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7.1 Introduction

This study is motivated by the increasing demands of more advanced
technology for information processing, control, coordination, and dynamic
reconfiguration of networked unmanned aerial vehicles (UAVs). A cluster of
UAVs for a coordinated task such as a surveillance mission forms a networked
system; see Figure 7.1. Each subsystem is represented by a node which is a
local dynamic system itself, and communication and connections of subsys-
tems are represented by a network topology. The networked system aims to
accomplish a joint mission, in the presence of uncertainties and attacks and
under limited resources (such as the number of UAVs, communication data
flow rates, and power consumptions).

A team of UAVs is subject constantly to uncertainties due to natural ob-
stacles such as buildings, mountains, severe weather conditions that interrupt
the network connections and observation capabilities, and to enemy attacks
that may destroy some members and/or disrupt communications; see Figure
7.3. Consequently, the nodes and network topology switch during real-time
operations.
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Fig. 7.1 UAVs on a deployment mission

This paper aims to introduce a new framework for UAV coordination and
control, building on the emerging technology of network consensus control.
The core target is to achieve suitable deployment of the team UAVs based
on terrain conditions. In this paper, UAV deployment is formulated as a
weighted and constrained consensus control problem that aims to coordinate
all subsystems such that their formation converges to a desired distribution
pattern. In UAV applications the desired pattern is that the weighted dis-
tances between consecutive UAVs are equal. Consensus control is an emerging
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Fig. 7.2 Information and control network topology

Fig. 7.3 Network Adversaries

field in networked control and remains an active research field. At present,
most consensus controls are unconstrained and un-weighted. Nevertheless,
UAV control is subject to terrain condition and deployment area constraints.
As such, it commonly leads to a weighted and constrained consensus control
problem.

Consensus control has drawn increased attention recently in a variety of
application areas, including load balancing in parallel computing [21, 18],
sensor networks [12], decentralized filtering, estimation, mobil agents [4], etc.
The control methodologies developed up to date include deterministic con-
trol [4, 15], stochastic approximation algorithms [1, 2], switching network
topologies [9, 11, 3, 5], etc.

Departing from the standard consensus control, the following four features
are included in this paper.
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1. In our recent work [23], a Markov model is used to treat a much larger
class of systems, where the network graph is modulated by a discrete-time
Markov chain. Our work in [23] also provides convergence and rates of
convergence for the corresponding recursive algorithms.

2. Some of the useful features of [23] are extended to the weighted constrained
consensus methodology in this paper.

3. In addition, the technique of post-iterate averaging is employed to enhance
the power flow control algorithm. For detailed information on post-iterate
averaging; see [13, 16] for its original introduction and [8, Chapter 11]
for its extension to more general systems; see also [24]. With the iterate
averaging, our algorithms provide the best convergence rate in terms of
the best scaling factor and the smallest asymptotic covariance. Most sig-
nificantly, they achieve asymptotically the well-known Cramér-Rao lower
bounds [10], hence are best over all algorithms. This fast convergence fea-
ture is highly desirable for fast team formation.

4. Performance optimization is introduced to consensus control.

This framework offers several appealing features.

a. Local control to achieve a global deployment: Although a desired deploy-
ment is achieved for the entire team, each UAV only needs to communicate
with its neighboring members as such communication costs and complexity
remain minimal.

b. Scalability: Expanding and reduction of the team members does not com-
plicate control strategies.

c. Robustness: Fluctuations in UAV positions, addition to or reduction of
the UAVs can be readily accommodated. The weighted and constrained
consensus control has applications in other areas such as platoon control
of highway vehicles [20], power grid control [19], among others.

The rest of the paper is organized into the following sections. Section 7.2
describes how a typical UAV deployment problem can be formulated as a
weighted and constrained consensus control problem. Algorithms for weighted
and constrained consensus control are presented in Section 7.3. Their conver-
gence properties and convergence rates are established. Section 7.4 further
enhances the algorithms by post-iterate averaging. It is shown that consen-
sus control for UAVs are subject to noises and their effect can be attenu-
ated by the post-iterate averaging. Optimality of such modified algorithms in
terms of convergence rates are established. Robustness and scalability of this
framework are explained in Section 7.5 by showing its robustness against
disturbances and adaptive capability when the network topology changes.
Performance optimization is presented Section 7.6. It is shown that the con-
trol gain and step sizes can be selected separately. Consequently, the gain
matrix can be selected to optimize a performance measure. The cases of op-
timal convergence rates and optimal robustness are presented. The feedback



7 Weighted and Constrained Consensus 185

gains in consensus algorithms are selected to minimize a certain performance
measure. Local implementation of such global optimization strategies is es-
tablished. This leads a distributed optimization framework with the same
network topology as the core consensus control. Finally, Section 7.7 points
out future research directions.

7.2 UAV Coordinated Deployment Problems

7.2.1 Networked UAVs and Their Deployment

A team consists of r UAVs are to be deployed along a pathway of total length
L. At time t, denote the total length of the surveillance range as L(t). In the
algorithm development, L is treated as a constant. Its changes will be viewed
as a disturbance to the consensus control problem and di is the distance
between UAV i and UAV i− 1. We have the following constraint

r∑

i=1

di(t) = L. (7.1)

Due to terrain conditions, a desired coverage for an UAV differs at different
locations. Each inter-vehicle distance has a terrain factor γi. The goal of the
power flow control is to achieve consensus on weighted power di/γ

i, namely

di(t)

γi
→ β, i = 1, . . . , r

for some constant β. The convergence is either with probability one (w.p.1.)
or in means squares (MS). For notational convenience in the algorithm
development, we use xi(t) = P i(t) and denote the state vector x(t) =
[P 1(t), . . . , P r(t)]′. The weighting coefficients are γ = [γ1, . . . , γr]′, and the
state scaling matrix Ψ = diag[1/γ1, . . . , 1/γr], where v′ is the transpose of a
vector or a matrix v. Let 11 be the column vector of all 1s. Together with the
constraint (7.1), the target of the constrained and weighted consensus control
is

Ψx(t) → β11 subject to 11′x(t) = L.

It follows from γ′Ψ = 11′ that

β =
L

γ′11
=

L

γ1 + · · ·+ γr
.

The UAVs are linked by an information network, represented by a directed
graph G whose element (i, j) (called a directed edge from node i to node
j) indicates an observation between UAV i on the distance dj . This network
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defines the information network: (i, j) ∈ G indicates estimation of the state
dj by UAV i via a communication link. Also, the factor γj is known. For node
i, (i, j) ∈ G is a departing edge and (l, i) ∈ G is an entering edge. Due to the
nature of power lines, we assume that if (i, j) ∈ G then (j, i) ∈ G. The total
number of communication links in G is ls. From its physical meaning, node i
can always observe its own state, which will not be considered as a link in G.

For a selected time interval T , the consensus control is performed at the
discrete-time steps nT, n = 1, 2, . . .. At the control step n, the value of x will
be denoted by xn = [x1

n, . . . , x
r
n]

′. Power flow control updates xn to xn+1 by
the amount un

xn+1 = xn + un (7.2)

with un = [u1
n, . . . , u

r
n]

′. In UAV deployment, a distance change dijn (called
link control) from UAV i to UAV j at the nth step is the decision variable.
The control ui

n is determined by the link control dijn as i is

ui
n = −

∑

(i,j)∈G
dijn +

∑

(j,i)∈G
djin . (7.3)

The most relevant implication in this control scheme is that for all n,

r∑

i=1

xi
n =

r∑

i=1

xi
0 = L (7.4)

that is, the constraint (7.1) is always satisfied. Consensus control seeks control
algorithms such that Ψxn → β11 under the constraint (7.4).

A link (i, j) ∈ G entails an estimate x̂ij
n of xj

n by node i with observation
noise dijn . That is,

x̂ij
n = xj

n + dijn . (7.5)

Let x̃n and dn be the ls-dimensional vectors that contain all x̂ij
n and dijn in a

selected order, respectively. Then, (7.5) can be written as

x̃n = H1xn + dn (7.6)

where H1 is an ls × r matrix whose rows are elementary vectors such that if
the �th element of x̃n is x̂ij then the �th row in H1 is the row vector of all
zeros except for a “1” at the jth position. Each link in G provides information
δijn = xi

n/γ
i − x̂ij

n /γ
j, an estimated difference between weighted xi

n and xj
n.

This information may be represented by a vector δn of size ls containing all
δijn in the same order as x̃n. δn can be written as

δn = H2Ψxn − Ψ̃ x̃n = H2Ψxn − Ψ̃H1xn − Ψ̃dn = Hxn − Ψ̃dn, (7.7)
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where the link scaling matrix Ψ̃ is the ls × ls diagonal matrix whose k-th
diagonal element is 1/γj if the k-th element of x̃n is x̂ij

n ; H2 is an ls × r
matrix whose rows are elementary vectors such that if the �th element of
x̃(k) is x̂ij then the �th row in H2 is the row vector of all zeros except for a

“1” at the ith position, and H = H2Ψ − Ψ̃H1.
Due to network constraints, the information δijn can only be used by nodes

i and j. When the power control is linear, time invariant, and memoryless,
we have pijn = μngijδ

ij
n where gij is the link control gain and μn is a global

time-varying scaling factor which will be used in state updating algorithms
as the recursive step size. Let G be the ls × ls diagonal matrix that has gij
as its diagonal element. In this case, the control becomes un = −μnJ

′Gδn,
where J = H2 − H1. For convergence analysis, we note that μn is a global
control variable and we may represent un equivalently as

un= −μnJ
′G(Hxn − Ψ̃dn)

= −μn(J
′GHxn − J ′GΨ̃dn)

= μn(Mxn +Wdn),

(7.8)

with M = −J ′GH and W = J ′GΨ̃ . This, together with (7.2), leads to

xn+1 = xn + μn(Mxn +Wdn). (7.9)

It can be directly verified that Ψ̃H1Ψ
−1 = H1, HΨ−1 = J , J11 = 0, Ψ−111 =

γ. These imply that 11′M = 0, 11′W = 0, MΨ−111 = Mγ = 0. The following
assumption is imposed on the network.

(A0) The following conditions hold:

(1) All link gains are positive, gij > 0.
(2) G is strongly connected1.

7.2.2 An Illustrative Example

We now use an example to illustrate the above concepts.

Example 1. A team of three UAVs must cover a surveillance line of length
L, see Figure 7.4. UAV 1 controls the distance d1, UAV 2 controls the distance
d2, and UAV 3 controls the distance d3. Although d4 is in fact a dependent
variable since d1 + d2 + d3 + d4 = L, for systematic development, it is still
formulated as a controlled variable. Then the condition d1+d2+d3+d4 = L
is imposed as an additional constraint. The information topology is that
in addition to observing their own controlled variables, UAV 1 observes also

1 A directed graph is called strongly connected if there is a path from each node
in the graph to every other node.
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d2, UAV 2 observes also d1 and d3, UAV 3 observes d2 and d4. the controller
for d4 obseerves d3 also. The total length L = 53.9 km. Terrain factors γ1 =
12, γ2 = 15, γ3 = 20, and γ4 = 28. As a result,

G = {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3)}

x = [d1, d2, d3, d4]
′, γ = [12, 15, 20, 28]′, Ψ = diag[1/12, 1/15, 1/20, 1/28].

0 L

d1 d2 d3 d4

UAV 1 UAV 2 UAV 3

Fig. 7.4 A team of three UAVs

Since L = 53.9, we have

β =
L

γ1 + γ2 + γ3 + γ4
= 0.7187

and the weighted consensus is Ψx = 0.718711 or

x = 0.7187Ψ−111 = [8.624, 10.781, 14.374, 20.124]′

By choosing the order for the links as (1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3),
we have

x̃ = [x̂12, x̂21, x̂23, x̂32, x̂34, x̂43]′

and

H1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎦
;H2 =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
.
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It follows that Ψ̃ = diag[1/15, 1/12, 1/20, 1/15, 1/28, 1/20] and

H= H2Ψ − Ψ̃H1

=

⎡

⎢⎢⎢⎢⎢⎢⎣

1/12 0 0 0
0 1/15 0 0
0 1/15 0 0
0 0 1/20 0
0 0 1/20 0
0 0 0 1/28

⎤

⎥⎥⎥⎥⎥⎥⎦
−

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1/15 0 0
1/12 0 0 0
0 0 1/20 0
0 1/15 0 0
0 0 0 1/28
0 0 1/20 0

⎤

⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎣

1/12 −1/15 0 0
−1/12 1/15 0 0

0 1/15 −1/20 0
0 −1/15 1/20 0
0 0 1/20 −1/28
0 0 −1/20 1/28

⎤

⎥⎥⎥⎥⎥⎥⎦
,

J= H2 −H1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0
−1 1 0 0
0 1 −1 0
0 −1 1 0
0 0 1 −1
0 0 −1 1

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Suppose the control gains on the links are selected as g12 = g21 = 3,g23 =
g32 = 7, g34 = g43 = 9. Then G = diag[3, 3, 7, 7, 9, 9]. It follows that

M = −J ′GH =

⎡

⎢⎢⎣

−1/2 1/2.5 0 0
1/2 −2/1.5 7/10 0
0 7/7.5 −4/2.5 9/14
0 0 9/10 −9/14

⎤

⎥⎥⎦ ,

W = J ′GΨ̃ =

⎡

⎢⎢⎣

1/5 −1/4 0 0 0 0
−1/5 1/4 7/20 −7/15 0 0
0 0 −7/20 7/15 9/28 −9/20
0 0 0 0 −9/28 9/20

⎤

⎥⎥⎦ .

Since 11′J ′ = 11′(H2−H1)
′ = 0, we have 11′M = 0 and 11′W = 0. We can show

that under Assumption (A0), M has rank r− 1 and is negative semi-definite.
The proof uses similar ideas as in [23] and hence is omitted here. Recall that

a square matrix Q̃ = (q̃ij) is a generator of a continuous-time Markov chain
if q̃ij ≥ 0 for all i �= j and

∑
j q̃ij = 0 for each i. Note that a generator of

the associated continuous-time Markov chain is irreducible if the system of
equations
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{
νQ̃ = 0,
ν11 = C

(7.10)

for a given constant C > 0 has a unique solution, where ν = [ν1, . . . , νr] ∈
R

1×r with νi/C > 0 for each i = 1, . . . , r. When C = 1, ν is the associ-
ated stationary distribution. Consequently, under Assumption (A0), M is a
generator of a continuous-time irreducible Markov chain.

7.3 Weighted Consensus Control with Linear
Constraints

7.3.1 Algorithms

We begin by considering the state updating algorithm (7.9)

xn+1 = xn + μnMxn + μnWdn, (7.11)

together with the constraint
11′xn = L, (7.12)

where {μn} is a sequence of stepsizes, M is a generator of a continuous-time
Markov chain (hence 11′M = 0), {dn} is a noise sequence.

Since the algorithm (7.11) is a stochastic approximation procedure, we can
use the general framework in Kushner and Yin [8] to analyze the asymptotic
properties. Since 11′M = 0 and 11′W = 0, starting from the initial condition
with 11′x0 = L, the constraint 11′xn = L is always satisfied by the algorithm
structure.

(A1)

1. The stepsize satisfies the following conditions: μn ≥ 0, μn → 0 as n → ∞,
and

∑
n μn = ∞.

2. The noise {dn} is a stationary φ-mixing sequence such that Edn = 0,

E|dn|2+Δ < ∞ for some Δ > 0, and that the mixing measure φ̃n satisfies

∞∑

k=0

φ̃Δ/(1+Δ)
n < ∞, (7.13)

where

φ̃n = sup
A∈Fn+m

E(1+Δ)/(2+Δ)|P (A|Fm)− P (A)|(2+Δ)/(1+Δ),

Fn = σ{dk; k < n}, Fn = σ{dk; k ≥ n}.

Under Assumption (A0), M has an eigenvalue 0 of multiplicity 1 and all other
eigenvalues are in the left complex plan (i.e., the real parts of the eigenvalues
are negative). The null space of M is spanned by the vector γ = [γ1, . . . , γr]′.
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Some commonly used stepsize sequences includes μn = a/nα for 1/2 <
α ≤ 1. In such cases,

∑∞
n=1 μn = ∞ but

∑∞
n=1 μ

2
n < ∞.

Note that φ-mixing sequences contain independent noises as a special case.
However, they can represent a much larger class of noises to accommodate
communication uncertainties such as signal interference, signal fading, la-
tency, etc. As a consequence of (A1), the φ-mixing implies that the noise
sequence {dn} is strongly ergodic [6, p. 488] in that for any m

1

n

m+n−1∑

j=m

dj → 0, w.p.1 as n → ∞. (7.14)

7.3.2 Convergence of Algorithms

To study the convergence of the algorithm (7.11), we employ the stochas-
tic approximation methods developed in [8]. Instead of working with the
discrete-time iterations, we examine sequences defined in an appropriate func-
tion space. This will enable us to get a limit ordinary differential equation
(ODE). The significance of the ODE is that the stationary point is exactly
the true value of the desired weighted consensus. Then, convergence becomes
a stability issue. We define

tn =

n−1∑

j=0

μj , m(t) = max{n : tn ≤ t}, (7.15)

the piecewise constant interpolation x0(t) = xn for t ∈ [tn, tn+1), and the
shift sequence xn(t) = x0(t + tn). Due to the page limitation, we shall only
outline the main steps involved in the proof. We can first derive a preliminary
estimate on the second moments of xn.

Lemma 1. Under Assumption (A1), for any 0 < T < ∞,

sup
n≤m(T )

E|xn|2 ≤ K and sup
0≤t≤T

E|xn(t)|2 ≤ K, (7.16)

for some K > 0, where m(·) is defined in (7.15).

Proof. We only indicate the main ideas and leave most of the details out.
Concerning the first estimate, because of the boundedness of the second mo-
ment E|dn|2, the condition

∑∞
j=1 μ

2
j < ∞, we can derive

E|xn| ≤ K +K
n∑

j=1

μjE|xj |2. (7.17)

Here and henceforth, K is used as a generic positive constant, whose val-
ues may change for different usage. Applying the Grownwall’s inequality to
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(7.17), and then taking sup over n ≤ m(T ), the first error bound is obtained.
Likewise, we can obtain the second estimate. �

Theorem 1. Under Assumption (A1), the iterates generated by the stochas-
tic approximation algorithm (7.11) satisfies Ψxn → β11 w.p.1 as n → ∞.

Ideas of Proof.We only present the main ideas below. We show that {xn(·)}
is equicontinuous in the extended sense (see [8, p. 102] for a definition) w.p.1.
To verify this, we note that by the argument in the first part of the proof in
[22, Theorem 3.1],

∞∑

j=1

μjdj converges w.p.1.

Define Φ0(t) =
∑m(t)−1

j=1 μjdj and Φn(t) = Φ0(tn + t), where m(·) is defined
in (7.15). Then we can show that for each T > 0 and ε > 0, there is a δ > 0
such that

lim sup
n

sup
0≤|t−s|≤δ

|Φn(t)− Φn(s)| ≤ ε w.p.1.

The above estimates together with the form of the recursion imply that xn(·)
is equicontinuous in the extended sense. Next, we can extract a convergent
subsequence, which will be denoted by xn�(·). Then the Arzela-Ascoli theorem
concludes that xn�(·) converges to a function x(·) which is the unique solution
(since the recursion is linear in x) of the ordinary differential equation (ODE)

ẋ(t) = Mx(t). (7.18)

Moreover, from basic properties of Markov chains (see [25, Appendix A.1]),
as t → ∞, the solution x(t) to (7.18) satisfies that x(t) converges to the set
Γ . That is, dist(x(t), Γ ) → 0 as t → ∞, where dist(·, ·) is the usual distance
function defined by dist(x, Γ ) = infy∈Γ |x− y|. Consequently, as n → ∞ and
q(n�) → ∞, xn�(·+ q(n�)) → Γ .

Furthermore, the algorithm (7.11) together with x′
n11 = L leads to the

desired weighted consensus. The equilibria of the limit ODE (7.18) and this
constraint lead to the following system of equations

{
Mx = 0
11′x = L.

(7.19)

The irreducibility of M then implies that (7.19) has a unique solution x∗ =
βΨ−111 = βγ, which is precisely the weighted consensus.

Example 2. We now use the system in Example 1 to demonstrate the
weighted consensus control. As in Example 1, the total distance is 53.9
km. Suppose that the initial distance distribution from the three UAVs are
d10 = 12 km; d20 = 14 km; d30 = 10.9 km; d40 = 17 km. Weighted consen-
sus for UAV control aims to distribute distances according to the terrain



7 Weighted and Constrained Consensus 193

0 50 100 150 200 250 300
5

10

15

20

25

D
is

ta
n

ce
 (

km
)

Inter−UAV Distance Trajectoies

 

 γ
1
 = 12 km

γ
2
 = 15 km

γ
3
 = 20 km

γ
4
 = 28 km

0 50 100 150 200 250 300
0.4

0.6

0.8

1
Weighted Inter−vehicle Distance Trajectoies

W
ei

g
h

te
d

 D
is

ta
n

ce

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4
Consensus Error Trajectories

E
rr

o
r 

N
o

rm
s

Iteration Number

Fig. 7.5 UAV distance control with weighted consensus

conditions defined by γ1 = 12, γ2 = 15, γ3 = 20, γ4 = 28, with the to-
tal 11′γ = 75. The target percentage distance distribution over the whole
length is [12/75, 15/75, 20/75, 28/75] = [0.1600, 0.2000, 0.2667, 0.3733]. From
the total length of 53.9 km, the goal of weighted consensus is d1 = 8.624 km;
d2 = 10.780 km; d3 = 14.373 km; d4 = 20.123 km.

Suppose that the link observation noises are i.i.d sequences of Gaussian
noises with mean zero and variance 1. Figure 7.5 shows the inter-UAV dis-
tance trajectories. Staring from a large disparity in distance distribution,
the top plot shows how distances are gradually distributed according to the
terrain conditions. The middle plot illustrates that the weighted distances
converge to a constant. The weighted consensus error trajectories are plotted
in the bottom figure.

7.4 Post-Iterate Averaging for Improved Convergence
under Large Observation Noise

The basic stochastic approximation algorithm (7.11) demonstrates desirable
convergence properties under relatively small observation noises. However, its
convergence rate is not optimal. Especially when noises are large, its conver-
gence may not be sufficiently fast and its states show fluctuations. For exam-
ple, for the same system as in Example 2, if the noise standard deviation is
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Fig. 7.6 UAV distance control with weighted consensus under large observation
noise

increased from 1 to 20, its state trajectories demonstrate large variations, as
shown in Figure 7.6.

To improve the efficiency, we take a post-iterate averaging, resulting in a
two-stage stochastic approximation algorithm. For definiteness and simplic-
ity, we take μn = c/nα for some (1/2) < α < 1 and c > 0. The algorithm is
modified to

xn+1 = xn +
c

nα
Mxn +

c

nα
Wdn

xn+1 = xn − 1

n+ 1
xn +

1

n+ 1
xn+1.

(7.20)

In what follows, for simplicity, we take c = 1 henceforth. Since 11′M = 0
and 11′W = 0, we have 11′xn = L. As a result, the constraint (7.1) remains
satisfies after the post-iterate averaging. For some of the detailed analysis,
we refer the reader to [24].

7.4.1 Asymptotic Efficiency

Strong convergence of the averaged xn follows from that of xn. This is stated
in the following theorem with its proof omitted.
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Theorem 2. Suppose the conditions of Theorem 1 are satisfied. For iterates
generated by algorithm (7.20) (together with the constraint 11′xn = L), xn →
βΨ−111 w.p.1 as n → ∞.

To proceed, we define

Bn(t) =
�nt	√

n
(Θ�nt	+1 − x̃∗). (7.21)

We next show that asymptotically, the “effective” term of the normalized
error above is given by −Γ−1Bn(t).

Lemma 2. In addition to the assumptions (A1)–(A3), assume Γ is a stable
matrix (all of its eigenvalues have negative real parts). Then for t ∈ [0, 1],

Bn(t) = −Γ−1Bn(t) + o(1), where o(1) → 0

in probability uniformly in t as n → ∞.

Remark 1. In the absence of the nonadditive noise, Γ becomes M̃ . The
stability of M̃ is verified by using the irreducibility of the generator M .

We are now ready to present the following theorem.

Theorem 3. Under the conditions of Lemma 2, the following assertions hold:

• Bn(·) converges weakly to B(·) a Brownian motion whose covariance is
given by Γ−1Σ0(Γ

−1)′t;
• x̃n − x̃∗ is asymptotically normal with mean 0 and asymptotic covariance

Γ−1Σ0(Γ
−1)′/n.

Outline of Proof. To prove the first part of the theorem, we need only
evaluate its covariance. This in turn follows from the well-known Slutsky
theorem. To obtain the second part, set t = 1 in part one. Using Lemma 2
and part of the theorem, the desired result follows. �
We now establish the optimality of the algorithms. For clarity, we will include
the dimension of the vector 11 in notation in the following derivations when
needed. Also, the detailed proofs of the theorems are omitted. The reader is
referred to our recent work [23] for details.

Partition the matrix M as

M =

[
M11 M12

M21 M22

]
, (7.22)

where M11 ∈ R
(n−1)×(n−1), M12 ∈ R

(n−1)×1, M21 ∈ R
(n−1)×1, and M22 ∈

R
1×1. Accordingly, we also partition x̄n, xn, and W as

xn =

[
x̃n

xr
n

]
; xn =

[
x̃n

xr
n

]
; W =

[
W̃
W1

]
, (7.23)

respectively, with compatible dimensions with those of M .
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Lemma 3. Under Assumption A0, M11 is full rank.

This result indicates that we can concentrate on r − 1 components of xn.
We can show that the asymptotic rate of convergence is independent of the
choice of the r − 1 state variables. To study the rates of convergence of xn,
without loss of generality we need only examine that of x̃n. It follows from
that ⎧

⎪⎪⎨

⎪⎪⎩

x̃n+1= x̃n + μn(M11x̃n +M12x
r
n + W̃dn)

= x̃n + μn(M̃x̃n + W̃dn),

x̃n+1= x̃n − 1

n+ 1
x̃n +

1

n+ 1
x̃n+1,

(7.24)

where
M̃ = M11 −M1211

′
r−1.

Note that the noise is now reduced also to W̃dn, which is r − 1 dimensional
but is a function of ls dimensional link noise dn. Let D = Ir−1 + 11r−111

′
r−1.

Lemma 4. Assume (A0). Then M̃ = M11D and is full rank.

For convergence speed analysis, let

en = xn − βΨ−111n.

Decompose en = [ẽ′n, e
r
n]

′.

Theorem 4. Suppose that {dn} is a sequence of i.i.d. random variables with
mean zero and covariance Ednd

′
n = Σ. Under Assumption (A0), the weighted

consensus errors ẽn satisfies that
√
nẽn converges in distribution to a normal

random variable with mean 0 and covariance given by

M̃−1W̃ΣW̃ ′(M̃−1)′.

Note that the above result does not require any distributional information
on the noise {ε(k)} other than the zero mean and finite second moments.
We now state the optimality of the algorithm when the density function is
smooth.

Theorem 5. Suppose that the noise {dn} is a sequence of i.i.d. noise with a
density f(·) that is continuously differentiable. Then the recursive sequence
x̃n is asymptotically efficient in the sense of the Cramér-Rao lower bound on
Eẽ′nẽn being asymptotically attained,

nEẽ′nẽn → tr(M̃−1W̃ΣW̃ ′(M̃−1)′). (7.25)

The convergence speed and optimality of en is directly related to these of ẽn.

Corollary 1. Under the conditions of Theorem 5, the sequence {xn} is
asymptotically efficient in the sense of the Cramér-Rao lower bound on Ee′nen



7 Weighted and Constrained Consensus 197

0 50 100 150 200 250 300
0

5

10

15

20

D
is

ta
n

ce
 (

km
)

Inter−UAV Distance Trajectoies

 

 

γ
1
 = 12 km

γ
2
 = 15 km

γ
3
 = 20 km

γ
4
 = 28 km

0 50 100 150 200 250 300
0

0.5

1

1.5
Weighted Inter−vehicle Distance Trajectoies

W
ei

g
h

te
d

 D
is

ta
n

ce

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8
Consensus Error Trajectories

E
rr

o
r 

N
o

rm
s

Iteration Number

Fig. 7.7 UAV distance control with post-iterate averaging on weighted consensus
algorithms

being asymptotically attained. The asymptotically optimal convergence speed
is

nEe′nen → tr(DM̃−1W̃ΣW̃ ′(M̃−1)′) (7.26)

where D = Ir−1 + 11r−111
′
r−1.

Example 3. We now use the system in Example 2 to illustrate the effective-
ness of post-iterate averaging. Suppose that the link observation noises are
i.i.d sequences of Gaussian noises of mean zero and standard deviation 20.
Now, the consensus control is expanded with post-iterate averaging. Figure
7.7 shows the distance trajectories. The distance distributions converge to
the weighted consensus faster with much less fluctuations.

7.5 Robustness and Scalability

7.5.1 Robustness to Disruption of Terrain Conditions
and Mission Goals

When a mission changes its tasks, say by modifying its length L of the surveil-
lance range, they are represented by a sudden change in L. UAV coordina-
tion will re-distribute the inter-vehicle distances by the weighted consensus
to reach a new equilibrium of consensus.
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Fig. 7.8 Robustness of UAV distance control against terrain changes

Example 4. We now use the system in Example 2 to illustrate the effec-
tiveness of robustness against load disruptions. Suppose that at the iteration
step n = 100, a sudden increase of the total length by 5 km occurs to the
surveillance mission. Consensus control then distributes it fairly according to
the terrain conditions (represented by γ). Figure 7.8 shows the inter-UAV
distance trajectories. The distance distributions converge to the weighted
consensus.

7.5.2 Scalability

A team of UAVs often encounters dynamic changes in its team members or its
information topology. When an UAV was damaged, it must retreat from the
mission. Conversely, an enhancement of the team by additional UAVs changes
the team composition and topologies. Both cases entail re-distribution of
inter-UAV distances. In a centralized control scheme in which all information
on UAVs is used by a central controller, the control strategy must be adapted
for the entire system each time the UAV team topology changes. In our
neighborhood-based network control method, an addition or deletion of an
UAV will only affect its neighboring UAVs. In fact, all other UAVs will never
be aware of changes in other parts of the team. However, by iterative control,
an additional distance will be properly distributed throughout the entire team
formation.
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0 L

d1 d2 d3 d4

UAV 1 UAV 2 UAV 3

UAV 4

d5

Fig. 7.9 An expanded UAV team from three members to four members

To be more concrete, suppose that a new UAV, labeled r + 1, is added to
the team with terrain factor γr+1. Assume that the new UAV is linked to
UAV r only. Then, by (7.3), the control of UAV r will be modified from the
original

xr
n+1 = xr

n −
∑

(r,j)∈G
prjn +

∑

(j,r)∈G
pjrn

to a slightly modified scheme

xr
n+1 = xr

n −
∑

(r,j)∈G
prjn +

∑

(j,r)∈G
pjrn − pr,r+1

n + pr+1,r
n

with all other bus control functions unchanged. The additional consumption
of communication resources will be limited to the communication channel
between UAV r and UAV r+1. This distributed and scalable control strategy
is essential for UAV operations in reducing communication requirements and
control complexity.

Example 5. Consider the same system as in Example 2. Suppose that at the
iteration step n = 100, a new UAV becomes available. The new UAV 4 has
weighting 10 and observes d4 only. This addition results in a network topology
change, leading to the new matrices derived below. The expanded network
is shown in Figure 7.9. For systematic system analysis and presentation,
we treat this at the system level with new M and W matrices. Note that
for implementation of the consensus algorithms, only the control action of
UAV 3 is affected with an additional term representing the link between
D4 and d5.

Capacity factors are now expanded to γ = [12, 15, 20, 28, 10]′. The grid
network set is expanded to

G = {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3), (4, 5), (5, 4)}.

The nework state vector is

x = [P 1, P 2, P 3, P 4, P 5]′,
Ψ = diag[1/120, 1/150, 1/200, 1/280, 1/100].
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Since L = 10+ 12+ 8.9+ 23 = 53.9 is unchanged, we have the new weighted
consensus

β =
L

γ1 + γ2 + γ3 + γ4 + γ5
= 0.6341,

and the new weighted power distribution

x = 0.6341Ψ−111 = [7.609, 9.512, 12.682, 17.755, 6.341]′.

By choosing the order for the links as (1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3),
(4, 5), (5, 4), we have

x̃ = [x̂12, x̂21, x̂23, x̂32, x̂34, x̂43, x̂45, x̂54]′

and

H1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;H2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It follows that Ψ̃ = diag[1/15, 1/12, 1/20, 1/15, 1/28, 1/20, 1/10, 1/28] and

H= H2Ψ − Ψ̃H1

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.083 −0.067 0 0 0
−0.083 0.067 0 0 0

0 0.067 −0.050 0 0
0 −0.067 0.050 0 0
0 0 0.050 −0.036 0
0 0 −0.050 0.036 0
0 0 0 0.036 −0.100
0 0 0 −0.036 0.100

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

J= H2 −H1

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0
−1 1 0 0 0
0 1 −1 0 0
0 −1 1 0 0
0 0 1 −1 0
0 0 −1 1 0
0 0 0 1 −1
0 0 0 −1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Suppose the control gains on the new link are g45 = g54 = 10. Then G =
diag[3, 3, 7, 7, 9, 9, 10, 10]. It follows that

M = −J ′GH =

⎡

⎢⎢⎢⎢⎣

−0.5 0.4 0 0 0
0.5 −1.333 0.7 0 0
0 0.933 −1.6 0.643 0
0 0 0.9 −1.357 2
0 0 0 0.714 −2

⎤

⎥⎥⎥⎥⎦

W = J ′GΨ̃ =

⎡

⎢⎢⎢⎢⎣

0.2 −0.25 0 0 0 0 0 0
−0.2 0.25 0.35 −0.467 0 0 0 0
0 0 −0.35 0.467 0.321 −0.45 0 0
0 0 0 0 −0.321 0.45 1 −0.357
0 0 0 0 0 0 −1 0.357

⎤

⎥⎥⎥⎥⎦
.

After the new UAV is added into the system, consensus control distributes
inter-UAV distances according to the terrain factors of all distances. Figure
7.10 shows the distance trajectories. Initially, the new UAV reduces its neigh-
bor’s (UAV 4) distances d4, due to its direct link to it. But, afterward the
control adjusts distances among other UAVs throughout the entire team. The
distance distributions converge to the new weighted consensus.
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Fig. 7.10 UAV deployment network topology changes
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7.6 Performance Optimization

7.6.1 Control Gains and Performance Optimization

Due to the C-R lower bound, by (7.26) the asymptotic estimation errors that
can be achieved by any algorithm are explicitly given by

nEe′nen → tr(DM̃−1W̃ΣW̃ ′(M̃−1)′).

In other words, the best convergence rates are in terms of mean-squares errors
are tr(DM̃−1W̃ΣW̃ ′(M̃−1)′)/n. Consequently, to improve convergence rates,

it is desirable to reduce tr(DM̃−1W̃ΣW̃ ′(M̃−1)′).
Since M = −J ′GH , W = J ′GΨ̃ , D = Ir−1 + 11r−111

′
r−1,

M =

[
M11 M12

M21 M22

]
,W =

[
W̃
W1,

]
, M̃ = M11 −M1211

′
r−1,

it is clear that other than the structural variables that are determined by
the network topology, the gain matrix G is the only design variable in this
expression. By Assumption A0, G is a diagonal matrix with all diagonal
elements positive. This section will explore optimization of G for different
performance measures. In this section, we use the notation G = diag[gi],
i = 1, . . . , ls.

Denote η(G) = tr(DM̃−1W̃ΣW̃ ′(M̃−1)′). We note that ηopt is invariant
under scaling of G. This is due to the fact that for any c > 0, η(cG) = η(G).
This observation point to a design separation principle: The gain matrix G
and the step size μn in (7.9) can be designed separately. In other words,
change in the step size μn will affect convergence but not the C-R lower
bound which depends on G. As a result, in this section, we will concentrate
on designing G to minimize certain performance measures.

7.6.2 Convergence Rate: Optimization

We start with design of G to minimize the MS estimation errors so that the
convergence rate is optimized. The convergence rate optimization amounts
to

ηopt = min
gi>0,i=1,...,ls

η(G). (7.27)

Since for any c > 0, η(cG) = η(G), in search of the optimal G, we may limit
the search range to 1 ≥ gi > 0,

ηopt = min
1≥gi>0,i=1,...,ls

η(G). (7.28)

Example 6. Consider the same system as in Example 5. The selected
gain matrix in Example 5 is G = diag[3, 3, 7, 7, 9, 9, 10, 10], which may be
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equivalent scaled to 0.05G = diag[0.15, 0.15, 0.35, 0.35, 0.45, 0.45, 0.5, 0.5]
without affecting η(G). This choice of G results in η(G) = 1.5915.

A Monte Carlo search is performed to find ηopt in (7.28). G is searched
over 5000 randomly-selected sample points with

G = diag[rand, rand, rand, rand, rand, rand, rand, rand],

where rand is a random variable of uniform distribution in (0, 1]. The mini-
mum η(G) over this set is η(G0) = 1.3298 which is achieved by

G0 = diag[0.2078, 0.6030, 0.4909, 0.7039, 0.4047, 0.8076, 0.6913, 0.7920].

Due to performance optimization, this design exceeds the performance of the
control in Example 5.

7.6.3 Min-Max Optimization

In UAV missions, communication systems are subject to uncertainties due
to terrain conditions, inter-UAV distance changes, and adversary signal jam-
mer. Consequently, accurate channel noise characterizations are often diffi-
cult. This implies that the matrix Σ in (7.26) may not be known. Here we
assume that Σ belongs to a set Ω of potential noise characterizations. In
this case, we should use η(G,Σ) to indicate its dependence on Σ. To ensure
reliable control performance, we seek the optimal gain matrix design under
a worst-case scenario. Mathematically, this means the following min-max de-
sign problem

ηopt = min
1≥gi>0,i=1,...,ls

max
Σ∈Ω

η(G,Σ). (7.29)

Example 7. Consider the system in Example 6. In addition, we assume that
one adversary signal jammer with unknown location can corrupt one com-
munication, resulting in a substantially increased noise level from variance 1
to variance 100. In this case, Ω contains 8 possible values of Σi, i = 1, . . . , 8
such that Σi is the diagonal matrix will all diagonal elements equal to 1,,
except a 100 at the ith position.

A Monte Carlo search is performed to find ηopt in (7.29). G is searched
over 5000 sample points with

G = diag[rand, rand, rand, rand, rand, rand, rand, rand],

where rand is a random variable of uniform distribution in (0, 1]. The worst-
case

max
Σi,i=1,...,8

η(G,Σ)

is calculated for each G. The minimum η(G) over this set is η(G0) = 25.9553
which is achieved by
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G0 = diag[0.5418, 0.0213, 0.7086, 0.4075, 0.8299, 0.7014, 0.8112, 0.0561].

It is observed that due to the worst-case situation, the control design is
conservative and the achievable performance is significantly affected. This is
to be expected in such a robust control design.

7.7 Concluding Remarks

This paper introduces a new control methodology for UAV coordination.
The methodology is based on weighted and constrained consensus control
that can take into considerations of terrain conditions. The scalability of
the framework permits dynamic expansion of team UAVs without increasing
communication, control, and computation complexities of network control
functions.

This paper is a first attempt in this new direction. We have left many
open issues. For instance, this paper considers communication uncertainty in
terms of additive noises. Other types of communication uncertainties such as
latency, gains, quantization errors, data compression, and packet losses, will
be of interests in development of UAV technology. Integration of consensus
control with dynamic control of subsystems, fault detection, dynamic stability
of UAV flight control will be of values in gaining better control strategies for
UAV coordination.
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