get quickly
into the purpose and functionality of the model. Demonstrations do not require input
parameters and provide a visual representation of a model output. Figure 1 shows
an example for a demonstration, demo_drnl, which plots the spectrograms of
the dual-resonance nonlinear, DRNL, filterbank and inner-hair-cell, IHC, envelope
extraction of the speech signal [greasy].
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Fig. 1 Example for a demonstration provided in the AMToolbox. The three panels show spectro-
grams of the DRNL filterbank and IHC envelope extraction of the speech signal [greasy] presented
at different levels. The figure can be plotted by evaluating the code demo_drnl. a SPL of 50 dB.
b SPL of 70 dB. c SPL of 90 dB
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Data

The data provide a quick access to already existing data and a target for an easy
evaluation of models against a large set of existing data. The data are provided either
by a collection of various measurement results in a single function, for example,
absolutethreshold, where the absolute hearing thresholds as measured with
various methods are provided—see Fig. 2—or by refering to the corresponding publi-
cation, for example, data_lindemann1986a. The latter method provides a very
intuitive access of the data to the user, as the documentation for the data is provided
in the referenced publication. The corresponding functions begin with data_.
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Fig. 2 Example for data provided in the AMToolbox. The figure shows the absolute hearing thresh-
olds measured under various conditions and returned by the function absolutethreshold by
evaluating the following code:

types = {’iso226_2003’,’map’,’er3a’,’er2a’,’hda200’};
symbols = {’k’ ,’r-{}-’ ,’g’ ,’b:’,’y’};
fc=125:125:8000; hold on; box on;
for ii=1:numel(types),

opt={symbols{ii}, ’LineWidth’, 3};
semiaudplot(fc,absolutethreshold(fc,types{ii}),’opts’,opt);

end;
legend(types); xlabel(’Frequency (Hz)’,’FontSize’,16);
ylabel(’Abs. hearing threshold (dB re 20 Pa)’,’FontSize’,16);
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Currently, the AMToolbox provides the following publication-specific data.

• data_zwicker1961: Specification of critical bands [81]
• data_lindemann1986a: Perceived lateral position under various conditions

[47]
• data_neely1988: Auditory brainstem responses (ABR) wave V latency as

function of center frequency [59]
• data_glasberg1990: Notched-noise masking thresholds [31]
• data_goode1994: Stapes footplate displacement [32]
• data_pralong1996: Amplitudes of the headphone and outer ear frequency

responses [64]
• data_lopezpoveda2001: Amplitudes of the outer and middle ear frequency

responses [48]
• data_langendijk2002: Sound-localization performance in the median plane

[45]
• data_elberling2010: ABR wave V data as function of level and sweeping

rate [22]
• data_roenne2012: Unitary response reflecting the contributions from differ-

ent cell populations within the auditory brainstem [68]
• data_majdak2013: Directional responses from a sound-localization experi-

ment involving binaural listening with listener-specific HRTFs and matched and
mismatched crosstalk-cancellation filters [52]

• data_baumgartner2013: Calibration and performance data for the sagittal-
plane sound localization model [3]

The general data provided by the AMToolbox include data like the speech intelligi-
bility index as a function of frequency [12]—siiweightings. Further, data for
the absolute threshold of hearing in a free field [37]—absolutethreshold. The
absolute thresholds are further provided as the minimal audible pressures, MAPs,
at the eardrum [4] by using the flag ’map’. The MAPs are provided for the insert
earphones ER-3A (Etymotic) [38] and ER-2A (Etymotic) [33] as well as the circum-
aural headphone HDA-200 (Sennheiser) [40]. Absolute thresholds for the ER-2A
and HDA-200 are provided for the frequency range up to 16 kHz [39].

Experiments

AMToolbox provides applications of the models that simulate experimental runs
from the corresponding publications, and display the outcome in the form of
numbers, figures or tables—see for instance Fig. 3. A model application is called
experiment, the corresponding functions begin with exp_. Currently, the
following experiments are provided.

• exp_lindemann1986a: Plots figures from [47] and can be used to visualize
differences between the current implementation and the published results of the
binaural cross-correlation model
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Fig. 3 Example for an experiment in the AMToolbox. The figure is plotted by evaluating the code
exp_langendijk2002("fig7") and aims at reproducing Fig. 7 of the article describing the
langendijk2008 model [45]

• exp_lopezpoveda2001: Plots figures from [48] and can be used to verify the
implementation of the DRNL filterbank

• exp_langendijk2002: Plots figures from [45] and can be used to verify the
implementation of the median-plane localization model, see Fig. 3

• exp_jelfs2011: Plots figures from [42] and can be used to verify the imple-
mentation of the binaural model for speech intelligibility in noise

• exp_roenne2012: Plots figures from [68] and can be used to verify the imple-
mentation of the model of auditory evoked brainstem responses to transient stimuli

• exp_baumgartner2013: Plots figures from [3] and can be used to verify the
implementation of the model of sagittal-plane sound localization performance

2.2 Documentation and Coding Conventions

In order to ensure traceability of each model and data, each implementation must be
backed up by a publication in indexed articles, standards, or books. In the AMTool-
box, the models are named after the first author and the year of the publication. This
convention might appear unfair to the remaining contributing authors, yet, it estab-
lishes a straight-forward naming convention. Similarly, other files necessary for a
model are prefixed by the name of the model, that is, first author plus the year, to
make it clear to which model they belong.
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All function names are lowercase. This avoids a lot of confusion because some
computer architectures respect upper/lower casing and others do not. Furthermore,
in Matlab/Octave documentation, function names are traditionally converted to
uppercase. It is also not allowed to use underscores in variable or function names
because they are reserved for structural purposes, for example, as in demo_gamma-
tone or exp_lindemann1986a. As much as possible, function names indicate
what they do, rather than the algorithm they use, or the person who invented it. We
do not allow to use global variables since they would make the code harder to debug
and to parallelize. Variable names are allowed to be both lower and upper case.

Further details on the coding conventions used in the AMToolbox can be found
at the website.7

2.3 Level Conventions

Some auditory models are nonlinear and the numeric representation of physical
quantities like pressure must be well-defined. The auditory models included in the
AMToolbox have been developed with a variety of level conventions. Thus, the inter-
pretation of the numeric unity, that is, the of value 1, varies. For of historical reasons,
per default, the unity represents the sound-pressure level, SPL, as the root-mean-
square value, RMS, of 100 dB. The function dbspl, however, allows to globally
change this representation in the AMToolbox. Currently, the following values for the
interpretation of the unity are used by the models in the AMToolbox.

• SPL of 100 dB (default), used in the adaptation loops [13]. In this representation,
the signals correspond to pressure in 0.5 Pa

• SPL of 93.98 dB, corresponding to the usual definition of the SPL in dB re 20 µPa.
This representation corresponds to the international system of units, SI, namely,
the signals are the direct representation of the pressure in Pa

• SPL of 30 dB, used in the inner-hair cell model [56]
• SPL of 0 dB, used in the DRNL filterbank [48] and in the model for binaural signal

detection [6]

Note that when using linear models like the linear all-pole Gammatone filterbank,
the level convention can be ignored.

3 Status of the Models

Ther description of a model implementation in the AMToolbox context can only be
a snapshot of the development since the implementations in the toolbox are contin-
uously developed, evaluated, and improved. In order to provide an overview of the

7 http://amtoolbox.sourceforge.net/notes/amtnote003.pdf, last viewed on 9.1.2013.

http://amtoolbox.sourceforge.net/notes/amtnote003.pdf
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Table 1 Model status. Ch: chapter number with the model

Model Rating
Name Function Ch D C V

Peripheral models
Continuous-azimuth HRTFs enzner2008 3
Directional time-of-arrival ziegelwanger2013 –
Gammatone filterbank gammatone –
Invertible Gammatone filterbank hohmann2002 –
Dual-resonance nonlin. filterbank drnl –
Cochlear transmission-line model verhulst2012 13
Auditory-nerve filterbank zilany2007humanized –
Inner hair cell ihcenvelope –
Adaptation loops adaptloop –
Modulation filterbank modfilterbank –
Auditory brainstem responses roenne2012 –

Signal detection models
Monaural masking dau1997preproc –
Binaural signal detection breebaart2001preproc 5

Spatial models
Lateralization, cross-correlation lindemann1986 10
Concurrent-speakers lateral dir. dietz2011 6
Lateralization, supervised training may2013 15
Binaural activity map takanen2013 13
Median-plane localization langendijk2002 4
Sagittal-plane localization baumgartner2013 4
Distance perception georganti2013 7

Speech perception models
Speech intelligibility in noise joergensen2011 –
Spatial unmasking for speech jelfs2011 16

The hyphen indicates a general model with no particular assignment to a specific chapter. D: Rat-
ing for the model documentation. C: Rating for the model source code. V: Rating for the model
verification with experiments

development stage, a rating system is used in the AMToolbox. The rating status for
the AMToolbox version 1.0 is provided in Table 1.8

First, we rate the implementation of the model by considering its source code and
documentation.

Submitted The model has been submitted to the AMToolbox, there is, how-
ever, no working code/documentation in the AMToolbox, or there are com-
pilation errors, or some libraries are missing. The model neither appears on
the website nor is available for download

8 The current up-to-date status of the AMToolbox can be found under http://amtoolbox.sourceforge.
net/notes/amtnote006.pdf, last viewed on 14.2.2013.

http://amtoolbox.sourceforge.net/notes/amtnote006.pdf
http://amtoolbox.sourceforge.net/notes/amtnote006.pdf
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OK The code fits the AMToolbox conventions just enough for being avail-
able for download. The model and its documentation appear on the website,
but major work is still required
Good The code/documentation follows our conventions, but there are open
issues
Perfect The code/documentation is fully up to our conventions, no open
issues

Second, the implementation versus the corresponding publication is verified in
experiments. In the best case, the experiments produce the same results as in the
publication—up to some minor layout issues in the graphical representations. Veri-
fications are rated at the following levels.

Unknown The AMToolbox can not run experiments for this model and can
not produce results for the verification. This might be the case when the
verification code has not been provided yet
Untrusted The verification code is available but the experiments do not repro-
duce the relevant parts of the publication (yet). The current implementation
can not be trusted as a basis for further developments
Qualified The experiments produce similar results as in the publication in
terms of showing trends and explaining the effects, but not necessarily match-
ing the numerical results. Explanation for the differences can be provided, for
example, not all original data available, or publication affected by a known
and documented bug
Verified The experiments produce the same results as in the publication.
Minor differences are allowed if randomness is involved in the model, for
instance, noise as input signal, probabilistic modeling approaches, and a plau-
sible explanation is provided

3.1 Peripheral Models

This section describes models of auditory processes involved in the periphery of
the human auditory system like outer ear, middle ear, inner ear, and the auditory
nerve.

Continuous-Azimuth Head-Related Transfer Functions—enzner2008

Head-related transfer functions, HRTFs, describe the directional filtering of the
incoming sound due to torso, head, and pinna. HRTFs are usually measured for
discrete directions in a system-identification procedure aiming at fast acquisition
and high spatial resolution of the HRTFs—compare [51]. The requirement of high-
spatial-resolution HRTFs can also be addressed with a continuous-azimuth model
of HRTFs [23, 24]. Based on this model, white noise is used as an excitation signal
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and normalized least-mean-square adaptive filters are employed to extract HRTFs
from binaural recordings that are obtained during a continuous horizontal rotation
of the listener. Recently, periodic perfect sweeps have been used as the excitation
signal in order to increase the robustness against nonlinear distortions at the price of
a potential time aliasing [2].

Within the AMToolbox, the excitation signal for the playback is generated and
the binaurally recorded signal is processed. The excitation signal can be generated
either by the means of Matlab/Octave internal functions [23] or with the function
perfectsweep [2]. For both excitation signals, the processing of the binaural
recordings [23] is implemented in enzner2008 that outputs HRTFs with arbitrary
azimuthal resolution.

Directional Time-of-Arrival—ziegelwanger2013

The broadband delay between the incoming sound and the ear-canal entrance depends
on the direction of the sound source. The delay, also called time-of-arrival, TOA,
can be estimated from an HRTF. A continuous-direction TOA model, based on
a geometric representation of the HRTF measurement setup has been proposed
[78]. In the function ziegelwanger2013, TOAs, estimated from HRTFs sep-
arately for each direction, are used to fit the model parameters. Two model options
are available, the on-axis model where the listener is assumed to be placed in the
center of the measurement, and the off-axis model where a translation of the lis-
tener is considered. The corresponding functions, ziegelwanger2013onaxis
and ziegelwanger2013offaxis, output the monaural directional delay of the
incoming sound as a continuous function of the sound direction. It can be used to fur-
ther analyze broadband-timing aspects of HRTFs, such as broadband interaural-time
differences, ITDs, in the process of sound localization.

Gammatone Filterbank—gammatone

A classical model of the human basilar membrane, BM, processing is the Gammatone
filterbank, of which there exist many variations [50]. In the AMToolbox, the original
IIR approximation [62] and the all-pole approximation [49] have been implemented
for both real- and complex-valued filters in the function gammatone. To build a
complete filterbank covering the audible frequency range, the center frequencies of
the gammatone filters are typically chosen to be equidistantly spaced on an auditory
frequency scale like the ERB scale [31], provided in the LTFAT.

Invertible Gammatone Filterbank—hohmann2002

The classic version of the Gammatone filterbank does not provide for a method to
reconstruct a signal from the output of the filters. A solution to this problem has
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been proposed [35] where the original signal can be reconstructed using a sampled
all-pass filter and a delay line. The reconstruction is not perfect, but stays within 1 dB
of error in magnitude between 1 and 7 kHz and, according to [35], the errors are barely
audible. The filterbank has a total delay of 4 ms and uses 4th-order complex-valued
all-pole Gammatone filters [49]—equidistantly scaled on the ERB scale.

Dual-Resonance Nonlinear Filterbank—drnl

The DRNL filterbank introduces the modeling of the nonlinearities in peripheral
processing [48, 57]. The most striking feature is a compressive input-output function,
and, consequently, level-dependent tuning. The DRNL function drnl supports the
parameter set for a human version of the nonlinear filterbank [48].

Auditory-Nerve Filterbank—zilany2007humanized

The auditory-nerve, AN, model implements the auditory periphery to predict the
temporal response of AN fibers [79]. The implementation provides a “humanized”
parameter set, which can be used to model the responses in human AN fibers [68].
In the AMToolbox, the function is called zilany2007humanized and outputs
the temporal excitation of 500 AN fibers equally spaced on the BM.

Cochlear Transmission-Line Model—verhulst2012

The model computes the BM velocity at a specified characteristic frequency by
modeling the human cochlea as a nonlinear transmission-line and solving the cor-
responding ordinary differential equations in the time-domain. The model provides
the user direct control over the poles of the BM admittance, and thus over the tuning
and gain properties of the model along the cochlear partition. The passive structure
of the model was designed [80] and a functional, rather than a micro-mechanical,
approach for the nonlinearity design was followed with the purpose of realistically
representing level-dependent BM impulse response behavior [67, 70]. The model
simulates both forward and reverse traveling waves, which can be measured as the
otoacoustic emissions, OAEs.

In the AMToolbox, the model is provided by the function verhulst2012. The
model can be used to investigate time-dependent properties of cochlear mechanics
and the generator mechanisms of OAEs. Furthermore, the model is a suitable pre-
processor for human auditory perception models where realistic cochlear excitation
patterns are required.

Inner Hair Cells—ihcenvelope

The functionality of the IHC is typically described as an envelope extractor. While
the envelope extraction is usually modelled by a half-wave rectification followed
by a low-pass filtering, many variations to this scheme exist. For example, binaural
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models typically use a lower cutoff frequency for the low-pass filtering than monaural
models.

In the AMToolbox, the IHC models are provided by the function ihcenvelope
and selected by the corresponding flag. Models based on the low-pass filter with
the following cutoff frequency are provided, namely, 425 Hz [5]—flag’ihc_bern-
stein’, 770 Hz [6]—flag’ihc_breebaart’, 800 Hz [47]—flag’ihc_lind-
emann’, and 1000 Hz [15]—flag ’ihc_dau’. Further, the classical envelope
extraction by the Hilbert transform is provided [28]—’hilbert’. Finally, a prob-
abilistic approach for the synaptic mechanisms of the human inner hair cells [56] is
provided—’ihc_meddis’.

Adaption Loops—adaptloop

Adaptation loops is a simple method to model the temporal nonlinear properties
of the human auditory periphery by using a chain of typically five feedback loops
in series. Each loop has a different time constant. The AMToolbox implements the
adaptation loops in the function adaptloopwith the original, linearly spaced con-
stants [66]—flag ’adt_puschel’. In [6], the original definition was modified to
include a minimum level to avoid the transition from complete silence and an over-
shoot limitation, ’adt_breebaart’, because it behaved erratically if the input
changes from complete silence [13]. Also, the constants from [15], ’adt_dau’,
are provided, which better approximate the forward masking data.

Modulation Filterbank—modfilterbank

The modulation filterbank is a processing stage that accounts for amplitude modu-
lation, AM, detection and AM masking in humans [13, 27]. In the AMToolbox, the
modulation filterbank is provided in the function modfilterbank. The input to
the modulation filterbank is low-pass filtered using a first-order Butterworth filter
with a cutoff frequency at 150 Hz. This filter simulates a decreasing sensitivity to
sinusoidal modulation as a function of modulation frequency. By default, the modu-
lation filters have center frequencies of 0, 5, 10, 16.6, 27.77 . . .Hz, where each next
center frequency is 5/3 times the previous one. For modulation center frequencies
below and including 10 Hz, the real values of the filters are returned and, for higher
modulation frequencies, the absolute value, that is, the envelope, is returned.

Auditory Brainstem Responses—roenne2012

A quantitative model describing the formation of human auditory brainstem
responses, ABRs, to tone pulses, clicks, and rising chirps as a function of stim-
ulation level is provided in the function roenne2012. The model computes the
convolution of the instantaneous discharge rates using the “humanized” nonlinear
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AN model [79] with an empirically derived unitary response function that is assumed
to reflect contributions from different cell populations within the auditory brainstem,
recorded at a given pair of electrodes on the scalp. The key stages in the model are
(i) the nonlinear processing in the cochlea, including key properties such as com-
pressive BM filtering, IHC transduction and IHC-AN synapse adaptation, and (ii) the
linear transformation between the neural representation at the output of the AN and
the recorded potential at the scalp.

4 Signal-Detection Models

Signal detection models predict the ability to detect a signal or a signal change
by human listeners. These models usually rely on a peripheral model and use a
framework to simulate the decisions made by listeners. Note that functions with
the prefix preproc are modeling the preprocessing part of the model only, while
excluding the decision framework.

Preprocessing for Modeling Simultaneous and Nonsimultaneous
Masking—dau1997preproc

A model of human auditory masking of a target stimulus by a noise stimulus has been
proposed [15]. The model includes stages of linear BM filtering, IHC-transduction,
adaptation loops, a modulation low-pass filter, and an optimal detector as the decision
device. The model was shown to quantitatively account for a variety of psychoacousti-
cal data associated with simultaneous and non-simultaneous masking [16]. In sub-
sequent studies [13, 14], the cochlear processing was replaced by the GM filterbank
and the modulation low-pass filter was replaced by a modulation filterbank, which
enabled the model to account for AM detection and AM masking. The preprocessing
part of this model consisting of the GM filterbank, the IHC stage, the adaptation loops,
and the modulation filterbank is provided by the function dau1997preproc.

Preprocessing for Modeling Binaural Signal Detection Based on
Contralateral Inhibition—breebaart2001preproc

A model of human auditory perception in terms of the binaural signal detection
has been proposed [6–8]. The model is essentially an extension of the monau-
ral model [13, 14], from which it uses the peripheral stages, that is, linear BM
filtering, IHC-transduction, and adaptation loops, and the optimal detector deci-
sion device. The peripheral internal representations for both ears are then fed to
an equalization-cancellation binaural processor consisting of excitation-inhibition,
EI, elements, resulting in a binaural internal representations that is finally fed into
the decision device. Implemented in the function breebaart2001preproc,
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the preprocessing part of the model outputs the EI-matrix, which can be used to
predict a large range of binaural detection tasks [8] or to evaluate sound localization
performance for stereophonic systems [61].

5 Spatial Models

Spatial models consider the spatial position of a sound event in the modeling process.
The model output can be the internal representation of the spatial event on a neural
level. The output can also be a perceived quality of the event like the sound position,
apparent source width, or the spatial distance, also in cases of multiple sources.

Modeling Sound Lateralization with Cross-Correlation—lindemann1986

A binaural model for predicting the lateralization of a sound has been proposed
[47]. This model extends the delay line principle [41] by contralateral inhibition and
monaural processors. It relies on a running interaural cross-correlation process to
calculate the dynamic ITD which are combined with the interaural level differences,
ILDs. The peak of the cross-correlation is sharpened by contralateral inhibition and
shifted by the ILD.

In the AMToolbox, the model is implemented in the function lindemann1986
and consists of linear BM filtering, IHC-transduction, cross-correlation, and the inhi-
bition step. The output of the model is the interaural cross-correlation in each char-
acteristic frequency, see Fig. 4. The model can handle stimuli with a combination
of ITD and ILD and predict split images for unnatural combinations of the two. An
example is given in Fig. 4.

Modeling Lateral-Deviation Estimation of Concurrent
Speakers—dietz2011

Most binaural models are based on the concept of place coding, namely, on coinci-
dence neurons along counterdirected delay lines [41]. However, recent physiologic
evidence from mammals, for example, [55], supports the concept of rate coding [77]
and argues against axonal delay lines. In [19], this idea is extended and the deriva-
tion of the interaural phase differences, IPDs, from both the temporal fine structure
and the temporal envelope without employing mechanisms of delay compensation
is proposed. This concept was further developed as a hemispheric rate compari-
son model in order to account for psychoacoustic data [17] and for auditory model
based multi-talker lateralization [18]. The latter is the basis for further applications,
such as multi-talker tracking and automatic speech recognition in multi-talker con-
ditions [73]. The model, available in the AMToolbox in the function dietz2011,
is functionally equivalent to both [18] and [73].
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Fig. 4 Example for a model output in the AMToolbox. The figure shows the modeled binaural
activity of the 500-Hz frequency channel in response to a 500-Hz sinusoid with a 2-Hz binaural
modulation and a sampling frequency of 44.1 kHz as modeled by the cross-correlation model [47].
The figure can be plotted by evaluating the code below.

Modeling Sound-Source Lateralization by Supervised Learning—may2013

A probabilistic model for sound-source lateralization based on the supervised learn-
ing of azimuth-dependent binaural cues in individual frequency channels is imple-
mented in the function may2013 [54]. The model jointly analyzes both ITDs and
ILDs by approximating the two-dimensional feature distribution with a Gaussian-
mixture model, GMM, classifier. In order to improve the robustness of the model,
a multi-conditional training stage is employed to account for the uncertainty in ITDs
and ILDs resulting from complex acoustic scenarios. The model is able to robustly
estimate the position of multiple sound sources in the presence of reverberation [54].
The model can be used as a pre-processor for applications in computational auditory
scene analysis such as missing data classification.

Modeling Binaural Activity—takanen2013

The decoding of the lateral direction of a sound event by the auditory system is
modeled [75] and implemented in takanen2013. A binaural signal, processed
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by a peripheral model, is fed into functional count-comparison-based models of the
medial and lateral superior olive [65] which decode the directional information from
the binaural signal. In each frequency channel, both model outputs are combined and
further processed to create the binaural activity map representing neural activity as
a temporal function of lateral arrangement of the auditory scene.

Modeling Median-Plane Localization—langendijk2002

Sound localization in the median planes relies on the analysis of the incoming monau-
ral sound spectrum. The monaural directional spectral features arise due to the filter-
ing of the incoming sound by the HRTFs. A model for the probability of listener’s
directional response to a sound in the median plane has been proposed [45]. The
model uses a peripherally-processed set of HRTFs to mimic the representation of the
localization cues in the auditory system. The decision process is simulated by min-
imizing the spectral distance between the peripherally-processed incoming sound
spectrum and HRTFs from the set. Further, a probabilistic mapping is incorporated
into the decision process.

In the AMToolbox, the model is provided by the function langendijk2002.
The model considers the monaural spectral information only and outputs the predic-
tion for the probability of responding at a vertical direction for stationary wideband
sounds within the median-sagittal plane.

Modeling Sagittal-Plane Localization—baumgartner2013

The median-plane localization model [45] has been further improved with the focus
to provide a good prediction of the localization performance for individual listen-
ers in sagittal planes [3]. The model considers adaption to the actual bandwidth
of the incoming sound and calibration to the listener-specific sensitivity. It consid-
ers a binaural signal and implements binaural weighting [34]. Thus, it allows for
predicting target position in arbitrary sagittal planes, namely, parallel shifts of the
median plane. The model further includes a stage to retrieve psychophysical per-
formance parameters such as quadrant error rate, local polar RMS error, or polar
bias from the probabilistic predictions, allowing to directly predict the localization
performance for human listeners. For stationary, spectrally unmodulated sounds, this
model incorporates the linear Gammatone filterbank [62], and has been evaluated
under various conditions [3]. Optionally, the model can be extended by incorporat-
ing a variety of more physiology-related processing stages, for example, the DRNL
filterbank [48]—flag ’drnl’ or the humanized AN model [68, 79] in order to
model, for example, the level dependence of localization performance [53]—flag
’zilany2007humanized’.

In the AMToolbox, the model is provided by the function baumgartner2013,
which is the same implementation as that used in [3]. Further, a pool of listener-
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specific calibrations is provided, data_baumgartner2013, which can be used
to assess the impact of arbitrary HRTF-based cues on the localization performance.

Modeling Distance Perception—georganti2013

A method for distance estimation in rooms based on binaural signals has been pro-
posed [29, 30]. The method requires neither a priori knowledge of the room impulse
response, nor the reverberation time, nor any other acoustical parameter. However, it
requires training within the rooms under examination and relies on a set of features
extracted from the reverberant binaural signals. The features are incorporated into
a classification framework based on GMM classifier. For this method, a distance
estimation feature has been introduced exploiting the standard deviation of the inter-
aural spectral level differences in the binaural signals. This feature has been shown
to be related to the statistics of the corresponding room transfer function [43, 69]
and to be highly correlated with the distance between source and receiver. In the
AMToolbox, the model is provided by the function georganti2013, which is the
same implementation as that used in [30].

6 Speech-Perception Models

Speech perception models incorporate the speech information into the modeling
process and thus, they usually test the speech intelligibility under various conditions.

Modeling Monaural Speech Intelligibility in Noise—joergensen2011

A model for quantitative prediction of speech intelligibility based on the signal-to-
noise envelope-power ratio, SNRenv, after modulation frequency selective process-
ing has been proposed [44]. While the SNRenv-metric is inspired by the concept
of the signal-to-noise ratio in the modulation domain [20], the model framework is
an extension of the envelope-power-spectrum model for modulation detection and
masking [25], and is denoted as the speech-based envelope-power-spectrum model,
sEPSM. Instead of comparing the modulation power of clean target speech with a
noisy-speech mixture such as the modulation transfer function [36], the sEPSM com-
pares an estimate of the modulation power of the clean speech within the mixture and
the modulation power of the noise alone. This means that the sEPSM is sensitive to
effects of nonlinear processing, such as spectral subtraction, which may increase the
noise modulation power, where the classical speech models fail. In the AMToolbox,
the model is provided by the function joergensen2011.
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Modeling Spatial Unmasking for Speech in Noise
and Reverberation—jelfs2011

A model of spatial unmasking for speech in noise and reverberation has been pro-
posed [46]. It has been validated it against human speech reception thresholds, SRTs.
The underlying structure of the model has been further improved [42] and operates
directly upon binaural room impulse responses, BRIRs. It has two components,
better-ear listening and binaural unmasking, which are assumed to be additive. The
BRIRs are filtered into different frequency channels using an auditory filterbank [62].
The better-ear listening component assumes that the listener can select sound from
either ear at each frequency according to which one has the better signal-to-noise
ratio, SNR. The better-ear SNRs are then weighted and summed across frequency
according to Table I of the speech-intelligibility index [1], see siiweightings.
The binaural unmasking component calculates the binaural masking level difference
within each frequency channel based on equalization-cancellation theory [11, 21].
These values are similarly weighted and summed across frequency. The summed
output is the effective binaural SNR, which can be used to predict differences in SRT
across different listening situations. Implemented in the AMToolbox in the function
jelfs2011, the model has been validated against a number of different sets of
SRTs both from the literature and from [42]. The output of the model can be used
to predict the effects of noise and reverberation on speech communication for both
normal-hearing listeners and users of auditory prostheses and to predict the benefit
of optimal head orientation.

7 Working with the AMToolbox

Assuming a working Matlab/Octave environment, the following steps are required
for getting started.

1. Download the LTFAT from http://ltfat.sourceforge.net
2. Download the AMToolbox from http://amtoolbox.sourceforge.net
3. Start the LTFAT at the Matlab/Octave prompt: ltfatstart
4. Start the AMToolbox: amtstart

Further instructions on the setup for the AMToolbox can be found in the file INSTALL
in the main directory of the AMToolbox. The further steps depend on the particular
tasks and application. As a general rule, a demonstration is a good starting point, thus,
a demo_ function can be used to obtain a general impression of the corresponding
model, see for example Fig. 1. Then, an experiment, namely, an exp_ function can
be used to see how the model output compares to the corresponding publication,
see for example Fig. 3. Editing the corresponding exp_ function will help to under-
stand the particular experiment implementation, the call to the model functions, and
the parameters used in that experiment and generally available for the model. By

http://ltfat.sourceforge.net
http://amtoolbox.sourceforge.net
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modifying the exp_ function and saving as an own experiment, a new application
of the model can be easily created.

Note that some of the models require additional data not provided with the
AMToolbox because of size limitations. These data can be separately downloaded
with the corresponding link usually being provided by the particular model function.

8 Conclusion

AMToolbox is a continuously growing and developing collection of auditory models,
human data, and experiments. It is free as in “free beer”, that is, freeware, and it
is free as in “free speech”, in other words liberty9 It is available for download,10

and auditory researchers are welcome to contribute their models to the AMToolbox
in order to increase the pool of easily accessible and verified models and, thus, to
promote their models in the community.

Much effort has been put to the documentation. The documentation in the software
is directly linked with the documentation appearing at the web page,11 providing a
consistent documentation of the models. Finally, a rating system is provided that
which clearly shows the current stage of verification of each model implementation.
The ratings are continuously updated,12 and we hope that all the implementations of
the models from AMToolbox will reach the state of Verified soon.
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Trends in Acquisition of Individual
Head-Related Transfer Functions

G. Enzner, Chr. Antweiler and S. Spors

1 Introduction

Head-related transfer functions, HRTFs, describe the filtering effect of head, pinna
and torso when sound from an acoustic point source is received at a defined position
in the ear-canal of a listener under free-field acoustic conditions. The time-domain
equivalent of the HRTF is termed head-related impulse response, HRIR. The defin-
ition of HRTF/HRIR in particular relies on the free-space, that is, anechoic acoustic
conditions to separate the human receiver characteristic from other room acoustic
characteristics.1

The HRIR intuitively represents the interaural time differences, ITDs, between
both ears as a predominant feature of spatial hearing [113]. Due to the ambivalence
in time-difference estimation at high frequencies, human hearing further exploits
interaural level differences, ILDs, as a second important criterion for sound-source
localization. On a locus where neither time or level differences are of significance, for
instance, in the median plane, or, more generally, on the cones-of-confusion around
the interaural axis, the auditory localization finally relies on spectral cues, which are
represented by the HRTF as well [20].

Primary application of HRTF has been headphone-based or loudspeaker-based
binaural rendering of virtual auditory spaces—see, for example, [5, 23, 53, 75, 105].

1 If an acoustic enclosure is meant to be involved in the HRIR, this is indicated by using the
terms binaural room impulse response, BRIR, or binaural room transfer function, BRTF.
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In this context, the perceptual relevance of different HRTF characteristics was initially
studied a lot by researchers—see Sect. 1.1 for more details. According to their results,
several HRTF databases were then created via extensive measurement projects in
order to provide the HRTF characteristics most effectively and comprehensively to
hearing researchers and virtual-auditory-display designers—see Sect. 1.2. The con-
sideration of HRTFs eventually seems to be an evergreen in the audio and acoustics
domain and, as a result, continued research activity in hi-fidelity acquisition and
representation of HRTFs is observed, as shown by the main parts of this chapter.

1.1 HRTF Characteristics and Their Perceptual Relevance

A first important factor of the human binaural receiver concerns the individual char-
acteristics of HRTFs and the related best-practice definition regarding the actual
point of measurement at the ears. In [52], the entire acoustic transfer from a sound
source in free space to the eardrum of a listener is therefore divided into three parts
as follows,

• transmission from the free-field to the blocked entrance of the ear-canal,
• impedance conversion related to ear-canal blocking, and
• transmission along the ear-canal.

All three parts of the transmission were found to be highly individual. However,
a comparison of measurements at the open entrance, blocked entrance, and eardrum
revealed the smallest inter-individual deviations for the case of a blocked-entrance
HRTF. The blocked-ear condition was therefore identified to provide a suitable mea-
surement point in the sense that complete spatial information is supposed to be
included in this least-individual HRTF variant. An extensive measurement on 40
individuals was presented by the same authors in [76].

The relevance of individual HRTFs is often judged with respect to the correspond-
ing localization accuracy in virtual auditory spaces. A well known study [111, 112],
using broadband-noise stimuli and no head-tracking support, reports accurate local-
ization for both real free-field sources and virtual sources generated from the listeners
own HRTF. However, with non-individual HRTFs the same authors observed high
rates of front-back and up-down confusions, so-called reversals, as compared to real
free-field stimuli [110]. While the interaural cues for horizontal location seemed to be
robust, their data in particular suggests that the spectral cues have to be considered as
important for resolving location along the cones-of-confusion around the interaural
axis. These spectral cues are distorted in non-individual binaural synthesis. With the
confusions being resolved, there is again a close correspondence between real free-
field and virtual-source conditions. In a different work [77], an increased confusion of
localization in the median plane was confirmed when non-individual rather then indi-
vidual binaural recordings were presented to listeners. Across different studies and
the authors’ own experience, a particular confusion is often given by the perception
of increased elevation for stimulation in the horizontal plane [16, 17].
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A bit later, the comprehensive study in [18] evaluated the effect of HRTF indi-
vidualization in direct comparison with the effects of head movements and room
characteristics using speech stimuli. In this context, and in line with [26], HRTF
individualization played the least significant role regarding accurate localization of
azimuth and elevation and also regarding the reduction of reversals. Head-tracking
and the related supply of head-motion cues to the listener was figured out as the most
effective means for reducing reversals. This result confirms the earlier observed
importance of real and virtual head movements for binaural localization of sound
sources [109, 114]. Regarding the desired externalization [55] of virtual sources,
in other words out-of-the-head-localization [83]—related to distance perception—it
was found that the simulation of room characteristics, such as reverberation, had the
most significant effect [18]. This finding supports other work [35, 104]. It is finally
intuitive to argue that multi-modal, such as audio-visual or audio-tactile stimulation,
will further help externalization of sound.

After the observation of localization and externalization ability using individual
HRTF, it was investigated how accurately the HRTFs must be reproduced in spec-
tral terms to achieve true three-dimensional perception of auditory signals. It was
found that magnitude HRTFs can be smoothed significantly via truncation of their
Fourier-series representation without affecting the perceived location of sound. It
turned out that the first 16 Fourier components of the magnitude HRTF still pro-
vided enough information for all listeners and all source directions. Yet stronger
spectral smoothing was reported to cause a perception of increased elevation, what
is consistent with the fact that magnitude-HRTF spectra from high elevations are
relatively smooth as compared to lower elevations. According to the same study, an
HRTF phase-response representation in terms of a broadband interaural time delay
is, in most of the cases, indistinguishable from natural sounds. Similar conclusions
were drawn in [24], where magnitude- and phase-response smoothing was imple-
mented via gammatone filterbanks, that is, filters that mimic the spectral selectiv-
ity of the human cochlea. Refinement of these results and comprehensive extension
towards the applicability, for instance, in MPEG-Surround audio coding, is presented
in [25, 117]. For specific speech stimuli, [19] found that lowpass filtering at 8 kHz
dramatically degraded localization regarding the polar angle and increased cone-of-
confusion errors, while the preservation of information above 8 kHz was explicitly
demonstrated to be essential for accurate localization of the source direction.

From the engineering point of view, particularly the HRIR filter length used for
HRIR representation in binaural rendering is an important parameter. It is generally
accepted that impulse-response durations of 5–10 ms seem to be sufficient. Theoret-
ically, a much larger choice could be considered to capture the exact and full spectral
detail of the HRTF. However, psychophysical tests did not reveal a perceptual rele-
vance of the HRIR length beyond 256 coefficients at 44.1 kHz sampling frequency.
In conjunction with binaural room-simulation systems, it has been reported that even
128 coefficients or less can be perceptually sufficient [97]. Another important engi-
neering parameter, the spatial resolution of the HRTF, is treated in the following
section together with the properties of various HRTF databases. More comprehen-
sive and somewhat recent overviews of the various aspects of HRTFs, such as the
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measurement point, the measurement signal, the duration of the HRIR, the required
spatial density, the need for individualization, headphone auralization, and some
results of psychophysical validations, are found in [79, 115].

1.2 HRTF Databases

On the one hand, the HRTF is an important element of the technology of binaural
hearing and listening. On the other hand, the acquisition of actual HRTFs has been
recognized as a tedious and delicate lab task of its own. It typically requires an ane-
choic chamber to obtain free-space HRTFs and, moreover, a large time budget of
both the operator and the subject of interest to complete a measurement with suffi-
cient spatial resolution. The implementation of the measurement procedure further
requires one or more loudspeakers, in-ear microphones, and audio reproduction and
recording software. In most of the cases, the subject of interest is steered mechanically
into different directions w.r.t. the loudspeaker or, alternatively, the loudspeaker posi-
tion is adjusted in discrete steps, that is, typically a stop-&-go approach is applied,
which uses a lot of time on measurement pause and recalibration. Various systems of
this kind exist, but they are usually not transportable to other locations. As a result,
many organizations have chosen to provide their measurements as publicly avail-
able databases to the community. In the following, only a few are listed in roughly
chronological order. If not noted otherwise, the impulse responses are provided with
44.1 kHz temporal sampling.

KEMAR—the MIT-Media-Lab HRTF Database: This early and still very popular
database [45] for the Knowles-Electronics Mannequin for Acoustic Research,
KEMAR, represents an extensive, but non-individual recording. The database
and good documentation are available online.2 In total, 710 different positions
were sampled at elevations ranging from −40◦ to +90◦ in 10◦ increments with
regard to the horizontal plane and roughly 5◦ azimuth spacing per elevation at
1.4 m distance between loudspeaker and KEMAR. All HRTF pairs are provided
as individual *.wav files.

AUDIS—the AUDIS Catalog of Human HRTFs: In the context of the European-
Union, EU, funded project Auditory Displays, AUDIS, [22], which heavily relied
on binaural technology and reliable human HRTF data, a special program for
collecting HRTF sets was undertaken. Here, 2.4 m distance to the loudspeaker,
10◦-spaced elevations from −10◦ to +90◦, and an azimuth spacing of 15◦ was
used. The total measurement then comprised 122 directions for each of about
20 individuals. Moreover, round-robin tests have been performed with four con-
tributing partners to analyze differences in the data across different laboratories.

2 http://sound.media.mit.edu/resources/KEMAR.html

http://sound.media.mit.edu/resources/KEMAR.html
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This resulted in a compact set of recommendations, termed Golden Rules for
HRTF measurements.3

CIPIC—the CIPIC Lab HRTF Database: This database contains measured
HRTFs at high spatial resolution for more than 90 individuals with 45 publicly
available, including KEMAR with large and small pinna [7]. The spatial sam-
pling is mostly uniform with 5◦ spacing in both elevation and azimuth, result-
ing in 1250 sampling points on the 1 m radius auditory sphere. The database4

additionally includes a set of individual anthropometric measurements for each
subject. The latter can be useful to perform scaling studies on HRTFs. Additional
documentation and Matlab utility programs are provided with the database.

LISTEN—the IRCAM HRTF Database: Again developed in an EU project, this
database contains blocked-meatus HRTFs at elevations from −45◦ to +90◦ in 5◦
increments with roughly 15◦ azimuth spacing, resulting in 187 positions in total.
It provides raw HRTF measurements, optional diffuse-field compensation and
morphological data. The database for about 50 individuals and documentation
are available online.5 The impulse responses come as individual *.wav files or in
more compact Matlab format.

ARI—the Acoustics-Research Institute HRTF Database: It comprises high-
resolution HRTFs of more than 70 individuals. Most of them were measured
using in-ear microphones, but for a few further ones behind-the-ear microphones
placed in hearing-aid devices were employed. 1550 positions were then mea-
sured for each listener, including the full azimuth-circle—with 2.5◦ spacing in the
horizontal plane—and elevations from −30◦ to +80◦. The multiple exponential-
sweep method [69] was applied to reduce the measurement time to the minimum
deemed to be acceptable for the listeners. Database, tools and documentation are
available.6

FIU—the Florida-International-Univ. DSP-Lab HRTF Database: This recent data-
base contains HRTF data from 15 individuals at twelve different azimuths and six
different elevations [51]. It further includes 3-D images of the persons’ pinnae and
related anthropometric measures of the various parts of the pinnae. The database
is unique in the sense that it uses a higher audio-sampling frequency as compared
to other databases, namely, 96 kHz. Download of the database is provided.7

A general consequence arising from those spatially sampled HRTF databases is the
need for spatial interpolation of HRTF data in 3-D-sound systems [16], particularly,
when dynamic auditory virtual environments are desired. The issue of interpolation
will be treated in more detail in Sect. 2 of this chapter.

3 http://dx.doi.org/10.5278/VBN/MISC/AUDIS
4 http://interface.cipic.ucdavis.edu
5 http://recherche.ircam.fr/equipes/salles/listen/index.html
6 http://www.kfs.oeaw.ac.at/content/view/608/606
7 http://dsp.eng.fiu.edu/HRTFDB

http://dx.doi.org/10.5278/VBN/MISC/AUDIS
http://interface.cipic.ucdavis.edu
http://recherche.ircam.fr/equipes/salles/listen/index.html
http://www.kfs.oeaw.ac.at/content/view/608/606
http://dsp.eng.fiu.edu/HRTFDB
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1.3 Alternative Trends in HRTF Acquisition

All the previous databases represented single-range HRIR data, that is, such with a
constant measurement radius from the head-center of the subject. However, besides
the directional information, the distance of the virtual source to the listener is an
important cue in binaural sound rendering. Since simple HRTF-level adjustments are
insufficient to achieve spatial realism in the near-field of the listener, in particular,
the exact wavefront curvature, the concept of a range-dependent HRTF database was
evaluated [65]. The reported database, which is, however, not publicly available, was
sampled at distances of 0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 1.5, and 2.0 m, and the directional
resolution was chosen to 1◦ azimuth spacing and 5◦ elevation spacing over the full
sphere. A similar configuration was applied for the more recent and downloadable
3-D-HRTF recordings in [87].

The databases as mentioned in the previous section were obtained from measure-
ment systems differing regarding their particular hardware, software, and lab room
architecture. In order to achieve at least some harmonization of HRTF measurement,
the Club Fritz has launched a round-robin study in which the HRTF of the particular
dummy head Neumann KU-100 is being measured at different laboratories [63].
The involved labs partially coincide with the aforementioned database providers.
While previous works have focused on inter-positional and inter-individual HRTF
variations a lot, see also [88], the study by Club Fritz is devoted to the analysis
of variations due to the measurement system. According to the Club-Fritz authors,
their preliminary analysis of spectral characteristics and interaural time-differences
revealed some differences the significance of which still need to be clarified.

Contrasting the usual way of setting up an HRTF measurement system—see, for
instance, [20, 76, 86]—a reciprocal configuration for HRTF measurements is pro-
posed in [121]. By applying the acoustic principle of reciprocity, one can swap the
loudspeaker and microphone positions as compared to the conventional direct lab
arrangement, namely, by inserting a miniature speaker into the test person’s ear and
placing several microphones around this person. The reciprocity principle implies
that swapped loudspeaker and microphone positions, unless other changes were made
to the setup, yield identical impulse responses as compared to the direct arrangement
[21]. The advantages of this method include a reduction of inter-equipment reflec-
tions due to the placement of small-size microphones instead of the larger loud-
speakers around the head. More importantly, HRTF acquisition for many positions
can be done in parallel—and thus quickly—by playing the probe sound via a single
in-ear loudspeaker and recording the received sound simultaneously at all micro-
phones. One frequent concern regarding the reciprocal method is the possibly weak
or distorted low-frequency output of the miniature loudspeaker in the ear canal. The
proposed remedy to this issue is offered by low-frequency augmentation of the recip-
rocal method with an analytical HRTF solution based on a simple head and torso
model—see, for instance, [4, 6]. A related drawback of reciprocal HRTF acquisition
is the poor signal-to-noise ratio which results for reasons of maintaining comfort and
physiological safety during in-ear reproduction. Longer probe-signal reproduction
and more averaging is thus required to achieve the desired quality.
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Apart from purely-acoustic measurement, an individual HRTF dataset can be gen-
erated from knowledge of the anthropometric data of the individual of interest and on
the basis of several acoustically measured non-individual HRTF training sets. Here,
a regression model first needs to be constructed between the anthropometric data and
the features of the respective person’s measured HRTFs. The anthropometry of a new
person is then mapped to individual HRTFs by the principle of best selection or by
means of least-squares regression [91, 95]. However, to determine the anthropometry
of a person with suitable precision is a challenging task and often requires exhaust-
ing procedures or special equipment [92]. With the availability of bio-morphological
data in the form of scanned 3-D-images, the numerical boundary-element method
could also be applied for the calculation of individual HRTFs [42, 62, 82]. Here, high
accuracy and computational efficiency of the calculation are the primary aspects of
the ongoing optimization [48, 50]. In [43], a systematic analysis of the dependency
of HRTFs and binaural cues on the anthropometric data of children and adults of all
ages is found.

1.4 HRTF Representation

In order to achieve straightforward HRTF exchange, for example, for mutual support
and HRTF comparison between different laboratories, harmonization regarding the
HRTF database file format is urgently required. To this end, a very useful option has
recently been suggested, namely, the open directional-audio file format, OpenDAFF
[106]. OpenDAFF is an open-source software package for storage and realtime usage
of directional audio data such as loudspeaker directivities, microphone directivities
and, last but not least, HRTFs. Each particular radius of the HRTF sphere is repre-
sented by a single *.DAFF file with uniform angular sampling. The package provides
free Matlab routines for writing and reading OpenDAFF, a free C++ reader and a
graphical-viewer tool for DAFF data. It is supposed to facilitate exchange of direc-
tional audio data. It has been developed in the context of real-time auralization of
auditory virtual realities. For instance, the advanced 3-D-continuous-azimuth HRTF
data to be described in detail in Sect. 3 of this chapter are available in OpenDAFF
[107]. While OpenDAFF is immediately applicable for the direct storage of mea-
sured HRIRs/HRTFs, more sophisticated HRTF representations, for instance, such
as based on the pole-zero model [54], would require more tailored file formats.

Starting from seminal work in [40], representation of HRTFs via spherical-
harmonics transformation has become a very popular strategy. Especially the
inherent interpolation ability and, thus, continuous representation of 3-D-HRTFs
via the inverse transformation has attracted researchers a lot—see, for instance,
[34, 85, 119]. However, at the same time, it was noticed that this transformation
is very sensitive to spatially sampled or missing data, such as discrete HRTF with
polar gaps. Therefore, a regularization of the transformation was suggested—see,
for example, [122]. Still another approach utilizes the continuous-azimuth HRTF
measurements as described in Sect. 3.7 in order to avoid both a regularization of
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the transformation and spatial aliasing in the representation of 3-D-HRTF fields
[39]. Very recently, a systematic approach to 3-D-HRTF sampling was presented. It
answers the two intercoupled questions regarding the computation of the spherical
harmonics transformation [120], namely,

• What is the required angular resolution?
• What is the most suitable sampling scheme?

In this study, a sampling scheme termed IGLOO, known from astrophysics, was
identified as the most suitable one after comparison of different candidates, see [123],
and it was stated that 2209 HRTF measurements across the sphere are required in
this case. In contrast to the direct storage of HRTFs, such as with OpenDAFF, a file
format dedicated to high-order-spherical-harmonics representation of HRTFs is not
yet available.

2 Discrete Measurement, Interpolation, Extrapolation

2.1 Sequential Capturing of HRTFs

A set of left- and right-ear HRTFs depends on source position, listener position, head-
and torso-orientation and various other parameters. Typical measurement setups
allow only to vary one or two spatial degrees of freedom. In most cases, the incidence
angle of the source is varied with respect to a fixed head-and-torso orientation for
a constant source distance. For a fixed orientation of the head with respect to the
torso and under acoustic free-field conditions it is equivalent if either the source is
mechanically moved on a spherical surface, for instance, a loudspeaker, or if the
listener or head-and-torso simulator is rotated. In most of the currently available
datasets the head orientation has not been varied with respect to the torso orientation
or incidence angle of the source. The importance of these degrees of freedom have,
for example, been investigated in [49].

For a particular angle of incidence, the HRTFs can be measured by emitting a spe-
cific measurement signal by the source positioned at the particular position and cap-
turing the response at the left and right ear, respectively. In order to capture an entire
dataset of HRTFs, traditional techniques sequentially repeat this procedure for each
source position. Hence, the considered spatial degrees of freedom are spatially sam-
pled in typical measurement setups and databases. In contrast, the novel techniques
discussed in Sect. 3 allow for a spatially-continuous measurement of HRTF datasets.

In order to capture HRIRs or BRIRs efficiently, head-and-torso simulators have
been developed that allow to mechanically rotate and even tilt the head by means of
software controlled servo motors [33, 66, 74]. In Fig. 1a the modified KEMAR [30]
mannequin of the Quality-and-Usability Lab at Technische Universität Berlin is
shown. It enables a horizontal rotation of the head, while the torso remains fixed in
the room-coordinate system. The industrial servomotor allows for a rotation of the
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(a) (b)

Fig. 1 Head-and-torso simulators—right photo courtesy of A. Lindau, TU Berlin: a Modified
KEMAR, b FABIAN

head in the range of ±180◦ with a precision of 0.01◦. Figure 1b shows the instrument
for fast and automatic binaural impulse-response acquisition, FABIAN [66], built
by the Audio-Communication Group at Technische Universität Berlin. This system
allows for horizontal rotation of the head in the range of ±90◦ and a vertical tilting
in the range of −45◦ to +90◦, both with a mechanical precision of 0.02◦. The drive
mechanism can be modified to cover rotation and lateral tilting alternatively. Both
head-and-torso simulators can be placed on a software-controlled turntable in order
to rotate the torso independently from the head.

2.2 Signal Acquisition and HRTF Calculation

For static scenarios, an HRTF represents the transfer function of the linear and time-
invariant, LTI, acoustic system between the source and the ear. The choice of the
excitation signal interestingly has decisive influence on the results. Different or partly
even contradictory constraints have to be met. The optimal excitation depends primar-
ily on the algorithm for HRIR extraction, but also on the measurement scenario—for
example, static or dynamic—the acoustic environment, and the hardware setup. To
achieve a high signal-to-noise ratio, SNR, over the frequency range of interest, the
excitation signal must have high energy, as compared to the system noise, everywhere
in this frequency range. As the maximum amplitude is limited, a higher energy level
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of the signal is possible if the energy is additionally spread over time rather than
using impulse-like excitation.

Besides the question of how to feed as much energy as possible into the measure-
ment system, also distortions due to non-ideal converters, loudspeaker non-linearities
or amplifiers have to be considered in practice. In the digital-to-analog converter, for
example, a steep low-pass filter for suppressing frequency components above the
Nyquist frequency might introduce severe distortions due to overshooting effects
[78]. In order to keep this influence low, the digital amplitude has to be reduced
accordingly, which in turn results in a loss of SNR.

A wide variety of methods have been developed to estimate the transfer path
or impulse response of static LTI systems. A good overview on various methods
applied in the field of acoustics can be found in [78]. In this context, maximum-
length sequences, MLS, [89] and nonperiodic sweeps are used most commonly. In
the sense of maximum energy efficiency the MLS seems to be ideal. However, its
rectangular waveform is difficult to reproduce by D/A converters and loudspeakers.
As a consequence, its level has to be reduced by 5–8 dB below full scale to avoid clip-
ping effects [78, 100]. In contrast, sweep signals provide a lower energy efficiency,
but due to their specific waveform they better avoid nonlinear distortions such that
higher energy, roughly 3 dB more, can be brought into the system with sweeps.

Sweeps can be created efficiently in the time or frequency domain, both resulting
in specific properties. Linear and logarithmic sweeps are the most common types
used in acoustic measurements. The former having a white spectrum and the latter a
pink spectrum decaying with 3 dB/Octave. Additional preemphasis may be sensible
in actual setups, for instance, to tailor the signal to the maximum power that a
speaker can handle at higher frequencies or to fit it to the empirical noise floor, in
turn retrieving measurements with frequency independent SNR. In the time domain,
sweep signals have a constant amplitude, allowing for easy adjustment of the level to
avoid clipping. The practical crest factor is around 3 dB. One remarkable property of
the sweep technique is that the contributions resulting from the nonlinear behavior
of the measurement chain can be partly identified and removed by time-domain
windowing of the resulting impulse response [102]. When using logarithmic sweeps,
one can identify the so-called harmonic impulse responses [41, 81], which represent
the frequency responses corresponding to the nonlinear components. Overall, in
static scenarios, sweep signals as excitation signals show a clear advantage over
other ones when considering practical aspects like noise, time variance and nonlinear
distortions [78].

Once the sweep signal is created, it is emitted through the measurement loud-
speaker. The response at the ear-canal has to be captured synchronously. The fre-
quency response is calculated by linear deconvolution, preferably in the frequency
domain—that is, by spectral division. Note that, without countermeasures being
applied, the frequency response of the electro-acoustic equipment will be part of the
measured HRTF. In practice, it is thus advisable to equalize at least the loudspeaker
response. Equalization can be incorporated into the preemphasis during sweep gen-
eration. Some authors define the HRTF as the ratio of the transfer functions from the
source to the ear and the transfer function form the source to a position at the center
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of the head without the head being present—see, for example, [20]. This definition
already incorporates the compensation of the electro-acoustic equipment used.

The achieved signal-to-noise ratio, SNR, of the calculated impulse response
depends, amongst other things, on the length of the sweep signal, repetitions of the
measurement, and the background noise. However, the required SNR range is still
discussed amongst researchers. The target range is somewhere between 60–90 dB.

In recent years, the importance of individual HRIR data is growing rapidly, for
example, for studies concerning acoustic source localization. For the acquisition of
individual HRIRs it is of special interest to keep the measurement procedure as short
as possible. One approach to speed up the procedure is to measure HRTFs from mul-
tiple directions of sound incidence simultaneously. The basic sweep technique has
been extended for the simultaneous measurement of multiple transfer functions using
overlapping or interleaved exponential sweeps [47, 69, 71, 84, 108]. An alternative
approach considering dynamic measurement of HRTFs is discussed in Sect. 3.

2.3 Angular Interpolation and Range Extrapolation

It is obvious that the measurement of HRIR datasets becomes a complex task for a
densely-sampled space of source positions. Therefore, most of the currently available
datasets consider only a single measurement distance with a limited, sometimes
not constant, angular resolution. Typical distances are in the range of 1–3 m with
an angular resolution of 5◦ to 10◦—see Sect. 1.2. It is generally assumed that for
source distances above approximately 1 m the characteristics of HRTFs do not change
significantly [20, 29]. In contrast, it is however known that HRIRs vary substantially
with distance for nearby sources [28, 29, 58, 64, 96]. Such HRIRs are typically
termed as near-field or proximal HRIRs.

A number of techniques have been proposed to compute HRIRs for arbitrary
source positions from HRIR datasets measured at fixed distance and discrete
angles. Two different classes can be distinguished, (i) angular interpolation and
(ii) range/distance extrapolation techniques.

The first class considers computing HRIRs at angles in between two measured
angles using the HRIRs from these two or even more angles. A wide range of inter-
polation techniques has been proposed in the past decades. The simplest method is
to compute a weighted average of two or more neighboring HRIRs [73]. A number
of alternatives to this basic approach can be found in the literature, of which only
a few shall be mentioned here, namely, frequency-domain techniques [32] relying
on minimum-phase representations of HRIRs, techniques using methods from data-
analysis and representation [93], techniques using functional representations [118],
or the approaches based on virtual sound field synthesis [80]. A comparisons of
various interpolation methods can, for instance, be found in [31, 56].

In practical systems with moving virtual sources or dynamic auralization based
on head-tracking, cross-fading of HRTFs is often applied [16]. Here the signals
resulting from the convolution of a source signal with two different HRTFs are
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cross-faded in order to avoid audible artifacts. Linear or raised-cosine windows are
often applied in this context. It has been shown that this method provides good results
for horizontal-plane HRIRs with an angular spacing of up to 2◦ or more [67, 73]. Due
to its simplicity, cross-fading is used in many practical implementations of auditory
virtual environments based on HRIRs [46, 105].

Regarding the second class, range extrapolation techniques, approaches have been
presented that modify the spectrum of measured HRTFs, for instance, by using sim-
plified head models in order to cope for the spectral changes that occur for nearby
sources [27, 61, 90]. However, these techniques neglect the structural changes for
different source distances.

A number of advanced approaches have been published that are based upon extrap-
olation using principles from wave physics. In [34, 118] two techniques are presented
which are based upon the expansion of HRIRs into surface spherical harmonics.
These spherical harmonics form an orthogonal basis that can be used for joint angu-
lar interpolation and range extrapolation under free-field acoustic conditions. There-
fore, extrapolating the HRIRs is only possible if no scattering objects are located
within the extrapolation region. The application of these techniques to the compu-
tation of near-field HRIRs is, hence, limited to distances not including reflections
from the upper torso. Methods based on spherical harmonics expansions are also
challenging with respect to numerical implementation. The method reported in [34]
was recently verified in [85] by comparing extrapolation results with the radial HRTF
measurements known from [65] and with analytic HRTF solutions .

As an alternative to the approaches above, the distribution of measurement posi-
tions of a given HRTF dataset can be interpreted as a virtual loudspeaker array.
When this array is considered as a unit, where each virtual loudspeaker is driven by
an individual signal, the HRTFs from a desired virtual source to both ears can be syn-
thesized. Various techniques have been published which are based upon the theory of
higher-order Ambisonics, HOA, for the computation of the driving signals [72, 80].
The synthesis of virtual sources at closer distances than the virtual loudspeaker
array—so-called focused sources—is, however, subject to numerical instabilities [1]
in HOA. Most of these issues can be overcome by using the driving functions derived
from wave-field synthesis, WFS, for the virtual secondary sources [98, 99].

3 Continuous-Azimuth HRTF Measurement

Depending on the desired resolution of an HRTF table, the discrete stop-&-go mea-
surement procedure can be very time-consuming. Durations in the order of hours
were reported. In individual HRTF acquisition, this would be an unacceptable bur-
den on the person to be measured. The long duration is at least partly caused by
the fruitless measurement pause during mechanical recalibration of the apparatus to
each new location, that is, to each new solid angle in space. In this section, recent
developments are thus outlined to overcome this fundamental limitation of discrete
measurement technology. The development essentially consists of two concepts,
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while the goal is to achieve fast and comprehensive and, at the same time, consistent
measurement in the azimuth and the elevation coordinate of the auditory sphere.
The first concept in Sect. 3.1, a concept of mechanical nature, translates the desired
high-resolution spatial measurement into a time-varying identification problem via
dynamical apparatus. The corresponding time-varying-system model is developed in
Sect. 3.2 and the related adaptive signal processing for HRIR extraction in Sect. 3.3.
The second concept, in Sect. 3.4, uses multichannel adaptive identification for simul-
taneous measurement from several directions. Sects. 3.5–3.7 outline the results of an
experimental validation, a set of guidelines for practical usage, and an HRTF-field
representation of comprehensive HRTF data in a perspective plot.

3.1 Dynamical Apparatus

Several publications have expressed that discrete measurement in space is a neces-
sary characteristic in the configuration of HRTF measurement systems—for example,
[115, 119]. However, at least three other systems were proposed recently to over-
come this de-facto standard in the context of HRTF acquisition [3, 36, 44]. All of
them rely on the same and probably sole way to overcome the stop-&-go nature of
discrete measurements, that is, via dynamical lab apparatus—generally using mov-
ing microphones or, more specifically to HRTF, continuously rotating persons or
dummy heads equipped with binaural in-ear microphones.

The system to be discussed here is illustrated in Fig. 2 and represents a large-
scale extension of the one proposed in [37]. It uses a circular loudspeaker array the
individual channels of which are assigned to a set of discrete elevations. The subject
of interest, an artificial head or real person, is placed in the center of the array at
1–2 m distance from the loudspeakers. The recording microphones are placed at the
entrances of the blocked ear canals [52].

By rotating the person of interest or artificial head with uniform angular speed,
while the loudspeakers continuously reproduce probe noise, the HRTFs of the whole
azimuth-circle can be observed in finite time, that is, after completion of one revolu-
tion. The observation time per angle φ will be infinitesimally short in this configu-
ration, and this naturally raises the question of how to extract the HRTF under these
circumstances? In what follows, a novel time-varying-system model is described—
developed by one of the current authors [36]—that is intended to pave the way for
comprehensively extracting the HRTF or, more precisely, the plenacoustic HRTF on
the circle [2].

3.2 Formal System Model: State-Space Model

At first, single-loudspeaker activity in the system is considered, that is, via activity
caused by the signal xθν (k) = x0◦(k) in the horizontal plane, θν = 0◦, at discrete
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Fig. 2 System with continuously rotating azimuth at Ruhr-Universität Bochum. Left-side view on
the median plane of the auditory sphere. Loudspeakers are fixed

time k. The chosen loudspeaker emits a broadband probe signal, for instance, white
noise or perfect sequences—see Sect. 4—and the signals yΨ

θν
(k) and yr

θν
(k) at the

left (Ψ) and right (r ) ears are recorded. After a continuous and full 360◦ rotation of the
test person, this binaural recording represents an observation of all possible HRIRs
on the azimuth-circle under consideration. Generalization to multiple-loudspeaker
activity follows in Sect. 3.4.

Assuming sufficiently linear and broadband transducers, the acoustic transmis-
sion of the loudspeaker signal to the rotating binaural receiver can be described
as a slowly time-varying linear system with impulse responses, hΨ/r

κ,θν
(φk), at the

impulse-response index κ. These HRIRs then formally relate input and output of the
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corresponding system according to a linear convolution model using the convolution
index κ, that is,

yΨ/r
θν

(k) =
N∑

κ=0

xθν (k − κ)hΨ/r
κ,θν

(φk) + nΨ/r (k), (1)

where N denotes the length or, in other words, the memory of the HRIRs. The
symbol nΨ/r (k) models independent observation noises, for instance, microphone
noise, microphone-amplifier noise, or ambient noise at the recording positions. The
quasi-continuous azimuth, φk = ωokTs , at time k, evolves with constant angular
speed, ωo = 2π/T360, where T360 is the duration of a 360◦ revolution and Ts = 1/ fs

is the temporal sampling interval. In this time-varying-system model, every time
index k thus corresponds to an angle φk , or, vice versa, every angle φk corresponds to
a time index k. Assuming a revolution time on the order of 1 min and using a sampling
frequency of fs = 44.1 kHz, it can be easily found that the effective azimuth-spacing,
∂φ = φk+1 −φk = 2π/T360/ fs , then lies on the order of ∂φ ≈ 10−4 degrees, which
is extremely small.

Then, let

xθν (k) = ⎡
xθν (k), xθν (k − 1), . . . , xθν (k − N + 1)

⎣T (2)

denote a vector of N most recent HRIR input samples, that is, the loudspeaker-input
samples, and let

hΨ/r
θν

(φk) =
(

hΨ/r
0,θν

(φk), hΨ/r
1,θν

(φk), . . . hΨ/r
N−1,θν

(φk)
⎥T

(3)

represent the corresponding vector of the HRIR coefficients as defined by (1). Using
this notation, the binaural-signal model in (1) can be formally written via the inner
vector product, that is, with dropping the convolution index,

yΨ/r
θν

(k) = xT
θν

(k)hΨ/r
θν

(φk) + nΨ/r (k). (4)

Looking at the time-varying HRIR, hΨ/r
θν

(φk), as the unknown state of the apparatus

and at yΨ/r
θν

(k) as the state observation, (4) can be readily termed a state-observation
equation.

In order to express the time-varying nature of the unknown system in formal
terms, the concept of first-order recursive Markov modeling is made use of, namely,

hΨ/r
θν

(φk+1) = a · hΨ/r
θν

(φk) + ΔhΨ/r
θν

(φk), (5)

where two consecutive states at times k and k + 1 are related to each other by
the transition coefficient, 0 ≤ a ≤ 1, and the independent process-noise quantity,
ΔhΨ/r

θν
(φk), with covariance σ2

Δ = E{ΔhΨ/r
θν

(φk)ΔhΨ/r
θν

(φk)
T }. This Markov model
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ideally represents a quantity hΨ/r
θν

(φk) which gradually changes between time instants
k and k + 1 in an unpredictable way. This behavior may not be exactly in agreement
with the nature of continuously rotating HRIRs. Lacking a more specific and deter-
ministic model, this simple stochastic framework will in the following be considered
as a good basis with presumably sufficient modeling ability.

Equations (4) and (5) together form a linear dynamical model, that is a state-
space model, of the unknown state hΨ/r

θν
(φk). Further assuming normally distributed

observation and process noises, nΨ/r (k) and ΔhΨ/r
θν

(φk), respectively, (4) and (5)
represent a Gauss-Markov dynamical model. The linear minimum mean-square error
estimate, ĥΨ/r

θν
(φk), of the unknown state, hΨ/r

θν
(φk), at time k, given the observations,

yΨ/r
θν

(k), up to and including time k, that is, the conditional mean, subject to the

Gauss-Markov model, ĥΨ/r
θν

(φk) = E{hΨ/r
θν

(φk) | yΨ/r
θν

(k), yΨ/r (k − 1), . . .}, can then
be computed on the basis of conventional Kalman filtering [57, 60, 94, 103].

3.3 Single-Channel Adaptive Algorithm for Spatially-Continuous
HRIR Extraction

While the established Kalman filter is known as the best linear state-tracking device,
both the underlying model as well as the Kalman-filter algorithm and the correspond-
ing resource requirement turn out to be a bit oversized for the problem at hand. Thus,
we revert here to a special case of the Kalman filter, the broadband Kalman filter,
BKF, as introduced in [38]. This filter type is ideally suited for the current application
with broadband input, namely, white-noise, xθν (k), into the unknown acoustic sys-
tem. It consists of the following set of recursive and iteratively coupled equations, in
which ĥΨ/r

θν
(φk) denotes the predicted, that is, a-priori, and ĥΨ/r,+

θν
(φk) the corrected,

that is, a-posteriori, state estimate,

ĥΨ/r
θν

(φk+1) = a · ĥΨ/r,+
θν

(φk), (6)

p(k + 1) = a2 · p+(k) + σ2
Δ, (7)

eΨ/r (k) = yΨ/r
θν

(k) − xT
θν

(k )̂hΨ/r
θν

(φk), (8)

ĥΨ/r,+
θν

(φk) = ĥΨ/r
θν

(φk) + k(k)eΨ/r (k), (9)

p+(k) =
(

1 − xT
θν

(k)k(k)/N
⎥

p(k), (10)

k(k) = p(k)xθν (k)
(

p(k)xT
θν

(k)xθν (k) + σ2
n,Ψ/r (k)

⎥−1
. (11)

In the BKF, the quantity σ2
Δ represents a diagonal process-noise covariance, σ2

Δ =
σ2

ΔI, in place of a generally fully-populated process-noise-covariance matrix in the
original Kalman filter. The symbol σ2

n,Ψ/r (k) denotes the observation-noise power at
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the left and right ears. As a result of the aforementioned assumptions in the derivation
of the BKF, a scalar p(k) is sufficient instead of the state-error covariance matrix in
a full-fledged Kalman filter.

These properties of the broadband Kalman filter render the desired state estima-
tion highly efficient, both computationally and in terms of memory requirements.
The depicted algorithm simply consists of inner vector products and scalar multi-
plications/additions instead of full-fledged matrix algebra. The expected ability to
handle time-varying unknown systems in the continuous presence of possibly time-
varying observation-noise levels is, however, fully preserved in this simplification of
the original Kalman filter.

Before actually running this algorithm, a further Kalman filter simplification shall
be applied, which is justified by the fact that HRIR/HRTF acquisition usually takes
place in a controlled acoustic environment, such as anechoic chambers and, thus,
very low acoustic-observation noise can be assumed. Formally, this allows to neglect
the observation-noise power, σ2

n,Ψ/r (k), in the computation of the Kalman gain, k(k),
according to (11). This, in turn, will entirely cancel the state-error covariance, p(k),
from the Kalman gain and, thus, avoid the need for the state-error recursion in (7)
and (10). In this way, even the relevance of the process-noise-covariance parame-
ter, σ2

Δ, in (7) disappears. By finally considering a state-transition factor, a, close to
unity in the Markov model (5), as said in [57], even more degeneration of the algo-
rithm can be easily achieved. After formal rearrangements, that is, by substituting (8)
and (11) into (6), the Kalman filter eventually collapses into the celebrated normal-
ized least-mean square, NLMS, adaptive algorithm as has been used intuitively for
iterative extraction of rotating HRIRs [36]. In order to compensate for the neglected
observation-noise power, σ2

n,Ψ/r (k), a fixed stepsize factor, 0 < μ0 < 1, is added
to restore at least some smoothing and, thus, noise-rejection ability of the original
Kalman filter as follows,

ĥΨ/r
θν

(φk+1) = ĥΨ/r
θν

(φk) + μ0
eΨ/r (k)xθν (k)

||xθν (k)||22
, (12)

eΨ/r (k) = yΨ/r
θν

(k) − xT
θν

(k )̂hΨ/r
θν

(φk). (13)

Results of this 1-channel HRIR-extraction algorithm are reported after generalization
of the current horizontal HRIR-setting to the full auditory sphere.

3.4 Multichannel 3-D Continuous-Azimuth Algorithm

Generalization is achieved by activating all elevation speakers in Fig. 2 to simulta-
neously reproduce uncorrelated broadband probe noises. Let

x(k) =
(

xT+80◦(k), . . . , xT−60◦(k)
⎥T

(14)
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denote a length 8N stacked version of all HRIR input signals and let

hΨ/r (φk) =
(

hΨ/r, T
+80◦ (φk), . . . , hΨ/r, T

−60◦ (φk)
⎥T

(15)

be the corresponding stacked version of all HRIR channels. These definitions then
support a multichannel linear-convolution model of the observation, namely,

yΨ/r (k) =
∑

θν

xT
θν

(k)hΨ/r
θν

(φk) + nΨ/r (k) (16)

= xT (k)hΨ/r (φk) + nΨ/r (k), (17)

in line with the previous single-channel model in (4). The stacked multichannel
quantities can, therefore, be substituted in place of the respective single-channel
quantities in (12) and (13) in order to obtain a multichannel NLMS algorithm for
simultaneous HRIR identification. After undoing the stacking one arrives at

ĥΨ/r
θν

(φk+1) = ĥΨ/r
θν

(φk) + μ0
eΨ/r

c (k)xθν (k)
⎤

θν
||xθν (k)||22

⊗ θν, (18)

eΨ/r
c (k) = yΨ/r (k) −

∑

θν

xT
θν

(k )̂hΨ/r
θν

(φk). (19)

The lesson from this derivation is that the multi-channel algorithm can be executed
almost independently for each elevation/channel, θν , except for utilization of the
summing-normalization,

⎤
θν

||xθν (k)||22, and the compound error signal, eΨ/r
c (k),

which are in common with the individual update equations (18). It is further instruc-
tive to notice that simultaneous operation of multiple loudspeakers will not cause
mutual noise or disturbance in the cannel-wise HRIR identification. The multiple
adaptive filters, hΨ/r

θν
, ⊗θν , rather cooperate in minimizing the error signal according

to (19).

3.5 Numerical Results for Validation

As a first validation of the dynamical HRIR measurements, Fig. 3 depicts the achiev-
able error-signal attenuation, ESA= 10 log10 σ

2
e /σ2

y/N dB, as a function of the rev-
olution time for different numbers of active elevation channels. Here, σ2

e denotes the
variance of signal e(k). The ESA basically describes the success of the algorithm in
reducing the recorded signal, yΨ/r (k), or, in other words the usability of the HRIR
estimate, ĥΨ/r

θν
, to regenerate the recorded signal and, for this reason, the accuracy

of the HRIR estimate. Lower ESA is desirable as it indicates more successful HRIR
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Fig. 3 Error-signal attenuation, ESA, for dynamical HRIR measurement. Results for the left ear.
Measurement loudspeaker located in the left-front quadrant at 2 m distance from a rotating artificial
head. 1-channel result in the horizontal plane. μ0 = 0.5, N = 308, fs = 44.1 kHz

identification. The excitation signal used for achieving the experimental results in
Fig. 3 is white noise.

The results demonstrate, with slight dependency on the number of simultaneously
measured elevation channels, that a revolution time in the order of 1 min represents
an interesting working point. Faster rotation significantly degrades ESA, because
the adaptive algorithm looses track of the time-varying system when it varies too
heavily. Slower rotation than 1 min does not yield significant advantages either. Note
that the particular saturation of the results at −52 dB is due to undermodeled low-
frequency acoustic-wave propagation in the anechoic chamber when using finite
adaptive-filter length [107]. For the results shown here, N = 308 at 44.1 kHz sam-
pling was employed. While considering the ESA, it might be helpful to argue that
σ2

e not only evaluates the HRIR and its accuracy but also its spectral counterpart, the
HRTF—according to Parseval’s theorem. Finally, it should be noted that the angular
HRIR resolution is quasi-infinite due to continuous-azimuth identification.

3.6 Usability of Continuous-Azimuth HRIRs

Due to the different nature of continuous HRIR measurements, as compared to dis-
crete HRIR acquisition, some practical aspects have to be addressed in order to make
use of the continuous HRIR data. Consider the following typical example. Assuming
a sampling frequency of fs = 44.1 kHz and a measurement duration of T360 = 20 s
for a 360◦ rotation, a set of T360 · fs = 882000 HRIRs becomes available just
for the horizontal plane. This corresponds to an extremely high resolution of 2450
HRIRs/degree. Complete storage of the HRIRs for two channels, assuming 16 bit
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resolution and an HRIR length of N = 308 coefficients, would result in a memory
requirement of fs · T360 · N · 2 · 2 Byte = 1.1 GB. This huge amount of data is not
feasible in most of the practical applications. Direct storage of continuous-azimuth
HRIRs is thus not recommended.

An option to handle the tremendous amount of HRIR data more efficiently is to
calculate HRIRs off-line from the ear signals and to sample out and store, for instance,
every N = 308th HRIR only. As a result, still 8 HRIRs/degree are available. Due
to this still very high HRIR resolution, a simple linear interpolation of the impulse
responses itself is absolutely sufficient when intermediate HRIRs are needed for
auralization or other purpose. This strategy basically resembles the one known from
spatially discrete HRIR measurement and usage of HRIR tables. Hence, from here,
all the other tool-chain known to make use of discrete HRIRs in binaural sound
technology can be employed. The discrete and continuous HRIR/HRTF technologies
therefore converge in the sense that the benefits of both worlds merge towards a fast
and individual measurement with efficient storage and ease-of-use.

As an example of successful usage of continuous HRTF measurements, we refer
to the implementation of a binaural rendering engine for multiple moving sound
sources. Figure 4 depicts the graphical user-interface of a realtime demonstrator
with six rotating audio objects, such as a singer, a guitar, etc., and a stereophonic
virtual-loudspeaker arrangement. This system relies on a frame-based HRIR-filtering
concept with signal-based cross-fading as described in Sect. 2.3. Alternatively, fast
convolution in the block-frequency domain can be applied when further reduction

Fig. 4 Real-time binaural rendering demonstrator based on continuously measured HRIRs . Pre-
sented at Intl. Workshop on Acoustic Signal Enhancement, Aachen, Sept. 2012
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of the computational complexity is desired. In any case, the sampled version of the
continuous-HRIR data in conjunction with simple and uncritical cross-fading was
highly appreciated in informal listening demonstrations.

3.7 HRTF-Field Representation

With typically ∂φ ≈ 10−4 degrees azimuth spacing, as calculated in Sect. 3.2 for
about 1 min revolution time, the adaptive algorithm performs a quasi-continuous
HRIR extraction. This finally offers an interesting opportunity of representing the
HRIR data as a continuous HRIR-field in space.

By theoretically considering a sound impulse emitted from the left or right
ear canal, and by using the principle of acoustic reciprocity [21], the HRIR-field,
hΨ/r
κ,θ (φ, r), would be observed as the response in the (θ,φ, r)-space, where r denotes

distance from the head-center. The field exists independently for the left and right
ear and is illustrated in Fig. 5 by the spherical wave, centered at the left-ear position.
From now on, just the horizontal plane is considered for simplicity.

On this basis, the corresponding soundfield, pθ=0◦(ω,φ, r), in the frequency-
domain, that is,

Fig. 5 The left-ear reciprocal HRTF-field, dashed circles, and the head-centered cylindrical
(φ, r)-coordinate system, solid—adapted from [39]
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p0◦(ω,φ, r) = F ⎦
hκ,0◦(φ, r)

⎜ =
N−1∑

κ=0

hκ,0◦(φ, r)e− jωTsκ, (20)

is obtained via the temporal Fourier transform and then defines our reciprocal HRTF-
field in the horizontal plane. Here, left- and right-ear indices, Ψ/r , were dropped for
brevity. The actual HRTF-field, p0◦(ω,φ, rm), on the HRIR-measurement radius
rm from the head center can be calculated by substituting the measured HRIR,
ĥκ,0◦(φ, rm), from Sect. 3.3 in place of hκ,0◦(φ, r).

Relying on this concept of the HRIR- or HRTF-field, the acoustic wave-equation
can be invoked for this exterior problem, and its general solution can be written as a
modal series in polar coordinates [116], namely,

p0◦(ω,φ, r) =
∇∑

n=−∇
An(ω)H (2)

n (kr)e jnφ, (21)

where H (2)
n (x) is the complex Hankel function of the 2nd kind, k = ω/c the acoustic

wavenumber, c the speed of sound, n the modal index, and An the independent set of
modal coefficients. This HRTF-field representation is tailored to just the horizontal
plane, as it assumes independence from the height-coordinate of the (φ, r)-cylinder.

For a given radius, r = rm , and a frequency, ω, the complex Fourier series in (21),
with 2π-periodicity in φ, then corresponds to a Fourier analysis of the HRTF-field,
p0◦(ω,φ, rm), along the azimuth coordinate, that is,

An(ω)H (2)
n (krm) = 1

2π

⎝ 2π

0
p0◦(ω,φ, rm)e− jnφ dφ, (22)

where Pn(ω, r) = An(ω)H (2)
n (kr) is termed the angular wave spectrum. The modal

coefficients, An , can be finally determined via normalization to the known Hankel
function, H (2)

n (krm).
Using the quasi-continuous HRIR data, a quasi-continuous and direct evalua-

tion of the Fourier integral in (22) can be achieved. This has been very uncom-
mon in the past, however, it circumvents the earlier issues of spatial aliasing
known from spatial Fourier analysis of discrete HRIRs. Figure 6 depicts an example,
Pn(ω = 2π f , r = rm = 2 m), obtained from a single-channel continuous-azimuth
HRIR measurement in the horizontal plane. A band-limited angular wave spectrum,
Pn(ω, r), in other words, a frequency-dependent finite number of modal coefficients,
seems to be sufficient to represent continuous HRIR data very well. Conversely,
the availability of this band-limited angular spectrum, for instance, taken from a
computer file, would allow complete reconstruction of the continuous HRTF-field
via (21), see for example, [39]. However, it should at least be noticed that the spherical
or angular wave spectrum theoretically exhibit infinite spatial bandwidth, especially
in the near-field due to evanescent components [116].
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Fig. 6 Left-ear HRTF-field coefficients, Pn(ω, r = 2 m), in dB. Horizontal plane. See [39]

4 Excitation Signals for Dynamic HRTF Measurements

In Sect. 3, the continuous-azimuth-HRTF acquisition was treated as a time-varying
system-identification problem based on dynamical measurements. Thus, compared
to traditional static measurement scenarios of HRTFs, the excitation signals dis-
cussed below represent new trends as they are optimized in the dynamic context.
Besides the constraints regarding SNR and nonlinear distortion, the excitation sig-
nals now have to be designed such that they meet the requirements of the NLMS
adaptation process, too. In particular, a rapid-tracking ability of the NLMS process
is essential in order to cope with the time-variant, that is, dynamic, measurement
scenario.

The tracking ability of the NLMS algorithm is determined by the stepsize, μ0, the
filter length, N , and the correlation properties of the excitation signal. The choice
of a smaller stepsize smoothes the adaptation process. This leads to more robust-
ness against observation noise, yet, at the expense of slower convergence. Another
conflicting requirement arises in dimensioning the filter length. On the one-hand,
the filter length N should be large enough to avoid undermodeling of acoustic late
reflections. In case of an unknown system with memory longer than N , the adap-
tive filter, ĥΨ/r

θν
, would otherwise suffer from effective noise, in case that white-noise

excitation is used, or converge to a modulo-N time-aliased version of hΨ/r
θν

, when
N -periodic excitation is employed [10]. On the other-hand, a larger filter length gen-
erally slows down the identification process [57]. Finally, the correlation properties
of the excitation signal have significant effect on the performance of NLMS.
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4.1 Orthogonal Periodic Excitation Signals

It is well understood that colored input signals reduce the convergence speed [57]. In
the extreme, if frequency components are not excited, they cannot be identified. Thus,
a broadband excitation signal is essential. Besides the classical white-noise stimulus,
an alternative class of excitation signals, the so-called perfect sequences, PSEQs, has
been proposed [9, 10]. PSEQs are periodic, pseudo-noise sequences with an ideal
impulse-like periodic autocorrelation function. Let M be the length of the period and
set M = N . Then, M consecutive excitation vectors, xθν (k), xθν (k −1), . . . , xθν (k −
M + 1), of length M are ideally orthogonal in the M-dimensional vector space.
Thus, the DFT of one period, xθν (k − M + 1) . . . xθν (k), of the PSEQ results in an
exactly constant frequency spectrum. With the specific correlation properties of the
PSEQ excitation, the NLMS algorithm exhibits the same rapid tracking ability as
the recursive least-squares, RLS, algorithm. In other words, PSEQs represent the
optimal excitation signal of the NLMS algorithm in the sense of fast convergence
and rapid tracking.

In the context of time-varying acoustic-system identification, PSEQs have already
been applied in different kinds of applications. Two examples of previous works are
briefly mentioned, namely:

• Room impulse responses, RIRs, with time-varying fluctuations were measured via
PSEQs and then reused to reproduce real room conditions, such as for benchmark-
ing of acoustic echo-cancellation prototypes [11].

• In a medical application, the dynamic behavior of transfer functions between nose
and ears were measured during yawning or swallowing. This allows for real-
time monitoring of the Eustachian-tube activity under physiological conditions
[14, 15, 100].

So far, two different types of PSEQs have been accomplished, the odd-perfect ternary
sequences [8, 9] and, more recently, the perfect sweeps [13, 100].

Odd-Perfect Ternary Sequences

Odd-perfect ternary sequences, Odd-PSEQs, [68], while actually belonging to the
more general class of ternary sequences, are characterized by being symmetric with
only a single zero per period. As a result, Odd-PSEQs are almost binary and exhibit
a high energy efficiency η. Generally

η =
⎞

M−1∑

κ=0

x2
θk

(κ)

⎟⎠ (
M max⊗κ x2

θk
(κ)

)
, (23)

which amounts to η = (M−1)/M for Odd-PSEQs, that is, η = 0.9968 for M = 308.
This equivalently means a low crest factor, 1/η. Odd-PSEQs can be constructed for
every length, M = qw + 1, where q denotes a prime number, q > 2, and w ∈ N.
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As the length M has to match the length of the adaptive filter, cf. [9], it is important
that they exist for a wide range of lengths.

In contrast to classical ternary PSEQs, such as Ipatov sequences [59], Odd-PSEQs
have to be applied periodically in an odd-cyclic manner, which means that the sign is
alternated in each period and it possesses a periodic odd autocorrelation as follows,

ϕxθν xθν (λ) =
M−1∑

i=0

xθν (i) xθν (λ+ i) =
⎧
⎨

⎩

‖xθν (λ)‖2 λmod 2M = 0
−‖xθν (λ)‖2 λmod 2M = M

0 otherwise ,

(24)

which depicts their qualification as an optimal orthogonal excitation signal.

Perfect Sweeps

Sweep signals, too, can be constructed such that they meet the orthogonality require-
ments for an optimal excitation. For construction in the frequency domain, a constant
magnitude is first assumed. Furthermore, the group delay, that is, the instantaneous
frequency, of a linear sweep has to increase linearly. Its phase therefore rises quadrat-
ically with frequency according to

Xn =
{

e− j 2π
M n2

, 0 ≤ n ≤ M
2

X∗
M−n , M

2 < n < M ,
(25)

where Xn denotes the DFT coefficient at frequency bin n, and X∗ being the complex
conjugate. The so-called perfect sweep is eventually obtained via IFFT [100, 101].
In contrast to Odd-PSEQs, perfect sweeps can be designed for any length M .

Based on this explicit design procedure, each frequency bin of the unknown sys-
tem will be uniformly excited and an impulse-like periodic autocorrelation function
is obtained. Thus, in the sense of optimal excitation for the NLMS algorithm, all
requirements are fulfilled and, as already mentioned and following our previous ter-
minology, these special sweep signals are named perfect sweeps—representing a
special class of PSEQs.

In contrast to Odd-PSEQs, the energy efficiency of perfect sweeps is much lower,
for instance, η = 0.4888 for M = 308. Thus, using the same digital amplitude
for both excitation signals, a loss of 3 dB in SNR is encountered for the perfect
sweep. However, for sound reproduction, the perfect sweep is superior in terms of
robustness against nonlinear acoustic distortions or, in other words, perfect sweeps
can be passed with less distortion through the measurement system than Odd-PSEQs.
In [78, 100], it is shown that for pseudo-random sequences, such as MLS or Odd-
PSEQs, a headroom of at least 5–8 dB below full scale has to be maintained to avoid
large distortion. The use of perfect sweeps will allow to excite the unknown acoustic
system, in our case the continuous HRIR measurement setup, with considerably more
power while keeping the influence of non-linear distortions reasonably small. This
is demonstrated by the following, application independent, basic experiment.
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Experiment

As an example, the effect of distortions due to level-dependent loudspeaker non-
linearities is investigated. To this end, static measurements of RIRs are performed
in a professional studio box with different types of loudspeakers at 44.1 kHz sam-
pling rate. The digital amplitude of the excitation signal is chosen such that the D/A
converter of the measurement setup can be assumed to be sufficiently linear. White
noise, Odd-PSEQs, and perfect sweeps are considered as excitation signals. They are
normalized to the same signal power, thus showing different maximum amplitudes,
but providing for the same SNR at the recording microphone.

Figure 7 depicts the achievable error signal attenuation, ESA, of an NLMS adap-
tive RIR filter as a function of the sound pressure level, SPL. Note that increasing the
SPL, for instance, by 5 dB, goes along with a 5 dB SNR increase at the microphone.
Consequently, a 5 dB lower ESA value would be expected in case of linear systems
[57]. It can be seen that the results for Odd-PSEQ excitation exhibit such a linear
ESA behavior only for the Genelec high-end loudspeaker. However, the ESA curves
obtained for perfect-sweep excitation always show almost linear behavior, despite
the nonlinearity at large SPL. White-noise excitation, as a reference, limits the ESA
with both speakers.

Since nonlinear distortion is generally less pronounced at lower SPL, the curves
for the different excitation signals naturally approach each other. However, this obvi-
ously causes higher ESA values due to lower SNR at the microphone. By using
perfect-sweep excitation, considerably more power can be fed into the loudspeakers
in order to maintain high SNR and, thus, low ESA, but still without suffering too
much from nonlinear distortions in the identification process. These results demon-
strate a significant influence of the excitation signal, which is relevant for HRIR
measurements likewise.
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Fig. 7 Error-signal attenuation, ESA, for static RIR measurements with different excitation signals
for two different loudspeakers with N = 3000, μ0 = 1
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4.2 Performance of PSEQs in Dynamic HRIR Measurements

In this section the influence of different excitation signals in dynamic HRIR measure-
ments is investigated [10, 13]. The measurements are performed with the rotating
system according to Fig. 2, however, using only the loudspeaker in the horizontal
plane, that is, the excitation signal xθν = x0◦ . The loudspeaker is again stimulated
with our three different excitation signals, namely, white noise, Odd-PSEQ, and
perfect sweep, using the same signal power and 44.1 kHz sampling frequency. The
revolution time of the measurement apparatus is set to T360 = 20 s. In order to focus
on dynamical characteristics of HRTF acquisition, the digital amplitude and the
sound-pressure level are carefully chosen to keep the effect of nonlinear distortion as
small as possible for all excitation signals—based on the previous experiment. The
reaction of the system is obtained in terms of the two microphone signals recorded
at the left and right ear-canal entrances of an artificial head.

Figure 8 shows local ESA results for a complete continuous revolution of a dummy
head, including some rotation in advance for initialization and some overrun at the
end. Over the 360◦, characteristic fluctuation of the curves, with symmetry between
the ears, is observed. Lowest ESA values are achieved at 270◦ for the left ear and 90◦
for the right ear, since, in these cases, the respective microphone picks up the most
direct sound from the loudspeaker. Highest SNR in these directions in fact explains
the lowest ESA values.

In the comparison of different excitation signals, the perfect sweep outperforms
the other excitation signals by far. This is due to the fact that a perfect sweep unites the
orthogonality requirements for optimal NLMS excitation with the favorable charac-
teristics of sweep signals in general. As a result, perfect sweeps enable rapid system
tracking as well as high robustness against nonlinear distortions. This confirms the
theoretical considerations from Sect. 2.2 and the experimental results from Sect. 4.1.
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Fig. 8 Error-signal attenuation, ESA, for dynamic HRIR measurements with N = M = 308,
μ0 = 1, T360 = 20 s
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Using the same HRIR measurement setup as before, static measurements were
additionally performed for different angles. At φ = 270◦, left ear, for instance, ESA
values of −79.6 dB, −51.3 dB, and −49.1 dB were obtained with perfect sweep, Odd-
PSEQ, and white noise, respectively. A comparison of these numbers with those in
Fig. 8a verifies that fast dynamic measurements do line up with traditional static
measurements in terms of precision.

4.3 3-D Continuous-Azimuth HRIR Acquisition

In order to generalize the previous single-channel considerations, the multichannel
case will now finally be discussed, namely, 3-D continuous-azimuth HRIR acquisi-
tion according to Fig. 2, with all elevations activated.

It is of special interest how the class of perfect excitation signals, namely, the
perfect sweeps, tackles the problem of multichannel-system identification, which
requires low cross-correlation between the parallel acoustic inputs. Starting from
the one-channel approach, a strategy has been developed in [8, 12] to construct a
set of simultaneous and optimal excitation signals for all channels, based on one
prototype PSEQ. In the case of P loudspeakers, a prototype PSEQ, p(k), of period
P M is designed independently and supplied to the first channel. The other channels
are excited with phase-shifted versions

xθ1(k) = p(k) (26)

xθ2(k) = p(k − M) (27)

...

xθP (k) = p(k − (P − 1)M). (28)

In conjunction with the multichannel NLMS algorithm in (18) and (19), this creates
the possibility of uniquely identifying the true HRIRs of all P acoustic channels
simultaneously, without cross-talk, and with a single comprehensive measurement,
that is, only one rotation—for more details see [8, 12, 37].

Figure 9 exemplarily compares the results of single- and multichannel measure-
ments. With a revolution time of T360 = 15 s in the single-channel case, the loud-
speaker in the horizontal plane is excited with white-noise and perfect-sweep signals
of the period M = 308, respectively. In the multichannel case, however, all P = 8
loudspeakers are used simultaneously. In case of white-noise excitation, all loud-
speakers are fed with independent white noises, while for the perfect sweep the exci-
tation scheme according to (26)–(28) is chosen, namely, with a prototype sequence,
p(k), of period 8 · M = 2464. In order to suitably balance the time-constant of
the NLMS algorithm with the HRIR variability in both the single- and multichan-
nel cases, the revolution time for the multichannel measurement has to be increased
to T360 = 8 · 15 s = 120 s. The single- and multichannel results for white-noise
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Fig. 9 Error-signal attenuation, ESA, for dynamic 3-D HRIR measurements with N = M = 308,
μ0 = 1, T360 = 15 s (single-channel case) or T360 = 120 s (multichannel case)

excitation then coincide in Fig. 9 up to minor deviations. Although the measurement
duration is increased according to the number of acoustic channels to be identified,
it should be noted that simultaneous multichannel HRIR acquisition still pays off
in terms of synchronous and consistent measurement results for all elevations, since
they are excited in parallel with the person to be measured naturally staying in one
and the same position.

Overall, multichannel excitation with phase-shifted perfect sweeps shows the best
results. As compared to white-noise stimuli, improvements in a range of 20–30 dB
are observed. Due to perfectly-zero cross-correlation between the channel inputs, no
degradation due to a multichannel issue is encountered. The ideal autocorrelation of
perfect sweeps as well as the possibility to design orthogonal sets of perfect sweeps
for multichannel excitation make this class of signals optimal for NLMS-driven
acoustic system identification. In case of time-variant systems, the tracking ability
related to perfect sequences is especially appreciated. Parameters such as the sam-
pling frequency, the stepsize, or the length of the adaptive filter, can be freely adjusted.
Beyond these features, perfect sweeps exhibit robustness against nonlinear distortions
and provide in all experiments the best results in terms of error-signal attenuation.

5 Conclusions

After the manifold of previous work in HRTF acquisition and representation, one
of the driving forces behind ongoing research is still the simple and compelling
idea of creating accurate virtual reality using precise HRTFs. The extensiveness of
plenacoustic HRTFs, however, requires deep understanding of the perceptual rele-
vance of specific HRTF properties in order to achieve efficient acquisition, smooth-
ing, sampling, representation, and usage of HRTFs. It turns out that by far not all
issues are fully resolved. Regarding the perceptual relevance, some of the previous
studies, for instance, used individual HRTFs with white-noise stimulus, while oth-
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ers combined good-localizer HRTFs with speech stimulus, to draw their respective
conclusions.

As a major theme of this chapter, conceptual comparison of spatially discrete and
continuous HRTF acquisition was addressed. The discrete version is more estab-
lished and mechanically easy to handle. High measurement accuracy is reported,
but the procedure used to consume a lot of time for sufficient spatial resolution. In
recent years a footrace is taking place to overcome the long measurement duration
with accelerated systems for individual HRTF acquisition. The spatially-continuous
version, as was described in much detail in this chapter, exhibits somewhat opposite
properties. It uses a dynamical apparatus and adaptive filters for HRTF extraction. It
is, thus, by concept extremely fast, namely, on the order of 1 min/person, but HRTF
storage may require huge memory or special care. One option for convergence of
both variants is the down-sampling of the continuous data and then using the same
HRTF file formats. Advantages of the continuous method, however, still include
its flexibility regarding the down-sampling and its inherent property of overcoming
spatial aliasing and interpolation issues.

While many options exist for HRTF acquisition and representation, many issues
regarding the actual requirements on HRTF, for example, impulse-response SNR,
spatial resolution, spatial interpolation, and optimal representation, are still under
discussion. This also comprises the more general question of what is the most appro-
priate metric of HRTF fidelity. Based on such metrics, in a next step, a thorough
experimental comparison of discrete and continuous HRTF measurements and its
illustration is required. A first step into this direction has been made by a direct
comparison of linear-interpolation error versus adaptive-system-identification mis-
alignment [70]. In a future context, it is, however, expected that accurate HRTFs
alone will not be a sufficient technology and requirements on HRTFs will have to
be determined in conjunction with a multitude of technologies being applied in the
context of binaural hearing and listening—compare Chaps. 4–17, this volume.
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Assessment of Sagittal-Plane Sound Localization
Performance in Spatial-Audio Applications

R. Baumgartner, P. Majdak and B. Laback

1 Sound Localization in Sagittal Planes

1.1 Salient Cues

Human normal-hearing, NH, listeners are able to localize sounds in space in terms of
assigning direction and distance to the perceived auditory image [26]. Multiple mech-
anisms are used to estimate sound-source direction in the three-dimensional space.
While interaural differences in time and intensity are important for sound localiza-
tion in the lateral dimension, left/right, [53], monaural spectral cues are assumed to
be the most salient cues for sound localization in the sagittal planes, SPs, [27, 54].
Sagittal planes are vertical planes parallel to the median plane and include points of
similar interaural time differences for a given distance. The monaural spectral cues
are essential for the perception of the source elevation within a hemifield [2, 22, 24]
and for front-back discrimination of the perceived auditory event [46, 56]. Note that
also the binaural pinna disparities [43], namely, interaural spectral differences, might
contribute to SP localization [27].

The mechanisms underlying the perception of lateral displacement are the main
topic of other chapters. This chapter focuses on the remaining directional dimension,
namely, the one along SPs. Because interaural cues and monaural spectral cues are
thought to be processed largely independently of each other [27], the interaural-
polar coordinate system is often used to describe their respective contributions in the
two dimensions. In the interaural-polar coordinate system the direction of a sound
source is described with the lateral angle, φ ∈ [−90◦, 90◦], and the polar angle,
θ ∈ [−90◦, 270◦)—see Fig. 1, left panel. Sagittal-plane localization refers to the
listener’s assignment of the polar angle for a given lateral angle and distance of the
sound source.
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Fig. 1 Left Interaural-polar coordinate system. Right HRTF magnitude spectra of a listener as a
function of the polar angle in the median SP—left ear of NH58

Although spectral cues are processed monaurally, the information from both ears
affects the perceived location in most cases [39]. The ipsilateral ear, namely, the one
closer to the source, dominates and its relative contribution increases monotonically
with increasing lateral angle [12]. If the lateral angle exceeds about 60◦, the contri-
bution of the contralateral ear becomes negligible. Thus, even for localization in the
SPs, the lateral source position, mostly depending on the broadband binaural cues
[27], must be known in order to determine the binaural weighting of the monaural
spectral cues.

The nature of the spectral features important for sound localization is still subject
of investigations. Due to the physical dimensions, the pinna plays a larger role for
higher frequencies [36] and the torso for lower frequencies [1]. Some psychoacoustic
studies postulated that macroscopic patterns of the spectral features are important
rather than fine spectral details [2, 10, 16, 22–24, 28, 44]. On the other hand, other
studies postulated that SP sound localization is possibly mediated by means of only a
few local spectral features [17, 37, 52, 56]. Despite a common agreement, according
to which the amount of the spectral features can be reduced without substantial
reduction of the localization performance, the perceptual relevance of particular
features has not been fully clarified yet.

1.2 Head-Related Transfer Functions

The effect of the acoustic filtering of torso, head and pinna can be described in terms
of a linear time-invariant system by the so-called head-related transfer functions,
HRTFs, [4, 38, 45]. The right panel of Fig. 1 shows the magnitude spectra of the
left-ear HRTFs of an exemplary listener, NH58,1 along the median SP.

HRTFs depend on the individual geometry of the listener and thus listener-
specific HRTFs are required to achieve accurate localization performance for binaural

1 These and all other HRTFs are from http://www.kfs.oeaw.ac.at/hrtf.

http://www.kfs.oeaw.ac.at/hrtf
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synthesis [6, 35]. Usually, HRTFs are measured in an anechoic chamber by determin-
ing the acoustic response characteristics between loudspeakers at various directions
and microphones inserted into the ear canals. Currently, much effort is put also into
the development of non-contact measurement methods for capturing HRTFs like
numerical calculation of HRTFs from optically scanned geometry [20, 21] and on
customization of HRTFs basing on psychoacoustic tests [16, 34, 46].

Measured HRTFs contain both direction-dependent and direction-independent
features and can be thought of as a series of two acoustic filters. The direction-
independent filter, represented by the common transfer function, CTF, can be cal-
culated from an HRTF set comprising many directions [34] by averaging the log-
amplitude spectra of all available HRTFs of a listener’s ear. The phase spectrum of
the CTF is the minimum phase corresponding to the amplitude spectrum of the CTF.

In the current study, the topic of interest is the directional aspect. Thus, the direc-
tional features are considered, as represented by the directional transfer functions,
DTFs. The DTF for a particular direction is calculated by filtering the corresponding
HRTF with the inverse CTF. The CTF usually exhibits a low-pass filter characteristic
because the higher frequencies are attenuated for many directions due to the head
and pinna shadow—see Fig. 2, left panel. Compared to HRTFs, DTFs usually pro-
nounce frequencies and thus spectral features above 4 kHz—see Fig. 2, right panel.
DTFs are commonly used to investigate the nature of spectral cues in SP localization
experiments with virtual sources [10, 30, 34].

In the following, the proposed model is described in Sect. 2 and the results of its
evaluation are presented in Sect. 3, based on recent virtual-acoustics studies that used
listener-specific HRTFs. In Sect. 4, the proposed model is applied to predict local-
ization performance for different aspects of spatial-audio applications that involve
spectral localization cues. In particular, a focus is put on the evaluation of non-
individualized binaural recordings, the assessment of the quality of spatial cues for
the design of hearing-assist devices, namely, in-the-ear versus behind-the-ear micro-
phones and the estimation and improvement of the perceived direction of phantom

Fig. 2 Left Spatial variation of HRTFs around CTF for listener NH58, left ear. Right Corresponding
DTFs, i.e. HRTFs with CTF removed. Solid line Spatial average of transfer function. Grey area ±1
standard deviation
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sources in surround-sound systems, namely, 5.1 versus 9.1 versus 10.2 surround.
Finally, Sect. 5 concludes with a discussion of the potential of the model for both
evaluating audio applications and improving the understanding of human sound-
localization mechanisms.

2 Models of Sagittal-Plane Localization

This section considers existing models aiming at predicting listener’s polar response
angle to the incoming sound. These models can help to explain psychoacoustic
phenomena or to assess the spatial quality of audio systems while avoiding the
running of costly and time-consuming localization experiments.

In general, machine-learning approaches can be used to predict localization per-
formance. Artificial neural networks, ANNs, have been shown to achieve rather
accurate predictions when trained with large datasets of a single listener [19]. How-
ever, predictions for a larger subpopulation of human listeners would have required
much more effort. Also, the interpretation of the ANN parameters is not straight for-
ward. It is difficult to generalize the findings obtained with an ANN-based model to
other signals, persons and conditions and thus to better understand the mechanisms
underlying spatial hearing.

Hence, the focus is laid on a functional model where model parameters should
correspond to physiological and/or psychophysical localization parameters. Until
now, a functional model considering both spectral and temporal modulations exists
only as a general concept [50]. Note that in order to address a particular research
question, models dealing with specific types of modulations have been designed. For
example, models for narrow-band sounds [37] were provided in order to explain the
well-known effect of directional bands [4]. In order to achieve a sufficiently good
prediction as an effect of the modification of the spectral cues, it is assumed that the
incoming sound is a stationary broadband signal, explicitly disregarding spectral
and temporal modulations.

Note that localization models driven by various signal-processing approaches have
also been developed [3, 32, 33]. These models are based on general principles of
biological auditory systems, they do not, however, attempt to predict human-listener
performance—their outcome shows rather the potential of the signal-processing algo-
rithms involved.

In the following, previous developments on modeling SP localization performance
are reviewed and a functional model predicting sound localization performance in
arbitrary SPs for broadband sounds is proposed. The model is designed to retrieve
psychophysical localization performance parameters and can be directly used as a
tool to assess localization performance in various applications. An implementation
of the model is provided in the AMToolbox, as the baumgartner2013 model
[47].
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Fig. 3 General structure of a template-based comparison model for predicting localization in SPs

2.1 Template-Based Comparison

A common property of existing sound localization models based on spectral cues is
that they compare an internal representation of the incoming sound with a template
[13, 24, 55]—see Fig. 3. The internal template is assumed to be created by means
of learning the correspondence between the spectral features and the direction of
an acoustic event [14, 49], based on feedback from other modalities. The localiza-
tion performance is predicted by assuming that in the sound localization task, the
comparison yields a distance metric that corresponds to the polar response angle of
the listener. Thus, template-based models include a stage modeling the peripheral
processing of the auditory system applied to both the template and incoming sound
and a stage modeling the comparison process in the brain.

Peripheral Processing

The peripheral processing stage aims at modeling the effect of human physiology
while focusing on directional cues. The effect of the torso, head and outer ear are
considered by filtering the incoming sound by an HRTF or a DTF. The effect of ear
canal, middle ear and cochlear filtering can be considered by various model approxi-
mations. In the early HRTF-based localization models, a parabolic-shaped filter bank
was applied [55]. Later, a filter bank averaging magnitude bins of the discrete Fourier
transform of the incoming sound was used [24]. Both filter banks, while being compu-
tationally efficient, were drastically simplifying the auditory peripheral processing.
The Gammatone, GT, filter bank [40] is a more physiology-related linear model of
auditory filters and has been used in localization models [13]. A model accounting
for the nonlinear effect of the cochlear compression is the dual-resonance nonlinear,
DRNL, filter bank [25]. A DRNL filter consists of both a linear and a non-linear
processing chain and is implemented by cascading GT filters and Butterworth low-
pass filters, respectively. Another non-linear model uses a single main processing
chain and accounts for the time-varying effects of the medial-oliviocochlear reflex
[57]. All those models account for the contribution of outer hair cells to a different
degree and can be used to model the movements of the basilar membrane at a par-
ticular frequency. They are implemented in the AMToolbox [47]. In the localization
model described in this chapter, the GT filter bank is applied focusing on applications
where the absolute sound level plays a minor role.
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The filter bank produces a signal for each center frequency and only the relevant
frequency bands are considered in the model. Existing models used frequency bands
with constant relative bandwidth on a logarithmic frequency scale [24, 55]. In the
model described in this chapter, the frequency spacing of the bands corresponds to
one equivalent rectangular bandwidth, ERB, [9]. The lowest frequency is 0.7 kHz,
corresponding to the minimum frequency thought to be affected by torso reflections
[1]. The highest frequency considered in the model depends on the bandwidth of the
incoming sound and is maximally 18 kHz, approximating the upper frequency limit
of human hearing.

Further in the auditory system, the movements of the basilar membrane at each
frequency band are translated into neural spikes by the inner hair cells, IHCs. An
accurate IHC model has not been considered yet and does not seem to be vital
for SP localization. Thus, different studies used different approximations. In this
model, the IHC is modeled as half-wave rectification followed by a second-order
Butterworth low-pass with a cut-off frequency of 1 kHz [8]. Since the temporal effects
of SP localization are not considered yet, the output of each band is simply temporally
averaged in terms of RMS amplitude, resulting in the internal representation of
the sound. The same internal representation and therefore peripheral processing is
assumed for the template.

Comparison Stage

In the comparison stage, the internal representation of the incoming sound is com-
pared with the internal template. Each entry of the template is selected by a polar
angle denoted as template angle. A distance metric is calculated as a function of the
template angle and can be interpreted as a potential descriptor for the response of
the listener.

An early modeling approach proposed to compare the spectral derivatives of var-
ious orders in terms of a band-wise subtraction of the derivatives and then averaging
over the bands [55]. The comparison of the first-order derivative corresponds to the
assumption that the overall sound intensity does not contribute to the localization
process. In the comparison of the second-order derivatives, the differences in spectral
tilt between the sound and the template do not contribute. Note that the plausibil-
ity of these comparison methods had not been investigated at that time. As another
approach, the cross-correlation coefficient has been proposed to evaluate the similar-
ity between the sound and the template [13, 37]. Later, the inter-spectral differences,
ISDs, namely, the differences between the internal representations of the incoming
sound and the template, calculated for each template angle and frequency band, were
used [34] to show a correspondence between the template angle yielding smallest
spectral variance and the actual response of human listeners. All these comparison
approaches were tested in [24] who, distinguishing zeroth-, first- and second-order
derivatives of the internal representations, found that the standard deviation of ISDs
best described their results. This configuration corresponds to an average of the first-
order derivative from [55], which is robust against changes in the overall level in the
comparison process.
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Fig. 4 Example of the comparison process for a target polar angle of 30◦. Left Inter-spectral
differences, ISDs, as a function of the template angle. Right Spectral standard deviation, STD, of
ISDs as a function of the template angle

The model proposed in this study also relies on ISDs calculated for a template
angle and for each frequency band—see Fig. 4, left panel. Then, the spectral standard
deviations of ISDs are calculated for all available template angles—see Fig. 4, right
panel. For band-limited sounds, the internal representation results in an abrupt change
at the cut-off frequency of the sound. This change affects the standard deviation of
the ISDs. Thus, in this model, the ISDs are calculated only within the bandwidth of
the incoming sound.

The result of the comparison stage is a distance metric corresponding to the pre-
diction of the polar response angle. Early modeling approaches used the minimum
distance to determine the predicted response angle [55], which would nicely fit the
minimum of the distance metric used in the example reported here—see Fig. 4, right
panel. Also, the cross-correlation coefficient has been used as a distance metric and
its maximum has been interpreted as the prediction of the response angle [37]. Both
approaches represent a deterministic interpretation of the distance metric, resulting
in exactly the same predictions for the same sounds. This is rather unrealistic. Lis-
teners, repeatedly listening to the same sound, often do not respond to exactly the
same direction [7]. The actual responses are known to be scattered and can be even
multimodal. The scatter of one mode can be described by the Kent distribution [7],
which is an elliptical probability distribution on the two-dimensional unit sphere.

2.2 Response Probability

In order to model the probabilistic response pattern of listeners, a mapping of the
distance metric to polar-response probabilities via similarity indices, SIs, has been
proposed [24]. For a particular target angle and ear, they obtained a monaural SI by
using the distance metric as the argument of a Gaussian function with a mean of zero
and a standard deviation of two—see Fig. 5, U = 2. While this choice appears to be
somewhat arbitrary, it is an attempt to model the probabilistic relation between the
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Fig. 5 Left Mapping function of similarity index, top, for various uncertainties, U , and the resulting
PMVs, bottom—corresponding to the example shown in Fig. 4. Right Predicted response PMV of
the localization model as a function of the target angle, i.e. prediction matrix, for the baseline
condition in the median SP for listener NH58. Response probabilities are encoded by brightness

distance metric and the probability of responding to a given direction. Note that the
resulting SI is bounded by zero and one and valid for the analysis of the incoming
sound at one ear only.

The width of the mapping function, U in Fig. 5, actually reflects a property of an
individual listener. A listener being more precise in the response to the same sound
would need a more narrow mapping than a less precise listener. Thus, in contrast to
the previous approach [24], in the model described in this chapter, the width of the
mapping function as a listener-specific uncertainty, U , is considered. It accounts for
listener-specific localization precision [34, 42, 56] due to factors like training and
attention [14, 51]. Note that for simplicity, direction-dependent response precision
is neglected. The lower the uncertainty, U , the higher the assumed sensitivity of the
listener to distinguish spectral features. In the next section, this parameter will be
used to calibrate the model to listener-specific performance.

The model stages described so far are monaural. Thus, they do not consider bin-
aural cues and have been designed for the median SP where the interaural differences
are zero and thus binaural cues do not contribute. In order to take into account the
contribution of both ears, the monaural model results for both ears are combined.
Previous approaches averaged the monaural SIs for both ears [24] and thus were able
to consider the contribution of both ears for targets placed in the median SP. In the
model described in this chapter, the lateral target range is extended to arbitrary SPs
by applying a binaural weighting function [12, 29], which reduces the contribution
of the contralateral ear, depending on the lateral direction of the target sound. Thus,
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the binaural weighting function is applied to each monaural SI, and the sum of the
weighted monaural SIs yields the binaural SI.

For an incoming sound, the binaural SIs are calculated for all template entries
selected by the template angle. Such a binaural SI as a function of the template angle
is related to the listener’s response probability as a function of the response angle.
It can be interpreted as a discrete version of a probability density function, namely,
a probability mass vector, PMV, showing the probability of responding at an angle to
a particular target. In order to obtain a PMV, the binaural SI is normalized to have a
sum of one. Note that this normalization assumes that the template angles regularly
sample an SP. If this is not the case, regularization by spline interpolation is applied
before the normalization.

The PMVs, calculated separately for each target under consideration, are repre-
sented in a prediction matrix. This matrix describes the probability of responding
at a polar angle given a target placed at a specific angle. The right panel of Fig. 5
shows the prediction matrix resulting for the exemplary listener, NH58, in a baseline
condition where the listener uses his/her own DTFs, and all available listener-specific
DTFs are used as targets. The abscissa shows the target angle, the ordinate shows the
response angle and the brightness represents the response probability. This represen-
tation is used throughout the following sections. It also allows for a visual comparison
between the model predictions and the responses obtained from actual localization
experiments.

2.3 Interpretation of the Probabilistic Model Predictions

In order to compare the probabilistic results from the model with the experimental
results, likelihood statistics, calculated for actual responses from sound localiza-
tion experiments and for responses resulting from virtual experiments driven by the
model prediction, can be used—see Eq. (1) in [24]. The comparison between the two
likelihoods allows one to evaluate the validity of the model, because only for similar
likelihoods the model is assumed to yield valid predictions. The likelihood has, how-
ever, a weak correspondence with localization performance parameters commonly
used in psychophysics.

Localization performance in the polar dimension usually considers local errors
and hemifield confusions [35]. Although these errors derived by geometrical aspects
cannot sufficiently represent the current understanding of human hearing, they are
frequently used and thus enable comparison of results between studies. Quadrant
errors, QEs, that is the percentage of polar errors larger or equal to 90◦, represent the
confusions between hemifields—for instance, front/back or up/down—without con-
sidering the local response pattern. Unimodal local responses can be represented as
a Kent distribution [7], which, considering the polar dimension only, can be approx-
imated by the polar bias and polar variance. Thus, the local errors are calculated
only for local responses within the correct hemifield, namely, without the responses
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Fig. 6 Structure of the proposed SP localization model—see text for the description of the stages

yielding the QEs. A single representation of the local errors is the local polar RMS
error, PE, which combines localization bias and variance in a single metric.

In the proposed model, QEs and PEs are calculated from the PMVs. The QE is the
sum of the PMV entries outside the local polar range defined by the response-target
difference greater or equal to 90◦. The PE is the discrete expectancy value within
the local polar range. In the visualization of prediction matrices—see for example
right column of Fig. 5—bright areas in the upper left and bottom right corners would
indicate large QEs, a strong concentration of the brightness at the diagonal would
indicate small PEs. Both errors can be calculated either for a specific target angle or
as the arithmetic average across all target angles considered in the prediction matrix.

Figure 6 summarizes the final structure of the model. It requires the incoming
signal from a sound source as the input and results in the response probability as
a function of response angle, namely PMV, for given template DTFs. Then, from
PMVs calculated for the available target angles, QEs and PEs are calculated for a
direct comparison with the outcome of a sound-localization experiment.

3 Listener-Specific Calibration and Evaluation

Listeners show an individual localization performance even when localizing broad-
band sounds in free field [31]. While the listener-specific differences in the HRTFs
may play a role, also other factors like experience, attention, or utilization of auditory
cues might be responsible for differences in the localization performance. Thus, this
section is concerned with the calibration of the model for each particular listener. By
creating calibrations for 17 listeners, a pool of listener-specific models is provided.
In order to estimate the use of this pool in future applications, the performance of
this pool is evaluated in two experiments. In Sect. 4, the pool is applied to various
applications.
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3.1 Calibration: Pool of Listener-Specific Models

The SP localization model is calibrated to the baseline performance of a listener in
terms of finding an optimal uncertainty, U . Recall that the lower the uncertainty, U ,
the higher the assumed efficiency of the listener in evaluating spectral features. An
optimal U minimizes the difference between the predicted and the listener’s actual
baseline performance in terms of a joint metric of QE and PE, namely, the L2-norm.

The actual baseline performance was obtained in localization experiments where
a listener was localizing sounds using his/her own DTFs presented via headphones.
Gaussian white noise bursts with a duration of 500 ms and a fade-in/out of 10 ms
were used as stimuli. The acoustic targets were available for elevations from −30◦
to 80◦ in the lateral range of at least ±30◦ around the median SP. Listeners responded
by manually pointing to the perceived direction of a target. For more details on the
experimental methods see [10, 30, 51].

The model predictions were calculated considering SPs within the lateral range of
±30◦. The targets were clustered to SPs with a width of 20◦ each. For the peripheral
processing, the lower and upper corner frequency was 0.7 and 18 kHz, respectively,
resulting in 18 frequency bands with a spacing of one ERB.

Table 1 shows the values of the uncertainty, U , for the pool of 17 listeners. The
impact of the calibration becomes striking by comparing the predictions based on the
listener-specific, calibrated pool with the predictions basing on the pool using U = 2
for all listeners as in [24]. Figure 7 shows the actual and predicted performance as a
comparison with a pool calibrated to U = 2 for all listeners and a listener-specific
calibrated pool. Note the substantially higher correlation between the prediction
with the actual results in the case of the listener-specific calibration. The correlation
coefficients in the order of r = 0.85 provide evidence for sufficient power in the
predictions for the pool.

Table 1 Values of the uncertainty U for the pool of listener-specific models identified by NHn

NHn 12 15 21 22 33 39 41 42 43 46 55 58 62 64 69 71 72
U 1.6 2.0 1.8 2.0 2.3 2.3 3.0 1.8 1.9 1.8 2.0 1.4 2.2 2.1 2.1 2.1 2.2

3.2 Evaluation

In order to evaluate the SP localization model, the experimental data from two studies
investigating stationary broadband sounds are modeled and compared to the exper-
imental results. Only two studies were available because both the listener-specific
HRTFs and the corresponding responses are necessary for the evaluation. For each
of these studies, two predictions are calculated, namely, one for the listeners who
actually participated in that experiment and one for the whole pool of listener-specific,
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Fig. 7 Localization performance in baseline condition. Bars Model predictions. Asterisks Actual
performance obtained in sound localization experiments. Top Model predictions for U = 2 as in
[24]. Bottom Model predictions for listener-specific calibration. r…Pearson’s correlation coefficient
with respect to actual and predicted performance

calibrated models. For the participants, the predictions are done on the basis of the
actual targets, whereas for the pool, all targets are considered by randomly drawing
from the available DTFs.

Effect of the Number of Spectral Channels

A previous study tested the effect of the number of spectral channels on the localiza-
tion performance in the median SP [10]. While that study was focused on cochlear-
implant processing, the localization experiments were done on listeners with normal
hearing using a Gaussian-envelope tone vocoder—for more details see [10]. The
frequency range of 0.3–16 kHz was divided into 3, 6, 9, 12, 18, or 24 channels,
equally spaced on the logarithmic frequency scale. The top row of Fig. 8 shows three
channelized DTFs from an exemplary listener.

The bottom row of Fig. 8 shows the corresponding prediction matrices including
the actual responses for this particular listener. Note the correspondence of the local-
ization performance for that particular listener between the actual responses, A, and
the model predictions, P. Good correspondence between the actual responses and
prediction matrices was found for most of the tested listeners, which is supported by
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Fig. 8 Effect of the number of spectral channels for listener, NH42. Top Channelized left-ear
DTFs of median SP with brightness-encoded magnitude as in Fig. 1, right panel. Bottom Prediction
matrices with brightness-encoded probability as in Fig. 5, right panel, and actual responses, open
circles. Left Unlimited number of channels. Center 24 spectral channels. Right 9 spectral channels.
A…actual performance from [10], P…predicted performance

Fig. 9 Localization performance for listener groups as functions of the number of spectral channels.
Open circles Actual performance of the listeners replotted from [10]. Filled circles Performance
predicted for the listeners tested in [10] using the targets from [10]. Filled squares Performance
predicted for the listener pool, using randomly chosen targets. Error bars ±1 standard deviations
of the average over the listeners. Dashed line Chance performance corresponding to guessing the
direction of the sound. CL…unlimited number of channels, broadband clicks
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the overall response-prediction-correlation coefficients of 0.62 and 0.74 for PE and
QE, respectively.

Figure 9 shows the predicted and the actual performance as averages over the
listeners. In comparison to the actual performance, the models underestimated the
PEs for 12 and 18 channels and overestimated them for 3 channels. The predictions
for the pool seem to follow the predictions for the actually tested listeners showing
generally similar QEs but slightly smaller PEs. While the analysis of the nature of
these errors is outside of the focus of this chapter, both predictions, those for the
actual listeners and those for the pool, seem to well represent the actual performance
in this localization experiment.

Effect of Band Limitation and Spectral Warping

In another previous study, localization performance was tested in listeners using their
original DTFs, band-limited DTFs and spectrally warped DTFs [51]. The band lim-
itation was done at 8.5 kHz. The spectral warping compressed the spectral features
in each DTF from the range 2.8–16 kHz to the range 2.8–8.5 kHz. While the focus of
that study was to estimate the potential of re-learning sound localization with drasti-
cally modified spectral cues in a training paradigm, the experimental ad-hoc results
from the pre-experiment are used to evaluate the proposed model. Note that, for
this purpose, the upper frequency of the peripheral processing stage was configured
to 8.5 kHz for the band-limited and warped conditions.

The top row of Fig. 10 shows the DTFs and the bottom row the prediction matri-
ces for the original, band-limited and warped conditions for the exemplary listener,
NH12. The actual responses show a good correspondence to the prediction matrices.
Figure 11 shows group averages of the experimental results and the corresponding
predictions. The group averages show a good correspondence between the actual and
predicted performance. The correlation coefficient between the actual responses and
predictions was 0.81 and 0.85 for PE and QE, respectively. The predictions of the
pool well reflect the group averages of the actual responses.

4 Applications

The evaluation from the previous section shows response-prediction correlation coef-
ficients in the order of 0.75. This indicates that the proposed model is reliable in pre-
dicting localization performance when applied with the listener-specific calibrations.
Thus, in this section, the calibrated models are applied to predict localization perfor-
mance in order to address issues potentially interesting in spatial-audio applications.
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Fig. 10 Listener, NH12, localizing with different DTFs, namely, original, left column, band-limited,
center column, and spectrally warped, right column. Top Left-ear DTFs in the median SP. Bottom
Prediction matrices with actual responses from [51], /open circles/. All other conventions are as in
Fig. 8

Fig. 11 Localization performance for listener groups in conditions broadband, BB, band-limited,
LP, and spectrally warped, W. Open circles Actual performance of the tested listeners from [51].
All other conventions are as in Fig. 9

4.1 Non-Individualized Binaural Recordings

Binaural recordings aim at creating a spatial impression when listening via head-
phones. They are usually created using either an artificial head or mounting micro-
phones into the ear canal of a listener and, thus, implicitly use HRTFs. When listening
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Fig. 12 Left-ear DTFs of different listeners in the median SP. Left NH12. Center NH58. Right
NH33. Brightness Spectral magnitude—for code see Fig. 1, right panel

Fig. 13 Listeners’ localization performance for non-individualized versus individualized DTFs.
Bars Individualized DTFs. Circles Non-individualized DTFs averaged over 16 DTF sets. Error
bars ±1 standard deviation of the average. Dashed line Chance performance corresponding to
guessing the direction of the sound

to binaural recordings, the HRTFs of the listener do not necessarily correspond
to those used in the recordings. HRTFs are, however, generally highly listener-
specific and the relevant spectral features differ across listeners—see Fig. 12. Usu-
ally, SP localization performance degrades when listening to binaural signals created
with non-individualized HRTFs [34]. The degree of the performance deterioration
can be expected to depend on the similarity of the listener’s DTFs with those actually
applied. Here, the proposed model is used to estimate the localization performance for
non-individualized binaural recordings. Figure 13 compares the performance when
listening to individualized recordings with the average performance when listening
to non-individualized recordings created from all other 16 listeners. It is evident that,
on average, listening with other ears results in an increase of predicted localization
errors.

Thus, the question arises of how a pool of listeners would localize a binaural
recording from a particular listener, for instance, NH58. Figure 14 shows the listener-
specific increase in the predicted localization errors when listening to a binaural
recording spatially encoded using the DTFs from NH58 with respect to the errors
predicted for using individualized DTFs. Some of the listeners like NH22 show only
little increase in errors, while others like NH12 show large increase.
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Fig. 14 Bars Listener-specific increase in predicted localization errors when listening to the DTFs
from NH58 with respect to the errors predicted when listening to individualized DTFs. Dashed
lines Chance performance, not shown if too large

Fig. 15 Localization performance of the pool listening to different DTFs. Bars Individualized
DTFs. Circles DTFs from NH12. Squares DTFs from NH58. Triangles DTFs from NH33. Dashed
line Chance performance

Generally, one might assume that the different anatomical shapes of ears produce
more or less distinct directional features. Thus, the quality of the HRTFs might
vary, having effect on the ability to localize sounds in the SPs. Figure 15 shows
the performance of the pool, using the DTFs from NH12, NH58 and NH33. The
DTFs from these three listeners provided best, moderate and worst performance,
respectively, predicted for the pool listening to binaural signals created with one of
those DTF sets.

This analysis demonstrates how to evaluate across-listener compatibility of bin-
aural recordings. Such an analysis can also be applied for other purposes like the
evaluation of HRTFs of artificial heads for providing sufficient spatial cues for bin-
aural recordings.

4.2 Assessing the Quality of Spatial Cues in Hearing-Assist Devices

In the development of hearing-assist devices, the casing, its placement on the head,
and the placement of the microphone in the casing play an important role for the
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Fig. 16 Impact of the microphone placement. Top Left-ear DTFs of median SP from NH10. Bottom
Prediction matrices. Left ITE microphone. Right BTE microphone. All other conventions are as in
Fig. 8

effective directional cues. The proposed SP localization model can be used to assess
the quality of the directional cues picked up by the microphone in a given device.
Figure 16 shows DTFs resulting from behind-the-ear, BTE, compared to in-the-ear,
ITE, placement of the microphone for the same listener. The BTE microphone was
placed above the pinna, pointing to the front, a position commonly used by the BTE
processors in cochlear-implant systems. The bottom row of Fig. 16 shows the cor-
responding prediction matrices and the predicted localization performance, namely,
PE and QE. For this particular listener, the model predicts that if NH10 were lis-
tening with the BTE DTFs, his/her QE and PE would increase from 12 to 30% and
from 32 to 40◦, respectively. This can be clearly related to the impact of degraded
spatial cues. Note that in this analysis it was assumed that NH10 fully adapted to the
particular HRTFs. This was realized by using the same set of DTFs for the targets
and the template in the model.

The impact of using BTE DTFs was also modeled for the pool of listeners using
the calibrated models. Two cases are considered, namely, ad-hoc listening where
the listeners are confronted with the DTF set without any experience in using it,
and trained listening where the listeners are fully adapted to the respective DTF set.
Figure 17 shows the predictions for the pool. The BTE DTFs result in performances
close to guessing and the ITE DTFs from the same listener substantially improve the
performance. In trained listening, the performance for the ITE DTFs is at the level of
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Fig. 17 Localization performance of the pool listening to different DTFs. Bars Individualized
DTFs. Open symbols Ad-hoc listening. Filled symbols Trained listening. Hexagrams ITE DTFs
from NH10. Diamonds BTE DTFs from NH10. Avg... average performance over all listeners.
Error bars ±1 standard deviation. Dashed line Chance performance

the individualized DTFs, consistent with the potential of the plasticity of the spectral-
to-spatial mapping [13]. The BTE DTFs, however, do not allow performance at the
same level as the ITE DTFs, even when full adaptation is considered.

This analysis shows a model-based method to optimize the microphone place-
ment with respect to the salience of directional cues. Such an analysis might be
advantageous in the development of future hearing-assist devices.

4.3 Phantom Sources in Surround-Sound Systems

Sound synthesis systems for spatial audio have to deal with a limited number of loud-
speakers surrounding the listener. In a system with a small number of loudspeakers,
vector-based amplitude panning, VBAP [41], is commonly applied in order to cre-
ate phantom sources perceived between the loudspeakers. In a surround setup, this
method is also commonly used to position the phantom source along SPs, namely,
to pan the source from the front to the back [11] or from the eye level to an elevated
level [41]. In this section, the proposed model is applied to investigate the use of
VBAP within SPs.

Amplitude Panning Along a Sagittal Plane

Now a VBAP setup with two loudspeakers is assumed, which are placed at the same
distance, in the horizontal plane at the eye level, and in the same SP. Thus, the
loudspeakers are in the front and in the back of the listener, corresponding to polar
angles of 0◦ and 180◦, respectively. While driving the loudspeakers with the same
signal, the amplitude panning ratio can be varied from 0, front speaker only, to 1,
rear speaker only, with the goal of panning the phantom source between the two
loudspeakers.
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Fig. 18 Predicted response probabilities, PMVs, as a function of the amplitude panning ratio.
Left Results for NH22. Center Results for NH64. Right Results for the pool of listeners. Circle
Maximum of a PMV. Panning ratio of 0: Only front loudspeaker active. Panning ratio of 1: Only
rear loudspeaker active. All other conventions are as in Fig. 5, right panel

Figure 18 shows the predicted listener-specific response probabilities in terms
of the PMV as a function of the panning ratio for two loudspeakers placed at the
lateral angle of 30◦. The PMVs are shown for two individual listeners and also
for the pool of listeners. The directional stability of phantom sources varies across
listeners. For NH22, the prediction of perceived location abruptly changes from front
to back, being bimodal only around the ratio of 0.6. For NH64, the transition seems
to be generally smoother, with a blur in the perceived sound direction. Note that
for NH64 and a ratio of 0.5, the predicted direction is elevated even though the
loudspeakers were placed in the horizontal plane. The results for the pool predict an
abrupt change in the perceived direction from front to back, with a blur indicating
a listener-specific unstable representation of the phantom source for ratios between
0.5 and 0.7.

Effect of Loudspeaker Span

The unstable synthesis of phantom sources might be reduced by using a more ade-
quate distance in the SP between the loudspeakers. Thus, it is shown how to inves-
tigate the polar span between two loudspeakers required to create a stable phantom
source in the synthesis. To this end, a VBAP setup of two loudspeakers placed in the
median SP, separated by a polar angle and driven with the panning ratio of 0.5, is
used. Note that a span of 0◦ corresponds to a synthesis with a single loudspeaker and
thus to the baseline condition. In the proposed SP localization model, the target angle
describes the average of the polar angles of both loudspeakers, which, in VBAP, is
thought to correspond to the direction of the phantom source. The model was run for
all available target angles resulting in the prediction of the localization performance.
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Fig. 19 Predictions for different loudspeaker spans and NH12. Left Span of 0◦, single-loudspeaker
synthesis, baseline condition. Center Span of 30◦. Right Span of 60◦. All other conventions are as
in Fig. 8

Figure 19 shows prediction matrices and predicted localization performance for
NH12 and three different loudspeaker spans. Note the large increase of errors from
30 to 60◦ of span, consistent with the results from [5]. Figure 20 shows the aver-
age increase in localization error predicted for the pool of listeners as a function of
the span. The increase is shown relative to the listener-specific localization perfor-
mance in the baseline condition. Note that not only the localization errors but also
the variances across the listeners increase with increasing span.

This analysis shows how the model may help in choosing the adequate loudspeaker
span when amplitude panning is applied to create phantom sources. Such an analysis
can also be applied when more sophisticated sound-field reproduction approaches
like Ambisonics or wave-field synthesis are involved.

Fig. 20 Increase in localization errors as a function of the loudspeaker span. Circles Averages over
all listeners from the pool. Error bars ±1 standard deviation
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Fig. 21 Loudspeaker positions of three typical surround-sound systems. Drivers for the low-
frequency effect, LFE, channels not shown

Results for Typical Surround-Sound Setups

The most common standardized surround-sound setup is known as the 5.1 setup
[18]. In this setup, all loudspeakers are placed in the horizontal plane at a constant
distance around the listener. Recently, other schemes have been proposed to include
elevated speakers in the synthesis systems. The 10.2 setup, known as Audyssey DSX
[15] and the 9.1 setup, known as Auro-3D [48], consider two and four elevated
loudspeakers, respectively. Figure 21 shows the positions of the loudspeakers in those
three surround-sound setups. The model was applied to evaluate the localization
performance when VBAP is used to pan a phantom source at the left hand side
from front, L, to back, LS. While in the 5.1 setup only loudspeakers L and LS are
available, in 10.2 and 9.1 the loudspeakers LH2 and LH1 & LSH, respectively, may
also contribute even to create an elevated phantom source.

VBAP was applied between the closest two loudspeakers by using the law of
tangents [41]. For a desired polar angle of the phantom source, the panning ratio was
R = 1

2 − tan(δ)
2 tan(0.5β)

with β denoting the loudspeaker span in polar dimension and δ

denoting the difference between the desired polar angle and the polar center angle
of the span. The contributing loudspeakers were not always in the same SP, thus, the
lateral angle of the phantom source was considered for the choice of the SP in the
modeling by applying the law of tangents on the lateral angles of the loudspeakers
for the particular panning ratio, R.
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Fig. 22 Predictions for VBAP applied to various surround-sound systems. Left 5.1 setup, panning
between the loudspeakers L and LS. Center 10.2 DSX setup panning from L, polar angle of 0◦, via
LH2, 55◦, to LS, 180◦. Right 9.1 Auro-3D setup panning from L, 0◦, via LH1, 34◦, and LSH, 121◦,
to LS, 180◦. Desired polar angle Continuous scale representing VBAP across pair-wise contributing
loudspeakers. All other conventions are as in Fig. 18

Figure 22 shows the predicted pool averages of the PMVs as a function of the
desired polar angle of the phantom source. The improvements due to the additional
elevated loudspeakers in the 10.2 and 9.1 setups are evident. Nevertheless, the pre-
dicted phantom sources are far from perfectly following the desired angle. Especially
for the 9.1 setup, in the rear hemifield, the increase in the desired polar angle, namely,
decrease in the elevation, resulted in a decrease in the predicted polar angle, namely,
increase in the elevation.

The proposed model seems to be well-suited for addressing such a problem.
It is easy to show how modifications of the loudspeaker setup would affect the
perceived angle of the phantom source. As an example, the positions of the elevated
loudspeakers in the 9.1 setup were modified in two ways. First, the lateral distance
between the loudspeakers, LH1 and LSH, was decreased by modifying the azimuth
of LSH from 110 to 140◦. Second, both loudspeakers, LSH and LS, were placed
to the azimuth of 140◦. Figure 23 shows the predictions for the modified setups.
Compared to the original setup, the first modification clearly resolves the problem
described above. The second modification, while only slightly limiting the lateral
range, provides an even better representation of the phantom source along the SP.

5 Conclusions

Sound localization in SPs refers to the ability to estimate the sound-source eleva-
tion and to distinguish between front and back. The SP localization performance is
usually measured in time-consuming experiments. In order to address this disadvan-
tage, a model predicting SP localization performance of individual listeners has been
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Fig. 23 Predictions for two modifications to the 9.1 Auro 3D setup. Left Original setup, loudspeak-
ers LS and LSH at azimuth of 110◦. Center LSH at azimuth of 140◦. Right LS and LSH at azimuth
of 140◦. All other conventions are as in Fig. 22

proposed. Listener-specific calibration was performed for a pool of 17 listeners, and
the calibrated models were evaluated using results from psychoacoustic localiza-
tion experiments. The potential of the calibrated models was demonstrated for three
applications, namely,

1. The evaluation of the spatial quality of binaural recordings
2. The assessment of the spatial quality of directional cues provided by the micro-

phone placement in hearing-assist devices
3. The evaluation and improvement of the loudspeaker position in surround-sound

systems

These applications are examples of situations where SP localization cues, namely,
spectral cues, likely play a role. The model is, however, not limited to those appli-
cations and it hopefully will help in assessing spatial quality in other applications as
well.
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Modeling Horizontal Localization of Complex
Sounds in the Impaired and Aided Impaired
Auditory System

Nicolas Le Goff, J. M. Buchholz and T. Dau

1 Introduction

Ambient noise, room reflections or the presence of multiple interfering talkers are
acoustic factors that can make daily communication challenging. Normal-hearing,
NH, people can nevertheless typically communicate almost effortlessly in such
adverse conditions [1]. In contrast, hearing-impaired, HI, people often experience
major speech-communication difficulties, even when they use hearing aids, HAs. The
auditory system uses various acoustic cues, such as common temporal onsets and
offsets, spectral content, harmonicity as well as spatial information, to decompose
an acoustic scene into its components belonging to the different sound sources [1].

The underlying processes involved in auditory scene analysis are still not very
well understood; in particular, the effects of hearing impairment on speech com-
munication in adverse listening conditions have not yet been clarified. The present
study focuses on the processing of spatial cues in the auditory system. Whereas the
processing of relatively simple spatial sounds is reasonably well-understood in NH
listeners, the consequences of hearing impairment for the processing and perception
of spatial sounds is not well understood. An important question is, for example, how
sensorineural hearing loss, occurring at a peripheral processing level and representing
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the most common type of impairment, affects the processing of spatial cues and the
perception of localization. A better understanding of the representation of spatial
information in the impaired auditory system could also help understanding the diffi-
culties that the HI listeners experience when communicating in adverse conditions.

For NH listeners, localization of single anechoic sounds has been widely studied
and can be well predicted by existing binaural, cross-correlation-based models—
compare [2–4]. In contrast, only very few studies have considered auditory localiza-
tion in noisy conditions—for instance, [5–11]—as well as in reverberant environ-
ments—such as [12–15]. Most of these studies found that localization is mainly
affected at low signal-to-noise ratios, SNR, and largely limited by audibility, but a
more detailed understanding of the limiting factors are still missing. It is generally
assumed that the auditory system has developed various strategies for robust local-
ization in these challenging conditions, which includes the (weighted) integration of
localization information across time, frequency, and auditory cues, as well as the sup-
pression of wall reflections. The localization of broadband noise with interaural time
differences, ITD, that vary across frequency has been described by [16–18], among
others. Several studies have shown that localization accuracy is modified by signals
preceding and succeeding in time—see [19]. Based on a binaural localization model
[20] proposes that, when background noise is present, integration of localization
information across time and/or frequency is required. The integration of localiza-
tion information across ITDs and interaural level differences, ILD, is, for example,
reflected in trading experiments—compare [3]. Different auditory mechanisms that
help a listener to localize sounds in reverberant environments are summarized by the
precedence effect, PE,—see, for instance [21]. In order to model some aspects of
these more advanced auditory processes, mechanisms such as contra-lateral inhibi-
tion [22] as well as cue selection [23] have been proposed.

Localization in HI listeners can be reduced as a result of different factors [24–27].
ITD discrimination thresholds may be decreased in HI listeners [28, 29] although
thresholds vary largely across subjects and may be even as low as for NH listeners
[24, 30, 31]. Localization performance in quiet is only reduced in listeners with uni-
lateral hearing loss or substantial low-frequency hearing loss, for instance, [32–34],
or with conductive hearing loss [27]. In [35] it is shown that horizontal localization of
click-trains in HI listeners is basically as good as in NH listeners when the stimuli are
presented at most comfortable levels. However, the performance drops at lower levels
due to reduced sensitivity—as measured by an audiogram. Considering horizontal
localization, [36] showed that HI listeners show poorer performance than NH listeners
when localizing click trains in directional white noise. This decrease in performance
is most likely linked to a decrease in audibility, which is caused by a decrease in sensi-
tivity as well as an increase in the amount of temporal and spectral masking—see [25,
27]. Several studies have investigated the PE in HI listeners by measuring the localiza-
tion dominance of the direct sound over a reflection. In general, the results vary largely
across both HI and NH listeners, such that most studies could not reveal any signifi-
cant reduction in localization dominance in HI listeners. However, a recent study by
[37] showed a significant reduction in localization dominance in a large number of HI
subjects which was highly correlated with hearing loss. In [38], it is pointed out that,



Modeling Horizontal Localization of Complex Sounds 123

for ongoing sounds, the fine structure of the signal is important for the PE to operate.
Given that fine-structure processing is often impaired in HI listeners, it is expected that
the PE is less effective. Since cognitive processes may affect localization in natural
environments [39], it may be speculated that reduced cognitive capabilities as well as
reduced working memory capacity, as often observed in elderly HI listeners will also
compromise localization in complex acoustic environments—see [27]. In addition to
the above laboratory-based psychoacoustic evidence, questionnaire-based field stud-
ies revealed that HI listeners experience localization difficulties in their daily life,
which is more severe with increasing hearing loss [40, 41]. Hence, although auditory
localization in HI listeners has been widely studied, the detailed underlying processes,
particularly in challenging acoustic environments, are still poorly understood.

Sound localization with bilateral HAs, has been widely studied with differ-
ent device types, listening configurations, source signals, algorithms, and micro-
phone positions. For moderate to severe hearing losses, HA amplification effectively
restores audibility up to about 4 kHz and, therefore, enables localization—see, for
instance [26]. Subjective studies based on questionnaires generally reported a clear
benefit in localization when a second HA is applied [41, 42]. When audibility is
not an issue, most psychoacoustic studies agree that, when compared to the unaided
case, bilateral amplification slightly deteriorates sound localization performance in
the frontal horizontal plane [26, 43–45]. Undisturbed horizontal localization per-
formance has only been reported for HI listeners with rather normal low-frequency
hearing and open HA fittings [45, 46], namely, listeners that have access to natural
localization cues at low frequencies. According to [47], front-back localization is
disturbed by any type of HA due to the obstruction of the pinna by the earmold
or the actual HA module. In [47] and [26] it is reported that horizontal localiza-
tion, in particular front-back confusions, improved for listeners with remaining low-
and high-frequency hearing, when no earmold occluded the ear canal and, there-
fore, natural localization cues were available. In [46] and [48], neither a benefit nor a
detrimental effect on front-back confusions has been found for various types of HAs.
This contradiction to the findings of [26] may be due to the fact that the later studies
applied HAs with an increased bandwidth of 7–8 kHz instead of 5–6 kHz. Both stud-
ies also reported that behind-the-ear devices, BTE, produce an increased number of
front-back confusions relative to in-the-canal, ITC, in-the-ear, ITE, or in-the-pinna,
ITP, devices. In [44] it is reported that the front-back confusions as observed in BTE–
HAs can be reduced by applying directional microphones, such as cardiods, instead
of omni-directional microphones—in particular at high-frequencies. Moreover, [44]
showed that independent bilateral wide-dynamic-range compression, WDRC, can
slightly reduce horizontal localization performance due to compressed ILDs. This
effect should be removed when a binaural signal link is applied to coordinate the
WDRCs at the two HAs. Super-directional beamformers, which combine the signals
arriving at all microphones of the left and right HAs, are able to preserve local-
ization in simple acoustical environments—compare [48–50]. However, it is still
unclear how well they preserve localization in complex and, in particular, reverber-
ant environments. Hence, HAs have a significant effect on auditory localization, but
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how a given device, type of fitting, compensation strategy, and/or advanced signal
processing, affect an individual HI listener, is not well understood.

In order to better understand the consequences of an individual’s hearing loss,
including the effect of a HA, an auditory localization model framework would be
useful. If successful, such a framework could then also be used to test and optimize
the signal processing and compensation strategies applied in a HA for an individual
HI listener. As a first step into this direction, a binaural signal processing model
framework is proposed in this chapter. The approach is novel as it analyses NH
versus individualized HI processing in conditions of signal detection and localiza-
tion in noisy and/or reverberant situations. The peripheral processing in the model
includes the dual-resonance nonlinear, DRNL filterbank proposed in earlier monau-
ral studies [51]. The characteristics of the peripheral processor can be adjusted in
both channels—representing the left and the right ear—such that it accounts for
sensorineural hearing impairment due to a loss of cochlear compression. Such com-
pression loss is commonly associated with broader auditory filters, i.e., decreased
frequency selectivity and reduced sensitivity in terms of audibility. The binaural
processor of the model is an equalization-and-cancellation, EC, processor similar to
the one proposed by [52]. For the back end, depending on the particular task and
outcome measure, the model assumes an optimal detector in conditions of signal
detection or discrimination, or a localization unit for the prediction of sound source
localization. The localization back end also includes a cue-selection mechanism
inspired by the work proposed in [23], selecting reliable spatial information from a
complex spatial-excitation pattern.

The overall structure of the model and the main properties of the individual
processing steps will be presented first, including the simulation of hearing loss
in the peripheral processing stage of the model. The model will be evaluated in
classical conditions of binaural signal detection, and then be applied to localization
conditions with two concurrent talkers in anechoic and reverberant rooms, assum-
ing either NH or specific types of hearing impairment. Finally, effects of HA signal
processing on sound localization will be considered and the benefits and limitations
of current compensation strategies for restoring spatial cues will be discussed in the
framework of the presented model.

2 Binaural Signal Processing Model

2.1 Overall Structure

A block diagram of the processing model is shown in Fig. 1. When appropriate,
incoming signals entering the ears can be convolved with binaural room impulse
responses, BRIR, and/or applied to individual left- and right-channel HA process-
ing. The structure of the model is similar to previous signal-driven binaural models
and can be divided into three parts, namely, peripheral, binaural and central process-



Modeling Horizontal Localization of Complex Sounds 125

Fig. 1 Block diagram of the proposed model. At the input to the model, the signals can be processed
by a HA algorithm or convolved with BRIRs. The left- and it right-ear input signals are processed in
the peripheral processor, that is, middle-ear transformation, basilar-membrane filtering, filterbank,
inner hair-cell transformation, and logarithmic compression, and then compared in an EC-type
binaural processor. Two different pathways to the central processor are considered. The optimal
detector deals with signal-detection conditions. The cue selector extracts the spatial positions of
external sound sources

ing. The peripheral processing includes middle-ear transformation, spectral filtering,
hair-cell transduction and logarithmic compression. The output of the left and right
channels feed an EC type binaural processor that outputs binaural-activity maps along
an internal ITD, and ILD, dimension, denoted by τ and α, respectively. The informa-
tion on the binaural-activity map is then either evaluated by an optimal detector, to
predict binaural detection, such as ITD and ILD thresholds or tone-in-noise detection
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thresholds, or by a cue selection mechanism that outputs localization information.
The details of the processing are presented in the following sections.

2.2 Peripheral Processing

The peripheral processing of the model consists of four main stages. The middle-ear
filter simulates the middle-ear transduction and corresponds to the processing pro-
posed by [51]. It is realized by a 512-point finite-impulse-response filter of which the
coefficients have been fitted to empirical stapes-displacement measurements reported
by [53]. Essentially, it is a symmetric bandpass filter that peaks at 800 Hz and has
20-dB/decade slopes.

The processing on the basilar membrane, BM, is simulated by a DRNL filterbank,
as proposed in [51]. The nonlinearities of the filterbank are reflected as a change in
filter bandwidth with level and by the nonlinear input/output, I/O, function in response
to tones. The bandwidth of the filter is equal to that of a 4th-order gammatone filter
at low stimulation levels and increases with level. Typical I/O functions for on-
frequency stimulation, i.e., at the characteristic frequency, consists of three segments
a linear segment for input levels below 30–40 dB SPL, a compressive segment for
levels between 30–40 and 60–70 dB SPL, and a linear or near-linear segment for
higher input levels. The transition levels between the linear and compressive parts
depend on the frequency and the individual listener to which the DRNL parameters
are fitted to—outlined further below. An illustration of the auditory filter shapes and
I/O functions can be found in Fig. 2 of [54].

The hair-cell transduction process is roughly estimated by a half-wave rec-
tification and a second-order lowpass filter with a cutoff frequency of 1 kHz,
as used in several previously described auditory models—for instance, [52, 54,
55]. The main effect of this stage is to reduce information on the temporal fine
structure, TFS, and extract the envelope of the stimulus representation at high
frequencies.

The last stage of the peripheral processor is a static logarithmic compression.
This reflects a simplification of the processing assumed in the models of [55, 56]
and [52], where a combination of adaptation loops has been considered to result in
either a close-to-logarithmic compression for the processing of stationary portions
in the stimuli or in linear processing for the fluctuating portions of the stimuli. The
adaptation loops enabled the original models to account for intensity discrimina-
tion as well as forward masking data. Such adaptive properties were not consid-
ered in the model proposed here. The logarithmic compression used in the present
model generates a linear internal mapping of the sound pressure levels of the stimuli.
Such a mapping, in combination with the level equalization stage in the binaural
processor—described below—realizes an internal representation of the ILDs that
corresponds to the ILDs of the acoustic input signals.

A key feature of the proposed model is that the peripheral part can be adapted
to approximate the processing of individual NH and HI listeners. The increase in
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Fig. 2 Left I/O functions of the DRNL module. Right I/O functions of the entire peripheral processor
Functions are shown for NH (solid curves) and HI8 (dashed curves) at 500 Hz (circles) and 4 kHz
(diamonds). The dotted curves in the right panel represent results obtained without the presence of
audibility noise

absolute hearing threshold, a reduction or loss of peripheral, BM, compression and
a broadening of the auditory filters are accounted for in the peripheral processor.
The absolute hearing threshold is partly determined in the model by the gain in the
DRNL. A frequency-dependent noise, referred to here as audibility noise, was added
to the input signals to simulate increased absolute thresholds. The audibility noise
was assumed to be independent across ears and across frequency. The level of the
noise was adjusted using the optimal-detector back end of the model framework, such
that the detection thresholds for 300-ms pure tones corresponded to the considered
individual listener’s audiogram. The loss of compression and the associated increase
in auditory filter bandwidths were accounted for through a fit of several parameters
of the DRNL model to results from temporal masking curves in different conditions,
as described in detail in [57].

An average NH listener with an audiogram as reflected in the ISO standard [58]
was chosen to represent NH. The DRNL parameters for normal and impaired hearing
were taken from [57]. In particular, subject HI8 was chosen for the present study. This
listener was considered to have lost compression and had elevated hearing thresholds
of 40 and 60 dB HL at 500 and 4 kHz, respectively.

Figure 2 depicts the I/O functions of the DRNL stage for NH and for HI8 at
500 Hz and 4 kHz. The absence of compression for subject HI8 is reflected by the
linear functions at both frequencies. The associated reduced frequency selectivity for
this listener can be seen in Fig. 9 of [57]. Further, Fig. 2 shows the corresponding I/O
functions for the entire peripheral processing block, where the dotted curves represent
the I/O functions without the presence of audibility noise, reflecting logarithmic
functions of the form {output = a*log(b*input +1)}, with a and b depending on
frequency and the DRNL parameters. The presence of the audibility noise produces
a constant output value for input levels below the absolute hearing thresholds at the
respective frequency for the individual listener.
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2.3 The Binaural Processor

The binaural stage represents an EC processor—see, for instance [52, 59] or [60]. It
is implemented in a similar way as in the binaural processing model of [52]. It differs,
however, from the model in [52] in the way that ILDs are coded. The preprocessed
left- and right-ear signals are compared in the binaural stage at their respective
frequency channels. The binaural processor consists of an array of excitation-and-
inhibition, EI, units, each assigned with a characteristic ITD, τ [ms], and a character-
istic ILD, α [dB]. As a result, the binaural processor realizes a discrete equalization
in time and level, followed by the cancellation operation that calculates the difference
between the equalized left- and right-ear signals. The difference is squared to obtain
the power of the binaural signal. The output of a single EI unit is thus expressed as
follows,

E(i, t, τ, α) = ((Li , (t + τ/2) + α/2) − (Ri (t − τ/2) − α/2))2 . (1)

Here, Li (t) denotes the left-ear preprocessed signal from frequency channel i, and
Ri (t) denotes the corresponding right-ear preprocessed signal. In contrast to the
binaural processor in [52], internal ILDs, α, are linearly processed. This processing,
in combination with the logarithmic mapping of level realized by the logarithmic
compression of in the peripheral processor, provides a mapping of the physical ILDs
into α-values. Furthermore, a 30-ms long double-sided exponential window limits
the temporal resolution of the binaural processor, a phenomenon often referred to as
binaural sluggishness [61].

The binaural processor outputs frequency- and time-dependent binaural-activity
maps along the τ - and α-axes, whereby the activity, E, provides an estimate of the
interaural coherence. A null activity corresponds to interaural signals that are per-
fectly correlated, and an increasing activity reflects a reduced interaural coherence.
The location of the minimum activity, thus, provides an estimate of the considered
source direction. The resolution limit of the model is provided by a constant-variance
internal noise added to the binaural-activity map as an independent signal at the out-
put of each EI elements.

2.4 Central Processing

Two central processors are integrated in the model and applied to the output of the
monaural and binaural preprocessing: an optimal detector, effective in conditions of
signal detection, and a localization device including a spatial-cue selection process
for the prediction of sound source localization in adverse conditions.

The optimal detector corresponds to the one described in [52]. The binaural detec-
tor retrieves the information provided in the binaural-activity map. Following the
monaural signal paths, a 10-ms-long double-sided exponential window is applied



Modeling Horizontal Localization of Complex Sounds 129

before the detection stage to limit monaural temporal resolution in both channels.
Furthermore, a similar integrator with a time constant of 30 ms is part of the binaural-
activity map generation. Both monaural and binaural information are optimally com-
bined across time and frequency channels. Details of the implementation can be found
in [52].

The activity represented in the binaural-activity map is minimal at those values
of τ and α that correspond to the ITD and ILD created by the sound sources. The
localization of a sound source is therefore achieved by finding the τ and α values
corresponding to points of minimum activity, PMAs, on the binaural-activity map.
For convenience, the extracted τ - and α-value of the PMAs will be referred to as
ITD and ILD throughout this chapter. The amount of activity at the PMA provides
a measure of the interaural cross-correlation1 or coherence whereby a low activ-
ity refers to a high coherence. Based on this coherence measure, a cue-selection
mechanism that is similar to the one proposed by [23] is implemented here. The
cue selector is used to disentangle spatial information in adverse acoustic conditions
including room reverberation, multiple talkers or background noise. Consequently,
only instantaneous localization predictions that provide a coherence that is above
a pre-defined threshold are considered, that is, PMAs on the binaural-activity map
that are below a pre-defined threshold. The threshold depends on frequency and
the considered acoustic environment—see [23]. The cue-selection operation is thus
assumed to increase the reliability of the localization estimation.

3 Model Evaluation

3.1 ITD and ILD Detection

Here the model’s ability to predict just-noticeable difference for ITDs and ILDs is
studied. Model predictions for ITD and ILD detection thresholds are shown in Fig. 3.
The left panel of Fig. 3 shows ITD detection thresholds as obtained with 1-ERB-wide
noise band stimuli as a function of the center frequency of the noise between 150 and
1.5 kHz. For the measured and simulated data, a 2-down 1-up adaptive procedure was
used in combination with a 3-alternative forced-choice paradigm. Each presentation
interval was 300 ms long. The predicted frequency dependence of the ITD threshold
corresponds well to that observed in the measured data. The threshold function shows
the well-known pattern with a minimum at about 1 kHz. The threshold decrease
with increasing frequencies up to 1 kHz results from the constant absolute-phase
sensitivity of the model. The threshold increases for frequencies above 1 kHz, which
is due to the increasing loss of temporal fine structure that leads to loss of information
regarding the carrier signal. The effects is modeled by low-pass filtering in the hair-
cell transduction stage.

1 The term interaural coherence denotes the amplitude of the normalized interaural cross-correlation
function for maximum ITDs of ±1 ms.



130 N. Le Goff et al.

125 250 500 1000 2000

10

20

40

80

160

320

Center Frequency [Hz]

IT
D

 T
hr

es
ho

ld
 [µ

s]
exp
Klumpp 1956
model

125 250 500 1000 2000 4000 8000
0

1

2

3

4

5

6

7

8

Center Frequency [Hz]

IL
D

 T
hr

es
ho

ld
 [d

B
]

exp
model

Fig. 3 Left ITD-detection thresholds as a function of the center frequency of one-ERB-wide noise
bands. Own data represented by diamonds and data from [62] by squares. Right ILD detection
thresholds. Experimental data are represented by open symbols and model data by filled symbols

Figure 3 shows measured and simulated ILD thresholds. The model accounts for
the data very well for frequencies up to about 1 kHz but discrepancies can be observed
at higher frequencies. Above 2 kHz, the model predicts an increasing ILD threshold
up to about 4 dB, with increasing frequency, whereas the measured data stay roughly
constant within 1–2 dB. The properties of the assumed middle-ear transfer function,
the DRNL filter and the hair-cell transduction stage cause the continuous increase
of the simulated ILD threshold. While the discrepancies should be minimized in
future model developments, they are considered moderate for the purpose of the
present study. However, one of the consequences of the mismatch is that the cue-
selection mechanism will slightly underestimate the reliability of ILD information
above 1 kHz.

3.2 Localization with Normal Hearing

The baseline localization ability of the model is presented for a NH listener in an
anechoic environment and in a room. Similar to [23], the acoustic scenario consists
of two concurrent talkers located in the horizontal plane. Each talker utters a different
phonetically balanced sentence taken from [63] recorded by the same male speaker.
The waveforms of the anechoic-speech excerpts of the two talkers are shown in
Fig. 4. The speech signals are 2 s long and were sampled at 16 kHz. Due to the
intrinsic amplitude modulations in speech signals, the energy fluctuations over time
can greatly differ between the two talkers. These specific waveforms were chosen to
have instants where only one speaker dominates as well as instants when the speech
signals overlap.

Two acoustic environments were considered an anechoic environment and a rever-
berant room. In the anechoic environment, the location of the speaker was simulated
by imposing ITDs corresponding to the difference in arrival time at the two ears [64]
and imposing ILDs taken from measurements of [65]. The two talkers were sym-
metrically located at ±45◦ azimuth angle in the horizontal plane, which corresponds
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Fig. 4 Temporal waveforms of the left and right interfering speaker—taken from [63]

to ITDs of ±0.375 ms and ILDs of ±5 dB assuming a head diameter of 18 cm. All
localization simulations were conducted without internal binaural noise.

The information as received, processed, and selected by the cue-selection mech-
anism as a function of time is shown in Fig. 5 at 500 Hz and 4 kHz. The minimum
activity, MA, on the binaural-activity map is shown in the top panels. The middle and
bottom panels show the position of the PMAs, map along the τ -axis—corresponding
to the estimated ITD of the sound sources—and along the α-axis—corresponding to
the estimated ILD of the sound sources. As in [23], a cue-selection threshold was
arbitrarily chosen for each frequency, represented by the horizontal dashed line in the
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top panels. Bold lines indicate the EI activity below the selection threshold and the
corresponding time instants were considered as moments at which the localization
information was reliable. At these time instants, the estimated ITD and ILD were
selected by the cue-selection mechanism—bold sections of the curve in the middle
and bottom panels. For this anechoic acoustical scenario, 65–75 % of the localization
information was selected by the cue-selection mechanism. Localization information
was rejected when the MA was higher than the selection thresholds, which occurred
when both speakers were simultaneously speaking, for example at time 0.5, 1.4 or
1.6 s.

The ITDs and ILDs that were estimated as reliable by the cue-selection mechanism
were accumulated in time into histograms—Fig. 6. ITD and ILD histograms are
shown for 500 Hz and 4 kHz. Both histograms show two peaks matching the actual
locations of the two speakers represented by the dashed lines. The two-dimensional
histograms, shown in the top-right part of each panel, combine the individual ITD
and ILD histograms. Grey shades code the frequency of the selected ITDs and ILDs,
with darker areas representing a large number of occurrences. At both frequencies,
two distinct darker spots are visible and represent the localization estimates of the
two speakers. The size of the darker spots, reflecting the localization blur, strongly
depends on the duration of the temporal integrator of the binaural processor for this
simulation, which was conducted in an anechoic environment and for a NH listener.
A shorter integration time would increase the localization blur. Moreover, the statistic
of the ITDs and ILDs could also be used as an input parameter to other processing
stages as for instance a speech processor, as discussed in [66], this volume.

The localization of the two speakers was also simulated for a reverberant room.
The same two speech signals as considered for the simulations in the anechoic envi-
ronment were convolved with binaural room impulse responses, BRIR. The speakers
were placed at a distance of 1 m and, as in the anechoic environment, at ±45◦ on the
horizontal plane in front of the listener. The BRIRs were derived from a simulated
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talkers symmetrically separated by 45◦ on the horizontal plane in an anechoic environment with
the actual sound locations indicated by the dashed lines. The source location estimates are shown
for a NH listener in the top-right window of each panel by the distinct darker spots
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cafeteria with a reverberation time of about 0.45 s. The cafeteria was simulated with
the room-acoustic simulation software ODEON and translated into binaural signals
using a HRTF data set measured with a Bruel and Kjær 4128C head-and-torso sim-
ulator, HATS, with purpose built behind-the-ear, BTE, HA dummies from Phonak
mounted above the HATS’ pinnae [67]. Here, the BRIRs recorded with the HATS
in-ear microphones were used—mind that in Sect. 4, which considers the effect of
HA, the corresponding BRIRs recorded with the frontal BTE microphones are used.

Figure 7 shows the ITD and ILD histograms as well as the localization estimates
for the simulation in the reverberant environment. The layout of the figure corre-
sponds to that of Fig. 6. As in the anechoic environment, the two-dimensional his-
tograms show two distinct darker spots representing the location estimates of the
two speakers, although the localization blur is larger here. This increase is due to
the reflections on hard surfaces that occur in the reverberant room and reduce the
correlation between the left and right ear signals [68]. Due to the room reflections,
the activity on the binaural-activity map is elevated and the cue selection thresholds
were increased by about 30 % relative to simulations in the anechoic condition. For
this room condition, the cue-selection mechanism evaluated that only 40–60 % of
the information were reliable, that is, about 10–20 % less than under the anechoic
condition.

3.3 Localization with Hearing Impairment

The effect of peripheral hearing impairment on localization is discussed in the fol-
lowing. First, the effects of a loss of sensitivity in anechoic environment are analyzed
in the framework of the model. Then, the effect of reduced frequency selectivity on
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spectral cues and on the internal representation of the ILDs is studied. The acoustical
scenarios are the same as the ones considered above for NH.

Effects of Reduced Sensitivity

The simulations estimate a HI impaired listener with hearing thresholds of 40 and
60 dB HL at 500 and 4 kHz, respectively, corresponding to HI8 in [57].

Figure 8 indicates the information received, processed and selected by the cue-
selection mechanism in the simulations for the listener with reduced sensitivity. The
corresponding results for the NH listener were shown in Fig. 5. As visible in the
top panels, the loss of sensitivity leads to an overall increase and a compression
of the dynamic range of activity in the PMAs. Consequently, the activity fluctuates
only slightly around its average value which lies above the cue-selection threshold,
effectively de-activating the localization ability of the model. Assuming the same cue-
selection threshold for NH and HI listeners, the simulations suggest that it should be
difficult to reliably evaluate the localization of the two speakers for the considered HI
listener. Furthermore, for the simulation of the HI listener, even if the cue-selection
threshold was increased, the cue-selection mechanism would still be greatly impaired
due to compression in the activity.

Figure 9 shows the time-accumulated histograms of the ITDs and ILDs. Because
the reduced sensitivity de-activated the cue-selection mechanism, all ITDs and ILDs
of the PMAs were considered here. At 500 Hz the ITD and ILD histograms are
more similar to a single Gaussian distribution rather than a bimodal distribution. The
two-dimensional histogram in the top-right corner shows a single cloud of spatial
information, indicating a low interaural correlation of the input signals of the binaural
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Fig. 8 Top Activity on binaural-activity maps at the PMAs. Middle ILD positions of the PMAs.
Bottom ITD positions of the PMAs. Data are shown for an HI listener with hearing thresholds of 40
and 60 dB HL at 500 Hz (left) and 4 kHz (right). Bold lines represent the information selected by the
cue-selection mechanism. The horizontal dashed line in the top panels represents the cue-selection
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processor. Thus, this estimate of a single diffuse sound source is a result of the reduced
sensitivity modeled by the audibility noise, which was assumed independent between
the left and right ear. In a condition of a severe sensitivity loss, the audibility noise
dominates the internal representations and causes the decorrelated pattern on the
binaural-activity maps.

The audibility noise is less dominant at 4 kHz where the ITD histogram shows
two peaks at the actual positions of the two talkers. The ILD histogram, however,
is very narrow and centered on the median position. It should be mentioned that
impaired temporal coding or impaired binaural processing, as for example repre-
sented by an increased ITD jitter, has not been considered in the present study.
These factors could further deteriorate the representation of ITD cues, as further dis-
cussed in Sect. 5. Additional simulations considering various degrees of sensitivity
loss—not reported here—showed that the blur on sound source localization esti-
mates gradually increases with increasing sensitivity loss until—as shown here—the
audibility noise dominates and individual sources become undistinguishable. Since
most listeners with a symmetric sensorineural hearing loss are able to successfully
localize anechoic sound sources—when presented at moderate sound levels—only
very little localization information seems to be sufficient for accurate localization.
As the amount of localization information is significantly reduced in NH listeners
when moving from the anechoic to the reverberant condition—see Sect. 3.2—the
already reduced localization information available in HI listeners in anechoic condi-
tions suggests that localization will be further reduced in reverberant condition and
localization would break down. However, in order to further investigate the effect
of HL on localization in reverberant conditions, experimental data are required that
allows quantitative comparison with corresponding model predictions.

http://dx.doi.org/10.1007/978-3-642-37762-4_3
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Fig. 10 Excitation pattern of the BRIR calculated with the DRNL filterbank, considered for an NH
listener and for an HI listener, assuming 20 % broader auditory filters

Effects of Reduced Frequency Selectivity

Beyond the loss of sensitivity, the model can be used to analyze the consequences of
broadening of the auditory filters on localization in rooms where the filtering realized
by HRTFs or BRIRs provides spectral cues that contribute to the estimation of the
sound-source direction—for instance [3].

HRTFs have a very fine spectral resolution. Auditory filters have, however, band-
widths ranging from about 25 Hz at low frequencies to 2200 Hz at high frequencies
[69]. Spectral cues are therefore not available to the binaural system with as fine
a spectral resolution as represented in HRTFs. This reduction of spectral cue reso-
lution could be even stronger for HI listeners, whose auditory filters are typically
broader [25].

In order to investigate the effect of reduced frequency selectivity on spectral
cues, the spectral decomposition of the left ear response of one of the BRIR used
for localization predictions in Sect. 3.2 was calculated with the DRNL filterbank
considered either for a NH listener or for a HI listener with 20 % broader auditory
filters—see listener HI8 in [57].

As auditory-filter bandwidth increases with level in the DRNL, the function was
amplified to reach a level corresponding to 65 dB SPL. The RMS power at the output
of each filter of the filterbank was calculated as a function center frequency of the
filter to form an auditory-based excitation pattern. To isolate the effect of reduced
frequency selectivity, no loss of sensitivity was included. Thus, the audibility noise
was the same in the NH and HI listener models.

The excitation patterns of the BRIR for both the NH and HI listener are shown
in Fig. 10. Due to the difference in gain in the DRNL between the two listeners—
compare left panel of Fig. 2—the curve for the HI listener has been shifted up by

http://dx.doi.org/10.1007/978-3-642-37762-4_3
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Fig. 11 Histograms of the internal representation of all ILDs present on the binaural-activity map.
Left NH listener. Right HI listener with 20 % broader auditory filter. Stimuli consisted of two talkers
symmetrically separated by 45◦ on the horizontal plane in a reverberant room

8 dB to simplify the comparison. In line with previous studies simulating the effect of
spectral smearing in HI listeners—for instance [70]—the present simulations show
that the excitation pattern obtained for the HI listener is much smoother than the one
calculated for the NH listener. The difference between the two patterns can amount
to 1–2 dB at individual frequencies. Due to the nonlinear nature of the DRNL, this
difference will be even larger for lower levels. This spectral smoothing suggests that
the broadening of the auditory filters will reduce spatial spectral cues.

The consequence of the auditory-filter broadening is also represented in the
binaural-activity maps. Figure 11 shows the ILD histogram at 4 kHz for a NH listener
and a HI listener with a normal audiogram and 20 % broader filter. These histograms
contain all ILDs of the PMAs present on the binaural-activity map without cue-
selection. See the right panel of Fig. 7 for a representation of the selected ILDs
and the estimated sound source locations for the NH listener when cue-selection is
employed. For the NH listener model, the ILD histogram has a Gaussian-like shape
with a range that spans 14 dB from −7 to +7 dB. However, for the HI listener model,
the ILD range spans 8 dB, that is, −4.5 to +3.5 dB. The analysis provided in the
present study also suggests that ITDs remain largely unaltered by cochlear broaden-
ing, which is consistent with the idea that they are more determined by properties
of the temporal waveform of the stimuli. Although these results indicate that filter
broadening impairs the internal representation of ILDs, further investigations are
required to study the effect of frequency selectivity on sound localization in more
detail.
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4 Evaluation of Hearing-Aid Signal Processing Regarding
Localization

The proposed model framework may be used to evaluate the effect of HA, processing
on the internal representation of spatial cues and on the localization performance in
adverse conditions. The evaluation reported in this section uses the same adverse
conditions as already used before, namely, two talkers placed at ±45◦ azimuth angle
in the horizontal plane in an anechoic environment.

The basic function of a HA is to provide amplification and to restore audibility.
Due to the limited range of input levels for HI listeners, this process is combined with
a WDRC in modern HAs. Some potential benefits and drawbacks of the amplification
and WDRC processing are evaluated here in the context of localization and in the
framework of the presented model.

The same HI listener model with hearing thresholds of 40 and 60 dB HL at 500
Hz and 4 kHz as in Sect. 3.3 was considered. The only change was the addition of
HA processing of the input signals of the model. The HA processing was simu-
lated by a model of two binaurally unlinked 30-channel compressive HAs, which
were implemented according to [71] and fitted to the audiogram of the modeled
HI listener—see HI8 in [57]—using the NAL-NL2 prescription [27]. The simulated
HAs were BTE–HAs with omnidirectional directivity and fitted with tight ear molds.
The attack time constant was set to 5 ms, the release time constant to 50 ms, and
moderate channel coupling was applied, that is, the parameters were set to cD = 0.2
and cU = 0.7. With regard to the model parameters, the cue-selection threshold was
the same as in the simulations for the NH and HI listeners, and the audibility noise
level was the same as for the simulations with the non-aided HI listener with reduced
audibility—Sect. 3.2.

The corresponding internal representations of the stimuli are shown in Fig. 12.
A comparison with Figs. 5 and 8 illustrates the effect of HA processing. Restoring
the audibility partially recovers the dynamic range in the EI activity at the PMAs
and causes an overall decrease of activity, with information passing below the cue-
selection thresholds (top panels). This outcome is the result of the amplification of
the signals by the HAs, which increases the level of the internal representation of the
speech signal as compared to the audibility noise. The ILDs and ITDs of the PMAs,
shown in the middle and bottom panels, are also more similar to those observed in
Fig. 5 for the NH subject, even though some differences remain.

As a result of the HA processing, the EI activity has decreased and the cue-
selection mechanism can successfully operate for the HI listener. The corresponding
localization results are shown in Fig. 13. The ITDs of the two speakers can be success-
fully predicted at both frequencies. However, the ILDs are only partially recovered
and generally underestimated. Assuming the same cue-selection threshold as used
for simulations with the NH listener, only 20–30 % of the information was selected
for this aided HI listener, suggesting a less reliable localization estimation than for
the NH listener.

http://dx.doi.org/10.1007/978-3-642-37762-4_3
http://dx.doi.org/10.1007/978-3-642-37762-4_3
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Fig. 13 Histograms of the ITDs and ILDs present on the binaural-activity maps for a simulated
aided HI listener with hearing thresholds of 40 and 60 dB HL at 500 Hz and 4 kHz, respectively. The
stimuli were the same as in Figs. 6 and 9. The source-location estimates are shown in the top-right
window of each panel by the distinct darker spots

Although not reported here, in the case that two linear HAs or two binaurally
linked HAs are fitted to the HI listener, the estimated ILDs are slightly increased but
no systematic improvement in the cue-selection mechanism can be observed. Further
research is required to better understand the effect of compression in general as well
as binaurally coordinated compression.
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5 Summary and Conclusion

In the present study, a new binaural model framework was proposed that aims at
predicting sound localization in NH, HI and aided HI listeners. The preprocessing of
the model consists of a non-linear peripheral processor and an EC binaural proces-
sor. EC based binaural processors have traditionally been used to predict binaural
tone-in-noise detection—for example, [60, 72]—as well as ITD and ILD detection
and discrimination—[72]. Since the proposed model applies a monaural and binaural
processor that is very similar to the ones described in [57] and [52], the model frame-
work is able to predict various aspects of monaural and binaural detection. In the
present study, the EC binaural processor was applied to predict localization. In the
binaural-activity maps generated by the EC processor, a low activity reflects a high
interaural correlation and estimates of the positions of sound sources were derived
from the positions of the PMAs. In the model, localization in adverse conditions was
achieved with the EC-processor followed by a cue-selection mechanism inspired by
the cross-correlation- based framework proposed by [23]. The cue-selection mech-
anism was used to evaluate the reliability of the localization information estimated
by the positions of the PMAs.

The proposed framework was used to estimate the effects of peripheral hearing
impairment on localization. In the current version of the model, hearing impairment
was simulated in terms of either reduced audibility or loss of cochlear compression
associated with reduced frequency selectivity. Limited audibility was simulated by
adding an internal audibility noise to the model input signals. The corresponding
predictions showed that the localization estimates, became increasingly blurry with
decreasing input-signal to audibility-noise ratio. The simulations also showed that
a reduction in audibility impaired the assumed cue-selection mechanism due to an
increase and a compression of activity in the PMAs. Future research needs to address
a broader range of hearing losses, including asymmetric HLs.

The effects of a simulated loss of compression and the resulting broadening of the
auditory filters on localization were tested under a reverberant-room condition. The
reduced frequency selectivity led to a spectral smearing of the spectral cues provided
by the BRIRs and an alteration of the locations of the PMAs on the binaural-activity
map such that the internal representation of the ILDs was mostly located around the
median plane. The internal representation of the ITD was, however, hardly affected
by the loss of compression.

The study also considered the potential benefit of basic HAs for localization. While
the primary function of a HA is to restore audibility, it was shown that including
HA processing to the inputs of the model of hearing impairment improves the cues
available for localization. In the model, restoring audibility leads to an increase of
the signal to-noise ratio at the input and, thus, to an increased reliability of the
spatial cues. The analysis also indicated that restoring audibility was beneficial for
the assumed cue-selection process as it helped to restore the dynamic range in the
PMA activity to that seen in the NH model. Further research is required to better
understand the effect of more advanced HAs on localization. In particular, the effect
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of coordinated compression of bilaterally-fitted HAs should be considered as well as
the effect of signal-enhancement strategies such as super-directional beamformers
or dereverberation algorithms—compare [27, 73].

The gradual removal of TFS in the hair-cell stage was found to be well suited
to predict the increase of ITD detection thresholds above 1 kHz. However, as the
ITD of the PMAs is present in both the signal envelope and TFS and, because no
binaural noise was considered in the localization simulations, the ITD of the PMAs
at high frequency was not limited. This model prediction should be experimentally
investigated for NH and HI listeners in future work. Furthermore, the model cur-
rently evaluates localization information in individual auditory channels. However,
most signals, such as speech, are broadband, and a spectral integration of the spatial
information is performed by the hearing system [18]. The nature and modeling of
this spectral integration requires further study.

The proposed model framework is a first step towards the development of a dedi-
cated research tool for investigating and understanding the processing of spatial cues
in adverse listening conditions, with the long-term goal of contributing to solving of
the cocktail-party problem for NH and HI listeners. Future work will be pursued to
extend the model and to validate it experimentally.
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Binaural Scene Analysis with Multidimensional
Statistical Filters

C. Spille, B. T. Meyer, M. Dietz and V. Hohmann

1 Introduction and Overview

Binaural hearing in humans has been investigated for more than a century. Thompson
[63] and Rayleigh [52] identified differences in arrival time and in intensity between
the left and the right ear to be the dominating cues for direction estimation. These
cues are commonly termed as interaural time differences (ITD) and interaural level
differences (ILD). Thompson [62] suggested that binaural sensitivity is not caused
by acoustic interference, for instance, via the Eustachian tubes, but rather by neural
processing in the brain. It took more than 50 years before the first conceptual model of
neural ITD coding was suggested by von Békésy [65]. He suggested a model, where
a population of neurons is excited by signals from one ear and inhibited by those
from the other. The total population response then codes the interaural differences;
this concept is referred to as rate code. Another two decades later Jeffress [28] sug-
gested an alternative coding concept stating that the neural signals from each ear are
delayed on counterdirected pathways, which act as delay lines. Along the pathways
the two differently delayed signals are compared by coincidence neurons, which are
activated if the signals arrive in coincidence. Due to the increase in relative delay
along the delay lines, the position of the active coincidence neuron along the line
indicates the ITD, what is known as place coding. Coincidence detection along coun-
terdirected delay lines mathematically resembles cross-correlating the left and right
signals. Probably because of these conceptual and mathematical simplicities the Jef-
fress model became the standard model type for developing and evaluating binaural
processing models—see, for example, [35, 59, 60]—which became computationally
tractable with the advent of digital computer. These models were able to explain a
vast range of the binaural phenomena known experimentally from binaural psychoa-
coustics in humans. Variants of this model concept, for instance a subtraction of left
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and right input along counterdirected delay lines have also been applied successfully
[5] but all of these models are based on delay lines.

Physiological evidence for the existence of axonal delay lines was first found by
Carr and Konishi [8] in the brainstem of barn owls. Although the auditory system
of mammals was known to be significantly different from that of birds, the Jef-
fress model remained the standard approach for modeling binaural processing in
mammals—see [41] for a review. However, recent evidence from physiology [42],
functional magnetic resonance imaging [61], evoked potential measurements [53]
and psychoacoustics [50] indicates that it is difficult to explain the mammalian data
with the Jeffress model of place coding. Physiological data [4, 42] suggest that ITD
might be coded in terms of the rate of firing of binaurally sensitive neurons—so-
called rate coding—thus rather supporting the original hypothesis of von Békésy
[65]. Based on these findings, Dietz et al. [17] developed a computational rate-
coding model of binaural processing in humans that did not use any delay lines and
that was based on the interaural phase difference (IPD) instead of the ITD. In line with
recent models—for example, [20]—and psychoacoustical findings, but in contrast
to earlier models that included an explicit temporal integration to model binaural
sluggishness, this model reflects the high temporal resolution of the binaural system.
Furthermore, it processes envelope and carrier IPDs in different channels, explain-
ing psychoacoustic experiments that traded binaural cues of the envelope and carrier,
respectively [14]. A further binaural processing model with the same motivation of
rate coding has recently been suggested by Pulkki and Hirvonen [51].

All models of binaural processing in humans simulate the frequency selectivity
initially provided by the cochlea by processing binaural information in frequency
subbands. For this, many models use a linear Gammatone filterbank with auditory
frequency and time resolution—see [27]. From a signal processing point of view, this
renders the distinction between delay-line models and the IPD model by Dietz et al.
[17] difficult: The subband signals are, on short time scales, almost sinusoidal, which
means that ITD, as measured by cross-correlation, and IPD, as measured by the IPD
model, are almost indistinguishable. A recent study designed to disambiguate these
two approaches by studying the ability to lateralize stimuli with an ITD only in the
second order envelope [16] does indeed hint towards the non-existence of long inter-
nal delays. Van der Heijden and Trahiotis [64] deduced from human psychoacoustic
data of tone detection in double delayed noise stimuli that short internal delays up
to 750µs are indeed in operation. However, neither of these psychoacoustic experi-
ments can distinguish between the general concepts of rate and/or place coding.

In the experimental study presented below, the IPD model [17] is used as a
front-end, because it provides the required high temporal resolution for detecting
short glimpses of robust binaural information. Similar results, however, can also be
achieved with a cross-correlation model [20, 37, 54] or with the subtraction-based
Breebaart model—[34], this volume.

Whereas binaural models mimic many of the distinguished capabilities of binaural
hearing and have extensively been applied to investigate and simulate psychoacoustic
data of binaural perception of artificial stimuli—see references above—as well as of
speech—for example, [2]—their technical application to audio processing in hearing
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aids, mobile audio devices, robotics, hands-free audio communication and speech-
based computer interfaces is still limited. The hypothesis underlying this chapter
is that this limitation is due to a missing link between basic binaural capabilities,
as modeled by the binaural models mentioned above, and audio processing and
interpretation of difficult acoustic conditions characterized by superposed speech,
noise and reverberation. The latter requires inference about the causes of the observed
auditory input in order to be able to decode the acoustic scene, that is, to identify and
segregate different sources, or to select desired sound sources. This cognitive part of
the processing is the missing link and constitutes enabling technologies for technical
applications of binaural models. In this study, the possibilities of filling the missing
gap by extending a binaural model towards interpreting the acoustic scene, that is,
computational binaural scene analysis, are demonstrated by improving automatic
speech recognition (ASR), of superposed spatially-moving speech signals.

Auditory scene analysis (ASA), in the sense of low-level cognitive processing
of acoustic input in humans, has extensively been investigated in the literature, and
many inference principles of the auditory system have been identified [6]. The most
important acoustic cues used by the hearing system were identified to be harmonicity,
periodicity, common onset—namley, synchronous increase in level across several
auditory frequency bands—and the frequency-dependent binaural cues. Each of these
cues only provides a small part of the information needed to decode the acoustic
scene, namely, regarding sources being present, spatial configuration of the sources,
room characteristics etc. Therefore, evidence from many of these different cues has to
be integrated for scene interpretation, including integration across auditory frequency
subbands and time. Evidence from electrophysiological, EEG data and functional
magnetic resonance imaging (fMRI) in humans has led to the interpretation that
the cognitive system, including the hearing system, performs cue integration by
comparing the current sensory input to hypotheses about the expected observation
[47, 70]. The system adapts via neural adaption to the expected input and codes only
deviations of the input from the expectation—see [45]. This means that basically
only novelty is processed by the nervous system, that is, sensory information that
deviates from the hypotheses. Deriving hypotheses about the expected observation
from earlier observations of the input requires a dynamic predictive model of the
auditory scene and is thus part of recent cognitive inference models—see [66] for a
recent approach of modeling novelty processing in auditory evoked EEG responses,
and [21] for modeling cortical inference circuits.

Recent evidence from fMRI experiments in humans show that the premotor cortex
is active during the perception of distorted speech, but not active when music is
played. This suggests that premotor activity may facilitate interpreting speech when
the input is sparse [46]. In the light of the proposed hypothesis-driven inference
model, results are consistent with the notion that the premotor areas responsible for
speech production might be used to generate the hypotheses when perceiving speech
in difficult conditions—compare the motor theory of speech perception [69]. In other
fMRI experiments, Bushara et al. [7] examined the neural binding between hearing
and vision. Correlation of auditory and visual stimuli was found to be correlated
with reduced brain activity when binding occurred. This suggested that the cognitive
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system explores several hypotheses about the expected observation across modalities
at a time, that is, generates competing hypotheses, and that their representations have
mutually inhibitory interactions.

From a signal processing point of view, the principle of novelty processing agrees
well with Bayesian inference methods, which are frequently used in computational-
auditory-scene analysis (CASA) approaches—compare [68]. In particular, infer-
ence from competing hypotheses can be implemented numerically by sequential
Monte-Carlo methods, which will be briefly introduced in the framework of com-
putational binaural scene analysis in the next section. It is argued that CASA based
on hypothesis-driven computing using predictive models is a key to successfully
applying binaural models to decoding the acoustic scene. Three major limitations
requiring this approach will be briefly outlined in the following.

• Ambiguity of the source separation problem If the acoustic scene is composed of
more than two sources and is received by only two sensors, left and right ear, the
separation problem becomes ambiguous. In other words, the source signals can-
not be reconstructed from the superposition using linear methods, such as linear
microphone-array processing. Disambiguation is possible, however, by predic-
tive models that limit the number of possible explanations of the scene—see, for
example, [44].

• Random fluctuations of signal-derived parameters Diffuse background noise and
reverberation impose statistical fluctuations on all signal-derived features, strongly
reducing the statistical evidence provided by a single observation of the respective
feature—see, for example, [43]—for a quantification of the fluctuations of bin-
aural features in real acoustic conditions. Predictive statistical models explicitly
model the noise and perform a statistical combination of several noise-deteriorated
parameters, allowing a noise-robust extraction of information [43].

• Missing information Superposed daily-life signals overlap significantly in the time-
frequency domain. Thus, a significant part of the information on the different
sources is completely masked in the time-frequency domain. In order to sepa-
rate the sources, predictive models are required to fill the missing information—
compare [11].

Every natural or artificial cognitive system has to deal with these limitations and
thus requires some structure that collects evidence from noisy, ambiguous and partly
missing information. In this study, the principle of competing hypotheses based on
a predictive model is applied, in order to achieve this task.

The remainder of this chapter is organized as follows: First, the basic approach to
implement principles of computational binaural scene analysis is described in Sect. 2,
and existing studies on the subject are reviewed in Sect. 3. Then, the approach to
improve ASR using computational binaural scene analysis is introduced in Sect. 4.
For this, the binaural model of Sect. 4.1, the statistical properties of its output with
respect to sound source localization, see Sect. 4.3, the multidimensional statistical
filter that tracks the location of superposed moving speakers, Sect. 4.4, the beam-
former that is directed to the desired speaker and its adaptation by the location
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tracks, Sect. 4.5 and, finally, the ASR system that recognizes speech at the output of
the beamformer, Sect. 4.6, are described. Results from an ASR task are detailed in
Sect. 4.7. Last, the chapter is summarized and conclusions are given in Sect. 5.

2 Computational Binaural Scene Analysis

In this section the focus is on computational binaural scene analysis systems that
are based on competing hypothesis. Figure 1 shows the principle processing blocks
of the proposed system that builds upon the model proposed by Nix and Hohmann
[44]. Key to this approach is the use of a priori knowledge about the sound sources
S that compose the current acoustic scene to generate a set of hypotheses H. Each
hypothesis develops in time and represents a possible state of the sound sources, that
is, a set of parameters that describe the exact configuration of all sources, such as,
source position, pitch, formant frequencies or vocal tract parameters—depending on
the type of source. In each time frame, hypotheses are checked against the observa-
tion, which is composed of a number of signal features O computed from the binaural
audio input.1 The likelihood of the observation to occur under the assumption that
the hypothesis is true is computed and assigned to each hypothesis. This means that
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Fig. 1 Block diagram of a computational binaural scene analysis system based on competing
hypothesis. See the text for details

1 Note that this approach can be extended to more inputs, for example, multiple microphones or
audiovisual input, or might be restricted to a single input.The current study covers its application
to binaural input signals like recordings from a dummy head.
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evidence from many features O is integrated and merged into a single likelihood
value, such as feature integration across frequency. The definition of this likelihood
function is challenging and its complexity depends on the number of state para-
meters and the number of observed features. It should reflect the relation between
source parameters and observation as good as possible. Note that the likelihoods
are stochastically distributed, because the observation is generally fuzzy, even if the
state of the sound source is fixed, for instance, binaural features fluctuate even for
fixed location of the source, as pointed out above. Note also that assigning likeli-
hoods can be described as extracting the novelty about the sound sources embedded
in the observation. If the novelty is high for a specific hypothesis, the observation
does not match the expectation set by the hypothesis, and it will be assigned a low
likelihood. If the novelty for a specific hypothesis is low, the hypothesis will be
assigned a high likelihood. The set of hypotheses and their assigned likelihoods
represents the distribution of possible states and thus the current estimate of the
auditory scene.

Finally, based on the likelihood and a priori known dynamics of the sound sources,
which is restricted by physical constraints, such as smooth pitch and location con-
tours or limited rate of change of vocal tract parameters, each hypothesis is updated,
that is, the parameter set associated with the hypothesis is changed. By this, the
expectation about the state present in the next time step is established. This update
function also employs a stochastic factor in most applications, for instance, the
location of a sound source might be updated according to a random-walk process.
Note that two identical hypotheses develop differently in time due to this random
component.

The set of hypotheses and their assigned likelihoods represents the inference
about the causes of the sensory input. In many applications, the hypothesis that was
assigned the maximum likelihood is taken as the best hypothesis. The functioning of
the approach very much depends on whether the applied source models S match the
sources present in the audio input. A mismatch automatically means a fundamental
misinterpretation of the scene. For example, if the system would erroneously select
a speech signal to be present in the scene, parameters like formant frequencies, pitch
and the temporal evolution of these parameters would be estimated and interpreted
as the state of a speech signal—which is actually not present. Therefore, the model-
selection block in Fig. 1 is most relevant. A biological system has to select or estimate
the appropriate models based on information present in the sensory input. Many
technical applications assume that the appropriate source models are a priori known,
that is to say, they omit the model-selection block. In this case, models are fixed and
only the hypotheses are being updated dynamically.

Common mathematical approaches to implementing a system according to Fig. 1
are so-called sequential Monte-Carlo methods, in particular particle filtering.
Arulampalam et al. [1] provide a tutorial on generic particle filters, which shall
be introduced briefly here—for mathematical details the reader is referred to the
literature. Figure 2 shows a block diagram of a generic particle filter. The circle of
processing blocks is performed for each time instance. A state is a mathematical
description of the current configuration of each sound source and corresponds to the
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Fig. 2 Block diagram of a particle filtering algorithm. See the text for details

hypothesis from Fig. 1. It is assigned a weight that corresponds to the likelihood from
Fig. 1. The combination of a state and its weight is called a particle. At system onset,
before the first input is taken, a set of particles is initialized, for instance, by sampling
the states from an equal distribution across all possible states and assigning random
weights. System dynamics implements a dynamic model of each sound source by a
random mathematical function and represents the update function from Fig. 1. Updat-
ing the hypotheses—Fig. 1—is implemented by predicting the future state from the
current state and the system dynamics separately for each particle. In the next step,
the weight of each particle is updated by an observation statistics, which corresponds
to the likelihood computation from Fig. 1. The observation statistics links the input,
namely, the observation, and the weights by increasing the weight for states that are
likely given the input, and vice versa. Even if the observation statistics is not iden-
tical to the true likelihood function, the set of particles, namely, the states and their
normalized assigned weights, represents a sampled version of the true likelihood
function under very general constraints [19]. State estimation means the selection
of the particle with the highest weight, which denotes the filter output. Some imple-
mentations output the expected value across the set of particles instead. The last step
in the processing chain is the resampling step, which does not find a correspondence
in Fig. 1. Resampling means that particles are discarded if their weights fall below a
certain minimum and are replaced by randomly selected particles that are similar to
the particles with the highest weights. The processing chain then begins again with
the prediction step, that is, time is taken one step forward.
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3 Examples from Literature

In the following, some examples of computational binaural scene analysis are briefly
reviewed. Note that this review is far from complete; the studies presented here, how-
ever, will ease the access to the large body of literature on this topic. A comprehensive
overview of CASA techniques—not necessarily binaural—can be found in the book
edited by Wang and Brown [68].

A very early approach of binaural scene analysis was introduced by Lyon [36].
Peaks of the subband interaural cross-correlation function identified the location
of sounds and time-varying filters steered by these peaks segregated a directional
source. The approach pursued here is similar, but relies on a different binaural model
and includes particle filtering for modeling source continuity.

Nix and Hohmann [44] presented a binaural-scene-analysis algorithm that tracked
the azimuthal direction of arrival (DOA), and the power spectrogram of each of two
superposed and moving speech signals. As the observation, short-term FFT-spectra
and frequency-specific binaural parameters, ILD and ITD, derived from the spectra
were used. As a source model, a first-order Markov process was used that could
generate a plausible succession of speech spectra from a random process. For this,
typical speech spectra and their transition probabilities were derived using a cluster
analysis method from a large speech database that contained many hours of speech.
N = 10,000 typical spectra were used in the Markov process, that is, the transition
matrix contained N × N entries. For tracking the time-course of source location and
spectra, a particle filtering approach was used. 100,000–1,000,000 particles were
used in the different experiments. Each particle contained the source configura-
tion, namely, azimuth directions and current short-time spectra of both sources. The
authors reported that, on the same signal, some runs of the filter succeeded in track-
ing the sources correctly, whereas other runs failed. This shows the dependence of
the system on the random initialization of the particles and shows that the particle
filter may fail even if the source model perfectly matches the sources present in the
input signal. For the successful runs of the filter, the algorithm was able to track
azimuth and magnitude spectra from two superposed speech signals. Evaluations of
the signal-to-noise ratio (SNR) showed that the algorithm was able to improve the
SNR at input SNRs around zero or below, which is difficult to achieve with algorithms
that do not use speech models—compare [44]. The computational effort, however,
was very high.

Dietz et al. [15] used the perceptually and physiologically inspired IPD model for
estimating the azimuthal DOA of superposed directional sound sources, including
free field conditions with up to five concurrent speakers, three concurrent speakers
in background noise and one speaker in reverberation. Key to the IPD model is that
only those time-frequency segments contribute to the DOA estimate that have a high
interaural coherence, similar to Faller and Merimaa [20] and [34] this volume. Those
segments usually occur during short instances of time, often in the order of a few tens
of milliseconds, when one sound source dominates the binaural input. By processing
each of these high-coherence segments as a single event called glimpse, a sparse
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representation of the binaural features is generated, which is in accordance with
recent physiological evidence. A glimpsing representation is especially reasonable
in strongly modulated signals such a speech [11]. Tracking of the sound sources, that
is, estimating its DOA from the sequences of glimpses was achieved using a particle
filter by Särkkä et al. [55] that handles sparse input. This filter implementation solves
the linear parts of the estimation process with a Kalman filter and leaves the nonlinear
parts to the particle filter. This approach is called Rao-Blackwellized particle filter.
The IPD model in combination with the particle filter by [55] is used as the basis
for the experimental study presented in this chapter. An elaborate analysis of DOA
estimates from the model is given below.

Woodruff and Wang [71] describe a binaural localization framework for multiple
sources in noisy and reverberant conditions. Monaural source segregation was used to
increase the robustness of azimuth estimates from a binaural input and was shown to
improve performance relative to binaural-only methods. This framework also allows
model selection or adaption in the sense that an azimuth-dependent model of binaural
features allows for adaptation to new environments.

Christensen et al. [10] introduce a speech fragment approach to localizing multiple
speakers in reverberant environments. Key to this approach is that binaural and pitch
information is sampled from time-frequency regions, so-called fragments, that are
likely to be dominated by one of the speakers. This method is reported to improve
localization performance by up to 24 % compared to a state-of-the-art localizer.

3.1 Application to Automatic Speech Recognition

Mel-frequency cepstral coefficients (MFCCs) are one of the standard features for
today’s ASR systems [13]. They effectively encode the spectral envelope of short-
time segments of speech, perform well for acoustically clean conditions and reflect
properties of the auditory system only to a limited extent. Auditory-inspired pre-
processing of speech signals, however, has also been shown to be a useful approach in
automated speech processing tasks. Applications include the identification of speak-
ers [40], this volume and [38, 39] as well as automatic speech recognition, ASR, for
which auditory frontends have been shown to increase the robustness in the presence
of noise and reverberation [58]. Examples of the large number of studies following
this approach range from the integration of signal processing strategies known to
be employed in the inner ear [26] to the application of filters resembling pattern
observed in the primary auditory cortex of mammals [31].

Across-frequency binaural processing has also been investigated in the framework
of binaural speech recognition. Palomäki and Brown [48] compare across-frequency
and within-frequency processing in combination with internal noise in a computa-
tional model of binaural speech recognition. Palomäki et al. [49] use the statistics of
binaural features to identify unreliable spectro-temporal segments. Unreliable seg-
ments are treated as missing data by the speech recognition system. In other words,
no evidence is provided by this segment and the system’s speech model re-generates
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the missing data in the estimation process. These missing data techniques have been
elaborated further [23, 32] and have been shown to be very successful in render-
ing ASR more robust in noisy conditions. In this chapter, these techniques are not
employed, but it would be possible to use a missing data recognizer directly on the
output of the binaural model, which establishes a means to define missing data due
to its sparseness. Instead, following the philosophy of the AABBA project, auditory-
inspired processing is employed in form of the binaural model described in the next
section. Note that [40], this volume, elaborate further on missing data techniques.

4 ASR in Multi-Speaker Conditions Using Binaural Scene
Analysis

Figure 3 shows a block diagram of the whole processing chain from the raw speech
data to the ASR system. Speech data is used to generate moving speakers by con-
volving it with recorded 8-channel HRIRs—2 in-ear channels and 3 channels from
each of two behind-the-ear (BTE) hearing aids. The in-ear signals are fed into the
binaural model that is employed to estimate the direction of arrival of spatially dis-
tributed speakers—compare Fig. 1 block Observation. A particle filter is then used to
keep track of the positions of the moving speakers. This relates to the blocks Source
Model, Hypotheses, Likelihood, Update and Select best hypotheses in Fig. 1. The
particle filter’s output is used to steer a beamformer, enhancing the 6-channel speech
signal that is to be transcribed by an ASR system. In the following sections each of
these processing steps is described in more detail.

4.1 Binaural Model Structure

The main aim of this study was to apply an auditory binaural model, the IPD model
[17], to automatic speech recognition. The IPD model has previously been extended
and applied to direction of arrival (DOA) estimation [15] which, in turn, has been

Particle Filters:
Speaker Tracking

Automatic speech 
recognizer

Binaural Model:
DOA estimation

Speech Data BeamformerSimulation of 
moving speakers

Fig. 3 Block diagram of the experimental setup. See the text for details
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applied for binaural synthesis [57]. The model extracts binaural parameters such as
IPD and ILD in a way that mimics the performance of the human auditory system.
Four specific aspects of temporal auditory processing were of specially in the focus
of the IPD model, particularly,

• High temporal resolution.
• Limited phase-locking range.
• Use of temporal envelope disparities.
• A limited internal ITD range.

For the sake of consistency the implementation was kept unchanged from Dietz et al.
[15], even though further improvements such as DC-offset free modulation filters
[16] and aspects of pre-binaural adaptation—for example, [18, 30]—have recently
been suggested to model psychoacoustic performance of envelope ITD sensitivity
and binaural tuning of single cells more realistically.

Figure 4 gives an overview of the processing stages of the IPD model. For the
stages up to the extraction of the interaural transfer function, ITF, the IPD and the
ILD were adopted from [17]. Later stages of Fig. 4, from interaural vector strength
(IVS) to DOA glimpse extraction, belong to the binaural cue selection. Both the IPD
model and the binaural cue selection are described in [15]. In the following only the
conceptually relevant aspects are briefly reviewed.

Most importantly, the signals were analyzed in 23 auditory filters in the range of
200 Hz to 5.0 kHz. Considering the human limit to binaurally exploit fine-structure
information above ∼1.4 kHz, the fine-structure filter is only implemented in the 12
lowest auditory filters below 1.4 kHz. Envelope IPDs are derived from all 23 filters,
but are not exploited in the current study.

A problem occurring especially for fine-structure IPDs in filters above 700 Hz is
that their corresponding ITDs do no longer cover the whole range of possible interau-
ral delays, resulting in an ambiguity of direction. Inspired by psychoacoustic findings
such as time–intensity trading—for instance, [33]—the sign of the ILD is employed
here to extend the unambiguous range of IPDs from [−π, π] to [−2π, 2π]. Accord-
ingly, the frequency range for unambiguous fine-structure IPD-to-azimuth mapping
is extended from ∼700 to 1400 Hz. IPD-to-azimuth mapping itself is performed with
a previously learned mapping function.

As argued in [15], the IPD model does not rely on cross-correlation, and, thus,
interaural coherence (IC) is not directly assessable. However, Goupell and Hartmann
[22] have shown that the temporal fluctuations of the interaural functions are possibly
an even better measure for psychoacoustic decorrelation sensitivity. Therefore, in the
IPD model, the IPD fluctuations are directly accessible and are specified in the form
of the interaural vector strength (IVS). The IVS was used to derive a filter mask which
consists of a binary weighting of the interaural parameters based on a threshold value
of IVS0 = 0.98.

By processing each of these high-coherence segments as a single event called
glimpse, a sparse representation of the binaural features is generated from the median
value of the azimuth estimation of this segment. If the IVS constantly exceeds IVS0
for more than 20 ms, a new glimpse is assigned from the same segment. Depending
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Fig. 4 Processing stages of the IPD model from [15]. Peripheral processing splits the input signal up
into 23 frequency channels from 200 to 5000 Hz. Only one of these channels is drawn for the further
processing blocks. IPDs and interaural vector strength (IVS) are derived from one fine-structure and
from several modulation filters. Fine-structure information is only derived in the 12 lowest frequency
channels from 200 to 1400 Hz. In addition, the ILD is derived at the output of an envelope low-pass
filter. The azimuth is derived from the IPDs with a previously stored frequency dependent mapping
function. For fine-structure channels from 700 to 1400 Hz additional ILD information is employed
to unwrap the IPD—see main text. Those azimuth estimates that occur during IVS > 0.98, result
in so-called glimpses, which represent expectedly salient and sparse estimates of the direction of
arrival. Within the current study only glimpses from fine-structure channels are considered

on the application it is decided whether the segments are grouped together to form
a glimpse, or not. Here, for DOA estimation of stationary sounds, Sect. 4.3, it is not
necessary, while it is highly beneficial for tracking applications such as the tracking
of moving speakers, Sect. 4.4, in order to reduce the computational load.
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4.2 Multi-Channel Speech Material

This section describes the multi-channel speech material used for the experiments.
The first and second subsection describe the monaural speech corpus and the gen-
eration of the spatial multi-channel signals, respectively. The simulation of moving
sources is presented in the last subsection.

Speech Data

The speech data used for the experiments consists of sentences produced by ten
speakers—four male, six female. The syntactical structure and the vocabulary were
adapted from the Oldenburg Sentence Test (OLSA) [67], where each sentence con-
tains five words with ten alternatives for each word and a syntax that follows the pat-
tern <name><verb><number><adjective><object>, which results in a vocab-
ulary size of 50 words. The original recordings with a sampling rate of 44.1 kHz
were downsampled to 16 kHz and concatenated—using three sentences from the
same speaker. This resulted in sentences with a mean duration of 6.44 s, suitable for
speaker tracking. For ASR experiments, the speech material was split into training
and test sets with a total duration of 30 and 88 min, respectively. With this amount of
speech data, a good ASR performance can be expected in relatively clean acoustics,
whereas the estimation of acoustic models from noisy observations usually requires
a larger database even for a relatively small vocabulary. Hence, the experiments pre-
sented in this chapter concentrate on the performance with one competing, moving
speaker. The generation of training and test material is based on processing with a
beamformer and is described in more detail in Sect. 4.6.

Generation of Multi-Channel Signals

Spatially localized and diffuse sound sources are simulated using a database of head-
related impulse responses, the HRIR database, which features impulse responses
recorded with three microphones from each of two behind-the-ear (BTE) hearing
aids attached to left and the right ear and two in-ear microphones. The HRIRs used
in this study are a subset of the database described in [29]: Anechoic free-field
HRIRs from the frontal horizontal half-plane measured at a distance of 3 m between
microphones and loudspeaker were selected. The HRIRs from the database were
measured with a 5◦ resolution for the azimuth angles, which was interpolated to
obtain a 0.5◦ resolution. The coordinate system is illustrated in Fig. 5.

Moving Speakers

The signals used throughout the experiments contain data of two moving speakers
without interfering noise sources. Initial and final speaker positions were randomly
drawn from a −90◦ to +90◦ azimuth interval, which represents the valid azimuth
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Fig. 5 Available azimuth range of the generated signals

range of the binaural model. The speakers moved linearly from the start to the end
point for the duration of the respective stimulus and crossed their tracks with a 50 %
probability. A frame-wise processing scheme was employed by applying 64 ms Hann
windows with 50 % overlap and convolving each time frame with the respective
HRIR. Since a source separation cannot be performed with a beamformer when
the signals come from the same direction, boundary conditions were defined that
guaranteed an average angle difference of at least 10◦. Additionally, the minimal
distance between the start and end points was set to 10 and 20◦ for non-crossing and
crossing speakers, respectively.

4.3 Statistical Analysis of Binaural Features

As demonstrated in [15], the IPD model can be employed to localize several con-
current speakers. While the model suffers stronger from reverberation than normal
hearing human listeners, its accuracy and performance is very good in free field
multi speaker conditions. Even three speakers in noise at −6 dB SNR with same
frequency characteristics as speech were robustly localized. While the number of
speakers was only increased up to five in this previous study, Fig. 6 shows that even 6
concurrent speakers can be localized by analyzing the azimuth distribution in the 12
fine-structure channels over a few seconds. The time course of the azimuth estimate
of an exemplary channel, fc = 1000 Hz, is plotted in Panel (b). It can be seen that
the estimate quickly oscillates between the six speaker positions. Over ten groups of
glimpses per second indicate robust DOA estimates while transition periods that can
contain any azimuth value are reliably suppressed by the IVS filter.2

2 A demo folder containing the file exp_spille2013 used to run the IPD model and to generate Fig. 6
is available in the AMToolbox [56].
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Fig. 6 Model output for six simultaneously speaking stationary speakers at −75, −45, −10, +10,
+45, and +75◦. The speech duration was 5.5 s. Grey color indicates all DOA estimates without
IVS filtering, black color indicates DOA estimates with IVS filtering, IVS0 = 0.98. a Azimuth
histogram of the fine-structure channel centered at fc = 1000 Hz. b Time course of the azimuth
estimation for the same channel and input signal as in panel (a). c Azimuth histogram of the fine-
structure channel centered at fc = 236 Hz with the same format and input signal as in (a). d Mean
azimuth histogram of the twelve fine-structure channels. Same format and same input signal as in
(a). It can be seen that the position of the speaker at +75◦ can only be determined with IVS filtering

4.4 Tracking Superposed Speakers

In the framework of the current application, the knowledge of the speaker positions
is used to steer a beamformer that enhances the selected speaker by spatial filtering
of the six BTE-microphone signals, that is, a binaural multi-channel beamformer.
A tracking algorithm for multiple-speaker conditions was already implemented in
[15], but only as a proof of concept. Here a more elaborate version is presented and
its precision in several two-speaker scenarios is demonstrated.

Particle Filters and Monte-Carlo Data Association

The main challenge in the tracking of multiple targets is the mapping from
observations—in this case, of DOA glimpses—to a specific target, which is a
prerequisite for the actual tracking. In this chapter, an algorithm provided by
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Särkkä et al. [55] is applied to solve this problem.3 The main idea of the algorithm
is to split up the problem into two parts—so-called Rao-Blackwellization. First,
the posterior distribution of the data association is calculated using a equential-
importance resampling SIR, particle-filtering algorithm. Second, the single targets
are tracked by an extended Kalman filter that depends on the data associations. Rao-
Blackwellization exploits the fact that it is often possible to calculate the filtering
equations in closed form. This leads to estimators with less variance compared to
the method using particle filtering alone [9]. For more details of the algorithms see
[25, 55].

Application to Speaker Tracking

The tracking toolbox described in the previous section was applied to tracking the
speakers from the DOA glimpses given by the IPD model. To apply the filter to the
signals, the so-called dynamic model and the measurement model have to be defined.
The dynamic model defines the temporal dynamics of the system and implements the
block state prediction of Fig. 2. The state x of the system is determined by the actual
position of the target, α, and velocity, v. x is a vector consisting of the elements α
and v. The dynamic model is then given by

xk = Ak−1xk−1 + qk−1. (1)

The matrix, A, is the transition matrix of the dynamic model and reflects the dynamics
of the system. In this case it is given as

Ak =
(

1 Δtk
0 1

)
, (2)

where Δtk = tk+1 − tk is the time step between two states of the system. This means
that the system’s state at time step k is a linear progression of the system at time k −1
with constant speed plus some process noise, qk , which is introduced to account for
uncertainties in the system’s development

xk =
(
αk−1 + Δtk−1 vk−1

vk−1

)
+ qk−1. (3)

The process noise is assumed to be a multivariate Gaussian with zero mean and
covariance matrix

qk =
(

1
3Δt3

k
1
2Δt2

k
1
2Δt2

k Δtk

)
q f , (4)

which is calculated using the previously mentioned toolbox [24]. q f is a process-
noise factor that was set to 0.1 in this case.The prior distribution of the state x0 (see

3 The algorithm is part of a Matlab-Toolbox provided by [25].



Binaural Scene Analysis with Multidimensional Statistical Filters 161

block initialization of states in Fig. 2), is also a multivariate Gaussian of the form

x0 ∼ N (m0, P0),

where m0 denotes the prior mean of the state and P0 its prior covariance matrix
containing the variances of the system’s position and velocity that is set to

P0 =
(

50 0
0 15

)
,

In other words, the actual position α has a variance of 50 deg2 and the variance of the
velocity is 15 m2/s2. The Kalman filter predicts the mean and the covariance of the
state using the prior values together with the transition matrix, A, and the covariance
matrix of the process noise, q. The equations for the predicted mean mk and the
predicted covariance Pk are as follows,

mk = Ak−1mk−1

Pk = Ak−1 Pk−1 AT
k−1 + qk−1. (5)

Note that the process noise is only used for predicting the new covariance matrix.
During the update step—block weight update in Fig. 2—these predictions are updated
using the actual measurement, that is, glimpses, at time step k as well as the mea-
surement model which describes the relation between the measurement and the state
of the system. The measurement model is given by

yk = Hk xk + rk, (6)

where yk is the actual measurement at time k, Hk is the measurement model matrix
and rk is the Gaussian measurement noise, rk ∼ N (0, R). In the measurement
model used here, only the position of the target is measured. This measurement can
be corrupted by some noise reflecting the variance of the DOA estimation. Thus, the
measurement model matrix, H , and the noise variance, R, are given by

H = (1 0) R = 50 deg2.

As the glimpses are sparse and occur with varying distance in time, the choice of the
sampling interval is crucial. A sampling frequency equal to 1/Δt was chosen for the
tracking algorithm and each glimpse was assigned to the nearest sampling point at
this sampling rate. Glimpses were sampled at the original rate of the speech material.
In the very rare cases that more than one glimpse fell in one bin, all but one glimpse
were discarded.

Several sampling frequencies were tested and the minimum median-squared-error
of the tracking was derived. For this, a dataset consisting of 71 sentences was used.
A final sampling frequency of 500 Hz was chosen based on the results in Table 1.
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Table 1 Median-squared-errors and their roots for the different sampling frequencies

Sampling frequency Median-squared-error Root median-squared-error

50 6.6615 2.5810
100 2.8361 1.6841
200 2.1954 1.4817
400 1.9353 1.3912
500 1.4857 1.2189
1000 1.5297 1.2368
1600 1.8244 1.3507

Speaker Tracking

The particle filter was initialized with a set of 20 particles using a known starting
position of the first speaker, that is, the location variable of the first target was set to
the position for all particles. The location variable of the second target was altered
for each particle in equidistant steps throughout the whole azimuth range. Initial
velocities were set randomly between ±2 m/s for each target in each particle. The
covariance matrix was equal for both targets and was set to P0 as above.

If no glimpse is observed at time step t , the update step of the Kalman filter was
skipped for this time step and the prediction was made based on the internal particle
states. The range of the predicted angles was limited to the interval [−90, 90] by
setting all predictions outside that range to −90◦ or 90◦, respectively.

Figure 7 presents two exemplary tracking results. The figure shows that the particle
filter is able to track speakers even when they cross tracks, left panel. The tracking
algorithm was evaluated by calculating the root median-squared error for each of the
9 data sets. On average the error was below 1.5◦.
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Fig. 7 Tracking results of a two-speaker scenario. Light-grey circles represent the glimpses pro-
duced by the binaural model—see text. Dark-grey lines represent the real azimuth angles of the
speakers. Solid black lines show the smoothed estimates obtained by tracking
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4.5 Steerable Beamformer for Source Selection

In the proposed application, a position estimate for both the target and concurrent
speaker are required to control the beamformer parameters to either enhance the
speech of a certain speaker or block out a concurrent speaker, thereby increasing
the overall signal-to-noise ratio and subsequently lower the word error rates of an
automatic speech recognizer. The beamformer employed here is a super-directive
beamformer based on the minimum-variance distortionless-response principle [12]
that used the six BTE microphone inputs jointly—three channels left and three chan-
nel from the right ear. In general, it suppresses the noise coming from all directions
while not affecting the speech of the desired speaker. Additionally, the beamformer
strongly suppresses the speech of the concurrent speaker which, in this setup, is has
a higher impact than the enhancement of the desired source. Let W be the matrix
containing the frequency domain filter coefficients of the beamformer, d1 and d2 the
vectors containing the transfer functions to the microphones of speakers one and
two respectively and ΦV V the noise power-spectral density, PSD, matrix. Then, the
following minimization problem has to be solved,

min
W

W H ΦV V W, with W H d1 = 1 and W H d2 = 0. (7)

The solution to this is the minimum-variance distortionless-response beamformer [3].
The transfer functions in vectors d1 and d2 result from the impulse responses that are
chosen based on the angle estimation of the tracking algorithm. The coherence matrix
which is required to solve (7) is also estimated using the impulse responses used for
generating the signals. Note that relying on the true impulse responses implies the use
of a-priori knowledge not available in a real-world application, for which the impulse
responses need to be estimated. The beamforming by itself therefore represents an
upper bound, and will be extended to be used with estimated impulse responses in
future work. However, since the IPD model, the tracking algorithm and the ASR
system do not use such a-priori knowledge in reflecting realistic conditions, and
robust methods for estimation of impulse responses exist, the results should still be
transferable to real-world applications.

4.6 ASR System

Feature Extraction and Classifier

The benefits of the proposed processing chain for speech processing are analyzed
by performing automatic speech recognition (ASR) on the output signals of the
beamformer. The ASR system consists of a feature extraction and a classification
stage.

The features extracted from speech should represent the information required to
transcribe the spoken message and ideally suppress unwanted signal components.
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For the experiments, the feature type most commonly applied in ASR, namely, Mel-
frequency cepstral coefficients (MFCCs) [13] was chosen. These features effectively
encode the smoothed short-time Fourier transform (STFT) magnitude, which is com-
puted every 10 ms using overlapping analysis windows of 25 ms duration. Each frame
of the STFT is processed by a mel-filterbank that approximates the frequency sensi-
tivity of the human ear, compressed with the logarithm and transformed to cepstral
parameters using a discrete cosine transformation. By selecting twelve lower cepstral
coefficients, only the coarse spectral structure is retained. By adding an energy value
and calculating an estimate for the first and second derivative, the so-called delta and
double-delta features, to include some information about temporal dynamics on the
feature level, 39-dimensional feature vectors were finally obtained.

The feature vectors are used without normalization to train and test the Hidden-
Markov model (HMM) classifier, which has been set up as word model with each
word of the vocabulary corresponding to a single HMM. During testing, the likeli-
hoods of each HMM generating the observed sequence of feature vectors are com-
pared and the word with the highest likelihood is selected. A grammar reflecting
the fixed syntax of OLSA sentences is used to ensure a transcription with a valid
OLSA sentence structure, in particular the following, <name><verb><number>
adjective><object>, repeated three times due to the concatenation of sentences.
The HMM used ten states per word model and six Gaussians per mixture and was
implemented using the Hidden-Markov Toolkit (HTK) decribed in [72].

Training and Test Material

ASR training was carried out using sentences with one moving speaker, which were
processed with the beamformer. The steering vectors of the beamformer were set
to the true azimuth angles of the desired speaker instead of using the output of
the complete processing chain including DOA estimation. This resulted in signals
containing some beamforming artifacts, that is, the classifier was able to adapt to the
resulting feature distortions and still carried the relevant information to create proper
word models. The effects of speaker-dependent (SD) versus speaker-independent
(SI) recognition was investigated by creating two training sets with the test speaker
being either included in the training data, SD, or excluded from training, SI. The
original data contained 71 long sentences each of which was used several times for the
simulation of moving speakers, thereby increasing the amount of training material.
Each sentence was processed four times with random start and end positions of the
speakers, which resulted in 284 training sentences or 30 min, repectively, for the SD
system and approximately 250 training sentences or 27 min for the SI system.

For testing, signals with two moving speakers were processed by the complete
chain depicted in Fig. 3, one being the target source and the other one the suppressed
source, and the recognition rate for the words uttered by the target speaker was
obtained. To increase the number of test items, each speaker was selected as the
target speaker once and the training/testing procedure was carried out ten times. As
for the training set, the original 71 sentences were used for movement simulation
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several times to further increase the number of test items and hence the significance
of the results. For testing, a factor of 11 was chosen due to computational constraints.
This resulted in a total number of 781 sentences or 88 min with randomised start and
end positions for two speakers.

4.7 ASR Results

When using the complete processing chain that included the DOA estimation, track-
ing, beamforming, and ASR, a word-recognition rate (WRR) of 88.4 % was obtained
for the speaker-dependent ASR system. When using a speaker-independent system,
a word-recognition rate of 72.6 % was achieved. The data presented in the following
were obtained with the speaker-dependent ASR system. When the ASR system can-
not operate on beamformed signals, but is limited to speech that was converted to
mono signals by selecting one of the eight channels from the behind-the-ear or in-ear
recordings, the average WRR was 29.4 %. The variations of WRRs between channels
were relatively small, ranging from 28.1 to 30.8 %. When the best channel for each
sentence was selected, that is, the channel that resulted in the highest WRR for that
specific sentence to simulate the best performance when limited to one channel, the
average WRR was increased to 38.8 %.

It is interesting to note that the WRRs were very similar when analyzing crossing
and non-crossing speaker tracks separately, namely, 88.3 and 88.4 %, respectively. An
analysis of the average separation of speakers in ◦ showed that the overall accuracy
was nearly constant for spatial distances ranging from 40 to 100◦—Fig. 8a—but will
definitely drop down for smaller distances. The average distance was, of course, sig-
nificantly higher for non-crossing speakers, namely, 64.9◦, than for crossing speak-
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Fig. 8 a Word-recognition rate, WRR, of the ASR system to be dependent on the average separation
of sources. The dashed line denotes the average WRR for all speaker tracks. b WRR for crossing
speakers to depend on the difference speed of competing speakers. The dashed black line shows
the recognition rate that was obtained for crossing speaker tracks
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Fig. 9 Word-recognition rate versus average tracking error. The range of the tracking error was dev-
ided in equidistant bins. Data points denote the mean tracking error and the mean word-recognition
rate. Error bars show the corresponding standard deviations

ers, 41.0◦. But, due to the constraints in the case of crossing speakers, the average
distance was high enough to not reduce the WRR. The parameter determining the
average distance of crossing speakers is the relative velocity of speakers, where high
relative velocities correspond to short durations of spatially close speakers—Fig. 8b.
The constraints for starting and end positions that were chosen for crossing speakers
resulted in an average relative speed difference of 1.2 m/s. Hence, the comparable
high WRRs for crossing tracks can be attributed to the high relative velocity of
speakers ensured by the contraints in signal generation.

The word-recognition rate also depends strongly on the localization accuracy: The
overall localization accuracy was quantified by calculating the average tracking error,
which is the root median squared error between the smoothed tracking estimates and
the real azimuth angles of the speakers—see Table 1. Figure 9 shows that the WRR
is highly dependent on the average tracking error where higher traking errors cause
significantly lower WRRs.

5 Summary and Conclusions

This study provided an overview of computational auditory scene analysis based on
binaural information and its application to a speech recognition task. The usability
of the IPD model in automated speech processing was demonstrated by perform-
ing a DOA estimation for stationary and moving speakers. For the moving-speaker
scenario, it was also shown that the binaural model enables efficient tracking and
greatly increases the performance of an automatic speech recognition system in situ-
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ations with one interfering speaker. The word-recognition rate (WRR) was increased
from 30.8 to 88.4 %, which shows the potential of integrating models of binaural hear-
ing into speech processing systems. It remains to be seen if this performance gain
in anechoic conditions can be validated in real-world scenarios, that is, in acoustic
conditions with strong reverberation, several localized noise sources embedded in a
3D-environment compared to the 2D simulation presented here or with a changing
number of speakers. Follow-up studies are suggested that explore a combination of a
binaural model, a tracking system and beamforming for other problems in speech and
hearing research, such as speaker identification, speaker diarization or the improve-
ment of noise reduction in hearing aids.
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Extracting Sound-Source-Distance
Information from Binaural Signals

E. Georganti, T. May, S. van de Par and J. Mourjopoulos

1 Introduction

Judgement of the distance from nearby objects is very important in human’s everyday
life. Normal-hearing people can easily determine the approximate distance between
themselves and a sound source by using only auditory cues, even when visual infor-
mation is not available.

For example, pedestrians can estimate the distance from a car approaching from
behind by listening only to the sound of the car’s noise or its horn. They can determine
how close is a bee that is flying around their head or how far is a dog barking
and running towards them. Similarly, the distance from speakers or other sound
sources can be identified within rooms, even when multiple sound reflections and
reverberation are present. In all such situations, auditory distance perception could
prepare a human to take precaution actions.

During the last years, the problem of distance estimation has attracted the attention
of scientists and several studies exist in the field. These studies can be divided into
two main categories,

• Perceptual studies that aim to understand the auditory mechanisms that underlie
distance judgements by humans
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Fig. 1 The problem of sound-
source-distance estimation in
rooms. A listener can estimate
the line-of-sight distance, d,
from a single source located
at any angle, θ, inside a
reverberant space utilising the
binaural information

Listener

Source 

d

θ

• Studies providing computational methods for the distance-estimation problem,
usually based on the findings of such perceptual studies

Detection methods for the actual distance between the source and receiver can be
advantageous for various audio and speech applications such as denoising or dere-
verberation methods [58], intelligent hearing-aid devices [23], auditory scene analy-
sis [50, 66] and hands-free communication systems [22, 24, 44] as often the relative
distances between the microphones and the sound source are generally not known.

Figure 1 illustrates a typical example for the problem of distance estimation for a
human listener situated in a room where there is one sound source present. The listener
utilising binaural perceptual mechanisms can estimate the line-of-sight distance, d,
between her/him and the sound source based on the signals that arrive to his/her
ears. Similarly, a computational distance-estimation method attempts to determine
this distance by employing distance-dependent parameters [37, 57, 62]. In practical
situations, additive noise and the presence of other simultaneous sound sources may
hinter such a task. Here, the problem of distance estimation under room reverberation
will be considered in detail, but the effect of other possible interferences is beyond
the scope of this chapter.

In Sect. 2, a brief literature overview concerning findings related to the auditory
distance perception is given. In Sect. 3, several acoustical parameters that vary with
distance in reverberant spaces are presented, providing insight to the reader of the
parameters that could potentially assist distance detection techniques. Finally, in
Sects. 4 and 5, several existing distance-estimation techniques are presented.

2 Auditory-Distance Perception

In this section, in order to provide some further insight to the reader on the distance-
judgement ability of humans in enclosed spaces, the main points of several related
studies [14, 32, 42, 69] are summarized. Although, there are many studies on distance
perception performance [3, 14, 29, 30, 32, 42, 63, 64, 69], it is not completely clear
yet what are the exact cues that provide the relevant information for distance estima-
tion since it appears that auditory distance perception depends on a combination of
multiple acoustic and non-acoustic cues [32, 69]. Factors known to influence distance
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perception include the stimulus spectral content or envelope, a priori knowledge of
the stimulus-presentation level, azimuthal location of the source, sound reflections
from the environment, and visual information about candidate sound sources in the
environment [52, 69]. Early studies of anechoic localization show that specific bin-
aural cues convey some distance information to listeners when sources are near the
listener’s head [11]. However, more recent studies provide hints that perception of the
distance of nearby sources in reverberant environments is largely driven by monaural
rather than binaural cues [3, 32, 55].

One of the main findings related to auditory distance perception is that human
listeners tend to overestimate small distances and underestimate large distances [69]
in reverberant rooms. More specifically, people tend to overestimate distances up to
approximately 2 m and underestimate distances beyond that. This is in agreement
with earlier studies of distance perception [9, 40, 41, 43] and might be related to
the auditory horizon that represents the maximum perceived distance [65]. Perceived
distance depends also on the reverberation time of the room and distance judgements
are more accurate in a reverberant space than in an anechoic space [9, 41].

In [69], the relationship given by (1) was established showing a compressive
power function between the geometrical sound-source distance, r , and the perceived
distance, r ◦, that is,

r ◦ = krα, (1)

where the constant k and the exponent α are fitted parameters of the power function.
The fitted values for a ranged from approximately 0.15 to 0.7 and k was typically
close to one. Note here that the a and k values were extracted using an extended
dataset taken from 21 relevant studies for various stimulus presentation techniques,
source signals and acoustic environments.

In the next section, several acoustical parameters that depend on distance will be
presented. Such acoustical factors are present in either the monoaural or binaural
signals perceived by humans and could potentially provide distance information for
computational systems.

3 Distance-Dependent Acoustic Parameters

3.1 Sound-Pressure Level

Sound-pressure level is one of the main parameters that vary with distance and prob-
ably provides distance information to humans [40]. As the distance increases the
sound pressure decreases, and in free-field conditions this decrease obeys an inverse
law—1/r . This leads to a 6 dB loss with each doubling of distance in an open-space
for point sources. Here, it should be also stated that at distances beyond 15 m, the
high-frequency components of the travelling sound waves are further attenuated by
the absorbing properties of air [5]. This frequency-dependent attenuation is additive
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Fig. 2 Sound-pressure level
as a function of the dis-
tance between the source and
receiver. Beyond the critical
distance, dcrit , the reverberant
field becomes dominant

to the aforementioned inverse law. In the case of enclosed spaces, where the free-
field assumptions do not hold, the decrease of the sound-pressure level depends on
the acoustic properties of the room and especially its ability to absorb the rever-
berant energy. Hence, this decrease of sound-pressure level is usually smaller when
compared to that in an open-space, due to the presence of early reflections and
reverberation.

Figure 2 depicts this well-known dependency of sound-pressure level on dis-
tance for three different rooms. The black solid line corresponds to a room that
has a reverberation time of 0.43 s. For this case the direct sound-pressure level, the
reverberant-field sound-pressure levels and the critical distance, dcrit , of the room
are also indicated on the figure. Here, the 6 dB loss with each doubling of distance
is also evident, according to the theoretical predictions [34]. Beyond the critical
distance [34], the sound-pressure level does not follow the inverse law due to the
presence of reverberation. Similarly, the grey curves correspond to two other rooms
that have reverberation times of 0.12 and 0.78 s, respectively.

3.2 Direct-to-Reverberant Ratio

From the previous section it is clear that for enclosed spaces, the direct-to-reverberant
ratio, DRR, describes the amount of acoustic power due to the direct path [34] and
is given by

Dr = 10 log10

∫ T
0 h2(t)

∫ ≈
T h2(t)

, (2)



Extracting Sound-Source-Distance Information from Binaural Signals 175

0 1 2 3 4 5 6
−2

0

2

4

6

8

10

Distance (m)

D
ir

ec
t−

to
−r

ev
er

b
er

an
t 

ra
ti

o
 (

d
B

)

T
60

=0.12s

T
60

=0.43s

T
60

=0.78s

Fig. 3 RIR–DRR as a function of distance for three different rooms

where h(t) is the room impulse response, RIR, and T is the duration of the direct
sound—typically 5 ms. The DRR decreases monotonously as the source/receiver dis-
tance increases. This can be seen in Fig. 3, where the DRR is plotted as a function
of distance for the three rooms having different reverberation-time values—as illus-
trated in Fig. 2. For this example, the DRR has been extracted from the corresponding
single-channel RIRs measured at different source/receiver distances within the three
rooms. Assuming that the head orientation is facing the source, the two binaural
responses will also exhibit similar dependence on distance since the acoustic paths
from source to the two ears will be almost identical.

However, the DRR values obtained from the binaural room impulse responses,
BRIRs, for different distance and head orientation angles will vary for each ear.
Figure 4 depicts the DRR as a function of distance when extracted from the left and
right BRIRs and for various orientation angles in the horizontal plane inside a room
that has reverberation time of 0.86 s. It can be seen that for symmetrical positions
with respect to the line-of-sight, that is, zero degrees, the DRR values obtained are
the same for the left and right BRIRs. For the rest of the orientation angles, there
is an interdependency between the DRR values obtained from the left and the right
BRIRs, leading to an increase in the left DRR and a decrease in the right DRR when
the left ear is facing the sound source and vice versa.

3.3 Spectral Parameters

It is well known that in enclosed spaces, the magnitude spectra of the received signals
are also affected with an increase of distance [27, 53, 54]. Figure 5 depicts typical



176 E. Georganti et al.

−60 −40 −20 0 20 40 60

−10

−5

0

5

10

15

Orientation angle (degrees)

D
ir

ec
t−

to
−r

ev
er

b
er

an
t 

ra
ti

o
 (

d
B

)

1m 2m 3m Left Right

Fig. 4 BRIR–DRR as a function of distance and head orientation angle for a room with reverberation
time of 0.86 s. The solid and dashed lines correspond to the left and right-channel BRIR–DRR,
respectively. When the left ear is facing the sound source, the left BRIR–DRR presents higher values
than the right BRIR–DRR and vice versa

M
ag

n
it

u
d

e

Frequency

Pos.2:
3m from 
source

Pos.1:
0.5m from 

source

Pos.1
Pos.2
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more, and the peaks and dips are more evident as compared to pos.1

magnitude spectra obtained from the room transfer functions, RTFs1 measured at
two different positions within a room.

It is evident that for the farther position, pos.2, the spectral values deviate more,
and the peaks and dips are more pronounced compared to the spectral peaks and
dips of pos.1. Such changes of the magnitude spectra are properly described by
specific statistical quantities. Schroeder in 1954 [53] introduced the spectral standard
deviation of RTFs, and proved that it increases with distance from the source. This
increase is present up to the critical distance [34] of the room, where the spectral
standard deviation begins to converge to 5.57 dB.

1 The term room transfer function, refers to the frequency-domain representation of the room
impulse response.
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Fig. 6 RTF spectral standard deviation as a function of distance for three different rooms

Figure 6 shows the spectral standard deviation extracted from the single-channel
RTFs as a function of distance for the three rooms of the earlier examples, having dif-
ferent reverberation-time values. More information on the calculation methodology
can be found in [20]. The spectral standard deviation shows an increase with distance
that is in agreement with the effect observed in Fig. 5.

Similarly, the spectral standard deviation can be extracted from binaural room
transfer functions, BRTFs.2 Figure 7 depicts the BRTFs spectral standard-deviation
values as a function of distance when extracted from the left and right BRTFs and for
various orientation angles—horizontal plane. It can be seen that for zero degrees the
standard-deviation values are the same for the left and right BRTFs. For the rest of the
orientation angles, there is an interdependency between the standard-deviation values
obtained from the left and the right BRTFs, leading to decreased left-BRTF standard-
deviation values and increased right-BRTF standard-deviation values when the left
ear is facing the sound source and vice versa. Figure 7 follows similar trends in the
interdependency of the left and right standard-deviation values as in Fig. 4, although
the BRTF standard-deviation values increase with distance instead of decreasing as
in the case of the DRR parameter.

Spectral Standard Deviation and the DRR

The examples shown in Figs. 3 and 6 illustrate the interdependency between the
DRR and the spectral standard deviation of RTFs. This has been analysed in
[53, 54] and it has been shown that at distances far from the sound source the standard

2 The term binaural room transfer function refers to the frequency-domain representation of the
binaural room impulse response.
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Fig. 7 BRTF spectral standard deviation as a function of distance and head orientation angle. The
solid and dashed lines correspond to the left and right-channel BRIR–DRR, respectively. When the
left ear is facing the sound source, the left BRTF standard-deviation value presents lower values
than the right BRTF and vice versa

deviation of the RTF magnitude is 5.57 dB. Based on these findings, in the works of
Jetzt [27] and Diestel [15] it has been shown that the probability distribution of the
RTF sound pressure is related to the DRR. Ebeling [17] proposed a relationship for
the dependence of the normalized RTF standard deviation, σnrm , on the DRR, as

σnrm =
≤

1 + 2 · Dr

1 + Dr
, (3)

where Dr is the DRR and σnrm is the normalized RTF standard deviation. This simple
analytical formula describes the dependence of the normalized fluctuations of the
total RTF sound pressure on the DRR. Theoretically, (3) holds for any measured RTF
at a certain source/receiver position within the room.

3.4 Binaural Parameters

Binaural Cues

The human auditory system is capable of analyzing the spatial characteristics, that
is, distance, reverberation and orientation angle, etc., of complex acoustic and rever-
berant environments by exploiting the interaural differences between the signals
received at the two ears [5].These binaural cues are the interaural time differences,
ITDs, interaural level differences, ILDs, and interaural coherence, IC. ILD is the
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Fig. 8 Left Histogram of ILD values. Right Histogram of the ITD values as a function of the azimuth
angle for different distances from the source. The obtained values are based on measurements taken
in an anechoic chamber—figures taken from [47]

level difference between the sound arriving at the two ears, ITD is the difference in
the arrival time of a sound between the two ears and IC expresses the strength of
correlation between the left and right-ear signals.These binaural cues are affected by
the reverberant energy as a function of the listener’s location in a room and the source
location relative to the listener [25, 56, 60]. More specifically, reverberant energy
decreases the magnitude of ILDs and this effect depends on the actual location of
the listener in the room [56]. In addition, the ITD fluctuations across time depend on
the amount of reverberation on the signal [60], whereas the IC is directly related to
the DRR [6, 33].

On the left side of Fig. 8 an histogram of the ILD values as a function of the azimuth
angle measured in an anechoic chamber can be seen—after [47]. It is evident that as
the distance increases, the histogram reaches a lower maximum value and becomes
more flat. A similar but less pronounced effect can be observed on the measured ITD
values—see right side of Fig. 8 [47]. Note here that Fig. 8 is based on measurements
taken in an anechoic chamber using a sampling frequency of 65536 Hz, although a
similar effect is expected for signals generated inside rooms. In such a case, increase
of the distance leads to increased fluctuations in ILDs and ITDs. More specifically,
at close distances—depending on angle, binaural cues, specifically ILDs, will have a
larger dynamic range that may affect their distributions across frequency. This overall
effect of distance on the obtained ILD and ITD values can be potentially captured
with the use of various statistical quantities such as the kurtosis, the skewness, etc.

Differential Spectral Standard Deviation

Here, a distance-dependent feature that can be extracted from binaural signals is
described. Let us assume an anechoic signal, s(t), that is reproduced at a certain
position within the room and is binaurally recorded using a pair of microphones
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attached to the ears of a manikin. The left and the right-ear recordings, denoted by
xl(t) and xr(t), can be written as

s(t) ⊗ hl(t) = xl(t) (4)

s(t) ⊗ hr(t) = xr(t), (5)

where hl(t) and hr(t) are the corresponding left and right-ear BRIRs at the cor-
responding source/receiver positions. A more detailed description of the left and
right-ear BRIRs can be found in [59].

The magnitude spectra of the binaural signals, X l(ω) and Xr(ω) in dB are given
as follows,

XdB
l (ω) = 20 log10 [|X l(ω)|] , (6)

XdB
r (ω) = 20 log10 [|Xr(ω)|] , (7)

where ω corresponds to the frequency index. Applying the Fourier transform to (4)
and (5) and using (6) and (7), it can be written

XdB
l (ω) = SdB(ω) + HdB

l (ω), (8)

XdB
r (ω) = SdB(ω) + HdB

r (ω), (9)

Denoting the long term, namely, 2-s-magnitude-spectrum difference of the two
signals between the two ears as

ΔdB
X (ω) = XdB

l (ω) − XdB
r (ω). (10)

then, the standard deviation, σ j f
x , of the difference of the binaural left and right

spectra, ΔdB
X (ω), can be calculated as

σ
j f
x =

⎡

⎣ 1

n f − n j + 1

n f∑

ω=n j

⎥
ΔdB

X (ω) − μ
j f
x

]2

⎤

⎦

1
2

, (11)

where n j and n f define the frequency range of interest, ω is the discrete-frequency
bin, and μ j f is the spectral-magnitude mean for the specific frequency band, given
by

μ
j f
x = 1

n f − n j + 1

n f∑

ω=n j

ΔdB
X (ω). (12)

From now on, in this chapter this differential spectrum σ
j f
x will be referred to as

BSMD–STD—binaural spectral magnitude difference standard deviation.
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Fig. 9 Left BSMD–STD extracted from speech signals recorded at different source/receiver
distances in a small room with a reverberation time of T60 = 0.12 s. Right The corresponding
histogram of the extracted BSMD–STD values
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Fig. 10 Left BSMD–STD extracted from speech signals recorded at different source/receiver
distances in room with a reverberation time of T60 = 0.89 s. Right The corresponding histogram of
the extracted BSMD–STD values

Figures 9 and 10 show such typical results for the BSMD–STD extracted from
speech signals as a function of time and the corresponding histograms for the same
function. For these examples, the rooms have a reverberation time of 0.12 and 0.89 s
respectively and the measurements are taken at different source/receiver distances.
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Fig. 11 Left Left-channel BRTF and corresponding RTF. Right Right-channel BRTF and corre-
sponding RTF. The BRTFs are measured at a source/receiver distance of 1 m using a manikin and
the RTFs are measured at the same positions using an omni-directional microphone

It is evident that the feature values present a clear distance-dependent behaviour and
there is small overlap among the three distance classes. This can be explained by the
fact that the BSMD–STD feature is related to the spectral standard deviation of the
actual RTFs that is highly distance-dependent—see also Sect. 3.3 [19].

Figure 11 shows the left and right BRTFs measured at a source/receiver distance
of 1 m using a manikin and the RTFs measured at the same positions using omni-
directional microphones. For this example, the orientation angle was 0∇ and the
reverberation time of the room was 0.78 s. It is evident that the BRTF spectrum is
mainly affected by the presence of the head and pinnae for the higher frequencies,
that is, 4–10 kHz, whereas up to 2 kHz the BRTF spectrum resembles the spectrum
of the corresponding RTF.

4 Literature Overview on Distance-Estimation Methods

It is now of interest to examine whether it is possible to estimate the sound source
distance computationally by exploiting such parameters. In this section, an overview
of the existing sound-source-distance-estimation methods is given.

A usual approach to such source-localization and distance detection tasks is to
use a microphone array and to perform time delay estimation, TDE, for instance
using the generalized cross-correlation, GCC algorithm [31]. The angle of arrival
can be calculated from the TDE and applying the triangulation rule can lead to the
bearing estimation. This basic bearing-estimation process forms the foundation of
most of the source-localization techniques, but the triangulation approach has the
disadvantage that the distance cannot be much larger than the maximum distance
between the microphones that are used. For this reason, many algorithms exist that
solve the problem from a different theoretical perspective [2]. Lately, research work
on the localization problem has been undertaken using binaural signals [36, 62].
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These methods utilize acoustical parameters and perceptual cues as discussed in
Sect. 3. Such listeners’ abilities to determine source distance under reverberant con-
ditions have been extensively studied [1, 8, 13, 40, 41, 43, 46, 51, 67–69] and they
have initiated novel techniques for the localization problem, especially for distance
estimation using only two sensors [37, 57, 61, 62].

Some of the proposed methods for distance estimation in rooms [26, 33, 37] try to
estimate the DRR, which seems to be one of the most important parameters for such
task. The DRR can be typically extracted from measured RIRs, but in practice these
functions are not always available since intrusive measurements within the rooms
are required. For this reason, several methods have been developed recently that can
blindly estimate the DRR from the reverberant signals.

Lu et al. in [37] extracts the DRR from binaural signals by segregating the energy
arriving from the estimated direction of the direct source from that arriving from
other directions, assuming that reverberant components result in a spatially diffuse
field. The DRR estimation method proposed by Lu et al. is based on the equalization-
cancellation, EC, concept proposed by Durlach in [16] in order to explain the reduc-
tion of the masking ability in the presence of noise. According to this EC concept,
equalization is used to align the coherent components of a binaural signal optimally
such that after cancellation, the coherent components, which are associated with the
direct sound, are removed. Thus, after cancellation only the reverberant part is present
and its level can be estimated and be used to also estimate the direct sound level.
Figure 12 depicts the block diagram of the method of the EC-based DRR estimation
method proposed by Lu et al. [37]. Initially, the binaural signals are passed through
a 32-channel Gammatone filterbank. Then, the cross-correlation between the cor-
responding filtered signals is computed in order to identify the angular position of
the direct signal. In parallel, the EC block takes place, and the direct-energy compo-
nent Edirect is estimated using the azimuthal information of the source localizer. The
direct-energy component is also used to select the j-th direct source power. The DRR,
Dr, is then estimated as the ratio of the direct-to-reverberant energy, the latter com-
puted as the residual of total signal energy, S, after subtraction of the direct-energy
component, Edirect, j , as
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Fig. 12 Schematic diagram of the EC–DRR method proposed by Lu et al. [37]
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Dr = Edirect, j

S − Edirect, j
. (13)

This method can be also used as a distance estimator, although it is designed to
operate for distances beyond 2 m and requires knowledge of the reverberation time
of the room.

Hioka et al. [26] has introduced a method for the DRR estimation that uses a direct
and reverberant sound spatial correlation-matrix model. This method can be utilized
for measuring the absolute distance, but only for a restricted close range of distances.
It is mainly designed for microphone arrays, which usually consist of more than two
microphones and where the impact of the head-related transfer function, HRTF, is
not considered.

Recently, a method for the DRR estimation has been proposed by Kuster in [33],
where an analytical relationship between the DRR and the coherence, γ2

pp, obtained
by two pressure signals has been derived analytically as

γ2
pp = D2

r

(1 + Dr)2 . (14)

Note here, that (14) has been described by Bloom and Caine in [7]—without provid-
ing the derivation of the equation. The method proposed by Kuster does not require
any special measurement signals or training data and the mean DRR estimation error
is found to be higher for low frequencies and lower for higher frequencies. However,
this method is not designed specifically as a distance estimator, thus the calculation of
the absolute distance from the DRR requires knowledge of either the critical distance
or the reverberation time and volume of the room.

Other methods, mainly designed for absolute distance estimation, use features
related to the DRR and have been proposed in [49, 57] and [62]. In [57], Smaragdis
uses the cross-spectra of the signals recorded by two microphones in order to recog-
nize the position of a sound source. More specifically, the logarithmic ratio of the
Fourier transforms of the left and right signals is used for the estimation of distance.
By taking the complex logarithm

R◦(ω) = log
Xl(ω)

Xr (ω)
, (15)

then the real and imaginary parts are used as features for distance detection, that is,

∈{R◦(ω)} = log
|Xl(ω)|
|Xr (ω)| , (16)

�{R◦(ω)} = ∠Xl(ω) · X⊗
r (ω). (17)

The block diagram of the method developed by Smaragdis [57] can be seen
in Fig. 13. An improved distance estimation method has been later proposed by
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Fig. 14 Schematic diagram of the distance detection method proposed by Vesa [62]

Vesa [62] in order to account for the positions that have the same azimuth angle
using the magnitude squared coherence between the left and right ear as a feature
for the training of a Gaussian maximum-likelihood scheme for distance detection.
Figure 14 depicts the block diagram of the method developed by Vesa [62]. Initially,
a coherence profile is calculated by convolving the BRIRs with white noise. The
coherence profile is then used along with the extracted magnitude-squared coher-
ence from the binaural signals in order to estimate the energy-weighted maximum
likelihoods. Then, the mutual order of the likelihood magnitudes is used to determine
the most likely distance. The method performs very well in rooms when trained and
tested in the same positions within a room. However, the method is less successful
when swapping the training data between different positions within the same room.

Another distance estimation method has been developed in [49], where several
binaural features such as the ILDs, the ITDs, the sound amplitude and the spectral
characteristics are used for the distance estimation. The method is trained and tested in
a specific acoustic environment. Knowledge of the actual orientation angle increases
the performance of the method. In [18], a distance-estimation method based on
single-channel inputs has been presented, based on several temporal and spectral
statistical features.

More recently [19], a method for distance detection from binaural signals has
been reported. The method does not require a priori knowledge of the RIR, the
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reverberation time or any other acoustical parameter. However, it requires training
within the rooms under examination and relies on a set of features extracted from
the reverberant binaural signals. These features are incorporated into a classification
framework based on GMMs. This method will be presented in more detail in Sect. 5.

5 Binaural-Statistics-Based Distance-Detection Method

5.1 Features Dependent on Sound-Source Distance

The distance-detection method [19] presented in detail here, is extending an earlier
similar work based on single-channel inputs [18]. It utilizes a large set of statisti-
cal features derived from the binaural parameters discussed in Sect. 3.4. Figure 15
presents the block diagram of this binaural distance detection method. The method
consists of three stages,

• Binaural feature extraction
• Feature selection
• Classification

In this section, the first block of the method that consists of the binaural-feature-
extraction procedure is described. More details on the blocks of the features selection
and the classifier will be provided in Sect. 5.2.

The first feature employed by the distance-detection method is the BSMD–STD
feature as has already been described in Sect. 3.4—see also Fig. 9. In addition to this,
other binaural features are also employed by the method and will be described here.

For this method, an auditory front-end that models the peripheral processing
stages of the human auditory system [39] is used. First, the acoustic signal is split
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Fig. 15 Block diagram for the distance estimation method presented in [19] showing the binaural
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into eight auditory channels with center frequencies equally spaced on the equiva-
lent rectangular bandwidth, ERB, scale using a fourth-order Gammatone filterbank.
More specifically, phase-compensated Gammatone filters are employed in order to
synchronize the analysis of binaural cues across all frequency channels at a given
time [10]. Then, the neural-transduction process in the inner hair cells is approximated
by halfwave-rectification and square-root compression. Based on this representation,
the binaural cues of ITD, ILD and IC are estimated for short frames of 20 ms for each
Gammatone channel. Based on the binaural analysis of the auditory frond-end, a set
of features is extracted to capture the statistical properties of the estimated binaural
cues—see Fig. 15. Here, it should be noted that since the ILDs and ITDs inherently
dependent on the sound source direction, the statistical quantities are chosen in such
a way so that they do not reflect this direction-dependent behavior. These statistical
quantities are

Standard Deviation, STD

The standard deviation extracted from a binaural cue is defined here as

σi
cue =

⎜⎝⎝⎞ 1

N

N∑

k=1

⎟
Bi,k

cue − B̄i
cue

⎠2
, (18)

where i is the index of the Gammatone channel, k indexes the frame, N is the total
number of frames and B̄i

cue is the average of Bi,k
cue over N frames given by

B̄i
cue = 1

N

N∑

k=1

Bi,k
cue. (19)

Variance, VAR

The variance extracted from a binaural cue is given by

V i
cue = 1

N

N∑

k=1

⎟
Bi,k

cue − B̄i
cue

⎠2
. (20)

Kurtosis, KURT

The kurtosis extracted from a binaural cue is given by [21]
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Γ i
cue =

1
N

∑N
k=1

⎟
Bi,k

cue − B̄i
cue

⎠4

[
1
N

∑N
k=1

⎟
Bi,k

cue − B̄i
cue

⎠2
⎧2 . (21)

Skewness, SKEW

The skewness extracted from a binaural cue is given by [21]

Φ i
cue =

1
N

∑N
k=1

⎟
Bi,k

cue − B̄i
cue

⎠3

[
1
N

∑N
k=1

⎟
Bi,k

cue − B̄i
cue

⎠2
⎧ 3

2

. (22)

Average Deviation, ADEV

The average deviation extracted from a binaural cue is given by

Ω i
cue =

⎜⎝⎝⎞ 1

N

N∑

k=1

|Bi,k
cue − B̄i

cue|. (23)

Percentile Width, PWIDTH

Ludvigsen [38] proposed a set of statistical features based on the percentile proper-
ties and their relationships. These features have been used for sound classification
and more details can be found in [12]. The m-th percentile Pm,i

cue of a binaural cue
for the i th Gammatone channel is that value of the binaural cue that corresponds
to a cumulative frequency of Nm/100, where N is the total number of frames.
The width of the histogram is well described by the distance between the P90,i

cue

and the P10,i
cue percentile as

Ξ i
cue = P90,i

cue − P10,i
cue . (24)

Percentile Symmetry, PSYM

The symmetry of an histogram can be investigated by looking at the difference of
the percentiles as

Υ i
cue = (P90,i

cue − P50,i
cue ) − (P50,i

cue − P10,i
cue ). (25)
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This property is near zero for symmetrical distributions, positive for left-sided
distributions, and negative for right-sided distributions.

Percentile Skewness, PSKEW

The percentile skewness is defined as the difference between the 50 % percentile
and the median as

Θ i
cue = P50,i

cue − P90,i
cue + P10,i

cue

2
. (26)

For asymmetrical distributions the difference between the 50 % percentile and the
approximated median should be large, for symmetrical distributions approximately
zero.

Percentile Kurtosis, PKURT

The percentile kurtosis corresponds to the approximation

Ψ i
cue = P70,i

cue − P30,i
cue

2(P90,i
cue − P10,i

cue )
, (27)

indicating whether the distribution has a narrow or broad peak.

Lower Half Percentile, PLHALF

The lower half percentile feature is expressed as

Λi
cue = (P50,i

cue − P30,i
cue ) − (P30,i

cue − P10,i
cue ) (28)

and indicates whether the histogram is right-sided by encoding the relations
between the lower and upper half, namely, below and above P30,i

cue , of the lower
half of the total distribution, that is, below P50,i

cue .

5.2 Method Description

The distance-detection method [19] relies on the set of binaural features described
in Sect. 5.1. The method employs a feature-selection algorithm and uses GMMs in
order to model and evaluate the degree of distance-dependency of the features. The
complete procedure of the distance-detection method can be seen in Fig. 15.
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Feature-Selection Algorithm

A feature-selection algorithm is used in order to extract the most relevant and benefi-
cial features for the distance-detection task. Feature-selection algorithms are widely
used in pattern recognition and machine learning to identify subsets of features
that are relevant for a particular classification task. Here, the minimal-redundancy-
maximal-relevance criterion, mRMR [45], is used in order to select features that
correlate the strongest with the class labels—here distance classes. The method is
able to select the top features based on a user definition of the selected feature num-
ber and this has the practical advantage that only a subset rather than the full set of
features is computed, which can lead to improved classification performance when
a limited amount of training data is available.

Some more details of the procedure regarding the feature selection algorithm will
be given next, for instance, the number of features, etc., along with the presentation
of typical results.

Gaussian-Mixture-Models Initialization

Gaussian mixture models, GMMs, can be used to approximate arbitrarily complex
distributions and are therefore chosen to model the distance-depending distribution
of the extracted features described in Sect. 5.1. The features are used to train the
classifier [4, 48] and each discrete distance that should be recognized by the classifier
is represented by a GMM. The GMM is initialized using the k-means algorithm [35].
The expectation-maximization, EM, algorithm [4] is used to estimate the set of GMM
parameters with a maximum number of 300 iterations. Five Gaussian components
and diagonal covariance matrices are used.

Recordings Database

In order to train and evaluate the particular system, several anechoic speech record-
ings are used, taken from various recording databases [18]. In total, approximately
60 min of speech recordings are used. 65 % of the recordings dataset is used for the
training and 35 % for the testing of the method. In addition, BRIRs are utilized from
the Aachen Database [28] and from [62]. The recordings are convolved with the
BRIRs measured at different distances between source and receiver in five different
rooms having an orientation angle of zero degrees. The volume, reverberation time,
T60, and the source/receiver distance for each of the rooms can be seen in Table 1.
The sampling frequency is 44.1 kHz.
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Table 1 Volume and
reverberation time of the
rooms

Room Volume (m3) T60 (s) Description

A 11.9 0.12 Sound booth
B 103 0.3 Listening room
C 194 0.63 Meeting room
D – 0.86 Stairway hall
E – ∗5 Large hall

Feature Extraction

The BSMD–STD feature is extracted from the binaural reverberant signals, which
are segmented into relatively long blocks of 1 s, using hanning windowing. For every
block of 1 s, the BSMD–STD feature is calculated for various frequency bands. More
specifically, the audible frequency range of interest is divided heuristically in four
different regions, namely, 0.2–2.5, 2.5–5, 5–10 and 10–20 kHz and the BSMD–STD
feature is calculated for these four frequency bands. After several informal tests, the
frequency band of 0.2–2.5 kHz was found to contribute mostly to the performance
of the method. Thus, it is used for the extraction of the feature. More details on the
choice of the specific frequency band can be found in [19].

For the extraction of the binaural cues, ITD, ILD, and IC, the signals are split into
eight auditory channels with center frequencies equally spaced on the ERB scale
between 50 and fs

2 Hz, using a fourth-order Gammatone filterbank. More specifically,
the center frequencies were 50, 293, 746, 1594, 3179, 6144, 11686 and 22050 Hz
for the eight channels, respectively. Then, the binaural cues of ILD, ITD and IC are
estimated for 20 ms frames with 50 % overlap for each Gammatone channel. From
the binaural cues, the statistical features are computed also for the longer blocks of
1 s duration, whereby one long block is composed of 50 frames of 20 ms. Figure 15
illustrates this procedure.

In total, 240 features, that is, 3 cues × 8 channels × 10 features, are extracted from
the binaural cues. This yields a total set of 241 available features with the addition
of the feature BSMD–STD, for one frequency band, namely, 0.2–2.5 kHz.

5.3 Method Performance

The method described in the previous sections is evaluated for various test cases.
First, the performance of the method is evaluated using the BSMD–STD feature
within the five different rooms for three distance classes—coarse detection. Then,
the method is also tested for seven distance classes—fine detection—using only the
BSMD–STD feature and when using the additional statistical features selected by
the mRMR feature-selection algorithm. From these tests, the effect of the number of
selected features on the distance detection performance can be deduced.
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Fig. 16 Performance of the method [19] when using the BSMD–STD feature for rooms A-E for
speech signals and for three distance classes—coarse distance detection

The method is initially tested using only the BSMD–STD feature in rooms A, B,
C, D and E and for three different distance classes illustrating its performance for
coarse distance detection tasks. For rooms B, C, D and E these distance classes are
1, 2 and 3 m, and for the smallest room, A, the distance classes are 0.5, 1 and 1.5 m
since distance measurements above 2 m are not available due to the small size of
the room. The performance of the method across all rooms can be seen in Fig. 16. It
is evident that the method employing the BSMD–STD feature alone achieves high
performance being always higher than 90 % for all rooms for such a coarse distance
detection task. For the larger and more reverberant rooms, it can be seen that there
is a decrease in the method performance of approximately 5 %.

Fine Distance Detection

The method using the BSMD–STD feature alone can successfully identify the correct
distance with performance rates being higher than 90 % within all rooms for three
distance classes. However, it is of interest to examine whether the method using
the same feature can perform equally well when there are requirements for higher
distance resolution. Here, the method is evaluated for seven distance classes—fine
distance detection—across three different rooms. The specific tested distances can
be seen in Table 2. The results for rooms B, C and E when using only the BSMD–

Table 2 Test cases—fine
distance detection

Room Distances (m)

B 1, 1.5, 2, 2.5, 3, 3.5, 4
C 1, 1.5, 2, 2.5, 3, 3.5, 4
E 1, 2, 3, 5, 10, 15, 20
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Fig. 17 Confusion matrices indicating the performance of the method [19] when using the BSMD–
STD feature. The rows represent the actual classes and the columns the predicted ones—fine distance
detection

STD feature are also presented in form of confusion matrices in Fig. 17. The rows
represent the actual distance classes and the columns the predicted ones. The mean
performance rates can be seen on top of the confusion matrices. It is evident that the
performance now decreases for all three rooms as compared to the coarse distance
estimation results for only three distance classes, as can be seen in Fig. 16. More
specifically, when the method is tested for three distance classes the performance for
rooms B, C and E is 95.4, 98.1 and 94 % and for seven distance classes it decreases
to 73, 74.4 and 63.6 %, respectively.

Since the BSMD–STD feature is not sufficient for higher distance resolution,
the additional binaural statistical features are also used in order to increase the per-
formance of the method. Using the mRMR [45], the most relevant and beneficial
features for the distance detection task are selected—compare Sect. 5.2.

The results for increasing the number of features can be seen in Fig. 18. It is evident
that the addition of more features further increases the performance of the method.
In room B, which is the less reverberant, the performance increases by adding more
features, up to the number of ten features. Similarly, in room C the method increases
up to the number of nine features and room E presents the highest performance for
eleven features. In all three rooms, a steep increase of the performance is achieved
for adding two features to the first top feature.

A list with the selected features by the mRMR method for each room can be found
in [19]. It is worthy of note that the BSMD–STD feature is chosen by the mRMR
method as the top feature among the 241 features for all three rooms and thus appears
to be particularly important for the distance-detection task.

Adaptability of the Method Across Different Rooms

The previously described results require training and testing within the same room,
but it is of interest to examine whether the method is able to generalize to unknown
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Fig. 18 Performance of the method as a function of the number of features used in the classifier
for seven distance classes—fine distance detection. The first feature is always the BSMD–STD

Table 3 Test cases for three
distance classes—coarse
distance detection

Training Testing Performance (%)

Room B Room C 95.4
Room C Room B 95.9
Room C Room D 70.5
Room D Room C 77.6
Room C Room E 44.4
Room E Room C 44.4
Room D Room E 52.9
Room E Room D 40.1

rooms without prior training within the specific rooms, that is, training in one of
the rooms and tested in another one. For this reason, some additional experiments
are conducted, where various combinations of rooms are examined. The room com-
binations for training and testing can be seen in Table 3. The first column contains
the room where the method is trained and the second column contains the room
where the method is tested. Finally, in the third column the performance for each
room combination can be seen when the method is tested for three different classes,
namely, 1, 2 and 3 m and when using the BSMD–STD feature. It can be seen that
the highest performance is achieved for the combination of rooms B and C, which
have a small difference in their reverberation time of approximately 0.2 s. However,
for rooms C and D, having a difference in their reverberation time of approximately
0.3 s, the performance is lower, namely, 70 %. The combination of rooms, E and D,
E and C, cannot lead to high performance rates. This might be explained by the fact
that there is a substantial difference in their corresponding reverberation times.
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Hence, it can be concluded that for crude distance classification task, the method
could potentially perform well into unknown acoustical room environments, if the
model is trained with reverberation characteristics that are expected in the testing
phase. Extending the training of the model with a large collection of different rooms
could potentially further increase the performance of the method.

6 Conclusions

In this chapter, the problem of distance estimation by computational methods utiliz-
ing binaural cues has been discussed. The main points of several studies related to the
auditory distance perception have been summarized, and several acoustical parame-
ters that depend on the source/receiver distance have been presented—especially for
the case of sound generated inside reverberant rooms. Various distance-estimation
techniques have been described, most of them being based on acoustical parameters
depending on physical distance and/or perceptual cues.

It has been shown that the DRR energy in the received signals is often used as the
most appropriate feature for distance detection. For example, a method appropriate
for distance detection for distances beyond 2 m was introduced in [37], based on
the approximation of the DRR—noting that an alternative method that estimates
DRR can be found in [33]. In general, it can be deduced that the distance can be
easily estimated when the DRR and the critical distance of the room are known. The
problem of distance detection can be also simplified by using microphone arrays,
which usually consist of more than two microphones and an example employing
such information can be found in [26]. Among the blind-estimation techniques, the
method presented by Vesa in [62] appears to outperform all existing techniques,
especially since it has been designed specifically as a distance-estimator technique.
This method performed especially well when training and testing took place at the
same positions within the room, but it appeared to be sensitive to the actual training
and testing positions.

A new method, recently developed by the authors of this chapter, relies on several
statistical features extracted from binaural signals. It has been presented in more
detail in [19]. The features were incorporated into a classification framework based
on GMMs. This work extended earlier work of the authors designed for single-input
signals [18] and introduced a novel distance-dependent feature, the binaural spectral-
magnitude-difference standard deviation, BSMD–STD. This feature turned out to be
particularly effective in the distance-detection tasks. Along with the BSMD–STD,
additional binaural features were employed by the method, being extracted by use of
an auditory front-end that models the peripheral processing of the human auditory
system [39].

It has been shown that the BSMD–STD alone could successfully predict the
distance class with high performance rates, that is, above 90 %, when tested in five
different acoustical environments and coarse distance detection—three classes—was
sufficient. For a finer distance detection—seven classes—a decrease of the perfor-
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mance of the method was observed. To compensate for this decrease, additional
binaural features were employed based on a particular feature-selection algorithm.
Incorporating these additional features increased the performance of the method fur-
ther. As a result, the method was able to recognize distances reliably, when trained
and tested in the same rooms. The method was also found capable of generalizing
and performing well in unknown acoustical environments, at least for crude distance-
classification tasks with three classes. The only requirement then was that the training
and testing environment should have a reverberation time of similar order.

From the previous discussion it is evident that the variation of the acoustical
environments makes blind computational distance estimation a challenging task,
especially when it is not possible for the computational systems to be trained in the
specific room environments where they are finally tested. Yet, the method presented
in [19] appears to be quite robust to the various acoustical environments when crude
distance estimation is sufficient, however, an approximate estimate of the reverber-
ation time is required.

In conclusion, binaural cues contain distance-dependent information that can
effectively be utilised by computational systems. However, it is not yet completely
clear which are the actual cues that humans exploit when estimating sound-source
distance estimation. Further research work is required for a better understanding of
the various acoustical parameters that vary with distance, and which of these para-
meters are the perceptually relevant ones. The use of statistical quantities, such as
statistical moments, could further assist research in this direction, as they can poten-
tially provide alternative descriptions of well-known acoustical parameters and might
reveal additional distance-dependent information.
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56. B. G. Shinn-Cunningham, N. Kopčo, and T. J. Martin. Localizing nearby sound sources in a
classroom: Binaural room impulse responses. J. Acoust. Soc. Amer., 117(5):3100–3115, 2005.

57. P. Smaragdis and P. Boufounos. Position and trajectory learning for microphone arrays. IEEE
Audio, Speech, Language Process., 15:358–368, 2007.

58. A. Tsilfidis. Signal processing methods for enhancing speech and music signals in reverberant
environments. PhD Thesis, University of Patras, 2011.

59. A. Tsilfidis, A. Westerman, J. Buchholz, E. Georganti, and J. Mourjopoulos. Binaural dere-
verberation. In J. Blauert, editor, The technology of binaural listening, chapter 14. Springer,
Berlin-Heidelberg-New York NY, 2013.

60. J. van Dorp Schuitman. Auditory modelling for assessing room acoustics. PhD thesis, Technical
University of Delft, the Netherlands, 2011.

61. S. Vesa. Sound source distance learning based on binaural signals. In Proc. 2007 Workshop on
Applicat. of Signal Process., Audio, Acoust. (WASPAA 2007), pages 271–274, 2007.

62. S. Vesa. Binaural sound source distance learning in rooms. IEEE Audio, Speech, Language
Process., 17:1498–1507, 2009.

63. F. Völk. Psychoakustische Experimente zur Distanz mittels Wellenfeldsynthese erzeugter
Hörereignisse. In Tagungsband Fortschritte der Akustik, DAGA 2010, pages 1065–1066, Berlin,
2010.

64. F. Völk, U. Mühlbauer, and H. Fastl. Minimum audible distance (MAD) by the example of
wave field synthesis. In Tagungsband Fortschritte der Akustik, DAGA 2012, pages 319–320,
Darmstadt, 2012.

65. G. von Békésy. The moon illusion and similar auditory phenomena. Am. J. Psychol., 111:1832–
1846, 2002.

66. D. Wang and G. J. Brown, editors. Computational auditory scene analysis: Principles, Algo-
rithms, and Applications. Wiley-IEEE, October 2006.

67. P. Zahorik. Assessing auditory distance perception using virtual acoustics. J. Acoust. Soc.
Amer., 111:1832–1846, 2002.

68. P. Zahorik. Direct-to-reverberant energy ratio sensitivity. J. Acoust. Soc. Amer., 112(5):2110–
2117, 2002.

69. P. Zahorik, S. D. Brungart, and W. A. Bronkhorst. Auditory distance perception in humans:
A summary of past and present research. Acta Acust United Ac, 91:409–420, May/June 2005.



A Binaural Model that Analyses Acoustic
Spaces and Stereophonic Reproduction
Systems by Utilizing Head Rotations

J. Braasch, S. Clapp, A. Parks, T. Pastore and N. Xiang

1 Introduction

The ceteris-paribus assumption1 is a fundamental concept in science. It builds on
fixing all experimental parameters except for a number of test parameters to study
the effect of parameter changes on the outcome of the experiment. Further, science
builds on acceptable approximations and simplifications of a real world problem to
allow the application of known methods and procedures to solve it. In this context,
acceptable means that the problem is simplified to some degree but not altered to
such an extent that it will lead to solutions that no longer help to solve the real-
world problem. Once the solution is found, models and test paradigms are refined to
understand the real-world situation in greater detail.

The concept of a room impulse response is a good example of this approach.
By defining the response of a room between a designated source with stationary
directivity pattern and position—for instance, an omni-directional point source and
a stationary receiver such as an omni-directional microphone-type receiver—the
complex system can be described by a simple two-port system with the source signal
as the input and the receiver as its output. Using the two-port approach, standard
engineering solutions become accessible to describe the system. The system can be
extended to three-ports by replacing the microphone by a binaural manikin that is
a model of a human head. Now, the system has two outputs in the form of two ear
signals and, in an anechoic room, the transfer functions between the sound source and

1 A Latin term meaning that all other factors are held unchanged—literally: with other things
the same.
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the two ears are described by the head-related transfer functions, in which the spatial
position of the sound source relative to the head is encoded via frequency-dependent
interaural time and level differences as well as spectral cues.

While the three-port approach has its advantages and enabled many psychoa-
coustic findings, it represents a very passive view of spatial hearing—one where the
listeners do not move to explore their acoustic environment. Most binaural models
describing psychoacoustic phenomena follow the traditional assumption of a fixed
listener position by feeding the model with ear signals that correspond to a fixed
head position and orientation and then analyzing how the binaural system responds
to the given cues. In this chapter, the current stationary approach will be extended to
a model that can simulate basic head rotations to examine the advantages of active
listening in the context of auditory scene analysis. This model will be tested based
on its replication of the human ability to resolve front/back confusions using head
rotations. It will be further tested for how closely its performance resembles that of
humans in a diffuse field and on the effect of early reflections on perceived auditory
source width.

The binaural model described here is part of a larger project that seeks to develop
a creative artificially-intuitive and reasoning agent, CAIRA, capable of improvising
music [11, 12, 29]. CAIRA’s architecture, which is shown in Fig. 1, is comprised of
several stages:

Fig. 1 Schematic of the creative artificially-intuitive and reasoning agent CAIRA
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• To perform computational auditory scene analysis
• To use machine learning to extract and recognize musical textures
• To build on logic-based reasoning to understand music and operate on a symbolic

level
• To employ genetic algorithms to create material for musical performance in live

response to other musicians.

Currently, the agent has two different sensors to capture the other musicians’ sounds.
While it analyses sound using an attached binaural head, it also captures the sounds of
the individual instruments using closely-positioned microphones. The latter approach
allows the system to operate on individual auditory streams for each instrument, to
overcome a problem that has not yet been solved in computational auditory-scene
analysis, CASA, namely the segregation of individual instruments from a mixed
microphone signal. Capturing the individual instruments with closely-positioned
microphones is a necessary compromise until there are more powerful binaural CASA
systems capable of extracting information from complex scenarios. Switching from a
passive system that is forced into reading the acoustic world from a fixed perspective
to one that can actively explore environments through head rotations is an important
step in this direction. This chapter will only scratch the surface of what this paradigm
shift could potentially achieve.

A good example of how humans benefit from head rotations while listening is
their ability to resolve front/back confusions that can occur because the interau-
ral cues, which are typically stronger than spectral cues, are often ambiguous for
the same lateral position in the front or rear hemisphere. A number of psychoa-
coustical studies have quantified the improvement human listeners experience when
using head rotations to determine whether a sound source is located in the front or
back.

Most investigations on spatial hearing with natural sound sources use a head-
related coordinate system to describe the location of sound sources respective to the
head position such as the one shown in Fig. 2. In this coordinate system, the interaural
axis intersects the upper margins of the entrances to the left and right ear canals. The
origin of the coordinate system is positioned on the interaural axis, halfway between
the entrances to the ear canals. The horizontal plane is defined by the interaural axis
and the lower margins of the eye sockets, while the frontal plane lies orthogonal to
the horizontal plane, intersecting the interaural axis. The median plane is orthogonal
to both the horizontal and frontal planes.

The position of a sound source is described using polar coordinates, azimuth, α,
elevation, δ, and distance, d. If δ is zero and d is positive, the sound source moves
anti-clockwise through the horizontal plane with increasing α. At α = 0◦ and δ = 0◦,
the sound source is directly in front of the listener, intersecting the horizontal and
median planes.

A simple geometrical model, like the one by Hornbostel and Wertheimer [30],
reveals that interaural time differences, ITDs, of the same magnitude trace hyperbolas
in the horizontal plane. At greater distances the shell of a cone in three-dimensional
space is apparent. These are the so-called cones of confusion. Hence, there exist
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Fig. 2 Head-related coordinate system [5]

multiple positions with identical ITDs, and while they are reliable cues to determine
the left–right lateralization of a sound source, the ambiguities described by the cones
of confusion often make it difficult to determine the elevation and front/back direc-
tivity of a sound source in case that head movements are not utilized.

Wenzel et al. [31] reported a front/back confusion error of 19 % for free-field
gaussian distributed broadband-noise stimuli as an average over 16 listeners and
24 directions with different positions in 3-dimensional space. The average error
increased to 31 % when the same listeners localized the stimuli in a virtual audi-
tory environment using non-individual head-related transfer functions. Begault and
Wenzel [2] found similar results for speech signals. An average error of 29 % was
reported for five different lateral angles. The error for the 0◦/180◦ directions was
found to be higher then the error over multiple directions with an average value of
40 %.

A study by Perrett and Noble [24] is an ideal test case for the model analysis in this
chapter, because the authors instructed their test participants precisely how to move
their heads while listening to the test stimuli. The aim of the investigation was to
determine the effect of head movements on listeners’ ability to discriminate between
front and back directions. In one of the test conditions, the listeners where asked
to continuously move their head between −30◦ and +30◦ azimuth. In the control
condition, the listeners were asked to keep their heads motionless during the stimulus
presentations. The listeners’ heads where not fixed in position during this condition,
but monitored using a head-harness-mounted laser pointer for self monitoring and a
Polhemus Isotrak-II head tracker. In a further test condition, the authors also inserted
3-cm-long open plastic tubes into the listeners’ ears to circumvent the function of
the pinnae using a method originally proposed by Fisher and Freedman [17]. For
the motionless conditions, Perrett and Noble’s [24] data reveal that for the non-
distorted condition—that is, no tubes—the front-back confusion error was approxi-
mately 15 % for a 3-s broadband white-noise signal and 35 % for a low-pass-filtered



A Binaural Model that Analyses Acoustic Spaces 205

2nd

HRTF
BM

1st

2nd

HC ILD & ITD analysis

Remapping

Binaural Activity Pattern Analysis

HRTF1st

3rd

Nth

2nd

HC

1st

BM

1st

2nd

3rd

Nth

Head 
Movement 
Input

3rd

Nth

Left 
Ear 
Input

Right 
Ear 
Input

Fig. 3 General model structure of the binaural localization model utilizing head rotations with
the following components. HRTF: External-ear simulation/HRTF filtering. BM: Basilar mem-
brane/bandpass filtering. HC: Hair cell/halfwave rectification. ITD & ILD analysis: Interaural time-
difference-cue extraction/interaural cross correlation and interaural-level-difference-cue analysis
with EI-cells. Remapping to azimuth angles with head-rotation compensation. Binaural-activity-
pattern analysis to estimate the sound-source positions

white-noise signal with a cut-off frequency of 1 or 2 kHz. In the open-tube condition,
the results for the low-passed stimuli did not change significantly, but the error
for the broadband signal went up to 35 %. With head movements, these errors
decreased to 0 % for the non-distorted conditions and 0.6 % for the open-tube
conditions.

The initial idea of the model proposed here was to design a prototype model that
can utilize head rotations to improve localization performance. The data by Perrett
and Noble [24] was chosen as a test bed to evaluate the performance of the model,
which will be outlined in the next section (Fig. 3).

2 Model Structure

Periphery

The model is based on the interaural cross-correlation method introduced by Sayers
and Cherry [26] to estimate ITDs. The basic model structure is similar to the one
proposed by Braasch [9]. In line with earlier approaches by Blauert and Cobben [6]
and Stern and Colburn [27], it also builds on the integration of the auditory periphery.
The transformations from the sound sources to the eardrums and the influence of the
outer ear and, occasionally, room reflections, are taken into account by filtering
the sounds with HRTFs from a specific direction. Afterwards, the outputs for all
sound sources are added together separately for the left and right channels. Basilar-
membrane and hair-cell behavior are simulated using a gammatone-filter bank with
36 bands and a simple half-wave rectifier at a sampling frequency of 48 kHz, as
described by Patterson et al. [23].
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Cross Correlation

After the half-wave rectification, the normalized interaural cross correlation is
computed for each frequency band over the whole target duration as follows,

Ψyl,r (t, τ ) =

t+Δt∫

t ≈=t
yl(t ≈ − τ/2) · yr (t ≈ + τ/2) dt ≈

√
t+Δt∫

t ≈=t
y2

l (t ≈) dt ≈ ·
t+Δt∫

t ≈=t
y2

r (t ≈) dt ≈
, (1)

with the internal delay, τ , and the left and right ear signals, yl and yr . The variable t is
the start time of the analysis window and δt its duration. Only the frequency bands
# 1–16, covering 23–1559 Hz, are analyzed, reflecting the human auditory system’s
inability to resolve temporal fine structure at high frequencies, as well as the fact that
the time differences in the fine structure of the lower frequencies are dominant—if
they are available [32].

Remapping and Decision Device

Next, the cross-correlation functions will be remapped from interaural time differ-
ences to azimuth positions. This is important for the model to be able to predict
the spatial position of the auditory event. In addition, this procedure will help to
align the estimates for the individual frequency bands as one cannot expect that the
interaural time differences are constant across frequency for a given angle of sound-
source incidence. An HRTF catalog is analyzed to convert the cross-correlation
function’s x-axis from interaural time differences to the azimuth.2 After filtering
the HRTFs with the gammatone-filter bank, the ITDs for each frequency band and
angle are estimated using the interaural cross-correlation, ICC, algorithm of Eq. 1.
This frequency-dependent relationship between ITDs and azimuthal angles is used
to remap the output of the cross-correlation stage, namely, ICC curves, from a basis
of ITDs, τ (α, fi ), to a basis of azimuth angles in every frequency band, that is,

τ (α, fi ) = g(HRTFl , HRTFr , fi ), (2)

= g(α, fi ), (3)

with azimuth α, elevation δ = 0◦, and distance r = 2 m. fi is the center frequency
of the bandpass filter and HRTFl/r = HRTFl/r (α, δ, r).

In a subsequent step, the ICC curves, ψ(τ , fi ), are remapped to a basis of azimuth
angles using the following simple for-loop in Matlab using a step size of 1◦,

2 The HRTF catalogs used for this investigation were measured at the Institute of Communication
Acoustics of the Ruhr-University Bochum, Germany. They were obtained at a resolution of 15◦ in
the horizontal plane and then interpolated to 1◦ resolution using the spherical spline method—see
Hartung et al. [20].
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for alpha=1:1:360
psi_rm(alpha,freq)=psi(g(alpha,freq),freq)

end

Here, ‘psi(tau,freq)’ is the original, frequency dependent, interaural cross-
correlation function with the internal delay, τ , that is, ‘tau’. The function ‘g(alpha,
freq)’ provides the measured ‘tau’-value for each azimuth and frequency. Inserting
this function as ‘tau’ input in ‘psi’ transforms the ‘psi’-function into a function
of azimuth using the specific Matlab syntax. In the decision device, the average of
the remapped ICC functions: ‘psi_rm(alpha,freq)’ over the frequency bands
# 1–16 is calculated, dividing by the number of frequency bands. The model estimates
the sound sources at the positions of the local peaks of the averaged ICC function.

Figure 4 shows an example of a sound source in the horizontal plane with an
azimuth of 30◦ for the eighth frequency band. The top-left graph shows the original
ICC curve obtained using Eq. 1 as a function of ITD. The graph is rotated by 90◦ with
the ICC on the x-axis and ITD on the y-axis to demonstrate the remapping procedure.
The curve has only one peak at an ITD of 0.45 ms. The top-right graph depicts
the relationship between ITD and azimuth for this frequency band. As mentioned
previously, the data was obtained by analyzing HRTFs from a human subject. Now,
this curve will be used to project every data point of the ICC-vs.-ITD function to an
ICC-vs.-azimuth function as shown for a few data points using the straight dotted and
dashed-dotted lines. The bottom panel shows the remapped ICC function, which now
contains two peaks—one for the frontal hemisphere and one for the rear hemisphere.
The two peaks fall together with the points where the cone-of-confusion hyperbolas
intersect the horizontal plane for the ITD value of the maximum peak that is shown
in the top-left panel.

Fig. 4 Remapping of the cross-correlation function from ITD to azimuth, shown for the frequency
band # 8, centered at 434 Hz. The signal was presented at 30◦ azimuth and 0◦ elevation
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Integrating Head Rotations

Now it will be assumed that the head rotates to the left while analyzing an incoming
sound source from the front. Related to the head, the sound source will now move
toward the right. However, if the sound source had been in the rear, the sound source
would have moved to the left. This phenomenon will now be used to distinguish
between both options: frontal and rear position. For this purpose, a further coordinate
system will be introduced, namely, a room-related coordinate system. The fact that
human listeners maintain a good sense of the coordinates of a room, as they move
through it, motivates this approach. If a stationary head position is considered, the
head-related coordinate system is fully sufficient. However, if the head rotates or
moves, the description of stationary sound source positions can become challenging,
because every sound source starts to move with the changing head position. An
easy way to introduce the room-related coordinate system is to define a reference
position and orientation of the human head, and then determine that the room-related
coordinate system coincides with the head-related coordinate system for the chosen
head position.

Consequently, the room- and head-related coordinate systems are identical as
long as the head does not move. In this investigation, only head rotations within the
horizontal plane are considered and, for this case, the difference between the head-
related coordinate system and the room-related coordinate system can be expressed
through the head-rotation angle, αm , which converts the room-related azimuth, αr ,
to the head-related azimuth, αh—see Fig. 5:

αr = αm + αh . (4)

Given restricted head movement, the origin of both coordinate systems and the ele-
vations are always identical. While the sound-source position changes relative to
the head with head rotation, a static sound source will maintain its position in the
room-related coordinate system. Using this approach, a further coordinate transfor-
mation of the ICC function is executed in the model, this time from a function of
head-related azimuth to room-related azimuth. This can be accomplished by rotating
the remapping function when the head is moving by −αm to compensate for the head
rotation.

If a physical binaural manikin were to be used with a motorized head in connection
with the binaural model, the HRTFs would be automatically adjusted with the rotation
of the manikin’s head. In the model discussed here, where the manikin or human
head is simulated by means of HRTFs, the HRTFs have to be adjusted virtually.
Also, the HRTFs have to correspond at every moment in time to the sound-source
angle relative to the current head position. This can be achieved with the help of
a running-window function, where the sound source is convolved with the current
HRTF pair. In this case, a Hanning window of 10 ms duration and a step size of 5 ms
is used. The smooth edges of this window will cross-fade the signal, allowing for a
smooth transition during the exchange of HRTFs. For each time interval, the model
will
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α

α
α

Fig. 5 Sketch to illustrate the front/back confusion problem. If an ongoing sound source is located
in front of the listener who turns his head left, the sound source will move to the right from the
perspective of the listener’s head. But if the sound source is located in the back, the sound source
appears to move to the left for the same head rotation. The variable αr denotes the azimuth in the
room-related coordinate system, here pointing at 0◦, αh is the azimuth in the head-related coordinate
system, also pointing at 0◦, but for this coordinate system. The third angle, αm , is the head-rotation
angle. It indicates by how much the head is turned from the reference head orientation that coincides
with the room-related coordinate system

1. Determine the head rotation angle αm based on a predetermined trajectory
2. Select the HRTFs that correspond to the sound source angle of incidence for the

head-related coordinate system
3. Compute the normalized ICC for each frequency as a function of ITD
4. Convert the ICC function to a function of head-related azimuth αh using the

remapping function shown in Fig. 4
5. Circular-shift the remapping function based on the head rotation angle by −αm

to transform the ICC curve into the room-related coordinate system
6. Compute the mean ICC output over all frequency bands
7. Average the ICC outputs over time
8. Estimate the position of the auditory event at the azimuth where the ICC peak

has its maximum

The first example is based on a bandpass-filtered white-noise signal with a duration
of 70 ms. The signal is positioned at 150◦ azimuth in the room-related coordinate
system. At the beginning of the stimulus presentation, the head is oriented toward
the front, that is, αh = 0, and then rotates with a constant angular velocity to the left
until it reaches an angle of 90◦ when the stimulus is turned off. The ICC functions
are integrated over the whole stimulus duration. Figure 6 shows the result of the
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Fig. 6 Interaural cross-correlation pattern for a sound source at 150◦ that is presented during a
head rotation from αm = 0◦ to 45◦. Dashed line ICC curve for the initial time window. Solid gray
curve ICC for the last segment when the head is fully turned. Note that the ICC pattern was shifted
in the opposite direction of the head rotation to maintain the true peak position at αr = 150◦. Black
curve Time-averaged ICC curve with the main ICC peak remaining and the secondary ICC partly
dissolving

simulation. The initial ICC-vs.-αr function, the output of step 6 for αm = 0◦, is
depicted by the dashed gray curve. Here two peaks can clearly be observed, one
at αr=h = 30◦ and the other one at αr=h = 150◦. At the end of the stimulus
presentation—solid gray curve, t = 70 ms, αm = 45◦—the position of the rear peak,
indicating the true sound source location, is preserved at αr ≤=h = 150◦, because the
head rotation was compensated for by rotating the remapping function in opposite
direction of the head movement. However, in case of the front peak—the front/back
confused position—the peak position was counter-compensated for and it rotates
twice the value of the head-rotation angle, that is, αm = 45◦. The new peak location
is shifted by −90◦ to a new value of −60◦. The time-averaged curve—solid black
line, which shows the output of step 7—demonstrates the model’s ability to robustly
discriminate between front and rear angles. The secondary peak, the one representing
the solution for a frontal-sound source, is now smeared out across azimuth because
of the head rotation. Further, its peak height is reduced from 0.9 to 0.6, making it
easy to discriminate between front and rear.

Figure 7 shows the same example, but this time the averaged ICC curve, as
obtained after step 7, is shown after every time step. In the beginning of the sim-
ulation both peaks for the front and back location have equal heights, but over time
the peak for the front location smears out and diminishes further. The solid black
line shows the position of the true location in the rear, which remains stable over
time. The dashed black curve shows the maximum peak position for the confused
front position. In the opposite case, where the sound source is located in the front,
namely, αm = 30◦, the ICC peak for the rear location smears out over the azimuth,
while the peak position of the true, frontal position is maintained—see Fig. 8.
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Fig. 7 Similar to Fig. 6, but this time averaged ICC functions are shown for every time step of
5 ms. Solid black line Azimuth of the sound source, αr = 150◦. Dashed black curve Momentary
location of the secondary peak

Fig. 8 Same as Fig. 7 but for a sound-source position of αr = 30◦

2.1 Processing of Interaural Level Differences

Interaural level differences, ILDs, are often computed directly from the ratio of the
signal powers, Pl,r, in both the left and right channels, after the simulation of the
auditory periphery. In this case, a physiologically motivated algorithm is utilized that
was introduced by Reed and Blum [25]. The algorithm had been implemented into
other binaural models with combined ITD and ILD cues [10, 15]. In this model,
a cell population of EI cells is simulated. Each cell is tuned to a different ILD as
shown in Fig. 9. One possible way to simulate the activity of the EI cells, E(m,ϕ),
at a given ILD, ϕ, is the following:
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Ek(m,ϕ) = exp

[(
10ϕ/ILDmax

√
Pk,l(m) − 10−ϕ/ILDmax

√
Pk,r (m)

)2
]

, (5)

with the time, m. Pk,l(m) and Pk,r(m) are the power in the left and right channels
and k refers to the kth frequency band. ILDmax is the maximal ILD magnitude that
the cells are tuned to. The equation describes an excitation/inhibition, EI, process,
because the input of the left channel has a positive sign indicating excitation, while
the sign for the input of the right channel is negative, describing inhibition. The
terms excitation and inhibition refer to the response of a neuronal cell—an exci-
tatory cell input increases the cell’s firing rate, whereas an inhibitory cell input
reduces it.

The model is ideal for this study, because it produces an EI-cell-activity-vs.-ILD
curve in a way similar to how the interaural cross-correlation function does it. For a
given ILD, the EI-cell activity reaches the maximum at the cell that is tuned to this
ILD. This property is used to estimate the ILDs in the model. The EI-cell activity
decreases with mismatch between the given and the tuned ILD. Using the concept of
the remapping function, the EI-cell-activity-vs.-ILD function can be transformed into
an EI-cell-activity-vs.-azimuth function, similarly to how the ICC-vs.-internal delay
to ICC-vs.-azimuth functions are converted. The transformation map can be derived
again from measured HRTFs by calculating the ILDs as a function of frequency and
angle of incidence as was done for ITDs in Eq. 2. The map can also be rotated with
the head-movement angle, αm , in the same way as it was done for ITDs.

Simulating Pychophysical Front/Back Confusion Data

The next step of this investigation is to determine how well the model simulates the
psychophysical data by Perrett and Noble [24]. In order to simulate front/back dis-
crimination, an optimal detector with internal noise was assumed, which is a central
aspect of Signal Detection Theory—see, for instance, [19]. In the study presented
here, signal detection theory enables the model to predict the front/back direction
of the signals by comparing the peak heights of the two cross-correlation peaks of
the ICC-vs.-azimuth function and selecting the direction with the higher peak. Inter-
nal noise was added to avoid the model always making the same pick for conditions
close to the threshold. In this way a psychometric curve was effectively simulated that
gradually progresses from chance where the difference between both cues is below
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detection threshold, up to a 100 % recognition rate, where the difference between the
front- and back-peak heights is well above this threshold.

In the present study, internal noise was added after the ICC function was inte-
grated over time and before the decision on the front/back directionality was made—
steps 7 and 8 of the itemized list given in Sect. 2. The magnitude of the internal noise
was adjusted to data by Gabriel and Colburn [18]. These authors found in their study
that the threshold for discriminating two broadband-noise stimuli based on their
interaural coherence was 0.04 when the tested coherence values were on the order of
one, while a much higher threshold was found when the coherence values were on
the order of zero. Since the model compares the height of the two ICC peaks for the
front and rear direction and, therefore, effectively analyzes interaural coherence, the
first value of 0.04 was chosen for the internal noise, based on the observation that
the height of the normalized cross-correlation peaks are close to one. In the practical
implementation, a random number is added to each coefficient of the time-averaged
cross-correlation function before the height of both functions are compared to each
other. The random numbers were drawn from a Gaussian-distributed function with
a mean of 0.0 and a standard deviation of 0.04.

The HRTF catalogs from eight human subjects were taken from a previous exper-
iment by Braasch and Hartung [13].3 The test stimuli were 85 ms broadband white-
noise samples, and the model was applied as described in Sect. 2. The sound sources
were positioned at an azimuth, αr , of 0◦ or 180◦, and the simulation was repeated 100
times for each direction, using different internal-noise samples and newly-generated
broadband white-noise bursts. For the motionless condition, the head rotation angle
was kept constant at αm = 0◦. For the head-rotation condition, the head-movement
angle was computed as

αm(t) = −30 + 4

s
· t, (6)

with the evolved time, t in milliseconds and the duration, s, of one step. With a
stimulus duration of tmax = 75 ms and a step size s of 5 ms, the head-rotation angle
spans the range of −30◦ for t = t0 = 0 ms to 30◦ for t = tmax = 75 ms, during
the stimulus presentation. Both the head-movement and the motionless conditions
were simulated for a model based on ITD-cue analysis in the frequency bands # 1–
16. Further, an alternative version was also applied, using two frequency regions in
accordance with Rayleigh’s duplex theory [22], namely, low-frequency ITD cues in
the frequency bands # 1–16, 23–1559 Hz,—and high-frequency ILD cues in the fre-
quency bands # 17–36, 1805–21164 Hz. The ILDs were processed using EI-activity
cells as were described in Sect. 2.1.

The top graph in Fig. 10 shows the results for the ITD model for eight HRTF cata-
logs from human subjects—one female and seven male. The ITD and ILD remapping
functions were individually computed for each HRTF catalog. For the motionless

3 The catalogs were measured in the anechoic room of the Institute of Communication Acoustics of
the Ruhr-University Bochum, Germany [13]. The measurement procedure is described in the same
study.
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Fig. 10 Percent correct scores for the binaural model discriminating between the front and back
positions of sound sources at 0◦ and 180◦ azimuth using eight different HRTF catalogs. Top graph
Results for the ITD analysis. Bottom graph Scores for the combined ITD and ILD analysis. Black
bars Results without head movement. White bars Results with head movement

condition, the percent correct scores vary between 50 %, that is, guessing, for cata-
log 8 and 90 % for catalog 6. The average error was 30 % compared to 35 % measured
by Perrett and Noble for the lowpass noise or open tube conditions. For the head-
movement condition the average percent correct scores went up from 70 % to nearly
100 %. These values are reached for all HRTF catalogs. The results are in line with
the findings of Perrett and Noble [24], who also found very small errors for the
head-movement conditions.

The percent-correct scores improve substantially for the motionless condition
if ILDs are taken into consideration as well—Fig. 10, bottom graph. The average
percent-correct scores now rise from 70 % for the ITD condition to 89 % for the ITD+
ILD condition. The individual percent-correct scores vary between 85 % and 95 %.
If head movements are applied to the model these results improve, yielding 100
percent-correct scores for all HRTF catalogs. Both the values for the motionless and
head-movement results are in line with the findings of Perrett and Noble who found
error rates of 15 %, that is, 85 % correct, for the motionless, no-tube, broadband
condition and no errors with head movements involved.

Next, it will be investigated in more detail how the front/back-confusion-error rates
drop with increasing head-rotation angle for the ITD model. For this simulation, the
head-rotation angle was computed the following way,
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Fig. 11 Percentage of front/back errors for different head rotation angles that were obtained using
the binaural model analysing ITD cues only for HRTF catalog 8

αm(t) = 0 + x

s
· t, (7)

with the evolved time, t , the duration of one step, s, and the change in angle per
step, x . Again, the duration of the signal was 75 ms. Figure 11 shows the results
of the simulation. The computed overall head-rotation angles are provided on the
x-axis and the front/back-discrimination error is given on the y-axis. Each data point
was computed 100× for the αr = 0◦ and 100× for the 180◦ directions using HRTF
catalog 8. The mean values are shown and the error bars depict the standard deviation.
The value for the motionless condition, that is, 0◦ head-rotation angle, coincides
with the no-movement condition for catalog 8—Fig. 10, top graph. The front-back
confusion error decreases almost monotically with increasing head-rotation angle.
At an angle of 30◦, the front/back confusion errors approximate 0 %, and the 10 %
error threshold is reached at an angle of 10◦.

In the final test condition, the effect of non-individual HRTF catalogs was exam-
ined. This was accomplished by using a different HRTF catalog for computing the
remapping functions for ITDs and ILDs than the one used for the convolution of
the test signals during the model analysis. In this study, catalog 8 was used for the
remapping functions to transform the results of the other seven HRTF catalogs.
Figure 12 shows the simulation results for the non-individual HRTF data. Com-
pared to the individual HRTF data for the motionless ITD condition—Fig. 10, top
graph, black bars—the average percent-correct scores dropped from 70 % to approx-
imately 50 % when a non-individual remapping function was used—Fig. 12, top
graph, black bars. Interestingly, the performance no longer improved if additional
ILD cues were considered—Fig. 12, top graph, gray bars. In fact, for HRTF catalog 6
a counter effect was observed where the percent correct score dropped from 50 to
10 % as the ILD cues apparently provided conflicting cues. With head movements—
ITD condition shown only—the percent-correct scores reached values at or above
99 %, supporting psychoacoustic findings that head rotations can help to overcome
front/back confusion errors when using non-individual HRTF catalogs [3].
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Fig. 12 Same as Fig. 10 but for non-individual HRTF catalogs, using the eighth catalog as reference
set for the remapping procedure. Black bars ITD analysis condition. Gray bars Combined ITD/ILD
data. In both cases no head movements were applied. White bars Head movement conditions based
on ITD cues

3 Head Rotations in the Context of Stereophonic Surround
Systems

So far, the role of head movements was only examined in analyzing the direct sound.
Now, a number of aspects related to room acoustics will be discussed. In the first case,
the effect of head rotations on the perception of a diffuse field, the so-called listener
envelopment, LEV, [7, 8, 14], will be investigated. The next section deals with the
effect of head movements on the perception of early reflections in the context of the
apparent source width, ASW [1]. An easy way to study the effect of a diffuse sound
field is to examine a diffuse field produced by a stereophonic loudspeaker set-up.
In a diffuse field of late reverberation, the sound ideally arrives from all directions,
but in a stereophonic loudspeaker set-up, the angles of incidence are restricted to
the loudspeaker positions. The spatial diffuseness of the sound field increases with
the number of distributed loudspeakers. Interaural coherence is often used to predict
the perceived spaciousness of a diffuse field, because the coherence decreases with
increasing diffuseness [8, 16, 21]. Subsequently, it will be investigated how different
loudspeaker configurations affect the prediction of spaciousness with the proposed
model when head movements are considered.

In a standard stereo configuration, two loudspeakers are placed in the horizontal
plane at azimuth angles of ±30◦ or ±45◦. This of course is a problem, if one needs
to present ambient sound from the rear as well, and it was the main reason for
the development of surround-sound systems. Transaural systems have attempted to
provide surround sound using two loudspeakers by delivering HRTF filtered sounds
over loudspeakers after applying an inverse filter to compensate for the transfer
function between the actual loudspeakers and the listener. A cross-talk cancellation
method avoids the sound for one loudspeaker channel reaching the contralateral ear.
However, common transaural systems do not account for head-movements. It will be
investigated how a frontal, two-channel loudspeaker system performs with a model
that is capable of discriminating front/back directions.
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A simple method to simulate a diffuse field is to present statistically independent,
that is, uncorrelated, broadband noise signals to each loudspeaker. One-second
white-noise bursts were used in this investigation and then either the broadband
interaural coherence was calculated or the interaural coherence was computed using
the binaural model which included the simulated auditory periphery. Three different
loudspeaker configurations were tested:

• A two-loudspeaker configuration with speaker placements at ±45◦ azimuth
• A four-loudspeaker configuration with speakers placed at ±45◦ and ±135◦

azimuth
• An eight-loudspeaker configuration with speaker placements at 0◦, ±90◦, ±135◦,

and 180◦ azimuth

In all three configurations, the loudspeakers were placed in the horizontal plane. For
each configuration, the broadband signal for each loudspeaker position was filtered
with its corresponding HRTFs. Then, all left and right-ear signals were separately
added up to simulate the total sound field at both ears. The simulation was repeated
for different head-rotation angles, αm , in steps of 1◦ from 0◦ to 360◦. It should
be noted that, for this simulation, the binaural-cue values were not averaged over
different head-movement positions but were presented for discrete positions. The
actual head-related HRTFs were selected for each head position. HRTF catalog 8
was used for this simulation.

Figure 13 shows the data for the broadband interaural coherence condition. The
black curve shows the results for the two-loudspeaker configuration. When the head
is facing toward the front, that is, αm = 0◦, the coherence has a value of 0.2. It
increases immediately when the head moves left or right. The maxima were found
at −90◦, with a coherence of 0.6 and +90◦, with a coherence of 0.5 for the two
conditions where both loudspeakers were located at one side of the head. The variance
of interaural coherence decreases if the number of loudspeakers is increased to four
units. Now, four maxima, located at the four loudspeaker positions ±45◦ and ±135◦
azimuth, can be observed where the coherence reaches values near 0.25. That is
a much lower value than found for the two-loudspeaker condition. For most other

−180 −135  −90  −45 0 45 90 135 180
0

0.2

0.4

0.6

Azimuth [deg]

C
oh

er
en

ce

L2
L4
L8

Fig. 13 Interaural coherence, IC, for a diffuse field simulated with different loudspeaker config-
urations, L2, L4 and L8, as a function of head rotation angle. The numbers denote the number of
loudspeakers involved. The IC was directly computed from the broadband noise signal
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Fig. 14 Same as Fig. 13, but this time the IC was computed as the average of an auditory-frequency-
band analysis for the bands # 7–11

angles, the coherence values are on the order of 0.15. Eight maxima are observed for
the eight-loudspeaker configuration that always occur when the head is facing one of
the eight loudspeakers. However, in this case, the interaural coherence is noticeably
lower than for the other two loudspeaker configurations with floor values around 0.1
and peak values of 0.15, corresponding far more to the ideal of a diffuse sound field.

The results change if the coherence is computed from individual frequency bands.
Figure 14 shows the results for the binaural model analysis as averaged over frequency
bands # 7–11. For the two-loudspeaker configuration, the interaural coherence is
about 0.5 for a head rotation angle of 0◦. This value remains constant for small
head rotations, but increases greatly when the head rotation exceeds values of ±40◦
reaching maxima of one at head rotation angles of αm = ±90◦. At these angles,
both ear signals are fully correlated at the examined frequencies. The curve smooths
out when four loudspeakers are used instead of two, oscillating between values
of about 0.4 and 0.5 with minima at the loudspeaker positions and peak values
in between the loudspeaker positions. In the third loudspeaker configuration, the
interaural coherence no longer varies much, but remains fairly constant at a value of
just below 0.5.

The next figure shows the variation of the ILD with the head rotation angle αm—
see Fig. 15. The values depict the average across frequency bands # 16–24. Again,
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Fig. 15 Interaural level differences for a diffuse field simulated with different loudspeaker config-
urations, L2, L4, and L8, as a function of head rotation angle. The numbers denote the number of
loudspeakers involved. The ILDs were computed from the auditory band outputs, and the results
reflect the average for the bands # 16–24, that is, 1559–4605 Hz
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the strongest variations can be found for the two-loudspeaker condition with azimuth
angles of ±45◦. For small head rotations, the ILDs do not vary much, but at an angle
of about ±20◦ the ILD starts to change, exceeding values of ±2 dB at ±45◦ and
reaching maxima of approximately ±8 dB at a head-rotation angle of ±90◦. These
are the two conditions where both loudspeakers are located sideways respective to
the orientation of the head. The ILD variations decrease substantially when two rear
loudspeakers are added to the two front loudspeakers. Now the level variation is
within a range of 1–2 dB. The ILDs are zero for the four head orientations where
the head is directly facing one of the four loudspeakers and directly in between two
loudspeakers, with magnitude maxima in between these eight magnitude-minima
positions. Using the eight-loudspeaker set-up the variation decreases further and the
curve can be considered flat within the detection threshold of ILD discrimination,
which is in the order of 1 dB. It can be concluded that the interaural coherence, and
therefore the predicted perceived spaciousness, is not much affected if the head is
kept still in the median plane. However once head movements are executed, the max-
imum interaural coherence is reduced with an increasing number of loudspeakers.
While the diffuseness of the sound field changes substantially with increasing num-
ber of loudspeakers, the model simulation shows that the differences can only be
experienced when the head is rotated.

4 Head Rotations in the Context of Apparent Source Width

The next goal is to investigate the role of head rotations in the context of early
room reflections. Here, a tradition developed by researchers to investigate human
perception in concert halls is used. Two delayed copies of the direct sound are taken
to simulate the first two side reflections. These sideward refections are very important
to widen the apparent source width, ASW, a perceptual measure that describes how
wide a sound source is perceived to be in an enclosed space [1, 16]. Again, interaural
coherence is typically used as predictor for apparent source width, which widens with
decreasing coherence [21]. ASW is usually estimated from the interaural coherence
of the first 80 ms of an impulse response and LEV from the late part. However,
since early reflections are generally examined separately from late reverberation, the
interaural coherence can be simply calculated from the running signal.

For this study, the delays were set to 20 ms for the left side and 24 ms for the right
side. These values are considered to be in the ideal range for the acoustics of concert
halls—compare Beranek [4]. Acousticians generally agree that the arrival times need
to be slightly different for both side reflections to avoid a symmetrical situation
where the sideness of both reflections is perceptually integrated to a center image.
The amplitude of both reflections was adjusted to four different values, namely,
0 for direct sound only, and 0.25, 0.33, and 1.0. The reference amplitude for the
direct sound was one. The amplitudes for the left and right side reflections always
matched. The locations of the side reflections were chosen to be −45◦ and +45◦
azimuth, while the direct sound source was positioned at 0◦ azimuth, represented by
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Fig. 16 Interaural coherence as a measure for apparent source width, analysing a direct sound
source in the presence of two reflections as the function of head rotation angle αm . Solid curve
Results for the direct sound only. Dashed/dotted curves Three conditions with reflections of different
amplitudes as indicated in the legend

HRTFs corresponding to the chosen directions. All three positions were located in
the horizontal plane. A broadband-noise signal served as the sound source. It was
convolved with the impulse response created from the direct source position and the
two reflections with the given amplitudes and then analyzed using the same binaural
model as used in the previous section. Again, different head-rotation angles were
tested and the different head rotation angles were simulated by adjusting the HRTFs
with head rotation.

Figure 16 shows the results for this simulation for the cumulative coherence val-
ues for frequency bands # 7–11, that is, 352–738 Hz. It comes as no surprise that the
coherence remains constantly at a value of one for the direct-sound-only conditions
for all head-rotation angles. For all cases where the head is directly facing the front,
the coherence decreases with increasing side-reflection amplitudes, to the values
0.85 with side-reflection amplitudes of 0.25, 0.75 with side-reflection amplitudes of
0.33 and 0.5 with side-reflection amplitudes of 1.0. However, these values increase
monotically for all three conditions when the head is turned away from the center
position, approximating coherence values of 1.0 when the head is fully turned side-
ways, that is, αm = ±90◦. The simulation suggests that the apparent source width is
affected by head movements. However, the simulation cannot predict to what extent
human listeners can compensate for head movements when judging spatial impres-
sion. It thus remains unclear if the ASW varies with head movement or if a general
impression is derived over all observation angles (Fig. 17).

5 Discussion, Future Directions and Conclusion

The model presented in this chapter is able to demonstrate a number of psychoa-
coustic effects that build on utilizing head movements, including resolving front/back
confusions, analyzing the diffuse field of stereophonic sound reproduction systems
and measuring the influence of head movements on the perceived auditory-source
width. While the model was intended to be the first step toward a model that can
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Fig. 17 Rotating binaural
head with stereoscopic vision

simulate active exploration of a sound field using a functionally-plausible model of
the human auditory system, it should be pointed out that the model can also work
in a passive mode, meaning that the model will produce similar results with its head
being rotated on a continuous basis without receiving feedback from higher stages.
Nevertheless, it can work equally well with a simple top-down mechanism that turns
the head only when the system needs to resolve front/back confusions. This can be
done by comparing the cross-correlation peaks for the front and back directions—see
Fig. 4—and if the height of both peaks are within a given threshold, which could,
for instance, be based on the coherence discrimination data of Gabriel and Colburn
[18], the decision device commands the model to turns its head.

The authors are currently in the process of integrating the binaural model with a
motorized binaural manikin, so that it can be tested in real environments. For this
purpose, a dummy head was constructed that can rotate in the azimuthal plane with
a stepper motor. The manikin was built using a rapid prototyping CNC machine to
transform a 3-D CAD model of a human head into a dummy head made from medium-
density fiberboard [28]. The ears for the head were molded from a human subject out
of silicone with small electret Sennheiser KE-4 microphone capsules inserted into
the canals. The addition of stereoscopic video capture is to provide visual cues to the
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binaural manikin, to set markers on individual players and to track their movements,
gestures, and spatial arrangement. For cameras, Apple iSight webcams with 0.25"
diameter sensors were used and inserted into the eye sockets.
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Binaural Systems in Robotics

S. Argentieri, A. Portello, M. Bernard, P. Danès and B. Gas

1 Introduction

In the seventies, the word robot mainly termed a manipulator arm installed in a
workshop. It was designed to perform repetitive and/or high-precision tasks, such
as pick-and-place, assembly, welding or painting. Its environment was fully con-
trolled with no human around, and its behavior was fully programmed in advance.
Since then, robotics has dramatically evolved. Nowadays, a robot is endowed with
advanced perception, decision and action capabilities. In essence, it is in interac-
tion with its environment with humans and/or with other robots and is capable of
autonomy and adaptation—full or shared. The spectrum of applications has kept
broadening, and spans not only manufacturing and supply chain, but also explo-
ration, health—such as in surgery, rehabilitation, assistance—and professional and
personal-service robotics as, for instance, in mining, agriculture, transports, moni-
toring, rescue, guidance, cleaning, assistance, and games. Among the hot topics, one
may cite robot deployment in uncontrolled and dynamic environments, Human–robot
interaction, task-oriented behaviors and networked robotics devices in smart envi-
ronments, or ubiquitous robotics [16]. For the last years, one could observe growing
two-way connections between robotics and neurosciences, with the methods, models
and experimental achievements of each discipline being a source of inspiration and
strengthening for the other one [64].

Perception is a key requirement to robot autonomy, adaptation and self-awareness.
Traditionally, a distinction is made between proprioception, that is, the ability for
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a robot to sense its own internal status, for instance, in terms of wheels angular
positions/velocities, joint angles, odometry, gyroscope- and exteroception, which
provides the robot with information on its environment. Among others, one can cite
exteroceptive modalities, such as bumpers for emergency stop, ultrasound/infrared/
laser scanning devices for range sensing, microphones, force sensors, tactile sensors
and cameras—be it in the visible, infrared or multispectral range.

So far, the visual modality has undoubtedly received greatest interest. This is due
to the richness of the information brought by images and to the high performance, low
cost and embeddability of visual sensors. Vision has been used for decades in nearly
all kinds of robotic tasks—from control loops and tracking routines to localization,
map building, or scene modeling and interpretation. Numerous vision-based func-
tions run nowadays in industry, for instance, non-destructive testing, scene/process
monitoring, robot guidance, and other areas of application [5]. Besides, computer
vision is a discipline by itself that does not take into account the specificities of
robotics, such as real time constraints or changes in experimental conditions but,
nevertheless, enriches the field.

Like vision, audition is a key sense in humans that plays a fundamental role
in language and, consequently, in learning and communication. Quite surprisingly,
robot audition was identified as a scientific topic of its own only since about the
year 2000 [53], though related work existed before as part of bigger projects [12,
28, 30]. The reasons may be cultural as regards the importance of images in our
society and also physiological—think of the predominance of vision in primates.
More pragmatically, they are also certainly related to the difficult fulfillment of con-
straints like embeddability, high-performance acquisition, or real time processing.
Consequently, while many theoretical results have long been developed in acoustics
and signal processing, the literature on audition for robotics has remained scarce
until recently. Fortunately, the timely topics of cognitive robotics and Human–robot
interaction have promoted the field [25].

In its early days, robot audition benefited from developments in computational
auditory-scene analysis, CASA [75]. Thereafter, Okuno et al. [63] identified the
three main functions that any auditory robot should implement. These are

• Source localization, which may include a tracking system
• Separation of audio flows or source extraction
• Source recognition, which includes but is not limited to automatic speech recog-

nition and can extend to scene interpretation

These functions encompass low-level issues as well as higher-level skills like emotion
understanding or acoustic-scene meta-description.

In an attempt to provide a state of the art of binaural systems in robotics, this paper
is structured as follows. The paradigms and constraints of robot audition are first sum-
marized. Then the most prominent binaural approaches to canonical low- and high-
level auditory functions are presented. After a review of robotics platforms, research
projects and hard- and software related to the field, some novel active approaches
developed by the authors are outlined, namely, combining binaural sensing and robot
motion. A conclusion ends the chapter.
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2 Paradigms and Constraints of Robot Audition

Two main paradigms for robot audition exist in the literature. On the one hand, micro-
phone arrays have been used in a lot of applications. Various geometries have been
selected, such as a line, a circle, a sphere, or the vertices of a cube. The redundancy
in the sensed data is known to improve the acoustic-analysis performance and/or
robustness [85]. Specific contributions have been concerned with

• The detection of the number of active sources, for example, through statistical
identification [21]

• Source localization, for instance, through beamforming [59] or broadband beam-
space MUSIC [2]

• Source extraction, for example, through geometrical source separation [84]
• Online assessment of uncontrolled dynamic environments
• Adaptation of speaker/speech recognition techniques to the robotics context [37]

On the other hand, binaural approaches have been developed.1 These rely on a single
pair of microphones that can be in free field, mounted inside an artificial pinna—not
necessarily mimicking a human outer ear—and/or placed on a dummy head. From
an engineering viewpoint, the possible use of cheap and efficient commercial stereo
devices and drivers greatly eases the implementation. However, this simplification
may imply an increased computational complexity.

Even though there is no fundamental need to restrict an acoustic sensor to only
two microphones, for instance, when advanced data-acquisition and processing units
are available, other arguments justify the binaural paradigm. First, robotics can be
advocated as a privileged context to the investigation of some aspects of human
perception. Indeed, as robots are endowed with locomotion and can incorporate
multiple sensory modalities, they constitute a versatile experimental test bed to the
validation/refutation of assumptions regarding the sensing structures as well as the
processing and cognitive functions in humans. Conversely, these functions can be
a source of inspiration for engineering approaches to perception. Last, there is an
increasing demand for symbiotic interaction between humans and robots. This may
imply the design of humanoid platforms, endowed with bioinspired perception and
able to acceptably interact with humans in uncontrolled environments. Important
constraints are, however raised by the robotics context, such as

Embeddability In the field of array processing, a large antenna involving a high
number of microphones is often used. If such a sensor is to be embedded on a
mobile robot, then a tradeoff must be handled between its size and, thus, aperture,
and potential performances. Binaural sensors do not suffer from this geometrical
constraint. Whatever the number of microphones is, the size and power consump-
tion of the data acquisition and processing unit also constitute an important issue.

Real time Significantly distinct computation times are sometimes required by algo-
rithms targeting the same goal. In robotics, low-level auditory functions such as

1 Single-sensor approaches exist, such as [76, 83], but are rarely addressed in the literature.
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binaural-cue calculation or source detection/localization must often run within a
guaranteed short-time interval. Typically, up to 150 ms are demanded when their
output is needed in reflex tasks such as exteroceptive control or people tracking.
Specific processing units may have to be designed in order to guarantee real time
behavior.

Environment Robotics environments are fundamentally dynamic, unpredictable
and subject to noise, reverberation, or spurious sound sources. In order to ensure
a guaranteed performance, adaptive or robust auditive functions must be designed.

Sources Most meaningful sound sources involved in robotics are broadband, with
a spectrum spreading over the whole audible frequency bandwidth. This pre-
cludes the direct use of narrowband approaches developed elsewhere. Source
non-stationarity is also an important issue. In addition, specific methods may be
required depending on the source distance. Last, source motion can complexify
the processing of the sensed signals, for example, when it breaks their assumed
joint stationarity.

Robot Robot parts and robot motion generate so-called self-noise, or ego-noise,
which may of course disturb the acoustic perception. Besides, in so-called barge-
in situations, some sounds emitted intentionally by the robot may be interrupted,
for example, by human utterance during a spoken dialog. Hence, they must be
filtered-out online for not to damage the analysis of the scene.

Historically, most initial contributions to robot audition took place within the bin-
aural paradigm. However, the results remained mixed when facing wideband non-
stationary sources in noisy environments. Nevertheless, the last years have witnessed
a renewal of interest for such approaches. A particular focus is put on active variations,
which, thanks to the coupling of binaural sensing and robot motion, can overcome
limitations of their passive counterparts. In computer vision, the coupling between
visual perception and behavior has long been envisaged [1, 6]. The usefulness of
active processes in hearing is discussed in [17, 53]. Importantly, the increased avail-
ability of cheap and accurate head-tracking solutions has given rise to related research
amongst the hearing community with the potential of contributing to robot-listening
strategies—see, for instance Ref. [11].

3 Binaural Auditory Functions in Robotics

As aforementioned, a robot should be able to understand several sources at a time by
using its own ears in a daily environment, that is, with permanent background noises,
intermittent acoustical events, reverberation, and so on. This challenging environment
may be dynamic, due to sound sources moving or changing their acoustic properties.
Additionally, the robot ego-noise is part of the problem. Whatever the conditions,
most embedded auditory systems in robotics aim at generating an acoustic map of
the robot’s surroundings in real time. This map can then be used as an input to higher
cognitive/decisional layers of the robot’s software architecture in order to gaze or
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Fig. 1 Bottom-up working flow representation of classical robot audition systems

move towards the source of interest, answer to an interacting human partner, and other
related issues. Such elementary behaviors can of course be enriched by considering
low-level-reflex actions or multimodal approaches to artificial sound perception [80]
or [81], this volume.

Acoustic maps of the environment are generally obtained along the bottom-up,
signal-driven, workflow illustrated in Fig. 1. The successive computational steps are
often split into two categories, namely low-level and high-level auditory functions,
which are

Sound localization This stage is probably the most important low-level auditory
function. Lots of efforts have been made to provide efficient binaural sound local-
ization algorithms suited to robotics.

Extraction Once localized, each sound source can be separated so as to provide
clean speech signals, noise signals, etc.

Ego-noise cancellation Its importance was acknowledged in the early days of
active audition. Indeed, the noise of the motors enabling the robot motion may
significantly degrade the robot’s auditory perception.

Voice-activity detection, speaker recognition, speech recognition The need of
these functions comes from the fact that most robotics systems are concerned
with speech signals for interaction purposes.

High-level scene description Finally, all the above extracted information are gath-
ered to accurately describe the acoustic scene.

Elements of this traditional bottom-up approach are reviewed in the following.
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3.1 Sound Localization

In binaural robot audition, the azimuth and elevation of the multiple sources in the
environment, and possibly their distance, are inferred from cues extracted from left
and right signals. The literature reports the use of binaural cues, namely, interau-
ral time/phase difference, ITD/IPD, interaural level difference, ILD, and monaural
cues, that is, spectral information, and further characteristics, for instance, distance-
related, [74]. In [94] various cue-extraction methods are reviewed. Whatever the
localization policy, the problem is then to inverse the transformation that relates the
spatial source locations to such cues. This requires a-priori knowledge about the prop-
agation of an acoustic wave onto the robot’s scatterers. This knowledge is generally
captured in a simplified analytical model, or comes as experimental measurements of
sound source properties, such as frequency contents, positions and induced auditory
cues.

Considering source-azimuth estimation, the first model proposed in robotics was
the auditory epipolar geometry, AEG [53]. It expresses the interaural phase differ-
ence, IPD, as a function of the source azimuth measured with the two microphones
in the free field. As AEG does not take into account the shadowing effect of the head
on sound propagation, some alternatives were proposed. Among them, one can cite
the revised auditory epipolar geometry, RAEG [57], inspired by the Woodworth–
Schlosberg formula [90]. These models are now commonly used in robotics, but are
shown to be not so robust to changes in the environment. For instance, Nakadai et al.
[56] showed that the simulated ITD obtained from RAEG is consistent with experi-
mental measurements gathered in an anechoic room in the range of 500–800 Hz. Yet,
if the comparison is made in a real robotics environment including reverberation and
noises, then the basic models do not fit real-life data anymore.

Another analytical model, based on scattering theory, ST, was proposed in [55],
considering the scattering induced by a perfectly-spherical head. In comparison with
previous models, ST provides a more reliable closed-form model of the IPD as a
function of the source azimuth. Of course, room acoustics is still not taken into
account, so that the measured IPD remains heavily influenced by the environment.
A similar approach was exploited in [27] and experimentally tested in [26] on a
spherical plastic head.

In humans, source elevation is inferred from monaural cues taking the form of
spectral notches. These are induced by the interference of the direct path of the wave
to the concha and its reflections brought by the pinna. They are reproduced in robot-
ics by artificial pinnae in charge of collecting the sound wave to the microphones.
Importantly, both the placement of conchas on a robotics dummy head and the shape
of pinnae can be optimized to maximize localization sensitivity to the source posi-
tion. A solution to the first problem was proposed in [79]. The second one related to
pinnae design has been more deeply investigated [41, 42, 76]. Yet, so far, both prob-
lems remain open. Numerical simulations may be required, which complicates the
design. At large, the only emerging rule of thumb consists in designing an irregular
or asymmetric pinna shape to provide elevation-dependent spectral cues.
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Most of the previous approaches aim at getting closed-form equations of inter-
aural or monaural cues. Such models could also involve the head-related transfer
functions, HRTFs, of the robot that is, the transfer functions from the center of the
head if it were absent and the two microphones. An HRTF captures all the effects
exerted by the robot’s body, head and pinnae on the incoming sound waves. In such
a way it subsumes all the above head models. As closed-form HRTF expressions
are very difficult to obtain for a generic mobile platform, a prior identification step
is mandatory. It must be performed in an anechoic room, thus limiting its applica-
bility to robotics. Nevertheless, in the case of well-identified environments, some
HRTF-related applications to localization in robotics were developed. For instance,
[50] estimated the position of a single talker in a known environment. This work
was extended in [37] to simulate a moving talker. In [29] a learning approach is
proposed for sound localization based on audio-motor maps that implicitly captures
the HRTF. Self-organizing feature maps were also used in [60] to fuse binaural and
visual information so as to estimate the 3-D position of a sound source. In the same
vein, a multimodal approach to sound localization based on neural networks was
proposed in [93], where vision is also combined with auditory cues to estimate the
source azimuth. Further, a gaussian-mixture model, GMM, approach is proposed
in [51], this volume, to evaluate the position of multiple sound sources. Learning
approaches thus seem a promising generic tool to adapt an HRTF to various acoustic
conditions.

3.2 Source Extraction

Once the sound sources have been localized in the robot’s environment, the subse-
quent steps in low-level auditory analysis generally consist in extracting the sound
sources of interest. Depending on the authors, source localization and extraction
can be inverted or even gathered into a single function. Though binaural extrac-
tion of sources was addressed in the early days of robot audition, the number of
approaches has remained quite small. One of the most famous solution is the active
direction-pass filter, ADPF [57]. It works by collecting frequency sub-bands that are
presumably linked to the same sound source in order to generate the extracted signal.
This fusion of sub-bands is performed only if their associated binaural cues, that is,
IPDs/ILDs, are spatially coherent according to a given head model, for instance,
AEG or RAEG—see Sect. 3.1—taking into account the better spatial-discrimination
ability for sources in front of the robot. This system has been proven to be effective
to extract and recognize three simultaneous speakers [58].

One of the main advantages of ADPF is that it requires no a-priori knowledge
of the signal contents. The same applies to other recent binaural separation tech-
niques based on localization cues. Well-known approaches based on independent-
component analysis [70] that can separate two sources at most from the output of a
binaural sensor, are then generally overcome. For instance, Weiss et al. [89] proposed
to combine binaural cues with higher-level information related to speaker identity
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in order to separate more than two sources in the presence of reverberation. Another
solution, already explored with ADPF, that outperforms beamforming approaches in
reverberant scenes, is to derive time-frequency masks on the basis of binaural cues—
see for instance [77]. In [23], multiple-speaker joint detection and localization was
recasted as a probability-based spatial clustering of audio–visual observations into
a common 3-D representation. Cooperative estimates of both the auditory activity
and the 3-D position of each object were then deduced from a substantiated variation
of the expectation-maximization algorithm. Experiments were conducted with the
POPEYE platform—see Sect. 4.4—on single or multiple speakers in the presence of
other audio sources.

Whatever the approach, it is still very difficult to extract multiple sources cover-
ing the same frequency range. In such cases, some extracted signals may mistakenly
come from unrelated sources and may thus present missing or uncertain sections.
In the downstream pattern-matching algorithms, for example, for speaker/speech
recognition purposes, such problems can be handled within the missing-feature the-
ory, MFT [18, 19, 45], which consists in tagging the missing sections by a null
confidence weight, as will be shown further down.

3.3 Ego-Noise Cancellation

Two very restrictive solutions to ego-noise cancellation are generally proposed for
the binaural case. On the one hand, loud enough sources can mask ego-noises during
a movement, thus improving the signal-to-noise ratio, SNR, of the perceived signals.
On the other hand, stop-and-listen approaches are sometimes used, so as to process
sounds while the robot is at rest. Both approaches are unsatisfactory, and recent
developments have tried to overcome these limitations.

Canceling the noise originating from the robot can be considered by source sep-
aration techniques. But existing studies mainly rely on microphone arrays, which
makes them inappropriate for the binaural context. Additionally, as motors are gen-
erally placed in the vicinity of the microphones, a diffuse sound field should be used
to model the noise, precluding the direct use of standard state-of-the-art approaches
to source separation.

One of the first solutions to the specific ego-noise-cancellation problem in robotics
was proposed in [54] on the SIG humanoid robot—see Sect. 4.2. It relies on two pairs
of microphones, one of them being dedicated to the perception of the interior of the
robot. With the help of these inner transducers, the method was able to classify
spectral bands as being related either to ego-noise or to the source of interest, but
could not suppress the noise from the perceived signals. Other approaches consist in
predicting the noise to be emitted on the basis of the generated motion. For instance,
Ito et al. [35] did this on a time-frame basis with a neural network. The most promising
solution relies on noise patterns. In this vein, joint noise templates related to specific
movements were stored offline into a large ego-noise database [32, 62], then were
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identified online according to the robot motion to be performed, and subsequently
subtracted from the perceived signals [31].

3.4 Voice-Activity Detection

When considering Human–robot interaction applications, the perceived signals are
mainly composed of speech information, non-informative signals, and various types
of noise. Efficient speech extraction is necessary to decrease the error rate in high-
level auditory analysis. It can be performed by detecting speech segments in the
sensed signals, prior to localizing the corresponding sources of interest and spatially
filtering them out of the noise. Voice-activity detection, VAD, algorithms have often
been used, which generally classify signal snippets as either noise-and-speech or
only-noise. Again, multiple solutions to VAD have been proposed in the literature,
such as energy feature, zero-cross rate [71] or higher-order statistics [61]. However,
very few of them are specifically dedicated to binaural audition and/or suited to
robotics. Energy feature can hardly cope with individual differences and dynamic
volume changes. Zero-cross rate is better in this respect, but is more sensitive to
noise. Statistics show good behavior but their performance decrease in an acoustic
environment which shows significant differences with the one used to learn the
statistics. As a solution suited to robotics, Kim et al. [37] proposed an enhanced
speech detection method that can be used to separate and recognize speech in a noisy
home environment. Nevertheless, the detected utterances should take place in front of
the robot. Another approach is outlined in [20], inspired by wireless sensor network
applications in the context of hearing aids. Therein, a basic energy-based VAD was
combined with a cross-correlation based VAD to detect speech in the two signals.
But again, the speaker should be uttering in front of the system. Besides, a Bayesian
network based integration of audio–visual data for VAD was proposed in [91] as the
first layer of an automatic speech recognition system.

3.5 Speaker and Speech Recognition

In robotics, speaker and speech recognition are probably the key high-level auditory
functions required to perform natural Human–robot interaction. Traditional auto-
matic speech recognition, ASR, algorithms are known to be very sensitive to the
speech signal-acquisition conditions, such as quality of the microphones, distance
to the speaker, environmental noise, and so on. Therefore, considering this prob-
lem at large, the robotics context requires a trade-off between large-vocabulary and
multiple-speaker applications in the well-known framework of the cocktail-party
problem.

Environmental noise is probably the most prominent challenge to be faced by ASR
systems in robotics. This is probably the reason why most recent studies have focused
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on noise removal from the speech signals, that is, speech enhancement. The aim here
is to retrieve ideal acquisition conditions, generally by applying a set of spatial filters
which enable the attenuation of noisy sources or echoes in the perceived signal
in order to use traditional ASR systems. In this topic, the aforementioned missing
features approaches are of particular interest. They are able to cope with additive,
possibly non-stationary noise sources [72, 78] by discarding specific regions in the
speech spectrogram with low SNRs. Likewise, one can mention missing-feature
compensation techniques, which are able to accurately estimate the omitted regions
of these incomplete spectrograms. These approaches were used in [82] in order to
separate two speakers uttering simultaneously from the front of a humanoid robot
endowed with a binaural sensor, on the basis of an independent-component analysis
based source-separation technique. This allows for improving the speech-recognition
rates by 15 % with respect to a state-of-the-art-based hidden Markov model, HMM,
recognition system. Recent developments in the missing-features framework were
concerned with adaptive recognition systems, that is, with MFT–ASR approaches
which allow to change the weight of those spectrogram sections that are considered
damaged [73]. In this domain, Ince et al. [33] exploits an MFT–HMM approach
to cancel ego-noise by applying a time-frequency mask. This makes it possible to
decrease the contribution of unreliable parts of distorted speech in signals extracted
from a microphone array. Such an approach can also be applied in binaural systems.

Compared to speech recognition, speaker recognition has rarely been addressed in
robotics. Like speech recognition, it is usually analyzed for the monaural case under
similar recording conditions. Initially, the subject was already addressed by means
of microphones arrays [44]. For applications to robotics, one can refer to [36], and
to the recent preliminary study [95]. The latter paper shows that in a reverberant and
noisy environment, the success rate of binaural speaker recognition is much higher
than with monaural approaches.

3.6 High-Level Scene Description

Several studies have been conducted in order to endow a user with auditory aware-
ness about a complex auditory scene. A basic, though incomplete, solution consists in
applying 3-D acoustic spatialization techniques to an extracted and labeled source in
such a way that the users sense better where the corresponding message comes from.
Intuitive tools exist in our daily lives to obtain awareness on a visual scene, such as
overviewing, zooming, scrutinizing, (re)playing at various places, browsing, index-
ing, etc. In the same vein, a 3-D auditory scene visualizer according to the mantra
“overview first, zoom and filter—and then detail on demand” was developed on top
of face-tracking and auditory functions [40] and integrated into the HARK robot-
audition toolbox—Sect. 4.2. This system has been improved to get better immersive
feeling. Though a microphone array is assumed, the underlying concepts extend to
binaural techniques.
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4 Platforms and Research Projects

This section reviews some notable auditory robots and/or research projects. Asso-
ciated hard- and software dedicated to robot audition are also mentioned as far as
available.

4.1 Cog

The upper torso humanoid Cog, from MIT, is probably the first platform endowed
with audition2 It was targeted towards the scientific goal of understanding human
cognition and the engineering goal of building a general purpose flexible and dex-
trous robot. Interestingly, the authors pointed out in their manifesto [12] that the
first goal implied the study of four essential aspects of human intelligence that, by
themselves, involve manufacturing a human-like platform. These topics, discarded
in conventional approaches to artificial intelligence, were

• Development Considering the framework by which humans successfully acquire
increasingly more complex skills and competencies

• Social interaction Enabling humans to exploit other humans for assistance, teach-
ing, and knowledge

• Physical embodiment and interaction Humans use the world itself as a tool for
organizing and manipulating knowledge

• Integration Humans maximize the efficacy and accuracy of complementary sen-
sory and motor systems

Cog was endowed with an auditory system, comprising two omni-directional micro-
phones mounted on its head, and crude pinnae around them to facilitate localization.
The sound acquisition and processing units were standard commercial solutions.
Companion development platforms were built, similar in mechanical design to Cog’s
head with identical computational systems. One of them, oriented towards the inves-
tigation of the relationships between vision and audition, complemented the binaural
auditory system with one single color camera mounted at the midline of the head.
Visual information was used to train a neural network for auditory localization [34].

4.2 SIG/SIG2 and HARK

The SIG Project [54] was initiated by Kitano Symbiotic Systems, ERATO and JST
Corp., Tokyo. The pioneering program has then been pursued further in collaboration
of Kyoto University and the Honda Research Institute.3 In an effort to understand

2 http://www.ai.mit.edu/projects/humanoid-robotics-group/cog/
3 http://winnie.kuis.kyoto-u.ac.jp/SIG/

http://www.ai.mit.edu/projects/humanoid-robotics-group/cog/
http://winnie.kuis.kyoto-u.ac.jp/SIG/
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high-level perceptual functions and their multi-modal integration towards intelligent
behavior, an unprecedented focus was put on computational auditory-scene analysis,
CASA, in robotics. The authors promoted the coupling of audition with behaviors
also known as active audition for CASA, so as to dynamically focus on specific
sources for gathering further multimodal information through active motor control
and related means. This approach paved the road to many developments, the first one
being ego-noise cancellation.

SIG is an upper-torso humanoid. It has a plastic cover designed to acoustically
separate its interior from the external world. It is fitted with a pair of CCD cam-
eras for stereo vision and two pairs of microphones—one in the left and right ears
for sound-source localization and the other one inside the cover, mainly for cancel-
ing self-motor noise in motion. A second prototype, named SIG2, was designed to
solve some problems in SIG, such as the loud self-noise originating from motors,
an annoying sound reflection by the body, sound resonance and leakage inside the
cover, and the lack of pinnae. This implied changes in the material and actuators, as
well as the design of human-shaped ears. Many striking achievements were obtained
on SIG/SIG2, such as multiple sound-source localization and tracking from binau-
ral signals while in motion, multiple-speaker tracking by audio–visual integration,
human–robot interaction through recognition of simultaneous speech sources.

Subsequently and importantly, array-processing techniques for source localiza-
tion and source separation were designed and implemented on SIG/SIG2. This gave
rise to the open-source robot-audition toolbox, HARK,4 that gathers a comprehen-
sive set of functions enabling computational auditory-scene analysis with any robot,
any microphone configuration and various hardware. Within the recent revival of
active binaural audition, HARK has been complemented with a package for binau-
ral processing.

4.3 iCub

An open-source platform, comprizing hardware and software, well suited to robot
audition is the iCub humanoid robot. iCub has been developed since 2004 within
the RobotCub project,5 and disseminated into more than twenty laboratories. Sized
as a 3.5 year-old child, it is endowed with many degrees of freedom and human-like
sensory capabilities, including binaural audition. It has also been designed towards
research in embodied cognition, including study of cognition from a developmental
perspective in order to understand natural and artificial cognitive systems.

Two electret microphones are placed on the surface of its 5-DOF head and plastic
reflectors simulate pinnae. The shape of these ears has been kept simple, so as to
ease their modeling and production while preserving the most prominent acoustic
characteristics of the human ear. To better manage the frequencies of the resonances
and notches to be used for vertical localization, a spiral geometry was selected [29].

4 HRI-JP audition for robots with Kyoto University, http://winnie.kuis.kyoto-u.ac.jp/HARK/. In
Ariel’s Song, The Tempest, from Shakespeare, hark is an ancient english word for listen.
5 http://www.icub.org/projects.php

http://winnie.kuis.kyoto-u.ac.jp/HARK/
http://www.icub.org/projects.php
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Small asymmetries between right and left pinnae, namely, a rotation of 18◦, enable
to tell the notches due to the source contents from these due to its spatial location just
by comparing the binaural spectral patterns. A supervised learning phase matches
the (ITD, ILD, notches)-tuples extracted from binaural snippets with sound-source
positions inside audio-motor maps. These maps are then used online to drive the
robot by sound. The maps are seamlessly updated using vision to compensate for
changes in the HRTFs as imposed by ears and/or environment. Experiments show
that the robot can keep the source within sight by sound-based gaze control, with
worst-case errors of pan and tilt below 6◦.

4.4 POP and HUMAVIPS, and Their Associated
Platform/Datasets

A recent milestone in robot-audition research is undoubtedly the perception-on-
purpose, POP, project.6 This European scientific collaboration in 2006–2008 was
oriented towards the understanding and modeling of the interactions between an
agent and its physical environment from the biological and computational points
of view, concentrating on the perceptual modalities of vision and audition. Aside
from a fundamental investigation of cognitive mechanisms of attention on the basis
of measures of brain physiology brought about by functional magnetic-resonance
imaging, fMRI, and electro/magneto-encephalography, EEG/MEG, a sound mathe-
matical framework was targeted, enabling a robot to feature purposeful visio–auditive
perception by stabilizing bottom-up perception through top-down cognition. A spe-
cific focus was put on crossmodal integration of vision and audition along space and
time, the design and development of methods and algorithms to coordinate motor
activities and sensor observations, the design and thorough evaluation of testable
computational models and on the provision of an experimental testbed.

The following achievements can be mentioned. A two-microphone binocular
robotic platform, POPEYE, was built [15]. This highly repeatable system can undergo
high velocities and accelerations along 4-DOFs, namely, pan, tilt, and the two camera-
independent pan angles. POPEYE allows the use of a dummy head for binaural
audition but is not fully bio-mimetic since the binaural axis is higher than the stere-
ovision axis. Novel algorithms for real-time robust localisation of sound sources in
multisource environments were proposed, based on a fusion of interaural time differ-
ence and pitch cues, using source-fragment methods inspired by glimpsing models
of speech perception. Active-listening behaviors were defined that can use planned
movement to aid auditory perception, namely, head rotation in order to maintain a
tracked source in the auditory fovea, judgement of distance by triangulation, and
others. As mentioned in Sect. 3.2, an original approach to detection and localization
of multiple speakers from audio–visual observations was also developed and exper-
imented on POPEYE [23].

6 http://perception.inrialpes.fr/POP/

http://perception.inrialpes.fr/POP/
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The dataset CAVA, which stands for computational audio–visual analysis of
binaural–binocular recordings [3] was made freely available for non-profit applica-
tions. It was recorded from sensors mounted on a person’s head in a large variety of
audio–visual scenarios, such as multiple speakers participating in an informal meet-
ing, static/dynamic speakers, presence of acoustic noise, and occluded or turning
speakers.

The subsequent HUMAVIPS project, humanoids with auditory and visual abili-
ties in populated spaces, runs from 2010 to 2013 and concerns multimodal perception
within principled models of Human–robot interaction and humanoid behavior.7 In
this project coordinated audio–visual, motor and communication abilities are tar-
geted, enabling a robot to explore a populated space, localize people therein, assess
their status and intentions, and then decide to interact with one or two of them by
synthesizing an appropriate behavior and engaging a dialog. Such cocktail-party and
other social skills are being implemented on an open-source-software platform and
experienced on a fully-programmable humanoid robot.

Open-source datasets have also been disseminated in this framework. Two of them
have been recorded with the aforementioned POPEYE system. To investigate audio–
motor contingencies from a computational point of view and to experiment with
new auditory models and techniques for computational auditory-scene analysis, the
CAMIL dataset, computational audio–motor integration through learning, provides
recordings of various motionless sources, like random spectrum sounds, white noise,
speech, music, from a still or moving dummy head equipped with a binaural pair of
microphones.8 Over 100 h of recordings have been elaborated, each of them being
annotated with the ground-truth pan-and-tilt motor angles undergone by the robot.

Likewise, to benchmark Human–robot interaction algorithms, the RAVEL cor-
pora, robots with auditory and visual abilities, provides synchronized binaural audi-
tory and binocular visual recordings by means of a robocentric stable acquisition
device in realistic natural indoor environments.9 It gathers high-quality audio–visual
sequences from two microphone pairs and one camera pair in various kinds of scenar-
ios concerning human-solo- action recognition, identification of gestures addressed
to the robot, and human–human as well as Human–robot interaction. The scenes may
be affected by several kinds of audio and visual interferences and artifacts. To ease the
statement of ground truth, the absolute position and utterances of actors in the scene
are also recorded by external cross-calibrated and synchronized devices, namely, a
commercial 3-D tracking system and four distributed headset microphones.

7 http://humavips.inrialpes.fr/
8 http://perception.inrialpes.fr/~Deleforge/CAMIL_Dataset/index.html
9 http://ravel.humavips.eu

http://humavips.inrialpes.fr/
http://perception.inrialpes.fr/~Deleforge/CAMIL_Dataset/index.html
http://ravel.humavips.eu


Binaural Systems in Robotics 239

4.5 BINAAHR

BINAAHR, binaural active audition for humanoid robots, was established as a
french–japanese collaboration focused on two accepted concepts of active (binaural)
robot audition.10 On the one hand, a low-level auditory function is said to be active
if it combines, and is improved by, the perception and the motor commands of the
sensor. On the other hand, a high-level interaction is active if it is bidirectional and
involves the robot and multiple parties. The project has contributed to the design of
artificial binaural systems, active binaural localization (Sect. 5.2), binaural separa-
tion of more than two sources, ego-noise cancellation, binaural speaker recognition,
audio–visual speech recognition and other significant issues.

A separate line of research in BINAAHR champions robotics, because of its
locomotion and multimodal-sensing capabilities, as a privileged context to investi-
gate psychology-of-perception theories of active human perception, that is, theories
that hypothesize an interweave of human perception and action. In this context,
some innovative developments have been tightly connected with the sensorimotor
contingency theory [65, 66]. These developments enable the analysis of the senso-
rimotor flow of a naive agent, be it endowed with hearing only or with both vision
and audition, in order to characterize the dimension of the rigid group of the space
underlying its input–output relationship, that is, the dimension of its physical space—
see Sect. 5.1. Experimental issues concern unitary testing of low-level functions on
binaural prototypes as well as the integration of functions on a HRP-2 humanoid
robot.

4.6 Further Hardware

Further specific hardware suited to the needs of robot audition has been developed
with the aim of pushing forward the integration of auditory functions on embed-
dable autonomous sensors. Corresponding achievements have mainly been oriented
towards array processing, partly because off-the-shelf multichannel data-acquisition
devices are often unsatisfactory because of limited embeddability, and high cost
due to a too high genericity and other reasons. Although suitable commercial stereo
devices can be used for binaural acquisition, array processing-oriented hardware may
still constitute an inspiration, for example, for computational issues.

The active direction-pass filter (Sect. 3.2, [57]) was integrated in a dedicated recon-
figurable processor and could separate a mixture of sounds in real time with good
accuracy [43]. A more generic low-cost low-consumption sound card was developed
in order to fit the requirements of the ManyEars project, which features an array
based source localization, tracking and separation system [52]. This board, named
8-Sounds-USB, performs an eight-channel synchronous audio capture and embeds
computational power. Likewise, the embedded audition for robotics, EAR, sensor,

10 http://projects.laas.fr/BINAAHR

http://projects.laas.fr/BINAAHR
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based on a fully programmable eight-channel data-acquisition board and a pow-
erful FPGA, has recently been revisited within a system-on-a-programmable-chip
approach [47], namely, a C/C++ compatible soft-processor has been implemented
on the FPGA, together with dedicated hardwired modules such as co-processing
units, memory controllers, communication and data acquisition modules. A release
suited to binaural audition is under development. Several complex and intensive oper-
ations will be hardwired. The device will process data sensed by MEMS microphones
and be compatible with standard audio interfaces.

4.7 Conclusion

While robot audition is a fairly recent field of research, various solutions have been
proposed to cope with the constraints of robotics. In the above, most low- or high-
level functions have been reviewed independently, yet many contributions have been
considering them jointly—see for instance Ref. [23] in Sect. 3.2 for joint source
localization and separation. The same holds for higher-level auditory functions. For
instance, it was shown in [92] that the design of a recognition system should take
into account a trade-off between the recognition rates and the sensitivity to speaker
locations. Last, the order of the successive computation steps involved in a com-
plex auditory task can differ from one author to another. To conclude, no universal
strategy is available at this time and the optimal architecture for a CASA system in
robotics is still a matter of debate. Some related activities were conducted in Europe,
for example, in the context of the research cluster CoTeSys, cognition for technical
systems. For instance, a multi-modal robotics head, Mask-Bot, was built [67] to fea-
ture face animation, speech communication and basic sound localization. A generic
comprehensive model of binaural listening that could also be of high interest for
robotics is proposed in [10], this volume.

5 Active Approaches to Perception: Applications to Binaural
Audition in Robotics

Theoretical approaches to perception are many, and some of them show signifi-
cant divergences. For instance, Marr’s celebrated computational approach to visual
perception [48], which prevailed in the development of artificial intelligence, pro-
poses a viewpoint of passive perception where the representation is predominant and
behavioral aspects are overlooked. Nowadays, it is still a debate whether this concep-
tion should be traded off for another theory, namely, one that hypothesizes percep-
tion and action to be interweaved. The latter viewpoint is usually related to Gibson’s
theory, which puts forward the active and exploratory nature of perception [24].
Such considerations also apply to robotics, which has for long considered percep-
tion as a bottom-up process in the sense that action are results of sensory analysis.
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This historical viewpoint on perception is currently being questioned experimentally,
all the more since the exploratory abilities of robotics platforms can be exploited to
improve analysis and understanding of the environment. In this context, the cur-
rent section gathers two original contributions of the authors with regard to binaural
auditive perception. Both entail an active behavior of the robotic platform but along
distinct approaches.

In a first subsection, an active strategy for auditory-space learning is proposed
together with its application to sound source localization. It relies on a general theoret-
ical approach to perception, grounded in sensorimotor theory. In a second subsection,
a stochastic-filtering strategy for active binaural sound localization is introduced,
where it is shown how the motor commands of a moving binaural sensor can be fused
with the auditive perception to actively localize a still or moving intermittent sound
source in the presence of false measurements.

5.1 Active Hearing for Auditory-Space Learning
and Sound-Source Localization

Action in robotics is usually viewed as a high-level process and is mostly used to
address problems that cannot be solved by passive strategies alone, such as front-
back disambiguation or distance perception. The method proposed here investigates
an alternative paradigm, where the action is envisaged at the same level as perception.
In this framework, action and perception interact so as to build an internal represen-
tation of the auditory space. As a first step, an active hearing process is used during
the learning of an auditory-motor map. Next, this map is used for a-priori passive
sound localization. In what follows the approach is introduced for azimuthal local-
ization by considering a mobile listener endowed with a binaural auditory system
and perceiving a single stationary sound source of random azimuth in a ±90◦ range.

A Sensorimotor Definition of Source Localization

The present method is grounded in the sensorimotor theory [65, 68], claiming that
the brain is initially a naive agent that interacts with the world via an unknown set
of afferent and efferent connexions, with no a-priori knowledge about its own motor
capacities or the space it is immersed in. The agent therefore extracts this knowledge
by analyzing the consequences of its own movements on its sensory perceptions,
building a sensorimotor representation of its embodying space. Generally speaking,
consider that all the environments, motor states and sensations that an agent can
experiment are depicted as the respective manifolds, E , M and S [66].

A sensory state, s ∈ S, is given as a function of the current motor and environment
states, m ∈ M and e ∈ E , through a sensorimotor law, Φ, so that s = Φ(m, e). Here e
models the scene acoustics and spatial and spectral properties of the sound source, m
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models the agent’s body configuration, whereas Φ represents the body-environment
interactions and neural processing that gives rise to the sensation, s. Moreover the
sensory space, S, lies on a low-dimensional manifold whose topology is similar to
the embodying space and, consequently, the learning of spatial perception becomes
the learning of such a manifold. Such a process has been applied to auditory-space
learning using non-linear dimensionality-reduction techniques [4, 22]. Nevertheless
the knowledge of this auditory space is not sufficient for sound localization—an
association of a percept in this space and a spatial location have still to be done.

Classical localization methods express a source location in terms of angle or
range in an Euclidean physical space. As the sensorimotor approach directly links
perception and action in an internal representation of space, a spatial position is
here directly expressed as a motor state and as such does not implies any notion of
space [68]. Given a motor space, M, and an environment state, e ∈ E , the source
localization problem can thus be defined as the estimation of the motor state, m̃, as
follows:

m̃ = argmin
m∈M

|Φ(m, e) − Φ(m0, e0)| , (1)

where |.| denotes a distance metric and Φ(m0, e0) represents a reference sensory state
that has to be approximated. In the case of sound-source localization, Φ(m0, e0)

corresponds to a source localized in front of the listener with the head in the rest
position, which is the most obvious case of azimuthal localization.

Evoked Behavior for Active Hearing

An evoked or reflex behavior is a simple hard-wired behavior allowing a naive agent
to react to a stimulus. Considering active hearing, a simple behavior enabling head-
to-source orientation can be implemented from ILD cues in a simple way as follows.
Once a sound is perceived, the agent orients its head toward the loudest side while the
ILD is non-zero. Once the behavior is completed, that is, when the ILD reaches 0,
the head of the agent has arrived at an orientation facing the sound source. Because
the source azimuth is in a range of ±90◦ only, the agent is not exposed to front-
back ambiguity—although front-back disambiguation has also been addressed in the
literature, for instance, Ref. [9]. This active hearing process allows an a-posteriori
localization, m̃ being given after motion as the difference between the initial and final
motor states. Moreover, the agent’s final configuration with the source in front of the
head corresponds to the reference sensory state, Φ(m0, e0), as introduced in (1). This
reference state, initially unknown, is approximated through successive executions
of the behavior. The orientation behavior has been successfully demonstrated on a
robotic platform and been extended to phonotaxis, that is, allowing for a reactive
approach of the robot towards the source [8].
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Autonomous Online Learning of Sound Localization

The evoked behavior that links the initial sensory state in S to the final motor state
in M, provides the sensorimotor association required for an a-priori passive local-
ization. Figure 2 shows an auditory space representation after the learning of high
dimensional ILD cues from 1000 auditory stimuli. Each point, corresponding to a
different sensory state, is associated with its localization estimation, m̃, computed
after the orientation behavior.

After learning of such an association, it becomes possible to localize new percepts
based on neighborhood relationships. Suppose a new stimulus corresponding to a
sensory state, s ∈ S, perceived by the agent. s is firstly projected in the sensory-
space representation and, if this projection has close neighbors—s1 in Fig. 2—its
corresponding motor state, m̃, is interpolated from the neighborhood, giving a passive
localization estimation. If the projection is outlying in an area with no neighbors —
s2 in Fig. 2—this sensory state is not yet represented and m̃ can not be estimated
passively. In this case the orienting behavior is executed, giving an active estimation
of m̃.

Instead of learning an auditory space representation from a database, an iterative
process can be used by mixing the dimensionality reduction with the evoked behav-
ior. This allows therefore the representation to be learned online, experience after
experience. Thus each new percept which projection is outlying in the representation
is learned (s2 in Fig. 2): its related sensory state is added in an updated representation
and is associated with its related active estimation of m̃. Reference [9] provide more
details on this learning algorithm and the auditory system used. The authors propose
a simulated experiment where a mean localization error of about 1◦ is reached after
an online learning of 200 iterations.
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Parabolic curve obtained before the orienting behavior—each state corresponding to a sound source
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sensory states obtained after the orienting behavior, approximating the reference state, Φ(m0, e0).
New percepts, such as s1 and s2, can be localized on the manifold as well—see text for details
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Discussion

The above method has, to be sure, been illustrated for a very simple case, namely, a
single stationary sound source in the azimuthal plane. Yet, it seems to be basically
suitable for hearing systems in autonomous robotics. In fact, the dimensionality
reduction used for the computation of the auditory-space representation allows for
unsupervised learning of scene non-linearities, such as reverberation or HRTF filter-
ing. Also, this method requires almost no a-priori knowledge of either the agent or
the environment. It mainly depends on the knowledge of the auditory-space repre-
sentation dimension, typically 2-D or 3-D, and on a dimension-reduction technique
robust enough to estimate the non-linear embedding of complex environments in
an efficient hard-wired evoked behavior. Active hearing, binaural processing, rep-
resentation learning and online estimation have the potential to be integrated into
a single model that could be applied to more complex problems, thus opening new
perspectives for sensorimotor approach to binaural robot audition.

5.2 A Stochastic-Filtering Strategy for Active Binaural Sound
Localization

While the above approach aims at estimating the source position from a binaural
sensor with no assumption regarding the environment, this chapter will now be con-
cluded with a strochastic-filtering approach to binaural sound localization from a
moving platform. As to this field, reference is due to cite [14, 46], where tracking
algorithms based on the particle filtering framework are exploited to detect utterer
changes and infer speaker location, respectively. The work presented in this section
shows how binaural perception and motor commands of the sensor can be fused to
localize an intermittent source in the presence of false measurements.

In the context of binaural audition, sound-source localization relies prominently
on time-delay estimation, TDE, that is, on an estimation of the arrival-time differences
of the sound signals at the two acoustic sensors. The topic of TDE has been widely
addressed. In robotics, the most common approach is undoubtedly generalized cross-
correlation, GCC [38], which consists in cross-correlating truncated and filtered
versions of the raw sensed signals and picking the argmax of the resulting function.
However, given a state vector, X , that is, a vector fully characterizing the sensor-
to-source relative position, the time delay comes as a nonlinear and noninvertible
function, h, of X . Without any additional information it is not possible to recover
the complete state vector from just a time-delay estimate. For instance, consider for
simplification, that source and microphones lie on a common plane parallel to the
ground, and let the Cartesian coordinates vector, X = (x, y)T , represent the source
position in a frame, (R, eX , eY ), rigidly linked to the microphone pair, {Rl , Rr },
with Rl R = Rl Rr

2 and eY = R Rl|R Rl | . It can be shown that given a time delay, τ , all
the pairs, (x, y), satisfying h(x, y) = τ , describe a branch of hyperbola, referred in
the literature as cone of confusion. In other words, given a time delay, one cannot
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locate the true sound source on the associated hyperbola branch. However, with the
microphones being mounted on a mobile robot, its motor commands, for instance,
translational and rotational velocities, can be fused with audio perception to infer
sound localization. Similarly, when the source is moving, prior knowledge about its
dynamics can be used. One way to tackle this problem is to use a Bayesian filtering
framework. In this context and in the presence of relative motion, X is now considered
as a discrete hidden-Markov process, characterized by a dynamic equation of the form

X[k+1] = f (X[k], u1[k], u2[k]) + W[k]. (2)

Therein, X[k] is a random vector describing the process X at time step k. u1[k] is a
deterministic vector gathering information about the robot’s motor commands. u2[k]
is a vector composed of the source velocities. u2[k] can be deterministic or random,
depending on whether the source motion is fully described beforehand or not. W[k]
is an additive random noise accounting for uncertainty in the relative motion. At
each time, k, the time delay measurement, hereafter referred as Z[k], is a memoryless
function of the state vector, according to

Z[k] = h(X[k], u1[k], u2[k]) + V[k], (3)

with V[k] being an additive noise representing the TDE error. Given an initial
probability-density function, pdf, of p(x[0]) and a sequence of measurements,
z[1:k] � z[1], . . . , z[k], considered as samples of Z[1:k] � Z[1], . . . , Z[k], the optimal
Bayesian filter consists in the recursive computation of the posterior state probability-
density function, that is, p(x[k]|Z[1:k] = z[1:k]). When f, g are nonlinear functions
and/or W, V are non-gaussian processes, the optimal filter has no closed-form expres-
sion. Approximate solutions are thus needed, such as the extended/unscented Kalman
filter, EKF/UKF, particle filters, PF, or grid-based methods. Whatever the chosen
strategy is, certain issues have to be dealt with, such as

Modeling The state space model must be defined in such a way that the state vector
gathers a minimal set of parameters. For a still source—or a moving source with
known velocities with respect to the world—the state vector can be made up
with, for example, its Cartesian coordinates in the sensor frame. If the source is
moving at unknown speed, an autonomous equation describing the structure of
its motion in the world frame must be introduced, whose initial condition and
parameters complete the vector X to be estimated. For the localization of human
utterers, typically used models are Langevin processes or random walks [13, 86].
However that may be, the mathematical transcription of the prior knowledge of
the source dynamics is of crucial importance.

Consistency and tuning Generally, the statistics of the dynamic and measurement
noise processes are unknown, so they must be hypothesized. Setting a too-high
covariance leads to too pessimistic conclusions, while setting them too low may
result in an overconfident filter. In general, the noise statistics are set in an ad-hoc
manner. However, inconsistency, that is, overconfidence or underconfidence, can
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arise independently of the noise statistics. Indeed, the approximation of the true-
state posterior density function propagated recursively by the filter can become
inaccurate when the nonlinearities are not smooth enough and/or the filtering
technique is not suited to the model and its parameters. For instance, the runs
of basic particle filtering strategies conducted by the authors on simulated and
experimental measurements showed that these estimation strategies are not suited
to active binaural localization.

Initialization When no prior knowledge about the source location is available, one
usually set the initial prior p(x[0]) as a flat prior, that is, a probability distribution
with zero-mean and infinite covariance matrix. However, due to the non-linearities
involved in the considered source localization problem, the propagation of widely
spread distributions often leads to overconfident conclusions. As a solution, the
posterior state pdf can be approximated by a Gaussian mixture, GM, (GM) whose
hypotheses are recursively propagated using a bank of non-interactive filters [7].

Time-delay extraction At each time, k, the measurement, Z[k], is obtained from a
TDE algorithm using audio data collected over a finite time window. Generally,
this time window is of short duration for distinct reasons. First, TDE algorithms
rely on the hypothesis that the two windowed signals can be regarded as sample
sequences of individually and jointly wide-sense stationary, WSS, processes.
Individual stationarity implies that the source signal is itself WSS, while speech,
for instance, cannot be considered as WSS unless the time window is sufficiently
short. Joint stationarity implies that the time delay must be approximately constant
over the time window. This is of crucial importance when source and sensor move.
Classical TDE algorithms do not provide reliable and meaningful estimates if
this hypothesis is not satisfied—unless the time-delay variations are specifically
taken into account and compensated in the algorithm, like in [39]. Finally, in an
embedded application, a cross-correlation cannot have an unreasonable length,
due to finite time and space resources.

Because of the environment noise, the non-stationarity of the source and the short
duration of TDE windows, the TDE statistics may change significantly over time,
namely, if at a considered instant, the SNR and time-bandwidth product, TBP, of the
signals are sufficiently high, then the TDE algorithm outputs an accurate estimate of
the genuine time delay. If not, the estimate might be unreliable, that is, drawn from a
process with large variance or, in the worst case, uncorrelated with the state [87, 88].
Such spurious measurements must be taken into account in order to prevent filter
inconsistency/instability. They can be handled in a hard manner with an external
decision rule that selects, according to some criteria, such as estimated SNR, the
measurements that are to be incorporated into the filter—or in a probabilistic way,
for example, by probabilistic data association.

Taking all these considerations into account, a filtering strategy was proposed
in [69]. It relies on a multiple hypothesis UKF with probabilistic data association
and a source-activity detection, SAD, system based on generalized likelihood-ratio
test, GLRT. The results from an experiment conducted in an acoustically prepared
room are shown in Fig. 3. Each subfigure represents a time snapshot, the left figure
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binaural sensor

loudspeaker ON/OFF

single filter’s 99% confidence region when the source is detected 
ON/OFF 99% confidence region of the GM’s moment-matched
approximation when the source is detected ON/OFF 

/

//

Fig. 3 Localization results from an experiment conducted in an acoustically prepared room. Each
figure represents a time snapshot. Far left initial time. Far right final time. The results show that the
motion of the sensor allowed to disambiguate front and back and to provide information regarding
source distance. For more explanations and details see [69]

corresponding to initial time, and the right figure corresponding to final time. At the
beginning, the filter is initialized with 24 hypotheses so that the union of the 99 %
probability ellipsoids defined from the 24 modes of the initial GM-prior-pdf covers
a 4 m-radius circular region around the sensor. In the second snapshot, a part of the
hypothesis is spread along the source-to-sensor direction, while another part is spread
along the symmetric direction with respect to the (Rl Rr )-axis. This behavior depicts
that so far there is a large uncertainty on the distance to the source and there is a front-
back ambiguity. This originates from the aforementioned time-delay characteristics.
In the third snapshot, the loudspeaker is switched off, and the transition from on to
off has been detected by the filter. In the fourth snapshot, the loudspeaker is emitting
again, and the transition from off to on has been detected correctly. Note that the
state pdf is now very sharp around the true-source location. In other words, thanks
to motion, front and back have been disambiguated and the distance uncertainty has
significantly decreased. The experimental results show that the standard deviation
of the errors at the end of the listener’s motion is about ±2◦ in terms of azimuth
and ±5 cm in terms of range. However, the good performance of the system is
partially due to the favorable experimental conditions, namely, the sensor speeds
were precisely known, and the acoustic environment was particularly clean—that is,
with only little reverberation and noise. Experiments should be performed in a more
realistic environment such as an office, with possibly non-negligible background
noise. This is subject to future work.
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6 Conclusion

This chapter has discussed binaural systems in robotics along several dimensions.
After the statement of key constraints raised by this context, the canonical binaural
functions underlying the analysis of any auditory scene were detailed. Prominent
platforms and research projects were then reviewed. Finally, two recent approaches
to binaural audition developed by the authors were presented. These are termed to
be active because they consider the coupling of binaural sensing and robot motion.

As mentioned before, binaural audition is an attractive paradigm, regarding engi-
neering issues, cross-fertilization between robotics and neurosciences, as well as
Human–robot interaction. Though the field is studied by only very few laborato-
ries as compared to binocular vision, it has now reached a certain level of maturity.
But there remains ample space for methodological and technological contributions,
particularly, to the end of better coping with uncontrolled and dynamic environ-
ments. This could then allow to better understand how to use binaural audition as a
mechanism for acoustic-scene analysis in general.

To conclude, some broader research areas connected to binaural audition have
been mentioned that hopefully bring new researchers to the field. First, the coupling
of bottom-up and top-down processes in active audition and, to a larger extent, to
active perception, deserves attention. As shown above, two distinct viewpoints have
been developed towards purposeful auditory perception. One addresses the definition
of top-down feedback from symbolic levels, while the other approaches—including
those developed by the current authors—have addressed this topic right at the sen-
sorimotor level. In the authors’ opinion, these two lines of research are to be rein-
forced and must join each other in order to define a comprehensive computational
architecture for active analysis of auditory scenes. Some subtopics should finally
be mentioned, such as, the definition of binaural audition based control/estimation
strategies that explicitly include an exploration goal to collect information about the
source location, their interlinking with decision processes, the assimilation of avail-
able data over space and time, the generality of such an approach and its ability to
tackle multimodality, adaptive approaches to binaural cues extraction and exploita-
tion where auditory cues and algorithms are dynamically changed according to the
context, just to name a few. A second fruitful broad research area is the involve-
ment of binaural audition in ubiquitous robotics. The idea here is to outfit rooms
with embedded sensors, such as microphone arrays, cameras and/or RFID antennas.
These areas would be shared by humans and robots interacting with each other, using
binaural audition, vision and maybe, further available modalities. The mobility of
the robots enables the possibility of combining their motor commands with binaural
perception, not only to improve a local binaural function, but also to dynamically
reconfigure the global network constituted by the microphone arrays and the bin-
aural heads—possibly including prior knowledge. Some contributions have already
been developed in this field on the basis of dynamically reconfigurable microphone
arrays [49]. They could constitute a valuable source of inspiration for enhancing
binaural robot audition.
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Binaural Assessment of Multichannel
Reproduction

H. Wierstorf, A. Raake and S. Spors

1 Introduction

Sound reproduction systems have evolved over the years in the direction of including
more and more loudspeakers. The goal is to create a sense of auditory immersion in the
listeners. A first binaural transmission of a concert via telephone was demonstrated
in 1881 [9]. Later followed a proposal by Snow and Steinberg [29], aiming at the
transmission of entire sound fields. The basic idea of these authors was that a sound
field could be captured by an array of microphones and, consequently, be reproduced
by replacing the microphones with loudspeakers that are fed with the signals picked
up by the microphones. The loudspeaker signals then superimpose and, together,
recreate the sound field in a similar manner as described by Huygen’s principle [15].
If the number of independent microphones and loudspeakers is restricted to two each,
the sound field is recreated correctly only in one specific location, the so-called sweet
spot. This recording-and-reproduction technique known as stereophony, is still the
prominent spatial-audio technique. This is due to its technical simplicity, the wide
use of respective audio-mastering chains and the convincing perceptual results. The
latter are mainly due to inherent properties of the human auditory system as have
extensively been investigated in psychoacoustics—for example, [2].

In parallel to the continuing success of stereophony, the old idea as proposed by
Steinberg and Snow has been revisited in recent years. Todays technology allows for
the use of several hundreds of loudspeakers, such enabling the reproduction or syn-
thesis of extended sound fields. These novel techniques are termed sound-field syn-
thesis, which includes methods like higher-order ambisonics, HOA, and wave-field
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synthesis, WFS. In these methods, the sound field is treated as being spatially-sampled
by the loudspeaker array. As these methods target the recreation of a sound field with
frequencies up to 20 kHz, the highest audible frequency, loudspeaker spacings below
1 cm are theoretically required to avoid spatial aliasing, which is still impossible. To
get around this problem, research in the field has progressed towards the exploitation
of psychoacoustics, to the end of synthesizing sound fields with inaudible perceptual
errors as compared to natural hearing.

This chapter presents work that investigated how errors in a given sound field,
as synthesized with a multichannel loudspeaker array employing the WFS method,
influence listeners’ localization of virtual sound sources.

Section 2 presents a discussion of what is needed in order to create a convincing
reproduction of a given auditory scene, including relevant aspects of the sound-source
localization performed by the human auditory system. Then, Sect. 3 provides the
required theoretical background regarding WFS and outlines the binaural re-synthesis
approach as used here for simulating different WFS setups. In Sect. 4, test results
of localization tests with WFS are presented. Finally, in Sect. 5, it is shown how
the results of the localization-test can be predicted by means of a model of binaural
processing, that is, a so-called binaural model.

2 Creating a Convincing Auditory Scene

Anyone who deals with sound reproduction should consider how the reproduced
scene is perceived by a listener. In the context of this chapter, an auditory scene is
considered to consist of different elements, namely, the underlying auditory events
that the listener interactively analyzes in terms of the available auditory information
and which leads to the formation of auditory objects. According to [17], an auditory
event is characterized by its loudness, its pitch, its perceived duration, its timbre,
and spaciousness. Here, spaciousness comprises the perceived location and spatial
extent associated with the auditory event [2]. Obviously, localization is just one aspect
of auditory scenes. In this section, the perception of the entire scene is discussed,
specifically addressing the role that localization plays in it.

Usually, in physical terms, the sound field associated to a reproduced sound scene
deviates from that of the intended scene. Prior to reproduction, the intended scene
is represented in terms of a recorded scene in a specific representation format, for
example, created from a given recording using a specific set of source models, or
modified based on such recordings and models. When such a stored scene represen-
tation is provided as input to a given reproduction method, the result is known as
a virtual sound scene. A sound-reproduction system is required to present acoustic
signals to the listeners’ ears in such a way that the corresponding auditory scene
matches the desired one as closely as possible, that is, the auditory scene as intended
by its creator. The focus of the following considerations will be on system properties
that enable a perceptually authentic or plausible reproduction of a sound scene [3].
Here, authentic means indiscernible from an explicit or implicit reference, in other
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words true to the original. Plausible means that the perceived features of the repro-
duced scenes show plausible correspondence with the listener’s expectations in the
given context, without necessarily being authentic. Perceived features in this context
are nameable and quantifiable features of the auditory scene and its elements, such
as loudness, timbre, localization, and spatial extent.

The totality of features can be considered as the character of the auditory scene—
perceived or expected. The expected character is often referred to as internal ref-
erence. However, for systems such as used for stereo reproduction, the listening
experience itself has led to fixed schemata of perception that are linked with inter-
nal references of their own kind. The quality of a system as perceived by a listener
is considered to be the result of assessing perceived features with regard to the
desired features, that is, the internal reference. With quality being expressed as uni-
dimensional index, systems can be ranked according to their perceived quality, and
quality differences can be measured quantitatively.

No comprehensive overview of sound reproduction technology evaluation is avail-
able from the literature. A basic concept for evaluation is described in [23], which
focuses mainly on the evaluation of multichannel stereophony-based reproduction,
and a auditory-scene-based evaluation paradigm. By evaluating various 5.1 surround
setups, it was found that the overall quality is composed of timbral and spatial fidelity.
The same shows up in first results for typical WFS setups collected in the current
research, namely, the timbral fidelity may be of greater importance for overall quality
than spatial fidelity. However, the research on this topic is still at an early stage [38].

Timbral and spatial fidelity are perceptual constructs of multidimensional nature.
In order to describe their perceptual dimensions that they are composed of, attribute
descriptions have been sought for in different studies, employing verbal description
and attribute ratings [6, 14, 39]. Multidimensional analysis methods such as mul-
tidimensional scaling or the repertory-grid technique followed by attribute scaling
are suitable methods when no a-priory knowledge of the perceptual character of the
auditory events associated to the stimuli is available. A relevant example is reported
in [13], where so-called focused sources in WFS have been assessed. In the current
chapter, a special focus is put on localization of sound sources reproduced with WFS.
In this context, localization is one of the key features associated with spatial fidelity.

2.1 Localization

One basic ability of the human auditory system is the localization of sound. Local-
ization describes the process of assessing the location of auditory events with respect
to the positions and other properties of corresponding sound events. Note that the
sound events giving rise to one auditory event can be manifold, for example, in the
case of classical stereophony the two loudspeakers can create one auditory event at
a position located between the two loudspeakers.

For localization, the auditory system evaluates differences between the two ear
signals that depend on the position of the sound source. The most prominent cues
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for localization are interaural time differences, ITDs, and interaural level difference,
ILDs [2]. In addition, the auditory system estimates the distance and the vertical
position of a sound source by interpreting monaural cues, such as the frequency
spectrum resulting from a known type of source signal that is transmitted to the
eardrums from a distance or from a specific vertical source position, thus yielding
direction-specific filtering due to the shape of the outer ear. However note, that in this
chapter, only displacements in the horizontal plane are be addressed and, hence, only
horizontally-oriented loudspeaker setups are used. As a consequence, vertical source
displacement and distance are not considered in the localization assessment. Conse-
quently, whenever the term localization is used, it refers to angular displacement in
the horizontal plane.

For broad-band content, the localization is dominated by ITDs [36] of the spectral
components below 1 kHz. Moreover, incident wave fronts arriving within a time-
delay of around 1 ms after the first wave front are summed up by the auditory system,
a phenomenon known as summing localization. Delayed wave fronts arriving later,
but no later than approximately 50 ms after the first wave front, have no influence
on localization at large, an effect known as the precedence effect [20]. Considering
the delayed playout of sound by the different loudspeakers of a given multichannel
loudspeaker setup, the precedence effect has implications with regard to the perceived
directions of virtual sources. These are specific for the particular reproduction method
and listening position.

In stereophony, the perceived location of an auditory event is caused by the super-
position of the wave fronts coming from the two loudspeakers. For example, at low
frequencies level differences between the two loudspeakers transform into a corre-
sponding interaural time difference at a central position between the loudspeakers,
the so-called sweet spot. For positions outside of sweet spot, the superposition is
impaired, and the closest loudspeaker dominates localization. This is visualized in
Fig. 1. The arrows in the figure point towards the location of the auditory event that
a listener perceives when placed at the position of the arrow. The gray-shades of the
arrow indicate the deviation from the intended direction, which is, in this example,
given by the virtual source to be located in the middle between the loudspeakers,
that is, at the x, y-point (0, 0)m. The sweet spot is indicated by the position of the
listener placed at (0, 2)m. Calculation of the directions of the individual arrows was
performed with the binaural model as described in Sect. 5. Figure 1 is provided for
illustrative purposes only. For an overview of methods to predict the sweet spot in
stereophony see, for example, [22].

In sound-field synthesis, the physical or authentic reproduction of a given sound
field is intended. However, due to the limited number of loudspeakers and respective
spatial aliasing, this is only possible up to a specific frequency for a given listen-
ing position. Due to this limitation, the localization of a virtual source reproduced
with WFS depends on the position of the listener, and on the loudspeaker array
configuration. For determining the best possible system layout in practise, it will be
helpful to provide a model that predicts localization in the synthesis area of WFS,
like the presentation as depicted in Fig. 1 for two-channel stereophony. In the further
course of this chapter the development of such a tool will be described. Thereby an
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Fig. 1 Sketch of the
sweet spot phenomenon in
stereophony. The arrows point
into the direction of where the
auditory event of a listener
appears, if he/she sits at the
position of the arrow. Increas-
ing gray-shades of the arrows
indicate the deviation from the
intended direction which, in
this case, is right in the middle
between the two loudspeakers

existing binaural model will be modified to produce the output needed here, namely,
for an application to localization performance analysis. Yet, to be able to specify
such a model, the theory of WFS needs to be shortly revisited.

3 Wave-Field Synthesis

Wave-field synthesis, WFS, is a sound-field synthesis method that targets physi-
cally accurate synthesis of sound fields over an extended listening or synthesis area,
respectively. WFS was formulated in the eighties for linear loudspeaker arrays [1].
In the following, a formulation of WFS is presented that is embedded into the more
general framework of sound-field synthesis. Furthermore, restrictions regarding a
2-dimensional only loudspeaker setup are discussed, as well as the usage of loud-
speakers with a given fixed inter-loudspeaker spacing. At the end of this section,
WFS theory is discussed by means of an example.

3.1 Physical Fundamentals

The sound pressure, P(x,ω), at the position, x, synthesized by a weighted distribution
of monopole sources located on the surface, ∂V, of an open area, V ◦ R

3, is given
as the single-layer potential

P(x,ω) =
∮

∂V
G(x|x0,ω)D(x0,ω) dA(x0), (1)

where G(x|x0,ω) denotes the sound field of a monopole source located at x0 ≈ ∂V .
D(x0,ω) is its weight, usually referred to as the driving signal. The geometry of the
problem is illustrated in Fig. 2.
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virtual
source

Fig. 2 Illustration of the geometry used to discuss the physical bases of sound-field synthesis and
single-layer potential (1)

In sound-field synthesis, the monopole sources are referred to as secondary
sources. Under free-field conditions, their sound field, G(x|x0,ω), is given by the
three-dimensional Green’s function [37]. The task is to find the appropriate driving
signals, D(x0,ω), for the synthesis of a virtual source, P(x,ω) = S(x,ω), within
V . It has been shown that the integral Eq. (1) can be solved under certain reasonable
conditions [10].

3.2 Solution of the Single-Layer Potential for WFS

The single-layer potential (1) satisfies the homogeneous Helmholtz equation both
in the interior and exterior regions, V and V̄ := R

3 \ (V ≤ ∂V ). If D(x0,ω) is
continuous, its pressure value, P(x,ω), is continuous when approaching the surface,
∂V , from the inside and outside. Due to the presence of the secondary sources at
the surface, ∂V , the gradient of P(x,ω) is discontinuous when approaching the
surface. As a consequence, ∂V can be interpreted as the boundary of a scattering
object with Dirichlet boundary conditions, hence as an object with low acoustic
impedance. Considering this equivalent scattering problem, the driving signal is
given as follows [11].

D(x0,ω) = ∂n P(x0,ω) + ∂−n P(x0,ω), (2)

where ∂n := ⊗∇, n∈ is the directional gradient in direction n. Acoustic scattering
problems can be solved analytically for simple geometries of the surface ∂V , such
as spheres or planes.

The solution for an infinite planar boundary, ∂V , is of special interest. For this spe-
cialized geometry and Dirichlet boundary conditions, the driving function is given as
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D(x0,ω) = 2∂nS(x0,ω), (3)

since the scattered pressure is the geometrically mirrored interior pressure given by
the virtual-source model, P(x,ω) = S(x,ω), for x ≈ V . The integral equation result-
ing from introducing (3) into (1) for a planar boundary, ∂V , is known as Rayleigh’s
first integral equation.

An approximation of the solution for planar boundaries can be found by applying
the Kirchoff approximation [7]. Here, it is assumed that a bent surface can be approx-
imated by a set of small planar surfaces for which (3) holds, locally. In general, this
will be the case if the wave length is much smaller than the size of a planar surface
patch, hence, for high frequencies. In addition, the only part of the surface that is
active is the one which is illuminated from the incident field of the virtual source.
This also implies that only convex surfaces can be used to avoid contributions from
outside of the listening area, V , to re-enter. The outlined principle can be formulated
by introducing a window function w(x0) into (3), namely,

P(x,ω) ≈
∮

∂V
G(x|x0,ω) 2w(x0)∂n S(x0,ω)︸ ︷︷ ︸

D(x0,ω)

dA(x0), (4)

where w(x0) describes a window function for the selection of the active secondary
sources, according to the criterion given above. Equation (4) constitutes an approxi-
mation of the Rayleigh integral that forms the basis for WFS-type sound reproduction
methods.

3.3 Virtual-Source Models

In WFS, sound fields can be described by using source models to calculate the driving
function. The source model is given as S(x,ω), and with (3), the driving function can
be calculated. Two common source models are point sources and plane waves. For
example, point sources can be used to represent the sound field of a human speaker,
whereas plane waves could represent room reflections.

The source model for a point source located at xs is given as

S(x,ω) = Ŝ(ω)
e−i ωc |x−xs|

|x − xs| , (5)

where Ŝ is the temporal spectrum of the source signal ŝ(t).
The source model for a plane wave with a propagation direction of ns is given as

S(x,ω) = Ŝ(ω) e−i ωc nsx. (6)
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3.4 2.5-Dimensional Reproduction

Loudspeaker arrays are often arranged within a two-dimensional space, for example
as a linear or circular array. From a theoretical point of view, the characteristics of
the secondary sources in such setups should conform to the two-dimensional free-
field Green’s function. Its sound field can be interpreted as the field produced by a
line source. Loudspeakers exhibiting the properties of acoustic line sources are not
practical. Real loudspeakers have properties similar to a point source. In this case
three-dimensional free-field Green’s functions are used as secondary sources for the
reproduction in a plane, which results in a dimensionality mismatch. Therefore, such
methods are often termed 2.5-dimensional synthesis techniques. It is well known
from WFS, that 2.5-dimensional reproduction techniques suffer from artifacts [30].
Amplitude deviations are most prominent.

3.5 Loudspeakers as Secondary Sources

Theoretically, when an infinitely-long continuous secondary source distribution is
used, no errors other than an amplitude mismatch due to 2.5-dimensional synthesis
are expected in the sound field.

However, such a continuous distribution cannot be implemented in practice,
because a finite number of loudspeakers has to be used. This results in a spatial
sampling and spatial truncation of the secondary source distribution [28, 30]. In
principle, both can be described in terms of diffraction theory—see for example [4].
Unfortunately, as a consequence of the size of loudspeaker arrays and the large range
of wave lengths in sound as compared to light, most of the assumptions made to solve
diffraction problems in optics are not valid in acoustics. To present some of the basic
properties for truncated and sampled secondary source distributions, simulations of
the sound field are made and interpreted in terms of basic diffraction theory, where
possible.

Spatial Sampling

The spatial sampling, which is equivalent to the diffraction by a grating, only has
consequences for frequencies greater than the aliasing frequency

fal ∗ c

2Δx0
, (7)

where Δx0 describes the spacing between the secondary sources [27]. In general, the
aliasing frequency is dependent on the listening position x—compare [28, Eq. 5.17].

For the sound field of a virtual source, the spatial aliasing adds additional wave
fronts to the signal. This can be explained as follows. Every single loudspeaker is
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sending a signal according to (3). If no spatial aliasing occurs, the signals cancel
each other out in the listening area, with the exception of the intended wave front.
In the case of spatial aliasing and for frequencies above the aliasing frequency, the
cancellation does not occur, and several additional wave fronts reach a given listener
position, following the intended wave front. The additional wave fronts also add
energy to the signal.

Truncation

The spatial truncation of the loudspeaker array leads to further restrictions. Obviously,
the listening area becomes smaller when a smaller array is used.

Another problem is that a smaller loudspeaker array introduces diffraction in the
sound field. The loudspeaker array can be seen as a single slit that causes a diffraction
of the sound field propagating through it. This can be described in a way equivalent
to the phenomenon of edge waves as shown by Sommerfeld and Rubinowicz—
see [4] for a summary. The edge waves are two additional spherical waves origi-
nating from the edges of the array, which can be softened by applying a tapering
window [31].

3.6 Example

For the simulations shown in Fig. 3, a circular loudspeaker array is assumed with
a diameter of 3 m, consisting of 56 loudspeakers, which results in a loudspeaker
spacing of Δx0 = 0.17 m. Note that a circular array constitutes a 2.5-dimensional
scenario.

Figure 3 illustrates the reproduced wave field for two different frequencies of
the virtual plane wave, and its spatio-temporal impulse response. For 1 kHz, the
reproduced wave field shows no obvious artifacts. However, some inaccuracies can be
observed close to the secondary sources. This is due to the approximations applied for
the derivation of the driving function in WFS. For plane waves with the frequencies
of 2 and 5 kHz sampling artifacts are visible, and rather evenly distributed over the
listening area. The amplitude decay in the synthesized plane wave due to the 2.5-
dimensional approach is clearly visible in Fig. 3a.

The impulse response depicted in Fig. 3d shows that WFS reconstructs the first
wave front well, with prominent artifacts following behind. The artifacts consist of
additional wave fronts coming from the single loudspeakers. These additional wave
fronts would vanish for a loudspeaker array with a loudspeaker spacing smaller than
λmin/2, where λmin is the smallest wavelength to be reproduced.
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(a)

(c)

(b)

(d)

Fig. 3 Snapshot of sound fields synthesized by 2.5-dimensional WFS using a circular array,
R = 1.50 m, with 56 loudspeakers. The virtual source constitutes a plane wave with an incidence
angle of −90◦ and the frequency fpw. The gray shades denote the acoustic pressure, the active
loudspeakers are filled. a–c Snapshot of P(x,ω). d Snapshots of broad-band p(x, t)

4 Localization Measurement with Regard to Wave-Field
Synthesis

4.1 Binaural Synthesis

As discussed in the last section, spatial aliasing depends on the listening position
and the loudspeaker array. In a listening test targeting localization assessment, it is
not sufficient anymore to test only one position and one loudspeaker setup. Instead,
different listener positions have to be investigated, and different types of loudspeaker
setups must be applied, switching configurations more or less instantaneously and
without disturbing the listener.



Binaural Assessment of Multichannel Reproduction 265

In practice, a real-life physical setup can be approximated by applying dynamic
binaural synthesis to simulate the ear signals for the listeners for all needed conditions.
Dynamic binaural synthesis simulates a loudspeaker by convolving the head-related
transfer functions, HRTFs with an intended audio signal, which is played back to a
listener via headphones. Simultaneously, the orientation of the head of the listener
is tracked, and the HRTFs are exchanged according to the head orientation of the
listener. With this dynamic handling included, results from the literature show that
the localization performance for a virtual source is equal to the case of a real loud-
speaker, provided that individual HRTFs are used. For non-individual HRTFs, the
performance can be slightly impaired, and an individual correction of the ITD may
be necessary [19]. For the case of a real loudspeaker, the localization performance of
listeners in the horizontal plane lies around 1◦–2◦. Note that this number only holds
for a source located in front of the listener. For sources to the sides of the listener,
localization performance can get as bad as 30◦, due to the fact that the ITD changes
only little for positions to the side of the head. An accuracy of around 1◦ sets some
requirements on the experimental setup. One has to ensure that the employed setup
introduces a measurement error that is smaller than the error expected in terms of
human localization performance. This is especially difficult for the acquisition of
the perceived direction based on the indications/judgments collected from the test
listener. A review of different techniques and their advantages and drawbacks can be
found in [21, 25].

In general, the WFS simulation based on binaural synthesis can be imple-
mented as follows. For each listener position and individual loudspeaker of the WFS
system, a dedicated set of HRTFs is used. The ear signals are constructed from the
loudspeaker-driving signals, which are convolved with the respective head-related
impulse responses, HRIRs, and then superimposed. For the tests and respective setups
considered in this chapter, the SoundScape Renderer has been used as the frame-
work for implementation [12], as well as the Sound-Field Synthesis Toolbox [34].
To simulate loudspeaker setups that deviate from the set of HRIRs, which are typi-
cally measured with a loudspeaker at a given radial distance from the dummy head,
for different angular loudspeaker positions, the HRIRs are extrapolated using delay
and attenuation, according to the propagation delay and respective distance-related
attenuation.

4.2 Verification of Pointing Method and Dynamic
Binaural Synthesis

For the localization indication, it has been decided to use a method where the listeners
have to turn their heads to the direction of the auditory event during sound presen-
tation. This has the advantage that the listener is directly facing the virtual source,
a region where the localization performance is at its best. If the listeners point their
heads in the direction of the auditory event, an estimation error of the sources at the
side will occur, due to an interaction with the motor system. In other words, listeners
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Fig. 4 Measurement of HRTFs with a dummy head in an anechoic chamber [35]

do not turn their heads sufficiently far as to indicate the real location. This can be
overcome by adding a visual pointer that indicates to the listeners where their noses
are pointing at [18].

Before investigating the localization in WFS, a pre-study was conducted [35],
where the performance of the pointing method was verified, and it was studied
whether the dynamic binaural synthesis introduces errors to the localization of
a source. For the binaural synthesis, non-individual HRTFs were used that had
been measured with a KEMAR dummy head in an anechoic chamber, as shown
in Fig. 4 [32].

For the pre-study, the listeners were seated in an acoustically damped listening
room, 1.5 m in front of a loudspeaker array, with an acoustically transparent curtain
in between. Eleven of the 19 loudspeakers of the array were used as real sources
and also simulated via the dynamic binaural synthesis. The listeners were seated
on a heavy chair and were wearing open headphones, AKG K601, both for the
loudspeaker and the headphone presentation. A laser pointer and the head tracker
sensor, Polhemus Fastrack, were mounted onto the headphones. A visual mark on
the curtain was used to calibrate the head-tracker setup at the beginning of each
test run. For each trial, the listener was presented with a Gaussian white-noise train,
consisting of periods of 700 ms noise and 300 ms silence. The experimenter instructed
the listener to look towards the perceived source and to hit a key when the intended
direction was correctly indicated by the laser. The conditions in terms of virtual-
source directions and loudspeaker-versus-headphone presentation were randomized.
The setup is shown in Fig. 5.

Eleven listeners participated in the experiment, and every condition was repeated
five times. Figure 6 shows the deviation between the direction of the auditory event
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visual mark laser

Fig. 5 Sketch of the experimental setup (left) and picture of a listener during the experiment
(right), [35]. Only the filled loudspeakers were used in the first experiment. The light in the room
was dimmed during all experiments

Fig. 6 Deviation Δφ between the position of the auditory event and the position of the sound
source. The mean across all listeners and the 95 % confidence intervals are indicated. Top row Real
loudspeakers. Bottom row Binaural synthesis

and the sound event for every single loudspeaker. It can be seen that there are only
slight differences between the binaural simulation using headphones and the localiza-
tion of the noise coming from the real loudspeakers. The mean absolute deviation,
Δφ, of the direction of the auditory event compared to the position of the sound
event together with its confidence interval is 2.4◦ ± 0.3◦ for the real loudspeakers
and 2.0◦ ± 0.4◦ for the binaural synthesis. In both cases, the mean deviation gets
higher for sources more than 30◦ to the side of the listener. For these conditions,
the position of the auditory event is underestimated and pulled towards the center.
To avoid this kind of error in the examination of localization in WFS, only virtual-
source positions within the range of −30◦ to 30◦ are be considered in the following.
The only differences between simulation and the loudspeakers can be found in the
localization blur for individual listeners. The mean standard deviation for a given
position is 2.2◦ ± 0.2◦ for the loudspeakers and 3.8◦ ± 0.3◦ for the binaural synthe-
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Fig. 7 Average directions that listeners were looking at from the 16 different listener positions
evaluated, [33]. Results for the three different loudspeaker spacings. The gray point above the
loudspeaker array indicates the intended virtual-source position

sis conditions. This is most likely due to higher ease of localization when listening
to the real loudspeaker—an interesting issue discussed further in [35].

4.3 Localization Results for Wave-Field Synthesis

The same setup as presented in Sect. 4.2 and shown in Fig. 5 was employed. This time,
a virtual source located at xs = (0, 1)m was presented via the loudspeaker array,
now driven by WFS. Following the descriptions above, the loudspeaker array was
simulated using dynamic binaural synthesis. It had a length of 2.85 m, and consisted
of 3, 8, or 15 loudspeakers, translating to a loudspeaker spacing of 1.43, 0.41, and
0.20 m. Like in the pre-test, the listeners were seated in the heavy chair in front of the
curtain. Now, however, different listener positions of the listeners were introduced via
binaural synthesis. The positions were at x = −1.75 m up to 0 m in steps of 0.25 m,
with y = −2 m, and y = −1.5 m, leading to a total of 16 positions—compare Fig. 7.

Figure 7 summarizes the results. A line goes from every position of the listener
to the direction where the corresponding auditory event was perceived, taking the
average over all listeners. The gray point indicates the position of the virtual point
source. As can be seen from this figure, the loudspeaker array with 15 loudspeakers
leads to high localization accuracy. The intended position of the auditory event is
reached with a deviation of only 1.8◦. For the arrays with eight and three loudspeakers,
the deviations are 2.7◦ and 6.6◦, respectively. For the array with three loudspeakers,
a systematic deviation of the perceived direction towards the loudspeaker at (0, 0)m
can be observed for all positions except one. For all three array geometries, the mean
error is slightly smaller for the listener positions with y = 2 m than for that with
y = 1.5 m. The results for every single position are presented in Fig. 10.

In WFS, the aliasing frequency determines the cut-off frequency up to which the
sound field is synthesized correctly. For localization, mainly the frequency content
below 1 kHz is important. The aliasing frequencies for the three loudspeaker arrays
are 120, 418, 903 Hz, starting from the array with a spacing of 1.43 m between
the loudspeakers. Further, the aliasing frequency is position-dependent and can be
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higher for certain positions. According to the results for the 15-loudspeaker array,
a loudspeaker spacing of around 20 cm seems to be sufficient to yield unimpaired
localization for the entire range of listener positions. For a central listening position, a
similar result was obtained in other experiments [28, 30, 38]. It was further discovered
with the measuring method used here that even for spacings twice as large, the
localization is only impaired by 1◦. For larger spacings, the behavior tends more
towards a stereophonic setup, that is, showing a sweet spot and localization towards
the loudspeaker nearest to the sweet spot.

In the next section, a binaural model will be extended to enable predictions of the
localization test results found for WFS. It is shown how the model can be used to
predict localization maps for the entire listening area, going beyond the set of tested
conditions.

5 Predicting Localization in Wave-Field Synthesis

In this section, a binaural model will be extended to enable predictions of the local-
ization test results found for WFS. It is shown how the model can be used to pre-
dict localization maps for the entire listening area, going beyond the set of tested
conditions.

An important difference of WFS in comparison to stereophony is the feature of
uniform localization across an extended listening area. This is in clear contrast to
the confined sweet spot of stereophonic systems. The sweet spot phenomenon was
illustrated in Fig. 1. It would be of advantage to be able to predict such localization
maps for further loudspeaker setups and reproduction methods as well, for example,
for multichannel loudspeaker arrays and WFS. To this end the binaural model after
Dietz [8] was modified and extended to be able to predict the direction of the auditory
events for any pair of given ear signals. Specifically, the same ear signals were used
as input signals to the binaural model, as have been synthesized for the listening tests
by means of binaural synthesis—see Sect. 4.

In the following, the predictions from the binaural model are compared to the
actual localization data as obtained in the listening tests. Given that the model pro-
vides localization predictions that agree with the listening-test data, it can be used
to create localization maps for setups other than those that have been investigated
perceptually.

5.1 Modelling the Direction of the Auditory Event

Binaural auditory models as outlined in [16], this volume, typically process the
signals present at the right and left ear canal. For example, the model developed
by Dietz [8] provides as its output a set of interaural arrival-time-difference values,
ITDs, namely, one for every auditory filter. For the prediction of the direction of
an auditory event, the ITD values have to be transformed into azimuth values that
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Fig. 8 Lookup table for ITD values and corresponding sound-event directions, shown for the first
twelve auditory filters. Data derived with the binaural model of Dietz [8]

Fig. 9 Deviation of the predicted direction of auditory events from the direction of corresponding
sound events

describe the direction of the auditory events. This can be accomplished by means of
a lookup table of ITD values and corresponding angles [8].

In the study presented here, such a table was created by convolving a 1-s-long
white-noise signal with head-related impulse responses from the same database as
has been used for the listening tests presented in Sect. 4. The database has a resolution
of 1◦. The convolved signals were fitted to match the input format of the binaural
model and stored. The result for the first twelve auditory filters are shown in Fig. 8.

For the prediction of the perceived direction belonging to a given stimulus, the
binaural model first calculates the ITD values. Then, for each of the twelve auditory
channels, the ITD value is transformed into an angle by use of the lookup table—
Fig. 8. If the absolute ITD value in an auditory channel turns out to be larger than the
natural limit of 1 ms, this channel is disregarded in the following step. Afterwards,
the median value across all angles is taken as the predicted direction. If the angle
in an auditory filter differs by more than 30◦ from the median, it is considered an
outlier and skipped, and the median is re-calculated.



Binaural Assessment of Multichannel Reproduction 271

In order to test whether the predictions depend on the actual method used for
determining the look-up table, the head-related impulse responses from the same
HRTF database were convolved with another white-noise signal and again fitted to
match the model input format. Figure 9 shows the deviation between the predicted
direction of the auditory event and the direction of the sound sources for this case.
Only for angles of more than ±80◦, the deviation exceeds a value of 1.2◦. The
deviation is is due to the decreasing slope of the ITD for large angles—compare
Fig. 8. This effect makes it more difficult to achieve proper fit of the ITDs and their
corresponding azimuths.

5.2 Verification of Prediction

The modified binaural model can now be used to predict the direction of an auditory
event. In this part of the study, the model prediction performance were analyzed in
view of the localization results of Sect. 4. Due to limitations of the binaural model
used here—for example, the precedence effect is not included—it might well be that
it fails to properly predict localization in more complex sound fields, such as those
synthesized with WFS. To check on this, the predictions that the model renders for
the setups that have been investigated by the listening tests—compare Sect. 4—have
been analyzed. See Fig. 10 regarding the results obtained in the localization test and
the corresponding model predictions. Open symbols denote a listener distance of 2 m
to the loudspeaker array, filled symbols a distance of 1.5 m. The model predictions
are presented as dashed lines for the 2 m case and solid lines for 1.5 m case.

For most of the configurations, the model predictions are in agreement with the
directions perceived by the listeners. Only for positions far to the side some devi-
ations of up to 7◦ are visible. The overall prediction error of the model is of 1.3◦,
ranging from 1.0◦ for the array with 15 loudspeakers to 2.0◦ for the array with three
loudspeakers. These results indicate that the model is able to predict the perceived
direction of a virtual source in WFS almost independently from the listener position
and the array geometry.

5.3 Localization Maps

With the method as presented in the previous sections, it is now possible to create
a localization map similar to the one shown in Fig. 1. To this end, the ear signals
for each intended listener position and loudspeaker array are simulated via binaural
synthesis. Then these signals are fed into the binaural model, which delivers the
predicted direction for the respective auditory event. In the following, the procedure
is illustrated with two different loudspeaker setups. The first one is the same setup as
used for the WFS localization test—compare Sect. 4—however, additional listener
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Fig. 10 Means and 95 % confidence intervals of localization errors in WFS dependent on the
listening position and the loudspeaker spacing. Open symbols Listener positions at y = 2 m. Closed
symbols Listener positions at y = 1.5 m. The lines denote the model predictions. Solid line y =
1.5 m. Dashed line y = 2 m

positions. The second one is a circular loudspeaker array that is installed in the
authors’ laboratory.

The following virtual sources were chosen: (i) a point source located either at the
center of the array or one meter behind it, (ii) a plane wave traveling into the listening
area vertically to the loudspeaker array. Both cases were be evaluated separately,
because of the expected differences in localization, that is, a point source stays at its
position when if the listener moves around in the listening area, but a plane wave
moves with the listener.

The resulting localization maps can be presented in the form of arrows pointing
into the direction of the auditory event as in Fig. 1. Alternatively, a color can be
assigned to each position, denoting the deviation of the perceived direction from the
intended one. The latter format renders a better resolution.

Linear Loudspeaker Array

Figure 11 shows localization maps for the three different linear loudspeaker setups as
also used in the listening tests of Sect. 4. The first array consists of three loudspeakers
with a spacing of 1.43 m between them, the second of eight loudspeakers with a
spacing of 0.41 m, and the third of 15 loudspeakers with a spacing of 0.20 m. The
localization maps presented at the top of the figure show a sampling of the listening
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(a)

(b)

Fig. 11 Localization maps for a linear loudspeaker array driven by WFS for (a) a virtual point
source, (b) a plane wave. The arrows point into the direction of where the auditory event of a listener
appears, if he/she sits at the position of the arrow. The gray-shades indicate the deviation from the
intended direction

area of 21 × 21 points. The arrows indicate the predicted direction in which the
auditory event is predicted to appear as seen from the respective listening position.
The localization maps presented at the bottom of the figure show a sampling of the
listening area of 135×135 points. The gray-shades of the points indicate the absolute
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deviation between the predicted direction of the auditory event and the prospective
direction of the virtual sound event. Absolute deviation values are clipped at 40◦.

In Fig. 11a, the sound event corresponds to a point source located at (0, 1)m.
The same source configuration was used for the listening experiment in Sect. 4. The
predicted results fit very well with the results from the experiment, as already shown
in Sect. 5. For a spacing of 0.20 m, a large region with no deviations can be seen
across the listening area. Only towards the edges of the loudspeaker array are large
deviations between intended and predicted directions visible. For loudspeaker arrays
with fewer loudspeakers, the deviations of the direction are spread across the listening
area, but are worse in the close to the loudspeakers. This is obviously a general trend
for all arrays. The larger the distance of the listener to the array in y-direction, the
smaller is the intended direction from the predicted perceived one.

In Fig. 11b, the sound event is a plane wave impinging parallel to the y-direction
onto the listener. The pattern of results is similar to the one for the point source, but
the deviations are larger for the case of only three loudspeakers. This is mainly due
to the fact that the auditory event is bound towards the single loudspeaker which,
in the case of a plane wave, leads to larger deviations in the whole listening area.
For the loudspeaker array with 15 loudspeakers, the deviation-free region is slightly
smaller as for the point source. Deviations due to the edges of the array are more
visible.

Circular Loudspeaker Array

In addition to the linear loudspeaker arrays used in the listening experiment, local-
ization maps were derived for circular arrays with a geometry similar to the one
available in the authors’ laboratory at the TU Berlin. Three configurations were con-
sidered, consisting of 14, 28, or 56 loudspeakers. These numbers correspond to an
inter-loudspeaker spacing of 0.67, 0.34, and 0.17 m, respectively. All three configu-
rations have a diameter of 3 m. Again, a point source located 1 m behind the array,
and a plane wave traveling parallel to the y-direction were used as virtual sources.

The results are shown in Fig. 12. They are very similar to the case of a linear
loudspeaker array. For the plane wave, the deviations increase with increasing listener
distance to the loudspeaker array, as was also observed for the linear array, but to a
smaller degree.

For listener positions in the near-field of the loudspeakers, the predicted direction
of the auditory event deviates in most cases toward the direction of the corresponding
loudspeaker. This seems to be a plausible result, but it should be mentioned that the
model used in the current study is not optimally prepared for the near-field case. Par-
ticularly, a HRTF dataset with a distance of 3 m between source and dummy head has
been used. It is well known from literature that for distances under 1 m, the interaural
level differences, ILDs, vary with distance [5, 32]. Hence, the model predictions
could probably be enhanced for the small-distance cases by using appropriate HRTF
datasets.
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(a)

(b)

Fig. 12 Localization maps for a circular loudspeaker array driven by WFS for (a) a virtual point
source, (b) a plane wave. The arrows point into the direction of where the auditory event of a listener
appears, if he/she sits at the position of the arrow. The gray-shades indicate the deviation from the
intended direction
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6 Conclusion

In sound-field synthesis such as wave-field synthesis, WFS, it is of great interest
to evaluate perceptual dimensions such as localization and/or coloration not only
at one listener position but also for an extended listening area. As concerns local-
ization, this chapter has provided relevant results along these lines by employing
binaural synthesis. This method was applied to generate the ear signals at each lis-
tener position for headphone presentation. This approach allows further to feed these
ear signals into an auditory model which then predicts the localization at all sim-
ulated listening positions. To achieve this, the binaural model by Dietz has been
extended by a stage that transforms the interaural time differences provided by the
model into azimuths corresponding to the sound-source directions. By combining
these predicted angular positions with the binaural simulations, localization maps
for different loudspeaker setups and WFS configurations were predicted. With an
accompanying listening test, the model results for linear loudspeaker arrays were
verified. The results showed that the localization in WFS is not distorted as long
as the inter-loudspeaker spacing is below 0.2 m. For larger spacings, small devia-
tions between the intended and perceived source locations occur. In practice, one
has to specify the localization accuracy that is needed for the intended application
of a given WFS system. The predicted localization maps are a valuable aid when
planning the task-required loudspeaker setup. However, for practical applications of
WFS, it is not only the localization accuracy which is important. WFS may also be
affected by the localization blur, for example, indicated by the standard deviation
of the localization. In order to investigate the localization blur via binaural synthe-
sis, one has to account for the localization blur as already contributed by binaural
synthesis [35]. Further, beside these spatial-fidelity features, coloration or timbral
fidelity is of high relevance, as reported by Rumsey [24], who found by comparison
of different stereophonic 5.1 surround setups that the overall quality is composed of
timbral and spatial fidelity, whereby, according to Rumsey, timbral fidelity explained
approximately 70 % of the variance the overall quality ratings while spatial fidelity
explained only 30 %. Hence, to provide further components of a model of integral
WFS quality, ongoing work by the authors addresses the prediction of coloration
resulting from different WFS system and listener configurations.

Materials

The algorithm of the binaural model is included in the AMToolbox described in [26],
this volume. The function for the prediction of the direction of the auditory event
is estimate_azimuth. In addition, all other software tools and data are also
available as open source items. The Sound Field Synthesis Toolbox [34], which
was used to generate the binaural simulation for WFS, can be downloaded from
https://dev.qu.tu-berlin.de/projects/sfs-toolbox/files. The version used in this chapter
is 0.2.1. The HRTF data set [32] is part of a larger set available for down-

https://dev.qu.tu-berlin.de/projects/sfs-toolbox/files
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load from https://dev.qu.tu-berlin.de/projects/measurements/wiki/2010-11-kemar-
anechoic. The set that has been used here is the one with a distance of 3 m. The
SoundScape Renderer [12] that was employed as the convolution engine for the
dynamic binaural synthesis is available as open source as well. It can be downloaded
from https://dev.qu.tu-berlin.de/projects/ssr/files.
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Optimization of Binaural Algorithms for
Maximum Predicted Speech Intelligibility

A. Schlesinger and Chr. Luther

1 The Speech-in-Noise Problem and Solutions

Binaural processing is a central auditory process that takes a vital role in enriched
and complex communication tasks. For instance, the normal hearing of a young
person binaurally unmasks speech-in-noise, that is, improves the signal-to-noise
ratio, SNR, by about 10 dB when a continuous noise source with the long-term
spectrum of speech rotates from frontal position, where the target speech is located,
to the side. However, elderly people suffering from presbycusis—and that is the
majority of hearing-impaired people—experience only a benefit of 2–3 dB in the same
binaural comparison [8]. In addition, if the continuous noise source is substituted by a
competing voice, young listeners with healthy hearing generally gain another 3–4 dB
advantage for lateral noise positions, and even show an advantage of 7 dB when the
competing voice source collapses with the target voice in the frontal direction. On
the contrary, elderly people suffering from presbycusis are not able to benefit from
glimpsing into spectro-temporal regions in which the target signal prevails over the
interference signal. This deficit is predominantly caused by the elevated hearing
threshold and reduced temporal acuity [8, 12]. In total, peripheral and concomitant
central deficits of old people with presbycusis amount to an SNR difference of 5–
15 dB with respect to young listeners with healthy hearing [8]. The severity of the
problem is even more striking if one considers the well-known fact that 1 dB of
SNR change corresponds to 15–20 % of absolute speech-intelligibility change at
the threshold of understanding mono-syllable meaningless words by 50 %, which is
taken as the speech-reception threshold, SRT, in noise. For a full compensation of the
individual hearing loss in noise, the SRT difference between the hearing impaired
and normal hearing has to be offset.
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The enhancement of speech intelligibility is a difficult problem. After many
decades of pioneering research it can be summarized that, primarily, algorithms that
exploit the spatial diversity by a spatial sampling provide a solution to the problem—
see, for instance, [14]. These algorithms are known as multichannel filters. Their
unifying objective is to enhance the target speech either by a direct enhancement of
the target signal or, implicitly, by a suppression of the noise. Popular multichannel
filters are the well-known beamformers. Until now the beamforming filters pose the
most robust and practically efficient solution to the speech-in-noise problem. There
are different variants of beamforming filters. A powerful variant is the minimum-
variance distortionless response, MVDR, beamformer that allows for a high and
frequency-independent improvement of the SNR. The generalized side-lobe can-
celer, GSC, framework, which is an adaptive method to calculate the optimal filters
instantaneously, represents a further advancement of beamformers. The method is
powerful in coherent noise conditions, but interference suppression in more complex
conditions is generally reduced to the gain that is provided by the underlying fixed
processing scheme [13]. Recent implementations extend the GSC processing over
two ears or bilaterally head-worn arrays—for example, [14].

Another class of multi-channel filters aims to decompose the input into indepen-
dent signals. This class is known as blind source separation, BSS, approach [14, 44].
If the underlying—in realistic environments generally highly underdetermined—
problem can be solved, these filters have shown to be very effective.

The third well-known class of multichannel filters is the multi-channel Wiener
filter, which draws upon the statistical description of the signal mixture and the mean-
square-error criterion. An efficient version of this filter is based on the auditory
principles of directional sound perception, hence, the computational mimicry of
auditory scene analysis, ASA. Directional sound perception is strongly driven by the
binaural interaction process as well as the exploitation of the head shadow effect. The
ability for unraveling a speech mixture by imitating these functions algorithmically
has been successfully demonstrated.

Binaural interaction is an auditory process that can be thought of as the neural
execution of cross-correlating the signals of the left and right ear. The most popu-
lar model that explains many phenomena of the binaural interaction process is the
cross-correlation-based coincidence detector for sound localization by Jeffress [18].
The application of the cross-correlation in order to assess time or equivalently phase
differences between the ears, known as interaural time differences and interaural
phase differences, ITD and IPD, respectively, is therefore fundamental to most bin-
aural ASA processors. An alternative technique—and widely viewed as a physiolog-
ical more plausible approach—to mimic the binaural interaction process represents
the equalization-cancellation model of Durlach [9]. Its implementation is, however,
relatively difficult and the advantage over the cross-correlation model in the speech
enhancement task has not yet been fully shown—see, for example, [23]. The bin-
aural advantage derives a further benefit—in a non-additive manner—from the head
shadow effect [6]. The advantage is given by the fact that the ear away from, that
is, contralateral to the interferer has a higher SNR than the ipsilateral ear. The effect
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is quantified by the interaural level differences, ILD, that different sources evoke
relative to the orientation of the head. Both, IPD and ILD can be readily derived
from the interaural transfer function, which holds for almost every sound direction
a unique identifier in free-field acoustics.1 Definitely, it is the application of the ILD
that gives binaural processors of source localization and noise suppression an advan-
tage over multi-sensor arrays, which generally do not offer significant location-based
amplitude differences among the transducers.

After fundamental endeavors of binaural ASA-based speech enhancement show-
ing promise—see, for example. the pioneering works of [11, 21]—the field recently
gained a new impulse with the introduction of statistical models that simulate parts
of the auditory pattern-driven processing of binaural cues [15, 29, 41].

The overview of the above-mentioned research lines allows for a second cate-
gorization of the speech-enhancement algorithms into approaches that have shown
to be suited for the suppression of diffuse noise fields, whereby fixed beamforming
filters are generally unmatched to this task, and into approaches that are better suited
to the suppression of coherent-noise interference, such as, for example, BSS- and
ASA-methods. The combination of these classes of algorithms has been pursued in
several works—see, for example, [14, 32]—and was formalized in the fundamental
account of Simmer et al. [37] with the factorization of the minimum mean-square
error, MMSE, solution into an MVDR-beamformer and a single-channel Wiener
post-filter . The motivation of this chapter originates from the same intent, by com-
bining bilaterally applied beamforming front-ends with binaural ASA post-filters for
the purpose of a higher overall speech intelligibility gain in noise.

Pivotal to these experiments as well as to the studies on binaural core algorithms
and classification models are the statistics of directional parameters in noise. So far,
binaural algorithms of speech enhancement are often applied without a thorough
understanding of the signal power dispersion of multiple sources in different feature
spaces and the manner in which binaural parameters change in noise. The following
section works toward this understanding by considering the statistics of binaural
parameters of the fine-structure and the envelope of a speech source in noise. Given
this statistical insight, the aim is to answer why binaural source segregation succeeds
in some circumstances and fails in others.

1 For a particular direction of sound incidence, the interaural transfer function is defined as the
quotient of the corresponding head-related transfer functions at each ear. There is also a running
interaural amplitude-modulation transfer function for a particular sound direction, which is equiv-
alent to the quotient of the corresponding amplitude-modulation transfer functions of each ear.
While the former is rooted in binaural differences of the fine-structure of the waveform, the latter is
caused by interaural differences of the envelope. Both types of transfer functions are approximately
independent of each other.
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2 Binaural Statistics

When two signals are added, their waveform probability-density functions, PDF,
undergo a convolution. As a consequence of additive noise or reverberation, a sim-
ilar observation is made for interaural parameters, when the signals of an auditory
scene lack disjointness in the time-frequency domain.2 Hence, an undesirable impli-
cation for ASA-based source grouping is given by the manner in which the binaural
parameters of the target signal are subjected to the nature and strength of the inter-
ference. Whereas the binaural detection of the first wave-front can be well exploited
for stable localization purposes, a continuous source segregation has to deal with
these noise-induced directional source-label alterations in a scene-dependent and
pattern-based fashion.

Recent studies quantified the influence of additive noise on binaural parameters at
the human head [29], a head mannequin, and at the output of different head-mounted
beamforming front-ends [35]. In both studies the binaural parameters were calculated
across auditory filters and per short frames of 16 ms length. In the following, the main
findings are summarized.

• The free-field statistics of binaural parameters closely reflect the possible exploita-
tion of binaural cues in the auditory scene analysis. The fine-structure IPD para-
meter is an unequivocal location feature in the lower frequency regime, which
is upper-bounded by the spatial Nyquist limit. The fine-structure as well as the
envelope-based ILD parameters are each a directional parameter throughout the
entire spectrum in an-echoic conditions, although, at low frequencies the level
differences are small. The IPD of the envelope represents a meaningful location
feature throughout the entire spectrum in an-echoic conditions too. However, at low
modulation frequencies of the envelope—approximately modulation frequencies
below 100 Hz—the robust computation of the interaural differences is numerically
hampered.

• Binaural parameters strongly fluctuate in frequency regions in which the noise
level is close to the signal level or higher. The binaural parameters are not equally
affected by a signal degradation though. The fine-structure IPD and the envelope
ILD proved to be the most reliable location features in noise. The envelope IPD
has shown to be the most sensitive feature to additive noise. As regards the first two
moments, the ILD mean shifts to the median plane when the SNR decreases. At the
same time, the standard deviation increases significantly. A similar observation can
be made with the fine-structure IPD. However, even though the standard deviation
builds up considerably at lower SNRs, its mean is more resilient to interference.

• The standard deviation of binaural parameters for lateral sources is generally higher
than for sources in the front and the back of the head. Hence, a dependence of the
statistics of interaural parameters on direction has been demonstrated.

2 Disjointness between two signals in the time-frequency domain, for instance, the signal δ j (d, m)

and the signal δ j ◦ (d, m) can be expressed as δ j (d, m)δ j ◦ (d, m) ≈ 0, ≤ j ◦ ⊗= j , where d and m
denote the frequency and time index, respectively.
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• The signal and the noise type are less important to the statistics than the SNR in
the analyzed frequency band.

• If beamformers are applied as a front-end, the SNR at the ear-level, that is, after
the beamformer, determines the statistics of the binaural parameters, which are—
except for a different mean as a function of sound incidence—quantitatively on
par with the statistics of binaural parameters at the output of a head mannequin.

• Directional hearing aids alter the front-back ambiguity of natural binaural cues.
This ambiguity is, in three dimensions, well-known as the cone-of-confusion arti-
fact for narrow-band sounds. Furthermore, the directional hearing aids demon-
strated a positive effect on the IPD of the carrier, especially at low frequencies
due to the increased distance between the receivers. The ILD of the carrier and
the envelope, on the other hand, revealed to be compressed by the directional
processing of the front-end.

The list above considers binaural statistics in additive noise, even though a real-world
speech-in-noise problem generally consists of additive and convolutional distortions.
Therefore, in the following, a statistical analysis of binaural parameters of the fine-
structure in reverberation is conducted.

The setup was as follows. Clean female speech was separately convolved with
head-related transfer functions, HRTFs, and binaural room impulse responses,
BRIR, for different directions of sound incidence. The recording of the BRIRs took
place in a laboratory with variable acoustics in the Bochum institute. The rever-
beration time in one setting was 0.4 and 0.9 s in the other one, both averaged over
1/3 octave-bands. The critical distances were, respectively, 1.15 and 0.75 m. Using
a swept sine technique, the transfer functions were measured at steps of 5 or 30 ∇
in the horizontal plane, for the HRTFs and the BRIRs, respectively, with 0 ∇ aligned
with the median plane and a counterclockwise sense of orientation. The source was
at a distance of 2 m from the head mannequin, a Head Acoustics type HMS II.3.3

For calculating interaural parameters on a short-time basis, the method of Nix and
Hohmann was adopted [29]. It comprises a short-time Fourier transform, STFT,
framework and a subsequent averaging of the power spectral densities, PSD, over
bands of the auditory bandwidths, before calculating IPD and ILD. In the present
work, the binaural analysis stage of the binaural fine-structure algorithm of Sect. 4—
including a subsequent averaging of the PSDs over bands of the critical bandwidth
[2]—was applied.4

The results of a statistical analysis of the binaural fine-structure parameters under
the influence of reverberation are given in Fig. 1. As can be easily seen, for both the
IPD and the ILD the degradation of directional distinctness grows with the length of
the reverberation time. Mean and standard deviation of both parameters are equally
affected over a wide frequency range.

3 The same recording chain as well as the same source-receiver distance were applied during the
HRTF measurements in the anechoic chamber of the Bochum institute.
4 Frame length and step size had a length of 16 and 8 ms, respectively. This way they corresponded
to the settings in [29, 35].
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Fig. 1 Mean (—) and standard deviation (- - -) of the conditional PDFs P (ILD | azimuth) and
P (IPD | azimuth), derived from the fine-structure IPD and ILD at different critical bands and in
three degrees of reverberation. Center frequencies and reverberation times are given in the titles.
The index m◦ denotes the maximum range of the mean as a function of source azimuth. σ◦ specifies
the standard deviation of the mean across all angles

In view of the intended speech enhancement, the binaural statistics of the
fine-structure and the envelope in diffuse additive-noise conditions as well as the
fine-structure in convolutional noise conditions yield discouraging results. The sta-
tistical insight thereby explains why speech processors that have only access to a
subset of binaural parameters degrade in diffuse-noise conditions much more than
the human hearing does. The challenge for these speech processors remains in the
optimal activation of binaural parameters in a pattern-based fashion as was proposed
by Harding et al. [15]. It will be applied in the following section. The model hearing
process, on the contrary, combines many more cues in demanding circumstances and
can, for example, discount equivocal cues of binaural disparity in favor of timbre
and modulation. Future ASA-based systems might advance in the source segrega-
tion problem through a combination of multiple cue-based classification strategies
as well as a weighted scene-dependent activation of these.

3 Classical Binaural ASA Algorithms Revisited

Various designs of binaural ASA algorithms for speech enhancement exist. The bin-
aural speech processors can be categorized into three basic groups that use different
interaural parameters in the noise-suppression task. Figure 2 depicts those algorithms,
which are explained in the following.

Most binaural speech processors originate from the algorithm of Gaik and
Lindemann [11], which will, in the following, be named carrier-level-phase, CLP,
algorithm. This speech processor accomplishes a bilateral frequency decomposition
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Fig. 2 Block diagrams of the model-based binaural-speech enhancement processors considered
in this section. CLP refers to the processor of Gaik and Lindemann [11], CC to the algorithm
of Allen et al. [1], and ELT to that of Kollmeier and Koch [21]. As the binaural algorithms are
symmetric around their binaural stages, only one side is drawn. The barbells indicate a Fourier
transformation, or its inverse. Ψϕ, ΨL , Ψt and Ψγ denote, IPD, ILD and ITD, respectively, and the
magnitude-squared-coherence at zero lag. M’s symbolize transform-domain amplitude-weighting
masks

and then calculates the IPDs and ILDs from the fine-structure in each frequency band,
in order to employ these parameters subsequently as a directional source feature in
an amplitude weighted noise-suppression process. For this purpose, the binaural
parameters of the input are compared to the reference parameters of a previously
defined listening direction. Depending on the deviation from the target direction, a
gain between one, that is, target present, and close to zero, that is, target absent, is
established. The comparison with the reference is time-variant and executed per fre-
quency band. When thinking of the gain function as a function of time and frequency,
one generally speaks of a filter mask—see M’s in Fig. 2. A second class of binaural
ASA algorithms adopts the concept of the multi-channel spatial coherence algorithm
of Allen et al. [1], in the following named carrier-coherence, CC, algorithm.

Based on a primitive-grouping scheme, this algorithm exploits the binaural wave-
form coherence of the fine-structure in bands as a means to suppress diffuse sound.
Accordingly, the weighting gain is proportional to the coherence. A third well-known
binaural speech processor filters the signal in a conjoint carrier-and-modulation-
frequency domain—generally known as amplitude-modulation spectrum—and was
developed by Kollmeier and Koch [21]. The noise suppression method of this algo-
rithm is based on ITDs and ILDs of the waveform envelope. These are analyzed in
the range of the fundamental frequency of speech. The algorithm is in the following
called envelope-level-time, ELT, algorithm. Above speech processors offer a binau-



286 A. Schlesinger and Chr. Luther

ral output that, when applied in hearing aids, was shown to add to the audiological
benefit [14, 28].

In consideration of recent advancements in the field of binaural speech
enhancement, the present study undertook an update and a revision of these three
binaural speech processors and, subsequently, downstreamed them to a set of bin-
aural front-ends. These front-ends are an artificial head, the ITA head of the RWTH
Aachen, a behind-the-ear, BTE, hearing aid, GN ReSound type Canta 470-D with and
without directional processing, and the hearing glasses, HG, of Varibel Innovations
BV in two directivity modes.

Throughout the following study, each algorithm was kept conform with the
respective initial conceptual design. As regards the implementation, the algorithms
are based on a direct FFT/IFFT analysis/synthesis method. Consequently, noise-
suppression is applied in the STFT-domain representation of the signal mixture.
This offers a high degree of disjointness of speech signals, despite their broadband
character. The sampling frequency of each algorithm was set to 16 kHz. Based on an
empirical study of separability of a source mixture in the binaural modulation domain
of algorithm ELT, the frame length of the—first—STFT was determined. It resulted
in a Hanning-weighted segmentation of frames of 256 bins, that is, 16 ms length,
and a subsequent zero padding with 256 bins. The adjustment allows for an analysis
of modulation frequencies up to 500 Hz in the amplitude-modulation spectrum. The
frame shift of the modulation filter stage of algorithm ELT was set to 128 bins, that
is, 8 ms length. For good comparability, the STFT settings of algorithm CC and CLP
were chosen correspondingly.

In earlier implementations, the lookup tables of binaural parameters—in Fig. 2
referred to as reference—often consist of heuristically defined limits that had been
found in idealized acoustic situations. As an improvement, Harding et al. introduced
the Bayesian classifier for estimating soft-gains in binaural filtering [15]. This method
was adopted here for the calculation of histogram-based weighting functions in the
CLP and ELT algorithms. In contrast, the CC algorithm was based on the standard
primitive-grouping scheme, using the non-directional magnitude-squared-coherence
at zero lag as a noise classifier.

Subsequent to the basic preparation of binaural ASA algorithms, the central ques-
tion of this section amounts to the benefit as provided by a particular ASA speech
processor with a certain binaural front-end in a specific environment. This implies
extensive testing and poses the question in which way speech intelligibility can
efficiently be assessed. Furthermore, a constant assessment is required throughout
the design of binaural speech processors and the finer optimization of algorithmic
parameters such as, for example, the balanced application of directional parameters
in the source-separation process. For this purpose, several intelligibility measures for
the assessment of binaural and non-linearly processed speech were designed and sub-
jectively evaluated [35]. Based on these and other studies—compare, for instance,
with [24]—the I3 measure of Kates and Arehart was selected [20]. Furthermore,
the I3 was extended with a better-ear-decision stage, operating per frame of 1.6 s
length and per critical band, with a frame shift of 800 ms—the definition is given in
[2]—to account for the dominant binaural effect, namely, the head shadow. Using



Optimization of Binaural Algorithms 287

this instrument, any perceptual evaluation of the ASA algorithms is relinquished in
this chapter in favor of a broad instrumental analysis. The distortion associated with
varying gain-functions was shown to be very similar to center clipping [35].5 In a
listening test of center-clipped speech material, the I3 showed a correlation of more
than 90 % with perception [36].

Another challenge is constituted by the optimization of binaural ASA algorithms.
Each algorithm possesses a set of algorithmic parameters that need to be tuned to
a particular scene and a particular front-end, similar to the facilitation and the cue
trading observed in the model hearing process. In this section, a genetic algorithm
is applied for this complex optimization task. The presentation of the respective
algorithmic details is beyond the scope of the synoptic nature of this section. A
detailed report on the algorithmic details, their optimization and the assessment is
given in [35].

After now having defined the basics of the three binaural algorithms, the review
continues in the following way. In the next section, the probabilistic binaural pattern-
driven source separation approach is presented. Subsequently, the results of the
genetic optimization are summarized. Finally, the binaural speech processors are
applied and assessed at the output of several front-ends and in different environments.

3.1 Pattern-Driven Source Separation

This section covers the establishment of pattern-driven weighting functions as are
used in the speech processors ELT and CLP for the attenuation of noise. A learning-
based pattern-driven decision process in the domain of interaural parameters can be
built with a Bayesian classification method. In the vanguard of connecting a classifier
with a binaural speech processor is, among others, the work of Roman et al., who
derived a maximum a-posteriori, MAP, classifier from joint ILD-ITD features, that is,
bivariate statistics, to estimate a binary mask for noise suppression [33]. The approach
was further developed by Harding et al. on the basis of soft-gains for de-noising an
automatic speech recognition system [15]. While these works employ histogram-
based lookup tables, other researchers estimate the distribution parameters before
calculating the filter gains—see, for instance, [26]. In the following, it is solely
focussed on histogram-based lookup tables. Later in this chapter, this method is
compared with the parametric statistical-filtering approach.

To calculate the noise-suppression mask from the posterior estimation, the short-
time binaural parameters are considered to be the output of a stochastic process
with Ψd,m being a time-variant feature of a binaural parameter—or a set of binau-
ral parameters—at every frequency index, d, and with realizations in, for exam-
ple, the range of ±π for the IPD. The underlying stochastic process needs to
be estimated in order to generate the required prior distributions, specifically,

5 The I3 has originally been developed to predict the effects of additive noise, peak clipping and
center clipping on speech intelligibility [20].
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the distributions of a binaural parameter—or set—of sound from all directions,6

Pd(Ψd,m) = ∑
φ Pd(Ψd,m |φ)Pd(φ), and the distributions of the joint probability

when only the target is present, Pd(Ψd,m |φt)Pd(φt). Here, φ is the source azimuth.
φt ∈ T denotes a set of target directions of the direct sound and room reflections.
Consequently, the posterior estimate of the target with a binaural feature or set of
these, being given at each time-frequency bin, is found via

Pd(φt|Ψd,m) = Pd(Ψd,m |φt)Pd(φt)∑
φ Pd(Ψd,m |φ)Pd(φ)

. (1)

Harding et al. have shown that this equation can be evaluated by the quotient of two
histograms as follows,

Pd(φt|Ψd,m) ≈
{

H t
d (Ψd,m )

H a
d (Ψd,m )

, if H a
d (Ψd,m) > ζ

0, otherwise
, (2)

where H t
d and H a

d are the histograms of the labeled target signal and the histograms
of the speech-plus-noise mixture, respectively [15]. ζ is a threshold to prevent faulty
estimations from insufficient statistical data and numerical noise. Consequently,
after the division of these distributions, the filter gain can be read from a look-up
table by using Ψd,m .

In comparison to binaural speech processors using primitive grouping schemes,
the approach taken here constitutes a leap in terms of simplicity and efficiency by
applying the statistics of binaural parameters through supervised learning. For the
training of the classifier, that is, the collection of the histograms of (2), Harding et
al. proposed the ideal binary mask, Mb, as a means to label the data [15]. This pre-
processing is adopted in the present section, and reproduced in detail in the final part
of this chapter.

3.2 Optimization of Binaural Speech Processors

The development of speech-enhancement processors faces an increasing algorithmic
complexity that makes the optimization challenging. In fact, a deterministic search
for an optimum performance is often not possible, as an exhaustive enumeration of
a multidimensional search space demands—even for relatively small problems—an
impractical computational effort. At the expense of accuracy, stochastic search algo-
rithms reduce the calculation effort. In general, this trade-off tremendously lessens
the time of convergence and yields sufficiently good solutions.

The present work employed a genetic algorithm, GA, for the optimization of the
three algorithms of this section. To that end, the Genetic Algorithms for Optimization

6 Throughout this chapter, the target source and the interferers were arranged in the horizontal plane.
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Toolbox of Houck et al. [16] was applied with the default settings and the better-
ear-I3 measure served as the cost-function. In order to obtain an indication of the
optimization complexity, the reproducibility of GA solutions was tested by running
several GA optimizations for each setup. Additionally, the GA-optimized parameter
sets were applied in changing acoustic environments, which yielded an indication of
the robustness and generalizability of a certain solution.

It is not within the scope of the current chapter to reproduce the results of the
genetic optimization in detail. A full report on these optimization results can be
found in [35]. At large, the GA optimization of algorithmic parameter sets produces
practical and psychoacoustically grounded solutions. While the efficiency, in other
words, fast convergence to optimal solutions, of the GA procedure is a consequence
of the survival of the fittest strategy, the regularity of the solutions is a product
of the interplay of ASA algorithms in the improvement and prediction of speech
intelligibility.

Moreover, the application of an optimization scheme to the holistic framework
of ASA-based improvement and ASA-based assessment of speech intelligibility
provides solution strategies that may underly the ranking of low-level cues in the
model hearing process. By way of example, for front-end and scene combinations in
which the carrier ILD is significantly included in the directional weighting process,
the ILD never gained more than half of the algorithmic weight in the entire filtering
process. By trend, these results correspond to recent psychoacoustic tests regarding
the trading of binaural cues in noise [31].

3.3 Assessment of Parameter-Optimized ASA Algorithms

This section presents the assessment of the parameter-optimized binaural speech
processors at the output of different front-ends under varying acoustical conditions.

Preparation

In order to employ pattern-driven weighting functions, posterior lookup-tables were
generated for the speech processors CLP and ELT at different front-ends. The sto-
chastic processes were approximated with time series of training speech material
that comprised a length of two minutes and speech of both genders—composed of
concatenated and RMS-equalized utterances. The sentence material was taken from
the TNO-SRT database [40]. Male speakers made up 2/3 of the material. This pro-
portion was equally applied for target and masker sources. The training mixtures
comprised twelve different spatial configurations. While the target was fixed at 0 ∇ in
all mixtures, the interfering speaker resided in each histogram binning process at one
of the angles of −90, −50, −30, −20, −10, −5, 5, 10, 20, 30, 50 or 90 ∇. As regards
the canteen setup, that—among other scenes—is assessed in the following section,
the interfering speakers were each added to a random time section of the canteen
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recording at 0 dB SNR. After generating H t
d and H a

d for each spatial arrangement,
the twelve histograms of each set were summed up.

Although it is an artificial concept, the SNR is determined at the ear-level, includ-
ing the RMS average between the ears. The rationale is given by the strong corre-
spondence between the statistics of binaural parameters and the SNR at the ear-level.
Even though this excludes the directionality of the beamforming front-ends, it allows
for a better comparability with omni-directional receivers and among the three bin-
aural speech processors. Genuine applications using the approach proposed here,
should reflect the directional level dependence of the binaural front-end in the a-
priori information.

As regards the parameter optimization of the binaural speech processors, several
GA optimization runs at 0 dB SNR were performed using the respective a-posteriori
weighting functions and speech-in-noise tokens of 15 s length, with a male/female
proportion of 2/3. In order to incorporate the stochastic nature of the GA solution in
the subsequent assessment, an arbitrary GA-optimized parameter set out of several
GA-optimized sets was chosen.

The speech material used to predict the speech-intelligibility enhancement con-
sisted of 45 s of concatenated sentences, for both the target and coherent noise signals,
each with a male/female proportion of 2/3. All sentences were RMS equalized and
pauses, defined as the RMS level of −50 dB in frames of 10 ms relative to the overall
RMS level, were excluded by applying a voice-activity detection, VAD, method.

Assessment Results

The performance of the speech processors in a canteen environment at different
mixing SNRs is presented in the following. The respective front-end/post-processor
parameter sets of the GA optimization were held constant during the assessment in
an SNR range between −10 and 10 dB with increments of 5 dB. Figure 3 presents
the results.

Around 0 dB, the differential improvement of speech intelligibility is in the range
of 5 to 15 % at the output of algorithm CC and CLP. No improvement is gained with
algorithm ELT, which is essentially switched off by an increased compression value
of the weighting function—an algorithmic parameter tuned in the GA optimization.
Comparing the upper and lower plots in Fig. 3, no marked difference is found between
the output of the artificial head and the hearing glasses in the low-directivity mode.7

None of the post-processors generates a decrease of speech intelligibility, as assessed
with the better-ear-I3 measure. This is an important result. If it was possible to classify
a scene correctly and, consequently, choose appropriate parameter sets and lookup
tables, binaural speech processors may run in a wide range of SNR conditions without
detrimental effects on speech intelligibility.

7 The hearing-aid program low of the hearing glasses provides a benefit of 4.4 dB as assessed with
the directivity-index method of the ANSI S3.35-2005 standard [4]. In the mode high the hearing
aid offers an improvement of the directivity index of 7.2 dB.
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Fig. 3 Assessment of the binaural speech processors in a canteen environment at varying mixing
SNRs and at the output of two front-ends with the better-ear-I3. The target speaker resides at 0 ∇.
a ITA head. b Hearing glasses in the low-directivity mode

While the previous scene was highly diffuse, the following experiment deals with
speech-intelligibility improvement in coherent-interference conditions.8 In a prelim-
inary analysis, algorithm CC was found to be only applicable for the suppression of
incoherent noise. This is obvious, considering that the binaural waveform coherence
at zero lag, that is, the weighting function of algorithm CC, is a poor indicator for
distinguishing between frontal and lateral sources [35]. Therefore, algorithm CC is
not included in the following analysis.

In the first part of the experiment, the CLP processor was applied at the output of
different front-ends for the attenuation of two interferers, a first one, N1, at 90 ∇ and
a second one, N2, at varying azimuths between −180 ∇ and 180 ∇ with increments of
5 ∇. The mixing SNRs were adjusted between −10 and 10 dB at increments of 5 dB.
The results were interpolated and are given in the contour plots of Fig. 4.

To a first approximation, the benefit of the CLP post-processor is primarily deter-
mined by the ear-level SNR. The optimal working point lies at an SNR range of
approximately −5 to −10 dB. The highest intelligibility gains are achieved if the
interferers collapse at a lateral position of 90 ∇, such that both interferers share one
direction in the binaural domain. Furthermore, mainly low self noise of the hear-
ing aid supports the efficient application of the post-processor. If this requirement
is violated, the benefit reduces considerably. This effect is seen for the BTE in the
directional gradient processing mode, that generally possesses a significant internal
noise level.

8 The term coherent-interference condition was used here to describe an interfering sound source
under an-echoic conditions.
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Fig. 4 Prediction of speech intelligibility before and after applying the CLP processor at the output
of several front-ends in the presence of two coherent interferers—using the better-ear-I3. The target
speaker is at 0 ∇ in all conditions. The bottom row gives the segmental SNR, equal to the speech-
distortion ratio defined in [20]—with the here proposed better-ear computation

In the second part of this simulation experiment, the ELT processor is assessed
throughout different coherent interference conditions at the output of the hearing
glasses in the low directivitiy mode and the ITA head. Figure 5 depicts the corre-
sponding results—see the subscripts for the spatial arrangements. The comparison
with the results of algorithm CLP shows a lower gain of speech intelligibility. If there
is only one interferer to be suppressed—the results are presented on the right-hand
side in Fig. 5—the disjointness of the sources in the signal domains of algorithm ELT
is increased and speech intelligibility recovers substantially.

Discussion

The assessment delivered the important result that binaural ASA speech processors
are approximately independent of the directionality of the front-end. Albeit only
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Fig. 5 Differential speech-intelligibility improvement, assessed with the better-ear-I3, of processor
ELT for two front-ends with one and two coherent interferers—see bottom labels. The target speaker
is fixed at 0 ∇

being grounded in the applied instrumental measure, this confirms the expectation
that the SNR gain of a post-processor adds to the SNR improvement of a directional
front-end [37]. A high internal noise level, however, was shown to detract from the
power of binaural noise suppression.

Comparison of the three binaural speech processors demonstrated the dominance
of the CLP algorithm in diffuse- and in coherent-noise conditions. Mainly due to
the noise sensitivity of binaural phase differences of the envelope, as shown in [35],
algorithm ELT is only beneficial in highly coherent noise conditions. This outcome
is in contrast to the results of Kollmeier and Koch [21]. Their implementation of
algorithm ELT was audiologically assessed and gained a small improvement of an
estimated differential SNR of 2 dB in diffuse-noise conditions at negative mixing
SNRs. However, Kollmeier and Koch did not attain an improvement of speech intel-
ligibility in coherent interference conditions. In consideration of the results given
here, the contrary outcome might be the result of the second weighting function of
algorithm ELT. This weighting function is based on the standard deviation of binaural
parameters, and attenuates the filter gain at time-frequency bins where binaural para-
meters deviate from the predefined listening direction. It was not possible to verify
this result with the current implementation, what is probably due to coarser resolution
of the modulation domain, caused by a decreased frame-length in the analysis. This
reduced frequency resolution is, however, required for a binaural envelope-based
suppression of lateral interference. For a deeper study of algorithm ELT see [35].

The adaption processes, that is, the probability-based pattern-driven weighting
method and the genetic intelligibility optimization, turned out to produce viable and
robust solutions for a great variety of front-ends and speech-in-noise problems. In
this respect, the present work advances toward a more comprehensive ASA approach.

Overall, the study gives a revision of the three classical binaural ASA speech
processors. Considerable improvements of instrumentally-predicted speech intelli-
gibility were achieved in coherent interference conditions. When applied as a post-
processor, the algorithmic benefit showed to be widely independent of the directional-
ity of the front-end, which justifies a combination with beamformers for an increased
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intelligibility gain in noise. Across coherent and incoherent speech-in-noise prob-
lems, algorithm CLP distinctly outperformed the competitors in this comparison.
For that reason, this processor will be further analyzed in terms of statistical training
methods and models.

4 Classification Strategies

Whereas univariate distributions of interaural parameters underly many classical
implementations of binaural algorithms, Harding et al. showed that binaural noise
suppression in automatic speech recognition can benefit from the application of
bivariate distributions [15]. Therefore, in this section, the statistical model of algo-
rithm CLP undergoes a closer inspection. Beginning with the formalization of a
simplified version of algorithm CLP, univariate and bivariate distributions will be
compared on the basis of the speech-intelligibility gain across a wide range of noise
conditions. Further, the training setup of the classifier will be studied in order to find
an optimum in terms of the generalization to unseen data.

In a second study, the probabilistic lookup tables are replaced with a parametric
Gaussian mixture model, GMM. Parametric models possess a series of advantages,
such as arbitrary scaling to multivariate feature spaces, less memory space and the
efficient exploitation of localization data [5, 25].

4.1 Histogram-Based Statistical Filtering

The histogram-based statistical model for the pattern-driven source separation pos-
sesses a set of training parameters that influence the speech intelligibility gain as
well as the generalization to unseen speech-in-noise conditions. In the following,
these training parameters are under consideration. As a means to focus on the influ-
ence of the statistical model, the study applies a stripped-down version of the CLP
processor. The simplification involves a reduced set of algorithmic core parameters
and their default adjustment. Hence, no stochastic optimization is pursued. There-
fore, the implementation reported here differs in parts from the implementation of
algorithm CLP in the previous section. It follows a formalization of the algorithm
for improved readability of the results.

Algorithm

Let sΔ(n) be the band-limited signal-plus-noise mixture at the sampling frequency,
fs, at the left input of algorithm CLP—compare Fig. 2. Using a Hanning window of
NH samples length, the signal is partitioned into overlapping frames with a frame
shift Ψp. Subsequently, the STFT representation of the signal is calculated with an
FFT of length NFFT, as
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SΔ
d,m =

NFFT−1∑

n=0

sΔ
mΨp+nhne

− j2πn d
NFFT , (3)

where d, m and h are the frequency index, the frame index and the Hanning window,
respectively. The signal-plus-noise mixture at the right input is calculated in the
same way, which results in Sr

d,m . Thereafter, the power spectral densities, PSD, are
estimated. This is done through a modulus and recursive first-order filtering method,
known as the Welch method [42]. For the signals at the left and right ear, the Welch
method is computed as

[
δΔ

d,m
δr

d,m

]
= α

[
δΔ

d,m−1
δr

d,m−1

]
+ (1 − α)

[ |SΔ
d,m |2

|Sr
d,m |2

]
, (4)

where the smoothing factor, α, is calculated as α = exp(−Ψp/(τ fs)), with τ being
the time constant. Furthermore, the cross-power spectral density is calculated as

δΔr
d,m = αδΔr

d,m−1 + (1 − α)SΔ
d,m S̄r

d,m, (5)

in order to infer binaural phase differences. Here, S̄r is the complex conjugate of Sr .
Subsequently, the IPD is computed as

Ψϕd,m = ∠δΔr
d,m, (6)

and the ILD is found via

ΨLd,m = 10 log10

δΔ
d,m

δr
d,m

. (7)

As introduced with (1) and (2), noise suppression in algorithm CLP is based on the
a-posteriori estimate of the target, given a binaural feature—or feature vector, see
below—at each time-frequency atom. Consequently, a soft-mask of probabilities is
multiplied with the original STFT-signal

[
ŠΔ

d,m

Šr
d,m

]
= max

(
Pd(φt|Ψd,m), A

)
[

|SΔ
d,m |e j∠SΔ

d,m

|Sr
d,m |e j∠Sr

d,m

]
, (8)

where A is a flooring parameter that allows for balancing the enhancement/distortion
trade-off. The check mark over the STFT representation denotes the noise-suppressed
signal mixture. The original phase is left unchanged, and, as a last processing step, the
waveform of the noise-suppressed signal is reconstructed through an inverse STFT.

In the following, univariate and bivariate distributions are considered. Beginning
with the univariate distribution, the classification feature at each time and frequency
bin is defined as

Ψd,m =
{

Ψϕd,m, if d < dx

ΨLd,m, otherwise d ≥ dx
, (9)
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Table 1 Core parameters of algorithm CLP and training parameters of the histogram-based filtering
method

Algorithmic core parameters
fs NH NFFT Ψp τ

16 kHz 512 512 128 8 ms
Training parameters
A ζ SNRh ξ dx

0.02 [1, 5, 8, 15, 30] [−5, 0, 5]dB [−5, 0, 5]dB+ SNRh [1, 8] kHz

Square brackets denote parameter ranges for which the speech processor is tested

where dx is the crossover frequency between the operational ranges of the IPD and
the ILD parameter. In case of a bivariate distribution of both directional fine-structure
parameters, the feature vector is defined as

Ψd,m = [
Ψϕd,m ΨLd,m

]
. (10)

For calculating the a-posteriori probability of target presence per time frame and
frequency band, as defined in (2), feature histograms for the target speech as well
as for the speech-plus-noise mixture need to be generated. As a means to train the
classifier in a supervised fashion, Harding et al. suggested the following ideal binary
mask definition for labeling the data, namely,

Mb
d,m =

{
1, if 10 log10

δs
d,m

δn
d,m

> ξ

0, otherwise
, (11)

where δs and δn are the PSD of the speech signal and the noise signal, respec-
tively, and ξ is the local SNR threshold that categorizes speech and noise [15]. ξ is
added—hence relative—to the histogram mixing SNR of the binning process, which
is denoted SNRh. Due to the offline mixing process, the separated target and noise
signals are accessible after their relative level adjustment. One-channel signals of
speech and noise are generated by summing both ear signals, prior to the processing
with the STFT and the Welch method, used to calculate δs and δn .

Accordingly, the ideal binary mask is applied to isolate binaural features that
correspond to dominant PSDs of the target signal. These directional parameters, the
training features, are binned into the target histograms H t

d . In this manner, interaural
deviation from free-field as a consequence of the noise are taken into account. His-
tograms of the noisy mixture, H a

d , on the other hand, are directly binned from the
mix of binaural training features.

Univariate histograms of the IPD were designed to have each 500 bins in the
range of ±π. Correspondingly, univariate histograms of the ILD were arranged to
have each 500 bins in the range of −40 to 40 dB. Using the same parameter ranges,
bivariate histograms were sampled with a grid of 100 × 100 bins.
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The parameters of algorithm CLP—in the stripped-down version—are collected
in Table 1. The STFT parameter settings represent optimal disjointness for speech
mixtures in the STFT domain [43]. A dx of 1 kHz can be considered a reasonable
choice for separating the working ranges of IPD and ILD. Because of the 2π period-
icity, the IPD becomes an ambiguous directional feature above this frequency limit.
Conversely, below 1 kHz, the ILD is a weak indicator of direction, particularly in
reverberation. The adjustments of A as well as the histogram bin sizes are based on
experiment and observation.

Four central parameters of the estimation process of the distributions are studied
in the following. These are the SNRhat which the probabilistic model is trained, the
local SNR criterion, ξ, at which the signals are differentiated into the target and the
noise signal, the histogram threshold, ζ, of H a

d (Ψd,m)—see (2)—and the crossover
frequency, dx , between either binaural parameters in the univariate model.

Training and Evaluation

For applying real-world reverberation acting on the target signal as well as on the
interference signal, a moderately diffuse sound scene with a reverberation time of
0.4 s was created with the setup described in Sect. 2. Whereas the speech signals of tar-
get and interference were convolved with the pre-recorded BRIRs for the first experi-
ment, a single-loudspeaker playback at 300 ∇ of a high-quality internet-streamed radio
broadcast was additionally recorded in the same setup, and used as an interferer in
the second experiment. The speech material used for the training and the assessment
consisted of male speakers of the TNO-SRT corpus, speaking phonetically balanced
sentences in Dutch, English, French and German [40]. Each speaker was applied once
during the following experiments. Except for the directional variation of a particular
speech signal within the training and evaluation sets, no overlap existed between
the target and interference signals, nor between the training and evaluation sets. The
recording of a commercial radio broadcast featured Alpine pop music and partly
Austrian conversational speech, always accompanied by background music.

The training of the probabilistic model was carried out with speech mixtures that
consisted of one target source and one interfering source. Whereas the target was
assigned to the direction of 0 ∇, the interference resided for each of the speech-in-
speech mixtures at one of the angular positions: −120, −90, −60, −30, −30, −30,
30, 30, 30, 60, 90 or 120 ∇. The threefold repetition at ±30 ∇ was chosen to increase
the histogram counts around the median plane. After generating H t

d and H a
d for each

spatial arrangement, the twelve histograms of each set were summed up. The signals
of the target and the interference consisted each of three male speakers and had each a
length of 300 s. Using an RMS-based VAD, signal portions in frames of 10 ms smaller
than −20 dB relative to the overall RMS were discarded. By applying a relatively
high VAD-threshold, spurious background energy from the speaker recordings, that
may lead to a lack of disjointness in the time-frequency domain, was partly excluded
from the estimation process.
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Throughout the evaluation of the first experiment, speech material of four speak-
ers was applied for each the target speech and the lateral interference. The two
tokens had each a length of 200 s. Again the RMS-based VAD was applied to
exclude longer speech pauses. Therefore, the threshold was set to −30 dB. For each
speaker/interference combination, the interference speaker was consecutively set to
one of the angular positions: 30, 60, 90 or 150 ∇. The SNRs for assessment ranged
from −15 to 15 dB in steps of 5 dB.

The second experiment evaluated the generalizability of the training stage, by
replacing the speech interferer with the aforementioned radio broadcast recording at
300 ∇. Target speech of four speakers was mixed with randomly chosen sections of
the radio recording. The length of each evaluation token was again set to a length of
200 s, prior to the VAD—the threshold equaled −30 dB. Speech enhancement was
predicted at SNRs ranging from −15 to 15 dB, in steps of 5 dB. The signal content
of the chosen radio station led to less disjointness between the target signal and
the interference and, consequently, made the speech-in-noise problem more difficult
when viewed from the local SNR-level.

Results

The following evaluation is primarily based on the previously introduced better-
ear-I3 measure. Because of the limited accuracy with which such an instrumental
measure reflects absolute perceptual speech intelligibility9 as well as for the sake
of brevity, only the differential intelligibility changes with respect to the original
speech-plus-noise mixtures are given. In addition, as there was no instrumental mea-
sure for assessing speech enhancement processors in the presence of reverberation
available, the degraded and the enhanced signals are compared to the corresponding
reverberated target signals. This approach is supported by the fact that a reverberation
time of 0.4 s lowers speech intelligibility by only a small margin [17]. As a means to
query the outcomes of the better-ear-I3 measure, the better-ear-STOI measure [38]
and the mean-ear-Q3 method [19] were furthermore applied, whereby the latter is
a quality measure. The better-ear extension of the STOI is based on a maximum
speech-intelligibility decision per time frame and frequency band. As regards the
mean-ear extension of Q3, the quality counts per frequency band and time frame are
averaged across both channels. The definitions of frame length and bandwidth are
for each of the instrumental measures conform with the original proposals found in
literature.

Figure 6 depicts the speech-enhancement predictions when applying the bivariate
distributions of IPD and ILD and a histogram threshold, ζ, of one. There are three
obvious inferences. First, a considerable improvement of speech intelligibility is

9 In order to provide for an instrumental measure of absolute perceptual speech intelligibility, a
perceptual intelligibility test with the applied speech material as well as a subsequent fitting of the
instrumental results to the perceptual recognition scores with a logistic function need to be executed.
Therefore, un-fitted instrumental measures merely quantify trends.
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Fig. 6 Results of the 1st experiment. Left panel the gray coded 3 × 3 matrix gives the differential
speech-intelligibility improvement predicted with the better-ear-I3 in %, using bivariate distributions
of IPD and ILD in processor CLP with ζ = 1. Target speaker is fixed at 0 ∇. Each of the nine
subplots reflect different noise conditions, characterized by mixing SNR and interferer, N, angle.
The training parameters SNRh and ξ of the statistical model set the nine subplots apart. Right
panel mean differential-intelligibility changes in % for the better-ear-I3, the better-ear-STOI and
the mean-ear-Q3. Summaries are derived from the respective 3 × 3 subplot matrices

observed at mixing SNRs of −10 to −5 dB. Second, no decline of intelligibility
arises at higher mixing SNRs. Third, the training parameters SNRh and ξ show a
moderate influence on the performance. Nevertheless, a consistent optimum is found
with the three instrumental measures at an SNRhof 5 dB and an ξ of 0 dB.

Next, the reverberated speech-in-radio mixture is evaluated in order to test the
generalizability of algorithm CLP including the un-fitted bivariate histograms with
a ζ set to one. Figure 7 gives the results. As compared to experiment one, above
inferences remain valid. Due to the more difficult speech-in-noise problem, the
optimal point of operation of the speech processor shows to be shifted by about 5 dB
toward higher SNRs. As such, the differential intelligibility improvement is reduced
at a mixing SNR of −10 dB by about 10 to 20 %, but is increased at higher mixing
SNRs. One the whole, an optimum in noise suppression is again reached with the
training parameters SNRh= 5 dB and ξ = 0 dB.

In order to compare the bivariate model with the univariate analogue as well
as to quantify the influence of parameter ζ, the mean differential improvement in
percent was calculated for the three instrumental measures. Each mean per SNRhand
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Fig. 7 Results of the 2nd experiment. Differential speech intelligibility improvement as assessed
with the better-ear-I3 in %, using bivariate distributions of IPD and ILD in the CLP processor with
ζ = 1. The target speaker is fixed at 0 ∇

ξ includes all interference angles and mixing SNRs. The column of the three subplots
on the right-hand side in Fig. 6 already gave a part of the outcomes of this averaging
process. In Fig. 8, the resulting mean values of each averaging process are compared
statistically while varying ζ and the lookup histograms. Furthermore, the subfigure at
the right-hand side of Fig. 8 juxtaposes the statistical analysis of the mean differential
improvement in the 2nd experiment. As can be seen, the bivariate model outperforms
the univariate model with a dx of 1 kHz as well as the univariate model with a dx of
8 kHz, that is, when only the IPD is applied. The comparison between the univariate
models shows that the exclusive application of the IPD results in an advantage in
experiment one. However, this outcome is detected as an over-fitting in experiment
two, in which the combined application of IPD and ILD leads to an improved noise
suppression for the univariate model. Further, the spread of the mean differential
improvement, hence, the impact of varying the training parameters SNRhand ξ,
is influenced by the choice of parameter ζ. Looking at the two experiments, this
dependency reveals to be not monotonous. Nevertheless, optimal performance can
be isolated for both experiments, with ζ = 1 for the bivariate model and ζ = 15 for
both univariate models.

Conclusion

The intention of the preceding experiments on noise suppression was to find most
beneficial statistical models and optimal parameters sets for training the classifiers. At
the same time, a set of training parameters were held constant during the experiments.
These are basically the histogram resolution, the spatial sound scene arrangements
during the training and the VAD thresholds. This fact needs to be considered through-
out the following conclusions.
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Fig. 8 Results of the statistical analysis of the mean differential improvement of the 1st and
2nd experiments—see headings. (A) Bivariate model. (B) Univariate model with a dx of 1 kHz.
(C) Univariate model with a dx of 8 kHz. Central marks: Medians. Box edges 25th and 75th per-
centiles. Whiskers most extreme values. Notches comparison intervals. If intervals do not overlap,
the corresponding medians are significantly different at the 5 % level [39]

As was shown across a large number of speech-in-noise conditions, bivariate
distributions of binaural features offer an advantage over univariate distributions
in terms of noise suppression. No marked decline in performance was found for
speech interference at un-trained noise directions as, for instance, presented with the
150 ∇ noise condition in the first experiment. When disjointness diminishes, as was
rendered with the broad-band music interference of the second experiment, the mean
performance of noise suppression drops by only a few percent—assessed with the
better-ear-I3. Consequently, the bivariate distribution as a lookup table in algorithm
CLP can be recommended. Optimal training parameters were given. The second
important result is that binaural speech enhancement processors are applicable in
real-world environments, featuring reverberation and continuously active non-speech
backgrounds.

4.2 Parametric Statistical Filtering

To avoid using histograms to approximate multivariate PDFs, what becomes increas-
ingly impractical for more than 2-dimensional data, it is possible to model these
parametrically. A widespread approach to such parametric modeling is the Gaussian-
mixture model, GMM, sometimes also referred to as mixture of Gaussians, MoG.
The GMM approximates a PDF as a weighted sum of multivariate Gaussian normal
distributions. The estimate of the multivariate PDF of an arbitrary random vector,
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Ψm , as a weighted sum of Gaussian distributions can be defined as

P̃(φt|Ψm) =
C∑

c=1

pc · N(μc,Σc), (12)

with
C∑

c=1

pc = 1. (13)

The model is parameterized by the mixture weights, pc, the component count, C , the
mean vectors, μc, and covariance matrices Σc, that can be estimated to fit a given set
of training data through an expectation-maximization algorithm. The method is, for
example, implemented in the function gmdistribution.fit of the MATLAB
Statistics Toolbox [39].

Using such a model, it is possible to perform Bayesian classification based on
a larger number of localization features than with histogram-based lookup tables—
with reasonable use of computational resources. Here, the GMM-based classifier
was implemented as part of a generic binaural speech-enhancement framework. It
focussed on the possibility of freely-configuring sets of localization features to be
employed for filtering.10 To simplify the implementation and its generality, the STFT
filter bank center frequencies at which binaural features are observed, are also treated
as part of the feature vector.

The approximation accuracy of GMMs is easily scaleable with the model com-
plexity as determined by the component count, C , of the GMM approximation. In
theory, an arbitrarily exact approximation of the training-data distribution is possible
provided that a sufficiently high component count is chosen—even if the real prob-
ability distribution that created the data is not a mixture of Gaussians. In practice,
however, high component counts impose several problems. Besides an increasing
computational load, high component counts may lead to an over-adaption to the
training-data set, which reduces the generalizability of the model. Moreover, with
increasing component count, numerical problems may arise during parameter esti-
mation, depending on the statistical properties of the training data. That said, it
is crucial for a good modeling accuracy that the data is well conditioned to yield
statistical-distribution properties that can be sufficiently modeled even with very
few components. For example, GMMs greatly benefit from rather compactly distrib-
uted input data that increases the Gaussianity of the data and thus reduces the model
complexity needed to achieve a certain level of accuracy. The choice of the ITD
instead of the IPD is such a measure to improve feature-distribution properties, since

10 The current section is an excerpt from the diploma thesis of Ch. Luther, Speech intelligibility
enhancement based on multivariate models of binaural interaction, Ruhr-University Bochum, 2012.
Contact the author to obtain a copy.
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the ITD varies much less over different frequency regions and thus leads to a more
compact clustering of observations. Also, the ranges of the individual features should
be approximately in the same order of magnitude and preferably not discretely be
valued in order to avoid numerical instability of the EM process [39].

Possible Implementations

The generality of the GMM approach enables us to implement a variety of algorith-
mic concepts just by defining the set of features to be employed for the classification
task, along with the decision whether to process STFT or modulation-spectral sig-
nal representations. For a comparison with the results from the previous section,
algorithm CLP is analyzed as the basic approach for interaural fine-structure based
speech enhancement in conjunction with a parametric statistical model. Therefore
and herewithin, the algorithm is referred to as algorithm CLPp. The classification
algorithm derives its decision from a feature vector consisting of the fine-structure
ILD and ITD values and the STFT center frequency at which these features were
observed. The parameters of the STFT framework are given in Table 1.

As a second implementation, an enhanced-CLPp algorithm was developed that is
augmented by the frequency-dependent features of the interaural coherence at zero
lag. Several studies successfully applied interaural coherence as a selection criterion
to improve source localization in complex listening situations [7, 10]. In an attempt to
exploit this advantage for speech enhancement, the possible benefits of considering
the interaural coherence along with fine-structure ILDs and ITDs were investigated.
In this way, the decision of whether a signal component belongs to the target or the
interference would not only be based on the ILD and ITD features alone but also on
the interaural coherence as a measure for how reliable these features are.

For both implementations, the PDFs of target and interference feature vectors
were estimated using the gmdistribution.fit function from the MATLAB
Statistics Toolbox with a component count of 8. This component count is the result
of preliminary tests carried out to find out a good compromise between modeling
accuracy and computational resources needed during model estimation.

Evaluation and Conclusion

The parametric-filtering approach was applied to a subset of the speech-in-noise
conditions that are presented in the preceding section. Figure 9 gives the predicted
differential speech-intelligibility improvements of the two speech processors.

Overall, the results show that algorithm CLPp is in most of the tested conditions
inferior to its non-parametric counterpart with bivariate lookup tables. Due to the
reduced accuracy of the GMM approximation, this constitutes no surprise. Generally,
the GMM can be considered a smoothed PDF approximation. Thus it will adapt less
exactly to its training data but, in turn, interpolate more smoothly than histograms.
Therefore, it is generally expected that the parametric model will, within the bounds
of the model complexity, adapt to situations that differ considerably from the training
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Fig. 9 Differential speech intelligibility improvement in %, assessed with the better-ear-I3, using
GMM-approximated feature distributions. (A) CLPp. (B) Enhanced-CLPp. Left results for scenes
with one interfering speaker and reverberation. Right radio as the interferer and reverberation.
Throughout the simulations, the target speaker is at 0 ∇

conditions. The results found for the attenuation of the radio interference in the second
experiment confirm this expectation.

No consistent benefit is seen for the coherence-augmented enhanced-CLPp
processor. The result is in line with the conclusion of Sect. 3, which showed that
algorithm CC is not suitable for improving speech intelligibility, mainly because
of its inability to distinguish between different directions. In addition, the combi-
nation of interaural coherence with time and level differences suffers from the fact
that interaural coherence offers only a small range—residing close to unity—of high
information content. Once the coherence decreases as is the case in slight reverbera-
tion and, more so, close or beyond the critical distance, the feature merely introduces
fuzziness and cannot contribute to the classification task [27].

Listening to the output reveals a high-pass character of the enhanced-CLPp
algorithm. Including coherence as a feature obviously suppresses incoherent low-
frequency energy of the target and the interference. This effect can be used as an
instrument to improve speech quality. In terms of speech intelligibility, the reader
is furthermore reminded that, for the reasons given above in this section, the output
of the processor was compared to the reverberated target signal. Therefore, due to
the stochastic nature of the short-time binaural coherence, it can be assumed that
reverberation in the target signal was partly classified as noise and thus suppressed.
Therefore, the instrumentally measured intelligibility declined accordingly. Conse-
quently, more appropriate means have to be applied to study the algorithm further.
Peissig, for example, gained encouraging results in listening tests with a similar
algorithm [30].

The most powerful speech intelligibility-enhancement-strategies as presented in
this chapter, are anticipated to be suitable for wearers of cochlear implants, since
non-linear processing artifacts should have little influence on the final low-frequent
envelope and modulation-based coding strategies in cochlear implants. Patients with
less-severe hearing deficits should generally benefit from rigorous speech enhance-
ment in difficult noise conditions too. However, when speech quality is to be maxi-
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mized, the parametric filtering method was shown to produce good results. As was
audiologically demonstrated, a quality improvement can also result in a moderate
but significant speech-intelligibility improvement when the subjects are confronted
with meaningful speech material [34].

Conclusions and Outlook

In this chapter, standard binaural speech processors for improving speech intelligi-
bility in noise were investigated. In the initial study on binaural statistics, interaural
temporal parameters of the fine-structure were found to be the most resilient direc-
tional features in noise. Interaural level differences of the fine-structure and envelope
behave widely equal in noise. The subsequent application of directional features in
noise suppression substantiated these results. In coherent as well as diffuse-noise
conditions, the binaural fine-structure algorithm clearly surpassed speech processors
that employ the binaural envelope or the binaural coherence for noise classification.

Superdirective beamforming filters constitute today’s most powerful solution to
the speech-in-noise problem. However, for economic and cosmetic reasons, micro-
phone arrays are not unconditionally allowed to extend to dimensions that are physi-
cally optimal. Post-filters as, for example, binaural speech processors, can be applied
to enhance intelligibility further. Using two commercially-available hearing aids with
four beamforming modes, it has been shown that binaural speech processors can be
applied as post-processors. It was further demonstrated that the SNR gain of the
post-filter is generally additive to the SNR gain of the beamformer.

Further, different statistical models and training parameters were studied with
respect to intelligibility using the binaural fine-structure algorithm. In a comparison
with univariate models, it was found that speech enhancement benefits from bivari-
ate distributions in trained and untrained conditions. The subsequent application
of a multivariate-parametric model could not attain an advantage over histogram-
based methods. Yet, the parametric approach produces a high-quality output—along
with a considerable noise suppression—and, therefore, enables well-balanced speech
enhancement.

Although instrumental measures for rendering the intelligibility of binaural and
non-linearly processed speech signals are likely to replace listening tests in the future,
the work of this chapter was based on preliminary measures that show only a fair
amount of correlation with perception. Therefore, the results of this chapter remain
unconfirmed in terms of perception. Considering the present work as a catalogue of
binaural filtering techniques, it will be a future task to test promising algorithmic
solutions and parameter sets against perception.

The human performance to unravel a speech-in-noise mixture is yet unattainable
for computational approaches. In order to match up to this superior functioning, it
is likely that the computational mimicry will discard the artificial reconstruction of
the target waveform. Recent developments in the field of automatic speech recog-
nition prepare the grounds for more elaborate ways of speech enhancement. Novel
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automatic speech recognition systems combine low-level and high-level features
in order to form hypotheses for accessing portions of clean target speech from
databases. As regards instantaneous speech enhancement, such methods are beyond
reach in the coming years. As a next step, an obvious sophistication of the algo-
rithms presented herein is the application of a multitude of low-level features, that is,
besides the directional parameters one can think of spectral markers of speakers and
backgrounds, and time-dependent hierarchical statistical models. Universal concepts
underlying such a development were theoretically proposed and already implemented
[3, 22, 41].
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Modeling Sound Localization
with Cochlear Implants

M. Nicoletti, Chr. Wirtz and W. Hemmert

1 Introduction

Cochlear implants, CIs, are the most successful neuroprostheses available today, with
approximately 219,000 people implanted worldwide—as of December 2010 [60].
Modern CIs often provide good speech intelligibility, but there is room for improve-
ment. Due to the limited number of independent channels [71], the spectral repre-
sentation of music is less detailed for cochlear-implant users than for normal-hearing
subjects, and they perform more poorly in adverse acoustic environments, such as
in a cocktail-party scenario with multiple simultaneous sound sources [12, 50]. To
sustain communication in such conditions, humans have developed the remarkable
ability to focus on a single speaker even within a highly modulated background noise
consisting of concurrent speakers and/or additional noise sources. In such scenarios
binaural hearing plays a major role. Time and level differences between the right
and left ear are exploited by the auditory system to localize the sound sources and
segregate the acoustic information focused upon [3].

As CIs were initially developed for unilateral implantation only, they lack some
important prerequisites required for precise sound localization. Automatic gain con-
trol, AGC, in CIs is required to compress the large dynamic range of acoustic signals
to the limited dynamic range available for electric stimulation of the auditory nerve.
Automatic gain-control systems in CIs reflect a compromise between conflicting
requirements. Actually, they must handle intense transients but at the same time
minimize disturbing side effects such as “breathing” or “pumping” sounds and dis-
tortions of the temporal envelope of speech. This conflict can be solved with a dual
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time constant compression system [78]. However, in contemporary CIs, AGCs in
bilateral cochlear implants work independently from each other, which can degrade
the coding of interaural level differences ILDs. In addition, the accuracy of temporal
coding in CIs clearly does not yet come close to the precision reached in the intact
hearing organ. Given the many limitations involved in the artificial electrical stimu-
lation of the auditory nerve, especially the effects of severe channel crosstalk, it is
unclear if and which changes of the coding strategies will improve spatial hearing.

To answer these questions, quantitative models have been developed that help
better understand the complex mechanisms involved in the electrical excitation of
neurons. Pioneering model-based investigations [17, 35, 54, 63, 64] were initiated
with the goal to improve CIs. They tried to optimize stimulus parameters like the
stimulation frequency, pulse width and shape. The investigation of Motz and Rattay
[55] harnessed the models to improve coding strategies implemented in a speech
processor. The modeling approaches can be separated in three different categories,
namely, point neuron models, multi-compartment models and population models.

• Point neuron models try to capture the detailed dynamic properties of the neurons.
Motz and Rattay used them to explain neuronal responses to sinusoidal stimuli and
current pulses [54, 64]. Dynes [20] extended these models to capture the refractory
period of the neurons more precisely. With the introduction of CI-coding strate-
gies with high stimulation rates, it became important to investigate the stochastic
behavior of the auditory nerve to electric stimulation [8, 9] and rate-dependent de-
synchronization effects [69]. Mino et al. [53] captured channel noise by modeling
the stochastic open- and closed states of the sodium-ion-channel population with
Markov chains. Most recent models aimed to describe the adaptation of the audi-
tory nerve to electric stimulation at high stimulation rates [37, 85].

• Multi-compartment models are an extension of point neuron models and were
introduced by McNeal [51]. They are important for investigating effects of elec-
trode position and configuration, for instance, monopolar versus bipolar. Multi-
compartment models can predict how and where action potentials are elicited in
the axon of a neuron [52, 85]. They are also essential for investigating how cell
morphology affects their dynamical properties [67, 74], and how the field spread
in the cochlea affects the stimulation of neurons along the cochlea [7, 25, 27].

• Population models are required to replicate neuronal excitation patterns along the
whole cochlea. Therefore, they usually require modeling of thousands of neurons.
For electrical stimulation, large populations of neurons are required to investigate
rate-intensity functions [9] and neuronal excitation patterns for speech sounds
[32]. Due to the large number of modeled neurons, these population models were
implemented with computationally less expensive stochastic spike response mod-
els. Nevertheless, the increasing computational power of modern computer clus-
ters has enabled us to model also large neuron populations based on biophysically
plausible Hodgkin-Huxley-like ion-channel models [58]. In these models refrac-
toriness and spike rate adaptation result from ion-channel dynamics.

Modeling higher levels of neuronal processing is hindered by the large complexity
involved and therefore is limited to a few special cases. Basic perceptual properties



Modeling Sound Localization with Cochlear Implants 311

like intensity perception [8] or forward masking [32] can be captured by deriving
a neuronal representation that corresponds to the respective psychophysical data.
More cognitive processes can usually not be predicted with models based on single
neurons. However, in recent years, machine-learning techniques based on neuronal
features [23, 59] were adopted to tackle highly complex tasks such as the prediction
of speech understanding in noise.

The investigation reported in this chapter focuses on a similarly complex task,
namely, sound localization. The ability to localize sound sources in complex listening
environments has fascinated researchers over decades. Models developed in the fifties
have been extended and improved by many researchers, but their basic concepts
remain valid until today. The models can be divided into two basic groups, namely,
coincidence models and equalization-&-cancellation models—see [43], this volume.

• Coincidence models Jeffress postulated neuronal coincidence detectors fed by
two delay lines with signals traveling in opposite directions within each tonotopic
center-frequency channel [38]. This model was extended to predict basic ILD
sensitivity [11]. The coincidence model was combined with a simplified inner-ear
model to model the basilar membrane and inner hair cells, consisting of a filter
bank, an automatic gain control, AGC, a low-pass filter, and a rectifier. References
[13–15, 76, 77] provide quantitative predictions on binaural interaction. Blauert
and his colleagues Lindemann and Gaik [46] used a complementary approach
adding ILD sensitivity to the Jeffress model. Later in this chapter this model will
be applied to predict sound-source localization.

• Equalization-&-cancellation models These models have primarily been devel-
oped to predict binaural masking differences [19, 42]. Recently, cancellation fea-
tures were added to the Jeffress-Colburn model [4–6].

2 Modeling Hearing in Cochlear Implant Users

This chapter presents a modular model framework to simulate auditory nerve
responses elicited by a cochlear implant. The framework is schematically depicted in
Fig. 1. It consists of a speech processor, a model of the electrical field spread caused by
the implanted electrode array and a model of auditory nerve fibers along the inner ear.

The model was duplicated for the case of two ears to evaluate binaural interaction—
see Sects. 2.5 and 3.1. The nerve responses are then evaluated by “cognitive” stages,
which, for example, can be an automatic speech-recognition system or a system that
estimates the position of a sound source. Every part of the model can be exchanged by
a more or less computationally expensive realization, where the complexity required
depends on the scientific question.
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Fig. 1 Sketch of the model that simulates hearing in cochlear implant users

2.1 Speech Processor

In the speech processor input signals, in this model audio-files in .sph and .wav
format, are processed by a coding strategy that converts the physical sound signals
into electric-current pulse trains—compare Fig. 2. The pulse trains are fed into the
inner ear via the electrode array. The coding strategy replaces the processing steps
that usually take place in the inner ear and translate the physical sound signal into a
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representation that can be processed by the neuronal system. Because of the limited
information-transmission capacity between implant and the neural system, coding
strategies are predominantly optimized for speech coding. They process a limited
frequency range, usually between 100 Hz and 8 kHz in 12–22 frequency bands. The
large dynamic range of natural sounds requires effective AGC systems. Whereas
many coding strategies were developed by the different manufacturers [87], in this
chapter a generic implementation of one of the most successful coding principles,
the continuous interleaved sampling, CIS, strategy [84] is introduced. In the CIS
strategy, the signal is first filtered into frequency bands, then the spectral envelope
is extracted. The temporal fine structure is discarded. The spectral envelope is then
sampled using biphasic rectangular pulses, which are delivered to one electrode at a
time, that is, interleaved.

This implementation applied a dual-time-constant front-end AGC [78], followed
by a filter bank. The envelope was extracted in each channel with a Hilbert transfor-
mation. The amplitudes of the envelopes are mapped individually for each CI user
and electrode between threshold level, THR, and maximum comfort level, MCL.
Note that the dynamic range for electrical stimulation is extremely narrow. The dif-
ference between THR and MCL is only in the order of 10–20 dB [28, 86]. Mapping is
implemented using power-law or logarithmic-compression functions [48]. The small
dynamic range that is available for electric stimulation causes another severe limi-
tation, namely, if two electrodes were stimulated simultaneously, their overlapping
fields would sum up and cause overstimulation of neurons. The electrodes in CIs are
therefore stimulated one after the other, that is, interleaved. Extensions of the CIS
concept try to reconstruct the phase locking, as is observed in neuronal responses at
low frequencies [41]. In CIs, this can be achieved by implementing a filter bank fol-
lowed by slope-sensitive zero-crossing detectors—compare Fig. 2—that trigger the
stimulation pulses [88].1 This technique is used in the fine structure coding strategies
(FSP, FS4, FS4-p) in the MED-EL MAESTRO cochlear implant system.

In summary, the FS strategies transmit the envelope information with their basal
electrodes at high temporal resolution and code additional FS phase information with
their most apical electrodes—which is conceptually similar to what happens in the
intact inner ear. With this model framework it is now possible to estimate how much
of this additional phase information is actually transmitted by the auditory nerve
fibers and available for sound localization, and how much of it is corrupted by the
limitations of electrical stimulation.

2.2 Electrode Model

One of the most severe limitations in modern cochlear implants is imposed by the
electrical crosstalk between stimulation electrodes. The CI electrode array is usually

1 This concept is realized in the MAESTRO cochlear implant system by MED-EL in the lowest-
frequency channels, which stimulate the most apical electrodes.
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inserted in scala tympani and immersed in perilymph—which has a conductivity
of approx. 0.07 kΨmm [30, 66]. The neurons of the auditory nerve are inside the
modiolar bone, which has a much higher conductivity of approx. 64 kΨmm [26, 30,
66]. Due to these anatomical constraints, the current spreads predominantly along the
cochlear duct [30, 83]. This problem limits the number of independent electrodes to a
value of about 7–8 [18, 24, 36] and a single electrode can excite auditory nerve fibers
almost along the whole cochlea [30]. The amount of channel crosstalk is dependent
on many factors and varies from CI user to CI user [21]. Different methods to measure
the spread of excitation provide values between 1 and 4 dB/mm [33, 44, 57, 62]. The
electrode array was modeled with 12–22 contacts as electrical point sources. The
electrical excitation of a neuron in an electrical field is governed by the activating
function [64], which is the second derivative of the electrical potential in the direction
of the axon.

For a point current source, I , in a homogeneous isotropic medium, the activating
function can be calculated as

d2Vex

dx2 = I
ρ

4π

2x2 − y2 − z2

[
x2 + y2 + z2

⎡5/2
, (1)

where Vex is the extracellular potential field, ρ the mean conductivity of the surround-
ing tissue—3 kΨmm [67]. x , y and z are the coordinates according to Fig. 3. The
value of this function was calculated at a distance x of 500µm from the electrode
in the modiolus, where the electrical stimulation most likely elicits the action poten-
tials in the auditory nerve fibers. Because of the coiling of the cochlea, the current
spread can only be solved with three-dimensional models [7, 66, 83]. For simplicity,
coiling of the cochlear ducts was neglected and therefore no across-turn stimula-
tion occurred in this model. As the activating function for a homogeneous medium
underestimates current spread, which would lead to unrealistic focal stimulation of a
neuron population, the activating function was calculated only at the position of the
electrode z = 0. For the current spread in the z direction an exponential decay with
1 dB/mm was assumed, which was found experimentally [33, 44, 57, 62]—worst-
case scenario.

xz
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z

Nerve tissue
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Electrode

Electrode
carrier
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Electrode Nerve tissue
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Fig. 3 Electrical field spread and channel crosstalk of an electrode array in the cochlea
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2.3 Model of a Single Nerve Fiber

One of the most important steps in this model is the excitation of the auditory nerve.
The theory behind this model is reviewed in [29, 49]. A biophysically plausible model
was implemented that is based on Hodgkin-Huxley-like ion channels—including
hyperpolarization-activated cation channels, HPAC, high-threshold potassium chan-
nels, K H T , and low-threshold potassium channels, KLT . Such ion channels are also
found in cochlear nucleus neurons. Due to their large time constants, the auditory
nerve exhibits adaptation to electrical stimulation [56]. Conductances and time con-
stants were corrected for a body temperature of 37 ºC. The electrical equivalent circuit
of the model is shown in Fig. 4.

The equations and parameters for the models are taken from [68] (see also
Table 1)—with the units ms and mV. VM denotes the trans-membrane voltage. The
gating variables of the different channels, x ∈ {w; z; n; p; r}, are voltage-dependent
and they converge with a time constant of τx to their equilibrium value x∞ as
described by the following differential equation.

dx

dt
= 1

τx
(x∞ − x). (2)

The behavior of the ion channels is described in the next equations.
(i) Low threshold, K +-channel, KLT ,

iK LT = ḡK LT · w4z · (Vm − EK ), (3)

w∞ =
⎣

 1

1 + exp
⎥
− Vm+48

6

)

⎤

⎦
0.25

, (4)

iNa ilihiKLT iKHT iC iEx

ENa ElEhEK EK

Vm

gNa glghgKLT gKHT

Cm

iNoise

Fig. 4 Electrical equivalent circuit of a neuron
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τw = 100

6 · exp
⎥

Vm+60
6

)
+ 16 · exp

⎥
− Vm+60

45

) + 1.5, (5)

z∞ = 1 − 0.5

1 + exp
⎥

Vm+71
10

) + 0.5, (6)

τz = 1000

exp
⎥

Vm+60
20

)
+ exp

⎥
− Vm+60

8

) + 50. (7)

(ii) High-threshold, K +-channel K H T ,

iK H T = ḡK H T · (0.85 · n2 + 0.15 · p) · (Vm − EK ), (8)

n∞ =
⎜

1 + exp

⎝
− Vm + 15

5

⎞⎟−1/2

, (9)

τn = 100

11 · exp
⎥

Vm+60
24

)
+ 21 · exp

⎥
− Vm+60

23

) + 0.7, (10)

p∞ =
⎜

1 + exp

⎝
− Vm + 23

6

⎞⎟−1

, (11)

τp = 100

4 · exp
⎥

Vm+60
32

)
+ 5 · exp

⎥
− Vm+60

22

) + 5. (12)

(iii) Hyperpolarization-activated cation current, ih ,

ih = ḡh · r · (Vm − Eh), (13)

r∞ =
⎜

1 + exp

⎝
− Vm + 76

7

⎞⎟−1

, (14)

τr = 100,000

237 · exp
⎥

Vm+60
12

)
+ 17 · exp

⎥
− Vm+60

14

) + 25, (15)
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(iv) Fast Na+ current, iNa ,

iNa = ḡNa · m3h · (Vm − ENa), (16)

m∞ =
⎜

1 + exp

⎝
− Vm + 32

7

⎞⎟−1

, (17)

τm = 10

5 · exp
⎥

Vm+60
18

)
+ 36 · exp

⎥
− Vm+60

25

) + 0.04. (18)

The electrical stimulation of neurons in an electric field was analyzed according to
Rattay [65] as

τ
dVm

dt
= λ2 d2Vm

dx2 + λ2 d2Vex

dx2 + Vm . (19)

In this equation, τ = ρmcm denotes the time constant of the passive membrane and
λ = √

ρm/ρa the length constant of an axon. If a long axon is assumed in the field, the
term d2Vm/dx2 can be neglected if the neuron is at rest. Then the external electrical
stimulation acts like a virtual internal current source, which is proportional to d/4ρa ,
d2VEx/dx2, with axon diameter d. Therefore the equation for a section of the axon
can be described by the equation

Cm
dVm

dt
= d

4 ρa

d2VEx

dx2 − [iK LT + iK H T + ih + INa + il ] . (20)

If the analysis is restricted to the compartment, where the action potential is elicited,
it is not necessary to solve the equations for all compartments—this would require
a computationally intensive multi-compartment model. Instead, it is sufficient to
check if this compartment—that is, the compartment where the activating function
has its maximum—elicits an action potential. This would then, in the case of a
multi-compartment model, propagate along the axon. Following this analysis, it is
possible to reduce the model complexity to a single-compartmental model, which
allows to calculate the response of a large number of neurons. The nonlinear ion-
channel equations are solved in the time domain with the exponential Euler rule
[10]. The model presented so far is deterministic and has therefore a fixed, although
dynamic, threshold. Recordings from the auditory nerve in laboratory animals show
that neurons exhibit a stochastic behavior also for electrical stimulation. This behavior
was modeled by including a stochastic current source—compare Fig. 4. Physiological
recordings show that a single neuron exhibits a dynamic range in the order of 1–5 dB
[72, 73]. In this model a dynamic range of 2.5 dB was modeled by adjusting the
current amplitude of the white noise source accordingly. However, the dynamic
range of a single neuron is still too small to explain the dynamic range observed in
CI users.
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Table 1 Parameters of the auditory nerve fiber model

Parameter Value Description References

ρm 0.02 [kΨcm2] Specific membrane resistance [1, 79]
ρa 0.14 [kΨcm] Specific axial resistance [1, 81]
ENa 66 [mV] Reverse potential for sodium [53, 56]
EK −88 [mV] Reverse potential for potassium [53, 56]
Eh −43 [mV] Reverse potential for iH [53, 56]
El −62.5 [mV] Reverse potential for leak current
gNa 324 [mS/cm2] Specific conductance of Na channels
gK H T 105 [mS/cm2] Specific conductance of K H T channels
gK LT 27 [mS/cm2] Specific conductance of KLT channels
gh 16 [mS/cm2] Specific conductance of HPAC
gl 0.006 [mS/cm2] Specific leak conductance
cm 1 [µF/cm2] Specific membrane capacitance [67]
d 1 · 10−4–2 · 10−4 [cm] Axon diameter [45]

2.4 Population Model of the Auditory Nerve: Individual Model
for CI Users

The analysis of the coding of complex sounds like speech requires a large population
of neurons along the cochlea. When the stimulation current increases more neurons
are excited, which extends the dynamic range for electrical stimulation. Surviving
neurons in the spiral ganglion have variations in their axonal diameters, namely, 1.2–
2.5µm [45], and are located at different distances from the stimulating electrode—
compare Fig. 5.

Factors which extend the dynamic range of the spiral ganglion neuron, SGN
population comprises of the channel noise from an individual neuron and differ-
ent thresholds of the single fibers due to different axon diameters and the varying
distances between electrodes and cells. The dynamic range due to channel noise
is about 2.5 dB, variations of the diameter contribute up to 6 dB, and the distance
between electrode and SGNs up to 12.5 dB. With appropriate SGN populations, CI
users with dynamic ranges between 3 and 21 dB can be modeled. A larger dynamic

Fig. 5 Cartoon of the popula-
tions composition: SGN with
different sizes and distances
respect to the electrode

SGN
Population

Scala 
tympani

Electrode
Bone
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range requires a larger SGN population and in turn longer computing times. The SGN
are distributed along the length of the basilar membrane according to cell counts by
[22, 75] in hearing impaired subjects. Given that SGNs degenerate further in deaf
subjects [2, 40] and limitations in computational power, the model results presented
here include up to 6.000 SGNs. SGNs were randomly distributed along the length of
the cochlea and also the distance of the cells to the electrode, therefore the population
was not uniformly distributed—Fig. 5.

2.5 Sound-Localization Model

For sound localization experiments, left- and right-ear signals were processed with
normal-hearing, NH or CI-listening models, which provide auditory-nerve-fiber,
ANF, responses for further evaluations. Here the inner ear model from Wang [82]
was selected as the NH reference. In the case of CI hearing, the acoustic input was
processed by two independent models of speech processors, followed by two models
of electrically evoked ANF/SGN responses—see Fig. 6.

Commonly a speech processor uses an AGC to scale the input signal to the limited
dynamic range of electrical hearing—see Sect. 2.1. Then a designated coding strategy
translates the acoustic input into stimulation patterns for each electrode. Note that
there is no common synchronization between the two CIs. As a result, the AGC
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Fig. 6 Schematic of the used framework. Each channel of a binaural acoustic signal is scaled and
analyzed by both speech processors independently and transformed into firing patterns for each of
the implant electrodes, according to the used coding strategy. The spike trains of the ANFs are then
calculated from the electric field gradients. The Lindemann model, as binaural back end, performs
the localization task in one frequency band
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and stimulation delivered to the electrodes at the two ears run independent on both
implants. Applying independent gains to the left and right CI alters ILD cues in
the acoustic signals and unsynchronized firing patterns obscure ITD cues. In the
following a best case scenario, where both implants are synchronized will be further
investigated.

Lindemann developed a binaural model [46, 47] originally intended for NH lis-
teners. This model is based on the Jeffress model [38] and assumes that coincidence
neurons receive input from a tapped delay line from each side of the tonotopic rep-
resentation of the cochlea. The coincidence detecting neurons are located along the
delay lines such that they fire at specific ITDs.

l(n) ⊗ r(n) =
+∞⎠

−∞
l(τ ) · r(n + τ ) dτ (21)

This process is mathematically described as a cross-correlation function, as defined
in Eq. 21. l(n) and r(n) denote the discrete left and right input signals. The cross-
correlation output is a value of signal energy as a function of time delay.

The Lindemann model extends the correlation delay line of the Jeffress model
by introducing inhibitory elements, which adds ILD sensitivity to the model. This
is modeled with attenuation elements along the delay-line. By this arrangement,
ILDs are mapped to a corresponding cross-correlation time. The model does not
consider any correlation between different frequency bands in the hearing system.
The sharpness of the correlation peaks depends on the inhibition parameter. Larger
values will sharpen the peaks. In addition, the model features a temporal integration
element to stabilize the output for non stationary input signals. For further details
see [47].

3 Testing the Model

3.1 Test Set-Up

For testing purposes a binaural signal generator was implemented (Fig. 7), which
provides an acoustic two channel signal carrying ITD and ILD information.

The simulated listening setup consists of a sound source that is circling around
the listener’s head at 1 Hz. The distance between the two ears was set to 150 mm. An
emitted wavefront will reach both ears at different times and thus invoke location-
dependent ITDs. ILDs were evoked with a frequency-independent attenuation com-
ponent, when required. By intention, no head shadow effect was included to control
ILD and ITD independently from each other.
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Fig. 7 Binaural signal generator

3.2 Results

ANF-Response Patterns

Figure 8 shows smoothed response patterns for 6,000 auditory nerve fibers in response
to the spoken utterance /ay/ from the ISOLET database [16]—female speaker fcmc0-
A1-t, upper trace, 72.8 dB(A). Smoothing was achieved with a 10 ms Hamming
window as low-pass filter.

Figure 9 shows spike patterns with high temporal resolution for the acoustic sig-
nals, CIS and FS4. The high-resolution figures for the normal-hearing model show
very strong phase locking to the fundamental frequency of approx. 220 Hz of the
speech signal—which is not coded at all by the CIS strategy. In the case of FS4 strat-
egy, there are phase-locked responses, which are, however, obscured by additional
spikes that are elicited by other nearby electrodes due to electrical crosstalk.

Lindemann Example with Rectified Bandpass-Filter Input

Adapting the original example from the Lindemann model, a loudspeaker playing
a 500 Hz pure tone was circling the listener at a rate of 1 Hz, in a virtual anechoic
listening scenario. The signal pre-processing for the original Lindemann NH model
consists of a filter bank with half-wave rectification and low-pass filtering to mimic
the output of an inner hair cell.

The output of the model is shown in Fig. 10a, which shows that the model localizes
the sound source with ease. The signal started with an interaural delay of 0 ms,
corresponding to a source location of 0◦, and performed two clockwise rotations.
The maximum time delay of +0.4 ms was reached at 0.25 and 1.25 s for the right
side and −0.4 ms at 0.75 and 1.75 s for the left side, which corresponded to a location
at ±90◦. The 500 Hz-analysis shows that the model analyzes the simulated time delay
correctly. Note that for a 500 Hz sinusoidal input, the cross-correlation time delay
has a repetition period of 2 ms. Nevertheless, only delays smaller than 1 ms are
considered, as the distance between the ears is only 150 mm.
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Fig. 8 Response pattern of auditory nerve fibers in response to the spoken utterance /ay/. Top
panel acoustic signal. Second intact-ear model [82], 60 high-spontaneous-rate ANFs per frequency
channel, averaged with a 10 ms Hamming window—right column Averaged firing rate over whole
utterance. Third response to electric stimulation with CIS strategy. Bottom same with FS4 strategy.
The electrode positions are shown schematically on the left hand side. The electrical field spread,
here 1 dB/mm, see Sect. 2.2, limits the spatial resolution of electrical stimulation

Lindemann Model with Spike Count Input

The Lindemann model can be used with spike-count data of the ANF as well. By
use of the NH-listener-ANF model as described in Sect. 2.4, the spike response of
two ANF populations from the left and right cochleae was calculated and processed
by the Lindemann model. Figure 10b shows the Lindemann cross-correlation for the
circling source emitting a 500 Hz pure tone, when using spike counts derived from
the Wang model—see [82]. The circling can be clearly seen, although the image
looks noisier than the original model, what results from the probabilistic nature of
the spikes.
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Fig. 10 Output of the Lindemann cross-correlation for a low-frequency pure tone of 500 Hz, a
original input, b spike-trains derived from an auditory model. A positive/negative Lindemann cross-
correlation time-delay indicates a sound-source positioned right/left of the median-sagittal plane of
the head. A sound source, circling the head once per second leads to a deviation of max. 0.441 ms
in the cross-correlation time-delay

As the localization of a pure sine wave is a somewhat artificial example, the
model was also tested with speech sounds. Results are illustrated in Fig. 11a. When
this sentence is radiated from the moving speaker, it can be well localized using the
Lindemann cross-correlation even with ANF spike count inputs simulated with the
NH-listener model in the 200-Hz low-frequency region.
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Fig. 11 NH-listener localization of a moving speaker saying the German sentence “Britta gewann
drei schwere Steine”. b Short-time spectrogram of the acoustic input signal in a 200-Hz band,
a corresponding Lindemann cross-correlation using ANF spike counts. Note the fricatives /s/ and
/sch/ occurring at 1 and 1.4 s in the 200-Hz-band spectrogram, do not provide enough energy for
the Lindemann model to localize

Localization with Cochlear Implants

As sound localization in complex acoustic environments is still poor for most of
the CI users, the question arises if—and if yes, how well—today’s coding strategies
can preserve binaural cues. In the following, two commercial coding strategies are
compared, namely, MED-EL’s former CIS strategy and their current FS4 strategy.

Speech samples derived from the binaural signal generator were processed with
the speech processor and the two coding strategies—see Fig. 7. The ideal assumption
was made that both ears, implants and fittings were identical. Before the electrically-
evoked spike responses of the ANF is calculated, the electrode-stimulation patterns
can be used as inputs to the Lindemann cross-correlation. This is advantageous when
comparing coding strategies as no neuronal model is required yet, allowing us to track
the point at which the binaural localization cues are compromised.

Figure 12 shows that the Lindemann model fails to localize the speech sample
in the case of the CIS strategy, but succeeds in the case of FS4. Therefore, it can
be concluded that FS4, with its fine structure channels, preserves the temporal-fine-
structure-ITD cues needed for localization, but CIS does not. In the case of the CIS
strategy, the Lindemann cross-correlation only outputs values at multiples of 0.6 ms,
which is due to the CIS stimulation rate of ≈1,600 pulses per second in each channel.
For FS4, the Lindemann correlation shows a time-delay resolution of ≈0.2 ms. This
is possible because the FS4 strategy breaks-up the CIS rule and dedicates a higher
sampling rate to the FS channels.

The FS4 coding strategy itself preserves localization cues. However, it is still pos-
sible that the CI-electrode crosstalk—see Sect. 2.2—deteriorates sound localization
cues. For that reason the ANF module was added to the model, and the response for
the electrically-evoked hearing was processed further with the Lindemann module.
Figure 13 shows results from two different locations, the first next to electrode #2 at
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Fig. 12 Speech-localization comparison of different coding strategies with the German speech
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sound localization to the CI user. a CIS electrode 2. b FS4 electrode 2
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Fig. 13 Lindemann cross-correlation with ANF-spike-count input of two locations. Location (a) is
directly at electrode #2 at 26.9 mm from base, and (b) between electrodes #3 and 4 at 23.8 mm
from the base. The speech-sample input was processed by the FS4-coding strategy. From that
data the circling source movement can be identified, but the Lindemann cross-correlation is much
more distorted than the NH-listener example from Fig. 11a. The channel crosstalk occurring in
electrical stimulation—see Sect. 2.2—is one of the reasons for deterioration of the Lindemann
cross-correlation

26.9 mm from the base and the second between electrodes #3 and 4 at 23.8 mm from
the base. Compared to the NH case and to electrode-stimulation patterns, results are
worse, but the main shape is still observable—which is indeed a major breakthrough
for a fully-featured coding strategy for speech input. In less ideal cases, the location
cues deteriorate. This is visible at the more basal location, which lies between two
electrodes and also gets more input from the CIS electrodes due to electrical crosstalk.
If left and right electrodes were inserted at different depths, position mismatch could



326 M. Nicoletti et al.

further reduce correlations. However, as yet it not clear how much mismatch can be
counterbalanced by the brain’s ability to adapt to unusual cues as long as they are
consistent.

4 Discussion and Conclusion

This chapter describes a framework to evaluate the extent as to which features
required for sound localization are preserved by cochlear-implant coding strate-
gies. Where a correlation model similar to the one proposed by Jeffress [38] is most
likely implemented in the barn owl, investigations of the mammalian neuronal sound-
localization pathway indicate that humans probably have two systems that extract
ILDs and ITDs separately, and probably not with coincidence neurons to estimate the
interaural cross correlation—for a review see [31]. Nevertheless, even if the neuronal
processing schemes to extract cues for sound localization are still not yet completely
understood, it is quite clear that ILDs and ITDs are extracted somehow. This inves-
tigation focused on the evaluation of ITD cues and used the model proposed by
Lindemann. Thus, there is little doubt that the fundamental findings derived from
this procedure hold true even if actual neuronal systems process localization cues
somewhat differently.

The Lindemann model was adopted in such a way so that it can process electrical
pulse-trains and neuronal spike trains. The analysis was limited to the low-frequency
range where neuronal responses exhibit strong phase-locking. At low frequencies,
level differences are usually small and ITD processing is assumed to be often dom-
inant in human sound localization [3]. The results presented here show that ITD
coding works well also for neuronal spike trains despite their probabilistic behavior.
For auditory-nerve spike trains, the Lindemann cross-correlation is more variable as
compared to its original input—see Fig. 10a—nevertheless, ITDs are clearly coded.
This holds true not only for pure tones but also for complex speech sounds—compare
Fig. 11a.

When electrical pulse trains delivered from a CIS coding strategy for one cochlear
implant channel was analyzed, it was observed that ITD coding breaks down
completely—compare Fig. 12a. This is not surprising, because the pulse train deliv-
ered to a single channel, here 1,600 Hz, codes the temporal envelope of the filtered
sound signal and was never intended to provide ITD cues with sufficient precision.
Given that the left and right processors are not synchronized, the time difference
between left and right pulse train is arbitrary and is likely to change over time due
to small deviations of the internal clock frequencies.

However, it is known that CI users are indeed able to localize sound sources, albeit
less precisely than normal-hearing subjects [39, 61]. CI users almost exclusively use
ILDs [70, 80], which was excluded in this investigation. The model results coincide
partly with these findings. The Lindemann model was not able to predict sound
localization based on ILD cues for CIS strategies, because the cross-correlation
mechanism locked on the temporal structure of the signal—see Fig. 12. The temporal
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precision of the pulse trains from a CIS strategy is not sufficient for, and may even
be detrimental to, sound localization. Therefore, ITDs must be ignored by CI users
with CIS strategies, if the neuronal system is able to extract them at all at the high
stimulation rates used in contemporary CIS strategies.

Nevertheless, FS coding strategies might indeed be able to transmit ITDs with
sufficient temporal precision. For instance, the FS4 strategy tested here was found
to provide useful ITDs coding, at least at the level of the pulse train of a single
electrode—compare Fig. 12. The temporal precision is ≈0.2 ms, which is consid-
erable higher than for the CIS strategy due to the higher sampling rate dedicated
to the FS channels. When the responses at the level of neuronal spike trains were
analyzed—compare Fig. 13—a large degradation of the ITD coding caused by chan-
nel crosstalk was found. Therefore, channel crosstalk does not only lead to a spectral
smearing of the information but also affects the precision of temporal coding. Where
this model predicts that, at least in the best case scenario, there is at least some ITD
information left in the neuronal excitation pattern of the auditory nerve, it is unclear if
and to what extent this information can actually be extracted by the auditory system.

In summing up, the model proposed in this chapter generates spiking auditory
nerve responses and provides a quantitative evaluation of temporal cues for sound
localization. The ability of the sound-localization model to process neuronal spike
trains makes the model very versatile. It is possible to evaluate not only responses
of the intact ear but also of the deaf inner ear provided with a cochlear implant.
The model delivers quantitative data and therefore enables comparisons between
different cochlear implant coding strategies. As the model of electric excitation of
the auditory nerve also includes effects such as channel crosstalk, neuronal adaptation
and mismatch of electrode positions between left and right ear,2 its predictive power
goes far beyond pure analysis of the output patterns of implants, which is how
contemporary coding strategies were developed. Nevertheless, up to now, this model
only extends up to the level of the auditory nerve and can, thus, not answer the question
of whether ITDs can still be processed by higher levels of the auditory pathway.
Where this final evaluation always has to be done with CI users, this framework
provides important answers to the question of how well binaural cues are coded
at the first neuronal level, and it allows the design and even the emulation of the
required listening experiments. Given the long development cycles including design,
fabrication, approval, implantation, and finally extensive measurements in a large
group of CI users to yield statistically significant results, the benefit of this approach
cannot be overestimated.
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Binaural Assessment of Parametrically Coded
Spatial Audio Signals

M. Takanen, O. Santala and V. Pulkki

1 Introduction

The target of spatial audio reproduction is to deliver to the listener the aspects of
spatial sound audible to a human listener with or without modifications. Different
methods to reproduce a sound scene over a multichannel loudspeaker setup have
been developed over the years [7, 24, 43]. Some of the methods aim at physically
accurate reproduction at all audible frequencies. The sound field reproduced by
the loudspeaker setup should thus equal the sound field in the recording position.
Unfortunately, due to the vast frequency range audible of human hearing covering
frequencies approximately from 20 Hz to 20 kHz, such techniques lead into solutions
where hundreds or thousands of microphones and loudspeakers are needed [15],
which is in most cases not feasible due to the cost, size, and difficulty of use of such
ensembles.

When such a target for reconstruction is set, it is implicitly assumed that humans
can perceive the spatial characteristics of a sound field in great detail. As humans have
only two ears, and as it is known that spatial hearing has many limitations depending
on time, frequency, and signal content [8], it can be assumed that such accuracy
in the sound-field reproduction is not necessary for transparent audio reproduction.
This assumption has been taken into account in recent spatial sound reproduction
techniques that parametrize the spatial properties of the sound in time-frequency
domain and use that information for compression and for enhancing the quality of
the reproduction [12, 27, 39]. Although the aforementioned processing yields in
prominently better sound reproduction quality than the traditional methods [51], in
some cases these techniques may introduce new types of artifacts in the reproduction.
Namely, the spatial image may become too wide or too narrow [34, 35], or the
spatial image may not remain stationary in some signals [35]. Further, musical-noise
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effects, also called spatial bubbling, where short segments of sound appear at random
directions, may be introduced [39].

As the techniques have been developed by using some assumptions taken from
psychoacoustics, the only currently valid method for measuring the audibility of such
artifacts is the use of human listeners in formal psychoacoustic tests. An appealing
alternative for this time-consuming process would be the use of a computational
signal-driven binaural auditory model [13], and this chapter shows some successful
results in assessment of artifacts caused by spatial audio reproduction techniques
using such an auditory model.

This chapter describes some main techniques for time-frequency processing of
spatial audio, having focus on the reproduction of spatial sound recorded in a single
position. In addition, the related time-frequency-domain multichannel audio-coding
techniques are discussed briefly, and the typical artifacts that may occur with such
techniques are described. Finally, the binaural model that is used in the study is
described and applied in the analysis of the artifacts.

2 Parametric Time-Frequency-Domain Spatial Audio Techniques

The basic assumption of all techniques considered here is that the directional resolu-
tion of spatial hearing is limited within each auditory frequency band [8]. In principle,
all sound within one critical band can only be perceived as a single auditory event
with broader or narrower extent. In some special cases, a binaural narrow-band sound
stimulus can be perceived as two distinct auditory objects, but the perception of three
or more concurrent objects is generally not possible [8]. This is different from visual
perception, where the detection of the directions of a large number of visual objects
sharing the same color can be performed even by using only one of the eyes.

The limitations of auditory perception imply that such spatial realism needed in
visual reproduction is not needed in audio. In other words, the spatial accuracy in the
reproduction of an acoustical wave field can be compromised without decreasing the
perceived quality. The common schematic of all techniques exploiting this assump-
tion is presented in Fig. 1. The microphone signals from a real sound scene recording,
or the loudspeaker signals in an audio file, are transferred into time-frequency domain,

Time-frequency
analysis

Spatial
analysis

Signals in
time-frequency
domain

Microphone or
loudspeaker
signals

Spatial
synthesis

Spatial metadata
in time-frequency
domain

Loudspeaker
or headphone
signals

Fig. 1 Schematic of a parametric time-frequency-domain spatial audio reproduction technique
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where a spatial analysis is conducted. The resulting spatial metadata is then utilized
in the sound reproduction. The synthesis may target to reproduce the sound scene as
such, or to perform modifications, such as spatial filtering [18] or other effects [37],
to the reproduced scene.

The techniques have some similarities with the human hearing mechanisms,
namely, the input signals are divided into time-frequency domain and the spatial
properties of the input are analyzed. However, often the input is not binaural but
consists of more than two audio channels. Moreover, the synthesis of audio signals
has no direct analog in human hearing. The techniques can thus be thought to have
a model of hearing embedded inside them, although they are not actual applications
of functional models of hearing mechanisms.

The techniques can be divided into two classes, one consisting of methods that
take audio files generated for reproduction over a loudspeaker setup as input, whereas
the methods belonging to the other class use microphone signals as input. The major
difference is that the first class deals with some differences between the audio chan-
nels, while the second class typically analyses some properties of the sound field,
such as direction and diffuseness. The classes are described in different subsections
below.

2.1 Processing of Multichannel Loudspeaker Audio Signals

This subsection considers the techniques that are designed to process files containing
audio signals to be reproduced over loudspeakers. Typically, the files are either two-
channel stereophonic audio content, or 5.1-surround audio content.

Conversion of Spatial Audio Content for Different Loudspeaker-Listening
Setups

Early attempts for parametric spatial audio reproduction in general were made in
[2], where a stereophonic two-channel audio content was upmixed to a 5.1-surround
loudspeaker setup. More specifically, the two signals of stereophonic content are
transferred into time-frequency domain, and the ambience and direct components are
extracted and synthesized to the 5.1-system with different techniques. The ambient
components are applied to all loudspeakers after loudspeaker-specific decorrelation,
which targets at reproducing ambient sounds in such a manner that the listener would
perceive them to arrive from all directions. The direct components are applied to the
loudspeaker setup using amplitude panning [9], which targets at producing a point-
like perception of the direct components. A number of upmixing solutions have been
suggested after the first attempts—see, for example, [3, 4, 17].

The first solution was targeted to process two-channel stereophonic recordings,
after which different approaches have been proposed to transfer audio material
between different multichannel loudspeaker layouts. All of the approaches process
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the input from a file in time-frequency domain to be listened with a certain mul-
tichannel loudspeaker setup, and analyze some spatial parameters that are used in
the generation of the output for another multichannel loudspeaker setup—see, for
example, [27].

Compressing Multichannel Audio Signals

The coding techniques for spatial audio take multichannel audio signals as input,
such as stereophonic two-channel, or 5.1-surround audio signals, and compute some
metadata based on the input [16, 21, 26, 31, 44]. The metadata are transmitted with
a downmix of the input channels, and the decoder renders the audio signals to a
loudspeaker setup identical with the original setup using the metadata. The target
of the processing is to reduce the data rate in the transmission, while reproducing
the original audio content perceptually similarly in a corresponding loudspeaker
listening setup.

The metadata consists of inter-channel time and level differences [16, 31], or of
directional vectors computed as energy- or magnitude-weighted sums of the loud-
speaker directions [26]. In listening tests, such techniques have produced good quality
reproduction of typical sound materials, with high reduction of the data rate in the
transmission [31].

2.2 Reproduction of Recorded Spatial Sound

These techniques assume the input to originate from some microphones typically in
coincident or near-coincident positioning with known arrangement in a real or sim-
ulated sound field. The knowledge of the microphone arrangement makes it possible
to estimate some directional properties of the sound field in each frequency band. The
properties are then encoded as metadata as in Fig. 1, and used in the reproduction for
different applications, targeting either different or similar perception of the spatial
properties of sound.

The techniques that compress multichannel audio signals can be used in this way
as well. It should be noted that the techniques are not directly applicable as a tool
for sound reproduction from microphone signals. However, if such microphones
would be used, which have the directional patterns matched with a loudspeaker
setup as suggested in [25], the result of the analysis would be very similar with para-
metric spatial sound reproduction techniques. Some methods have also been pub-
lished that focus on how to transform the metadata obtained from directional audio
coding, defined below, into such metadata consisting of inter-channel differences
[23, 30].
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Representation of Spatial Properties with Direction
and Diffuseness Parameters in Time-Frequency Domain

Directional audio coding, DirAC, [39] has been proposed recently as a signal process-
ing method for spatial sound. It is applicable for spatial sound reproduction for any
multichannel loudspeaker layout, or for headphones. The steps included in DirAC
processing are described here in detail due to the fact that in this work the parameters
of DirAC are modified to illustrate artifacts caused by suboptimal settings.

In DirAC, it is assumed that at one time instant and at one critical band, the
spatial resolution of the auditory system is limited to decoding one cue for direction
and another for interaural coherence. It is further assumed that, if the direction and
diffuseness of a sound field is measured and reproduced correctly, a human listener
will perceive the directional and coherence cues correctly. Thus, a microphone system
has to be used in the sound recording, which allows the analysis of direction and
diffuseness for each frequency band.

First-order B-format signals can be used for such directional analysis and are
typically utilized in DirAC implementations. The sound pressure can be estimated
using the omnidirectional signal, w(t), as P = ◦

2W , expressed in the short-time
Fourier transform, STFT, domain. The figure-of-eight signals, x(t), y(t), and z(t),
are grouped in the STFT domain into a vector, U = [X,Y, Z ], which estimates the
3-D sound field velocity vector. The energy, E , of the sound field can be computed as

E = ρ0

4
||U||2 + 1

4ρ0c2 |P|2, (1)

where ρ0 is the mean density of air and c is the speed of sound. The capturing of the
B-format signals can be obtained with either coincident positioning of directional
microphones, or with a closely-spaced set of omnidirectional microphones. In some
applications, for instance, in simulated acoustics, the microphone signals may be
formed in the computational domain. The analysis is repeated as frequently as needed
for the application, typically with the update frequency of 100–1000 Hz.

The intensity vector, I, expresses the net flow of sound energy as a 3-D vector, and
can be computed as I = PU, where (·) denotes complex conjugation. The direction
of sound is defined to be the opposite direction of the temporally integrated intensity
vector at each frequency band. The direction is denoted as the corresponding angular
azimuth and elevation values in the transmitted metadata. The diffuseness of the
sound field is computed as

ψ = 1 − ≈Eτ {I}≈
cEτ {E} , (2)

where Eτ is the expectation operator. Typically, the expectation operator is imple-
mented with temporal integration. This process is also known as smoothing. The
outcome of (2) is a real-valued number between zero and one, characterizing if the
sound energy is arriving from a single direction or from all directions.
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In the reproduction, each frequency channel is divided to diffuse and non-diffuse
streams by multiplying the original stream with ψ at a corresponding channel. The
non-diffuse stream is then reproduced with amplitude panning, and the diffuse stream
by applying the signal to all loudspeakers after phase decorrelation. The gain factors
for each loudspeakers are computed with vector base amplitude panning, VBAP, [38]
and they are stored to a vector ĝ. To avoid nonlinear artifacts due to fast changes in
the values of gain factors, a temporal smoothing operation is applied to obtain the
gain factors,

g = Eτ (ĝ), (3)

to be used in amplitude panning. Here, τ is the time constant applied in the temporal
averaging process. Two variations of DirAC are used in this study. In mono-DirAC,
the W signal is used in amplitude panning, and in B-format-DirAC, instead of basic
amplitude panning, the gain factors in g are used to gate the virtual cardioid signals
facing the directions of the loudspeakers in the reproduction setup. Mono-DirAC
is typically used in teleconferencing, as it minimizes the number of transmitted
audio signals to a single channel, however, the generated virtual sources may suffer
from slight directional instability [1]. In B-format-DirAC, all B-format channels are
transmitted. This increases the transmission rate, but the virtual sources are more
stabile [34, 39, 51].

Systems Utilizing Two or More Directions

High angular resolution planewave expansion, Harpex, which is a method to repro-
duce B-format signals for binaural listening, has been proposed in [5]. The method
is very similar to DirAC, however, differing from the basic assumptions in DirAC,
it is not assumed that there is a single plane wave with superposed diffuse sound,
but instead, it is assumed that the sound field consists of two plane waves arriving
from different directions with different amplitudes. The directions and amplitudes
are computed from the B-format signals, and they are used as metadata in the repro-
duction. It is stated in [5] that the quality obtained in headphone reproduction is much
higher than with traditional conversion from B-format to headphone reproduction.

A version of DirAC utilizing estimation of signal parameters via rotational-
invariance parameters, ESPRIT, from linear microphone arrays has been also pro-
posed [49]. The use of ESPRIT makes it possible to analyze in principle any number
of directions to be used in the DirAC metadata.

Wiener-Filtering-Based Methods

A method has been proposed to obtain narrow directional patterns from two cardioid
microphones facing opposite directions, which is based on the assumption that at
a single auditory frequency band the microphone signals consist of a mixture of a
single plane wave and ambient sound. The system computes the degree of similarity
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of sound in frequency channels based on cross-correlation, and removes the signal
of the back cardioid from the front cardioid with a controllable level using Wiener
filtering [18]. The width of the directional pattern can be controlled efficiently with
this approach in the case where only a single plane wave arrives to the microphone
system, and much narrower patterns than the cardioid pattern can be obtained in this
way. When the captured field consists only of diffuse sound, the processing does not
change the directional pattern of the output signal, which thus remains as the cardioid
pattern. This approach has been utilized in a commercial shot-gun microphone [22].

The Wiener-filtering-based approach can be used to transform a B-format signal
into loudspeaker signals, as such cardioid signals can be derived from a B-format
signal to arbitrary directions [19]. A technique to produce multichannel loudspeaker
signals out of stereophonic recordings with known microphone directivities has been
proposed in [20], which quite largely follows the same principle. It was also shown
that directional metadata compatible with Fig. 1 can be produced as well.

3 Spatial Artifacts Specific to Parametric Spatial Audio
Techniques

The spatial audio techniques described above are all signal-dependent. Typically, the
system steers the sound signal to different loudspeakers based on the properties of
the input signals. The output signals may also be decorrelated to obtain the level of
diffuseness in the resulting sound field that matches with the original sound field.
In the development phase of the methods, the parameters are to be selected in such
a way that the artifacts are not audible, however, in some cases, they might still be
audible with some critical input signals.

The spatial parameters computed in the analysis phase of the methods may vary
rapidly with time. Typically, their time functions are smoothed, for instance, by
using first-order low-pass filters, the time constants of which are in a range of 10–
100 ms. The parameter that controls the direction of sound source, or similarly, the
loudspeaker channel to which the sound is applied, is considered first. The selection
of this time constant is a trade-off between the accuracy of the parameter and the
capability to respond to fast changes in the sound input. The longer is the temporal
averaging, the better is the analysis result of steady-state sound input in terms of
tolerance to background noise or distracters. However, in some cases, the signal
conditions change rapidly, such as in surrounding-applause recording, or in the case
where there are many ongoing sound sources active, such as with two simultaneous
talkers. The time constants should thus be selected to follow the human spatio-
temporal resolution, which is sometimes challenging to achieve, as the resolution
may depend on the signal as well [8].

In such spatially-fast-changing-signal cases, some artifacts may occur. With mul-
tiple concurrent sources, the auditory images may migrate towards each other, and
typically, a narrower auditory scene is perceived [34]. In addition, the perceived
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direction of the auditory object may move depending on other simultaneously occur-
ing sounds, which is generally perceived to be annoying. Moreover, it has been found
in informal listening that experienced listeners may in some cases perceive movement
in only certain frequencies of the sources.

As discussed above, some of the spatial audio techniques have a specific method
to generate surrounding diffuse sound for a higher number of loudspeaker chan-
nels than there are audio signals delivered to the decoding phase—in practice,
the loudspeaker signals are decorrelated by, for instance, convolution with a short
loudspeaker-channel-specific burst of noise. In real rooms with a relatively long
reverberation time, the reverberant tail after the offset of the sound event is perceived
to be surrounding the listener. Consequently, the target for the reproduction would
be to reproduce such surrounding effect. If there are some shortcomings in the decor-
relation process, different spatial artifacts may occur [36, 39]. For instance, in some
cases, the auditory image evoked by the reverberant tail is perceived to be decreased
in quality, or the reverberant field is perceived as having different width depending
on the listening position.

A related artifact occurs with surrounding applause signals, which has been con-
sidered to be a major challenge in multichannel audio coding [11, 32, 33]. The
characteristic signal condition causing a new type of artifact in such signals is the
case where multiple claps originating from different sources are present very closely
in time, and the methods analyze the sound to have low coherence or high diffuseness.
In the synthesis of sound, the individual claps are decorrelated, which replaces the
impulse-like claps with noise bursts. In [33] it was shown that surrounding applause
signals can be reproduced using parametric spatial audio techniques, if the time
resolution is made fine enough.

The changing of the listening position may introduce some artifacts to the repro-
duction as well. One of the reasons for developing time-frequency-domain audio
techniques is to extend the listening area in which the quality of the reproduction
is good, as compared to the traditional audio techniques that typically have a small
sweet-spot. The artifacts introduced by off-sweet-spot listening are therefore most
prominent in traditional techniques [1]. A typical artifact is that the loudspeakers
nearest to the listener dominate the scenario and most of the sound is perceived to
be emitted from the directions of those loudspeakers. Overall, the directions of the
sounds in the scenario are inconsistent and fluctuate between the intended direction
and the directions of the loudspeakers nearest to the listener.

4 Monitoring Spatial Artifacts with a Binaural Model

In this section, a binaural auditory model [46] is briefly introduced, and several sim-
ulated test scenarios are used to show the abilities of the binaural auditory model in
assessing the perceived quality of spatial sound reproduction methods and monitor-
ing the existence of artifacts in the reproductions. The model was applied to signals
obtained from reference scenarios as well as simulated scenarios produced with
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Fig. 2 Schematic structure of the binaural auditory model that was used in the analysis of the
audio-coding techniques. For simplicity, only the pathways leading to the activation projected to
the left hemisphere are shown

different spatial sound reproduction methods, and the differences of the model out-
puts were analyzed. The parametric audio-coding techniques included in these tests
are DirAC [39], Harpex [6], and the Wiener-filtering-based Faller method [19]. The
first and second-order Ambisonics [24] reproductions were included in one of the
tests to illustrate an additional artifact.

4.1 Model Structure

The spatial sound scenarios for the simulations explained later in Sect. 4.4 were
analyzed with a binaural auditory model based on the count-comparison principle.
The functionality of the model used is explained in detail in [41, 46]. The overall
structure of the model is illustrated in Fig. 2, and the model parts are briefly introduced
and explained in this section.

The binaural input signal is fed to the two models of periphery, one on each
hemisphere, containing a nonlinear cochlea model [50] and a model of the cochlear
nucleus. Each periphery model feeds the signal to the models of the medial superior
olive, MSO, and lateral superior olive, LSO, as depicted in Fig. 2. These model the
brainstem nuclei found in the human brain and their functionality is based on neuro-
physiological studies. They account for the spatial cue decoding. The MSO and LSO
models extract spatial cues from separate narrow bandwidths, and, additionally, the
wide-band MSO model gathers together spatial information from a wide frequency
range. These same MSO and LSO models are included both on the left and the right
hemisphere.

After these blocks that model the functionality of the first parts of the auditory
pathway in the brains are several functions that are motivated by knowledge obtained
from psychoacoustic listening experiments. These functions use the spatial cues from
the MSO and LSO models and combine them with spectral cues from the periphery
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models based on the way the human auditory system analyzes such information. As
output, the functions produce a binaural-activity map that is a topographic projection
of the binaural input signal on a map. The location of the left/right activation shown
in the map indicates the spatial arrangement of the sound scenario, and different
colors/grey-shades are used to represent different frequency regions. It should be
noted that all the outputs of the model presented in this chapter were obtained by
using the model with the same parameters.

4.2 Examples of Model Functionality in Typical
Listening Scenarios

In order to illustrate the functionality of the model and the appearance of the binaural-
activity map, the outputs of the model for a few example scenarios are presented in
Fig. 3. Two types of maps are used in this chapter. In the first type, the binaural-
activity map shows the instantaneous activation viewed having left–right dimension
in the abscissa, and time in the ordinate. In the second type, the binaural activation in
each cell of the map is averaged over time. The map shows the left–right coordinate in
the abscissa, and in this case the ordinate denotes the frequency region. The different
colors/grey-shades on the map represent the different frequency regions, the division
of which is illustrated in Fig. 3e. Positive values on the x-axis correspond to activation
on the right hemisphere, meaning that in that case, the spatial location of the auditory
event is on the left of the listening point, and negative values correspond to activation
on the left hemisphere.

All of the samples of this study were simulated using measured head-related
transfer functions, HRTFs, of a Cortex–MK2 dummy head. This HRTF database,
having a five-degree resolution, was employed in the development of the model
and was therefore deemed suitable for the simulations as well. Figure 3a shows the
binaural-activity map for short pink noise bursts presented to the model using HRTFs
from different azimuthal directions from 0≤ to 90≤. When the sound is emitted from
0≤, the activations of all the frequency regions can be seen to be located in the
center. As the location of the pink noise burst moves to the right, the activations
of all the frequency regions shift towards the left hemisphere, and gradually, with
directions from 60≤ to 90≤, the activations become more spread. This reflects the
human perception in the sense that the localization accuracy is good for frontal
directions and less accurate for directions at the sides [8].

Figure 3b shows the activation of two simultaneous speakers that were presented
to the model from directions of ±30≤ using HRTFs for the simulation. In informal
listening, the scenario was perceived to have two spatially separated speakers that
were localized close to their correct positions, which is in line with the result from
a listening experiment [29] where test subjects were able to localize one of two
speech sources with a resolution of ±10≤ in a similar scenario. Correspondingly, the
activation of both speakers can be distinguished separately in the binaural-activity
map, one speaker on each hemisphere.
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Fig. 3 Binaural-activity maps obtained with the binaural auditory model [46] for three different sce-
narios, namely a pink noise bursts emitted from different azimuthal directions, b two simultaneous
speakers positioned at ±30≤, and a diffuse field produced with pink noise emitted simultaneously
from 12 directions in the horizontal plane. The last-mentioned scenario is shown both with c acti-
vation location as a function of time and with d distribution of activation as a function of frequency
region. The color/grey-shade codes for different frequency regions are illustrated in e

The third example is illustrated in two different ways in Fig. 3c, and d. The figures
show the activation caused by a diffuse sound field formed with having pink noise
emitted from twelve azimuthal directions at 30≤ interval all around the listening posi-
tion simultaneously for a duration of two seconds. The presentation style of Fig. 3c
is similar to the above-mentioned examples. It should be noted that the activations
evoked by the sound sources behind the listening position are mapped on the same
map with no distinction between the front and back. The activation is spread over
a wide range, however concentrated on some specific areas, which corresponds to
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human perception of a spatially distributed auditory event when the head remains
stationary. Moreover, it can be seen that different frequency regions cause activation
at different locations, the lowest frequencies concentrated on the sides and the high-
est in the center area. This is in line with observations made in informal listening of
high-pass filtered incoherent noise with varying cut-off frequency. The same kind
of behavior is illustrated in the distributions of activation as a function of frequency
region depicted in Fig. 3d.

4.3 Generation of Test Samples

All of the test cases of this study included a reference, that is, the original scenario,
as well as several reproductions of the corresponding scenario over a multichannel
loudspeaker system in a manner that the signals to the loudspeakers in these reproduc-
tions were obtained with different audio-coding techniques. Moreover, a B-format-
microphone recording of the original scenario was simulated to obtain compatible
signals for the different audio-coding techniques. The signals were then encoded
and decoded with the techniques in order to obtain the signals for the reproduction.
Finally, the loudspeakers of the multichannel loudspeaker setup were simulated as
point sources using the HRTFs of the corresponding directions.

The B-format recording of a given test sample was simulated by computing the
components of the 1st-order-B-format-microphone recording following
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where θi and γi denote the azimuth and elevation angles, respectively, from which
the given sound event, xi , belonging to the test sample was simulated to be emit-
ted from. It should be noted that a 2nd-order-B-format-microphone recording was
simulated to obtain signals for the 2nd-order Ambisonics reproduction. The signals
to the loudspeakers for the Ambisonics reproductions were obtained by following
the re-encoding principle [14], that is, by creating a decoding gain matrix of the
B-format components for the different loudspeakers as specified by their azimuth
and elevation angles according to (4), and by multiplying signals of the simulated
B-format recording with the pseudo-inverse solution of the matrix created. Effec-
tively, in the implementation used, the directivities of the loudspeaker signals of the
Ambisonics reproductions match with the ones of hypercardioid microphones. The
samples processed with DirAC and the Faller method were obtained with the help
of the developers of the methods. Additionally, an online audio conversion service
[28] was used to derive the Harpex encoded signals to the loudspeaker setups from
the simulated B-format recordings.
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4.4 Modeling Results of the Tested Scenarios

Two Simultaneous Speakers

A reference scenario of two simultaneous speakers, a male and a female located at
±30≤, was simulated using HRTFs and anechoic samples of speech. The different
audio coding techniques were used to derive the signals for a 5.0-loudspeaker system
having loudspeakers at directions of 0≤, ±30≤, and ±90≤. The reproduction with
such a system was then simulated using HRTFs of the corresponding directions.
The directions of speech sources was selected to coincide with directions of two of
the loudspeakers in the setup. In this way, the reference condition equals to ideal
reproduction of the sources using the loudspeaker setup, which also equals to natural
listening of two sources in anechoic conditions. This makes the comparison more
straightforward than comparing to reference condition having two virtual sources in
corresponding directions.

Figure 4 illustrates the binaural-activity maps obtained for the reference scenario
and the reproductions with the different audio coding techniques. All of the activity
maps show slightly spread activation on two different areas, one on each hemisphere.
The activation changes temporally according to the utterances of the two speakers.
The reference scenario in Fig. 4a is the same scenario that was presented in Fig. 3c,
and as was observed above, the two speakers and their separate utterances can be
distinguished in the activity map. The scenario is perceived relatively similarly with
all reproduction methods as compared to the reference, one of the speakers localized
on the left side and the other on the right. The similarity of the activity maps reflects
this perception. However, some differences between the methods exist, both in the
perception of the scenarios and in the activity maps.

The scenario reproduced with mono-DirAC is perceived as having a small but
noticeable shift in the speaker locations towards the center [1]. This is due to the
averaging of the intensity vector over time in mono-DirAC encoding. Moreover, at
some time-frequency bins, the signal contents of the two speakers overlap, resulting
in averaged direction angle and increased diffuseness parameter. As a result, the
sound of that time-frequency bin is reproduced partly from all loudspeakers after
the decorrelation. In the activity map of the mono-DirAC reproduction in Fig. 4b,
the activations are shifted slightly towards the center as compared to the reference,
reflecting the above-mentioned observations.

The Harpex reproduction of a similar scenario as presented here was evaluated
in a listening experiment with a female and a male speaker at ±30≤ [48]. There, it
was found that the perception is very similar to that of the reference scenario. This
is in correspondence with the fact that Harpex is designed to be able to accurately
detect the directions of arrival of two simultaneous plane waves within each frequency
band by paying attention to the phases of the signals [5, 47]. Hence, Harpex performs
well in such scenarios as the present one containing two sound sources in anechoic
conditions. This is reflected in the activity map in Fig. 4c, which is almost identical
to that of the reference scenario.
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Fig. 4 Binaural-activity maps obtained with the binaural auditory model for the reference scenario
of two simultaneous talkers at ±30≤ and the reproductions of such a scenario with a 5.0-loudspeaker
system employing signals obtained with different audio coding techniques from a simulated B-
format recording

The two speakers in the scenario reproduced with the Wiener-filtering based Faller
method were perceived in informal listening as point-like but shifted considerably
towards the center as compared to the reference scenario. The signals of each loud-
speaker were separately listened, and it was noticed that the signal in the loudspeaker
at 0≤ contained both speaker signals with relatively high level—leading into migra-
tion of virtual sources towards the center. Figure 4d presents the activity map for
the Faller method reproduction. There, temporally changing activation areas in both
hemispheres corresponding to the two speakers can be found, albeit having shifted
towards the center, following the perceived changes in informal listening. The exis-
tence of both speaker signals in the signal for the center loudspeaker at 0≤ is mainly
explained by the look directions of microphones that the Faller method derives for
the loudspeaker layout from the B-format microphone input. More precisely, the
look directions of the microphones for the loudspeakers at ±30≤ do not point to the
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directions of the two speakers, instead they point to the directions of ±60≤. In order
to illustrate this effect caused by the look directions, the reproduction of an additional
scenario having the two speakers at ±60≤ was simulated for the Faller method. The
resulting binaural-activity map depicted in Fig. 5b shows that the two activation areas
are now separated on different hemispheres, similarly as in the reference shown in
Fig. 4a.

Two Simultaneous Speakers Reproduced with Suboptimal
Parameters

In the development of audio coding techniques, there is often a need for tuning various
parameter values in order to find the optimal ones for high-quality reproduction. The
effects that the tuning introduces to the auditory image may have to be analyzed by
comparing the different versions by listening to the reproduction in all cases. This is
a time-consuming task and, therefore, binaural auditory models potentially offer an
attractive alternative. In order to demonstrate the capability of the binaural auditory
model and the binaural-activity map to aid in the development of the audio-coding
techniques, the previously used scenario with two speakers was simulated with three
different suboptimal parameters in mono-DirAC reproduction as an example. The
changing of the parameter values caused visible effects to the binaural-activity maps,
and these effects were compared to perceived artifacts in informal listening.

The binaural-activity maps depicted in Fig. 6 illustrate how the quality of the
DirAC reproduction decreases when suboptimal parameter values are used in the
processing. When the decorrelation of the diffuse stream is switched off, the diffuse
stream is reproduced coherently from all of the five loudspeakers. When listening to
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Fig. 6 Binaural-activity maps obtained with the binaural auditory model for the mono-DirAC
reproduction employing suboptimal parameters with a 5.0-loudspeaker system. The scenario is the
same as in Fig. 4

the scenario, the increased coherence of the loudspeaker signals results in a shift of the
perceived auditory images towards the center area, and the directions of the speakers
fluctuate instead of being point-like. Similar changes can be seen in the binaural-
activity map of the scenario in Fig. 6b—the activation is spread on a narrower area
and there is more activation in the center as compared to the reference.

As mentioned earlier in Sect. 3, the time constant employed in the smoothing of the
directional information affects the stability of the auditory images in the reproduction
and the ability of the method to respond to sudden changes in the sound input.
When the time constant is made 20 times larger than in the normal situation, the
perceived locations of the auditory images of the two speakers are affected. The
spatial separation is lost and both speakers are perceived to be located close to
the direction of the first sound event, that is, the female speaker on the right side.
Furthermore, the locations of the speakers are shifted towards the center due to the fact
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that the directional information used in the positioning of the speakers was computed
as an average of the intensity vector containing values corresponding to directions
on both sides. The binaural-activity map depicted in Fig. 6c shows activation only on
a relatively narrow area in the left hemisphere and the center. This corresponds to the
perception of localizing the two speakers close to the original location of the female
speaker, the activation of which is on the left hemisphere in the reference scenario.

Moreover, in the case of two simultaneous talkers, the time constant affects the
spatial accuracy of the mono-DirAC reproduction more than switching off the decor-
relation of the diffuse stream does. This can be seen by comparing the highly similar
binaural-activity maps depicted in Fig. 6c, and d, where the time constant is kept the
same but the decorrelation is either on or off.

Off-Sweet-Spot-Listening Scenarios

The size of the listening area within which the different audio coding techniques are
able to reproduce the original scenario transparently has been found to vary between
the techniques in perceptual studies [1, 10, 42, 45, 51]. The ability of the binaural
auditory model to reflect this was evaluated by simulating an off-sweet-spot listening
scenario. This was done in a way that the different audio coding techniques were
used to derive signals for a reproduction with a 5.0-loudspeaker system depicted in
Fig. 7a from the simulated B-format recording in a similar manner as previously,
but the simulated scenario was modified so that the listening position was in a point
1.0 m towards the loudspeaker on the right as illustrated in Fig. 7b. The same recording
scenario of two simultaneous speakers at ±30≤ as above was used. In practice, the
different sound sources of the reproduced scenario were simulated as point sources
located in the directions of −90≤, −50≤, −25≤, 0≤, and 90≤, from left to right,
due to the five-degree resolution of the HRTF database employed. Moreover, the
different signals simulated to be emitted from the different directions were delayed
and amplified or attenuated based on the changes in the distances in order to account
for the differences in how long it takes for a sound to reach the listener from a given

(a) (b)

Fig. 7 Simulated reproduction situations for a sweet-spot and b off-sweet-spot listening—1.0 m
to the right—with a 5.0-loudspeaker setup
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location and in the amount the sound emitted from a certain direction gets attenuated
before reaching the listener.

Figure 8 shows the binaural-activity maps obtained with the binaural auditory
model for the off-sweet-spot listening in the reference scenario and simulated with
five different methods. It should be noted that because of the change in the listener
position, the two speakers are simulated to be located directly in front and at −50≤,
that is, to the left of the listener.

In the reference scenario, it was found in informal listening that the two speakers
were localized close to their actual directions of 0≤ and −50≤. The binaural-activity
map in Fig. 8a shows activations in the center and on the right hemisphere, which
correspond to the directions of the two speaker locations and matches with the per-
ception of the scenario. The activations caused by the two speakers are not visually
separable in a straightforward way, but rather, the activation areas are fused together.
Nevertheless, the temporally separate utterances of one of the two speech samples
can be distinguished on the right hemisphere, and the overall activation resembles
that of the sweet-spot listening, only clearly shifted towards the right hemisphere.

When the scenario is reproduced with mono-DirAC, the perception changes as
compared to the reference scenario in a manner that the female speaker directly at the
front is localized slightly to the right while the male speaker remains approximately
at −50≤, corresponding to the observations reported in a listening experiment [1].
The binaural-activity map in Fig. 8b shows the activation in the scenario produced
with DirAC. As compared to the reference, there is some excess activation on the
left hemisphere, indicating that the loudspeaker nearest to the listening position
introduces some diffuseness to the scenario. However, on the right hemisphere, the
spreading of the activation is to a large degree similar to that of the reference scenario.
The overall impression of the activity map corresponds to the perception of the
scenario, as the shifting of the female speaker can be seen in the activity map,
and otherwise, a substantial part of the activation is similar to that in the reference
scenario.

The Harpex reproduction of the scenario was perceived to be very similar to the
reference in terms of spatial impression in informal listening. This is reflected in the
activity map in Fig. 8c, which is very close to that of the reference scenario as well.
The similarity between the Harpex reproduction and the reference is logical since
Harpex has been found to be able to reproduce a similar scenario almost transpar-
ently in sweet-spot listening [48], and even in off-sweet-spot listening, the scenario
presented is optimal for the design principle of Harpex.

In the case of the Faller method, it was found in informal listening that the speak-
ers were perceived to be closer to each other than in the reference scenario. More
precisely, the female speaker was localized directly to the front as is the case in the
reference scenario, whereas the male speaker was localized approximately to the
direction of the center loudspeaker at −27≤. No excess sound was perceived from
the direction of the nearest loudspeaker and it was possible to perceive the speakers
separately. The activity map is presented in Fig. 8d where the activation is concen-
trated on a narrow area, but the overall shape of the activation is close to that of the
reference, illustrating similar observations as in the listening of the scenario.
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Fig. 8 Binaural-activity maps obtained with the binaural auditory model for an off-sweet-spot
listening scenario with different audio coding techniques as depicted in Fig. 7b

Ambisonics was included in the simulation of this scenario, even though it is
not a time-frequency-domain audio technique, in order to illustrate an artifact seen
especially in off-sweet-spot listening and detectable with the binaural-activity map.
The scenario produced with the first-order Ambisonics reproduction was perceived
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in informal listening to be emitted mostly from the nearest loudspeaker, that is, the
one to the right of the listener. The first-order Ambisonics reproduction has been
reported to have a small sweet-spot, because all of the loudspeakers emit sound and
the loudspeakers nearest to the listening position dominate the perception [42]. The
activity maps for the first-order as well as the second-order Ambisonics are presented
in Fig. 8e, and f. The activation in the first-order Ambisonics scenario reflects the
perceived effects, as the highest levels of activation are prominently on the left
hemisphere as opposed to the reference scenario where the activation is concentrated
on the right hemisphere. As opposed to first-order Ambisonics, the perception of
the scenario reproduced with second-order Ambisonics was very similar to that of
the reference scenario, and this can be seen in the activity map in Fig. 8f as well.
This matches with the finding that the second-order Ambisonics is known to have a
significantly larger sweet-spot than first-order Ambisonics [45].

Diffuse Sound Field

Another test was done in order to evaluate the capabilities of the different methods
to reproduce a diffuse sound field generated by twelve incoherent pink noise sound
sources at azimuth angles of 0≤, ±30≤, ±60≤, ±90≤, ±120≤, ±150≤, and 180≤. Again,
a B-format recording of the scenario was simulated and the different audio-coding
techniques were used to derive signals for a multichannel loudspeaker setup having
eight loudspeakers at azimuth angles of 0≤, ±45≤, ±90≤, ±135≤, and 180≤. Both the
pink noise sound sources and the loudspeakers were then modeled as point sources
and HRTFs of the corresponding directions were used to obtain the binaural input
signals to the binaural auditory model. Binaural-activity maps were obtained by using
the model, and from them, the distribution of activation as a function of frequency
region was analyzed. The activation distributions obtained for the different scenarios
are presented in Fig. 9. It should be noted that the current implementation of the
model is designed using only left/right cues and, therefore, the activations evoked
by sound sources both at the front and the back are mapped by the model to the
same left–right axis on the activity map without taking the front-back separation into
account.

When listening informally to the reference scenario of the diffuse sound field, the
sound is perceived to envelope the listener, forming a surrounding auditory event.
However, this perception is aided by small head movements, and when the head is
held completely still, some of the sound can be perceived to be concentrated to some
specific areas. In the activity map of the reference scenario, illustrated in Fig. 9a,
the activation is spread over a wide area on both hemispheres at low frequencies. In
contrast, at high frequencies, the activation is concentrated on the center area. The
overall distribution of the sound scenario therefore spreads over a wide range and
is symmetrically spread on both sides. This corresponds well to the perception of
the scenario, having two areas on which the activation is concentrated. The distribu-
tions of activation for the scenarios produced with different audio coding techniques
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show relatively similar patterns as compared to the reference. However, a number of
differences can be seen in the maps.

The B-format-DirAC reproduction of a scenario with high diffuseness was per-
ceived to be indistinguishable from the reference [51], which is in line with the high
similarity of the activity maps shown in Fig. 9a, and b obtained for the present sce-
nario. At some frequency regions, the activation in the case of DirAC reproduction is
spread even over a wider range than it does in the reference. However, at the highest
frequencies, the activation is concentrated more on the left hemisphere indicating
that the decorrelation has not been fully successful in that frequency region. Further-
more, informal knowledge obtained during the development of such spatial audio
techniques has revealed that the selection of the decorrelation filters has an effect on
this issue.

In informal listening of the Harpex reproduction of the scenario, a surrounding
sound scene was perceived, however, more of the sound was concentrated on certain
areas than in the reference scenario. The distribution of the activation shown in Fig. 9c
illustrates a similar effect by having a slightly narrower distribution. Furthermore, the
highest concentrations of activation shift from one hemisphere to another especially
at high frequencies, depending on the frequency region. It is easier to detect the areas
where some of the sound is concentrated due to the aspect of the Harpex processing
that it aims at decoding the situation in a given time-frequency bin as a combination
of two plane waves, which is not optimal for a diffuse field and results in an increased
coherence of the loudspeaker signals.

The Faller-method reproduction of the diffuse field was perceived to be surround-
ing in informal listening, but the areas where the sounds are concentrated were more
prominent than in the reference scenario. The activity map in Fig. 9d has the nar-
rowest distribution of activation, which corresponds to the perception. Similarly to
the Harpex reproduction, the different frequency regions are concentrated differently
on the hemispheres. As mentioned above in Sect. 2.2, in the diffuse field the Faller
method does not change the directional pattern of the signal. The narrowing of the
reproduced scene is thus simply due to too coherent loudspeaker signals [40].

The parametric audio coding techniques can also take a 5.1-surround signal as
input after converting it into B-format. However, it has been found in [35] that the
straightforward procedure of simulating a B-format recording of the reproduction
of the multichannel signal in anechoic conditions results in suboptimal quality in
terms of spatial impression. In order to illustrate this, a B-format recording of a
signal consisting of incoherent pink noise samples with a 5.0-loudspeaker system
having loudspeakers at azimuth directions of 0≤, ±30≤, and ±110≤ was simulated,
and the DirAC was applied to encode and decode the resulting B-format signal for
reproduction with a similar loudspeaker layout. Then, the binaural auditory model
was used to process a binaural input signal obtained by simulating such a reproduction
using HRTFs of the corresponding directions. The binaural-activity map depicted
in Fig. 9e illustrates that the sound scene is not reproduced correctly in the sense
that the activation is concentrated in the center area. This reflects the perception
of the scenario that the virtual sources are biased towards the center loudspeaker
in DirAC 5.0 reproduction [35]. This has been found to result from the uneven
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Fig. 9 Activation distributions obtained with the binaural auditory model for a the reference sce-
nario of incoherent pink noise emitted from 12 azimuth directions, and b–d the reproductions of
such a scenario with an eight-channel loudspeaker system employing signals obtained with differ-
ent audio-coding techniques. Additionally, the activation distributions when DirAC is used in audio
coding of a 5.0-surround signal having pink noise in each channel with e the straightforward method,
and f the even-layout method. Frequency region is on the y-axis, the numbers 1–6 corresponding
to regions from low to high frequencies as depicted in Fig. 3e

loudspeaker layout of the standardized 5.0-reproduction employed in the simulation
of the B-format-microphone recording, and solutions to solve this problem have been
previously proposed [35]. When the directions of the loudspeakers in the simulation
of the B-format recording are replaced with directions of 0≤, ±72≤, and ±144≤
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according to the even-layout method presented in [35], a more surrounding sound
scene is perceived [35]. This is reflected in the binaural-activity map shown in Fig. 9f.

5 Concluding Remarks

This chapter reviewed a number of recently proposed parametric spatial sound repro-
duction techniques. The techniques process the sound with the same principle—an
analysis of the spatial properties of the sound field is performed based on the micro-
phone signals in time-frequency domain, and the information obtained is subse-
quently used in the reproduction of spatial sound to enhance the perceptual quality.
The constants for the reproduction methods are selected using assumptions of spec-
tral, temporal and spatial resolution of the human hearing mechanisms, and thus, to
a large degree, they resemble binaural auditory models.

All of the methods provide some improvement in audio quality as compared to
corresponding conventional time-domain methods. However, new types of artifacts
may occur in the reproduction that are not necessarily found in traditional spatial
sound reproduction, especially if the constants of the methods are selected subopti-
mally. The most evident artifacts are described. A count-comparison-based binaural
auditory model is reviewed and applied to visualize the artifacts.

A number of sound-reproduction scenarios producing spatial artifacts are simu-
lated and the binaural input signals to the model are computed using measured HRTFs
of a dummy head. The resulting binaural-activity maps show artifacts as well as var-
ious differences between the different techniques. These findings are shown to be in
line with results obtained from listening experiments or, in the lack of such experi-
ments, observations found in informal listening. Overall, it can be said that a binaural
auditory model can be used in the analysis of the functionality of parametric spatial
audio reproduction techniques, and to aid in the development of such techniques.

It should be noted that the results shown in this chapter should not be used to rate
the overall quality of the sound reproduction of the techniques presented for several
reasons. Most importantly, the aim in this study was to analyze some specific spatial
artifacts of the sound reproduction, and perceived timbre among other important
factors affecting the overall perception were excluded. Moreover, the techniques
were not optimized for best quality specifically for each listening scenario. On the
contrary, the selection of the scenarios presented was motivated by their suitability
to show a number of spatial artifacts in the reproduction for the purpose of using an
auditory model for the assessment of such techniques.
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Binaural Dereverberation

A. Tsilfidis, A. Westermann, J. M. Buchholz, E. Georganti
and J. Mourjopoulos

1 Room Reverberation

When a sound is emitted by a source in an enclosed space, a listener will initially
receive the direct sound followed by multiple reflections from the walls or objects
placed in the room—see Fig. 1.

The energy of the reflected sound will be attenuated according to the frequency-
dependent absorption of the reflecting surfaces. Moreover, assuming an omni-
directional source, the sound pressure of both the direct and the reflected sounds
will decrease according to the 1/r distance law [83]. Although the sound energy
decays over time, t , roughly following an exponential function, the reflection den-
sity increases with t3, forming an increasingly diffuse sound field [83]—see also [42].
The required time for the energy in a room to decrease by 60 dB after the sound source
has stopped emitting sound is the reverberation time, T60, being the most commonly
used parameter for specifying the acoustic properties of a given room [83, 110].

Assuming that the room acoustics are modeled as a linear, time-invariant, LTI,
system, the room impulse response, RIR, provides a complete description of the
direct and reflective paths in a room from a sound source to the receiver. In a general
multichannel scenario with one source and i receivers, the reverberant signal, xi (n),
for each specific source-receiver position in the room can be expressed as the convo-
lution of the anechoic signal, s(n), with the corresponding RIRs, hi (n), as follows,

xi (n) =
Jh−1∑

j=0

hi ( j)s(n − j) , (1)
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Fig. 1 A human listener and a
sound source in a reverberant
room

Listener

right

left

Source

where n represents the discrete time index and Jh is the length of the impulse response.
In the binaural scenario the room response is combined with the related left-

and right-ear head-related impulse responses, HRIRs. The latter are measured in
anechoic conditions. As a consequence, assuming an ideal omni-directional source,
a binaural room impulse response, BRIR, for the left-ear channel, hL(n), can be
expressed as

hL(n) = g(rs)δ(n − ns) ◦ hH RI R,L ,θd ,φd (n)

+
Jhm −1∑

m=0

hm,L(n) ◦ hH RI R,L ,θm ,φm (n) , (2)

where g(rs) is a gain reduction that depends on the source-receiver distance rs , δ(n)

refers to a Kronecker-delta function, ns is the delay mainly depending on the source-
receiver distance, rs , and the physical characteristics of the propagation medium.
hH RI R,L ,θd ,φd (n) is the left HRIR for the direct sound, corresponding to θd and φd ,
namely, the horizontal and vertical angles between source and receiver. The value
hm(n) denotes the response of the m-th reflection. Jhm is the number of individual
reflections. hH RI R,L ,θm ,φm is the HRIR corresponding to such a reflection. Finally, θm

and φm are the horizontal and vertical angles between receiver and m-th reflection.1

A similar equation also applies for the BRIR, h R(n).

Hence, the reverberant signal at the left and right ear of a listener, xL(n) and
xR(n), can be described as a convolution of the anechoic source signal, s(n), with
the left- and right-ear binaural room impulse responses, hL(n) and h R(n), that is,

xL(n) =
JhL −1∑

j=0

hL( j)s(n − j) , (3)

xR(n) =
Jh R −1∑

j=0

h R( j)s(n − j) . (4)

Examples of BRIRs measured in a stairway with a reverberation time of approx-
imately 0.86 s are shown in Fig. 2 for the left and right ear [67]. The initial delay
before the arrival of the first peak of each RIR depicts the delay, ns , due to the

1 In some cases ns is a fractional delay, and the delta function is not well defined.
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Fig. 2 Binaural room impulse responses in a stairway having a reverberation time of approximately
0.86 s. Left left-ear room impulse response. Right right-ear room impulse response

source-receiver distance, rs . After the direct sound, the early reflections arrive. The
early reflections are considered relatively sparse and span a short time interval of
about 50–80 ms after the arrival of the direct sound. The last part of the RIR is called
late reverberation and results to the reverberant tail of the signal [58, 77]. Due to the
interaction of body, head and torso of the listener with the reverberant sound field,
the RIRs at the left and right ear exhibit frequency-dependent interaural differences
in arrival time and level. These interaural differences are essential parameters for
binaural dereverberation algorithms, as is further described in Sects. 3.4 and 4.

In room acoustics and, consequently, in speech- and audio-enhancement appli-
cations, RIRs are often modeled as the sum of two components, one denoting the
direct path and the early reflections, hi,e(n), and the other one the late reverberation,
hi,l(n), as

hi (n) = hi,e(n) + hi,l(n). (5)

By combining (1) and (5), each reverberant signal can be written as the sum of a
signal part affected by early reflections only, xi,e(n), and a signal part affected by
late reverberation, xi,l(n), namely,

xi (n) =
Jh−1∑

j=0

hi,e( j)s(n − j)

⎡ ⎣︷ ⎥
xi,e(n)

+
Jh−1∑

j=0

hi,l( j)s(n − j)

⎡ ⎣︷ ⎥
xl,e(n)

. (6)

As will be further discussed in Sect. 2.2, these two components of room reverberation
affect the received signal in a different way and are thus treated separately in most
dereverberation applications.
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2 Speech Signals in Rooms

2.1 Auditory Perception in Rooms

In an anechoic environment, where only the direct sound is present, a normal hearing
listener can accurately localize arbitrary sound sources due to the presence of unam-
biguous interaural-time and -level cues as well as spectral cues that are provided by
interaction of pinnae, head and torso with the sound field—see [13]. In particular due
to the presence of interaural binaural cues, the auditory system is also able to sup-
press interfering sounds that arrive from different locations than a target sound and,
thereby, for instance, improve speech intelligibility significantly. This phenomenon
is commonly referred to as spatial release from masking [20].

In the case that a sound is presented in a reverberant environment, the direct sound
is accompanied by early reflections and reverberation—see Sect. 1. This results in
distortion of the available auditory cues and, typically, leads to reduced auditory
performance, for instance, in localization or speech intelligibility. Whereas the early
reflections, which arrive within a time window of about 50–80 ms after the direct
sound, improve speech intelligibility [4, 17], late reverberation generally has a neg-
ative effect on speech intelligibility [61].

Auditory localization in rooms is aided by auditory mechanisms that are associated
with the precedence effect [13, 88] and may be linked to a cue-selection mechanism
that takes advantage of a measure of interaural coherence [36]. In particular, early
reflections change the timbre of a sound and introduce perception of coloration [11,
23], a phenomenon that is significantly suppressed by the binaural auditory system
[22, 130]. Also, late reverberation, which is mainly perceived within the temporal
gaps inherent in the source signal, is reduced by the binaural system [26]. In [19]
it has been shown that familiarization with a reverberant environment can result in
enhanced speech intelligibility. Finally, it should be mentioned that auditory masking
renders many reflections to be inaudible [24].

Besides the aforementioned detrimental effects of room reverberation on auditory
performance, which are partly compensated by different auditory mechanisms, the
room also introduces a number of additional cues that are utilized by the auditory
system. The direct-to-reverberant energy ratio, for instance, provides a very reliable
cue for distance perception [128]. Such mechanisms are described in detail in this
volume [42]. Moreover, early lateral reflections extend the apparent width of a sound
source [6] and late lateral reverberation energy makes a listener feel enveloped in an
auditory scene [18]. The latter two phenomena are highly appreciated when listening
to music [46]. The perceived spaciousness introduced by a room has often been
related to interaural coherence, whereby, as can be stated as a rule, the lower the
interaural-coherence, the higher is the perceived spaciousness [13].

When considering signal processing methods that aim at reducing room rever-
beration for applications with human listeners, such as in hearing aids or telecom-
munication devices, it is important that binaural cues are preserved. When binaural
cues are distorted, the listener may not be able to correctly localize sound sources
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any more, although this is obviously very important for the orientation in an audi-
tory scene as well as for perceiving warnings from potential threats. Moreover, with
binaural cues being preserved, the binaural system may provide additional benefit
by suppressing coloration, reverberation and interfering sound sources. Finally, suc-
cessful dereverberation methods will increase the direct-to-reverberant energy ratio
and, thus, may modify the perceived distance of a sound source and/or also modify
the perception of apparent source width and envelopment.

2.2 Early- and Late-Reverberation Effects

The typical effects of reverberation in speech spectrograms are presented in Fig. 3,
obtained with a fast fourier transform (FFT) length of 23.2 ms. Figure 3a shows

(a)

(b)

(c)

(d)

Fig. 3 Spectrograms illustrating the effects of reverberation on speech. a Anechoic input signal.
b Reverberant signal. c Reverberant signal due to early reflections only. d Reverberant signal due
to late reverberation only
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an anechoic speech signal of a male speaker, and Fig. 3b shows the corresponding
reverberant signal. The reverberant signal is produced via convolution with an RIR
recorded in a lecture hall with a reverberation-time value of T60 =1 s at a distance of
4 m from the source. A comparison of Fig. 3a,b reveals that a large number of tempo-
ral gaps and spectral dips that can be seen in the anechoic speech are now filled due
to the reverberation, that is, reverberation leads to a smearing of both temporal and
spectral features. Moreover, the reverberation produced by signal components with
high energy may mask later components with lower energy. In Fig. 3c the effect of
early reflections on the reverberant signal is shown in isolation, obtained by convolv-
ing the anechoic signal with only the first 50 ms of the impulse response, since for
speech applications this is considered to be the boundary between early reflections
and late reverberation. Obviously, the early reflections alone do not significantly alter
the anechoic speech spectrogram, but more careful observation reveals a smearing
of the spectral speech profile. In Fig. 3d only the late-reverberant speech is shown,
produced by convolving the anechoic signal with an artificially-modified impulse
response where the first 50 ms were set to 0. It is evident that late reverberation
significantly distorts the spectrogram of the anechoic signal and generates a rever-
beration tail between temporal speech gaps.

The effects of early and late reflections on the long-term speech spectrum
(smoothed in 1/6 octave bands) can be observed in Fig. 4. The FFT length for these
illustrations was equal to the signal length, namely, 7.8 s. In Fig. 4a the spectrum of
the anechoic signal is compared to the spectrum of the same signal, contaminated by
early reflections. In Fig. 4b the long-term spectrum of the anechoic signal is presented
along with the spectrum of the same signal, contaminated by late reverberation. It
is obvious that the early reflections significantly degrade the long-term speech spec-
trum, especially in the lower frequencies. This distortion is perceived as coloration
of the sounds. In contrast, late reverberation introduces a more flat, white-noise like
effect for the same frequency band of the signal.

Finally, Fig. 5 depicts speech spectrograms as obtained via convolution of an ane-
choic speech excerpt with (a) a left-ear impulse response and (b) a room impulse
response obtained from an omni-directional microphone at exactly the same posi-
tion. Both impulse responses were recorded in a lecture hall with T60 = 0.79 s at a
source-receiver distance of 10.2 m [67]. It clearly appears that the spectrogram of the
received speech signal is not significantly different for the binaural scenario. Such
observation relates especially to the late reverberation signal components which are
usually generated by diffuse reflections and, hence, are less susceptible to binaural
cues. These late-reverberation effects can be treated by adapting single-channel dere-
verberation methods to the binaural scenario.

2.3 Interaural Coherence

An often used measure of similarity between two binaural signals or BRIRs is the
interaural coherence, IC, defined as
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(a) (b)

Fig. 4 Effect of early and late reflections on the long-term speech spectrum, smoothed in 1/6 octave
bands. a spectrum of anechoic speech signal and of the signal contaminated by early reflections.
b spectrum of anechoic speech signal and of the signal contaminated by late reverberation

(a)

(b)

Fig. 5 Speech spectrograms obtained by convolving an anechoic speech sample. a Left-ear room
impulse response measured in a lecture room with T60 = 0.79 s at 10.2 m from the source. b Room
impulse response measured with an omni-directional microphone in the same room at exactly the
same position [67]

I CX L ,X R (k) = |≈X L(k) · X◦
R(k)≤|

√≈X L(k) · X◦
L(k)≤≈X R(k) · X◦

R(k)≤ , (7)

with k being the frequency band. X L (k) is the Fourier transform of xL(n). X R(k) is the
Fourier transform of xR(n). “◦” denotes the complex conjugate. ≈s≤ is the expected
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value of s. The magnitude-squared coherence, MSC, is referred to the square of
(7). The IC behavior of speech in rooms is highlighted here with four examples—
taken from [123] and [124]. The IC is estimated using the method described by
(11). Figure 6a shows the IC plot for speech presented in a reverberation chamber,
dominated by diffuse reflections and calculated from the binaural recordings of [51].
First, the algorithm defined in Sect. 4.1 was applied to obtain a 6.4 m short-term IC
of the binaural representation of an entire sentence spoken by a male talker. From the
resulting coherence values, the coherence plots were derived. The gray-graduation
scale reflects the number of occurrences in a given frequency channel. As expected
for the ideally diffuse sound field, an increased coherence is observed below 1 kHz.
Above 1 kHz, most coherence values are between 0.1 and 0.3, whereby the minimum
coherence that can be derived is limited by the duration of the time window applied
in the coherence estimate.

Figure 6b–d shows examples of coherence plots for 0.5, 5 and 10 m source-
receiver distances in an auditorium with T60 = 1 s. The overall coherence decreases
with increasing distance between the source and the receiver. This results from the

(a) (b)

(c) (d)

Fig. 6 a Interaural-coherence plots of speech presented in a diffuse field as a function of frequency.
b–d Interaural-coherence plots in an auditorium at different distances from the sound source. The
histograms summed across frequency are shown in the side panels
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decreased direct-to-reverberant energy ratio at longer source-receiver distances. At
very small distances—Fig. 6b—most coherence values are close to one, indicating
that mainly direct-sound energy is present. In addition, coherence values arising from
the diffuse field, having values between 0.1 and 0.3, are separated from those arising
from the direct sound field. For the 5 m distance, frames with high coherence values
are no longer observed. This is because frames containing direct-sound information
are now affected by reverberation, and there is no clear separability between frames
with direct and diffuse energy. At a distance of 10 m, this trend becomes even more
profound as the coherence values drop further and the distribution resembles the one
as found in the diffuse field, where very little direct sound information is available.

3 Review of Dereverberation-Techniques Literature

Since the early works of Flanagan and Lummis [37], Mitchell and Berkley [95]
and Allen, Berkley and Blauert [2], many blind- or non-blind-dereverberation tech-
niques have been developed, utilizing single or multiple input channels. As was
shown in Sect. 2.2, early and late reverberation have different effects on anechoic
signals. Hence, most of the research efforts handle early and late-reverberant-signal
components separately, enhancing either xi,e(n) or xi,l(n). In the following sections,
a summary of the existing literature on devererberation is presented.

3.1 Suppression of Early Reflections and Decoloration

Inverse Filtering

Inverse filtering of the RIR [97–99, 104] is used to minimize the coloration effect
produced by the early reflections. In theory, an ideal RIR inversion will completely
remove the effect of reverberation—both early and late reflections. However, the
RIR is known to have non-minimum phase characteristics [104] and the non-causal
nature of the inverse filter may introduce significant artifacts. In addition, exact
measurements of the RIR must be available for the specific source-receiver room
position, even if the RIRs are known to present common features in different room
positions, as in [50]. The above limitations can be avoided by compensating exclu-
sively for the broad spectral-coloration effect. For this, many single or multichannel
techniques have been proposed, such as based on minimum-phase inverse [104],
least-squares [100], frequency warping [52, 53, 111], complex smoothing [54, 55],
Kautz filters [71, 107], frequency-dependent regularization [75] and filter clustering
[10, 99]. Many of them are already incorporated in commercial room-correction
systems, which rely on in-situ RIR measurements. However, results from perceptual
tests show that some of these techniques do not always achieve the desired perceptual
effect [56, 105].
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Cepstral Techniques

In 1975, Stockham restored old Caruso recordings through cepstral blind decon-
volution [106, 113]. The technique was based on homomorphic signal processing,
exploring the fact that deconvolution may be represented as a subtraction in the log-
frequency domain. Similar dereverberation techniques based on the same principle
were later proposed in [8, 100, 108].

LP-Residual Enhancement

Using the source-filter production model, the speech can be represented as a convo-
lutive mixture of the linear-prediction, LP, coefficients and the LP residual [29]. The
fundamental assumption of the LP-residual dereverberation techniques is that the
excitation signal is distorted by the room reflections, while the LP coefficients are
not significantly affected from reverberation. Hence, the above techniques enhance
the LP residual and recover the speech by applying the reverberant LP coefficients
[40, 43, 45, 81, 102, 127].

3.2 Late-Reverberation Suppression

Temporal-Envelope Filtering

A class of techniques mostly aiming at compensating for late reverberation is based
on temporal envelope filtering [5]. They are motivated by the concept of modulation
index [62]. The modulation index is reduced when the late-reverberation tails fill the
low-energy regions of a signal [84]. Mourjopoulos and Hammond [101] have shown
that dereverberation of speech can be achieved by temporal envelope deconvolution
in frequency sub-bands. Furthermore, the temporal envelope-filtering principle has
been found to be advantageous when used in combination with other techniques
such as LP-residual enhancement [127] and spectral subtraction [81]. Further, in
[119], a sub-band temporal envelope-filtering technique, based on a computational
auditory-masking model [21], has been proposed.

Spectral Enhancement

A number of dereverberation techniques based on spectral-enhancement techniques
have been developed inspired by a multi-microphone reverberation-reducing method
proposed by Flanagan and Lummis [37]. The same concept was later explored in the
dereverberation method proposed by Allen et al. [2]. Spectral subtraction was mainly
explored for denoising applications [9, 16, 29, 33, 89]. The classical technique is
implemented in the STFT domain. Its main principle is to subtract an estimate of
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the noise-power spectrum from the power spectrum of the noisy signal. Usually,
a speech-activity detector is involved in order to update the estimation of noise
characteristics during the non-speech frames.

The most common processing artifact introduced by spectral enhancement is the
so-called musical noise. It is generated when spectral bins of the noisy signal are
strongly attenuated, because they are close to or below the estimated noise spectrum.
As a result, the residual noise contains annoying pure-tone components at random
frequencies. Most spectral-enhancement methods are trying to accurately estimate
the noise spectra and avoid or reduce the musical noise [25, 89, 118, 120].

As indicated by (3), reverberation is a convolutive distortion. However, late rever-
beration can be considered as an additive degradation with noise-like characteristics—
see (6). Hence, in the dereverberation context spectral subtraction has been adapted
for the suppression of late reverberation. The basic principle of spectral-subtraction
dereverberation for single-channel signals, originally presented in [86], is estimating
the short-time spectrum of the clean signal, Se(m, k), by subtracting an estimation of
the short-time spectrum of late reverberation, R(m, k), from the short-time spectrum
of the reverberant signal, X (m, k), that is,

Se(m, k) = X (m, k) − R(m, k) , (8)

where k and m are the frequency bin and time frame index respectively. Following an
alternative formulation, the estimation of the short-time spectrum of the clean signal
can be derived by applying appropriate weighting gains, G(m, k), to the short-time
spectrum of the reverberant signal, such as

Se(m, k) = G(m, k)X (m, k) , (9)

where

G(m, k) = X (m, k) − R(m, k)

X (m, k)
. (10)

Further examples of spectral enhancement dereverberation methods can be found in
[34, 38, 47, 48, 118, 126].

3.3 Dereverberation Methods Based on Multiple Inputs

Multichannel dereverberation may be considered as a somewhat easier task than the
single-channel dereverberation, since the spatial diversity of the received signals can
be further exploited. A set of such multichannel techniques is based on beamforming
[121]. They explore the directivity properties of microphone arrays and require some
a-priori knowledge of the array configuration. For a given system, the improvement
depends on the microphone arrangement and the source-receiver positions, but it is
independent of the reverberation time, T60, of the room [41]. In simple implemen-
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tations, the beamforming microphone arrays may present fixed-directivity charac-
teristics such as in fixed-beamforming techniques, however adaptive beamforming
setups where the processing parameters are adjusted to the environment also exist.
Most beamforming algorithms assume that the noise and the source signal are sta-
tistically independent. This assumption does not stand for reverberation, which is a
convolutive distortion. Therefore, the performance of such algorithms is poor in the
dereverberation context [12].

Some early methods for multichannel dereverberation were presented in [2, 15,
37]. Miyoshi et al. [96] have shown that in non-blind multichannel systems perfect
inverse filtering can be achieved when the captured RIRs do not share any common
zeros. A technique that performs multiple-point room equalization using adaptive
filters has been presented in [31]. Complete reverberation reduction may be theoret-
ically achieved by applying blind deconvolution [59]. However, in order to perform
blind deconvolution, the signal and the RIR must be irreducible, that is, they cannot
be expressed as the convolution of two other signals [82]. The LTI systems are usu-
ally reducible and hence in principle blind deconvolution cannot be applied. In order
to overcome the above limitation, single or multichannel blind-deconvolution imple-
mentations often involve a very low channel order and the number of reflections in
the tested RIRs is unrealistically low—being based on simulations, as in [32, 39, 59,
60]. A set of room impulse response shortening techniques has been also proposed
[70, 94, 129].

Further, multichannel blind-deconvolution methods for speech based on the LP
analysis have been developed, based on the following principle. When the input of
a system is white it can be equalized through multichannel LP. For speech dere-
verberation, the reverberant speech signal is pre-whitened in order to estimate a
dereverberation filter. Then this filter is applied to the reverberant signal [28, 38,
74, 114]. A multichannel combined noise- and reverberation-suppression technique
based in matched filtering has been presented in [30].

3.4 Binaural Techniques

Dereverberation is particularly important for binaural applications, for example, in
digital hearing aids, binaural telephony, hands-free devices, and immersive audio [49,
91, 125]. However, developing models for binaural dereverberation and/or adapting
single or multichannel techniques for binaural processing is not a trivial task. Binaural
dereverberation cannot be considered as just a subset of the multichannel dereverber-
ation techniques. Apart from the challenging task of reducing reverberation without
introducing audible artifacts, binaural dereverberation methods should preserve the
interaural-time-difference, ITD, and interaural-level-difference, ILD, cues, because
it has been shown that bilateral signal processing can otherwise adversely affect
source localization [49].

As was already discussed earlier in this section, such methods can be historically
related to Allen et al. [2], who proposed a binaural approach where gain factors
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are determined by the diffuseness of the sound field between two spatially-separated
microphones—see also [14, 15]. The technique involves two methods for calculating
gain factors, one of which representing the coherence function of the two channels.
However, because of a cophase-and-add stage that combines the binaural channels,
only a monaural output was provided by this early method. Kollmeier et al. extended
the original approach by applying the original coherence-gain factor separately to
both channels, thus providing a binaural output [80]. A binaural variant of the original
Allen et al. algorithm was also presented in [85].

In [112], a coherence-based Wiener filter was suggested that estimates the rever-
beration noise from a model of coherence between two points in a diffuse field. The
method was further refined in [93] and [69] where acoustic shadow effects from a
listener’s head and torso were included. Jeub et al. [68] proposed a two-stage dere-
verberation algorithm that explicitly preserves binaural cues. They demonstrated that
synchronized spectral weighting across binaural channels is important for preserving
binaural cues. In [91] and also in [68], a binaural version of the single-channel spectra-
subtraction technique presented in [86] is employed. In [115], a unified framework
for binaural spectral subtraction dereverberation has been discussed. Lee et al. [87]
presented a semi-blind method where they estimated a dereverberation filter from a
pre-trained whitening filter and a whitened signal. Note that despite the great impor-
tance of binaural dereverberation, only few studies have been published up to now
in the existing literature.

4 Examples of Dereverberation Algorithms

4.1 Method Based on Interaural Coherence

Historically, coherence-based methods (see 3.4) directly apply the coherence esti-
mates as a gain to both binaural channels. Considering the processing as a mapping
between coherence and gain, these methods apply a frequency-independent linear
coherence-to-gain mapping. However, the strong source-receiver distance depen-
dency observed in Fig. 6 and the inherent variations of the coherence across fre-
quency highlights the necessity for applying acoustic scenario specific coherence-
to-gain mapping functions. While for close source-receiver distances—Fig. 6b—a
rather shallow mapping function is already able to suppress reverberant components
and to preserve direct sound components, a much steeper function is required for
larger distances—Fig. 6c,d. Therefore, a method is proposed here, taken from [123],
which applies a parameterized mapping function that is controlled by an estimate of
the present coherence statistics. The signal-processing steps for this dereverberation
method are illustrated in Fig. 7. Two reverberant time signals, recorded at the left
and right ear of a person or a dummy head, xL(n) and xR(n), are transformed to the
time-frequency domain using short-time fourier transform, STFT [3]. This results in
complex-valued short-term spectra, X L(m, k) and X R(m, k), where m denotes the
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Fig. 7 Block diagram of a dereverberation method utilizing IC. The signals recorded at the ears,
xL (n) and xR(n), are transformed via the STFT to the time-frequency domain, resulting in X L (m, k)

and X R(m, k). The IC is calculated for each time-frequency bin and third-octave smoothing is
applied. Statistical long-term properties of the IC are used to derive parameters of a sigmoidal
mapping stage. The mapping is applied to the IC to realize a coherence-to-gain mapping, and
subsequent temporal windowing is performed. The derived gains or weights are applied to both
channels, X L (m, k) and X R(m, k). The dereverberated signals, ŝL (n) and ˆsR(n), are reconstructed
by applying an inverse SFTF

time frame and k the frequency band. For the STFT, a Hanning window of length L ,
including zero-padding of length L/2, and a 75 % overlap between successive win-
dows are used. For each time-frequency bin, the absolute value of the IC, referred
also as coherence, is calculated according to (7), which is implemented as follows

CL R(m, k) = |ΦL R(m, k)|⊗
ΦL L(m, k)ΦR R(m, k)

, (11)

withΦL L(m, k),ΦR R(m, k) andΦL R(m, k) representing the exponentially-weighted
short-term cross-correlation and auto-correlation functions, namely,

Φll(m, k) = αΦll(m, k − 1) + ⎤⎤Xl(m, k)
⎤⎤2 (12)

Φrr (m, k) = αΦrr (m, k − 1) + ⎤⎤Xr (m, k)
⎤⎤2 (13)

Φlr (m, k) = αΦlr (m, k − 1) + Xr (m, k)X◦
l (m, k) (14)

where α is the recursion constant.
The resulting IC estimates are spectrally smoothed using third-octave smooth-

ing [57]. From the long-term statistical properties of the smoothed IC estimates, the
parameters of a sigmoidal mapping function are derived. This mapping is subse-
quently used to transform the coherence estimates to the gain function, Gsig(m,k).
In order to suppress potential aliasing artifacts that may be introduced, temporal
windowing is applied [72]. This is realized by applying an inverse STFT to the
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derived filter gains and then truncating the resulting time-domain representation to a
length of L/2+1. The filter response is then zero-padded to a length of L and another
STFT is performed. The resulting filter gain is applied to both channels, X L(m, k),
and, X R(m, k). The dereverberated signals, ŝL(n), and, ˆsR(n), are finally recon-
structed by applying the inverse STFT and then adding the resulting overlapping
signal segments [3].

Coherence-to-Gain Mapping

In order to cope with the different frequency-dependent distributions of the IC
observed in different acoustic scenarios—see Sect. 2.3—a coherence-distribution
dependent gain-to-coherence mapping is introduced. This is realized by a sigmoid
function which is controlled by an online estimate of the statistical properties of the
IC in each frequency channel. The function is derived from a normal sigmoid and
given by

Gsig(m, k) = (1 − Gmin)

1 + e−kslope(k)(CL R(m,k)−kshift(k))
+ Gmin , (15)

where kslope and kshift control the sigmoidal slope and the position. The minimum
gain, Gmin, is introduced to limit signal-processing artifacts.

In order to calculate the frequency-dependent parameters of the sigmoidal map-
ping function, coherence samples for a duration defined by tsig are gathered in a
histogram. The method yields best performance with a tsig in the range of several
seconds, assuming that the source-receiver locations are kept constant. For moving
sources and varying acoustic environments, the method for updating the sigmoidal
mapping function might need revision. The mapping functions are determined as
two predefined points, Q1 and Q2, corresponding to the 1st and 2nd quartiles of the
estimated IC-histogram distributions. A coherence histogram shown as a Gaussian
distribution for illustrative purposes is exemplified in Fig. 8a by a gray curve together
with the corresponding 1st and 2nd quartiles. An example sigmoidal coherence-to-
gain mapping function is represented by a black solid curve. The linear mapping
function as applied by [2] is indicated by the black dashed curve.

The degree of processing is determined by kp, which directly controls the slope
of the sigmoidal mapping function. The parameters kslope and kshift of the mapping
function can be derived from ς(Q1) = Gmin + kp and ς(Q2) = 1 − kp as follows,

kshift =
⎦

ln(ς(Q1)
−1)

ln(ς(Q2)−1)
Q2 + Q1

⎜
·
⎦

1 − ln(ς(Q1)
−1)

ln(ς(Q2)−1)

⎜−1

(16)

kslope = ln(ς(Q1)) − 1

Q1 − kshift
, (17)
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Fig. 8 a Idealized IC histogram distribution in one frequency-channel (gray curve). The coherence-
to-gain relationship in the specific channel is calculated to intersect ς(Q1) = Gmin + kp and
ς(Q2) = 1−kp . Thereby, Gmin denotes the maximum attenuation and kp determines the processing
degree. b IC histogram distribution of speech presented in an auditorium with 0.5 m source-receiver
distance (top panel) and 5 m source-receiver distance (bottom panel). Sigmoidal coherence-to-gain
relationship for three different processing degrees of kp are shown

whereby Q1 and Q2 are estimated in each frequency channel from the measured
coherence histograms and kp a predetermined parameter—see Fig. 8a. In addition,
Gmin is introduced to avoid signal artifacts related to applying infinite attenuation.

For speech presented in an auditorium with source-receiver distances of 0.5 m and
5 m—see Sect. 2.3—examples of sigmoidal mapping functions are shown in Fig. 8b
for different values of kp in the 751.7 Hz frequency channel. It can be seen that the
coherence-to-gain mapping steepens as kp increases. In addition, with the distribu-
tion broadening, that is, from 5 m to 0.5 m, the slope of the coherence-to-gain map-
ping decreases. Hence, in contrast to the original coherence-based-dereverberation
approach in [2], which considered a linear coherence-to-gain mapping—plotted with
dashed line in Fig. 8—the approach presented here provides a mapping function with
added flexibility that can be adjusted by the parameter kp and to any given acoustic
condition.

4.2 Spectral-Subtraction Framework

As shown in (8), in the spectral-subtraction framework, the dereverberation problem
is deduced to an estimation of the late-reverberation short-time spectrum. Several
single-channel techniques have been introduced to blindly provide such estimates.
Under specific conditions, as discussed later in this section, such blind dereverber-
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ation methods may be also adapted for binaural processing. For instance, Lebart
et al. [86] proposed a method, referred to in the following as LB, that is based on
exponential-decay modeling of the RIR, h(n), as

h(n) = b(n) exp(−3 ln10/T60, n) , (18)

where b(n) is a zero-mean Gaussian stationary noise. T60 is the reverberation time in
seconds [83].2 The short-time spectral magnitude of the reverberation is estimated
as

|R(m, k)| = 1√
SN Rpri (m, k) + 1

|X (m, k)| , (19)

where SN Rpri (m, k) is the a-priori signal-to-noise ratio that can be approximated by
a moving average relating to the a-posteriori signal-to-noise ratio, SN Rpost (m, k),
in each frame,

SN Rpri (m, k) = βSN Rpri (m − 1, k)+
(1 − β)max(0, (SN Rpost (m, k) − 1)) , (20)

where β is a constant taking values close to one. The a-posteriori SNR is defined as

SN Rpost (m, k) = |X (m, k)|2
E[|X (m, k)|] . (21)

Thus, Se(m, k) is estimated by subtraction and is combined with the phase of the
reverberant signal, so that the dereverberated signal in the time domain is finally
obtained through an overlap-add process.

An alternative method, as proposed by Wu and Wang [126], referred to hereinafter
as WW, is motivated by the observation that the smearing effect of late reflections
produces a smoothing of the signal spectrum in the time domain. Hence, similarly to
the approach of [86], the late-reverberation power spectrum is considered a smoothed
and shifted version of the power spectrum of the reverberant speech, namely,

|R(m, k)|2 = γw(m − ρ) ◦ |X (m, k)|2 , (22)

where ρ is a frame delay. γ is a scaling factor and “*” denotes convolution. The
term w( j) represents an assymetrical smoothing function given by the Rayleigh
distribution

w(m) =
⎝
⎞

⎟

m + α

α2 exp

⎦−(m + α)2

2α2

⎜
if j < −α ,

0 otherwise ,

(23)

2 Note that this model holds when the direct-to-reverberant ratio is smaller than 0 dB [48].



376 A. Tsilfidis et al.

whereα represents a constant number of frames. The phase of the reverberant speech
is combined with the spectrum of the estimated clean signal and overlap-add is used
to extract the time domain estimation.

Alternatively, Furuya and Kataoka [38] proposed a method, referred to hereinafter
as FK, where the short-time power spectrum of late reverberation in each frame can
be estimated as the sum of filtered versions of the previous frames of the reverberant
signal’s short time power spectrum, that is,

|R(m, k)|2 =
M∑

l=1

|al(m, k)|2|X (m − l, k)|2 , (24)

where M is the number of frames that corresponds to an estimation of the T60. al(m, k)

are the coefficients of late reverberation. The FK method assumes that an inverse fil-
tering step, which reduces spectral degradation produced by the early reflections,
precedes the spectral subtraction. Hence, in such a case the short-time power spec-
trum of the reverberant signal is considered to roughly approximate the short-time
power spectrum of the anechoic signal. The coefficients of late reverberation are
derived from

al(m, k) = E

⎠
X (m, k)X◦(m − l, k)

|X (m − l, k)|2
}

. (25)

With these coefficients an estimation of the clean signal in the time domain can
be derived through overlap-add from the short-time spectrum of the dereverberated
signal, Se(m, k), as follows,

Se(m, k) =
⎠ |X (m, k)|2 − |R(m, k)|2

|X (m, k)|2
}

X (m, k) . (26)

Overlap-add is finally applied in order to estimate the time-domain dereverberated
signal.

Although the above methods were originally employed for single-channel dere-
verberation, they can be adapted for binaural processing. For such case, as discussed
in Sect. 3.4, in order to preserve the binaural ITD and ILD cues identical processing
should be applied to the left and right signal channels. Similar principles apply to
the binaural noise reduction, as in [72]. An effective approach for extending the LB
method to a binaural context is to derive a reference signal using a delay-and-sum
beamformer, DSB [68], where the time delays are estimated utilizing a method based
on the generalized cross-correlation with phase transform as proposed in [76]. The
reference signal is then calculated as the average of the time aligned left and right
reverberant signals. Using the reference, appropriate weighting gains are derived,
and identical processing is applied to both left and right channels. In [115], the DSB
approach is also implemented for both the WW and FK methods in order to evaluate
the efficiency of different late-reverberation-estimation techniques in a binaural sce-
nario. However, in binaural applications, the time delay between the left and right
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channels of the speech signal is limited by the width of the human head. There-
fore, it can be assumed to be shorter than the length of a typical analysis window
used in spectral-subtraction techniques. Hence, in [115], it was shown that the time
alignment stage can be omitted.

A different approach in order to adapt single channel spectral subtraction derever-
beration in the binaural scenario is to process the left and right-ear channel signals
independently. This results in the corresponding weighting gains, GL(m, k) and
G R(m, k). These two gains can be combined, and different adaptation strategies
have been investigated for each algorithm, namely,

(a) The binaural gain can be derived as the maximum of the left and right-channel
weighting gains,

G(m, k) = max(GL(m, k), G R(m, k)) . (27)

This approach, maxGain, achieves moderate late-reverberation suppression, but
it is also less likely to produce overestimation artifacts.

(b) The binaural gain can be derived as the average of the left and right channel
weighting gains,

G(m, k) = (GL(m, k) + G R(m, k))

2
. (28)

This gain-adaptation strategy, avgGain, compensates equally for the contribution
of the left and right channels.

(c) The binaural gain can be derived as the minimum of the left and right channel
weighting gains,

G(m, k) = min(GL(m, k), G R(m, k)) . (29)

This adaptation technique, minGain, results in maximum reverberation attenua-
tion, but the final estimation may be susceptible to overestimation artifacts.

After the derivation of the adapted gain, a gain-magnitude regularization, GMR,
technique can be applied. The purpose of such as step is twofold. Firstly, the GMR
has been proved to be a low-complexity approach reducing annoying musical-noise
artifacts [79, 117]. Furthermore, the GMR is utilized in order to constrain the sup-
pression and thus, to prevent from overestimation errors. An overestimation of the
late reverberation is less likely to happen in spectral regions with a high signal-to-
reverberation-ratio, SRR, such as signal steady states [118]. Yet, such problem is more
likely to affect the low SRR regions. Therefore a low SRR detector is employed [68]
and GMR is applied only on the lower-gain parts. Consequently, the new constrained
gain, G ∇(m, k), is derived as
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G ∇(m, k) =
⎝
⎞

⎟

G(m, k) − θ

r
+ θ when ζ < ζth and G(m, k) < θ ,

G(m, k) otherwise ,
(30)

and

ζ =

K∑

k=1

G(m, k)|Y (m, k)|2

K∑

k=1

|Y (m, k)|2
, (31)

where θ being the threshold for applying the gain constraints, r is the regularization
ratio, ζ is the power ratio between the enhanced and the reference signal, ζth the
threshold of the low-SRR detector. K is the total number of frequency bins.

The effect of the GMR is further explained in Fig. 9. In Fig. 9a, a typical illustration
of a frequency domain binaural gain is shown. In Fig. 9b–d the effect of the GMR
step on the binaural gain is presented for θ = 0.2, r = 4, for θ = 0.2, r = 8
and for θ = 0.6, r = 4 respectively. It can be observed that larger regularization
ratios, r , result in larger gain values—in other words, the method suppresses less
reverberation. Moreover, a constraint of the reverberation reduction is observed for
larger thresholds, θ. By comparing Fig. 9b–d, it becomes clear that the effect of the

(a) (b)

(c) (d)

Fig. 9 a Typical binaural gain in the frequency domain. b Effect of the GMR step for θ = 0.2 and
r = 4. c Effect of the GMR step for θ = 0.2 and r = 8. d Effect of the GMR step for θ = 0.6 and
r = 4
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Fig. 10 Block diagram of the spectral-subtraction binaural-dereverberation approach that preserves
the interaural cues. The late-reverberation estimation can be based on either of the techniques
described in Sect. 4.2

regularization ratio, r , of (30) is more subtle than the effect of the threshold, θ.
Therefore, the parameter r can be used for fine-tuning purposes.

To conclude this section, Fig. 10 presents a block diagram of the framework
applied for binaural spectral-substraction, as described above.

5 Evaluation Methods

5.1 Objective Measures of Dereverberation

The evaluation of the potential improvement of speech or audio enhancement tech-
niques has proven to be a rather difficult task. Many objective measures have been
developed and often they can predict the perceived quality of the enhanced signals
accurately enough [89]. However, there are cases where such objective measures fail
to correctly evaluate the performance of a reference algorithm [90]. The evaluation
of the performance of dereverberation algorithms has proven to be more difficult.
This happens for the same reason that dereverberation is generally more demanding
than denoising: the reverberation noise is correlated with the anechoic signal. For
the above reasons, denoise measures are not always appropriate for dereverberation
evaluation.

This difficulty increases further for the evaluation of binaural dereverberation
methods. In this case, apart from the assessment of the output signal’s temporal
and spectral characteristics, the binaural qualities of the processed output must be
also taken into account. Unfortunately, the development of objective or perceptual
dereverberation evaluation metrics that explicitly take into account the binaural con-
ditions and cues is still an open research issue. Therefore, single-channel measures
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are adapted in the binaural scenario by combining through simple addition the left
and right-channel results. Hence, one must be very careful when interpreting the
values of such metrics.

Most dereverberation-evaluation measures require a-priori knowledge of the
anechoic signal. In principle they calculate some type of distance between the
dereverberated and the anechoic signal. Such metrics are, for example, the signal-
to-reverberation-ratio, SRR, the frequency-weighted signal-to-reverberation-ratio,
fwSRR, the weighted-slope spectral distance, WSS, the Itakura-Saito distance, IS,
the Bark spectral distortion, BSD, the cepstral distance, CD, and the log-spectral
distortion, LSD [44, 63, 103, 122]. Moreover, metrics based on auditory modeling
have been also used for the evaluation of dereverberation algorithms, such as the
perceptual evaluation of speech quality, PESQ, the noise-to-mask ratio, NMR, the
perceptual-similarity measure, PSM, and the non-intrusive speech-to-modulation-
energy ratio, SRMR [35]. In order to improve the overall evaluation performance,
some researchers have modified and/or combined subsets of the above metrics, as in
[27, 78].

5.2 Perceptual Measures of Dereverberations

When listening inside reverberant spaces, the auditory system applies several mecha-
nisms assisting both intelligibility and localization. These include monaural/binaural
decoloration, binaural auditory dereverberation [13, 22, 130] and the precedence
effect [88]. Objective measures of dereverberation processing often do not incorpo-
rate or take account of these mechanisms or other features of the auditory system. In
addition, these objective measures have shown varying correlation with perceptual
measures [78, 122]. If signals processed via dereverberation algorithms are intended
for human listeners, such a discrepancy needs to be taken into account.

Until now, the literature has only sporadically used perceptual evaluation for eval-
uation of dereverberation algorithms. In [38] and [118] a mean opinion score, MOS,
of signal quality was used. In [68] a preference comparison task was implemented for
the different processed signals. A modified version of the ITU P.835 test has been also
employed for perceptual evaluation of dereverberation [66]. The test evaluates (i) the
speech signal naturalness, (ii) the reverberation intrusiveness and (iii) the overall sig-
nal quality [35, 64, 116]. Similar tests have been extended to cover multiple attributes,
such as the amount of reverberation, source width and sound envelopment [92].

The multiple-stimuli-with-hidden-reference-and-anchor test, MUSHRA, [109]
has been also applied for dereverberation [105, 119]. This test is especially success-
ful at detecting small signal impairments, since stimuli are presented simultaneously
and evaluated on a scale. For future evaluation of dereverberation algorithms this test
can be extended in order to include attributes such as amount of reverberation and
overall quality. One dilemma faced when designing a MUSHRA test are the anchors.
Anchors are an inherent trait of MUSHRA experiments to increase the reproducibil-
ity of the results and to prevent contraction bias—see [7]. These are normally made
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by low-pass filtering the reference signal. To evaluate the quality of speech, the
anchor should be implemented by introducing distortions similar to those resulting
from the dereverberation processing, for example, by using an adaptive multi-rate,
AMR, speech coder, available from [1], but other distortion types could be also
applied. Anchors for judging the amount of reverberation can be created by applying
a temporal half cosine to the BRIRs and thereby artificially reducing the result-
ing reverberation while keeping direct sound and early reflections. Pilot studies have
shown that presenting the unprocessed reference stimulus as a hidden anchor resulted
in significant compression bias of the listeners—for further details, see [7]. There-
fore, this hidden anchor can be omitted and replaced by a separate reference-button
which allows listeners to hear the unprocessed signal. This test could be employed
and combined with reference-processing methods for more reliable results, as shown
later in this chapter.

6 Tests and Results

6.1 Results for the Coherence-Based Algorithm

Signal-to-Reverberation Ratio

In this section, the objective results of the coherence-based algorithm (using the
processing parameters in Table 1) , described in Sect. 4.1, are presented. The method
was compared with the method of Allen et al. [2] and a binaural version of the
Lebart et al. [86] spectral subtraction method. Hereinafter the IC-based algorithm of
Sect. 4.1 will be referred to as WB, to the Allen et al. method as AB and to the Lebart
et al. method as LB. Figure 11 shows the signal-to-reverberation ratio, ΔsegSRR,
for the different processing schemes. All algorithms show a significant reduction of
the amount of reverberation, as all exhibit positive values.

For the 0.5 m distance—left panel—the WB algorithm for kp = 0.2 provides the
best performance. For the lowest degrees of processing, kp = 0.35, the performance
is slightly below the one attained for the LB algorithm. For the 5 m distance—right
panel—the WB method shows a performance that is comparable to the LB method

Table 1 Processing parameter values for the coherence-based method at f s = 44.1 kHz

Parameter Value

Frame length (L) 6.4 ms
Recursion constant (α) {0.01; 0.2; 0.35}
Recursion constant (α) 0.97
Gain threshold (Gmin) 0.1
Mapping updating time (tsig) 3 s
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Fig. 11 Estimates of reverberation suppression, ΔsegSRR, and loss of quality, ΔNMR, between
the clean signal and the processed reverberant signal for different methods. Left panel 0.5 m source-
receiver distance. Right panel 5 m source-receiver distance

for the highest processing degree, kp = 0.01. As expected, the performance of the
WB method generally drops with decreasing processing degree—that is, increasing
kp value. The AB method shows the poorest performance in general and provides
essentially no reverberation suppressions in the 0.5 m condition.

Noise-to-Mask Ratio

The noise-to-mask ratio, NMR, is an objective measure that determines the audi-
ble non-masked noise components. Lower NMR values denote better signal quality
[119]. In Fig. 11, also ΔNMR is shown, whereby smaller values correspond to less
audible noise. For the different processing conditions, the AB approach shows the
best quality overall for both source-receiver distances. Considering the very small
amount of dereverberation provided by this algorithm—see Fig. 11—this observation
is not surprising since the algorithm only has a minimal effect on the signal. The NMR
performance of the WB method for high degrees of processing, that is, kp = 0.01, is
similar or slightly better than that obtained with the LB approach. The sound quality
of the WB method increases with decreasing degree of processing, namely, kp = 0.2
and 0.3. However, at the same time, the strength of dereverberation, as indicated by
segSRR, also decreases—see the gray bars in Fig. 11. Considering both measures,
segSRR and the NMR, the WB method is superior for close sound sources, in our
case the 0.5 m condition with kp = 0.2, and exhibits performance similar to the LB
method for the 5 m condition.
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Perceptual Evaluation

For the perceptual evaluation of the different dereverberation methods, binaural sig-
nals were presented to 10 listeners via headphones. The signals were generated
by convolving anechoic sentences with BRIRs, measured in an auditorium with
T30 = 1.9 s. A MUSHRA test was applied to measure (i) strength of dereverberation
and (ii) overall loss of quality. As described in Sect. 5.2, an AMR speech coder at
7.95 kbits/sec was used as anchor in the quality measure and a 600 ms long cosine
window was applied to the measured BRIRs to generate the anchor for the dere-
verberation measure. Further details are described in [123]. The results from the
perceptual evaluation for each processing method are shown in Fig. 12. For bet-
ter comparison with the objective results, the measured data were inverted, that is,
100—original score. Considering the strength of dereverberation—indicated by the
gray bars—the WB approach exhibited the best performance for kp = 0.01 at both
distances. As the degree of processing decreases, that is, for increasing values of
kp, the strength of dereverberation decreases. The improvement relative to the LB
approach is considerably higher for the 0.5 m distance—left panel—than for the 5 m
distance—right panel. The AB approach of [2] produced the lowest strength of dere-
verberation for both source-receiver distances. The differences in scores between the
AB approach and the others were noticeably larger for the 0.5 m distance than for
5 m. This indicates that, for very close sound sources, the other methods are more
efficient than the AB approach.

The overall quality loss of the signals processed with the WB method were found
to be substantially higher for the 0.5 m condition compared to the 5 m condition.
This difference is not as large with the AB approach as well as the LB method,

Fig. 12 The mean and standard deviation of perceptual results judging Strength of dereverberation
and Overall loss of quality for the 0.5 m source-receiver distance (left panel) and 5 m source-receiver
distance (right panel)
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indicating that the WB is particularly successful for very close sound sources. As in
the objective quality evaluation, increasing the degree of dereverberation processing,
that is, by decreasing kp, results in a drop of the overall quality. However, this effect
is not as prominent when decreasing kp from 0.35 to 0.2 at the 0.5 m distance.

Considering the combination of reverberation reduction and overall quality, the
WB method with kp = 0.2 exhibits a clearly superior performance at the 0.5 m
distance. Even when applying the highest degree of processing, namely, kp = 0.01,
the quality is similar to that obtained with LB, but the strength of dereverberation
is substantially higher. For the 5 m distance, increasing the degree of processing
has a negligible effect on the strength of dereverberation but is detrimental for the
quality. However, for kp = 0.35, the performance of the WB method is comparable
to that obtained with the LB approach. An analysis of variance, ANOVA, showed
significance for the sample effect at source-receiver distances of 0.5 m, namely, (F =
97.65, p < 0.001) and 5 m, (F = 41.31, p < 0.001). No significant effect of
listeners was found.

6.2 Results for the Spectral-Subtraction Framework

In this section, the results of the binaural spectral-subtraction framework are shown—
for details see Sect. 4.2. The presented dereverberation methods LB [86], WW [126]
and FK [38] are binaural extensions of the original single-channel methods.

A first evaluation has been made for 16 kHz signals [115]. Eight anechoic phrases
uttered by both male and female speakers of the TIMIT database were convolved
with real BRIRs. Four BRIRs measured in a Stairway Hall with a reverberation time
of T60=0.69 s at a source-receiver distance of 3 m and azimuth angles of 0, 30, 60 and
90∈ were chosen from the Aachen database [68]. In addition, three BRIRs measured
in a Cafeteria with a T60 = 1.29 s at source-receiver distances of 1.18, 1 and 1.62 m
and azimuth angles of approximately −30, 0 and 90∈ were chosen from the Olden-
burg database [73]. The authors made informal tests to select optimal values for the
analysis parameters, that is, 16 kHz, 16 bit—see Table 2. The θ and ζth values of the
GMR step, described by (30) in Sect. 4.2, were set to 0.15, the regularization ratio, r ,
was 4. The T60 was calculated from the impulse responses. All parameter values that
are not detailed here were set according to the values proposed by the authors of the

Table 2 Processing parameter values for comparing the spectral subtraction based methods at
f s =16 kHz

Parameter LB WW FK

Total frame length 1024 1024 2048
Zero padding 512 128 128
Frame overlap 0.125 0.25 0.25
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original works. In addition, for the FK and LB techniques, two additional relaxation
criteria were imposed [118] as they were previously found by the authors to have
advantageous effects on the performance. The WW and FK methods assume that
an inverse-filtering stage precedes the spectral subtraction implementation. Here,
however, the implementation of an 1/3-octave RIR minimum-phase inverse filtering
was not found to notably alter the relative improvement achieved by the tested meth-
ods. Therefore, a generalized case where the spectral subtraction is applied directly
to the reverberant signals is presented.

The produced signals were evaluated by means of the PESQ variation [65], com-
pared to the reverberant signals. PESQ was not originally developed to assess the
dereverberation performance—see Sect. 5—and it implements a perceptual model in
order to assess the quality of a processed speech signal. Rating is performed accord-
ing to the five-grade mean-opinion-score, MOS, scale. The results are presented in
Table 3 with the bold values denoting optimum performance. For the case of the
Stairway Hall the bigger PESQ improvement is achieved utilizing the WW method
with the minGain adaptation technique. The same gain adaptation technique seems
to be also the optimal choice when used in conjunction with the LB method. It can
be assumed that in a scenario where bilateral late-reverberation estimations are suc-
cessful this technique presents superior performance. However, it is not beneficial
when used with the FK method where probably the bilateral processing resulted to
inferior results. The FK method produces better results when used with the avg-
Gain technique. In general, the WW method shows a significant PESQ improvement
for all tested adaptation techniques. For the Cafeteria, the LB method produces a
relatively stable PESQ improvement independent of the employed binaural adap-
tation. On the other hand, better results are derived with the WW method for all
binaural-adaptation schemes—although the best results are achieved with the avg-
Gain approach. The FK method seems to produce processing artifacts despite the
utilized binaural-adaptation scheme and decreases the PESQ values in every case.
Finally, note that the DSB implementation has the advantage of lower computa-
tional cost as it involves calculations in a single channel for the estimation of the
weighting-gain functions. This is in contrary to the binaural-adaptation schemes that

Table 3 PESQ improvement for the binaural spectral subtraction framework, showing results for
various binaural gain adaptation options—see Sect. 4.2

Method BSD maxGain avgGain minGain

Stairway hall
LB 0.153 0.142 0.147 0.158
WW 0.206 0.160 0.208 0.258
FK 0.160 0.180 0.186 −0.029
Cafeteria
LB 0.133 0.136 0.135 0.133
WW 0.205 0.208 0.216 0.198
FK −0.235 −0.141 −0.228 −0.428
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require dual-channel calculations. On the other hand, the gain-adaptation techniques
discussed in Sect. 4.2 involve bilateral processing but do not necessitate the initial
time-delay estimation.

For the perceptual test, the methods were applied for broadband signals, sampled at
44100 Hz [116]. A modified version of the ITU P.835 test was used for the perceptual
evaluation, as explained in Sect. 5.2. Note that the listeners were not guided to directly
rate the binaural qualities of the output signals. However, some listeners reported that
they were inherently taken them into account in their assessments. Four phrases from
two male and two female speakers along with three BRIRs measured in a Stairway
Hall with T60 = 0.69 s, at a source-receiver distance of 3 m and azimuth angles of
0, 45 and 90∈ were used [68]. The original single-channel dereverberation methods,
LB, WW and FK, were optimized for lower signal resolutions. Here, the optimal
values for their application in broadband signals were extracted through informal
listening tests. The STFT analysis parameters, that is, total frame length, zero padding
and frame overlap, for each tested method are detailed in Table 4, the θ and ζth values
of the GMR step according to (30) were set at 0.15 and 0.8, respectively, while the
regularization ratio r was 4. For the FK and LB techniques, the two additional
relaxation criteria proposed in [118] were also implemented. In order to reduce the
experimental conditions the authors conducted informal listening tests to choose
the optimum gain-adaptation scheme for each dereverberation method. Hence, the
avgGain adaptation has been chosen for the LB and WW methods while the maxGain
has been used for the FK method. Twenty self-reported normal-hearing listeners
participated in the tests and a training session preceded the formal experiment.

Figure 13 presents the perceptual scores in terms of speech naturalness, reverber-
ation reduction and overall signal quality for the proposed binaural dereverberation
techniques. The results were subjected to an ANOVA analysis of variance and a
highly significant effect for the tested method was revealed for the speech natu-
ralness, namely, F(3, 228) = 112.7, p < 0.001, for the reverberation reduction,
F(3, 228) = 62.1, p < 0.001 and for the overall quality, F(3, 228) = 38.8, p <

0.001. No significant effect was found for the tested azimuth angles. Following the
ANOVA multiple Tukey’s, HSD tests were made to reveal significant differences
between algorithms.

In all cases, listeners rated that the unprocessed reverberant signals were signif-
icantly more natural than the dereverberated signals—p < 0.001. This was due to
the artifacts introduced from the dereverberation processing. On the other hand, the
FK method performed significantly worse than the other two methods in terms of

Table 4 Analysis parameter values for the employed methods at f s = 44.1 kHz

Parameter LB WW FK

Total Frame Length 2048 8192 8192
Zero padding 1024 4096 4096
Frame Overlap 0.5 0.25 0.25
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Fig. 13 Perceptual results for
speech naturalness, reverber-
ation reduction and overall
signal quality for unprocessed
signals and the three derever-
beration methods tested

speech naturalness. No significant difference was noticed between the LB and WW
methods—p > 0.05.

Furthermore, the three dereverberation methods have significantly reduced the
reverberation—p < 0.001. The FK method performed significantly better than the
WW method in terms of perceived reverberation suppression—p < 0.05. However,
no significant difference between the FK and the LB or the LB and WW methods
was found—p > 0.05. Finally, the LB, the WW methods and the reverberant signals
were rated significantly better in terms of overall quality than the FK method—
p < 0.001—, but no significant quality difference was found between the LB method,
the WW method and the reverberant signals—p > 0.05.

From the objective and perceptual results it appears that all methods suppress
reverberation significantly, but the introduced processing artifacts reduce the natu-
ralness of the speech signals. The FK method achieves greater reverberation suppres-
sion than the LB and WW methods; however, it appears that the produced signals
are more degraded. On the other hand, the LB and WW dereverberation methods
moderately reduce the reverberation, but they preserve the perceptual signal quality.

7 Conclusions

Binaural dereverberation is rapidly evolving as a significant and unique research
field having assimilated signal-processing methods and algorithms introduced pre-
viously into the broader areas of acoustic signal enhancement and noise suppression
but also from more specialized areas such as speech dereverberation, correction of
room acoustics, auditory-scene analysis, and from a wealth of perceptual studies
and models related to auditory mechanisms. In contrast to some of the mostly single-
input-channel methods as were introduced in the signal-enhancement-research fields
and were targeted towards machine listening and automatic speech recognition,
or were geared towards speech-intelligibility improvements, binaural dereverber-
ation attempts to utilize concepts and optimize processing specifically tailored to
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binaurally-received signals by human listeners. As is well known, during everyday
life, the human auditory system has an impressive ability to analyze, process and
select individual source signals from complex acoustic environments, significantly
so from signals contaminated by room reflections and reverberation. It has been well
established by earlier research that this ability is to a large extend due to auditory and
cognitive mechanisms which rely on the binaural signals as these allow the listeners
to analyse auditory scenes and suppress unwanted signal components.

Recently, technological and other developments dictate the ever expanding use
of portable devices for receiving auditory information via headphones or earpieces
and in many such applications binaural dereverberation is an essential preprocess-
ing step in order to ensure reception comparable or better to that of normal listen-
ing. Such applications are currently mostly driven by the digital-hearing-aid sector
where the problem of reverberation intrusion is prohibitive to speech intelligibility
and auditory-scene interpretation. At the same time, the processing capabilities of
the commercially available hearing aids allow the real-time implementation of the
emerging methods. However, other applications such as binaural telephony, telecon-
ferencing, hands-free devices and interfaces, immersive-audio rendering, and so on,
seem to rapidly adopt such binaural dereverberation processing.

Given the extensive capabilities of the hearing system, any binaural dereverber-
ation method is facing significant challenges. Traditionally, most acoustic-signal
enhancement methods aim at suppressing some unwanted interference and poten-
tially improve speech intelligibility, and/or audio signal quality. However, the percep-
tion of room reverberation is inherently linked to many cues useful to the listener that
are generated by room reflections and relate to source position, listener orientation,
room size, and further properties that must be retained after processing. Hence, bin-
aural dereverberation methods appear to aim at retaining some useful auditory cues
and signal qualitative features, thus compromising their ability to suppress rever-
beration. From this discussion it is becoming clear that the prominent aims of the
binaural methods appear as follows: improving the ratio of direct-to-reverberant sig-
nal energy, removing unwanted timbral coloration due to room reflections, removing
late-reverberant effects and energy during temporal signal gaps, improving source
localization and separation, and suppressing unwanted sound sources and noise.
However, after processing, it is imperative that binaural cues necessary for source
localization and auditory-scene analysis must be fully preserved or even enhanced.
Further, it is sometimes desirable that important cues such as the precedence effect,
spectral qualities, as well as room size and envelopment, are retained.

In the previous sections of this chapter it is shown that binaural dereverberation
is largely relying on a linear-system model of the room, described via the binau-
ral impulse responses between source(s) and the listener’s ears and that often this
function is separated into the direct path, early reflection and late-reverberation com-
ponents. Given that different physical and perceptual effects can be identified due to
each of these response components, many dereverberation methods attempt to com-
pensate specifically for effects due to those parts. Another common theme during
the evolution of the binaural-dereverberation methods is that some of those methods
were based on dual-input-channel processing and others on bilateral adaptation of
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single channel dereverberation methods, those typically relying on spectral subtrac-
tion, a technique which has been widely used for noise suppression. Significantly, all
binaural dereverberation must be implemented without any prior measurement of the
room response, thus being blind, or at least semi-blind, when some broad parameters
related to the acoustic environment have to be known.

Starting from those earlier dual-channel dereverberation methods—for example,
[2], the significance of the interchannel/interaural coherence function as an indicator
of the direct-path-signal contribution in the received signals has been established,
leading to techniques that can effectively enhance this signal component in the
short-term spectral domain, improving thus the direct-to-reverberant ratio in the
processed signal. In this chapter, a detailed presentation of a recent IC based method
is given [123, 124]. In contrast to the earlier method [2], where a linear coherence-
to-gain function for the spectral modification was proposed, this recent method has
introduced a flexible parametric sigmoidal function that can easily be adjusted to
the desired filtering-gain form appropriate for specific room-acoustical and source-
receiver configurations. Furthermore, the form of the IC estimates and hence the
parameters of the filter can be directly obtained from long-term spectral analysis of
the received signals. The performance of this IC method was evaluated by testing
and comparing the change in the ΔsegSRR, the change in the ΔNMR, as well as via
perceptual-evaluation tests. It was found that the method achieved superior overall
quality compared to the original IC-based method, as well as to a spectral-subtraction
based method. The method was also found to perform better for dereverberating
signals from closely located sound sources, for instance, at 0.5 m, instead of those
derived from distant sources, for instance, at 5 m. This illustrates that dereverberation
gains via IC-based methods depend largely on the degree of the direct-signal energy
within the received signals, typically this happening for shorter source-listener dis-
tances. For such cases, the overall quality of the processed signal is superior to the
results obtained via other processing methods. When this condition is not satisfied,
then processing may result in signal-quality loss.

Apart from enhancing the direct signal components, many further single chan-
nel dereverberation methods have been developed, based on the concept of spectral
subtraction. Although reverberation is a convolutive distortion, late reverberation
has usually exponentially decaying white-noise-like properties and, hence, it may be
effectively modeled as additive-noise distortion. Traditionally, spectral-subtraction
methods suppress such additive noise by subtracting in the short-term spectral
domain its estimate and, following this line of thinking, they were also adopted for
late-reverberation suppression. For the blind estimation of the late reverberation,
essential for deriving the short-term spectral filter gains, a number of established
methods exist, originally proposed for speech applications. These methods have
either employed an exponentially-decaying noise-like estimate function—compare
the LB method, [86]—or an estimate based on smoothed-shifted version of the rever-
berant speech spectrum—WW method, [126]—or an estimate based on a sum of
filtered versions of earlier reverberant speech spectra—FK method, [38].

For adopting such methods for the binaural case, their bilateral application to
each signal channel may be followed. Given that the relevant ITD and ILD cues
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must be preserved in the processed dereverberated signals, identical processing must
be applied on the left- and right-ear signals by using appropriately adapted common
gains derived from the received signals in each channel, since it is likely that filter-
gain estimates may vary for the two different paths to the ears. Such alternative gain-
adaptation strategies were studied in [115] and were presented in detail in Sect. 4.2
of this chapter—along with an optimized GMR stage [79, 116] that restricts via
a parametric function the extend of spectral modifications during processing. For
the perceptual performance tests, described in detail in [115, 116], the PESQ was
employed along with perceptual tests based on the MOS and a modified version
of the ITU P.835 test. The results indicate that a trade-off between the degree of
dereverberation and the perceptual quality of the processed signal, with the estimators
derived via the LB and WW methods, achieve the best performance. For these two
methods it was also found that average-gain weighting of the individually estimated
gains for the left- and right-ear paths, was the best way for adapting these functions
to the binaural processing scenario.

In this chapter, an analysis of the concepts involved in human sound reception and
perception inside reverberant rooms has been presented, along with a literature review
concerning past attempts on the open problems of signal dereverberation. A focus was
put on more detailed presentation of two recent blind binaural-dereverberation meth-
ods, the first one based on interaural coherence to enhance the direct-to-reverberant
ratio and the second one geared towards optimal adaptation of single channel, spec-
tral subtraction based methods for suppressing late reverberation. In both cases, as
is the case with most other signal enhancement methods, it was found that reverber-
ation suppression and processed signal quality are two mutually exclusive items that
restrict the overall performance of the methods. In comparison with the performance
achieved by the human auditory system in similar tasks, such as for the precedence
effect, signal decoloration and reverberation suppression, the performance of the
current dereverberation methods is clearly inferior, in particular, when being consid-
ered under all possible acoustic and source-listener configurations. Furthermore, a
unique problem facing all these dereverberation methods is the definition of the desir-
able results that should be aimed at by such processing. The difficulty of adapting
existing objective and perceptual-performance measures and methodologies into the
binaural-dereverberation case, especially with respect to retaining the complex cues
associated by auditory-scene analysis performed by human listeners inside enclosed
spaces, as well as the challenge of dealing with both noise and reverberation likewise,
illustrates the complexity and the open issues facing this promising and relatively
young research field.
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Binaural Localization and Detection of Speakers
in Complex Acoustic Scenes

T. May, S. van de Par and A. Kohlrausch

1 Introduction

The robust localization of speakers is a very important building block that is required
for many applications, such as hearing aids, hands-free telephony, voice-controlled
devices and teleconferencing systems. Despite decades of research, the task of
robustly determining the position of multiple active speakers in adverse acoustic
scenarios has remained a major problem for machines. One of the most decisive
factors that influence the localization performance of algorithms is the number
of microphones. When several pairs of microphones are available, beamforming
techniques such as the steered-response power, SRP, approach [25] or the multi-
channel cross-correlation coefficient, MCCC, method [7] can be applied to dis-
ambiguate the localization information by exploiting correlation among multiple
pairs of microphones. Furthermore, high-resolution subspace techniques such as the
multiple signal classification, MUSIC, algorithm [66] and the estimation of signal
parameters via rotational-invariance techniques, ESPRIT, approach [64] generally
require that the number of sensors is greater than the number of sound sources. Blind
source separation approaches, such as the degenerate unmixing estimation technique,
DUET, attempt to blindly localize and recover the signals of N sound sources from
M microphone signals [38, 81]. Although the DUET system is able to deal with
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underdetermined mixtures, that is, N > M , in anechoic conditions, performance
deteriorates in reverberant environments.

In contrast to machines, the human auditory system is remarkably robust in com-
plex multi-source scenarios. It can localize and recognize up to six competing talk-
ers [12], in spite of the fact that it is provided with only two signals reaching the left
and the right ears. Moreover, listening with two ears substantially contributes to the
ability to understand speech in multi-source scenarios [11, 19]. Unlike blind source
separation algorithms that aim at separating the sources in such a way that they are
fully reconstructed, the human auditory system does not need to perform such a
reconstruction of the original signals. It only needs to extract those properties of the
signal of interest that are needed for a particular task, such as estimating the direction
of a sound source, the identity of a speaker, or the words that are being pronounced.
Thus, when particular parts of the target signal are not available, that is, missing, due
to the presence of other interfering sources, there may still be enough information,
in other words, perceptual cues, available to extract the properties of interest, for
example, the identity of a speaker. This ability of the human auditory system to han-
dle complex multi-source scenarios and to segregate the contributions of individual
sound sources is commonly summarized by the term auditory scene analysis, ASA.
As described by Bregman [10], the underlying principles that facilitate ASA can be
divided into two stages, namely, segmentation and grouping. First, the acoustic input
is decomposed into spectro-temporal units, where each individual unit is assumed to
be dominated by one particular source. Secondly, in the grouping stage, a set of prim-
itive grouping rules, termed Gestalt principles, are employed by the auditory system
in order to integrate the information that is associated with a single sound source.
These Gestalt principles can be considered as data-driven mechanisms that are related
to physical properties of sound generation, leading to certain structures in auditory
signals. Common onsets across frequency, common amplitude and frequency modu-
lation, and common spatial location are examples of such Gestalt principles [10, 23,
75]. Apart from data-driven processing—also known as bottom-up processing—the
auditory system is able to focus the attention on a particular target source and inter-
pret the underlying source, for instance, in order to understand speech. This involves
schema-driven processing—also referred to as top-down processing—and requires
a priori knowledge about different sound sources.

Inspired by the robustness of the human auditory system, a research field termed
computational auditory scene analysis, CASA, has emerged, which aims at repro-
ducing the capabilities of the human auditory system with machines on the basis of
sensory input [75]. As the analysis is restricted to binaural signals, the task of auto-
matically localizing multiple competing sound sources is particularly challenging.
In this chapter, only two microphone signals will be considered, corresponding to the
left- and the right ear signals of an artificial head, and it is shown how principles of
human auditory processing can be used to estimate the azimuth of multiple speakers
in the presence of reverberation and interfering noise sources, where the number of
active speakers is assumed to be known a priori. Note that the intention is to develop
a robust computer algorithm that is inspired by auditory mechanisms, rather than
building a physiologically-plausible model of the human auditory system. Although
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this chapter focuses on binaural signals, the presented approach can be extended to
microphone arrays with multiple pairs of microphones.

After describing the binaural signals that are used throughout this chapter, an
overview of different approaches to binaural sound-source localization, ranging from
technical approaches to auditory-inspired systems, will be given in Sect. 3. A thor-
ough analysis of localization performance will then be presented in Sects. 4 and 5,
using multiple competing speakers in reverberant environments. An important prob-
lem is the influence of noise on speaker-localization performance, which will be
discussed in Sect. 6. In particular, it will be shown that the ability to localize speakers
is strongly influenced by the spatial diffuseness of the interfering noise. Moreover, it
will be seen that the presence of a compact noise source imposes severe challenges for
correlation-based approaches. By employing principles of auditory grouping based
on common spatial-location and missing data classification techniques, it is possible
to make a distinction between source activity that originates from speech- or from
noise sources. This distinction can substantially improve the speaker-localization
performance in the presence of interfering noise.

2 Simulation of Complex Acoustic Scenes

In order to evaluate the localization algorithms that are presented in this chapter,
complex acoustic scenes are simulated by mixing various speech and noise sources
that are placed at different positions within a room. Binaural signals are obtained
by convolving monaural speech files with binaural room impulse responses, BRIRs,
corresponding to a particular sound-source direction. These BRIRs are simulated
by combining a set of head-related transfer functions, HRTFs, with room impulse
responses, RIRs, that are artificially created according to the image-source model [4].
More specifically, the MIT database is used, which contains HRTFs of a KEMAR1

artificial head that were measured at a distance of 1.4 m in an anechoic cham-
ber [30]. These HRTFs are combined with RIRs, simulated with ROOMSIM,2 a
MATLAB toolbox provided by Schimmel et al. [65]. The receiver, KEMAR, was
placed at seven different positions in a simulated room of dimensions 6.6×8.6×3 m.
For the experiments conducted in this chapter, a set of BRIRs with the following
reverberation times are simulated for each of the seven receiver positions, namely,
T60 = {0.2, 0.36, 0.5, 0.62, 0.81 and 1.05 s}. The reverberation time, T60, of the sim-
ulated BRIRs has been verified by applying the energy-decay-curve method devel-
oped by Schroeder [67].

Furthermore, a number of databases with measured BRIRs are publicly available
[35, 37, 39], each of them focusing on a particular application. For a systematic

1 Knowles electronic manikin for acoustic research, KEMAR.
2 Although the problem of moving sources is not covered in this chapter, the MATLAB toolbox
ROOMSIMOVE for simulating RIRs for moving sources can be found at http://www.irisa.fr/metiss/
members/evincent/software.

http://www.irisa.fr/metiss/members/evincent/software
http://www.irisa.fr/metiss/members/evincent/software
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analysis of localization performance, the measurements provided by the University
of Surrey [35] were selected, since they offer BRIRs recorded in four different rooms
with an azimuthal resolution of 5◦. The following set of measured BRIRs is used for
evaluation, T60 = {0.32, 0.47, 0.68 and 0.89 s}. Note that the BRIRs of the Surrey
database are recorded with a Cortex–MK.2 head-and-torso simulator, HATS, which
is different from the KEMAR artificial head that was used to create the simulated
BRIRs. This allows the investigation of the impact on localization performance that
is induced by a mismatch between BRIRs that are used for training and those which
are used for testing. The results will be reported in Sect. 5.

Multi-source mixtures are created by randomly positioning sound sources within
the azimuth range of [−90, 90◦] while having an angular distance of at least 10◦
between neighboring sources. For the experiments presented in Sects. 4 and 5, speech
files are randomly selected from the speech-separation challenge, SSC, database [22].
Signals are either trimmed or concatenated to match an overall duration of 2 s. The
level of multiple competing speech sources was always set equal. In addition, the
impact of interfering noise on localization performance is systematically investigated
in Sect. 6 by using three different types of noise signals, namely, babble noise and
factory noise from the NOISEX database [74] and speech-shaped noise that is based
on the long-term average spectrum, LTAS, of 300 randomly-selected speech files.
Interfering noise sources are simulated by randomly selecting different time segments
of the corresponding type of background noise. In contrast to the speech files, there
is no constraint on the angular distance between multiple noise sources. The signal-
to-noise ratio, SNR, is adjusted by comparing the energy of all speech sources to the
energy of the noise. Note that the energies of the left and the right signals are added
prior to SNR calculation. The resulting binaural multi-source signals are sampled at
a sampling frequency of fs = 16 kHz.

3 Binaural Sound-Source Localization

The two major physical cues that enable human sound-source localization in the hor-
izontal plane are interaural time differences, ITDs, and interaural level differences,
ILDs, between the two ears [60]. Both cues are complementary in their effective-
ness. As already formulated by Lord Rayleigh more than 100 years ago, the ITD cue
is most reliable at low frequencies, whereas the ILD cue is more salient at higher
frequencies [60]. The spectral modifications provided by the complex shape of the
external ears are particularly important for the perception of elevation and help to
resolve front-back confusions [68]. In this chapter, the localization of sound sources
is restricted to the frontal horizontal plane within the area of [−90, 90◦]. In the fol-
lowing sections, a short review of popular sound-source localization approaches will
be given with the special application to binaural signals.



Binaural Localization and Detection of Speakers in Complex Acoustic Scenes 401

3.1 Broadband Approaches

One of the most frequently-used approaches to sound-source localization is to
estimate the time difference of arrival, TDOA, between a pair of two spatially sepa-
rated microphones. This approach usually consists of the following two steps. First,
the relative delay between the microphones is estimated. Secondly, the estimated
delay is used to infer the actual angle of the sound source by employing knowledge
about the microphone-array geometry.

The generalized cross-correlation, GCC, framework presented by Knapp and
Carter [41] is the most popular approach to perform time-delay estimation. The
TDOA estimate, Ψ̂ , in samples, is obtained as the time lag, Ψ , that maximizes the
cross-correlation function between the two filtered microphone signals, that is,

Ψ̂ = arg max
Ψ

1

2Δ

∫

δ

W (δ) XL (δ) X∗
R (δ) e j2ΔδΨ dδ , (1)

where XL (δ) and XR (δ) indicate the short-time Fourier transforms of the micro-
phone signals, xL (n) and xR (n), received at the left and the right ears, and W (δ)

denotes a frequency-dependent weighting function. The classical cross-correlation,
CC, method uniformly weights all frequency components by setting WCC (δ) = 1.
To increase the resolution of GCC-based time delay estimation, it is useful to interpo-
late the GCC function by an oversampled inverse fast Fourier transform, IFFT [27].
Hence, an oversampling factor of four is considered in this chapter, resulting in a
Ψ -step size of 16µs.

In ideal acoustic conditions, in which the signals captured by the two micro-
phones are simply time-shifted versions of each other, the most prominent peak
in the GCC function reveals the true TDOA between both microphones and can
be reliably detected. However, in more realistic scenarios with reverberation and
environmental noise, the identification of peaks in the GCC function becomes less
accurate, which, in turn, reduces the localization performance. Therefore, a vari-
ety of different weighting functions have been proposed in order to sharpen the
peak that corresponds to the true TDOA and to improve its detectability [15, 41].
Among them, the so-called phase transform, PHAT, is the most frequently-used
weighting function, which whitens the cross-spectrum between the two microphone
signals, xL (n) and xR (n), prior to cross-correlation by choosing the weighting as
WPHAT (δ) = |XL (δ) X∗

R (δ) |−1. When ignoring the impact of noise, the PHAT
weighting eliminates the influence of the source signal on localization and exhibits a
clearly visible peak at the true TDOA. One apparent drawback of the PHAT weight-
ing is that is gives equal weight to all frequencies, regardless of their signal-to-
noise ratio, SNR. Nevertheless, if all interferences can be attributed to reverberation,
the PHAT weighting has been shown to achieve robust localization performance
[32, 83], as long as the level of noise is low [83].

Another approach that attempts to improve the robustness of the GCC function in
noisy and reverberant environments is to perform linear prediction, LP, analysis to
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extract the excitation source information3 [59]. The conventional GCC function is
then computed based on the Hilbert envelope of the LP-residual signal, which was
reported to form a more prominent main peak at the true TDOA in comparison to
the conventional CC weighting.

Alternatively, the delay can also be derived from the average magnitude-difference
function, AMDF, and its variations [17, 36]. For an comprehensive overview of
different time-delay-estimation techniques the reader is referred to Chen et al. [18].

Once an estimation of the time delay between the left and the right ears is available,
the second step of TDOA estimation requires conversion of the measured time delay
to its corresponding direction of arrival, DOA. This is commonly achieved by a
table-look-up procedure that can roughly account for the diffraction effects of the
human head. Therefore, the estimated delay, Ψ̂ , of a particular TDOA method is
monitored in response to white noise filtered with HRTFs that are systematically
varied between −90◦ and 90◦ [8, 57]. The resulting mapping function establishes
a monotonic relation between time delay, Ψ̂ , and sound-source azimuth, Σ, at an
angular resolution of 1◦.

3.2 Auditory-Inspired Approaches

It is an important property of the human auditory system to be able to segregate the
individual contributions of competing sound sources. In an attempt to incorporate
aspects of peripheral auditory processing, the cross-correlation analysis can be per-
formed separately for different frequency channels [8, 46, 50, 57, 63]. The frequency
selectivity of the basilar membrane is commonly emulated by a Gammatone filter-
bank, GTFB, that decomposes the acoustic input into individual frequency channels
with center frequencies equally spaced on the equivalent-rectangular-bandwidth-
rate scale, ERB scale, [31]. It is advantageous to use phase-compensated Gamma-
tone filters by accounting for the frequency-dependent group delay of the filters
at their nominal center frequencies, c f . This time-alignment can be achieved by
introducing a channel-dependent time lead and a phase-correction term [14], allow-
ing for a synchronized analysis at a common instance of time. Further processing
stages crudely approximate the neural-transduction process in the inner hair cells by
applying half-wave rectification and square-root compression to the output of each
individual Gammatone filter [63]. Although not considered in this chapter, more
elaborate models of the neural-transduction process might be applied at this stage
[53, 54, 72]. Then, on the basis of these auditory signals, denoted as hL, f and hR, f ,
the normalized cross-correlation, C , can be computed over a window of B samples
as a function of time lag, Ψ , frame number, t , and frequency channel, f , as follows,

3 The corresponding MATLAB code can be found at http://www.umiacs.umd.edu/labs/cvl/pirl/
vikas/Current_research/time_delay_estimation/time_delay_estimation.html

http://www.umiacs.umd.edu/labs/cvl/pirl/vikas/Current_research/time_delay_estimation/time_delay_estimation.html
http://www.umiacs.umd.edu/labs/cvl/pirl/vikas/Current_research/time_delay_estimation/time_delay_estimation.html
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C (t, f, Ψ ) =

B−1⎡
i=0

⎣
hL, f (t · B/2 − i) − h̄L, f

) ⎣
hR, f (t · B/2 − i − Ψ) − h̄R, f

)

⎥
B−1⎡
i=0

⎣
hL, f (t · B/2 − i) − h̄L, f

)2

⎥
B−1⎡
i=0

⎣
hR, f (t · B/2 − i − Ψ) − h̄R, f

)2

. (2)

h̄L, f and h̄R, f denote the mean values of the left and right auditory signals estimated
over frame t . The normalized cross-correlation function is evaluated for time lags
within a range of [−1, 1 ms], and the lag that corresponds to its maximum is used to
reflect the interaural time difference, ITD,

îtd (t, f ) = arg max
Ψ

C (t, f, Ψ ) / fs . (3)

Instead of using the integer time lag directly for ITD estimation, it is possible to
refine the fractional peak position by applying parabolic [36] or exponential [84]
interpolation strategies. It has been found that the exponential interpolation performs
better than the parabolic one, which is in line with results reported by Tervo and
Lokki [73].

The frequency-selective processing allows the frequency-dependent diffraction
effects introduced by the shape of the human head [8, 57, 63] to be accounted
for. More specifically, the cross-correlation pattern, C (t, f, Ψ ), which is usually a
function of the time lag, Ψ , is warped onto an azimuth grid, S (t, f, Σ) [57]. This
warping is accomplished by a frequency-dependent table look-up, which is obtained
in a similar way as the one described in Sect. 3.1 and translates time delay to its
corresponding azimuth. The frame-based source position can then be obtained by
integrating the warped cross-correlation patterns across frequency and locating the
most prominent peak in the summary cross-correlation function, that is,

Σ̂GFB (t) = arg max
Σ

⎤

f

S (t, f, Σ) . (4)

This across-frequency integration is an implementation of the straightness approach
where sound-source directions with synchronous activity across multiple frequency
channels are emphasized [69, 71].

If more than one sound source should be resolved on a frame-by-frame basis, it
might be beneficial to compute a skeleton cross-correlation function [57, 63]. The
general concept is that each local peak in the cross-correlation function is replaced by
a Gaussian function where the corresponding standard deviation is varied linearly as
a function of the frequency channel. This processing aims at sharpening the response
of the summary cross-correlation function.

Although the computational approaches to binaural sound-source localization dis-
cussed so far have been focusing on exploiting the ITD cue, there are some attempts to
also consider the information that is supplied by the interaural level differences, ILDs.
The aforementioned skeleton cross-correlation function has some similarities with
the concept of contralateral inhibition, where the ILD information is incorporated
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into the cross-correlation framework to predict phenomena related to the precedence
effect [44, 45]. A comprehensive review of the recent development of binaural mod-
els can be found in [9]. Moreover, the model presented by Palomäki et al. [57] uses
an azimuth-specific ILD template to verify if the estimated ILD is consistent with
the template ILD that is expected for the ITD-based azimuth estimate. The ILD cue
can be derived by comparing the energy of the left- and the right-ear signals, hL, f

and hR, f , over a window of B samples, namely,

îld (t, f ) = 10 log10

⎦

⎜⎜⎜⎝

B−1⎡
i=0

hR, f (t · B/2 − i)2

B−1⎡
i=0

hL, f (t · B/2 − i)2

⎞

⎟⎟⎟⎠ . (5)

3.3 Supervised-Learning Approaches

In many realistic environments the observed binaural cues will be affected by the
presence of reverberation and noise sources. Although the binaural cues are noisy,
there still is a certain degree of predictability associated with these binaural cues,
depending on the azimuth of the sound source. Recently, supervised-learning strate-
gies have been employed in order to optimally infer the location of a source on the
basis of binaural cues [24, 34, 50, 56, 77–79] where the interdependence between
interaural time and level differences can be jointly considered as a function of fre-
quency channel, f , and sound-source direction, Σ. Note that supervised-learning
approaches based on binaural cues have also been applied in the context of sound-
source segregation [33, 63].

In this chapter, a Gaussian mixture model, GMM, classifier to approximate the
two-dimensional feature distribution of ITDs and ILDs will be described. For the
extraction of ITDs and ILDs, auditory front-ends as described in the previous section
are commonly employed. In contrast to utilizing a mapping function—see Sects. 3.1
and 3.2—that translates the obtained interaural differences to their correspond-
ing sound-source directions, supervised-learning approaches offer the considerable
advantage of providing a probabilistic framework where multiple layers of informa-
tion can be jointly analyzed. This combined analysis of ITDs and ILDs has been
shown to be superior to exclusively relying on the ITD cue [50]. The localization
framework based on GMMs is very flexible and can be readily extended to incor-
porate additional features that depend on the sound-source direction. Likewise, the
GMM framework is applicable to array geometries with more than two microphones
from which binaural features for multiple microphone pairs could be extracted. To
extend the working range of the GMM-based localization model to the dimen-
sion of elevation, the additional integration of monaural cues might be beneficial
[43, 82]. Further details about vertical sound-source localization can be found in [6],
this volume.
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During the supervised training process, a priori knowledge is available to create
training data, namely, binaural features, and the corresponding class labels that cate-
gorize the training data according to different sound-source directions,Σ. As analyzed
by Roman at el. [63], the joint distribution of ITDs and ILDs is influenced by the
presence of a competing source and its strength relative to the target source. This can
be accounted for by training the localization model with binaural cues extracted for
mixtures with a target and an interfering source at various SNRs. The resulting model
was reported to yield substantial SNR improvements [63], however, its application
is restricted to anechoic scenarios.

Multi-Conditional Training of Binaural Cues

Localization models are commonly based on the assumption of single-path wave
propagation. To overcome this fundamental limitation, a multi-conditional training
stage can be applied in order to incorporate possible variations of ITDs and ILDs
that are caused by the presence of competing sound sources, room reverberation and
changes in the source-receiver configuration [50]. During the multi-conditional train-
ing stage, a variety of different acoustic conditions are simulated, and the frequency-
dependent distributions of binaural features are approximated by a Gaussian mixture
model classifier. The reverberation characteristic is intentionally simplified by assum-
ing a frequency-independent reverberation time of T60 = 0.5 s. In this way, the same
amount of uncertainty is encoded in each Gammatone channel. To ensure that the
model is not trained for a particular room position, the multi-conditional training
also involves various receiver positions and radial distances between the source and
the receiver. Note that these positions are different from the ones that are used for
evaluation—see Sect. 2 for details. More specifically, the following parameters are
varied for each sound-source direction, Σ,

• Competing speaker at ±40,±30,±20,±10 and ± 5◦ relative to the azimuth Σ of
the target source

• Three SNRs between the target and the competing source, 20, 10 and 0 dB
• Three radial distances between the target source and the receiver, 0.5, 1 and 2 m
• Eight positions within the simulated room of dimensions, 6.6 × 8.6 × 3 m

To visualize the influence of reverberation and the presence of multiple sound
sources on ITDs and ILDs, the binaural feature space created by the multi-conditional
training stage is presented in Fig. 1. Each dot represents a joint ITD-ILD estimate
obtained for time frames of 20 ms. Note that the black and the gray distributions cor-
respond to binaural cues associated with a target source at Σ = −50◦ and Σ = 50◦,
respectively. When analyzing the general shape of the joint ITD-ILD feature distribu-
tions, it can be seen that the interdependency of both binaural cues results in complex
multi-modal patterns. Due to spatial aliasing, the cross-correlation function leads to
ambiguous ITD estimates at higher frequencies at which the wavelength is smaller
than the diameter of the head. Consequently, the ambiguous ITD information results
in multi-modal distributions where the number of individual clusters systematically
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Fig. 1 Frequency-dependent distributions of interaural time and level differences, ITDs and ILDs,
created by the multi-conditional training stage. Each dot represents a frame-based observation of
the joint ITD and ILT feature space. The black and gray distributions correspond to two different
sound-source directions, namely, Σ = −50◦ and Σ = 50◦ respectively. See text for more details

increases with frequency. This ITD fine structure at higher frequencies is deliber-
ately maintained, because experiments showed that a more detailed hair-cell model
that simulates the inability of the human auditory system to analyze the temporal
fine structure at frequencies above 1.5 kHz performed substantially worse in terms
of localization accuracy [50]. This comparison suggests that the fine-structure infor-
mation of the ITD can be effectively exploited by the GMM classifier for improved
localization performance. This is a distinguishing feature from other localization
models that attempt to build a physiologically-plausible model of human sound-
source localization [26]. Another practical advantage of exploiting ITDs at higher
frequencies is that the reverberation energy usually decays towards higher frequen-
cies. As a result, the binaural cues associated with higher frequencies are less affected
by reverberation, and thus convey more reliable contributions to overall localization.
The spread of the individual clusters can be attributed to the impact of reverberation
and the presence of a competing source. Furthermore, when comparing the binau-
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ral features for Σ = −50◦ and Σ = 50◦, it can be seen that the complex structure
systematically shifts with sound-source direction.

GMM-Based Localization

The distinct change of ITDs and ILDs as a function of sound-source direction, which
is illustrated in Fig. 1, can now be systematically learned by a GMM classifier. Thus,
the multi-conditional training is performed for a set of K = 37 sound-source direc-
tions, {Σ1, . . . , ΣK } spaced by 5◦, within the range of [−90, 90◦]. After training, a set
of frequency- and azimuth-dependent diagonal GMMs,

{
Ξ f,Σ1 , . . . , Ξ f,ΣK

}
, is avail-

able. Given an observed binaural feature vector consisting of estimated ITDs and
ILDs, xt, f = {

îtd (t, f ) , îld (t, f )
}

, the three-dimensional spatial log-likelihood
can be computed for the kth sound-source direction being active at time frame t and
frequency channel f as

L (t, f, k) = log p(xt, f |Ξ f,Σk ) . (6)

To obtain a robust estimation of sound-source direction, the log-likelihoods are accu-
mulated across all frequency channels and the most probable direction reflects the
estimated source location on a frame-by-frame basis, that is,

Σ̂GMM (t) = arg max
1≤k≤K

F⎤

f =1

L (t, f, k) . (7)

Note that, in contrast to integrating the cross-correlation pattern across frequency,
see (4), the log-likelihoods are accumulated, taking into account the uncertainty
of binaural cues in individual frequency channels. This probabilistic integration of
binaural cues has been also suggested by Nix and Hohmann [56]. As a result, the
model does not require additional selection mechanisms, such as the coherence-based
selection of reliable binaural cues [29], because this weighting is already implicitly
incorporated into the model by the multi-conditional training stage. In other words,
the multi-conditional training considers possible variations of interaural time and
level differences resulting from competing sound sources and room reverberation,
thus improving the robustness of the localization model in adverse acoustic scenarios.

4 Frame-Based Localization of a Single Source

In this section a comparison is performed of the ability of different approaches to
localize the real position of one speaker in the presence of reverberation, based
on 20 ms time frames. Therefore, binaural mixtures are created by using the simu-
lated BRIRs with different reverberation times, T60. A set of 185 binaural mixtures
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is created for each reverberation time. For evaluation, the following methods are
considered,

• Generalized cross-correlation, GCC, function according to (1) with two different
weighting functions, WCC and WPHAT

• GCC function according to (1) with WCC based on the LP residual
• Gammatone-based cross-correlation, GCC–GTFB, according to (4)
• GMM-based localization according to (7) with multi-conditional training

The GCC-based algorithms used a 20 ms Hamming window and a fast Fourier trans-
form of 1,024 samples. The resolution of the resulting TDOA estimate was improved
by applying an IFFT-based interpolation with an oversampling factor of four. The
LP residual is created on the basis of 20 ms frames by using ten LP-filter coefficients.
The Gammatone-based processing is based on 32 auditory filters that were equally
distributed on the ERB-rate scale between 80 Hz and 5 kHz. All mapping functions
are derived from anechoic BRIRs based on the KEMAR HRTFs. In general, the num-
ber of active target speakers is assumed to be known a priori. The blind estimation
of the number of active speakers is currently being investigated [48].

The percentage of correctly localized frames is shown in Fig. 2 as a function of
the absolute error threshold. Different panels represent different reverberation times,
ranging from T60 = 0.2 up to T60 = 1.05 s. Apart from the conventional GCC
approach, all algorithms reach ceiling performance for a moderate reverberation
time of T60 = 0.2 s. But with increasing reverberation time, performance of all
GCC-based methods substantially deteriorates. Due to the fact that these approaches
are based on the assumption of single-path wave propagation, the presence of strong
reflections causes spurious peaks in the GCC function that are erroneously selected
as source positions. Thus, localization performance of the GCC-based approaches
will inevitably decrease in more challenging acoustic conditions. While the LP-
based preprocessing improves the performance of the conventional GCC approach,
the PHAT-weighting produces the overall most reliable estimates of all GCC-based
approaches, which supports the findings of previous studies [32, 83]. The GMM-
based localization model shows superior performance, especially in conditions with
strong reverberation, suggesting that the multi-conditional training stage can account
for the distortions of ITDs and ILDs due to reverberation. Furthermore, unlike the
other approaches, the GMM-based localization model is able to jointly analyze ITD
and ILD information.

5 Localization of Multiple Sound Sources

In more complex acoustic scenarios, a variety of sound sources might be active at the
same time. As demonstrated in the previous section, the performance of localizing
only one speaker on a frame-by-frame basis noticeably degrades with increasing
reverberation time. Therefore, an important question is how to integrate localization
information across time in order to reliably resolve the position of multiple competing
sound sources in reverberant environments.



Binaural Localization and Detection of Speakers in Complex Acoustic Scenes 409

Fig. 2 Frame-based accuracy in % of localizing one speaker in a reverberant room as a function
of the absolute error threshold in ◦. Results are shown for different reverberation. a T60 = 0.2 s.
b T60 = 0.5 s. c T60 = 0.81 s. d T60 = 1.05 s

Temporal Integration

Recursive smoothing techniques could be considered as a way to calculate a running
average of localization information. Regarding the class of GCC-based approaches
that require a short-time estimate of the cross-spectrum, a first-order recursive
smoothing can be applied [47]. While this approach might help to improve localiza-
tion performance in scenarios with one target source, recursive smoothing reduces
the ability of the localization algorithm to quickly respond to changes in source activ-
ity, which is particularly important for complex multi-source scenarios. Furthermore,
the optimal smoothing constant might depend on a variety of different factors, such
as the number of active sources, the level of noise and the reverberation time. Thus,
exponential smoothing is not considered in this chapter.

One possibility of accumulating evidence about the location of sound sources is to
average the GCC function across time frames [1, 57]. This approach, which will be
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referred to as AVG, has the potential advantage that activity corresponding to multiple
sound sources can be considered per frame. Regarding the GMM-based localization
model, the probability of sound-source activity is averaged over all frames.

Alternatively, the most likely source location can be estimated on a frame-by-
frame basis, and all resulting short-time estimates can be pooled into a histogram [1,
3, 50]. Assuming that each of the active sound sources is most dominant across
a reasonable number of time frames, the histogram will approximate the probabil-
ity density function, PDF, of the true location of all active sound sources [3]. In
addition, variations of time-frequency-based, T–F, histograms, might be considered
where competing sources with different spectral contributions can be separated [2].
However, this implies that a priori knowledge about the spectral content of active
sources is available. Moreover, as this chapter focuses on the localization of multiple
speakers that show activity in a similar frequency range, the frame-based histogram
technique, denoted as HIST, will be considered.

As discussed in [58], deciding what number of bins is used for the histogram
analysis is a difficult task. While a high histogram resolution might be beneficial in
scenarios with moderate reverberation, a higher variance of the TDOA estimates due
to strong reverberation and noise can cause the histogram to have bimodal peaks,
which will be erroneously interpreted as two active sources. Thus, the choice is a
trade-off between between resolution and robustness. In accordance with [79], it has
been decided to use 37 histogram bins to cover the azimuth range of [−90, 90◦]
in steps of 5◦, where each individual bin is chosen to represent the time delay of
the corresponding anechoic HRTF. To increase the resolution of the final azimuth
estimate, exponential interpolation is applied to refine the maximum peak position
of the histogram analysis [84].

Recently, a maximum likelihood, ML, framework for localization has been pre-
sented by Woodruff and Wang [78, 79], which jointly performs segregation and
localization. Although small improvements were reported in comparison to the his-
togram approach [79], the computational complexity of the resulting search space is
only feasible if the number of target sources is low, for instance three. Yet, because
acoustic scenes with up to six competing speakers are used for evaluation in this
chapter, the ML approach is not considered.

In order to address the problem of moving sources, other approaches aim at
tracking the sound-source positions across time by employing statistical particle
filtering, PF, techniques and hidden Markov models, HMMs [26, 61, 62, 76, 80].
But since the position of sound sources is assumed to be stationary throughout the
time interval over which the localization information is integrated, these methods are
not considered in this chapter. For the application of binaural analysis in combination
with particle filtering, see [70], this volume.

The impact of temporal integration on sound-source localization is exemplified in
Fig. 3 for a binaural mixture with three competing speakers in a reverberant environ-
ment with T60 = 0.5 s. More specifically, a comparison of two temporal integration
strategies, namely, averaging versus histogram, is shown for two GCC-based meth-
ods, WCC and WPHAT weighting, and the GMM-based approach. In contrast to the
conventional GCC–CC pattern shown in panel (a), the PHAT weighting in panel
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Fig. 3 Influence of two temporal integration strategies on localizing three competing talkers posi-
tioned at −10, 20 and 35 ◦ in a reverberant room with T60 = 0.5 s. (a, c) Averaging of the GCC
function across time. (e) GMM-based approach where the frame-based probability of sound-source
direction is averaged over time. (b, d, f) Histogram-based integration. Dots represent the short-time
localization estimates on a frame-by-frame basis. The estimated azimuth of the three speakers is
marked by the black crosses, whereas their true position is indicated by dashed vertical lines
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(c) produces sharper peaks, therefore, is able to resolve the positions of all three
speakers. When using the histogram-based integration, both GCC–CC and GCC–
PHAT achieve accurate predictions of the true speaker locations that are indicated
by the vertical lines. The GMM-based approach shows the most prominent peaks of
all methods at the true positions of the speakers for both integration strategies, where
hardly any secondary peaks are visible.

To systematically compare the impact of these two temporal-integration strategies
on localization performance, binaural mixtures of 2 s duration with up to six com-
peting talkers are created, and the ability of various methods to predict the azimuth
of all active speakers within ±5◦ accuracy is evaluated. The following acoustical
parameters were varied,

• Number of competing speakers, ranging from one to six
• Randomized azimuth within [−90, 90◦] with a minimum separation of 10◦
• Simulated BRIRs ranging from T60 = 0.2 to T60 = 1.05 s

The experimental results are shown in Fig. 4 as a function of the reverberation
time. Results are averaged over the number of competing speakers. In comparison
to the frame-based localization accuracy reported in Sect. 4, the temporal integration
significantly reduces the impact of reverberation on localization performance. In gen-
eral, averaging the GCC pattern across time—dashed lines—is less robust than the
histogram-based approach—solid lines—where short-time localization estimates are
pooled across time. This is especially evident for the conventional GCC–CC method
where the broad peaks in the accumulated GCC response prevent the detection of
spatially close speakers—as seen in Fig. 3. Furthermore the averaging will integrate
spurious peaks caused by reverberation, which might be erroneously considered
as sound-source activity. In contrast, the histogram approach only considers the
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Fig. 4 Average performance of localizing up to six competing speakers with an accuracy of ±5◦ as
a function of the reverberation time, T60, for various approaches. The dashed line and the solid line
indicate the two temporal integration strategies, namely, averaging and histogram-based integration
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most salient source location on a frame-by-frame basis, thus focusing on the most
reliable information. Consequently, the histogram-based integration of short-time
localization estimates is very effective and considerably improves the robustness
against the detrimental effect of reverberation. Regarding the GMM approach, a
marginal benefit over the histogram-based integration is achieved when the prob-
ability of sound-source activity is averaged over time. This can be explained by
the observation that the azimuth-dependent probability of sound-source activity is
almost binary on a frame-by-frame basis—see Fig. 3—suggesting that each frame is
approximately dominated by one individual sound source.

Overall, the PHAT weighting is substantially more robust than the conventional
GCC–CC. Because the PHAT weighting already provides a sharp representation of
the estimated time delay with strongly reduced secondary peaks—see Fig. 3—the
additional improvement provided by the histogram integration is smaller than for
the GCC–CC, most noticeably at short reverberation times. In anechoic conditions,
GCC–PHAT HIST performs as well as the GMM approach. But with increasing
reverberation time, the multi-conditional training and the joint analysis of ITDs and
ILDs enable the GMM-based localization method to be more robust in reverberant
multi-source scenarios.

This benefit of the GMM-based approach over the GCC–PHAT HIST system is
presented in more detail in Fig. 5, where the localization performance is individually
shown as a function of the number of competing talkers and the reverberation time.
With an increasing number of speakers, the amount of reverberation has a stronger
impact on the localization performance of the GCC–PHAT HIST approach, as seen
in panel (a). This dependency of the localization performance on the reverberation
time is substantially reduced in panel (b), showing the robustness of the GMM-based
approach.

(a) (b)

Fig. 5 Sound-source localization accuracy in % as a function of the number of competing speakers
and the reverberation time for two approaches. a GCC–PHAT HIST. b GMM HIST
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Table 1 Average localization accuracy in % for two sets of BRIRs. a Simulated BRIRs based on the
KEMAR database [30]. b Measured BRIRs based on the HATS taken from the Surrey database [35]

BRIRs Methods # competing speakers
One Two Three Four Five Six Mean

GMM AVG 100 99.5 98.0 94.9 91.6 88.7 95.4
GMM HIST 100 99.4 97.6 94.5 90.9 87.9 95.0

(a) Simulated, KEMAR GCC–PHAT HIST 100 97.8 92.2 86.7 82.1 79.3 89.7
T60 = {0.36, 0.5, 0.62, 1.05} s GCC–PHAT AVG 100 96.6 90.2 85.7 80.1 75.9 88.1

GCC–CC HIST 96.8 85.2 79.5 74.3 72.1 70.3 79.7
GCC–CC AVG 96.2 65.4 52.3 49.3 48.7 46.4 59.2

GMM AVG 100 99.0 97.0 92.7 89.8 86.7 94.2
GMM HIST 100 98.9 96.4 92.3 89.4 86.2 93.9

(b) Measured, HATS GCC–PHAT HIST 99.9 98.3 95.7 89.7 84.8 80.7 91.5
T60 = {0.32, 0.47, 0.68, 0.89} s GCC–PHAT AVG 99.3 96.7 90.9 84.2 80.5 75.4 87.8

GCC–CC HIST 93.9 82.7 76.4 71.0 69.1 67.3 76.7
GCC–CC AVG 90.4 54.5 46.4 41.9 40.8 38.8 52.1

Generalization to Real Recordings

An important question is to what extent the results obtained with simulated BRIRs
can be compared to recorded BRIRs. Therefore, the localization performance of
simulated BRIRs is compared with a set of measured BRIRs. To allow for a fair
comparison, a subset of the simulated BRIRs, T60 = {0.36, 0.5, 0.62 and 1.05 s}, was
selected such that the reverberation times are as close as possible to the measured
BRIRs, T60 = {0.32, 0.47, 0.68 and 0.89 s}—see Sect. 2 for details. Furthermore,
this comparison allows for assessing of how well the localization methods, which
have all been trained on one particular artificial head, KEMAR, are able to generalize
to the recorded BRIRs, which are based on a different artificial head, HATS.

The analysis involves binaural multi-source mixtures containing between one and
six competing speakers that are created using both simulated and measured BRIRs.
In Table 1, the localization accuracy of all tested methods is shown separately for
(a), the simulated BRIRs based on the KEMAR artificial head and (b), the measured
BRIRs based on the HATS artificial head. Results are averaged across all reverber-
ation times. By comparing the mean values for different conditions, it can be seen
that the overall performance for the measured BRIRs is fairly well reproduced by the
set of simulated BRIRs. Thus, the differences in localization performance evaluated
with simulated BRIRs are also valid for real life BRIRs. This is an important state-
ment, justifying the usage of simulation tools for the development of localization
algorithms. Furthermore, although the binaural-localization models are calibrated
for one particular artificial head, localization performance does not degrade substan-
tially when they are applied in the context of a different binaural-recording setup.
Nevertheless, to minimize the sensitivity of the GMM-based localization model to
a specific artificial head, the multi-conditional training stage can be readily adopted
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to include various sets of different HRTFs. Alternatively, it is possible to employ
generic head models if only the coarse characteristics of the human head should be
captured [13, 28]. Moreover, supervised learning of binaural cues can also be applied
in the field of robotics, which is discussed in [5], this volume.

6 Localization of Speakers in the Presence of Interfering Noise

When all active sound sources are assumed to be speakers, it is reasonable to cluster
the localization information across time and to treat the most significant peaks as
estimated source positions. However, if speech activity is corrupted by environmental
noise, the task becomes much more difficult and a prominent peak might as well
correspond to the position of a noise source. Therefore, a distinction between speech
and noise sources is required in order to reliably select sound-source activity that
originates from active speakers. In the following, the application of binaural cues to
the problem of sound-source segregation is considered.

6.1 Segregation of Individual Sound Sources

In order to distinguish between speech and noise sources, the time-frequency, T–F,
representation of multi-source mixtures will be segmented according to the estimated
azimuth of sound sources. Assuming that sound sources are spatially separated, all
T–F units that belong to one particular sound-source direction will be assumed to
belong to the same acoustic source. This source segregation can subsequently be
used to control a missing data classifier.

The GMM-based approach to binaural sound-source localization described in
Sect. 3.3 was shown to accurately predict the location of up to six competing speakers
in reverberation. Instead of using the most prominent peaks in the azimuth histogram
as estimated sound-source positions, each local peak in the azimuth histogram will
now be considered as a speech-source candidate. The corresponding histogram-bin
indices are used to form a set of M candidate positions, L = {Υ1, . . . , ΥM }. Because
the GMM-based approach extracts the likelihood of sound-source activity in indi-
vidual frequency channels, the resulting spatial log-likelihood function, L (t, f, k),
can be used to determine the contribution of all M candidate positions on a time-
frequency, T–F, basis as

Mm (t, f ) =
⎧

1 if m = arg max
k∈L

L (t, f, k)

0 otherwise .
(8)

The resulting estimated binary mask, Mm (t, f ), is a binary decision whether the
m-th candidate has been the most dominant source in a particular T–F unit. The
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binary mask has a wide variety of different application areas, among them automatic
speech and speaker recognition [21, 51, 52] as well as speech enhancement [40]. Due
to the promising results that were obtained with the ideal binary mask, IBM, where
the optimal segregation is known a priori, the estimation of the ideal binary mask
has been proposed as the main goal of computational auditory scene analysis [75].

Speech-Detection Module

In the following, it will be discussed how the estimated binary mask according to
(8) can be used to select the most-likely speech sources among a set of candidate
positions. The estimated binary mask can be used to perform missing data, MD, clas-
sification, where only a subset—indicated by the binary mask—of all time-frequency,
T–F, units are evaluated by the classifier, namely those that are assumed to contain
reliable information about the target source [21]. In this way, it is possible to selec-
tively analyze and classify individual properties of one particular target source in
the presence of other competing sources. Note that the concept of missing data is
closely related to the auditory phenomenon of masking, where parts of the target
source might be obscured and are, therefore, missing in the presence of other inter-
fering sources [55, 75]. To distinguish between speech and noise sources, the amount
of spectral fluctuation in individual Gammatone channels is a good descriptor that
can be used to exploit the distinct spectral characteristic between speech and noise
signals [49]. Based on a smoothed envelope, e f , obtained by low-pass filtering the
half-wave rectified output of the f th Gammatone channel with a time constant of
10 ms, the mean absolute deviation of the envelope over B samples is calculated as

F (t, f ) = 1

B

B−1⎤

i=0

|e f (t · B/2 − i) − ē f | , (9)

where ē f reflects the mean envelope of the t-th frame. Note that the left and the
right ear signals are averaged prior to envelope extraction. This feature, F (t, f ),
is subsequently modeled by two GMMs, denoted as ΞSpeech and ΞNoise, reflecting
the feature distribution for a large amount of randomly selected speech and noise
files [49, 51]. Incorporating this a priori knowledge about the spectral characteristics
of speech and noise signals can be viewed as an implementation of schema-driven
processing. Given the estimated mask, Mm , the two GMMs, ΞSpeech and ΞNoise, and
the extracted feature space,F , the log-likelihood ratio of speech activity for the m-th
candidate can be derived as

pm = log

⎨
p

⎣
F |ΞSpeech,Mm

)

p (F |ΞNoise,Mm)

⎩
. (10)

In order to emphasize speech-source candidates that are more frequently active
in the acoustic scene, the log-likelihood ratio of speech activity is weighted with
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the a priori probability of sound-sources activity, which is approximated by the
normalized azimuth-histogram value of the corresponding candidate [49]. Although
other weighting schemes can be considered, it was found that putting equal weight on
the log-likelihood ratio obtained from the MD classifier and on the histogram-based
localization information leads to good results. Finally, these weighted log-likelihood
ratios of all M candidates are ranked in descending order, and the azimuth positions
corresponding to the highest values are used to reflect the most likely speech source
positions. In this way, the plain peak selection based on the most dominant local-
ization information is supported by evidence about the source characteristic, being
either speech-like or noise-like, therefore allowing for a distinction between speech
and noise signals. The localization based on this speech-detection module will be
referred to as GMMSDM.

Of course, other unique properties of speech signals might be considered at this
stage as well, and a joint analysis of multiple complementary features is conceivable
to further improve the ability to distinguish between speech and noise signals. As
reported by [40, 42], the amplitude-modulation spectrogram is an effective feature
that provides a reliable discrimination between speech and noise. Furthermore, is
has been shown that also the distribution of reliable T–F units in the estimated binary
mask, Mm , contains information about the type of source, where the binary pattern
shows a more compact representation for speech sources than for noise signals [48].

6.2 Influence of the Spatial Diffuseness of Interfering Noise

The impact of environmental noise on the ability to localize speakers does not only
depend on the overall signal-to-noise ratio, but furthermore on its spatial distrib-
ution. Nevertheless, the vast majority of studies have investigated the influence of
diffuse noise on sound-source localization [1, 16, 17, 79], which complies with the
assumption of the GCC-based approach. However, the assumption of a diffuse noise
field is not necessarily realistic for a real-life scenario. As recently analyzed by [58],
real recordings of noise scenarios show a substantial amount of correlation, where
the maximum value of the normalized cross-correlation function has been used as an
indication of the amount of spatial correlation between the two microphones. Their
experimental results showed that the conventional GCC method was superior to the
PHAT weighting for acoustic conditions in which the noise had a high degree of
correlation [58].

Therefore, the aim of this section is to investigate the impact of noise diffuse-
ness on speaker-localization accuracy. More specifically, the influence of the noise
characteristic is analyzed by systematically varying the amount of correlation of the
noise between the left and the right ear signals. Therefore, different realizations of a
particular noise type are filtered with BRIRs corresponding to a predefined number
of randomly-selected azimuth directions. Note that for a given noise signal, each
azimuth direction may be only selected once. By systematically varying the number
of azimuth directions that contribute to the overall noise field from 1 to 37, the spatial
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characteristic of the resulting noise can be gradually changed from a compact noise
source located at one particular azimuth direction to a noise field where the energy
is uniformly distributed across all 37 sound-source directions, thus approximating a
diffuse noise field. The spatial diffuseness of the resulting noise field is specified by
relating the number of noise realizations that contribute to the overall noise signal to
the total number of discrete sound-source directions, ranging from 100 · 1

37 = 2.7 to
100 · 37

37 = 100 %.
In order to quantify the amount of correlation between the left and the right

ear signals, the short-time coherence is estimated for 20 ms frames. The resulting
coherence is averaged over time and shown in Fig. 6 as a function of frequency for
noise signals consisting of 1, 3, 9, 19 and 37 superimposed realizations of randomly-
selected azimuth directions. Whereas the average coherence in panel (a) is based on
noise signals in anechoic conditions, panel (b) shows the additional influence of
reverberation, namely, T60 = 0.36 s. It can be observed that the coherence functions
systematically decrease with increasing number of noise realizations that contribute
to the overall noise field. Furthermore, when comparing panel (a) and (b), it can
be seen that in addition to the number of noise realizations, reverberation has a
decorrelating effect, decreasing the correlation between the left and the right ear
signals.

Now, the influence of interfering noise on localization performance is analyzed for
binaural multi-talker mixtures with up to four competing talkers. Speech is corrupted
with noise with the spatial distribution being gradually changed from compact noise
to spatially diffuse noise. The following acoustic conditions are varied,

• Number of concurrent speakers ranging from one to four
• Number of interfering noise sources, 1, 3, 9, 19 and 37
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Fig. 6 Average short-time coherence estimates between the left and the right ear signals in response
to various simulated noise signals. The individual noise signals consist of 1, 3, 9, 19 and 37 superim-
posed realizations of factory noise excerpts and are filtered with BRIRs corresponding to randomly
selected azimuth directions. a Results for T60 = 0 s. b Results for T60 = 0.36 s. See Sect. 6.2 for
details
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Fig. 7 Accuracy of localizing up to four competing speakers in a reverberant room, T60 = 0.36 s,
as a function of the spatial diffuseness of the interfering noise. Performance is averaged over three
SNRs, that is, 10, 5 and 0 dB, and three types of background noise, namely, factory, babble and
speech-shaped noise

• Three noise types, namely, factory noise, babble noise and speech-shaped noise
• SNR between speech and noise, that is, 10, 5 and 0 dB

The performance of localizing up to four competing talkers within ±5◦ accuracy
is presented in Fig. 7 as a function of the spatial diffuseness of the noise. Results are
averaged over the number of competing talkers, the three noise types and the three
SNRs. In general, the presence of noise imposes serious problems for the GCC-
based approaches using either the WCC or the WPHAT weighting. In contrast to the
results presented in Sect. 5, the PHAT weighting performs worse than the classical
GCC–CC. This may be attributed to the whitening process, which equally weights all
frequency components, thereby also amplifying the noise components. These results
are in line with the observation of Perez-Lorenzo et al. [58], where the classical GCC–
CC was reported to perform more robustly than the PHAT weighting for scenarios
with correlated noise. Although GMM HIST appears to be more robust, the limiting
factor that is shared by all of the aforementioned methods is that they solely exploit
localization information. However, the most energetic components of speech are
sparsely distributed in the presence of noise [20], thereby only a limited set of spectro-
temporal units will be dominated by the sound-source direction of the speakers.
Thus, as soon as the noise gets more directional, the noise energy is more compactly
associated with a particular sound-source direction. As a result, the most dominant
localization information will at a certain SNR inevitably correspond to the position of
the interfering noise, which in turn reduces the overall speaker-localization accuracy.
This observation corroborates the need for a distinction between speech and noise
sources, especially for scenarios where the interfering noise has strong directional
components. Such a distinction can be realized by using the speech-detection module
described in Sect. 6.1, which effectively combines the localization analysis with a
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Fig. 8 Accuracy of localizing up to four competing speakers in a reverberant room, T60 = 0.36 s,
as a function of the spatial diffuseness of the interfering noise and the signal-to-noise ratio

classification stage for selecting the most-likely speech sources according to (10).
The experimental results shown in Fig. 7 demonstrate that the GMM SDM allows for
a robust localization of up to four competing speakers, where the impact of directional
noise is drastically reduced.

In Fig. 8, the localization performance of the two approaches GCC–PHAT HIST
and GMM SDM is shown as a function of the SNR and the noise diffuseness. It
can be seen that the performance of the PHAT approach systematically decreases
with decreasing SNR, quite notably already at SNRs of 5–10 dB. Furthermore, the
PHAT approach clearly suffers from interfering noise that is less diffuse, but corre-
lated between the left and the right ears. In contrast, the GMM SDM approach that
attempts to separate the contribution of individuals sources on the basis of common
spatial location in combination with employing a speech-detection module achieves
robust localization performance over a wide range of experimental conditions. In
summing up, it can be stated that interfering noise signal with a high degree of
directional components will trigger the correlation-based approaches to localize the
position of the noise components. Therefore, a distinction between speech and noise
signals is required in order to enable a high speaker-localization accuracy in noisy
environments.

7 Conclusions

This chapter presented an overview of binaural approaches to localizing multiple
competing speakers in adverse acoustic scenarios. A fundamental limitation of many
methods is that they assume single-path wave propagation, whereby performance
inevitably decreases in the presence of reverberation and multiple competing sources.
It was demonstrated that it is possible to incorporate the uncertainty of binaural cues
in response to complex acoustic scenarios into a probabilistic model for robust sound-
source localization, thus significantly improving the localization performance in the
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presence of reverberation. To reliably estimate the location of multiple competing
sound sources in reverberant environments, a histogram analysis of short-time local-
ization estimates can substantially reduce the severe effect of reverberation. Further-
more, a comparison between simulated and recorded BRIRs has confirmed that the
presented model produces accurate localization estimates for real-life scenarios and
is able to generalize to an unseen artificial head, for which the system was not trained
for. In general, considering both the impact of reverberation and noise imposes seri-
ous challenges for localization algorithms. A thorough analysis highlighted that in
particular the spatial distribution of the noise field is a very important factor that
strongly influences the performance of correlation-based localization algorithms,
being most detrimental for GCC-based approaches if the interfering noise has a high
degree of correlation between the left- and the right-ear signals. This problem can
be overcome by separating the contribution of individual sound sources by means of
estimating the binary mask. This binary mask can subsequently be used to control
a missing data classifier, which is able to distinguish between sound-source activity
emerging from speech and noise sources. It was shown that this joint analysis of
localization information and source characteristic can be effectively used to achieve
robust sound-source localization in very challenging acoustic scenarios.
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suggestions.

References

1. P. Aarabi. Self-localizing dynamic microphone arrays. IEEE Trans. Sys., Man, Cybern., C,
32(4):474–484, Nov. 2002.

2. P. Aarabi and S. Mavandadi. Robust sound localization using conditional time-frequency his-
tograms. Inf. Fusion, 4(2):111–122, Sep. 2003.

3. P. Aarabi and S. Zaky. Iterative spatial probability based sound localization. In Proceedings of
the 4th World Multi-conference on Circuits, Systems, Computers and Communications, Athens,
Greece, Jul. 2000.

4. J. B. Allen and D. A. Berkley. Image method for efficiently simulating small-room acoustics.
J. Acoust. Soc. Am., 65(4):943–950, Apr. 1979.

5. S. Argentieri, A. Portello, M. Bernard, P. Danės, and B. Gas. Binaural systems in robotics. In
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Predicting Binaural Speech Intelligibility
in Architectural Acoustics

J. F. Culling, M. Lavandier and S. Jelfs

1 Introduction

1.1 Measures of Acoustic Quality

Speech intelligibility can be impaired by poor room acoustics. This may happen as
a result of distortion of the speech signal itself, because many delayed versions of
the speech are summed at the ear, causing both spectral coloration and temporal
smearing. Reverberation may also exacerbate the effects of background masking
noise by impeding the processes by which the auditory system can overcome such
masking. The relative importance of these effects depends on the type of listening
situation. However, when listening to speech and noise from equidistant sources, it
has been shown that the effects of reverberation on noise masking occur at lower
levels of reverberation, and thus occur more readily, than the distorting effects on the
speech [1].

In the planning and regulation of buildings, the acoustic quality of a room is
generally summarized using statistics such as the reverberation time, T60, and noise
level. For instance, in the U.K., Building Bulletin 93, BB93, specifies upper limits
for unoccupied ambient noise levels and for T60 in different types of classrooms.
Ambient noise may vary across the space, in which case an average measure is
needed, but the T60 should, at least in principle, be independent of measurement
position. While single-value indices are convenient, they may not always accurately
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reflect the speech intelligibility that will result. As will be demonstrated below, the
T60 in particular, can be misleading.

In some circumstances, the speech transmission index [2], STI, or the useful-
to-detrimental ratio [3] may be considered. The STI evaluates the degree to which
amplitude modulation of speech survives the temporally smearing effect of rever-
beration. It is dependent upon the positions of the speech source and the receiver
within the room. This makes it appropriate for lecture theatres and public address
systems, for instance, where one individual communicates from a fixed location to an
audience. The STI can be evaluated for each location in the listening space in order
to ensure that adequate intelligibility is achieved in all listening locations. It can also
produce predictions for intelligibility in noise, provided that noise is continuous and
totally diffuse. However, these methods fail to produce accurate results where noise
sources are nearby, such as in a busy social environment, where noise sources, such
as background voices, may not be diffuse.

1.2 Binaural Speech Intelligibility

When speech and noise sources are spatially separated, speech intelligibility always
improves compared to a situation in which they are co-located. This effect is known
as spatial release from masking, SRM, and is likely related to a combination of at
least two binaural processes, binaural unmasking and better-ear listening [4, 5]. Since
speech and noise generally come from different sources, some SRM occurs in almost
all natural listening situations. However, SRM is adversely affected by reverberation
[6] and by the presence of multiple noise sources [4]. In order to accurately predict
intelligibility in noisy rooms, it is therefore essential to take into account SRM and the
influence that reverberation has upon it. This task is complicated by the dependence
of these effects on the exact spatial layout of the speech and noise sources—it is
not possible to characterize a room as facilitating a given level of SRM. However, it
has now become possible to predict SRM for any given situation with considerable
speed and accuracy.

Two very successful models of SRM have been developed by research groups in
Oldenburg [7, 8] and Cardiff [9–11]. The current version of the Oldenburg model
is the more comprehensive, because it can accommodate modulated masking noises
and also hearing-impaired listeners. However, this chapter will employ the Cardiff
model, which is well adapted to the rapid computation needed for many of the
analyses below. This model explicitly evaluates the benefit to intelligibility expected
from binaural unmasking and better-ear listening and regards their effects on the
speech reception threshold, SRT, in noise as additive in decibels. The model has been
applied to a wide range of data sets from the literature in both anechoic conditions
with multiple noise sources [10] and in reverberant situations [9, 11] and generally
provides a very high correlation with the empirical data—see Table 1. At present this
model is only strictly applicable to continuous random noise sources. In order to
apply them to more structured masking noises, such as voices, additional perceptual
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Table 1 Summary of correlations between empirically measured SRTs from different experiments
and corresponding model predictions

Experiment Room Number of noise sources Correlation

Bronkhorst and Plomp [5] Anechoic 1 0.86
Bronkhorst and Plomp [12] Anechoic 1–6 0.93
Peissig and Kollmeier [13] Anechoic 1–3 0.98
Hawley et al. [4] Anechoic 1–3 0.99
Culling et al. [14] Anechoic 3 0.94
Lavandier and Culling [9] Simulated room #1 1 0.91

Simulated room #2 1 0.98
Beutelmann and Brand [7] Two real rooms 1 0.99
Lavandier et al. [11] One real room 1 0.98

Four real rooms 1 0.98
One real room 3 0.95

Fig. 1 Schematic illustration of the binaural intelligibility model. ΦS and ΦN ... interaural phase
differences of speech and noise, ρN ... interaural coherence of the noise, BMLD ... binaural masking
level difference

processes will need to be considered. However, notwithstanding this limitation, the
model can make interesting predictions about the effects of room design and layout
on communication.

1.3 Anatomy of the Binaural-Intelligibility Model

As noted above, the binaural model is based upon additive contributions from better-
ear listening and binaural unmasking—Fig. 1. The model takes as input binaural
room impulse responses, BRIRs, between the listening location and each of the
sound-source locations. Its output is an effective signal-to-noise ratio, SNRe, that
takes these processes into account. The remainder of this section describes how the
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BRIRs are to be prepared and processed in order to generate the SNRe and may not
be of interest to the non-technical reader, who can skip to Sect. 1.4.

BRIRs may be generated by an acoustic model of a virtual room using suitable
acoustic modeling software1 or they may be recorded in a real room using an acoustic
manikin. Where multiple noise sources are present, the impulse responses for all
these sources are concatenated into one long impulse response. Concatenation has
the effect of summing the frequency-dependent energy of each contributing impulse
response, and generating an averaged cross-correlation function. It may seem intu-
itively reasonable to add together the BRIRs, just as one would add together different
masking noises. However, summing directly the BRIRs would result in spectral dis-
tortion due to mutual interference, which does not occur when summing statistically
independent interfering noises that have been convolved with those BRIRs. Only in
the particular case of different sound sources, such as loudspeakers, driven by the
same acoustic waveform, should the BRIRs be summed, to take into account the
interference between these correlated sound sources at the ears.

The impulse responses for speech and noise(s) are separately filtered into different
frequency channels, which are processed independently. The two contributions to
intelligibility from binaural hearing are then modeled, namely, better-ear listening
and binaural unmasking.

Better-ear listening simply reflects listeners’ ability to pick up sound from the
ear with the better signal-to-noise ratio. Interaural differences in SNR can occur as
a result of head shadow, where the masking noise is occluded at one ear by the
head, and also of room coloration, where frequency-dependent room absorption and
complex interference between multiple room reflections creates different spectral
distortions at each ear. Within each frequency channel the SNRs in dB at each ear are
derived from the relative total energies in the filtered noise and speech BRIRs at that
ear. The higher SNR of the two is selected as the better-ear SNR for that frequency.

Binaural unmasking is a psychoacoustic phenomenon in which the brain exploits
the differences in interaural phase between signal and noise sources in order to
improve detection or identification of the signal. These differences in phase are caused
by differences in path distance to each ear. The size of the improvement is known
as the binaural masking level difference, BMLD. The predicted BMLD is calculated
within each frequency channel, of center frequency, ω0. In order to predict speech
intelligibility, the filtered BRIRs for speech and noise are separately cross-correlated.
The speech and noise interaural phases, ΦS and ΦN , and the noise interaural coher-
ence, ρN , are extracted from the resulting cross-correlation functions. These values
are then used in the following equation, based on equalization-cancellation theory
[15].

BMLD = 10 log10

[
k − cos(φS − φN )

k − ρN

]
(1)

where, k = (1 + σ 2
ε ) exp(ω2

0σ
2
δ ), σε = 0.25, and σδ = 105µs.

1 For example, Odeon or Catt Acoustic.
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Following the principle that binaural processing can only improve performance over
what is possible based on listening with one ear, the BMLD is reset to zero if it has
a negative value.

The better-ear listening and binaural unmasking components are each frequency
weighted by the importance function for different frequencies in the speech intelli-
gibility index [16], SII, and are assumed to make additive contributions to the effec-
tive signal-to-noise ratio, SNRe, in decibels. This value is not intelligibility per se,
because this would depend upon the nature of the speech materials and the integrity
of the listeners’ auditory systems, but making assumptions about these, one can go
on to derive an intelligibility prediction through the SII [15]. The SNRe can be used
to predict differences in speech reception threshold across different listening situa-
tions; any resulting increase in SNRe should give rise to an improvement (decrease)
in SRT of equal magnitude. The SNRe incorporates both the physical signal-to-noise
ratio at that location and the benefits of binaural listening.

1.4 Suitability of the Binaural Model to Architectural Acoustics

In architectural acoustics, the effect of a room is fully described by the impulse
responses between the positions of sound sources and receivers, for example, stage
and seating area. Because the binaural model described above works directly with
binaural room impulse responses as inputs, it can very easily be used in connection
with room simulation software producing such impulse responses as output, or with
acoustical measurements of impulse responses in real rooms. The only requirement
is that these impulse responses should be binaural.

Because the model manipulates short impulse responses rather than the long
source signals used by other models [7, 9], it produces fast and non-stochastic pre-
dictions, avoiding the averaging of predictions over several source signals. Thanks
to its resulting computational efficiency, it can be used to draw intelligibility maps
of rooms. Such maps were obtained by simulating the listener at different positions
in a room containing a speaker and multiple noise sources [11]. The resulting spatial
representations offer visualization of the space accessible to a listener who would
wish to maintain a given level of intelligibility while moving within the room. Other
types of representation can be computed—as illustrated later in this chapter.

Another advantage of the model is its modularity. The contributions of better-ear
listening and binaural unmasking are computed independently in each frequency
channel. The two contributions of binaural hearing can be considered separately,
monaural listening can be simulated, and some frequency regions can be “deacti-
vated”. This would allow for specific forms of hearing impairment to be taken into
account to guide technical applications directed towards the listener, such as by using
directional microphones on hearing aids, or environmental policies concerning room
design. For example, as of today, binaurally implanted cochlear implantees benefit
from better-ear listening but not binaural unmasking [17], because current implants
usually encode the temporal envelope of incoming sounds but not the temporal
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Fig. 2 Correlation between observed and predicted SRTs, and the RMS error of the prediction,
plotted as a function of impulse-response length for the set of conditions examined by Beutelmann
and Brand [7]

fine structure. Room intelligibility maps involving monaural or binaural listening,
and without binaural unmasking, indicated where listeners can stand without losing
understanding [11]. This might prove a useful tool towards predicting room acces-
sibility for hearing-impaired listeners—see Sect. 2.6.

A key issue for practical implementation is the length of impulse response
necessary to obtain an accurate prediction. Because the predictions of binaural-
intelligibility by the model depend on the exact spatial configuration, it may be
necessary to make many predictions for different listening positions and for differ-
ent potential configurations of speech and masking-noise sources. Each prediction
would require generation of BRIRs between each of the sources and the listening
position. Many BRIRs may therefore be required. The calculation time for predicted
BRIRs grows exponentially with the length of the BRIR, so the potential compu-
tational explosion may be contained by using the shortest BRIRs necessary for an
accurate result.

To examine this, the effect of impulse response length on the accuracy of predic-
tion was evaluated, using real-room impulse responses and corresponding SRT data
collected by Beutelmann and Brand [7]. These 1.5-s impulse responses, originally
65,536 samples long, were collected from two different rooms, an office and a large
cafeteria. As noted above, the model predicted the SRTs measured by Beutelmann
and Brand quite accurately using their impulse responses. The correlation between
observed and predicted SRTs was 0.99. In order to examine the effect of impulse
response length, their data were modeled with those impulse responses truncated to
lengths, between 200 and 4000 samples, that is, between 4.5 and 91 ms.

Figure 2 shows the correlations between observed and predicted SRTs as a function
of impulse-response length, as well as the RMS error. It can be seen that long impulse
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responses are not necessary, with performance reaching asymptote at around 3000
samples, that is, 70 ms. The cafeteria and office rooms in question have reverberation
times, T60, of 1.3 and 0.6 s, respectively, yet only the first 70 ms of reverberation is
needed for an accurate prediction of intelligibility. This may be explained by the
fact that, in each case, 96 % of the energy in each of the impulse responses occurred
within the first 70 ms.

2 Applications to Architectural Design

The binaural model is suitable for answering a number of questions about the acoustic
design of spaces in which listeners contend with background noise, such as class-
rooms, restaurants, cafeterias, railway stations and foyer areas. For the purposes of
this chapter an acoustic model of a virtual restaurant is used as an example case,
and the predictions of the binaural model will be explored for some simple design
choices.

The room-acoustic model employed here was an image-source model [18]
restricted to simple rectangular boxes. As noted above, commercial software could
produce more accurate modeling of the room acoustics. Consequently, the acoustic
model contained no representation of the furniture or the occupants and all sound
sources were omnidirectional. On the other hand, the receiver characteristics of the
listener are quite accurately modeled, because the acoustic wave fronts arriving at the
listeners’ heads are represented in the BRIRs by suitably delayed and scaled head-
related impulse responses. Each head-related impulse response is selected from a
database for the azimuth and elevation of that acoustic ray at the head position. The
head-related impulse responses used were recordings made at the Massachusetts
Institute of Technology [19] from a KEMAR manikin [20]. Although a more sophis-
ticated room simulation would be preferable for practical applications, the present
implementation has the advantage that all the resources for the simulation are in the
public domain and the simplicity of the layout allows direct assessment of the prin-
cipal room parameters. The aim was to demonstrate how the binaural-intelligibility
model can be useful in architectural acoustics and to draw out some preliminary
conclusions on the influence of these room parameters.

In order to examine these parameters a simple restaurant layout was developed,
which included most of the critical factors one might expect to encounter in real
life—see Fig. 3. The simulated restaurant contained nine tables for two in a regular
3 × 3 grid. Each table served to define two potential source/receiver locations, each
being 1.2 m above the floor. The restaurant thus included pairs of source/receiver
locations that had walls to the side, that is, tables #2 and 8, and others that had
walls at one end, namely, tables #1, 3, 4, 6, 7, and 9, and also a pair that was sur-
rounded by other sources—table #5. The room was 6.4 m square, the default ceiling
height 2.5 m. The table positions were distributed evenly at 1.6-m intervals, with the
source/receiver pairs separated by 0.7 m. The tables all had the common orientation
shown in Fig. 3. Walls, ceiling and floor had controllable frequency-independent
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Fig. 3 Restaurant layout:
Each rectangle represents a
notional table, across which
two diners (black circles) may
wish to talk. In the model,
one diner at each table (with
a white spot) is nominated as
the default location of a noise
source
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absorption coefficients. Across all simulations, there was one masking source at
each table, which was selected at random, indicated by black spots with white dots
in Fig. 3.

2.1 Effect of Seating Position in a Restaurant

How should one pick a good seat in a restaurant? Ideally one should be able to
hear other individuals at the same table clearly. The model can make predictions
of the variations in speech intelligibility across different tables and also within a
given table. If one were able to answer such a question in a real restaurant, it would
be possible to advise those who require better listening conditions, such as hearing-
impaired listeners, to use particular seats. It may also be possible to tailor the acoustic
treatment of the room to iron out such variations and provide a consistent acoustic
experience across the entire space.

This question was addressed by looking at SNRe across the different seats in the
virtual restaurant. The absorption coefficients of the walls were set to 0.7, that of the
floor to 0.1 and that of the ceiling to 0.9. Figure 4 shows the predicted SNRe for each
diner in the room, represented by the size of the corresponding black spot. The size
of the spot is related to the SNRe in dB. One can see that tables in the corner of the
room are more favorable than those elsewhere, and that those placed between other
tables, namely, the three middle tables, fare worse than those which are aligned with
the wall. There are some local modifications to this pattern caused by the particular
configuration of noise sources. For instance, one of the diners at table #8 has an
interfering noise source immediately behind, that is, on table #7. This decreases the
local SNRe—see Fig. 4.

Using suitable acoustic modeling software, similar evaluations could be made in
more complex acoustic spaces, such as alcoves, balconies, etc. The effects of different
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Fig. 4 SNRe at each seating
position in the virtual restau-
rant. The diameter of the black
spots is proportional to SNRe
in dB
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assumed configurations of masking noises could be addressed by averaging over a
number of different random selections.

2.2 Effect of Head Rotation

As the head is turned horizontally, the relative directions of all sound sources are
rotated around the head. Although SRM relies on differences in the directions of the
target speech and the masking noise(s), the model indicates that changing all source
directions together in this way can change the benefit to intelligibility. It is most
often assumed that listeners directly face their interlocutor during a conversation,
but this is not necessarily the case. In fact, observation of any busy social event will
reveal that many people engaged in a conversation have their heads at an angle to
each other. It is not currently clear whether this behavior is deliberate or whether it
is related at all to optimizing speech intelligibility. Nonetheless, it is instructive to
examine the potential impact.

If listeners do orient their heads in order to improve intelligibility, there must
clearly be some limit to this behavior. It would be rude to turn one’s back, eye contact
may occasionally be required and lip-reading, which most listeners use unconsciously
to improve intelligibility in noise [21], requires sight of the speaker’s face. Counter-
rotation of the eyes can be used to some degree in order to maintain sight of one’s
interlocutor, but it seems unlikely that such a sidelong posture would be practical
beyond a head-turn of about 30◦. Research on gaze control [22] indicates that, when
fixating a target, observers make an initial eye turn of up to about 40◦. Some observers
will follow this movement with a head turn, which reduces the eye displacement down
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Fig. 5 As Fig. 4, but assuming
that listeners have oriented
their heads to the optimum
angle for speech intelligibility
within a range of ±30◦
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to 20◦ or so, while others will maintain a 40◦ eye displacement. The effect on the
situation used in Sect. 2.1, of an optimized head turn of up to 30◦ was therefore
evaluated.

Figure 5 shows revised values of SNRe after the listeners have made optimal
head turns. It can be seen that SNRe has improved substantially in all cases. The
mean improvement is 2.5 dB with values for individual listening positions ranging
up to 5.3 dB. In addition to this general improvement, one can see a change in the
pattern of results compared to Fig. 4, where no head rotation was assumed. Once
head orientation is taken into account, the seats facing the wall at the four corner
tables have a clear advantage over other locations. In each case, the optimal head
orientation is to turn away from the side wall, such that the interlocutor on the other
side of the table is to one side of the head and other sources in the room are on
the other side of the head. The ear that is turned towards the interlocutor is thus
maximally isolated by head shadow from the sources of masking noise and enjoys
an improved SNRe. It is also noticeable that local variations due to the configuration
of masking-noise sources are also less evident; for the most part, SNRe for each seat
is similar to that for mirror-image locations across the room.

2.3 Effect of Ceiling Height

Many people have an intuitive sense that high ceilings contribute to a poor acoustic.
However, there are good reasons to believe that this intuition is false and that
high ceilings are actually beneficial. Their benefits may come from two acoustical
factors. First a higher ceiling will increase the total absorbent area of the room, due
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Fig. 6 Effective signal-to-noise ratio averaged across tables as a function of ceiling height for
reflective and absorbent ceilings. Absorption coefficients were 0.9 and 0.1, respectively

to absorbent surfaces provided by the additional wall height. Such an increase in
absorption reduces the total amount of reverberant energy within the space. Second,
a high ceiling increases the volume of the room. This means that the reverberant
energy spreads throughout a larger space, thus reducing the energy density. The
prediction model can be used to simulate a range of different ceiling heights and
determine the overall effect of these different processes on intelligibility.

To this end, a dining couple on each table in the restaurant was modeled. There
were eight masking-noise sources, as in the configuration from Fig. 3. The SNRe
without head rotation was then evaluated as a function of ceiling height between 2.5
and 10 m, in 0.2-m steps. Other parameters were again similar to those of Fig. 4.

As can be seen from the solid line in Fig. 6, the SNRe increases with the height of
this reflective ceiling, indicating that a high ceiling provides easier communication
to people in a noisy room. Once the ceiling was raised by 5 m, there was a 2.4 dB
mean improvement in SNRe. Across different tables, improvements ranged from
1.7 to 3.1 dB. For comparison, a similar level of benefit could be obtained with an
acoustic ceiling that increases the ceiling absorption coefficient from 0.1 to 0.9, but
the dashed line shows that only 0.4 dB of improvement would occur if the height of
an absorbent ceiling was raised by 5 m, with half of this change occurring in the first
20 cm. To place both these effects in context, a totally anechoic room would only
increase the signal-to-noise ratio by a further 2.5 dB.

It can be seen that intuitive impressions of ceiling height as a negative factor
in room design are misleading. High ceilings are good. However, intuition is not
the only false friend, here. T60 is generally used as a measure of how reverberant
a room is; a larger T60 is usually considered a measure of a “more reverberant”
room, which is generally assumed to result in lower intelligibility. Consistent with
this association, when the absorption coefficients of the room boundaries are low-
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ered, the corresponding increase in T60 is accompanied by a decrease in predicted
intelligibility [6]. However, the Sabine equation, which can be used to estimate T60
from only the volume, V, and the effective absorbent area of a room, αS,—that is,
the total surface area, S, times the mean absorption coefficient, α—shows that T60 is
proportional to the volume, V, but inversely proportional to the surface area, S, that is,

T60 ≈ 0.163
V

αS
[s/m] . (2)

Now, since the volume to surface area ratio of any object or space increases with its
dimensions, if the average absorption is held constant, T60 will increase with the room
dimensions, including the ceiling height. Volume to surface area ratio will increase
even if only the ceiling height is changed. Consequently, T60 can also be associated
with an increase in speech intelligibility when ceiling height alone, or room volume
in general, is manipulated. This fact is well illustrated by Beutelmann and Brand’s
data [7], which show consistently lower SRTs in their cafeteria environment with a
T60 of 1.3 s, than in the office environment with a T60 of 0.6 s. In isolation, T60 is,
therefore, a fairly useless measure of room quality for speech intelligibility unless
room volume is factored out in some way. In BB93, there is little cognizance of room
volume in the recommended T60 targets; particularly, a spacious classroom with a
high ceiling would be over-treated in order to meet the specification, while a smaller
than average classroom with a low ceiling would be under-treated.

2.4 Effect of Absorber Placement

It is most common to provide acoustic treatment to a ceiling. However, the benefits
of binaural hearing depend upon the interaural differences produced by spatial sep-
aration of different sound sources. Since the ears are usually on the same horizontal
plane, these interaural differences tend to be reduced by lateral reflections. Conse-
quently, one might expect that designs which selectively reduce lateral reflections
would generally provide greater benefit. Moreover, first-order ceiling reflections tend
to reinforce interaural differences, because they come from the same azimuth. Thus,
it may be better to place acoustic absorbers on the wall rather than the ceiling.

In order to quantify the potential benefit of laterally placed absorbers, two versions
of the restaurant have been created with different absorber placements but the same
overall T60 of 385 ms, as determined by the Sabine equation. These two rooms had
identical floors with an absorption coefficient of 0.07. For the room with a reflective
ceiling, the walls had an absorption coefficient of 0.6 and the ceiling an absorption
coefficient of 0.06. For the room with an absorptive ceiling, these numbers were 0.05
and 0.9, respectively.

These configurations were tested by calculating the SNRe for each diner, assuming
that they were listening to the diner across the table with their heads fixed and that
masking-noise sources were present at all other default locations for masking noise.
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The mean benefit of absorptive walls compared to an absorptive ceiling was 0.7 dB.
This benefit was entirely driven by better-ear listening. In contrast, the benefit of
binaural unmasking fluctuated erratically around the value of 0.5 dB from one table
to the next.

The advantage of wall absorbers should not, however, mislead one to thinking
that ceiling treatment is ineffective. As shown in Fig. 6, ceiling treatment is always
better than no ceiling treatment when the ceiling is high, but the benefit, here, is only
0.35 dB. For a high ceiling therefore, it would be particularly important to consider
treating other surfaces. An equivalent change to the floor, for instance, perhaps by
adding carpeting, would improve SNRe by 1.75 dB.

2.5 Effect of Table Orientation

As noted above, optimum head orientation can substantially assist listeners in back-
ground noise, but such orientation is limited to, perhaps, ±30◦ by the need to maintain
visual contact with one’s interlocutor. This limitation leaves open the possibility that
diners may be assisted in reaching beneficial head positions/orientations by turning
the whole table by 90◦. In other words, might it be possible to use the model to derive
an optimal table layout?

In order to investigate this possibility, the restaurant scenario described in Sect. 2.2
has been re-evaluated including optimal head rotations of up to 30◦, but with some
tables in different orientations. In each simulation, SNRe was calculated for each pair
of diners with eight masking-noise sources randomly distributed across the remain-
ing tables. The results from twenty different random distributions were averaged.
Due to the number of seats, head orientations and masker distributions considered,
this analysis was quite time consuming. There are 28 unique permutations of table
rotations to be considered, so it was necessary to concentrate on just a few interesting
alternatives to the regular layout used above. Two layout strategies rotated the tables
that were found to be most difficult in the analysis of Sect. 2.2. In one case, only
the central table was rotated. In a second case all three of the tables down the centre
of the room were rotated. In a third strategy, the case of rotating every second table
throughout the room was considered.

The results showed that all three alternative strategies showed some benefit over
a regular layout, but the benefits were fairly small. Rotating only the middle table,
#5, or rotating every second table, that is, #2, 4, 6 and 8, improved the mean SNRe
by only 0.07 dB. Rotating the three middle tables, #4, 5 and 6—see Fig. 7, yielded
a more noticeable mean improvement of 0.3 dB. Moreover, it is noteworthy that
this option reduced somewhat the variability in SNRe across different tables. In this
scenario, large improvements of >2 dB were predicted for the diners on tables #4 and
6 who previously had their backs to the wall. None of these interventions produced
significant benefit for the diners on table #5, however, and the standard deviation in
SNRe across seats was only reduced from 2 to 1.9 dB.
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Fig. 7 Alternative table lay-
out providing improved effec-
tive signal-to-noise ratios. The
diameters of the black spots
are proportional to the SNRe
in dB

3 6 9

2 5 8

1 4 7

2.6 Effect of Room Occupancy

Intelligibility worsens as a room fills up with people. How many people should a
room be designed to accept? This has been termed the acoustical capacity of the room
[23]. One can look at this question using the restaurant simulation. For a couple at
each table, a given number of noise sources were distributed at random across the
other eight tables. SNRe of 20 such random distributions was then averaged. No head
rotation was assumed.

Figure 8 shows that, unsurprisingly, SNRe should fall with increasing room occu-
pancy. The critical issue is the level of the SNRe. Even when there is a noise source at
every other table, and listeners are making no use of head orientation, the SNRe falls
no lower than −1.1 dB. Speech understanding in noise becomes impossible below
about −3 dB, so this room seems to be acceptable for the assumed table layout.

It should be noted, however, that this analysis takes no account of the Lombard
effect [24]. As the level of background noise increases, people instinctively start to
raise their voices in order to be heard. As a result, the sound level in a room tends
to increase with increased occupancy level more rapidly than would be expected
from the number of sources present. Effectively, each doubling in the number of
speakers tends to produce an increase of 6 dB in the ambient noise level rather than
the expected 3 dB [23, 25]. Because all voices in the room are increasing together,
this increase in vocal output and ambient noise level has no effect upon the SNRe.
Consequently, the effectiveness of communication is only disrupted to the extent that
auditory processing is impaired by elevated sound levels [16, 26]. However, it also
has an effect on the experience of the diners. People do not want to be shouting to
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Fig. 8 Effective signal-to-noise ratio as a function of the number of occupied tables for each of the
nine tables in the restaurant

make themselves heard. A separate analysis of the impact of room occupancy on
vocal effort would therefore be advised [27].

2.7 Towards Predicting Room Accessibility

Accessibility of public spaces to those with disabilities is an increasingly important
aspect of public policy. Architects now need to consider not only whether normally
hearing listeners will be able to communicate effectively in a given acoustic space,
but also whether the hearing-impaired listeners or non-native listeners will be able
to do so. The level of intelligibility corresponding to a given signal-to-noise ratio
is dependent on hearing and comprehension abilities. To ensure the same level of
understanding, hearing-impaired listeners and cochlear implantees, for example, will
require a better ratio than normally-hearing listeners.

The problem is a difficult one to address in a precise way, because hearing loss
is a very individual disability. Different listeners will have different patterns of loss
across frequency and the different etiologies of hearing losses have different conse-
quences for speech understanding in noise. Moreover, there are currently gaps in our
understanding of how a given hearing impairment leads to a given elevation in SRTs,
which make it difficult to produce an accurate predictive model. Nonetheless, some
notable successes have been achieved. Beutelmann and Brand [7] simulated cochlear
hearing loss in their model by assuming that any elevation in pure-tone threshold was
equivalent to an increased effective noise floor at that frequency and Culling et al.
[17] modeled unilateral cochlear-implant patients simply by running their model in
monaural mode, and assuming that each patient had an individually reduced recep-
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tive capacity. The same strategy should work for listeners with single-sided deafness,
but without the need to vary receptive capacity. Some other maneuvers are possible.

Listeners with cochlear hearing loss tend to have so-called sloping losses. This
means that their pure-tone detection thresholds increase with frequency. These listen-
ers might be modeled by assuming that they lose information at higher frequencies.
This loss in information could be represented in the model by reducing the SII
weighting values for high-frequency channels.

Listeners with asymmetric hearing have different SRTs when tested monaurally
with each ear. These listeners could be modeled by assuming that their better ear
is the ear that has the better signal-to-noise ratio after the difference in monaural
SRT has been taken into account. That is, if the left-ear SRT is 3 dB better than
the right-ear SRT, the model would assume that in binaural listening situations, the
listener uses the left ear until the right ear SNR is at least 3 dB better than the left
ear. Culling et al. [17] used this approach in order to model SRT data from bilateral
cochlear-implant users [28]. In this instance, taking account of asymmetry in this
way did not improve the fit to the data compared to ignoring the asymmetry, but this
may be because the asymmetries in these cochlear implant users were fairly small;
a minority of cochlear implant users have very large asymmetries, for which this
technique might be essential.

The predictions of the model have been explored for the case of an asymmetry
in monaural SRT. Such a manipulation does not affect its predictions of binaural
unmasking, but only the selection of the better ear within each frequency band. The
situation described in Sect. 2.2 was modeled, including the listeners’ option to make
a head turn of up to 30◦, but assuming that each listener’s right ear had a monaural
SRT that was elevated by 10 dB with respect to their left ear. This has no effect when
the better physical SNR is at the ear with the better monaural SRT, but when it is
on the other side, it may require the listener to attend to the speech with the ear that
has the poorer physical SNR. This inevitably has an impact on SNRe. One would
therefore expect only certain seating positions in the restaurant to be affected.

Consistent with this expectation, it turned out that, although the average predicted
elevation in SRT was 1.2 dB, the effect was very strongly affected by seating position.
Figure 9 shows the uneven distribution of those deficits. Essentially, in those seating
positions where a deficit is visible in Fig. 9, it is approximately 3 dB. There are much
smaller deficits distributed over the other positions.

The distribution in Fig. 9 can be understood in terms of the spatial distribution of
speech and noise sources with respect to each listening position. For instance, for the
listener experiencing a problem on table #9, a good right ear would allow them to
rotate their head to the left and create a situation in which the target voice is to their
right while all the noise sources are on their left. Since their right ear is impaired,
they are less successful in following this strategy.
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Fig. 9 Deficit in effective
signal-to-noise ratio experi-
enced by a listener, whose
right ear has a monaural
speech reception threshold
that is elevated by 10 dB with
respect to that for the left ear.
The diameters of the black
spots are proportional to the
decrease in effective signal-
to-noise ratio
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3 Limitations of the Simulations and Further Developments
of the Model

The simulations described above illustrate the power of the model to provide insights
into the effects of room parameters on speech intelligibility in complex listening
situations. A simple room geometry was used. An advantage of this approach is
that general principles regarding such things as the effect of ceiling height can be
addressed without confounding influences of uncontrolled room parameters. For any
practical application, however, one would want to model the specific geometry of a
room in order to evaluate the exact effect of making a design change in a specific
project. The aim of this chapter was to illustrate the potential applications of the
binaural intelligibility model to support the design of social interaction spaces.

3.1 Room Simulations

In order to draw conclusions regarding specific architectural designs, more sophisti-
cated room simulations or real-room measurements need to be used to produce the
BRIRs. The room simulations used here only considered the simplest room geome-
try, without taking into account the strong frequency dependence of room-materials
absorption, the diffusion properties of these materials, or the directivity of different
sounds sources. The binaural model can be used with any type of BRIRs, and it can
only benefit from the use of more realistic BRIRs, be it measured or simulated, that
take these acoustic phenomena into account.

The simulations used in this chapter only considered sources with the same sound
level and long-term spectrum. The application of the binaural model is not limited
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to these situations. Sources at different sound levels can be modeled by scaling
their respective BRIR to the appropriate relative level; absolute source levels are
not relevant, only differences in level between sources are. Sources with different
spectra can also be modeled by appropriate filtering of their BRIRs. If the sources
all have the same average spectrum, no filtering is required. In the case of multiple
masking noises, concatenation of the scaled and/or filtered BRIRs would have the
effect of summing the frequency-dependent energy of each contributing BRIR and
generating an averaged cross-correlation function, weighted according to the energy
in each BRIR.

3.2 Model Developments

The binaural model can accurately predict speech intelligibility against any number
of stationary noise maskers, in any spatial distribution within a room and for any
orientation of the listener. However, because it does not take into account the potential
temporal smearing of target speech in very reverberant environments, this model
can only predict intelligibility of target speech sufficiently close to the listener, at
positions where the direct-to-reverberant ratio is not too low and segregation from
sources of masking noise is the overriding factor for intelligibility. It needs to be
extended to take into account this direct effect of reverberation on target speech, as
has been done in a revision of the Oldenburg model [29]. Because the model works
directly with BRIRs, it offers the opportunity to separate the early and late reflections
within the BRIRs, so that temporal smearing can be modeled following the concept
of useful-to-detrimental ratio [3, 30], in which the early reflections of the speech are
regarded as useful because they reinforce the direct sound, while the late reflections
are regarded as detrimental and effectively a part of the noise.

A model that intends to completely describe cocktail-party situations in rooms
needs to handle competing speech sources and so to predict the segregation mech-
anisms associated with the temporal envelope modulations and the periodicity of
speech. Fundamental frequency, F0, differences facilitate segregation of competing
voices [31, 32], but reverberation is detrimental to segregation by F0 differences
where F0 is non-stationary [33, 34] as in the case of normal intonated speech. Mod-
ulations in the temporal envelope of the masking noise allow one to hear the speech
better during the moments when the speech-to-noise ratio is higher [35, 36], so-called
listening in the gaps or dip listening, and this ability is impaired by reverberation
which reduces modulations [8, 37], filling in gaps of the masker.

Restaurant simulation has been used to test the overall implications of these
effects empirically [38]. SRTs were measured as a function of the number of masking
sources, where those sources were either speech or continuous speech-shaped noise,
and where the room was either reverberant or anechoic. The predictions of the model
were accurate for the speech shaped noise, but speech maskers are less effective
than noise. That is, SRTs were lower, when there was only a single masking voice,
especially in anechoic conditions. On the other hand, SRTs were a few dB higher
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for speech maskers than for noise when there was more than one masking voice.
The advantage for a single masking voice may be attributed to some combination
of F0-difference processing and dip listening, while the disadvantage for multiple
masking voices appears to be some form of informational masking. It seems likely
that in these multiple-masker cases, both dip listening and F0-difference processing
are markedly less effective, although their precise role is, as yet, unclear.

The binaural model has recently been adapted to take dip listening into account,
thus providing intelligibility predictions in the presence of speech-modulated noises
[39]. However, this modified version of the model does not work directly on BRIRs,
it requires the signals produced by the sources in the rooms as inputs. Following an
approach proposed by Rhebergen and Versfeld [40] and then Beutelmann et al. [8],
it consists of applying the stationary model to short time frames of the speech and
noise waveforms, and then averaging the predictions over time. This signal-based
approach would need to be adapted to be applied to the model based on BRIRs.
For example, signal statistics could be associated with the BRIRs as model inputs,
because BRIRs do not contain information about signal modulations. The advantage
of having separated inputs for room and source information is that one might be able
to simply update signal statistics to make predictions for different speech materials
without requiring the actual signals in rooms.

4 Conclusions

The modeling presented here has clear limitations, both in terms of the sophistica-
tion of the acoustic model employed and the generality of the predictions to more
structured masking sources, notably speech. Nonetheless, it captures aspects of the
listening task which have hitherto been ignored in the acoustic assessment of rooms.
It has been demonstrated in this chapter that the binaural model is markedly better
suited to the prediction of intelligibility in rooms than the measures of reverberation
time which are generally used. This modeling has also provided novel insights, such
as the relative ineffectiveness of acoustically treating a high ceiling, which may well
be general.

The limitations of the acoustic model could, for example, be addressed by using
impulse responses generated by commercial room-simulation software. Since the
binaural model is simple and computationally efficient, it could easily be incorporated
into existing software in order to produce maps of the effective signal-to-noise ratio
across a room or predictions for particular spatial configurations as in the simulated
restaurant. Work continues on gaining sufficient understanding of human hearing to
accurately predict the effects of dip listening and exploitation of F0 differences. It is
as yet unclear whether they play a significant role in the complex listening situations
with multiple maskers, for which the binaural model is designed.
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Assessment of Binaural–Proprioceptive
Interaction in Human-Machine Interfaces

M. Stamm and M. E. Altinsoy

1 Introduction

The human auditory system is capable of extracting different types of information
from acoustic waves. One type of information which can be assessed from acoustic
waves that impinge upon the ears, is the perceived direction of the sound source. For
more than 100 years, scientists investigate how the auditory system determines this
direction, that is, how we localize an acoustic event. The first knowledge about the
auditory localization process stemmed from listening tests and was used to develop
localization models trying to mimic human hearing. Pioneering modeling work was
done by Jeffress in 1948 and Blauert in 1969. Jeffress proposed a lateralization model
[22], which uses interaural differences to explain the localization in lateral direction
within the horizontal plane. Blauert proposed a model analyzing monaural cues to
explain human localization in the vertical direction within the median plane [5].
Based on these approaches, new and further developed binaural models have been
implemented and published over the years—see [8] for a more detailed overview.
These models did not only help to understand human auditory localization, they have
also been used as a basic requirement for different technical applications, for example,
hearing aids, aural virtual environments, assessment of product-sound quality, room
acoustics and acoustic surveillance [7].

With the help of binaural models, human localization can be predicted under the
assumption that a corresponding localization process is based on acoustic signals,
thus, on unimodal information. However, what happens if this localization process
is realized in an environment with available bimodal or even multimodal sensory
input? This is an important question, because we are encountering such situations in
our daily life. For example, we normally look and listen from which direction and at
which distance a car is approaching to estimate whether it is safe to cross the street—
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a case of audio–visual interaction. In close physical proximity to the human body, a
further perceptual sense, the haptic sense, becomes important. Everyone has already
tried to localize the position of the ringing alarm clock in the morning by listening
and simultaneously grabbing after it, that is, audio–proprioceptive interaction. But
what role does auditory information play in such situations? Do we consider the
auditory modality in the localization process or is it dominated mainly by vision or
haptics? These questions have to be investigated within suitable experiments to gain
a deeper insight into human intermodal integration. Thus, such experiments also help
to understand whether and to which extent binaural models allow to predict human
localization in bimodal or multimodal scenes. The gained knowledge could play an
important role for further technical developments.

1.1 Binaural–Visual Localization

Many studies have been conducted in the field of audio-visual interaction and percep-
tual integration. For example, Alais et al. [1] revealed that vision only dominates and
captures sound when visual localization functions well. As soon as visual stimuli are
blurred, hearing dominates vision. If the visual stimuli are slightly blurred, neither
vision nor audition dominates. In this case, the event is localized by determining
a mean position based on an intermodal estimation that is more accurate than the
corresponding unimodal estimates [1]. Thus, the weighting factor of the binaural
signals is chosen indirectly proportional to the perceiving person’s confidence in
visual input. However, the weighting factor does not only depend on the quality of
visual information but also on the corresponding task. For example, if the localiza-
tion process requires sensitivity to strong temporal variations, binaural sensory input
dominates the localization. This is because of the superior temporal resolution of the
auditory system over vision [38].

In conclusion, binaural models are definitely required for mimicking human
localization even when visual information is available. The sensory input of the
auditory and visual modality is integrated in an optimal manner and, thus, the result-
ing localization error is minimized. These insights can be used for mimicking human
audio-visual localization computationally with the help of existing binaural modeling
algorithms, for example, to improve technical speaker tracking systems. Equipping
such systems with a human-like configuration of acoustical and optical sensors,
which feed binaural and visual tracking algorithms, is advantageous because of two
reasons. First, the simultaneous analysis of auditory and visual information is supe-
rior than the analysis of unimodal information alone. When auditory tracking is weak
due to acoustic background noise or acoustic reverberation, the visual modality may
contribute to a reliable estimation. The converse is also true. When visual track-
ing is not reliable due to visual occlusions or varying illumination conditions, the
auditory modality may compensate for this confusion. Thus, the integration of audi-
tory and visual information increases the robustness of tracking accuracy. Second,
a human-like configuration of sensors means using only two microphones and two
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cameras simultaneously. Such a configuration is quite effective, because applying
only four sensors corresponds to the minimum requirement for spatial auditory and
spatial visual localization. Furthermore, such a configuration enables sufficiently
high tracking accuracy as we know from our daily life. An approach concerning the
application of a human-like configuration of sensors and the computational integra-
tion of bimodal sensory input for multiple speaker localization with a robot head is
described in [25]. Further details on binaural systems in robotics can be found in [2],
this volume.

1.2 Binaural–Proprioceptive Localization

There is a further human sense which is capable of localization, namely, the haptic
sense. Within the haptic modality, localization is realized by tactile perception and
proprioception. Tactile perception enables the localization of a stimulated position
on the skin surface. In this chapter, the focus is on proprioception which enables to
determine the absolute position of the own arm and to track its movements. Propri-
oception is realized unconsciously with the help of the body’s own sensory signals
that are provided by cutaneous mechanoreceptors in the skin, by muscle spindles in
the muscles, by golgi tendon organs in the tendons, and by golgi and ruffini endings
in the joints of the arm.

As mentioned before, binaural models are required for modeling human localiza-
tion even when visual information is available. However, what happens if the local-
ization process is realized with proprioceptive and auditory signals? Is the auditory
modality considered in the localization process or is it dominated mainly by propri-
oception, that is, by evaluating the body’s own sensory signals about the upper limb
position? These questions are not only of theoretical interest. If the auditory modality
would be considered and could probably even guide the localization process, practi-
cal relevance exists especially for virtual environments in which the reproduction of
acoustic signals can be directly controlled. Computational models mimicking human
binaural-proprioceptive localization could then be used to simulate how an audio
reproduction system has to be designed to optimize localization accuracy within a
specific workspace size directly in front of the human body. In addition, such sim-
ulations may help to reproduce suitable auditory signals to diminish systematically
oriented errors in proprioceptive space perception, for example, the radial-tangential
illusion [26], and thus to further sharpen human precision. Two questions arise in
this context.

• Which applications in virtual environments depend on proprioception?
• Should proprioceptive localization be improved with additional auditory signals?

Proprioceptive localization performance plays an important role for all applications
in which a haptic device is involved. Such a device is controlled by the user’s hand-
arm system within the device-specific workspace and enables haptic interaction in
virtual environments. One specific application, for which human interaction with
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a haptic device is essential, refers to virtual haptic object identification. This field
of research will be introduced subsequently. Furthermore, two studies revealing the
necessity of improving users’ proprioceptive localization precision will be presented
in this context.

Virtual Object Identification

The haptic sense is of increasing importance in virtual environments, because it
provides high functionality due to its active and bi-directional nature. The haptic
sense can be utilized for solving a variety of tasks in the virtual world. One important
task is the exploration and identification of virtual shapes and objects. In particular,
blind users, who cannot study graphical illustrations in books, benefit immensely
from employing their sense of touch. Creating digital models based on graphical
illustrations or models of real physical items allows these users to explore virtual
representations and, therefore, to gain information effectively also without the visual
sense. A similar idea was followed by the PURE-FORM project [21], which aimed
to enable blind users to touch and explore digital models of three-dimensional art
forms and sculptures. Providing haptic access to mathematical functions is another
exemplary application [42].

The haptic identification of virtual shapes and objects is of great importance for
sighted users as well. Studies have shown that memory performance can be increased
significantly using multimodal learning methods [37]. Thus, haptic identification has
great potential in the field of education, for example, if digitized models or anatomical
shapes are explored multimodally rather than solely visually. Another important
application refers to medical training or teleoperation in minimally invasive surgery.
Because of the poor camera view and the sparsely available visual cues, surgeons
must use their long medical instruments to identify anatomical shapes during surgery,
for instance, during the removal of a gallbladder [24]. This task is quite challenging,
which is why medical students must receive training to perform it [20]. Furthermore,
utilizing haptic feedback to identify anatomical shapes is of vital importance for
teleoperating surgeons [18, 32]. Finally, another promising application refers to the
“haptification” of data, for example, scientific ones [15, 35].

These examples represent only a small portion of the entire spectrum of possible
applications, but they demonstrate the importance of haptic virtual shape and object
identification for various groups of users.

Enabling the user to touch, explore and identify virtual shapes and objects requires
a haptic feedback device that serves as an interface between the user and the appli-
cation. First of all, this device must be capable of delivering geometrical cues to the
user because such cues are of primary importance for creating a mental image of
the object. Stamm et al. investigated whether a state-of-the-art haptic force-feedback
device providing one point of contact can be successfully applied by test persons
in geometry identification experiments [39]. Exploring a virtual geometry with one
point of contact means imitating the contour-following exploratory procedure that is
intuitively used in daily life to determine specific geometric details of a real object
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[27]. Stamm et al. revealed that test persons experience various difficulties during the
exploration and recognition process. One such observed difficulty refers to partici-
pants’ insufficient spatial orientation in the haptic virtual scene. They often reached
the boundaries of the force-feedback workspace unconsciously and misinterpreted
the mechanical limits as a virtual object. An additional problem occurred if the par-
ticipants explored the surface of a virtual object and approached an edge or a corner
at one of its sides. Often, the haptic interaction point, HIP, which is comparable to
the mouse cursor, slipped off of the object and got lost in the virtual space. Thus, par-
ticipants lost orientation and could not locate their position in relation to the object.
They required a considerable amount of time to regain contact with the object and
typically continued the exploration process at a completely different position on the
surface. This considerable problem was also observed by Colwell et al. [12] and
makes it quite difficult and time consuming to explore and identify virtual objects
effectively.

In general, studies as those mentioned above have been conducted with blind-
folded participants, because the focus is set on investigating the capability of the hap-
tic sense during interaction with the corresponding devices. However, the observed
orientation-specific difficulties cannot be solved easily by providing visual informa-
tion, because the orientation in a workspace directly in front of the human body is
not only controlled by vision. In our daily life, the position of the hand is determined
by integrating proprioceptive and visual information [14, 41]. Thus, proprioception
plays an important role in the localization process. This role may be even more impor-
tant in virtual workspaces, where the weighting factor of proprioceptive information
may often be considerably higher than that of visual sensory input. How can this be
explained? Here are five reasons.

1. With a two-dimensional presentation of a three-dimensional scene on a computer
monitor, depth cannot be estimated easily using vision. This problem is also often
described in medical disciplines [24]

2. Due to varying illumation conditions or often occurring visual occlusions in the
virtual scene, visual information cannot be used reliably.

3. The same holds true when the visual perspective is not appropriate or the camera
is moving

4. The visual channel is often overloaded during the interaction in virtual environ-
ments. This is why information cannot be processed appropriately [9, 31]

5. Visual attention has to be focused on the localization task and, for example, not
on specific graphs on the computer monitor, otherwise vision cannot contribute
to a reliable estimation

These examples demonstrate that confusion arises even if visual sensory input is
available. When the visual information is not used or cannot be used reliably dur-
ing virtual interaction, the haptic and auditory modality has to compensate for this
confusion.
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1.3 Outline of the Chapter

Motivated by the orientation-specific difficulties observed in the aforementioned
object identification experiments, first, the authors of the present chapter developed
an experimental design to quantitatively measure proprioceptive localization accu-
racy within three-dimensional haptic workspaces directly in front of the human body.
The experimental design and the results of a corresponding study with test persons
are described in Sect. 2. In a second step, the influence of binaural signals on pro-
prioception is investigated to reveal whether synthetically generated spatial sound
is considered and can probably even improve human localization performance. In
this context, a hapto–audio system was developed to couple the generated aural and
the haptic virtual environment. This approach and the corresponding experimental
results are described in Sect. 3. On the basis of the results, finally, conclusions will
be drawn in Sect. 4 concerning the importance of binaural models for haptic virtual
environments.

2 Proprioceptive Localization

To describe the accuracy of proprioception quantitatively, studies were conducted
by scientists across a range of disciplines, for example, computer science, electrical
engineering, mechanical engineering, medicine, neuroscience and psychology. These
studies focused primarily on two issues. First, the ability to detect joint rotations was
investigated to determine the corresponding absolute threshold of the different joints
[10, 11, 19]. Second, the ability to distinguish between two similar joint angles was
investigated to determine the corresponding differential threshold of the joints and
thus the just noticeable difference, JND, [23, 40]. In addition to the physiological
limits, the so-called haptic illusions must also be considered. Haptic illusions, and
perceptual illusions in general, are systematically occuring errors resulting from an
unexpected “discrepancy between a physical stimulus and its corresponding percept”
[26]. These illusions enable us to obtain a greater understanding of the higher cogni-
tive processes that people use to mentally represent their environments [26]. A haptic
illusion that distorts the proprioceptive space perception is the radial-tangential illu-
sion. This illusion describes the observation that the extent of radial motions away
and toward the body is consistently overestimated in comparison to the same extent
of motions that are tangentially aligned to a circle around the body. Different expla-
nations have been offered, but the factors that cause this illusion to arise are not yet
understood—see [26] for more details.

Proprioceptive accuracy and haptic illusions were investigated within correspond-
ing experiments by restricting the test persons to specific joint rotations, movement
directions, movement velocities, and so on. However, how do blindfolded test persons
actually perform in a localization task if they are allowed to freely explore the haptic
space? To the best of our knowledge, no study has investigated freely exploring test
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persons’ localization performance in a three-dimensional haptic virtual environment.
However, this is an important issue for two reasons. First, free exploration is typically
used in real world interaction and, thus, should not be restricted in virtual environ-
ments. Otherwise, the usability of a haptic system is considerably reduced. Second,
the abovementioned observations of the haptic identification experiment indicated
that the participants experienced various orientation-specific difficulties. These dif-
ficulties should be investigated quantitatively to obtain a cohesive understanding of
the proprioceptive orientation capabilities.

2.1 Experimental Design and Procedure

The challenge of an experiment that investigates the abovementioned relation is the
guiding of the test person’s index finger, which freely interacts with a haptic device,
to a specific target position. If this target position is reached, the test person can be
asked to specify the position of the index finger. The difference between the actual
and the specified position corresponds to the localization error. The details of this
method are explained below.

An impedance-controlled PHANToM–Omni haptic force-feedback device1 [36]
was used in the present experiment. It provides six degrees-of-freedom, 6–DOF,
positional sensing and 3–DOF force-feedback. The small and desk-grounded device
consists of a robotic arm with three revolute joints. Each of the joints is connected
to a computer-controlled electric DC motor. When interacting with the device, the
user holds a stylus that is attached to the tip of the robot arm. The current position
of the tip of the stylus is measured with an accuracy of approximately 0.06 mm.

For the experiment, a maximally-sized cuboid was integrated into the available
physical workspace of the PHANToM. This cuboid defines the virtual workspace
and is shown in Fig. 1. Its width is 25 cm, its height is 17 cm, and its depth is 9 cm.
The entire cuboid can be constructed with 3825 small cubes whose sides measure
1 cm. The cubes that are positioned on the three spatial axes are shown in Fig. 1.
However, the cubes cannot be touched because they are not present as haptic virtual
objects in the scene. Rather, they serve to illustrate a specific position inside the
virtual workspace.

The test persons were seated on a chair without armrests. At the beginning of
each trial of the experiment, the target—a sphere with a diameter of 1 cm—was
randomly positioned inside the virtual workspace and thus inside one of the cubes.
Then, the experimenter moved the cursor-like HIP—which corresponds to the tip of
the stylus—to the reference position, namely, the center of the virtual workspace.
Because of a magnetic effect that was implemented directly on the central point,
the stylus remained in this position. The blindfolded test persons grasped the stylus
and held it parallel to the y-axis in such a manner that the extended index finger
corresponded to the tip of the stylus. The test persons were asked to search for the

1 Manufactured by SensAble Technologies
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Fig. 1 The virtual workspace is shaped like a cuboid. The cuboid can be constructed with 3825
small cubes whose sides measure 1 cm. The cubes that are positioned on the three spatial axes are
shown here. However, the virtual cubes cannot be touched. Rather, they serve to illustrate a specific
position inside the virtual workspace

hidden sphere inside the virtual workspace with random movements starting from the
reference position. Once the HIP was in close proximity to the target, the magnetic
effect on the surface of the touchable sphere attracted the HIP. Thus, the target
position was reached. In the next step, the test persons were asked to specify the
current position of the HIP without conducting additional movements. They could
use words such as left/right, up/down and forward/backward. In addition, they were
asked to specify the exact position relative to the reference position with numbers
in centimeters for each axis. The numbers are exemplarily indicated for each axis in
Fig. 1.

Participants received training on the entire procedure prior to the test conditions.
In the training session, first, the test persons were introduced to the device and the
dimensions of the virtual workspace. For this purpose, they used the visualization
that is shown in Fig. 2. This visualization helped the participants to imagine what
occurs when they move their arms. Because of the arm movement, the index finger
respectively the tip of the stylus was displaced. The HIP was displaced in the same
direction inside the virtual workspace. Once the HIP left a cube and entered another,
the highlighted block moved and visualized the change of position. Furthermore, the
test persons were introduced to the mechanical limits of the physical workspace of the
device, which were somewhat rounded and slightly outside of the virtual workspace.
In the second step, the participants were blindfolded and administered the experi-
mental task in four exemplary trials. Each time they found the hidden sphere and
estimated its position, the experimenter gave feedback about their localization error.
However, this kind of feedback was only provided in these exemplary trials. After
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Fig. 2 Visualization used at the beginning of the training session. It helps the participants to
imagine what occurs when they move their arms. Because of the arm movement, the index finger
respectively the tip of the stylus is displaced. The HIP is displaced in the same direction inside the
virtual workspace. Once the HIP leaves a cube and enters another, the highlighted block moves and
visualizes the change of position

the training procedure, subjects indicated no qualitative difficulties in the estimation
process. They completed this task in a few seconds.

2.2 Condition #1

To investigate the influence of differently positioned haptic workspaces on localiza-
tion performance, a construction was built such that the position of the PHANToM
could be easily changed. In the first condition, the device was placed at the height
of a table—Fig. 3a. This position is quite comfortable and familiar in daily life from
writing or typing on a computer keyboard.

Twelve test persons, two female and ten male, voluntarily participated in the first
experimental condition. Their ages ranged from 21–30 years with a mean of 24 years.
All participants indicated that they had no arm disorders. They were students or
employees of Dresden University of Technology and had little to no experience
using a haptic force-feedback device. The participants each completed 10 trials.

The results of the proprioceptive measurements are outlined in Fig. 4. The average
of the absolute localization error vector in centimeters in the x-, y- and z-direction is
shown. The grey bars refer to the overall localization errors, that is, the localization
errors averaged over all hidden target spheres. The error increased from 1.4 cm in the
forward-backward direction, that is, the y-axis, to 1.8 cm in the vertical direction,
z-axis, and to 2.4 cm in the lateral direction, x-axis. The error increased because of
the different side lengths of the cuboid—its length in the forward-backward direc-
tion is 9 cm, in the vertical direction 17 cm and in the lateral direction 25 cm. This



458 M. Stamm and M. E.Altinsoy

(a) (b)

Fig. 3 A construction was built such that the position of the PHANToM could be easily changed. By
varying the position of the device, it is possible to investigate the influence of differently positioned
haptic workspaces on localization performance. a In the first experimental condition, the device
was placed at the height of a table. b In the second experimental condition, the device was placed
at the height of test persons’ head

fact was verified by calculating the localization errors solely for those target spheres
that were randomly hidden in the same cuboid within a centered cubic volume with
side lengths of 9 cm. In this case, the localization errors were almost the same in all
directions. The corresponding error was 1.4 cm in the forward-backward direction
and 1.7 cm in the vertical and the lateral directions. Thus, the localization accuracy
of the proprioceptive sense did not depend on movement direction within this small
workspace, although different types of movements were used, nameley radial move-
ments along the y-axis and tangential movements along the x- and z-axis. Rather,
the localization accuracy depended on the distance between the hidden sphere and
the reference position. On average, the sphere was hidden further away from the
reference point in the lateral direction than in the vertical and forward-backward
directions. Therefore, the resulting error was greatest along the x-axis. This depen-
dency is verified by the dark bars that are shown in Fig. 4. These bars refer to the
localization errors for the spheres that were randomly hidden in the border area of
the virtual workspace. The border area is defined as follows.

xpos > |6 cm|OR

ypos > |2 cm|OR (1)

zpos > |4 cm|.

The mean localization error increased for all three directions. Therefore, if the sphere
was hidden further away from the reference point in a specific direction, the resulting
error was greater. An ANOVA for repeated measurements revealed a significant
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Fig. 4 Experimental results. a Condition #1, PHANToM at table level. b Condition #2, PHAN-
ToM at head level. The average of the absolute localization error vector ± standard deviations in
centimeters in the x-, y- and z-direction is shown. The calculated localization error inside the three-
dimensional virtual workspace is also outlined. The grey bars refer to the overall localization errors,
that is, the localization errors averaged over all hidden spheres. The dark bars refer the localization
errors for those spheres that were randomly hidden in the border area of the virtual workspace. The
border area is defined in (1)

difference between the localization errors indicated by the grey and dark bars for the
x-axis, namely, F = 19.164 and p < 0.01. In addition, the standard deviations also
increased for all three directions because of the broader spreading of test persons’
estimations in these seemingly more complex trials.

However, what is the reason for this increasing error and for the increasing insta-
bility of test persons’ estimations? Previous works observed a diminished accuracy
of the proprioceptive sense once whole arm movements were involved in the explo-
ration process [26]. In the present experiment, participants were required to move
their whole arms to reach the border area of the virtual workspace, which may have
affected their estimations. As a result, their arms were not in contact with their body;
therefore, their body could not be used as a reference point. To investigate whether
the described effect can be verified or even strengthened if whole arm movements
are provoked, a second experimental condition was conducted.

2.3 Condition #2

In the second condition, the PHANToM was placed at the height of the test persons’
head—see Fig. 3b. Thus, even if the HIP was located near the reference position, the
arm was not in contact with the body anymore.

Twelve different subjects, three female and nine male, voluntarily participated
in the second experimental condition. Their ages ranged from 21–49 years with a
mean of 29 years. All participants indicated that they had no arm disorders. They
were students or employees of Dresden University of Technology and had little to no
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experience using a haptic force-feedback device. The participants each completed
10 trials.

The results are presented in Fig. 4b. In comparison to condition #1, the over-
all localization error increased from 1.7 cm in the forward-backward direction,
y-axis, to 2.0 cm in the vertical direction, z-axis, and to 3.0 cm in the lateral direction,
x-axis. Again, no dependency between the localization accuracy and the movement
direction was observed. This was verified as described above in Sect. 2.2. Rather,
the error increased because of the different side lengths of the cuboid-shaped virtual
workspace. On average, the sphere was hidden further away from the reference point
in the lateral direction than in the vertical and forward-backward directions. There-
fore, the resulting error was greatest along the x-axis. The dependency between the
localization performance and the average distance to the target was verified through
the calculation of the localization error for the border area of the virtual workspace.
This error increased in comparison to the overall localization error for the x- and
y-axis but not for the z-axis. An ANOVA for repeated measurements identified sig-
nificant differences on the x-axis with F = 9.692 and p < 0.05.

When comparing these results with those of condition #1, both the overall local-
ization accuracy and the localization accuracy for selected spheres in the border area
decreased, especially for the x- and the y-axis. Therefore, the resulting overall error
in the three-dimensional space increased considerably from 3.9 cm in condition #1 to
4.7 cm in condition #2. The resulting error in the three-dimensional workspace is an
important issue concerning virtual haptic interaction. The values of 3.9 and 4.7 cm
are considerable amounts, if the length of the virtual objects is limited, for example,
to 10 cm. This size was used in the aforementioned identification experiments [39]
in which the orientation-specific difficulties were originally observed.

Finally, it is important to note that the outlined results were obtained in a workspace
that was slightly smaller than a shoe box. Because it is was found that movement
distance directly influences the accuracy of proprioception, the mean-percentage
localization errors might be greater in larger workspaces.

3 Audio–Proprioceptive Localization

3.1 Pre-Study

During the localization experiment described in Sect. 2, the test persons only used
their body’s own proprioceptive signals and the physical boundaries of the device-
specific workspace for orientation. Thus, the experimental conditions were identical
to those of the object identification experiments in which the orientation-specific
problems were originally observed [12, 39]. This was a crucial requirement for iden-
tifying the cause of the difficulties. However, the physical boundaries of the device-
specific workspace located slightly outside of the virtual cuboid were somewhat
rounded and irregularly shaped due to the construction of the robot arm. This irreg-
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ular shape could probably impede users’ localization performance when interacting
with haptic devices. It should be investigated in the pre-study whether such a negative
influence actually exists. The experimental procedure was the same as described in
Sect. 2.1 except that the test persons utilized their body’s own proprioceptive signals
and a pink-noise monophonic sound, which was switched off when the HIP touched
or moved beyond the boundaries of the cuboid-shaped virtual workspace. These
virtual boundaries were straight and thus regularly shaped—Fig. 1.

Two independent groups voluntarily participated in the pre-study. The first group
consisted of twelve test personss, two female and ten male, aged from 21–34 years
with a mean of 27 years. They took part in the first experimental condition—Fig. 3a.
The second group also consisted of twelve test personss, two female and ten male,
aged from 21–49 years and a mean of 29 years. They participated in the second
experimental condition—Fig. 3b. All participants indicated that they had no arm
disorders. They were students or employees of Dresden University of Technology
and had little to no experience using a haptic force-feedback device. The participants
each completed 20 trials. The trials were divided into two halves whose presentation
order was randomized. In one half of the trials, the test persons used proprioception
and a monophonic sound. The corresponding results are presented subsequently. The
other half of the trials is detailed in the following section.

The results of the pre-study are illustrated with the help of the dark bars in Fig. 5.
The grey bars refer to the results of the proprioceptive-only measurements that were
already discussed in Sect. 2. They are shown again to aid comparison. Within the
first experimental condition, test persons’ localization performance in lateral direc-
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Fig. 5 Experimental results. a Condition #1, PHANToM at table level. b Condition #2, PHANToM
at head level. The average of the absolute localization error vectors ± standard deviations in cen-
timeters are depicted for the x-, y- and z-direction as well as for the three-dimensional workspace.
The grey bars refer to the results of the proprioceptive measurements, that is, the test persons only
used their body’s own proprioceptive signals and the physical boundaries of the device-specific
workspace for localization. The dark bars refer to the results of the pre-study in which the test per-
sons utilized their bodies’ own proprioceptive signals and a monophonic sound that was switched
off when the HIP touched or moved beyond the boundaries of the cuboid. The grey bars have been
previously depicted in Fig. 4; they are shown again for comparison
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tion increased due to the acoustically defined, regularly shaped borders of the virtual
workspace. An ANOVA for independent samples revealed a statistically significant
effect with F = 4.607 and p < 0.05. However, no effect was observed concern-
ing the localization accuracy in forward-backward and in vertical direction. Within
the second experimental condition, test persons’ localization performance increased
slightly in x-, y- and z-direction, but no statistically significant effect was found.

In conclusion, the pre-study can be summarized as follows. First, the acoustically
defined, regularly shaped borders of the virtual workspace helped to prevent users
from misinterpreting the mechanical limits of the haptic device as a virtual object.
Second, the localization errors and the standard deviations could yet only be partly
decreased.

3.2 Main Study

It is investigated within the main study how both proprioception and spatialized sound
are used in combination to localize the HIP. Thus, the influence of binaural signals on
proprioception is studied to reveal whether synthetically generated spatial sound is
considered and might even improve human proprioceptive localization performance.
Employing the hearing system to extend proprioceptive perception auditorily seems
to be a valuable approach. For example, individuals utilize their hearing system on the
streets daily to estimate the direction and distance from which a car approaches with-
out being forced to look at the car. Because spatial audible information is intuitively
used in the real world, it should also be incorporated in virtual environments.

The usefulness of auditory localization cues for haptic virtual environments was
verified in several studies. Such cues were successfully used in hapto-audio navi-
gational tasks, for example, when users attempted to explore, learn and manage a
route in a virtual traffic environment [29]. They were also quite helpful for locating
objects in the virtual space [28]. In these studies, the haptic device was used to move
the virtual representation of oneself and, thus, one’s own ears freely in the virtual
scene—that is, as an avatar. Therefore, if an object emitted a sound, the user heard
this sound from a specific direction depending on the position and the orientation of
the hand-controlled avatar. Thus, this method was called the ears-in-hand interaction
technique [29].

However, the present work aims to investigate how proprioceptive signals and
auditory localization cues provided by spatialized sound are used in combination
to localize the absolute position of the HIP. The present study’s approach is not
comparable to the abovementioned approaches. In the current study, the HIP does
not correspond to a virtual representation of oneself including one’s own ears. Rather,
it corresponds to a virtual representation of the fingertip. Furthermore, this study does
not aim to localize a sound-emitting object or something similar in the virtual scene.
Rather, the study aims to trace the movements of the virtual fingertip auditorily to
increase the localization resolution. To investigate whether localization performance
can be improved, it is essential to develop a hapto-audio system that auralizes each
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movement of the user and, thus, the movement of the haptic device. Therefore, each
arrow depicted in Fig. 1 must cause a corresponding variation in the reproduced
spatial sound, as if the user moves a sound source with his/her hand in the same
direction directly in front of the his/her head. The authors of the present chapter call
this method the sound source-in-hand interaction technique.

Development of a Hapto–Audio System

There are two main methods for reproducing spatial sound. On the one hand, head-
related transfer functions, HRTFs, can be used for binaural reproduction via head-
phones [6]. In this case, the free-field transfer function from a sound-emitting point
in space to the listener’s ear canal is used to filter the sound. On the other hand,
spatial sound can be reproduced by various techniques using loudspeaker arrays,
for example, ambisonics [30], vector-base amplitude panning, VBAP, [34] and wave
field synthesis, WFS, [4].

In the present study, generalized HRTFs are used to generate auditory localization
cues. An extensive set of HRTF measurements of a KEMAR dummy-head micro-
phone is provided by Gardner et al. [17]. These measurements consist of the left and
right ear impulse responses from a total of 710 different positions distributed on a
spherical surface with 360◦ azimuth and −40◦ to 90◦ elevation. In a first step, the set
of shortened 128-point impulse responses was selected for this investigation. Sec-
ond, this set was reduced to impulse responses in the range between −30◦ and +30◦
in azimuth and elevation. For the real-time binaural simulation of a continuously
moving sound source according to the sound source-in-hand interaction technique,
an algorithm capable of interpolating between the HRTF measurement points is
required. This algorithm should smoothly handle also very fast movements with-
out interruptions. That is the reason why the convincing time-domain-convolution
algorithm of Xiang et al. [43] was selected. This algorithm approximates the HRTF
at the target position of the current signal block by linearly interpolating the four
nearest measurement points. An exemplary case is depicted in Fig. 6. The point T
corresponds to the target position which is surrounded by the points P1, P2, P3 and

Fig. 6 The HRTF at target
position, T , of the current
signal block is computed
by linearly interpolating the
HRTFs at the four nearest
measurement points, P1, P2,
P3 and P4. This figure is only
for demonstration purposes.
The four measurement points
were chosen arbitrarily—after
[43]
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P4. The measured HRTFs at these four points, FP1 , FP2 , FP3 and FP4 , can now be
used to calculate the HRTF, FT, at the target position, T , according to the following
equation [43],

FT = YT − YP1P2

YP3P4 − YP1P2

(
XT − XP1

XP2 − XP1

FP1 − XP2 − XT

XP2 − XP1

FP2

)

+ YP3P4 − YT

YP3P4 − YP1P2

(
XT − XP3

XP4 − XP3

FP3 − XP4 − XT

XP4 − XP3

FP4

)
. (2)

The next step refers to the transformation of the monophonic signal block, x , to the
spatialized signal block, y. Both blocks can be specified in their lengths by the block-
size of b = 64 samples. The transformation process is realized by the time-domain
convolution of the input signal with a 128-tap filter. This filter is again the result of a
linear interpolation between the HRTFs FT and FT0 . FT was computed for the current
signal block and the target position, T . FT0 was computed for the previous signal
block and corresponding previous target position T0. In conclusion, each sample, k,
of the output signal is calculated according to the following equation [43],

y(k) =
127∑

n=0

x(k − n) ·
(

k

b
· FT(n) + b − k

b
· FT0(n)

)
, (3)

with k = 0, 1, . . . b − 1 .

Using the abovementioned selection of head-related impulse responses, the sound
source reproducing broadband noise could be virtually positioned anywhere in the
range between −30◦ and +30◦ in azimuth and elevation. However, at this point,
the generated aural environment was only two-dimensional. To auralize movements
in the forward-backward direction, auditory distance cues must be provided. An
intuitive way to achieve a high resolution for the localization in the forward-backward
direction is to vary the sound pressure level of the corresponding signal. It is well-
known from our daily experiences that a distanced sound source is perceived as
quieter than a proximal sound source. This fact can be easily utilized in virtual
environments. However, because of the small virtual workspace, the sound pressure
level variation must be exaggerated in comparison to the real physical world. This
exaggeration allows to profit considerably of the high resolution and, thus, the low
differential thresholds of the hearing system as concerns level variation, namely,
ΔL ≈ 1 dB, [16]. In the current study, a level range of L = 60 ± 12 dB(A) was
applied. Thus, the localization signal became louder when the user moved the HIP
forward, and it became quieter when the user moved the HIP backward, that is, away
from the body.

Finally, the aural and haptic environments must be linked with each other. The aim
is to generate a hapto–audio space by auditorily extending the haptic environment.
This extension is performed linearly in depth but also in height and width. Thereby,
the height is enlarged more than the width to qualitatively account for the lower
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Fig. 7 The hapto–audio workspace is generated by auditorily extending the haptic environment.
This extension is shown here schematically for the height and width

Audio
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Force

Position
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Init

MATLAB

Pure Data

Fig. 8 Experimental software framework

auditory localization resolution in elevation [6]. The extension is illustrated in Fig. 7
and mathematically detailed in the following section.

The developed software framework incorporating haptic and acoustic rendering
processes as well as the experimental control is depicted in Fig. 8. Matlab was used
to automate the experimental procedure and question the test subjects. Matlab also
initiated the processes for haptic rendering and acoustic rendering.2 To reproduce
the corresponding sound signals, the acoustic renderer requires information from the
PHANToM, which communicates with the haptic renderer via a software interface.
This information, for example, about the position of the HIP or a detected collision

2 Chai3D, Stanford University, and Pure Data, Open-Source Project, respectively. For details on the
C++ haptic-rendering framework, particularly, the algorithms for collision detection, force control
and force response, the reader is referred to [13]. The details of Pure Data are outlined in [33]
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with the hidden sphere, is steadily transferred to the acoustic renderer via Open Sound
Control, OSC. The information is then processed for subsequent signal output, that
is, to reproduce spatialized broadband noise via headphones and to provide force-
feedback, once the target position is reached.

Experimental Procedure

The test persons were seated on a chair without armrests. At the beginning of each
trial of the experiment, a sphere with a diameter of 1 cm was randomly positioned
inside the virtual workspace, thus, inside one of the 3825 virtual cubes—see Fig. 1.
Then, the experimenter moved the cursor-like HIP, which corresponds to the tip
of the stylus, to the reference position, that is, the center of the virtual workspace.
Because of a magnetic effect that was implemented directly on the central point, the
stylus remained in this position. The generated virtual sound source was positioned
at 0◦ in azimuth and elevation. The sound pressure level of the broadband noise
was 60 dB(A). The blindfolded test persons grasped the stylus and held it parallel
to the y-axis in such a manner that the extended index finger corresponded to the
tip of the stylus. The test persons were asked to search for the hidden sphere with
random movements starting from the reference position. When moving the stylus of
the haptic device, the HIP and the sound source were also displaced. The direction of
the sound source, ϕ in azimuth and υ in elevation, depended linearly on the position,
x and z, of the HIP according to the following equations,

ϕ(x) = ϕmax

xmax
· x with x = [−xmax, xmax] , (4)

υ(z) = υmax

zmax
· z with z = [−zmax, zmax] . (5)

The right border of the cuboid, xmax = 12.5 cm, and the left border of the cuboid,
−xmax = −12.5 cm, corresponded to a maximal displacement of the sound source
at ϕmax = 30◦ and −ϕmax = −30◦. Similarly, the upper border, zmax = 8.5 cm, and
the lower border, −zmax = −8.5 cm, corresponded to a maximal displacement of the
sound source at υmax = 30◦ and −υmax = −30◦. When the HIP moved beyond the
limits of the cuboid-shaped virtual workspace, the sound was immediately switched
off. The sound-pressure level of the broadband noise depended on the position of
the HIP in y-direction. It was calculated according to the following equation with
L init = 60 dB(A), ΔL = 12 dB(A) and |ymax| = 4.5 cm,

L(y) = L init + ΔL

ymax
· y with y = [−ymax, ymax] . (6)

Once the HIP was in close proximity to the target, the magnetic effect that was
implemented on the surface of the touchable sphere attracted the HIP. Thus, the
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target position was reached. In the next step, the test persons were asked to specify
the current position of the HIP without conducting further movements. This method
was previously described in Sect. 2.1.

Participants received training on the entire procedure prior to the test conditions.
In the training session, first, the test persons were introduced to the device and the
hapto-audio workspace. They used the visualization that is depicted in Fig. 2. In the
second step, they were blindfolded and listened to consecutively presented sound
sources that moved on a specific axis. The corresponding number that specified the
actual position of the sound source was provided. This was conducted separately
for each axis. Therefore, the test persons experienced the maximal displacements
of the sound source and the entire range in between, which is essential for making
estimations. Subsequently, the participants conducted the experimental task in four
exemplary trials. Each time they found the hidden sphere and estimated its position,
the experimenter gave feedback about their localization error. However, this kind of
feedback was only provided in these exemplary trials.

Listening Test

In a first step, a listening test was conducted to measure test persons’ achievable audi-
tory localization accuracy if the aforementioned spatialization technique is applied.
Thus, test persons did not interact with the haptic device. Rather, they only listened
to a continuously moving virtual sound source. The path of this source was selected
automatically in a random manner and also its motion speed varied randomly. After
approximately 10 sec the sound source reached the target position, which could then
be specified as described above.

Eight test persons, two female and six male, voluntarily participated in the listen-
ing test. Their ages ranged from 24–49 years with a mean of 33 years. All participants
indicated that they did not have any hearing or spinal damage. They were students or
employees of Dresden University of Technology. The participants each completed
10 trials.

The results of the listening test are shown in Fig. 9 with the white bars. These
results enable to determine whether it will be at least theoretically possible to further
improve localization accuracy with the spatialization technique. The average audi-
tory localization error in azimuth direction was measured to be 4◦−5◦. This value
corresponds to a localization error of 1.8 cm inside the virtual workspace. In the first
experimental condition, test persons already achieved a localization error of 1.8 cm
when using the monophonic sound. Thus, they will not be able to further improve their
localization performance with spatial auditory cues. However, test persons should be
able to clearly decrease the localization error in lateral direction from 2.5 to 1.8 cm
in the second experimental condition, in which whole arm movements are provoked.
In this case, the spatial auditory cues should be helpful. Furthermore, the localization
error in forward-backward direction might even be halved from 1.4 cm in the first
condition and 1.7 cm in the second condition to 0.7 cm with available spatial sound.
In contrast, no improvement should be achievable in vertical direction, because the



468 M. Stamm and M. E.Altinsoy

x y z xyz

1

2

3

4

5

6

A
bs

ol
ut

e 
V

al
ue

 o
f t

he
 E

rr
or

Direction of the Error Vector

x
y

z

x y z xyz

1

2

3

4

5

6

Direction of the Error Vector

A
bs

ol
ut

e 
V

al
ue

 o
f t

he
 E

rr
or

proprioception
proprioception/hearing (mono sound)
hearing (spatial sound)

(b)(a)
V

ec
to

r 
[c

m
]

V
ec

to
r 

[c
m

]

Fig. 9 Experimental results of the listening test. The average of the absolute localization error vector
± standard deviations in centimeters in x-, y- and z-direction is shown. The calculated localization
errors inside the three-dimensional virtual workspace are also outlined. The grey bars refer to the
results of the proprioceptive measurements, that is, no acoustic signals were available. The dark
bars refer to the results of the pre-study in which the test persons utilized proprioception and a
monophonic sound that was switched off when the HIP touched or moved beyond the boundaries
of the cuboid. The white bars refer to the results of the listening test. They are depicted in the left
(a) and right graphs (b) for comparison

average auditory localization error in elevation was measured to be 13◦−14◦. This
value corresponds to a localization error of 3.8 cm inside the virtual workspace. The
proprioceptive localization errors of 1.8 cm in conditions #1 and 2 cm in condition #2
are clearly smaller.

Subsequently, results will be presented that reveal how test persons perform if both
proprioceptive and spatial auditory signals are used in combination. These results
will help to understand whether binaural signals are considered during localization
or whether the localization process is mainly dominated by proprioception. In audio–
visual interaction, the bimodal sensory input is integrated in an optimal manner. If
participants would also integrate proprioceptive and binaural signals optimally, the
resulting localization performance could be predicted. According to such a predic-
tion in the context of this investigation, test persons would reject binaural signals
for estimating the target position in vertical direction. They would rather trust in
proprioception. However, the binaural signals would be considered to estimate the
position in forward-backward direction and in lateral direction in condition #2.

Condition #1

In the first condition, the device was placed at the height of a table, as illustrated
in Fig. 3a. The group of participants was already introduced in Sect. 3.1. The par-
ticipants each completed 20 trials. The trials were divided into two halves, and the
presentation order was randomized. During one half of the trials, the test persons
used proprioception and a monophonic sound which helped to clearly define the
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Fig. 10 Experimental results. a Condition #1 – PHANToM at table level. b Condition #2—
PHANToM at head level. The average of the absolute localization error vector ± standard devi-
ations in centimeters in x-, y- and z-direction is shown. The calculated localization errors inside
the three-dimensional virtual workspace are also outlined. The grey bars refer to the results of the
proprioceptive-only measurements. The dark bars refer to the results of the pre-study in which the
test persons used their body’s own proprioceptive signals and a monophonic sound that helped to
clearly define the boundaries of the virtual workspace. The white bars refer to the results of the
main study in which test persons used both proprioceptive sensory input and spatial auditory cues
according to the sound source-in-hand interaction technique

boundaries of the virtual workspace. This part of the experiment was denoted as pre-
study. During the other half of the trials, the test persons used proprioception and
additionally perceived spatial auditory cues according to the sound source-in-hand
interaction technique. This part is analyzed subsequently.

The results are shown in Fig. 10a. The grey bars refer to the results of the propri-
oceptive measurements that were previously illustrated in Fig. 4. The dark blue bars
refer to the results of the pre-study. The white bars show the localization errors that
occurred during binaural-proprioceptive interaction according to the sound source-
in-hand interaction technique. The results indicate that test persons integrate propri-
oceptive and binaural signals in such a manner that the resulting localization error
is minimized. They achieved a localization accuracy of 1.7 cm in vertical direction.
Thus, they rejected binaural signals and rather trusted in proprioception. However,
they used binaural signals to estimate the position in forward-backward direction
which is why the localization error was significantly reduced from 1.4 cm to approx-
imately 0.6 cm. An ANOVA for repeated measurements rendered F = 57.863 and
p < 0.001. No further improvement was observable concerning the localization
performance in lateral direction, as predicted before.

In conclusion, test persons could actually differentiate between the more reliable
proprioceptive signals for the localization in vertical direction and the more reliable
auditory cues for the localization in forward-backward direction. The resulting error
in the three-dimensional workspace was overall reduced by approximately 30 % from
3.9 to 2.8 cm.
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Condition #2

In the second condition, the PHANToM was placed at the height of the test person’s
head—Fig. 3b. Thus, whole arm movements were provoked. The group of partici-
pants was already introduced in Sect. 3.1. The corresponding results are analyzed
below.

In Fig. 10b, the average of the absolute localization error vectors are depicted for
the x-, y- and z-direction as well as the three-dimensional workspace. As mentioned
before, the grey bars refer to the results of the proprioceptive measurements that were
previously illustrated in Fig. 4. The dark bars refer to the results of the pre-study. The
white bars show the localization errors that occurred during binaural-proprioceptive
interaction according to the sound source-in-hand interaction technique. The results
verify that test persons integrate proprioceptive and binaural signals in such a man-
ner that the resulting localization error is minimized. Again, they rejected binaural
signals and rather trusted in proprioception when specifying the target position in
vertical direction. They achieved a localization accuracy of 1.9 cm. However, they
used binaural signals to estimate the position in forward-backward direction which is
why the localization error was more than halved from 1.5 to 0.7 cm. An ANOVA for
repeated measurements rendered F = 25.226 and p < 0.001. Furthermore, as pre-
dicted before in case of optimal integration, the localization error in lateral direction
could be further reduced from 2.5 to 1.9 cm. An ANOVA for repeated measurements
revealed a statistically significant effect, namely, F = 5.532 and p < 0.05.

In conclusion, test persons could again differentiate between the more reliable
proprioceptive signals for the localization in vertical direction and the more reliable
auditory cues for the localization in forward-backward and lateral direction. The
resulting error in the three-dimensional workspace was overall reduced by approxi-
mately 30 % from 4.7 to 3.4 cm.

4 Summary and Conclusions

With the help of binaural models, human localization can be predicted under the
assumption that a corresponding localization process is based on acoustic signals,
thus, on unimodal information. However, what happens if this localization process
is realized in an environment with available bimodal or even multimodal sensory
input? This chapter sets focus on investigating the influence of binaural signals on
proprioception to reveal whether synthetically generated spatial auditory signals
are considered during localization and might even improve human proprioceptive
localization performance in virtual workspaces. Quantitative results were gained
with the help of corresponding experiments in which freely exploring test persons’
unimodal and bimodal localization performance was measured. To obtain a greater
understanding of such complex experiments with actively interacting test persons,
the experimental variables, concurrent experimental processes, results and potential
errors, it is quite helpful to develop a formalization of the corresponding experimental
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Fig. 11 Formalization. Basic schematic representation of a test person, (right block), that haptically
interacts in a virtual environment (left block) during a haptic experiment

type. Blauert’s system analysis of the auditory experiment serves as an example
[6]. However, because of the active and bi-directional nature of the haptic human
sense, Blauert’s approach must be adapted and extended to describe experiments or
situations in which subjects haptically interact in a virtual environment. Therefore,
a further developed formalization based on his model is introduced subsequently.

This formalization is depicted in Fig. 11. It contains the basic schematic represen-
tation of the active subject—right block—who interacts in the virtual environment—
left block—by controlling a specific device. The inputs and outputs of the blocks
and the interaction between them can be explained with reference to the main study.
During the experiment, the test person actively moved his/her own arm through com-
mands of the motor system. The corresponding movement, −≤m 0, at the time t0 was
transmitted to the haptic device, which was controlled by the test person’s index
finger. Thus, the device served as an interface and provided input to the virtual envi-
ronment. According to the sound source-in-hand interaction technique, the subject
heard a spatial sound that varied depending on the current movement direction. The
corresponding acoustic waves, s02, were output ideally without delay at the time t0 by
the virtual environment via headphones. At the same time, the subject also directly
perceived his/her own joint movements through proprioception. As a result of the
proprioceptive signals and auditory cues, the test person perceived a bimodal percep-
tual event, h0, which can be described. Of course, both unimodal perceptual events,
h01 and h02, can also be described separately. By integrating the preceding bimodal
events and the current event, a perceptual object develops. A perceptual object is the
result of mental processing. In the present case, it corresponded to a mental image of
the virtual workspace and the corresponding position of the HIP in the workspace. A
special characteristic and, at the same time, a distinguishing characteristic in compar-
ison to auditory experiments is indicated by the feedback loop depicted in Fig. 11. To
find the hidden sphere, the subject explored the virtual workspace continuously and
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individually by moving the stylus of the PHANToM. Thus, the perceived bimodal
events, h0 ... hn, differed across subjects because of the individual movements −≤m 0 ...−≤m n and the resulting acoustic signals s02 ... sn2. Once the sphere was found at time tn, a
collision between the HIP and the sphere was detected. The virtual environment exerts
a force, sn1, to the test person via the haptic device. The shortly preceding bimodal
events and hn, the current event, were integrated to specify the perceptual object, o.
As a result, the experimenter obtained a description, b, of the subject concerning the
internal perceptual object, o. This description contained the assumed position of the
target. With the help of these descriptions, collected from a group of participants,
quantitative relations can be obtained, for instance, Figs. 4, 5, 9 and 10. However,
the experimenter can also profit from experimental observations, for example, by
watching each movement, watching the involved joints and recording the required
time. These observations can help in understanding how subjects interact with the
virtual environment and in determining possible explanations for their responses.

In the main part of this chapter, first, the localization accuracy of propriocep-
tion was investigated. The test persons only perceived their own movements, −≤m 0 ...−≤m n, with the help of the proprioceptive receptors. The resulting unimodal perceptual
events, h0 ... hn, served to develop a perceptual object, that is, a mental representation
of the virtual workspace and the HIP in it. The virtual environment provided no addi-
tional information. The experimental results help to explain the orientation-specific
difficulties that were originally observed in the object identification experiments in
Stamm et al. [39] and Colwell et al. [12]. In those experiments, subjects required
a substantial amount of time to regain a virtual object after they lost contact with
it because they could not easily locate the HIP in relation to the object. Further-
more, they often reached the boundaries of the physical workspace unconsciously
and misinterpreted the mechanical borders as an object. These difficulties indicate
that their mental representation of the virtual workspace and the position of the HIP
in it deviated from reality. The present study found that, indeed, subjects consider-
ably misjudge the actual position of the HIP inside the three-dimensional workspace
by approximately 4–5 cm. This is a remarkable amount, for example, if the length of
the virtual objects is limited to 10 cm, as it was the case in the aforementioned iden-
tification experiments. The current study further found that the localization accuracy
of proprioception depends on the distance between the current position of the HIP
and a corresponding reference point. If whole arm movements are used to overcome
this distance, the localization error and the standard deviations increase consider-
ably. This increase was observed especially for the lateral direction and to a small,
non-significant extent for the forward-backward direction.

In the second step, it was investigated whether the localization accuracy improves
if proprioception and the hearing sense are used in combination. Thus, the test per-
sons perceived their own movements, −≤m 0 ... −≤m n, but also the acoustic signals s02
... sn2. As a result, they perceived the bimodal events h0 ... hn. The experimen-
tal results of the main study demonstrated that the abovementioned proprioceptive
localization inaccuracy was reduced significantly. Proprioception can be guided if
additional spatial auditory cues are provided and, thus, the localization performance
can be improved. Significant effects were found concerning the localization errors
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in forward-backward direction and also in lateral direction when whole arm move-
ments were provoked. The resulting errors in the three-dimensional workspace were
overall decreased by approximately 30 %.

It is important to mention that the localization accuracy was investigated in a
haptic workspace that was slightly smaller than a shoe box. Because it is generally
accepted that proprioceptive accuracy depends on the degree to which whole arm
movements are involved in the exploration process, proprioceptive localization per-
formance might be worse in larger workspaces. In such workspaces, the positive
influence of auditory localization cues may be even stronger. This hypothesis should
be investigated in future studies. Furthermore, it would be quite useful to investigate
to which extent the localization performance in vertical direction can be improved,
for example, if individualized HRTFs are used for the spatialization.

In conclusion, the experimental results clearly show that synthetically generated
auditory localization signals are considered in the localization process and can even
guide human proprioceptive localization within workspaces directly in front of the
human body. The auditory and proprioceptive information is combined in such a way
that the resulting localization error is minimized. As described in the introductory
part, a similar effect was also observed during audio–visual localization. However,
audio–visual interaction involves hearing and vision that both belong to exteroception
by which one perceives the outside world. During binaural–proprioceptive localiza-
tion, hearing and proprioception are involved and, thus, exteroception and interocep-
tion are combined. This combination was not investigated before as far as efficient
integration of bimodal sensory signals within the given context is concerned.

If auditory localization signals can guide human proprioceptive localization, as it
is described in this chapter, then binaural models can also help to model the corre-
sponding bimodal integration process, for example, the model mimicking the local-
ization of an elevated sound source out of [3], this volume. To build a reliable com-
putational model, of course, deep knowledge is required. That is the reason why
the complex proprioceptive localization process and bimodal integration have to be
studied in more detail. Furthermore, existing binaural models have to be extended,
for example, to handle distance cues. New fields of applications will profit of a
binaural-proprioceptive localization model. For example, such a model might help
to simulate how an audio reproduction system has to be designed to guide proprio-
ception and, thus, optimize bimodal localization accuracy within an arbitrary haptic
workspace size directly in front of the human body. Thus, practical relevance exists
especially for virtual environments in which the reproduction of acoustic signals can
be directly controlled and the localization accuracy can be consciously influenced.
Furthermore, simulations of such a model may help to reproduce suitable audi-
tory localization signals to diminish erroneous proprioceptive space perception, for
example, the radial-tangential illusion, and thus to further sharpen human precision
by auditorily calibrating proprioception.

These examples make obvious, finally, that the field of possible applications of
binaural models is not limited to audio-only or audio-visual scenes. The increasingly
important field of virtual haptic interaction will also profit from binaural modeling
algorithms.
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Further Challenges and the Road Ahead

J. Blauert, D. Kolossa, K. Obermayer and K. Adiloğlu

1 Introduction

Auditory modeling has traditionally been understood as a signal-processing task
where the model output is derived from the acoustic input signals in a strict bottom-
up manner by more or less complex signal-processing algorithms. The model output,
then, consists of signal representations that are completely determined by the input
signals. In other words, the output is signal-driven. It is then taken as a basis for
predicting what is aurally perceived. This approach has also been taken for most of
the application examples of auditory models reported in this volume [11]. However,
notwithstanding the fact that the model output can predict actual aural percepts only
in a very limited way, a further fundamental problem is left unsolved, namely, that
human beings do not react on what they perceive, but rather on the grounds of what
the percepts mean to them in their current action-specific, emotional and cognitive
situation.

Inclusion of this aspect requires substantial amendments to the auditory models as
they stand today. In addition to perception, assignment of meaning and formation of
experience have to be dealt with among many other cognitive functions, for instance,
quality judgements. In other words, models of binaural hearing have to be extended
to models of binaural listening.

To this end, more advanced models will contain specific, interleaved com-
binations of signal-driven, that is, bottom-up processes and knowledge-based,
hypothesis-driven, that is, top-down processes. The sub-cortical section of the audi-
tory system has to be seen as an embedded component in a larger system where
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signal-based representations are augmented by symbolic representations at different
computational levels. Further, the models will contain explicit knowledge, accessible
in a task-specific manner. Additionally, it will be necessary to replace current static
paradigms of auditory modeling by considering the human being as an intelligent
multi-modal agent that interactively explores the world and, in the course of this
process, interprets percepts, collects knowledge and develops concepts accordingly.
Consequently, models of binaural listening should incorporate means for the explo-
ration of the environment by reflex- as well as cognition-controlled head-and-torso
movements. Further, the role of input from other modalities—in particular, proprio-
ceptive and visual input—has to be considered, since human beings are essentially
multi-modal agents.

Figure 1 presents the architecture of a model that addresses the demands as
described above. It is an architecture as currently discussed in AabbA [12]. The
lower part of it schematically depicts the signal-processing, bottom-up processes
and modules as can usually be found in today’s models—see [37], this volume. The
upper part represents modules that perform symbol processing rather than signal
processing and are, to a considerable extent, hypothesis-driven, that is top-down
controlled. In this upper part, various feedback paths are indicated, which are nec-
essary for building a system that is capable of exploring and developing its world
autonomously, thus gaining in knowledge and experience. In old-fashioned terms,
one could actually call such a system a cybernetic one. It goes without saying that
inherent knowledge at different levels of abstraction is required, particularly, when
the system is supposed to perform quality judgment on auditory objects and auditory
scenes that it has identified and analyzed [14].

2 A Framework for Cognitive Aural-Scene Analysis

Conceptualizing a framework for an artificial-listening system starts with the question
of what the generic purposes of auditory systems are, or, in other words, why do
humans listen at all? There is some consense in the field that three predominant
reasons and, consequently, three modes of listening can be identified, namely,

1. Listening to gather up and process information from and about the environment,
that is, to identify sound sources with respect to their nature and characteristics,
including their positions and states of movement in space. This is also a prerequisit
for appropriate action and reaction.

2. Listening for communication purposes. In many species interindividual commu-
nication is performed via the auditory pathway. In man, hearing is certainly the
prominent social sense. It is, for example, much easier to educate the blind than
the deaf.

3. Listening to modify one’s own internal state, for instance, listening for pleasure,
mood control, cognitive interest, and so on.
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The different listening modes determine the strategy that listener persue in given
situations and, thus, draw heavily on their cognitive capabilities. This is another
case for including cognition in a framework of auditory listening, although it is still
not clear as to what extent these modes of operation can be mapped onto a unified
architecture. However, it is conceivable that at least for the symbol-processing part in
an artificial-listening system some universal strategies can be employed—at least up
to the point where meaning is converted into action, or where internal states need to
be represented and changed. For the framework introduced in the following, the goal
of understanding the external auditory environment, that is, item (1.), provides the
main focus. Yet, the authors are aware of the other modes and shall try to accomplish
them as well in the further course of the model development.

In the following, the overall function of the model is described in general terms
in accordance with the framework depicted in Fig. 1.

The acoustic input to the model is provided at block (a) by a replica of a human
head with two realistically formed external ears and two built-in-microphones. This
artificial head is connected to a shoulder piece to form, together with the head, a head-
and-torso simulator. The head is capable of three-degrees-of-freedom movements
with respect to the shoulder piece, namely, rotating, tipping and pivoting. The head-
and-shoulder simulator is mounted on a movable cart, which allows for further two
degrees of freedom for translatory movements. There are sensors to monitor the
positions of head, shoulder piece and cart with respect to each other and to an external
reference point. The movements are enabled by actuators which can be remotely
controlled. Which of the possible sensors and actuators are actually implemented,
depends on the specific tasks that the model is specified for. Depending on the
respective tasks, the equipment may further be fitted with sensors for additional
sensory modalities, such as visual or tactile sensors.

The audio signals from the two microphones are fed into block (b), which rep-
resents major functions as are regarded relevant to be implemented by the human
subcortical system up to the midbrain level. The components of this block account
for functions that are attributed, for example, to the middle ears and the cochleae,
to the superior olivary complex, SO—including medial superior olive, MSO, and
lateral superior olive, LSO—or to the inferior colliculus, IC. Those functions as
well as their computational implementations are described in more detail in [37],
this volume.

The output of block (b) is represented within the computational model through
a multidimensional, binaural-activity map including, for example, the dimensions
intensity of activity, frequency, lateral position or time—see block (c). This kind of
representation is inspired by the existence of activity maps at the midbrain level
of animals for coding acoustic features, such as spatial locations of sound sources,
fundamental frequencies and spectra and/or envelope characteristics of the acoustic
source signals. A specific example of such a computational binaural-activity map
is depicted in Fig. 1, namely, a map depicting binaural activity as generated by the
binaural impulse responses of a concert hall.

The next step in the model, block (d), has the task of identifying perceptually
relevant cues in the activity maps and, based on these cues, organize the activity
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Fig. 1 Schematic of the architecture of a comprehensive model of binaural listening. a Head-and-
torso simulator on a mobile platform. b Signal processing in the lower auditory system. c Inter-
nal representation of binaural activity. d Rule- and/or data-driven identification and annotation of
perceptually-salient (primitive) features. e Rule- and/or data-driven recognition, classification and
labeling of proto-events. f Scene-and-task representation, knowledge-based hypothesis generation,
assessment and decision taking, assignment of meaning

maps into segments that represent specific primitive perceptual features. The cues
can be signal attributes in the temporal or spectral domain, such as autocorrela-
tion, decrease and centroid, effective duration, energy, interaural arrival-time dif-
ferences, interaural cross-correlation, interaural-level differences, log-attack time,
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modulation amplitude, modulation frequency, roll-off frequency, spectral centroid,
temporal increase, time frame, zero-crossing rate—just to name a few. Yet, they can
also be estimators for “sensations” such as pitch, timbre or coloration, loudness,
sharpness, roughness, spaciousness, and reverberance, as can be calculated with spe-
cialized signal-processing algorithms. The features rendered are typically based on
an ensemble of different cues, whereby primitive schemata like the Gestalt rules [6,
17] are considered in the formation process. The rendering process can be rule-
driven, that is, exploiting prior knowledge, or data-driven, that is, based on statistical
procedures—see Sect. 2.1 and 3 for more details of relevant machine learning meth-
ods. Multiple processes of this kind may act in parallel, also as a combination of
data-driven and rule-driven approaches.

The primitive features derived from the activity map provide the input to the
next model stage, block (e), where sets of features are interpreted as indicators for
specific auditory events. These indicators are called proto-events here, since their
actual character is subject to statistical uncertainty. The formation process for proto-
events may, for instance, follow a sequence of detection, classification and annotation.
Again, rule-driven as well as data-driven approaches may be used. Clearly, the suc-
cessful extraction of proto-events depends on whether appropriate feature sets have
been chosen in the beginning. In the context of an artificial system, feature-selection
techniques can be employed, and small sets of informative features can in princi-
ple be learned for given combinations of (classes of) auditory tasks and (classes
of) auditory environments. However, in the context of bio-inspired processing as
for human-listening modeling, this becomes a highly non-trivial task. One possible
approach to proceed is to conduct model-driven psychoacoustic experiments and
to ask, whether human listeners employ the same features as the artificial system
suggest.

By the way, blocks (d) and (e) have been described here as two sequential process-
ing steps. However, for certain statistical procedures, such as being used, for example,
in the machine-learning field, the difference between primitive features and proto-
events may not always be clear-cut and processing steps (d) and (e) may well be
combined into one. It is at this model stage, that a transition from signal process-
ing to symbol processing takes place, since the proto-events can be represented by
symbols.

The last stage, block (f), represents the world-knowledge of the modeling
system—among other functions. At this stage, contextual information is used to
build task-related representations of the auditory scene, namely, prior knowledge is
integrated, hypotheses about auditory events are generated and validated, and mean-
ing is assigned. The auditory scene is evaluated, decisions are made and signals or
commands may be sent back down to the lower processing levels—blocks (a) and (e).

In the framework of Fig. 1, a so-called blackboard structure [20, 27, 28] is pro-
posed for this purpose. It works as follows. The input from the lower stages is put on a
“blackboard”, which is visible to a number of specialized experts, namely, computer
programs that try to interpret the entries on the blackboard based on their respective
expert knowledge. There can be various different experts, for instance, acoustic
experts, psychoacoustic experts, psychologic experts, experts in spatial hearing,
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experts in cross-modal integration of vision, tactility, proprioception etc., speech-
communication experts, music experts, semiotic experts, and so on—depending on
the specific task that a listening model is constructed for.

Once an expert finds a reasonable explanation of what is shown on the blackboard,
it puts this up as a hypothesis to be tested against the available entries. The hypothesis
will then be accepted or rejected based on rules or on statistical grounds. For the
control of the activities of the experts, a special program module, the scheduler, is
provided.

The scheduler acts like the chairman of a meeting. Firstly, it determines the order
in which the individual experts intervene, controls the statistical testing and makes
a decision regarding the final outcome—which may well be a mixture of various
accepted hypotheses—compare [30] as to how to provide such a mixture. Secondly,
it will also select groups of experts as well as modify the computations performed
by them on the bottom-up data according to the current goals, such as extracting the
“what” versus the “where” of a sound event.

In the light of the main focus of the current chapter, that is, the analysis and assess-
ment of aural objects and scenes, two types of models are of particular relevance,
namely, (i) object models, to understand single aural perceptual entities known as
aural objects, and (ii) scene models, to understand interactions between aural objects
in arrays of objects, for instance to cover questions like: Which of the objects may
be simultaneously aurally present. Hereby, the following definitions may apply.

Objects are perceptual entities that are characterized by specific attributes
and invariances and by their relations to other objects

Scenes are arrays composed of multiple objects, again specified by specific
attributes and invariances

For creating models of aural objects and models of aural scenes, a wide range of
knowledge can be exploited, such as rules of how object and scenes develop, physical
knowledge of type, location, and movement of sound sources, perceptual knowledge
such as Gestalt rules, or semantic knowledge with respect to the information that the
sound sources may intend to convey. Here, so called graphical models are proposed
to represent these models and, at the same time, act as the blackboard. Graphical
domain models allow for invention both from block (e), that is the proto-event level,
as well as from the experts’ level. For more details see Sect. 2.2.1

The outcome from block (f) and, thus, the output of the listening model at large,
may be a description of an aural object or the description of an aural scene. Yet, it is
further planned to develop the model to such a state, where it can assess aural objects
and scenes with regard to their perceptual quality. Judgment on quality requires a fur-
ther processing stage for the following reason. Quality, in general terms is the amount

1 Graphical models are convenient when it comes to the implementation of a working artificial-
listening system, but whether and—if yes—how it actually maps to the processes which integrate
and disambiguate sensory information in the human brain remains a matter of future research. It has
been suggested that neural systems implement Bayesian inference including even belief propagation
[24, 25], but there is also evidence, that competition between neural assemblies and an attractor
dynamics [23] may play an important role in sensory processing.
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Fig. 2 Quality judgment as
a multi-dimensional distance
measure between the char-
acter, (a), of an item and a
reference, (b), representing
expectations regarding this
item

as to which an item fulfills expectations with regard to it [26]. A quality judgment thus
requires a set of measured and nameable features of the item under consideration,
that is, its character, (a), and a set of values expected for these features, the reference,
(b). A quality judgment can then be seen as a multi-dimensional distance measure
between those two—see Fig. 2. It follows that the expert must have internal refer-
ences to apply when judging on quality. These reference are individual and/or group
dependent and task specific [10, 13]. To construct them can be impossible, where
internal quality references are concerned, and it is tedious even in the best of cases.

To avoid this, it is also possible to perform the quality assignment as the result
of machine learning. In this case, the machine-learning algorithm needs the quality
judgments assigned to specific situations as a-priori information. Whether this turns
out to be less tedious in the end than collecting information about internal references,
remains to be explored for each specific case. Also, it is of advantage for many
applications to have direct and explicit access to the internal references behind the
quality judgments. With machine learning this would require further analysis.

At this point, some remarks on signal-driven—bottom-up—and hypothesis-
driven—top-down—processing are due, since they proceed in an interleaved way
in the model framework as proposed here. In purely signal-driven processes the
output is completely determined by the input. If the processing requires multiple
variables to be combined, with each of them having a number of possible states, this
can quickly lead to an immense number of potential output states—combinatorial
explosion—which all have to be followed up and evaluated until a final decision has
been reached. In top-down processing, in contrast, the number of states to be evalu-
ated is substantially reduced, as the process knows what to look for, that is, focuses
attention on states which make sense in a given specific situation. Of course, such a
strategy is limited to known scenarios, unless means for adaption and assimilation
are provided.

To avoid this deadlock and for other reasons, Fig. 1 provides various feedback
paths, some more specific, others more general. The general ones originate from the
concept that the listener model, that is, the “artificial listener”, actively explores its
aural world and thereby differentiates and develops it further in an autonomous way,
very much like human beings do. Following this line of thinking, it is attempted to
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model listeners according to the autonomous-agent paradigm, where agents actively
learn and actively listen. Since the listener model can deliberately move its sensors
about in the space to be explored, it can use proprioceptive cues besides aural ones
to perform these tasks. Cross-modal cues, like visual and/or tactile ones [4, 38] may
be included if appropriate. Active learning and active listening are further discussed
in Sect. 3.

2.1 Feature Extraction and Proto-Event Detection

In the framework of Fig. 1, statistical machine-learning techniques are planned for
the extraction of primitive features, block (d), and for the formation of proto-events,
block (e). As their input, these techniques require signal partitions and/or features
that carry information that is relevant for what is finally perceived and considered to
be meaningful.

By using such input, machine-learning models can be developed that are able
to extract proto-events from autonomous and/or interactive environments. These
proto-events can then be used at higher levels for comparison and verification—for
example, in graphical models, see Sect. 2.2—as well as for providing feedback to
lower-level model stages. The final goal is to arrive at proto-events that make sense
to human beings, particularly in the light of previous experience.

In the machine-learning field, agents learn tasks from data that are provided to
them by the environment, that is, tasks are learned by induction. Within the process-
ing stages of blocks (d) and (e), in other word, agents will primarily perform pattern
recognition tasks. Following the machine-learning paradigm, agents will first have to
undergo a learning phase during which informative acoustic features are selected for
input, and the agents’ parameters are tuned in such a way that the pattern-recognition
task can be performed sufficiently well. In the following recognition phase, these
agents will then fulfill their “duty”, which is to extract the relevant acoustic fea-
tures from the input signal and to combine them for the detection, classification and
annotation of proto-events.

Traditionally, one distinguishes three learning schemes on the basis of what kind
of information is available to the agent. In supervised learning, the agent is provided
with the acoustic input simultaneously with the correct annotation. In reinforcement
learning, the agent is provided with the acoustic input, but the environment provides
only a summary feedback signal that tells the agent whether the annotation was
correct or not. In unsupervised learning, finally, only the acoustic input signals are
available, and the agents’ task is to utilize statistical regularities within the acoustic
environment in order to generate a new representation that is optimal—given some
predefined learning criteria.

Although reinforcement learning is a key learning scheme when it comes to human
beings, its machine-learning counterparts are computationally expensive and require
extremely long learning periods. Therefore, it is currently not advisable to use it
in the framework of Fig. 1. As to the other two paradigms, unsupervised-learning
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paradigms are better suited for learning feature representations—block (d)—while
supervised-learning paradigms are generally better suited for generating symbolic
representations—block (e).

Successful learning and recognition strongly depends on the representation of
auditory signals and scenes. While many different approaches should be imple-
mented, evaluated and compared, a particularly interesting class of representations
are the biologically-inspired spike-based representations [48]. These representations
are typically sparse and provide a decomposition of a complex auditory object into a
pattern of brief atomic events. This decomposition can, for example, be derived from
the binaural-activity map generated at block (c), where the atomic events would then
be localized in both auditory space and time. Another example is discussed in more
detail in the next subsection.

Although many auditory objects are distinctly localized in time and space, they
may still occur at variant spatial locations and points in time. Vector-based repre-
sentations typically have difficulties capturing this and other types of variability, for
instance, different durations and/or spectral shifts. Relational representations, where
auditory events are described by their similarity to other auditory events rather than
by their individual features, are much better suited, because the required invariances
can often be built into the similarity measure in a straightforward way. In addi-
tion, many kernel-based machine-learning methods have been devised over the last
20 years that naturally operate on relational representations, including, for exam-
ple, the well known support-vector machines. Although standard kernel methods
impose certain constraints on the similarity measure, that is, the kernel, extensions
have been suggested, such as by [34, 35], that can also be applied to a wide class
of similarity measures for spike-based representations. Two examples for the super-
vised and unsupervised learning paradigms are described in the according subsection
herewithin.

Sparse Event-Based Representation

Spike-based representations [48] provide a decomposition of a given sound signal
via a linear combination of normalized basis functions taken from a predefined or
learned dictionary. This kind of representation will now be illustrated by a simple
example from the auditory domain. Let x(t) be a monaural sound signal and let
τ fk ,tk (t) be the basis functions, then

x(t) =
K∑

k=1

akτ fk ,tk (t) + θK+1(t). (1)

Every basis function, τ fk ,tk (t), in (1) corresponds to one atomic event located at
time, tk , in the auditory stream. The corresponding coefficient, ak , and “property”, fk ,
characterize this event. The parameter fk determines the type of basis function taken
from the dictionary and can, for example, be the center frequency of a time-frequency
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localized filter from a given filterbank. ak then describes how well the filter function
locally matches the auditory stream. The most efficient representation of the type
defined by (1) is one that achieves a small residual, θK+1(t), for a small number, K , of
atomic events. A greedy way of iteratively constructing such a representation employs
the matching-pursuit algorithm [40]. During each iteration, k, a basis function, τ fk ,tk ,
is selected that maximally correlates with the residual signal, θk , remaining from this
iteration, that is,

( ft , tk) = argmax fm ,t◦ < θk(t), τ fm ,t◦(t) >. (2)

The total number, K , of iterations determines the number of events with which
a particular auditory object is described, in other words, the level of sparseness as
well as the accuracy of this representation, namely, the magnitude of the remaining
residual. There is a trade-off between both. However, since the goal of this repre-
sentation is not to reconstruct the sound at later processing stages, the absolute size
of the residual is not so important, and the focus should be on creating a representa-
tion that uses a small number of basis functions, that are most informative for later
classification and annotation. Different filter functions are suitable for generating
an overcomplete dictionary—such as Gabor atoms, Gabor chirps, cosine atoms, or
Gammatone filters. Gammatone filters are popular for auditory-adequate filtering,
because a subset of them approximates the magnitude characteristics of human audi-
tory filters [43]. Figure 3 shows the spike-based representation for a specific sound

Fig. 3 a Time-domain signal of a whoosh sound, b corresponding event-based representation using
Gammatone filters. Each rectangle corresponds to one basis function in the expansion of (1). The
magnitude of the coefficient, ak , is represented by the gray shade (darker ≈ larger). Time, tk , and
center frequency, fk , are represented by the location of the rectangles. The size of the rectangles
indicates the localization of the basis functions in time-frequency space
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that has been labeled “whoosh”. A Gammatone filter bank of 256 filters is used for
generating a representation based on K = 32 atomic events. The salient areas in the
signal are represented by more events than other areas.

Different auditory events can now be compared via their event-based represen-
tations by using appropriate distance or similarity measures, respectively. These
distance measures can account for invariances in a straightforward way and can be
devised such that they capture the event-structure of a complex auditory event [2].
Take, for example, the representation shown in Fig. 3b. The total distance between
two such representations can, for example, be decomposed into a sum of distances
between pairs of corresponding atomic events which, in turn, can be calculated as
a weighted sum of the distances between the parameters describing them. But how
can corresponding events be found? They can be found by minimizing the total
distance over all the candidate pairs. The problem of optimally matching two event-
based representations can be transformed into the problem of optimally matching
the two node-sets of a weighted bipartite graph, which can in turn be solved using
the so-called Hungarian algorithm [39]—details can be found in [2].

Supervised Learning: Support-Vector Classification

Support-vector learning is an efficient machine-learning method for learning the
parameters of perceptrons for classifying patterns but also for assigning real-valued
attributes, for example the quality ratings for auditory events event. Consider a simple
binary classification problem, where data points represented by feature vectors, x,
—for example, some low-level descriptors of sound events-should be assigned to
one of two possible classes, y ≤ {−1,+1}. Support-vector learning is a supervised
learning method, hence it requires a so-called training set of labeled examples, that
is, of pairs, (xi , yi ), i = 1, . . . , p, during the learning phase. The support-vector
classifier is a standard perceptron and has the following simple form,

y(x,w) = sign

{
w0 +

M∑

k=1

wi K (xi(k), x)

}
. (3)

w is a vector of model parameters, and the data points, xi(k), k = 1, . . . , M , are data
points from the training set.

During the learning phase, model parameters have to be determined and specific
data points, xi(k),—the so-called support vectors—have to be chosen from the train-
ing set, such that the resulting classifier will perform well during recognition. Details
about standard support-vector learning can be found in a number of textbooks, for
instance [46]. Important for the following, however, is the function K (xi , x j ), the
kernel, which is part of the perceptron. It can be interpreted as a similarity measure
that quantifies how similar two data points, xi and x j , are. Learning and recogni-
tion make both use of similarity values K (xi , x j ) for pairs of data points only, and
feature values would only enter these processes through the similarity measure K .
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Therefore, the function K (xi , x j ), which maps pairs of feature vectors to similarity
values, can be replaced by a more general function, K (i, j), that maps pairs (i, j)
of patterns directly to similarity values. This allows support-vector learning and per-
ceptron recognition to directly operate on relational rather than on feature-based
representations.

Now consider event-based representations and the example of Fig. 3 . For every
pair of event-coded sounds, (i, j), the Hungarian algorithm can be used to determine
their distance, d(i, j), which can then be transformed into a similarity measure, Ki, j ,
for example, by use of the common Gaussian kernel function

K (i, j) = exp

(
−d(i, j)2

2α2

)
. (4)

α2 is a variance parameter to be determined—sometimes called length scale. Unfor-
tunately, this choice may not lead to a valid kernel function, valid in the sense of
standard support-vector learning, as the kernel function should be positive semi-
definite. Consequently, variants of support-vector learning have to be used that do
not require this property [34, 35].

In [2] event-based representations and support-vector classification have been
applied to recognize everyday sounds. The dataset contained ten classes of different
types of everyday sounds. Figure 4 shows the results for a one-vs-the-rest recog-
nition task, and compares the performance of the event-coded representation with
the performance achieved for a number of standard feature-based representations
for the same sound. The event-based representation, SPKE, outperforms the other
representation schemes, including the popular feature-based representation using

Fig. 4 Recognition of everyday sounds with perceptrons and support-vector learning. The figure
shows the recognition performance for one particular sound class against the rest for a sound-data set
consisting of ten sound classes. Four different low-level representations were used, mel-frequency
cepstral coefficients, MFCC, an event-based representation using Gammatone filters, SPKE, a set of
spectral low-level descriptors, SLL (energy, zero crossing rate, spectral centroid, roll-off frequency
and their variances, finite differences, and the variances of the differences) and a set of timbre
descriptors, TIMBRE (perceptual spectral centroid, relative specific loudness, sharpness, roughness,
signal autocorrelation, zero crossing rate, time frame, log attack time, temporal increase, decrease
and centroid, effective duration, energy-modulation frequency, energy-modulation amplitude)
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mel-frequency cepstral coefficients, MFCCs,2 in five particular cases. In the other
five cases, MFCCs perform best.

As a result, the event-based representation can be considered as a denoising
procedure that emphasizes those contours of a given sound that are perceptually
important. On the other hand, however, from a certain number of atoms selected,
some perceptually non-existent contours (phantom-spikes) can be emphasised. This
could degrade the recognition performance. By means of the results of some suitable
psycho-acoustical experiments, the perceptually optimal number of spikes can be
determined to avoid this effect.

Furthermore, the total distance computed between two spike codes is a weighted
sum of the parameters. These weights can be adjusted using prior knowledge. For
impact sounds, for example, time differences can be weighted more strongly than dif-
ferences in amplitude or frequency, which in turn improves recognition performance.

Unsupervised Learning: Prototype-Based Clustering

The use of relational representations is not limited to supervised learning paradigms
and support-vector learning but can be applied to unsupervised learning as well.
Although in the framework as laid out in Fig. 1, unsupervised learning is generally
better suited for learning feature representations, clustering could also be a promising
method for defining proto-objects—provided that the quality of the pre-segmentation
is sufficiently high. If applicable, unsupervised learning has the benefit of not requir-
ing annotations of auditory objects during the learning phase, since these are often
expensive to obtain.

During clustering, data points are grouped according to a predefined similarity or
distance measure. A cluster is then formed by data points whose inter-point distances
are small compared to the distances to data points that are members of the other clus-
ters. For some of the methods, a prototypical data point is generated for every cluster.
These methods are usually called central or prototype-based clustering methods. In
the following, it will be illustrated how prototype-based clustering methods can be
applied to auditory objects in an event-based representation.

Let d(i, j) be the distance between two auditory objects in their event-based
representation as computed, for example, by using the distance measure introduced
in the preceding subsection. A particular clustering of a set of auditory events can
then be quantified using binary assignment variables, Mib, where

Mib =
{

1 if the auditory event, i, is assigned to a cluster, b, and

0 otherwise .
(5)

2 Mel-frequency cepstral coefficients, MFCCs, are the DCT coefficients of the logarithm of a mel-
scaled signal spectrum. They have been introduced for the purpose of speech recognition [21], but
have since proven versatile and found use in many other acoustic classification applications.
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Let b denote the prototypical event-based representation of all the sounds assigned
to group b. Then a good grouping and a good prototype should minimize the cost
function,

Hoc({b}, {Mib}) =
I∑

i=1

B∑

b=1

Mib d(i, b), (6)

with respect to both the assignment variables, Mib, and the parameters of the proto-
typical event-based representations, b. Following [29], the optimization can be per-
formed via an expectation-maximization algorithm. This is an iterative procedure,
where each iteration consists of two steps. In the first step, all distances, d(i, b),
are calculated and representations are preferably assigned to the group for which
the distance to its prototype is smallest. In the second step, the parameters of the
prototypical representations are chosen by minimizing (6), keeping the assignment
variables fixed. For better convergence, a probabilistic version of this procedure is
used in practice, where the binary assignment variables are replaced by assignment
probabilities—details can be found in [29] or [1].

Figure 5 shows the prototypical event-based representations for three clusters from
a sound class called whoosh on the left-hand side. The figure shows that the prototypes
well represent the sounds assigned to a particular cluster and that information can be

Fig. 5 a Event-based representations generated by prototype-based clustering of everyday sounds.
Shown are three different prototypes for clusters of a class of sounds annotated by “whoosh”.
b Overlay of the event-based representations of all sounds as have been assigned to the corresponding
prototype by the clustering method. For details of the graphical representation, see the caption of
Fig. 3b
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derived about the pattern of atomic events that are typical for a particular group. If
annotations of sounds become available at this point, meaning can be assigned to the
different groups, and further acoustic events can be recognized by matching them to
the closest prototype.

2.2 Graphical Models as Dynamic Blackboards

At the highest level of the model framework depicted in Fig. 1, level (f), it is attempted
to make sense of the input from level (e), which consists of sets of annotated proto-
events and the confidence levels assigned to them. The task is to find out about the
following.

• In how far does the input correspond to any patterns that are known to the system,
that is, can any aural objects an/or aural scenes be recognized?

• How far can pre-known patterns be adjusted using available input information?
In other words, can something be learned from the input—for instance, by taking
advantage of any sort of understanding that we have of the interaction of aural
objects?

In this section, a mathematical tool is introduced that can be used to encode just such
knowledge, namely, the so-called graphical model. Graphical models are originally
models of a statistical nature, and they are typically designed on case-by-case infor-
mation. They are thus generally ignorant of physical laws and mathematical/logical
rules, such as acoustic-wave-propagation theory, the constancy of source identity,
physical limitations to source and sensor movements, and other relevant knowledge.

To overcome these limitations of graphical models, it will now be attempted
to reconcile the flexibility of graphical models with the precision of physical and
mathematical knowledge—without loosing the advantages of either. To illustrate
one way of obtaining an appropriate framework, the following three subsections will
first present a brief background of graphical models and, consequently, “Auditory-
Scene Understanding with Graphical Models” will show how rule-based knowledge
can guide the design of graphical models to the end of achieving maximum precision
with a task-specific limitation to relevant available knowledge.

Graphical Models

The dependence relationships within groups of random variables are often described
very concisely by denoting their statistical dependence with the help of a graph.
Such graphs come in two forms, directed and undirected. Yet, in the following, the
discussion will be limited to the directed ones. In this type of graphs, two variables
that are statistically dependent upon each other are connected with a line, with the
arrow pointing from the independent to the dependent variable.
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Fig. 6 Dependence tree

s3

s2

s4

s1

s
5

An example of such a dependence graph is given by Fig. 6. In this example, the
graph indicates that the two variables, s3 and s5, exhibit some form of statistical
dependence, while there is no direct dependence between s3 and s2. Based on this
understanding, the graph can be used to simplify the joint probability density of the
variables, s1 through s5, as follows,

p(s1, s2, . . . s5) = p(s1)p(s2|s1) . . . p(s5|s1 . . . s4) (7)

= p(s1)p(s2|s1)p(s3|s1)p(s4|s1)p(s5|s3).

More generally speaking, a tree-shaped dependence graph indicates that the joint-
probability-density function, PDF, of all variables, p(s1, . . . sn), can be factorized in
the following manner,

p(s1, s2, . . . sN ) = sr

∏

n≤N ,n ⊗=r

p(sn|sA(n)), (8)

where r denotes the root node of the graph and A(n) yields the ancestor (or parent)
nodes of node n. Graphs that are more complex can also be factored according to
the same principle, that is, by using the fact that the probability density of statis-
tically independent variables may be factorized into a product of the PDFs of all
interdependent subgroups.

Graphical Models for Non-Stationary Processes

In many contexts, graphical models denote statical-dependence relationships, as is
also true in the example shown in Fig. 6. It is, however, in the nature of auditory
events that they are temporally evolving, and exhibiting only approximate short-
time stationarity. Thus, when a description of auditory scenes is desired, it becomes
necessary to extend graphical models to describe temporally evolving variables in
addition to stationary ones.

One example of such a temporal graphical model is a hidden Markov model,
HMM, which is highly popular due to its flexibility and the availability of easily
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Fig. 7 Hidden Markov model, shown as an unrolled temporal graphical model

implementable, statistically optimal algorithms. Figure 7 depicts an HMM in the
notation of a directed graphical model.

In this figure, variables are shown either as filled ellipses, meaning that they
are observable, or as white ellipses, indicating that they are hidden. The exemplary
variables here are taken from automatic speech recognition, ASR. They indicate the
word identity, wk , the triphone identity, tk , the state index, xk , and the observation
vector, ok , for each time frame, k.

As above, their dependence relationships are depicted in the notation of graphical
models, but now, in addition, their temporal evolution is shown, because in contrast
to the stationary variables in Fig. 6, it becomes necessary to model their value at each
time frame by a separate node.

This step of adding duplicates of variables for each of the points in time is often
described as unrolling the graphical model over time. As visible in this example, an
originally static dependence graph can be extended by temporal unrolling such as to
model the properties of a temporally-evolving, non-stationary statistical process.

Rule-Bases in Graphical Models

While graphical models, both for stationary and for non-stationary processes, are
statistical models by nature, they allow for the incorporation of rule-based knowledge
in two distinct ways, that is,

• On the one hand, conditional probabilities in the graph can also collapse to
deterministic ones—namely, conditional-probability tables can contain ones and
zeros—if physical rules or rules based on other knowledge sources state that cer-
tain values in one variable of the model directly imply setting other variables to
specific values.

• On the other hand, the structure of the graphical model itself, or of sub-structures in
it, can be compiled rather than determined manually, and this compilation process
can be carried out by automatically integrating sets of rules. An example of how
this may be accomplished in the context of automatic speech recognition by com-
piling possible sequences of phonemes from a pronunciation dictionary and a task
grammar, can be found in [8].
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Auditory-Scene Understanding with Graphical Models

By using graphical models like those described above, very precise source models
may be attained, provided that training takes place on sufficient amounts of rep-
resentative data. Such models can serve as a repertoire of possible source signals
for schema-based, rather than primitive grouping. As one success story of graphical
models in multi-source scene understanding, Hershey et al., [33], use factorial hid-
den Markov models as models and apply them to perform inference with variational
loopy-belief propagation. The computational effort of this approach scales linearly
in the number of sources and leads to super-human ASR rates on multi-speaker
single-channel recordings.

This is already a highly promising result for the application of graphical models
in aural-scene understanding. However, the current approach as exemplified by this
work, still has several drawbacks, such as the following. The model of [33] and
other similar graphical-model-based systems like [22] need to exploit very strong
source models, that is, top-down or schema-based segregation, in order to come close
to or even surpass the recognition rate of human listeners on the tested but highly
specialized task. In natural scenes, there is not usually such an ample experience
regarding the possible waveforms of sound sources. However, in any realistic cases,
a much higher variability of possible sounds, coming with a far greater vocabulary
and a much wider range of admissible sources, is the standard.

Thus, dynamical Bayesian networks have been applied and already proven their
merit in cases where detailed source models were available. Yet, achieving a general
applicability with this approach is still an open issue.

As a step forward, even for quite general tasks where only coarse source models
are available, additional information in two specific forms could often be exploited.

• Physical and mathematical knowledge may be used, for instance, regarding the
mixing process—which may be supported by input from other modalities.

• Psychoacoustic heuristics for source separation may be applied, as based on an
implementation of primitive-segregation rules mimicking human auditory stream-
ing in general environments.

How these two information sources, namely, physical models and perceptual rules,
should be combined with all available source information, for the purpose of gaining
an optimally informed understanding of auditory scenes, is an interesting open issue.

As one option, this should be possible by compiling a combination model from all
information sources—similarly to well known model compilations for ASR, where
a lexicon, phonetic and linguistic information are used to form a search network.
Yet, for the applications envisaged here, the compiled model would not be linear in
topology but rather allow for superposition of all acoustic sources according to the
internal acoustical wave-propagation sub-model.

Such a compiled graphical model could also possess an interface for higher level
processes that might search over variable allocations in the manner of an expert sys-
tem. Only, in contrast to standard expert systems, this search would operate on the
graphical-model variables directly, effectively making the graphical model an active
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blackboard, which could be simulated to measure the goodness-of-fit between all
observations and the internal variable occupation probabilities, corresponding to pos-
sible internal scene interpretations. Thus, of all scene interpretations, the most fitting
one could be selected, whereby the “fit” is assessed, among other information, based
on what is known about the source and further physical and mathematical knowl-
edge, and guided by streaming mechanisms as are also active in human perception.

3 Active Learning and Active Listening

3.1 Active Learning

Active learning, that is, autonomous inductive learning, is one of the key features
of the envisaged artificial listener and plays a prominent role in most of the higher-
level processing stages of the framework that has been laid out in Fig. 1. Ideally, the
artificial listening system would autonomously explore its environment and use the
information gathered through this interaction in the learning process. Strategies for
autonomous learning exist in principle, and reinforcement learning is a prominent
example of this. However, pure autonomous learning is still notoriously slow in
complex environments, and one has to resort to supervised learning strategies for
many of the subtasks involved. Still, an artificial listener is an excellent testbed for
concepts to improve autonomy.

Supervised learning suffers from the fact that acoustic events have to be annotated.
Given the large amount of data needed by standard learning methods when tasks
become complex, the required human interaction can become excessive. For an
artificial cognitive system it is therefore important to make best use of the available
information. One idea, which has been around for several decades by now, is to
replace a passive scanning of the environment by strategies where a learning system
actively sends out requests for training data that are particularly informative. There
is a large amount of empirical evidence about the fact that active data selection is
more efficient in terms of the required number of training examples for reaching a
particular level of performance. It follows, that the amount of human interactions
can be reduced by supervised-learning paradigms. The next subsection provides an
example where active data selection is applied for learning a predictor for perceptual
attributes assigned to everyday sounds by humans.

Active Data Selection

For a binary classification problem, consider a parameterized family of perceptron
classifiers,

y(x,w) = sign

{
w0 +

M∑

k=1

wi K (xi(k), x)

}
, (9)
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similar to the classifiers that have already been introduced in the context of support-
vector learning in Sect. 2.1. Assume that the reference-data points, xi(k), for the
functions K have been chosen in a sensible way. Then the goal of inductive learning
is to find values for the parameters, wi , such that the perceptron predicts the class
memberships sufficiently well.

In active data selection, inductive learning is interpreted as a process, where
predictors from the set—for example, perceptron classifiers from the parameterized
family of (9)—are discarded if their predictions are inconsistent with the training
data. Every new data point from the training set splits the current set of classifiers
in two sets that differ in their prediction of the class label. Assume that the set of
classifiers is endowed with a useful metric, for example, a metric taking into account
that two classifiers are similar if their predictions are so too. Then a space of classifiers
can be constructed, and volumes and distances can be defined. With those concepts
one can then assess how useful a new data point is for training: A new data point
is useful, given that the space of classifiers predicting membership of one class has
about the same size as the other ones with regard to volume or maximum diameter of
the corresponding subspace. At any stage during learning, an active-learning agent,
when implementing, for example, the perceptron classifier, will select a useful data
point and will ask for its class. When the information arrives, the agent will no
longer consider the subset of classifiers with more or less disagreeing predictions but
rather continue the learning process with those classifiers that have shown to predict
correctly [32].

If there is no noise in the problem, and if the two classes can be separated in
principle by a perceptron, active learning leads to an exponential decrease in the
size of the set of consistent classifiers with the number of training data. For size
meaning volume, for example, this follows from the fact that every well chosen
new data point cuts the size of the set by half. Given a distance measure between
classifiers that is related to their difference in prediction performance, the exponential
reduction in volume then carries over to an exponential reduction of the classification
error with training-set size. Unfortunately, this assertion may no longer hold if classes
cannot be separated without errors. The reduction of classification error may then
become polynomial again. Still, empirical evidence is abundant, that shows that
active data selection strategies lead to a significant improvement of learning over
standard inductive learning strategies.

For illustration, the kernel perceptron (9), has been applied together with active
data selection for training an agent to predict the perceptual quality of sounds. Four
classes of impact sounds were generated by an acoustic model and played to ten
human listeners whose task was to rate them as glass, metal, plastic or wood. Sound-
rating pairs were then used to train ten multiclass predictors based on the kernel
perceptron, one for each listener—either using standard methods or active data selec-
tion. During standard training procedures, sound-rating pairs were randomly chosen
for every new training sound while, during active data selection, the agent requested
the most informative data point under the volume-reduction criterion—see Fig. 8a.
For this demonstration, sounds were represented by the parameters of the acoustic
models that were used for their creation, but a representation based on aural features
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Fig. 8 Listening test using active learning. a A parameter vector, x, is used to synthesize a new
sound by a physical model, that is, a synthesizer. After listening, the listener labels it with glass,
metal, plastic or wood (label y). The learning machine then updates its prediction model and the
query algorithm will suggests a new sound. b The graph shows the number of labeled training
data required to reach a test-error rate of 0.35 for agents implemented through multiclass kernel-
perceptron classifiers. The results for active data selection are compared with the results for standard
inductive learning separately for every listener

could have been used as well. Figure 8b shows the number of training examples
that were required to achieve a performance significantly above the chance level of
35 %. For all ten listeners, active learning led to a significant reduction of the number
of training examples. Standard inductive learning required on average 2.5 times the
number of labels compared to active learning.

3.2 Active Listening

The active-listening3 approach, recently popular in robot audition [5], is based on the
concept that perception and action come in couples [3]. While exploring their aural
environment actively, listeners recognize sound sources and analyze aural scenes by
simultaneously monitoring their auditory sensations and their motoric actions, taking
advantage of both the auditory and proprioceptive modalities. Further, during this
process, they permanently adjust their auditory system task-specifically. Modeling
active listening implies various feedback mechanisms.

Feedback

Incorporation of multiple feedback loops into a model of sensory perception and
cognition reaches out to the edge of current knowledge. In the auditory system,
although there is strong evidence for numerous physiological feedback pathways

3 The term active listening in the sense used here is not synonymous with a specific oral-
communication technique that requires listeners to feed back to talkers what they hear.
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[31, 45], little work has been done so far to incorporate feedback into processing
models. In vision there is more experience with this type of modeling, but it is not yet
clear to what extent this can be translated to the auditory domain [36, 49]. The aspect
of porting domain experience across modalities has thus to be followed up carefully.
While, in principle, the model framework of Fig. 1 allows for feedback between
any stages, it makes sense at the time being to limit this structure with respect of
physiological and operational evidence. In the following, a list of feedback paths
is given that appear of particular relevance to the model framework presented here
[15].

• Feedback from the binaural-mapping stage, that is, the output of auditory signal
processing, to head-position control to keep a tracked sound source in aural focus—
compare the so-called turn-to reflex as can already be observed in infants [19].

• Feedback from the cognitive stage to head-position in order to control for deliberate
exploratory head movements, eventually moving the complete head-and-torso cart
[16] this volume, and [7].

• Feedback from the segmentation stage to the signal-processing stage to solve
ambiguities by activating additional preprocessing routines, for instance, cocktail-
party effect and/or precedence effect processing—compare [50].

• Feedback from the cognitive stage to the signal-processing stage. This is intended
to model efferent/reafferent effects of attention by modifying filter characteristics
and/or putting a special focus on dominant spectral regions—for example [41, 42,
44, 47].

• Feedback from the cognitive stage to the segmentation stage to request task-specific
and/or action-specific information on particular features—for example [18].

In the following, some exemplary feedback ideas along those lines are discussed in
more detail.

1. To improve localization accuracy, a movable head-and-torso platform can perform
movements, properly controlled by mimicking human strategies when exploring
auditory scenes, for example, to derive estimates of distances and to solve front-
back ambiguities [16], this volume.

2. Feedback can be used to adjust parameters for bottom-up processing, such as
auditory-filter bandwidths, spectral weights in combining information across
auditory filters, operating points of the temporal adaptation processes. Further,
it can provide additional information supporting auditory-stream segregation,
for instance, classifying groups of features of the same auditory stream in the
binaural-activity maps [9].

3. At the cognitive level of the model framework, feedback from higher levels can
make use of the interactive graphical-domain models as an active blackboard—as
already mentioned in Sect. 2.2. Higher-level processes in an application-specific
subsystem, such as an expert system for scene analysis, can set variables according
to their specific intentions. Through modeling, it can be monitored how higher-
level feedback corresponds with the rules and observations of the system and
implications can be tested regarding the interpretation and initiation of new feed-
back information to lower model stages.
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4. An important aspect of feedback is the incorporation of cross-modal informa-
tion into the auditory processes. It is well known that profound interrelations
between auditory and visual cues exist—compare, for example [38]. Visual cues
can be introduced to the model system at two stages, namely, the pre-segmentation
stage—the turn-to reflex—and the cognitive stage, exploiting prior knowledge
about the visual scene. Specific proprioceptive information, such as the current
position and movement of the head-and-torso platform, can also be used, partic-
ularly, at the pre-segmentation stage or even lower.

4 Conclusion

The model architecture as described in this chapter offers a comprehensive approach
to modeling aural perception and experience. The listeners are modeled as an intel-
ligent system exploring its surroundings actively and autonomously via an active
exploratory listening process. It is assumed that, in the course of this process, the
perceptual and cognitive world of the modeled listeners evolves and differentiates.
This notion of the essence of listening stands in contrast to a widespread view that
sound signals impinging on listeners’ ears are processed by their auditory systems
in a purely bottom-up manner. While it is an advantage of the latter approach that
invention of the listeners is not needed, its prognostic power is limited to some prim-
itive perceptual features, such as loudness, roughness or pitch. In a pure bottom-up
approach, percepts are solely determined by the given ear-input signals, that is,
formed in a signal-driven way. The active-explorative-listening approach, in con-
trast, requires a more complex model structure in which bottom-up, signal-driven,
and top-down, hypothesis-driven, processes interleave in a complex way. The for-
mation of hypotheses, a major feature of such a model structure, requires explicit
knowledge inherent to the system. Part of the knowledge is acquired by the sys-
tem itself in the exploration processes mentioned above, other knowledge has to be
imported from external sources—potentially including physical knowledge as well
statistical knowledge derived from possibly large datasets—or it may originate from
other sensory modalities, such as proprioception, vision and/or tactility.
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Sparse representation, 485
Spatial

aliasing, 256, 258, 263, 268
extent, 257
sampling, 262
truncation, 262, 263

Spatial artifact, 339, 355
Spatial coherence, 285
Spatial cues, 121
Spatial hearing, 333
Spatial impression, 350
Spatial release from masking (SRM), 428, 435
Spatial sound, 454, 462
Spatial sound reproduction, 333
Spectral envelope, 313
Spectral standard deviation, 176–179, 182
Spectral subtraction, 368, 369, 374
Speech, 427, 430
Speech-detection module (SDM), 416
Speech intelligibility, 279, 427, 443, 444
Speech intelligibility index (SII), 431, 432
Speech processor CC, 285
Speech processor CLP, 284
Speech processor ELT, 285
Speech reception threshold (SRT), 279, 428,

431
Speech recognition, 311
Speech technology, 6
Speech transmission index (STI), 428
Spike-based representations, 485, 487
Spike pattern, 321, 326
Spiral ganglion neuron

SGN, 318, 319
Spread of excitation, 314
Stapes footplate displacement, 38
Statistical quantities, 176, 179, 187, 196
Stereophony, 255, 257, 258
Stimulus, 103
Straightness weighting, 403
Summing localization, 3, 258
Supervised learning, 296, 404, 484, 487
Support-vector learning, 487, 488
Surround-sound system, 111

Audyssey DSX, 114
Auro-3D, 114

Sweep
perfect, 81

Sweet spot, 340, 352
Synthesis area, 259

T
Temporal coding, 135
Temporal envelope, 431, 444
Temporal fine structure (TFS), 432
Temporal integration

averaging, 410
histogram, 410

Temporal integrator, 129, 132
Temporal resolution, 128, 129
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Temporal smearing, 427, 444
Temporal smoothing, 337, 338, 348
THR, 313
Timbre, 256, 257
Time of arrival, 43
Time constant, 348
Time delay estimation (TDE), 182,

244, 246
Time difference of arival (TDOA), 401
Time-frequency domain, 333
Tonotopy, 320
Top-down processing, 483
Torso reflections, 98
Tracking

dynamic model, 160
Kalman filter, 160
measurement model, 161

Training, 297

U
Uncertainty parameter, 100
Unimodal, 449
Univariate distribution, 295
Unsupervised learning, 484, 489
Upmixing, 335
Useful-to-detrimental ratio, 428, 444

V
Vector base amplitude panning, 111, 338

desired polar angle, 114
law of tangents, 114
panning ratio, 112, 115

Vertical-plane localization. See Sagittal-plane
localization

Virtual
sound scene, 256
sound source, 256, 260, 261, 265

Virtual environment, 6, 7, 451
Virtual scene, 453
Vision, 450. See also Computer vision
Vocal effort, 441
Voice activity detection (VAD), 229, 231
Volume, 437

W
Wall, 438
Wave-field synthesis (WFS), 256, 257, 259,

264, 265, 268, 276
Welch method, 295
Wide-dynamic-range compression (WDRC),

123, 138
Wiener filtering, 338, 346
Workspace, 451
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