
Programming Institutional Facts

in Multi-Agent Systems

Maiquel de Brito1, Jomi F. Hübner1, and Rafael H. Bordini2

1 Federal University of Santa Catarina
Florianpolis, SC, Brazil

{maiquel,jomi}@das.ufsc.br
2 FACIN–PUCRS

Porto Alegre, RS, Brazil
r.bordini@pucrs.br

Abstract. In multi-agent systems with separate agents, environment,
and institution dimensions, the institutional state can be affected by
facts originating in any of those constituent dimensions. Most current
approaches model the dynamics of the institution focusing on the agents
and the institution itself as the main sources of facts that produce changes
in the institutional state. In this paper, we investigate also the environ-
ment as an important source of facts that change the institution. We
propose thus a model and a language to specify and program the insti-
tutional dynamics as consequence of events and state changes occurring
in any of the three component dimensions of the system (agent, envi-
ronment, and institution). Our approach was evaluated through a case
study where we compare two solutions for an application: the original
design and a new one based on our proposal. We observed a simplifi-
cation of the agents’ reasoning, an increase in the functions performed
by the environment and the institution, and greater independence of the
agents within the system. This last result is specially important in open
systems where we cannot take for granted that agents will take part in
the system.

Keywords: institutional facts, constitutive rules, environment,
institution.

1 Introduction

This work considers a Multi-Agent System (MAS) as an open system with three
distinct and independent dimensions: agents, institution, and environment. In
open MAS, agents can enter or leave freely [3], and neither the number, nor the
behaviour, nor the way in which the agents interact and access shared resources
can be known at design time [11]. Therefore, an open MAS can have agent
heterogeneity, conflicting individual goals, limited trust, and non-conformance
to the specifications [2]. In order to conciliate the autonomy of the agents and
the system goals, using an institutional dimension is a usual approach [9].

J. Simão Sichman and H. Aldewereld (Eds.): COIN 2012, LNAI 7756, pp. 158–173, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Programming Institutional Facts in MAS 159

The institution can be affected directly by the actions of the agents (e.g. when
an agent voluntarily adopts a role). In some cases, however, the institution can
be affected by facts originating in the environment or even the institution. For
instance, an agent running through a red traffic light is a fact essentially at the
environment dimension. Although this fact is initially produced by an agent, it
is also – or even mainly – an event of the environmental dimension. This fact
means, in the institutional dimension, a norm violation. As we will illustrate in
this paper, there are some advantages when considering the environment rather
than the agents as the source of events that affect the institution. In order to
model and implement this link between the institution and the other dimensions,
some issues must be addressed. It is necessary to define what kind of facts can
have an institutional consequence and how such facts can be checked for at the
different dimensions.

The environment-based approach has been investigated in some related work
(see Section 2.1). The work of Piunti [11] investigated this approach considering
MAS with agents, environment, and institution as first-class abstractions. That
work dealt with the question from a more conceptual perspective. In this paper,
we continue the work of Piunti proposing a programming language to specify
the dynamics of the institutional state as consequence of facts from both the
environment and the institution1. The proposed language, presented in Section 3,
assumes that such facts can be conceived as count-as rules. The underlying
model (i.e. the Social Reality Theory of John Searle) and related work that
deals with institutional facts in MAS are described in Section 2. The language
implementation and evaluation is discussed in the context of a case study in
Section 4. The main contributions of this work are: (i) a conceptual model of the
dynamics of institutional facts that recognises the importance of the environment
as one of the essential dimensions of multi-agent systems; (ii) a programming
language to specify such dynamics which helps formalise the proposed model;
and (iii) an implemented interpreter for the language thus making the work of
practical use in multi-agent systems development.

2 Related Work

John Searle put forward the idea that reality is divided into brute and institu-
tional portions [14]. The brute portion of reality is composed of elements that
can be described by chemistry, physics, mathematics, etc. and does not depend
on any beliefs or opinions from human beings. The institutional portion is com-
posed of subjective elements and depends on collective agreements. Some facts
occurring at the brute portion can have meaning at the institutional level. This
meaning is stated by constitutive rules that have the form X count as Y in C
where: (i) X is a brute fact ; (ii) Y is an institutional fact, i.e. a fact at the in-
stitutional level that is a consequence of brute fact X ; and (iii) C is the context

1 We consider here that any action performed by agents has some effect in the en-
vironment and therefore, by considering the environment, we are also indirectly
considering any fact produced as effect of the agents’ actions.

160 M. de Brito, J.F. Hübner, and R.H. Bordini

where X counts as Y . For instance, a priest performing a ceremony (X) counts
as an act of marriage (Y) if the act is performed in the correct way (C).

2.1 The Social Reality in MAS

Some related work, briefly analysed below, investigated how brute facts in MAS
(agent interaction, agent actions in the environment, events occurred in the
environment, etc.) may have meaning at the institutional level. They point to a
correspondence, in MAS, to Searle’s theory.

Table 1. Comparison of related models

Model Dimensions Brute facts Language Obj.

Ag Env Inst Act Ev St Lang Interp App

Artikis et al. [2] � � � � � � �
MASQ [15] � � �
SEI [6] � � � �
Dastani et al. [8] � � � � �
Aldewereld et al. [1] � � � � � � �
Emb.Org. [11] � � � � � �

A first aspect to be considered in the models above is their authors’ view
about the dimensions of MAS. All models consider at least the agent dimension,
and some of them focus on one particular dimension. The models proposed in
[2,8,6,1] consider the existence of an institutional dimension but do not con-
sider the environment as a first-class abstraction. In [2,1], the environment is
conceived as being external to the MAS and institutional facts are triggered by
agent actions. In [8,6], the environment is modelled as part of the institutional
specification (rather than an independent dimension). More precisely, in [8] the
institutional specification states the effects of the actions of the agents in the
environmental elements, while in [6] the institutional specification has modellers
and staff agents that are in charge of dealing with environmental entities.

A second aspect to be observed about the models is the source the brute facts,
i.e. where they are produced. This aspect has a close relation to the dimensions
that each model considers. Most of the models consider that agent actions are
brute facts [2,6,1]. Events occurring in the environment are deemed as brute facts
in [15] and [11]. The approach in [15] is subjective in the sense that the agents
perceive and interpret the events. In a different way, the approach in [11] depends
neither on agents’ perceptions nor on their reasoning. That model considers that
events occurring in the environment are brute facts regardless of the perception
and reasoning of the agents. Another source of brute facts is the state of the
system, as proposed in [8] and [1].

The third aspect that we have analysed is the existence of an implementation
of the proposal. Although some models have an associated language, not all of

Programming Institutional Facts in MAS 161

the cited papers have described an interpreter or an application using the model
and the language.

The last aspect considered in our analysis is where the count-as rules are
processed. In the model presented in [15], count-as rules are independently eval-
uated by the agents based on their particular perception and knowledge. This
evaluation is thus subjective, and each agent might have a different representa-
tion of the institutional state. In all other models, the evaluation is performed
by something outside the agents and does not depend on them: it is thus an
objective evaluation.

It can be noted that only two models consider the environment as a first-class
abstraction that is a source of brute facts (Table 1). Among them, only in the
model by Piunti et al. [11] the evaluation of brute facts is objective. Moreover,
both models consider only events as brute facts and, as proposed in [8], a sys-
tem state is a useful kind of brute fact. Although Piunti’s approach includes
a programming language, it does not describe an interpreter nor a practical
application of the model. Our proposal, as presented in this paper, covers the
following features: (i) considers the three distinct dimensions as first-class ab-
stractions, (ii) the environment is considered as a source of brute facts, (iii)
includes both events and state as leading to brute facts, (iv) is objective, and
(v) has an implemented programming language.

3 Programming Institutional Facts

This section presents the proposed model and language that deal with changes
in the institution as the result of events or states occurring in the environment
or in the institution. Such changes are based on count-as rules.

We assume that the environment and the institution states are not fully ac-
cessible. Thus, among the elements that compose those dimensions, there is an
observable portion that is considered in our model. About the unobservable por-
tion, its existence is assumed but is not of our concern. Figure 1 illustrates this
approach for the environment and the institution dimensions. Each dimension
has a state and events of which a portion is observable (the grey portions). The
arrows represent the direction of the count-as rules: particular events and states
in the environment/institution can produce changes in the institutional state.

Definition 1 (Observable event). An event is an instantaneous and abrupt
happening occurring inside or outside a system. These occurrences can be trig-
gered, for instance, by an agent or by the environment. An event can have, as
consequence, some change in the system state. Such change, however, is not
mandatory and, if it happens, does not need to be perceivable by an external ob-
server [7]. We define Ee to be the set of all observable events in the environment
and Ei the set of all observable events in the institution. Events are represented
as predicates.

162 M. de Brito, J.F. Hübner, and R.H. Bordini

Environment Institution

Fig. 1. Observable and unobservable portions of environment and institution

Definition 2 (Observable state). Let Pe be the set of all observable prop-
erties, represented by predicates, of the environment. An observable state of the
environment se is a subset of Pe. The set of all possible states of the environment
is represented by Se = 2Pe .

Similarly, let Pi be the set of all observable properties of the institution. An
observable state of the institution si is a subset of Pi. The set of all possible
states of the institution is represented by Si = 2Pi .

Definition 3 (Domain Knowledge Base). A Domain-Knowledge Statement
(DKS) is a predicate representing some knowledge that belongs to the institu-
tional dimension of a particular application. A set of domain-knowledge state-
ments is a Domain Knowledge Base (DKB).

For instance, in a university scenario, an agent entering a classroom count as
this agent being a student. The environment of the university can have several
rooms and it is out of the environment specification to define the institutional
meaning of the rooms (classrooms, teachers room, conference room, etc.). The
DKB can be used, for example, to state that some room is a classroom.

Having an explicit DKB part of a program also makes it easier to write count-
as rules, as they typically become more compact and readable. For example, by
having in the DKB the statements is classroom(room210) and is classroom
(room440), we can write a count-as rule to the effect that “entering a classroom
count-as adopting the role of student” without having to write rules for each
individual room. Furthermore, an agent entering room 210 or 440 could count
as adopting a role whilst entering a conference room in the same building would
have no institutional meaning whatsoever.

Programming Institutional Facts in MAS 163

3.1 Programming Language

With the elements previously defined, we introduce a language to program count-
as rules in a count-as program. The syntax of the language is given in Figure 2.

A count-as program is composed of (i) a DKB, i.e. a set of domain-knowledge
statements, and (ii) a set of count-as rules. The count-as rules are the main part
of the program as they allow users to define the institutional dynamics of their
multi-agent applications following our approach. They are explained in detail
below.

count_as_program ::= (dkb)? count_as_rule+
dkb ::= ’domain_knowledge_base:’ (predicate ’.’)+
count_as_rule ::= termX ’count-as’ termY (’in’ context)? ’.’
termX ::= event | state
event ::= ’+’ predicate
state ::= ’*’ formula
termY ::= predicate (’,’ predicate)*
context ::= formula

Fig. 2. Grammar of the proposed language

Besides the grammar for a count-as program, we also give the following defi-
nition that will help the formalisation we provide later in this section.

Definition 4 (Count-as program). A count-as program (corresponding to
count as program in the grammar) is a tuple 〈Re, Rs, Dk〉 where (i) Re is a
set of count-as rules that deal with events (event-count-as rules), (ii) Rs is a set
of count-as rules that deal with state (state-count-as rules), and (iii) Dk is a set
of DKB statements.

3.2 Count-as Rules

A count-as rule (element count as rule of the grammar) is inspired by the
idea of constitutive rules put forward by John Searle and have the form X count-
as Y in C. The X term may be an event or a state. We define thus two kinds of
rules: event-count-as to deal with events and state-count-as to deal with state.
Both can also be formalised as below:

Definition 5 (Event-count-as rule).
An event-count-as rule is a tuple 〈bf , if , c〉 where:
– bf ∈ Ee ∪Ei is an event that led to a brute fact;
– if ∈ 2Pi is a set of institutional properties that become true of the institution

through the application of the rule;
– c is a logical formula composed of predicates belonging to Pe and Pi which

point to the observable state of the environment and institution; the formula
must be true for the rule to apply.

164 M. de Brito, J.F. Hübner, and R.H. Bordini

An event-count-as rule defines a new institutional state if as consequence of
the occurrence of event bf in a context c. Suppose that an agent getting into
a classroom at 10am on a Friday counts as this agent playing the student role.
This is an example of an event-count-as rule where: (i) the event of the agent
getting into the classroom is the brute fact bf , (ii) the institutional fact of the
agent playing the student role is the consequence of the rule application (if), and
(iii) the time when the event happens is the context where the rule is applicable
(c). Figure 3 (left) shows an example of this type of rule. Notice that the event
of leaving the classroom does not cancels the effect of the count-as rule. If that
was meant to be the case, a new count-as rule could be written, stating that an
event triggered when an agent leaves the classroom count-as the agent leaving
the student role.

Fig. 3. Event-count-as rule (left) and State-count-as rule (right)

Definition 6 (State-count-as rule). A state count-as rule is a tuple 〈bf , if , c〉
where:

– bf is a logical formula composed of predicates belonging to Pe and Pi which
point to the observable state of the environment and institution; the formula
must be true for the rule to apply;

– if ∈ 2Pi is a set of institutional properties that become true of the institution
through the application of the rule;

– c is a logical formula composed of predicates belonging to Pe and Pi which
point to the observable state of the environment and institution; the formula
must be true for the rule to apply.

A state-count-as rule defines a new institutional state (given by the properties in
if) as consequence of the current state of environment and institution. Suppose
that in a university scenario, if there are more than 30 students and a teacher in
a classroom on Friday at 10am, it means that the class has started (see Figure 3
(right)). This is an example of a state-count-as rule where: (i) the brute fact
bf is the conjunction of the environmental property of some agents being in
the classroom and the institutional property of these agents playing the roles of
student and teacher, (ii) the institutional property of the class having started is
the consequence of the rule application, and (iii) the time when those properties
hold is the context where the rule is applicable (c). Notice that the effect of the
count-as rule is not cancelled when the state bf ceases to hold. In this case, a
new count-as rule could be written to explicitly define a new institutional state
when bf is not true.

Programming Institutional Facts in MAS 165

The reasons and advantages of having these two kinds of count-as rules are
discussed in Section 4.3.

3.3 Language Semantics

In this section the semantics of the language is formalised using structural op-
erational semantics [12]. The interpreter for the count-as program is placed side
by side with environmental and institutional platforms. It is constantly informed
by these platforms about successful events2 and new states and, as the result of
the application of some count-as rule, the interpreter sends to the institutional
platform what should be its next state. Notice that we consider multi-agent sys-
tems where there is only one institution and one environment model, and each
runs on a single host. Issues related to distribution and topology are beyond the
scope of this paper.

The operational semantics is given as a transition system where a particular
state of the system is represented by a configuration as formally defined below.

Definition 7. The transition system configuration is a tuple 〈Re, Rs, D, E ,N ,
I, T 〉, where:

– Re is a set of event-count-as rules provided by (the parsing of) the count-as
program;

– Rs is a set of state-count-as rules provided by the count-as program;
– D is a set of DKB statements also provided by the count-as program;
– E is a queue of events e ∈ Ee∪Ei provided by the environment and institution

platforms;
– N is a set of predicates representing the observable state of the environment

as provided by the environment platform;
– I is a set of predicates representing the observable state of the institution as

provided by the institution platform;
– T is a queue of properties that are the result of the interpretation of the rules

and must become true of the institution.

The initial configuration is 〈Re, Rs, D, ∅, ∅, ∅, ∅〉. As the interpreter runs, and
events and states are informed by the platforms, this configuration evolves as
defined by the following transition rules. Due to the lack of space, we will explain
only the main transitions of the semantics and omit the transition rules related
to addition and deletion of count-as rules during the execution of the count-as
program.

Event Processing

Let head(E) be a function that returns the head of a list, tail(E) be a function
that returns the tail of a list, and θ be a substitution of all variables of the brute

2 We assume that the reported events represent the consequence of successful action in
the environment; when attempted actions fail we assume that no event is generated
or at least that they are not reported to our interpreter.

166 M. de Brito, J.F. Hübner, and R.H. Bordini

fact in the rule. If there is an event-count-as rule where bfθ is equal to the event
given by head(E), the term c is a logical consequence of the state of environment
and institution, and the count-as consequence if does not belong to the current
state of the institution, then the rule fires. As a result, the properties expressed
by if will be added to the result queue T .

〈bf , if , c〉 ∈ Re bfθ = head(E) N ∪ I ∪D |= c if /∈ I
〈Re, Rs, D, E ,N , I, T 〉 −→ 〈Re, Rs, D, tail(E),N , I, T ∪ if 〉

State Processing

Each state-count-as rule rs ∈ Rs whose brute fact bf and context c are logical
consequences of the state of the environment and institution is triggered and its
properties expressed by if are added to the result queue T .

〈bf , if , c〉 ∈ Rs N ∪ I ∪D |= bf N ∪ I ∪D |= c if /∈ I
〈Re, Rs, D, E ,N , I, T 〉 −→ 〈Re, Rs, D, E ,N , I, T ∪ if 〉

Passing the Resulting Properties to the Institution

If T �= ∅, the institution platform pt consumes the first property from queue T
and changes the institutional state accordingly.

T �= ∅ t = head(T) consumept(t)

〈Re, Rs, D, E ,N , I, T 〉 −→ 〈Re, Rs, D, E ,N , I, T \ t〉

4 Case Study

In order to evaluate the proposal, we implemented the language interpreter and
its interface with the environmental and institutional platforms of the JaCaMo
framework3. Our count-as language was used to develop a new version of the
Build-a-House example [4]. This example is suitable for our evaluation since
it was originally designed with the three dimensions (agents, institution, and
environment) in mind, as the platform allows explicit programming of all three
levels. The agents in JaCaMo are programmed in Jason [5], the environment is
programmed in CArtAgO [13], and the institution is programmed in Moise [10].

4.1 Original Implementation

The example concerns a multi-agent system representing the inter-organisational
workflow involved in the construction of a house. An agent called Giacomo owns
a plot and wants to build a house on it. In order to achieve this overall goal, first

3 Due to the lack of space, the details of these implementations are not described in
this paper.

Programming Institutional Facts in MAS 167

Giacomo will have to hire various specialised companies (the contracting phase)
and then ensure that the contractors coordinate and execute the various required
tasks required to build a house (the building phase). For each company, there is
a company agent participating in the contracting phase and then, possibly, in
the building phase too.

In the contracting phase, Giacomo starts one auction for each of the several
tasks involved on the building of the house, such as site preparation, laying floors,
building walls, etc. The auction starts with the maximum price that Giacomo can
pay for a given task and companies that can do the task may offer a price lower
than the current bid. After a given deadline (known by Giacomo but unknown
to the bidders), for each auction Giacomo: (i) stops it, (ii) checks which company
proposed the lowest price, and (iii) sends a message to that company hiring it.

After the companies have been hired, the contractors have to execute their
tasks in a coordinate way during the building phase. Each company has to join
the organisation adopting a specific role and, by doing so, it becomes responsible
for some goals in the overall process of building the house. The organisation is
specified in Figure 4 using the Moise notation. The structural specification de-
fines a group where company agents will play the sub-role building company
and the Giacomo agent plays the role house owner. The functional specifica-
tion decomposes the organisational goals into sub-goals, defines the sequence in
which each will be achieved and gives a “time-to-fulfil” (TTF), i.e. a deadline,
for each sub-goal. The normative specification determines which goals an agent
playing a given role is obliged to achieve. Thus, the agents must be attentive to
the organisation in order to know what are their obligations. By perceiving that
new obligations are in place for themselves, the agents can trigger the execution
of particular plans in order to achieve the organisational goals and then inform
the goal achievement back to the organisation.

4.2 Implementation with Count-as Rules

The new implementation of the Build-a-House example, using count-as rules and
a DKB, allows the change of the institutional state as a result of facts about
the environment and in the institution. Several count-as rules can be defined for
this example; here, however, we will explain only the most illustrative rules.

For instance, in the original example Giacomo needs to (i) control the deadline
of the auctions, (ii) check which agent is the winner of every auction, and (iii)
send a message to these winners asking them to adopt the corresponding role in
the organisation. In the new implementation, thanks to the count-as program,
Giacomo only needs to control the deadline and finish the auctions, and com-
pany agents do not need to explicitly adopt roles. The count-as rule in Figure 5
handles the adoption of roles for the companies. When the auction state is closed
(for instance, by a Giacomo action or some deadline), the current winner will
automatically start playing the corresponding role (and it will be informed of
that by the organisation). In that rule, auctionStatus and currentWinner
are properties provided by the environment platform, play is the property that
has to become true of the institution, and auction role is a DKS.

168 M. de Brito, J.F. Hübner, and R.H. Bordini

...

Fig. 4. Organisational specification of example Build-a-House: structural specification
(left), functional specification (right) and normative specification (bottom) [4]

Fig. 5. Count-as rules for role adoption

In the original implementation, for each goal related to the house building,
company agents execute operations on the environment that simulate the real
task. Besides the execution of those operations, the agents must inform the or-
ganisation about the achievement of organisational goals. In the new implemen-
tation, these executions count-as the achievement of organisational goals. Thus,
the agents need only to act on the environment and the achievement of the
goals is informed to the organisation by the count-as interpreter. Figure 6 shows
an example of a rule stating that the occurrence of the event prepareSite
(which is the result of an operation on the environment simulator) count-as the
achievement of the organisational goal site prepared (this goal is defined in
the functional specification illustrated in Figure 4).

Programming Institutional Facts in MAS 169

Fig. 6. Count-as rules for organisational goal achievement

We defined two sets of DKS. The first one defines the roles given to the winners
of each auction. The second one defines the missions (i.e. sets of goals) attributed
to agents that are playing specific roles. Figure 7 shows some examples of such
statements.

Fig. 7. Domain knowledge statements

4.3 Case Study Discussion

The use of count-as rules has three initial advantages. The first is that agents do
not need to be aware of the organisation or even to reason about it, unless that
makes sense in the particular application. In the new version of the building a
house scenario, company agents do not need to adopt roles, reason about their
roles, etc. Trivial role adoption can be done by the count-as interpreter based
on brute facts caused by the companies. The second advantage is a consequence
of the first: agents cannot avoid the institutional consequences of their actions
either (which in some application might be very important, particularly in open
system). In the original implementation, Giacomo asks the companies to adopt
the corresponding roles when they win the auction. However, the companies can
simply ignore the request and do not adopt the role (as they ought to in this
application). More importantly, if a company actually prepares the site but does
not tell the organisation, the institution simply becomes inconsistent, and as a
consequence the system would simply halt waiting for something that already
happened.

One can argue that we are limiting the autonomy of the agents using this
kind of count-as rules. However, the motivation for this approach is precisely
to handle the autonomy of the agents in open systems, where some restrain

170 M. de Brito, J.F. Hübner, and R.H. Bordini

on agents’ autonomy is required anyway. Moreover, the designer of the system
may include or not this kind of count-as rules depending on the requirements
of the application. In some cases, the count-as rules do not mean less autonomy
than without them, it only means more readable code and conceptually more
adequate declarative representations.

The third advantage of the proposal is precisely the simplification of the rea-
soning and action of the agents and the agent programs. Due to the possibility of
modelling institutional consequences based on events and states, agents do not
need to perform some actions on the institution. For example, the agent Giacomo
performs 46 actions in the original example while this number is reduced to 19
in the new implementation. Table 2 lists the main activities of an agent named
CompanyA in both the original example and in our experiment. The number of
different tasks performed by CompanyA in the original example is 8 while in
the new implementation this number is reduced to 4. This reduction does not
necessarily mean, however, either an improvement on system performance or a
reduction in coding. It is essentially a conceptual change, as part of the code
was moved from the agents program to the count-as rules. That moved code is
better conceived as belonging to the institution than to the agents, so it is more
coherent to program it outside of and independently from the agents. Our ap-
proach therefore appears to further improve the programming style available in a
multi-agent oriented programming platform where the three distinct dimensions
of a multi-agent system can be directly programmed.

Besides the simplification of the agents’ reasoning and action, we noticed an
improvement of the institutional dimension in the system that was implemented
following our approach. The institutional dimension is composed of various kinds
of mechanisms with the aim of keeping the system in a consistent state despite
its openness and the agents’ autonomy. We regard count-as rules as playing an
important part related to this aim. As illustrated by the two examples of count-as
rules given above, it is possible to claim that the count-as rules are a mechanism
that give institutional meaning to events and states of the environment and the
institution. This meaning typically does not depend on agents participating in
a particular episode of an institution.

As described in Section 2, while some authors prefer to use events as brute
facts, others prefer states. In our point of view both approaches are useful and
were thus included in our proposal. We point out three main reason for our
decision:

– Partial Knowledge about the Institutional and Environmental
Models. We assume the possibility of incomplete knowledge about the in-
stitutional and environmental models we are dealing with. It is possible then
that a system designer does not know all the events that produce some par-
ticular state, and they may thus prefer to write count-as rules using states.
Conversely, designers may not know the complete system states generated
after some relevant events, so they may prefer to write count-as rule using
events as triggers instead.

Programming Institutional Facts in MAS 171

Table 2. Activities of agent CompanyA

Original example New implementation

Look for the group � �
Look for auctions � �
Submit bids to auctions � �
Receive the contracting message �
Adopt a role �
Commitment to a mission corre-
sponding to the adopted role

�

Execute plans related to the mis-
sion

� �

Inform the organisation about goal
achievement

�

Total 8 4

– Expressiveness of Count-as Rules. In particular cases, several events can
produce the same state of interest. Thus, a single state-count-as rule can re-
place several event-count-as rules. Similarly, an event of interest can happen
in various different states, so a single event-count-as rule might suffice to
cover various state-count-as, depending on the circumstances.

– Concurrency and Ordering of Events. In the example of the classroom,
suppose a scenario where a teacher entering into the classroom counts as
the class having started if there is at least one student in the classroom. In
the case where the teacher enters into the classroom and there is no student,
the rule is not triggered. However, as soon as a student enters in the room,
the class should be considered as started. Another event-count-as rule is then
needed (triggered by the student entering the room). Where various events
lead to particular circumstances and the order does not matter, typically a
state-based representation might be more useful.

As mentioned above, the event-count-as rules can be more suitable or
intuitive to programmers. Additionally, when evaluating rule application,
matching events seems to be faster than evaluation of an overall state (we
aim to evaluate this experimentally in future work).

Although both kinds of rules are useful depending on the application domain,
if we know all the institutional and environmental models of some application,
any event-count-as can be rewritten as state-count-as (assuming that every event
produce a change in the state) and vice-versa (assuming that every state change
is produced by some event).

172 M. de Brito, J.F. Hübner, and R.H. Bordini

5 Conclusions

In this paper, we proposed a model and programming language for specifying the
institutional dynamics in multi-agent systems that are based on three distinct
dimensions (i.e. agents, environment, and institution). An important feature of
our approach is that we consider both events and states of environment and
institution as brute facts. The contributions of this work include a programming
language and its interpreter that allowed us, in the case study presented here,
to simplify the programming of an application and make it more robust against
malevolent agents in open systems. In future work, we plan to evaluate the
performance of this interpreter and particularly the two types of count-as rules
available in our approach. We also plan to deal with issues related to topology
and distrubution.

Acknowledgments. The authors are grateful for the support given by CNPq,
grants 307924/2009-2, 307350/2009-6, and 478780/2009-5, and by CAPES. We
would like to thank Alessandro Ricci, Michele Piunti, and Olivier Boissier for
their contributions to this work.

References

1. Aldewereld, H., Alvares-Napagao, S., Dignum, F., Vasquez-Salceda, J.: Making
norms concrete. In: Proceedings of the 9th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2010), vol. 1, pp. 807–814. In-
ternational Foundation for Autonomous Agents and Multiagent Systems, Toronto
(2010)

2. Artikis, A., Pitt, J., Sergot, M.: Animated specifications of computational societies.
In: Proceedings of the First International Joint Conference on Autonomous Agents
and Multiagent Systems: Part 3 (AAMAS 2002), pp. 1053–1061. ACM, New York
(2002)

3. Boissier, O., Hübner, J.F., Sichman, J.S.: Organization Oriented Programming:
From Closed to Open Organizations. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J.,
Dikenelli, O. (eds.) ESAW 2006. LNCS (LNAI), vol. 4457, pp. 86–105. Springer,
Heidelberg (2007)

4. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with JaCaMo. In: Science of Computer Programming (2011)

5. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak Using Jason. In: Wiley Series in Agent Technology. John Wiley &
Sons (2007)

6. Campos, J., López-Sánchez, M., Rodŕıguez-Aguilar, J.A., Esteva, M.: Formalising
Situatedness and Adaptation in Electronic Institutions. In: Hübner, J.F., Mat-
son, E., Boissier, O., Dignum, V. (eds.) COIN 2008. LNCS (LNAI), vol. 5428,
pp. 126–139. Springer, Heidelberg (2009)

7. Cassandras, C.G., Lafortune, S.: Introduction to discrete event systems. Springer
(2008)

Programming Institutional Facts in MAS 173

8. Dastani, M., Tinnemeier, N., Meyer, J.C.: A programming language for normative
multi-agent systems. In: Dignum, V. (ed.) Multi-Agent Systems: Semantics and
Dynamics of Organizational Models. Cap. XVI, pp. 397–417. Information Science
Reference, Hershey (2009)

9. Esteva, M., Rosell, B., Rodriguez-Aguilar, J.A., Arcos, J.L.: AMELI: An agent-
based middleware for electronic institutions. In: Jennings, N.R., Sierra, C., So-
nenberg, L., Tambe, M. (eds.) Proceedings of the Third International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS 2004), vol. 1,
pp. 236–243. ACM, Washington, DC (2004)

10. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing organised multi-agent sys-
tems using the MOISE+ model: programming issues at the system and agent lev-
els. International Journal of Agent-Oriented Software Engineering 1(3/4), 370–395
(2007)

11. Piunti, M.: Situating agents and organisations in artifact-based work environments.
PhD Thesis, Univerist di Bologna (2009)

12. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60-61, 17–139 (2004)

13. Ricci, A., Piunti, M., Viroli, M., Omicini, A.: Environment Programming in
CArtAgO. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A.
(eds.) Multi-Agent Programming: Languages, Tools and Applications, pp. 259–288.
Springer (2009)

14. Searle, J.: The construction of social reality. Free Press (1999)
15. Stratulat, T., Ferber, J., Tranier, J.: MASQ: Towards an integral approach to

interaction. In: Proceedings of the 8th Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2009), Richland, SC, vol. 2, pp. 813–820 (2009)

	Programming Institutional Factsin Multi-Agent Systems
	Introduction
	Related Work
	The Social Reality in MAS

	Programming Institutional Facts
	Programming Language
	Count-as Rules
	Language Semantics

	Case Study
	Original Implementation
	Implementation with Count-as Rules
	Case Study Discussion

	Conclusions
	References

