Chapter 6

A Framework for Coordination in Distributed
Stochastic Systems: Perfect State Feedback and
Performance Risk Aversion

Khanh Pham

Abstract. This research article considers a class of distributed stochastic systems
where interconnected systems closely keep track of reference signals issued by a
coordinator. Much of the existing literature concentrates on conducting decisions
and control synthesis based solely on expected utilities and averaged performance.
However, research in psychology and behavioral decision theory suggests that per-
formance risk plays an important role in shaping preferences in decisions under
uncertainty. Thus motivated, a new equilibrium concept, called “person-by-person
equilibrium” for local best responses is proposed for analyzing signaling effects
and mutual influences between an incumbent system, its coordinator and immediate
neighbors. Individual member objectives are defined by the multi-attribute utility
functions that capture both performance expectation and risk measures to model
the satisfaction associated with local best responses with risk-averse attitudes. The
problem class and approach of coordination control of distributed stochastic sys-
tems proposed here are applicable to and exemplified in military organizations and
flexibly autonomous systems.

6.1 Introduction

Control and coordination of distributed stochastic systems offers a framework to an-
alyzing intertemporal strategic interactions between individual agents or controllers,
one for each interconnected systems and based on local observations. The impor-
tance of evaluating approaches in a dynamic setting and the broad flexibility and
adaptability of the decision and control architectures of distributed control with
communications has spurred many large-scale applications such as military com-
mand and control hierarchies, spacecraft constellations, remotely piloted platform
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formations, teams of humans and autonomous robots, etc. where each member can
be in best response to its neighbor actions and yet has no influence on other members
to which it has no communication supports.

Despite the broad interest in distributed systems, there remain significant hurdles
in applying them to practical problems of interest. Interplay between common team
objectives and individual member objectives can yield surprises and complex behav-
iors. Hence, a form of coordination control that helps balance between cooperative
goals and adversarial behavior in addition of fundamentals for team and individual
decisions, is necessarily required.

Thus motivated, this research article proposes a new framework and analysis
to study risk-averse control of a distributed stochastic system, in particular co-
ordination control with risk-averse attitudes toward performance uncertainty and
robustness. The approach of noncooperative game-theoretic decision making and
optimization is suited to coordination control, where a distributed stochastic system
is distinguished into a coordinator (also known as dominant player) with signifi-
cant reference signals and incumbent systems (also known as nondominant players)
with fringe couplings. To account for uncertainty in inherent design problem and
in preference assessment, a multi-attribute utility function that enables incumbent
systems’ decision makers or controllers to select the best risk-averse strategy for
the attribute tradeoffs between performance expectation and risks, is therefore con-
sidered. Notice that this dominant/nondominant game structure is also prevalent in
both economics [[1]] and social sciences [2]].

The game-theoretic model of mixed player behaviors considered herein is par-
ticularly related to the research [3]] that has extended the large population linear-
quadratic-Gaussian games to include a major player and a large number of minor
players. As such, minor players are more sensitive to variations in the behavior of
major player than those of individual minor players. To overcome the curse of dimen-
sionality, computational concerns have typically resorted the analysis to the so-called
Nash certainty equivalence method, where the key idea is to break the large popula-
tion game into a family of limiting two-player games. The synthesis of decentralized
strategies is obtained via a set of aggregate quantities giving the mean field approxi-
mation. In contrast with such existing literature, this appealing research which is the
extension of recent accounts [4] and [3] investigates: 1) a stochastic dynamic game
model of behavior where nondominant players not only keep track closely of the
large impact by the dominant player but also monitor rivals from the peers in a less
detailed way and ii) a computationally tractable model of payoff uncertainty forecast
for which sufficient statistics summarize all payoff relevant information and thus are
used in the person-by-person equilibrium strategies by nondominant players.

In summary, the proposed game-theoretic framework is prevalent in distributed
stochastic systems with a dominant/fringe coordination structure, capturing the at-
tributes that are important to inherent design problem and preference assessment
uncertainties, their tradeoff behavior over these attributes and their risk attitude.
The rest of this article is organized as follows. Section 2 introduces a new compu-
tationally tractable model for distributed stochastic systems with state-space repre-
sentations of a dominant coordinator and many nondominant systems. In addition,
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the preliminary results on sufficient mathematical statistics that summarize all per-
formance measure or utility relevant history and for which the person-by-person
equilibrium strategies are optimal for nondominant systems are discussed in great
details. Section 3 contains precise problem statements for coordination control anal-
ysis and decision optimization for the person-by-person equilibrium or feedback
Nash strategy concerned by autonomous agents and incumbent systems. The con-
struction of person-by-person strategies is established in Section 4 while some con-
clusions and future research directions are drawn in Section 5.

6.2 Problem Formulation

Before going into a formal presentation, it is necessary to consider some conceptual
notations in this article. For instance, time ¢ is modeled as continuous and the nota-
tion of the time interval is [fo,s]. All random variables are defined on a probability
space (Q,.#,27) which is a triple consisting of a set £2, a 6-algebra .# and a prob-
ability measure & : . — [0, 1] and is equiped with a filtration {.%; : 1 € [t9,1/]}. In
addition, for a given Hilbert space X with norm || - ||x, 1 < p < oo, a Banach space
is defined as follows

L (to,15:X) & {¢> : [t0,1f] x  +— X is an X-valued .%;-measurable process

1y
it £{ [ lot.0)|ar } < ©.1)
0

00z (2] [ lowongal) 62

0

with norm

Furthermore, the Banach space of X-valued continuous functionals on [fg,7] with
the max-norm induced by || - ||x is denoted by € (19,7;X ). The deterministic version
of (6.1 and its associated norm (6.2) is written as Z7 (1,14, X) and || - || ..

A distributed stochastic system that evolves over [fy,?] captures interactions
among a coordinator and finite number of incumbent systems. Each incumbent sys-
tem that enters the distributed system is assigned a unique positive integer-valued
index. The set of indices of incumbent systems is denoted by 7 £ {1,2,...,N}and a
typical element by i. The set of immediate neighbors associated with an incumbent
system i is denoted by N;. For concreteness, the heterogeneity of incumbent system
iand i € I is distinguished by an individual state that is governed by the stochastic
differential equation with the initial-value condition x;(fy) = x?

Ni
dxi(t) = (Ai,'(l)x,'(f) + B,-i(t)ui(t) + Cii(f)Zi(l) + ZBij(l)uij(l))dt -+ G,-(t)dwi(t)
j=1
(6.3)
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where continuous-time coefficients A; € € (to, 1 R"*"), By € € (tg,tp;R"*™),
Ci e (g(to,tf;Rnini), Bij e (g(to,tf;Rnixri) and G; € (g(l‘o,l‘f;R”iXpi) are determin-
istic matrix-valued functions. At time ¢, the recursive state of incumbent system i
is denoted by x; € f}l (to,t¢;R™) with the initial state x) € R" known. The con-
trol policies from agent i to that system i are presented by u; € .2 291 (to,t7;R™) and
Zi € f}l (to,1;R%). In addition, the interconnection inputs of that incumbent sys-
tem 7 supported by the communication paths from immediate neighbors j and j € N;
are viewed as the real-valued functions u;;()dr of the following random processes

duij(t) = (Cij(t)x;(t) + Dij(t)u;(t))dt +dvj(t), jEN; (6.4)

where continuous-time coefficients C;; € € (to, 173 R"*") and D;; € € (o, 17, R )
are deterministic matrix-valued functions. As the number of incumbent systems
grows large, it is unrealistic to believe that binding agents i associated with in-
cumbent systems i and i € I are capable of monitoring the evolution of their im-
mediate neighbors. Instead, it is reasonable to assume that incumbent systems only
keep track of actual interactions or signaling references provided by coordinator ¢
and ¢ € I, where the set of partaking coordinators is predetermined and does not
change over time.

In coordination control a coordinator ¢ issues reference signals to two or more
incumbent systems i and i € [ such that

Zie(t)dt = (Aic(t)xc(2) + Bic(t)uc(t))dt + Gic(t)dv,(t) (6.5)

but the incumbent systems i do not directly send signals to the coordinator c. In prac-
tice, it is further desirable to have decentralized decision making without intensive
communication overheads. A potential alternative therefore involves the selection of
a crude model of reduced order for the interactions among coordinator ¢ and binding
agents 7 associated with incumbent systems i. The actual reference signals imposed
by coordinator ¢ are now approximated by an explicit model-following of the type

dzic(t) = (Aic(t)zic(t) + Bic(t)uc (1)) dt + Gic(t)dve(t) ,  zie(to) =0 (6.6)

whereby continuous-time coefficients A;. € €' (1,17, R%*%), Bj. € € (tg,t5; R%*™)
and G, € (f(to,tf;quXq") are deterministic matrix-valued function and potentially
come from a structural decomposition of a monolithic distributed system with cen-
tralized dynamics.

In the state-space representation (6.3) and (6.6) one postulates independent
Wiener processes w;(t) = w;(t, @) : [to,t7] X £; — RPiand v (1) £ ve(t, @) : [to, 1f] X
Q. — RY defined by the underlying filtered probability spaces (Q;, %, {Zi}i, &)
and (Q., %, {%:}1, P.) with the correlations of independent increments

E{[wi(n) —wi()]wi(n) —wi(n)]" } =Wt — |, Wi>0, 7,75 € ]
E{ve(r) = ve(m)]ve(m) = ve(n)]T Y =Velti — 1], Ve>0, 11,1 € [t0,1]
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approximate the inherent design system uncertainty due to variability and lack of
knowledge.

Furthermore, the model primitives of the state recursion (6.3) in the absence
of links from the immediate neighbors and environmental disturbances are also
assumed to be uniformly exponentially stable. For instance, there exist positive
constants 1; and 1, such that the pointwise matrix norm of the closed-loop state
transition matrix associated with incumbent system (&.3)) satisfies the inequality

||®i(t,7)]| < mye ™0 Vi>t>1 .

The pair (A;(t),[Bii(t),Cii(t)]) is pointwise stabilizable if there exist bounded
matrix-valued functions K, () and K, () so that the closed-loop system dx;(t) =
(Aii(t) + Bii()Ky, (t) + Cii(t) Kz, (¢)) xi(t)dt is uniformly exponentially stable.

With the local agent dynamics (6.3) considered herein, each agent i associated
with incumbent system i only plays a local dynamical game with its immediate
neighbors j € N;. Mutual influence controlled by the control policies from the imme-
diate neighbors of agent i is defined by u_; = {u; j 1 J € Ni}. Assuming its coalition
N; conveys mutual influence information u_;, agent i selects, at each time instant, a
tuple of control policies to optimize its multi-attribute utility function. The tuple of
control laws is defined by the control processes u; and z;, of which z; is supposed to
follow the prediction process z;. for the reference signals from coordinator ¢. Thus,
the subsequent states of agent i is determined by its current individual states x; and
Zic, its chosen action (u;,z;) and the coalition effects u_;. In fact, the selected action
(ui,z;) will depend on agent /’s individual states x; and z;. as well as the coalition
effects u_;.

To further illustrate the applicability of the coordination control framework as
proposed here, the classes of admissible control policies associated with (&.3) are
defined by U; x Z; C f;l (to,t;R™) x f;m[ (to,t7;R9). For any given coalition
effects u_;, the 3-tuple (x;(-),u;(-),z;(-)) shall be referred to as an admissible 3-
tuple if x;(-) € &£ ;l (to,t7;R") is the solution trajectory of the stochastic differential
equation (6.3) when u;(-) € U; and 7;(+) € Z;.

Next, agent i evaluates its performance and makes control policies that are con-
sistent with its preferences. There are performance tradeoffs among the closeness of
local states x; from desired states {;, the size of local actions u; and the closeness of
interaction enforcements between z; and z;. on incumbent system i by coordinator c.
Henceforth, agent i must carefully balance the three in order to achieve its local per-
formance measure. Mathematically, there assumes existence of an integral-quadratic
form (IQF) performance-measure J; : U; X Z; — R4

Tiuizisu—i) = [xi(t) — Giep)) T O ity — Giley)]
+ / T (00u(0)xi(e) + [(7) — L] Qilni(T) — Gi(x) Y

- ztf{uiT(T)Rii(T)“i(TH[Zi(f)*Zic(f)]TRzi(T)[Zi(T)*Zic(T)}}dT (6.7)
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where the deterministic matrix-valued functions Qlf e R"*"i Qe ‘ﬁ(to,tf; Rrxni),
0; € (g(to,tf;R”iX"i) R;; € (g(to,tf;Rmixmi) and R € (g(l‘o,l‘f;quXqi) representing
design parameters for terminal states, transient states, control efforts and reference
mismatches are positive semidefinite with R;;(z) and R_;(¢) invertible.

Amongst of some research issues for coordination control which are currently
under investigation is how to carry out optimal control synthesis for coordination
control of distributed stochastic systems. The approach to handle the problem with
a tuple of two or more control laws is to use the noncooperative game-theoretic
paradigm. Particularly, an N-tuple policies {(uj,z}), (u5,25),..., (uy.zy)} is said
to constitute a person-by-person equilibrium solution for the coordination control
problem (6.3) and performance measure (6.7) if

JFE gty < Jiwi,zsuty),  Viel. (6.8)

That is, none of the N agents can deviate unilaterally from the equilibrium policies
and gain from doing so. The justification for the restriction to such an equilibrium
is that the coalition effects u” ; sent to agent i does not necessarily support its pref-
erence optimization. Therefore, they cannot do better than behave as if they strive
for this equilibrium. It is reasonable to conclude that a person-by-person equilib-
rium of distributed control is identical to the concept of a Nash equilibrium within
a noncooperative game-theoretic setting.

Because admissible feedback policy sets for agent i are not discussed, the deter-
mination of a person-by-person equilibrium for the distributed stochastic system is
still not straightforward. Therefore, a further restriction is imposed next. Given the
linear-quadratic properties of the state-space description (6.3) and (6.7)), attention is
then focused on the search for linear time-varying feedback policies generated from
the locally accessible state x;(¢) by

u,-(t) = Kxi (t)x,-(t) + Py, (f) (6.9)
7i(t) = K (t)xi(t) + p,(t), t € [to,ty] (6.10)

with Ky, € € (to,tp;R"™7M), K, € € (tg,17;RE*M), py. € €(to,17;R™) and p,, €
€ (to,1r;R9") admissible feedback policy parameters whose further defining proper-
ties will be stated shortly.

For the given (fo,x%,) and subject to the feedback control policies (6.9)-(6.10),
agent i forms a local awareness of its state recursion (G.3) as follows

dxai(t) = (Aai()xai(t) + Li(1))dt + Gai(t)dwai(t),  xai(to) = X2 6.11)

in which the aggregate Wiener process we; (1) = [w! (1) vl (1) ] " has the correlations

of independent increments E { Wai(T1) — wai (12)][Wai (T1) — Wai(12)] } Wil —
7| for all 71,7 € [fo, /] and W,i > 0; whereas the augmented state variable x;, its

initial-valued condition xal, the system coefficients and parameters are defined by
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xai(t) :Z_i((tt))]; X0 & {Jg] Gai(r) £ {G’ét) Gi?(l‘):| L Wa £ P(I)/l ‘(’j

[I>

o [Au(t) + Ba(t)Ky, (t) + Ci(1)K, (t) 0
Aai(t) = | 0 Aic(t):|
Lalr) 2 [ Bii(1) P (1) + Cis(1) pey (1) + 277 Bij (1) ()]
! Bie(t)ue(r) '

Moreover, the sample function of the random performance measure (6.7) becomes
Ti(Keys i Kepo ) = %611 ) Q1) + 2545 17)S0 + 6 (1001 Gty)
f
[ ) Qu(T)5a(2) + 26215 (2) + T ()06 ()
0

+ pL(DRi(T)py () + pL(T)R:i(7) p (T)]dT  (6.12)

whereby the corresponding weightings are given by

o 2 ol 0]. ¢ ~0/G(ty)]. g 2 [ KiRipy + KiR:p:, — 0ig;
ai 00 "d 0 B —R:ip;,

0, & [ Qi Qit KRk + K RiKy —2K: R
at O Rzi .

In views of the linear-quadratic structure of the problem (&.11) and (6.12), the
performance measure (6.12) is clearly a random variable with chi-squared type.
Consequently, agent i adjusts its objective values into an abstract notion of satis-
faction. In this research, performance expectations and risks are incorporated into a
multi-attribute utility function. Then, the next task involves measuring a finite num-
ber of higher-order statistics associated with (6.12) or efficiently computing them
to understand their importance. Fortunately, the research on performance assess-
ment uncertainty offers a body of mathematical constructs that provides a starting
point for such a knowledge extraction in terms of performance-measure statistics

[6]] and [7].

Theorem 1 Performance-Measure Statistics.

Let the pairs (Aji,Bii) and (A;;,Ci;) be uniformly stabilizable on [ty,tf] in the in-
cumbent system i and i € I governed by (6.11) and (6.12). Then for the given ini-
tial condition (to,x?), incumbent agent i obtains the ki-th cumulant associated with

ki = (x0T Hi(to,ki)xQ +2(:)  Dilto. ki) + Di(to,ki),  kieN  (6.13)
whereby the supporting variables {H(s, r)}r_l, {D(s, r)} ", and {Dj(s, r)}k !
satisfy the time-backward differential equations (with the dependence of H;(s,r),
Di(s,r) and Dj(s,r) upon the admissible Ky, K, px, and p, suppressed)
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T8 1) = —Agi(5)Hi(s, 1) = Hi(s, 1)Aai(s) = Qui(s) (6.14)
jsHi(s, r) = —Agl-(s)H,-(s,r) — Hi(s,r)Aq(s) (6.15)
r—1
_ P V!(fr_! v)!H,-(s,v)Gai(s)WaiGZi(s)H,-(s, r—v), 2<r<k
jsbi(s, 1) = —AL(s)D;(s,1) — Hi(s, 1)L4i(s) — Sai(s) (6.16)
5sbi(s, r)= ngi(s)lv),-(s, r)—Hi(s,r)lai(s), 2<r<k; (6.17)

Di(s,1) = —Tr{H,(s, l)Ga,-(s)WaiGgi(s)} — ZD,-T(S, 1)lai(s)
— Py, ($)Ri(5)pxi(5) = PL,(5)Rei(5) Pz (5) — & (9)Qi(s)ils) - (6.18)
Di(s,r) = —Tr{H;(s,r)Gai (s)WuiGL.(s)} — 2D7 (5,r)lai(5),2 < r < ki  (6.19)

ds

d
ds

whereby the terminal-value conditions H(ty,1) = Qii, Hi(tr,r) =0 for 2 <r <
ki; Dilty,1) = S5, Dilty,r) = 0 for 2 < r < ki and Dilty,1) = & (t)0f Glty),

Di(tr,r) =0for2 <r<k.

Proof. In general, the initial condition (f,x?,) is parameterized by any arbitrary
pair (s,x},). Then, for the given admissible affine inputs p,, and p, in addition with
admissible feedback gains K, and K, the “running” performance measure is intro-
duced as follows

Ji(s:3%0) = xag(t) Q1)+ 2(1)S;+ & 1) 01 Glty)
+ [ B0 Qurae) 4 240 2)3(2) + L (DQUDG()
+ (DR (T)ps, (7) + P2, (DR (D) (T)]dT. - (6.20)
The moment-generating function associated with agent i of is defined by
i3, 01) = E {exp (61 (s,23:)) } (6.21)

for some small parameters 6; in an open interval about 0. Thus, the cumulant-
generating function immediately follows

Wi (5,x0;:6;) = In{@; (s5,x),:6,) } , (6.22)

for some 6; in some (possibly smaller) open interval about O while In{-} denotes the
natural logarithmic transformation.
For notational simplicity, it is convenient to define @; (s, x3;; 6;) =exp{6:J; (s,x,;) }

and ¢; (s,x%;;6;) = E {@; (s,x’;; ;) } together with the time derivative of

svai® svai?



6 A Framework for Coordination in Distributed Systems 155

15015500 = 0 () Qus)2%y+ 2055 Sus)
+ 67 (5)0u(5)G(5) + PLOIR()P (5) + PL(S)Ri(5)pe (5) i (5.32:280) . (6.23)
Using the standard Ito’s formula, it yields
d@i(s,%0:01) = E{d@; (5,%5;36:) }
= Qi,s (8,53 6) ds + @0, (5,X4:3 ;) [Aai(5)xg; + lai(s) ds
DT 91, (5:5058) Gai (5) WaiGy ()} .
Furthermore, the moment-generating function of (6.20) can also be expressed by

01 (5,030 2 i (5:0) exp { () B 0y 120 (5200} (629)
whereby all the supporting entities are going to be determined in the sequel. In
particular, the partial derivatives of (6.24) results in

d 4 pi(s5:6;) d d
; X ds s\T Yi(s; 6; S) s\T (s, 6;
40 o0 = {07 O )T B0+ 20T ) s 6)

+ (000) T AGi () X (53 60+ (000) T 05 (53 01) A ()3 + 2 (0x5) T Agy ()i (53 6;)
+ 2065) T X (5 0:)Lai(5) + 210/ (53.6:)ai(5) + Tr{X;(5: 6;) Gai (5)Wai G Ly (5) }
+2(x2i)TYf(s;Gi)Gaz(s)WaiGZ,-(s)YE(s;Of)xi,,-}q)i(s,xfu-;ez-). (6.25)

Equating the expression (6.23) with that of (6.23) and having both linear and
quadratic terms independent of x}; yield the following results, wherein v;(s; 6;) =

In{p;(s;6;)}

(510 = AT ()0i(5:0) ~ (s 0 )

— 2Xi(5:6;) Guai(5) Wai G ()Y (53 6;) — 0;Qui(s) (6.26)
i Ni (5:6;) = —AL(5)Ni(5:6;) — Xi(5:6;)lai(s) — 6:Sui(s) (6.27)
i Ui (5:6) = —Tr {2553 6:) Gui (5) WaiGg (5) } — 21 (53 6)Lai(s) — 6: & () Qi(5) Gi(s)

— 60ip},(5)Rii(5) px; (5) — Bipl (s)Rei(s) pe; (5) (6.28)

At the final time s = ¢, it follows that

Gi(tp,xaitr): 6;) = pilty: 6;) exp {x; (1) Vit y: 0)xai(t7) + 2L (e, )ilty: 6;) }
= E{exp{ 0% (1) Qlat7) + 2405(1) S0+ & (1001 Gila)] } |

which in turn yields the terminal-value conditions as Y;(t7; 6;) = 6; Qm, ni(tr;6;) =
6:5.:; and vi(ty; 6;) = 0. (1) 0] Giley).
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As it turns out, all the higher-order characteristic distributions associated with
performance uncertainty are very well captured in higher-order performance-
measure statistics associated with the chi-squared random performance measure
(@20). In views of the expression and the definition of (6.22)), the cumulant-
generating function or second-order characteristic function of (6.20) is rewritten as
follows

Wi (5,203 61) = (x3i) 053 61)acs; +2(x00) " i 61) + vi(: ). (6.29)

Subsequently, higher-order statistics of the random performance measure (6.20) that
depict the performance uncertainty can now be determined by a Maclaurin series
expansion of the cumulant-generating function (6.29); e.g.,

e r

d
Vi (5, X5 0;) = Vi, %55 6:)
r—zl 26"

1

r
f" , (6.30)
6,=0

are known as the mathematical statistics
6;=0
of the chi-squared random performance measure (6.20). Moreover, the series expan-
sion coefficients are computed by using the cumulant-generating function (6.29)

from which all k, = 989(3) vi(s, x5 6))

ai’

P10 o E
lVl( 7xf117 ) = (xfli)T (r>YE(S;6i) Xai
aez 6;=0 ael 6;=0
9 9
+200)" mi(s6)| 4 vis:6) (6.31)
26, o—0 96, 6:=0

In view of the definition (6.30), the rth performance-measure statistic is given by

T 8

1

Ky *( az) i(S;ei)

o)

(r)
6,=0 ael

+2(x)" ae< >n,(s 6,) (6.32)

1

U,'(S; 9,')

6,=0

for any finite 1 < r < 0. For notational convenience, the change of notations

"y (s: 6 5 (GIy ol .
Hi(s,r) = V() ;Dj(s,r) = ol ) ;D;(s,r) = 9" i(s: 6;)
6,=0 26"

6;=0

is introduced. What remains is to show that the solutions H;(s, ), D; (s, r) and D; (s, r)
for 1 <r <k; and k; € N indeed satisfy the time-backward matrix, vector and scalar-
valued differential equations (6.14)-(6.19). Notice that these differential equations
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(©.14)-(.19) are readily obtained by successively taking derivatives with respect
to 6; of the cumulant-supporting equations (6.26)-(6.28) under the assumption of
(Aii,Bii) and (A;;,C;;) uniformly stabilizable on the interval [fo,7¢]. O

Furthermore, some attractive properties of the solutions to the cumulant-generating
equations (6.14)-(.19), for which the problem of coordination control with risk-
averse performance of the class of distributed stochastic systems considered here is
therefore well-posed, are presented as follows.

Theorem 2 Existence of Solutions for Performance-Measure Statistics.

Let the pairs (A;(+),Bii(+)) and (A;(+),Cii(+)) be uniformly stabilizable. Then, for
any given k; € N, the cumulant generating equattons (6.14)- (m admit unique
and bounded solutions {H;(-,r)}\"_;, {Di(-, }ri , and {D;(:, )} L, on [ty,tr].

Proof. Under the assumption of stabilizability, there always exist some feedback pa-
rameters K, (-) and Kz, (-) such that the continuous-time aggregate state matrix A;(-)
is exponentially stable on [fg,7]. According to the results in [8], the state transition
matrix @, (2,1), associated with the continuous-time composite state matrix Ag;(-),
has the following properties

d
gt Dyi(t,10) = Aui(t) Dui(t,10) D,(to,t0) =1,

. . Iy
lim || @y (tf,7)|| =0, lim [ ||@u(ty,7)|PdT < oo.
Lf—reo 0

Z‘f—>°° 1

By the matrix variation of constant formula, the unique solutions to the time-
backward matrix differential equations (©.14)-(6.19) together with the terminal-
value conditions are then written as follows

Hi(s,l) = q)al(tf’ )Qalq)al tfa +/ al T S)Qal( ) al(Tas)dT

. r!
Hs) = [0 3 | () G (WGl 0 .r =) Bu(r. )T
$ v=1
Bils,1) = =@ (17,)0] Giltp)+ [ @h(5,5) (Hi(e, V() + Su(?) e

Di(s,r) = / "L (1, 5)Hy (7, ()T, 2<r<k

N

Dils,1) = & (t1) 0] Giley) + /tf{Tf{Hi(T, D)Gai(1)WaiGi(7)} + 2D (7, 1)lui(7)
+ Py (DR (1), (T) + pL, (TR ()5, (1) + & (D) Qi(7) Gi(7) YT

Di(s,r) = /Stf{Tr{H,-(T, 1) Gai(T)WauGL(1)} +2DT (1,7l (1) }dT, 2<r<k;.

As long as the growth rates of the integrals are not faster than those of exponentially
decreasing @,;(-,-) and @L(-,-) factors, it is therefore concluded that there exist
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upper bounds on the non-negative and monotically increasing solutions H;(-,r),
D;(-,r) and D;(-,r) for any time interval [fo, ]

6.3 Problem Statements

The problem of adapting to performance uncertainty is now addressed by leverag-
ing increased insight into the roles played by performance-measure statistics (6.13).
It is interesting to note that all the performance-measure statistics (6.13) are func-
tions of time-backward evolutions and do not depend on intermediate recursive state
values x,;(f) governed by the state-space representation (G.11)-(6.12)) for incumbent
agent i at each point of time € [f9,7]. Henceforth, these time-backward evolutions
(6.14)-(6.19) of which the admissible decision variables K, K;, px, and p;, from the
2-tuple person-by-person equilibrium strategy (6.9)-(6.10) are embedded, are there-
fore considered as the new dynamical equations with the associated state variables
H;(-,r), Di(-,r) and D;(-, ), not the traditional system states x;(-).

To properly develop the problem statements within the concept of the person-by-
person equilibrium strategy for agent i and i € 1, the new dynamics (6.14)-(6.19)
based upon the performance-measure statistics of (6.13) is rewritten in accordance
of the following matrix partitions, for 1 <r <k; and k; € N

s [HYC) HEZC) x Di()
e = [ g ) o0 * [0

For notational simplicity, it is now useful to denote the right members of the dynam-

cs (6.14)-(6.19) as the mappings

Fr [tOJf] % (Rn,Xn,)4k, o RMXNi 5 RI<ME g RAXNi
%kﬁ—r . [to,tf] % (Rn,xn,)4k, o R} o REZ My RMXM
%2ki+r : [to,tf] x (R" ><n,)4k, o R™MIXNi s RE<ME |y RAIXNi
%3ki+r : [tg,tf] (R" ><n,)4k, s R XN
G [to,25] x (RU<MYHi s (RMiyki s R™XME 5 RIXM ¢ R™ x RY 13 R™
g“ikiﬂ : [to1/] x (R” pxniyAki s (RM)Ki 5 RM 5 RY 3 R
G [to,15] x (R Y x (RM)hi x R™ x RY > R

with the rules of action
T (5,76, K, Kz) & —[Aii(s) + Bii(5) K (5) + Cii (s)K, ()] 47 (s)

— A" (5)[Aii(5) + Bii()Ky, (5) + Cir(9)K, (5)]
— Qii(s) — Qi(s) — K[ (5)Rii(5) Ky, (s) — K2 (5)R:i(5) Kz, (5)
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(5,6, Ky Ke) 2 —[Ai(s) + Bir(s) Ko (5) + Cal)Key ()] A (5)
() [Ails) + Bi(s) Ko (5) + Cil)Koy 5)]
LY GG () )

Sovl(r—v)!

r—1 25!

(=) %k+v( VG (5)VoGL () 2277 (5)

<g\ikﬁ—1 (S, I, KxiaKzi) £ *[Aii(s) + Bii(S)le. (S) + Cii(S)Kzl- (S)]T%kﬁl (s)
— A5 () Aie(s) + 2K (5)Rai(s)

TE (5, 76, Ky Key) 2 —[Ai(s) + Bi(5)Ks, () + Ca()Ks, ()] T A2 (5)
r 2r!

— AT (5)Ae(5) — Zl e v)!%v(s)Gi(S)VViGiT(S)%kH»rfv(s)
r—1
= V'(rz—v) S (5)Gie(5)Ve Gl ()77 (s)

%2]([—"_1(5,%,1(&31{21) 4 ,Al?;(s)%ﬂi-‘rl(s)
— A5 (5)[Ai() + Bii(5) Ky (5) + Cia(s) Kz, (5)]

T (5,0, K K) & —AL(5) 75 (5)
— A5 (5)[Aii () + Bii(5)Ko (5) + Cir(5) Kz, (5)]
=l o

=2 T OGO (5)67 ()
1

_ . : .%3ki+V(S)G ( We GT( )%Zk i+r— V(s)]

(%3k1+r(s,%) A *AT( )%31(,'-&-}”( ) - %3kl+r(S)Aic(S) 7RZ,'(S)

Z

2k +V( )G,(S)VV,G,T (S)%kﬁ»rfv (S)

r—v)'

-3 vz(rzi! GV G ) s)

v=1
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%\;‘] (sw%pia @iaKxiaKZiapxjapZi) £ *[Aii(s) JFBii(S)Kxi (S) +Cii(S)Kzi (S)]T@il (S)
Ni

=8 OB 5+ Cils)p 5+ X, By )
— A Bie(ic(s) — KD (9)Ri(5)ps (5) — KL Ras(5)ps, (5) + Qi()G)
6 7,1 Ko o) & A0+ B0 )+ R 9 (0
— T (5) Bi(5) P () + Cils)pa(s +sz, | — A5 (5)Bie()utic ()

G (5,76, Di, iy pa) 2 —AL(S) D (5)— A5 (5)Bie(s >uu< )+Rzi(5) Pz (5)

5

2ki+l(s) [Bii(s)pxi (S) +Cu pz, + ZBIJ

GE (5,26, Di, s ) 2 —AL() DI (5) — A5 (5)B; <s>u,-c<s>

— A () Bi($)pa (5) + Ci(s)ps (s +ZBU

G (5,7, T, s ) & =Te{ ' (5)G -< WG] (s) + A7 (5)Gie(5)VeGl(s))

—2(2)"(5)[Bii(s)px; (5)+Cit(5) pzi (s +ZBU 1 —2(Z T (5)Bie(s)uic (5)
~ & (90i(s) g-(s) = PL()Ri($)py (8) = PL ()R ()2, (5)

G (5,76, 91, pxi» ) & ~Tr{ A (5)G -( WG] (s) + A7 (5)Gie(s)Ve Gl (s)}

~2(Z])" (5)[Bii ()P (5) +Cis(5)zi (s +2 Bij(s) =2V (5) B (s)ic ()

whereby the components of 4k;-tuple 77, 2k;-tuple 921‘ and k;-tuple Z; variables are
defined by

(L%;il7 %k %kﬂ .’%Zki’%Zki+l’...’%3@’%%#1’“.7%41{,-)
= (Hz] 1s- Hz]I: aHzllzv Hi]l% ’Hizll’ Hz%l:,-’Hi%z Hz%]?l)v
DE(D D GG = (D], DL DY D)
Zi2(2),...,9%) = D},.... D).
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Hence, the product system of dynamical equations, whose mapping are

Flx-x 24/(,- :[ro. 7] (<MY o RMEXNG o A<My (RM¥M )i

Gl G g, 7] s (RN i s (R )Ki s R M 5 RIX M 3¢ RM™ ¢ R 5 (RM )i
Gl x GE 2 1g,17] x (R s (R 5 R™M ¢ R s R

in coordination control of the problem class with performance risk aversion,
becomes

) = Fis A K 0K 0)) i) = A ©39)

& G(s) = Gl A5), ) K ), K 51,2 ), (5)) - hleg) = 5
(6.34)
) = G A, (5), (51, po5) i) =T (639)
whereby F; 2 Z} x - x FH G EG x x GPM and 42 G x - x G in

addition with the product system of the termmal-value conditions

%fAQfx 0x--x0 x0x - x0x0x--x0x0x---x0
~ N N N N~
(k — 1) times  k;-times k;-times k;-times

7—Q Gi(ty) x O>< ><0 ><O>< ><9

-~
(ki — 1) times  k;-times

o] & (170 Gilty) x 0x--x0
(ki — 1) times

Once immediate neighbors j € N; of agent i fix the corresponding person-by-person
equilibrium strategies u;‘ and thus the signaling or coordination effects u* ;, agent
i then obtains an optimal stochastic control problem with risk-averse performance
considerations. The construction of agent i’s person-by-person policy now involves
the 4-tuple (K, K,, px,, pz;). Furthermore, the solutions of the equations (6.33)-
(6.33)) also depend on the admissible feedback gains K, and K, in addmon with
the affine inputs p,, and p,. In the sequel and elsewhere, when this dependence is
needed to be clear, then the notations (s, Ky, K..;u* ;), Di(s, Ky, Kz Pys Pers ;)
and Z;(s,Ky;, Kz, px;» P u* ;) should be used to denote the solution trajectories of
the dynamics (6.33)-(6.33) with the admissible 5-tuple (Ky,, K-, , px;, Pz ™ ;).

For the given terminal data (7, 7¢; f @f @f ), the theoretical framework for risk-
averse control of the distributed stochastlc system with possibly noncooperative u* ;,
is then analyzed by a class of admissible feedback policies employed by agent i.

Definition 1 Admissible Feedback Policies.
Let compact subsets K™ C R™>" K9 ¢ R%*"% P C R™ and PY C R% be the
sets of allowable feedback form values available at agent i and i € I. For the
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given k; € N and sequence ; = {u. > O}r_1 with 1} > 0, the set of feedback

amsji/’ G P and P~ are
§ I U 7 BT P R R ET I 7 I BT 15,6595 2] g

assumed to be the classes of € (to,tp; R™*"), € (to,tp; RE*"), € (to,tr;R™) and
% (to,t7;RY) with values Ky, (-) € K, K,(-) € K", px,(-) € P and p,,(-) € P, for
which the solutions to the dynamic equations (6.33)-(6.33) with the terminal-value
conditions H(ty) = %”if, Di(ty) = 921f and Z(ty) = @if exist on the interval of
optimization [to, ).

To determine agent i’s the person-by-person equilibrium strategy with risk bearing
so as to minimize its performance vulnerability of (6.12) against all the sample-
path realizations from uncertain environments w,; and noncooperative coordination
u* ; from immediate neighbors j and j € N;, performance risks are henceforth inter-
preted as worries and fears about certain undesirable characteristics of performance
distributions of and thus are proposed to manage through a finite set of selec-
tive weights. This custom set of design freedoms representing particular uncertainty
aversions is hence different from the ones with aversion to risk captured in risk-
sensitive optimal control [9] and [10].

On ¥ G P and ¢
15,6890 2l 1y A G 9 zfﬂfjfzfu 1.0 98 2

performance index with risk-value considerations in risk-averse decision making is
subsequently defined as follows.

the

Definition 2 Risk-Value Aware Performance Index.

Let incumbent agent iand i€ I select ki € N and the sequence of scalar coeffi-
cients p; = {u} > O} ", with ui > 0. Then for the given initial condition (to,x?), the
risk-value aware performance index, ¢ : {to} x (R">M)ki x (RM)ki x Rb s RT
pertaining to risk-averse decision making of agent i over [ty,ty] is defined by

0 (10, (10), Dit0), Zi(t0)) & wikl  +HuiKh 4+ K
N ~ ~ -
Value Measure Risk Measures

o

1

L) A (o) +2(x7)" ] (10) + (1)), (6.36)
1

r

wherein the additional design freedom by means of U!’s utilized by agent i with risk-
averse attitudes are sufficient to meet and exceed different levels of performance-
based reliability requirements, for instance, mean (i.e., the average of performance
measure), variance (i.e., the dispersion of values of performance measure around
its mean), skewness (i.e., the anti-symmetry of the density of performance mea-
sure), kurtosis (i.e., the heaviness in the density tails of performance measure), etc.,
pertaining to closed-loop performance variations and uncertainties while the sup-
porting solutions {%’j’(s)} A2 ()} k " and {9 (s )} ', evaluated at s = to sat-
isfy the dynamical equations mm

To specifically indicate the dependence of the risk-value aware performance

index (6.36) expressed in Mayer form on (Ki,K;,py,p;) and the signaling
effects u*; issued by all immediate neighbors j from N;, the multi-attribute
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utility function or performance index (6.36)) for agent i is now rewritten explicitly as
¢,‘0(Kx,-7Kz,- 7Pxiapzi;u*—i)-

Definition 3 Nash Equilibrium Solution.

An N-tuple of policies { (K}, K}, ,p%,, Pz, )s-- -+ (K3 K2 DYy Pay ) } B said to con-
stitute a Nash equilibrium solution for the dlstrlbuted N-agent stochastic game if,
for all i € N, the Nash inequality condition holds

0P (K KE ot Pl ™) < 60 (K Koy, pay s peysu™y) - (6.37)

For the sake of time consistency and subgame perfection, a Nash equilibrium so-
lution is required to have an additional property that its restriction on the interval
[f0, 7] is also a Nash solution to the truncated version of the original problem, de-
fined on [fy, 7]. With such a restriction so defined, the Nash equilibrium solution is
now termed as a feedback Nash equilibrium solution, which is now free of any infor-
mational nonuniqueness, and thus whose derivation allows a dynamic programming
type argument.

Definition 4 Feedback Nash Equilibrium.
Let (K K. py, ) constitute a feedback Nash strategy for agent i such that

00 (Ky Koy s i) < 00 (Ko Koy pag posit™y), i€ (6.38)

or admissible Ky, € Ji’x’ VK, € Ji’ , Dx, € PN .
f 9 ol ot o ot P i € 1. 9 2]

and p; € , upon which the solutlons to the dynamical systems

ﬂf 9, Jf o
(6:33)-1633) extst on [tg,tf]

Then, {( XI’K*I’pXI’pZI) (K3 K2 DYy Pay )} when restricted to the in-
terval [ty, 7] is still a N-tuple feedback Nash equilibrium solution for the mul-
tiperson Nash decision problem with the appropriate terminal-value condition

(t,76%(1), 7 (1), D7 (1)) for all T € [to,17].

In conformity with the rigorous formulation of dynamic programming, the following
development is important. Let the terminal time 77 and 3-tuple states (%’jf , Qlf , @if ),
the other end condition involved the initial time #o and 3-tuple states (./2°, 20, 2?)
be specified by a target set requirement.

Definition 5 Target Sets.
(tg,%o,@?,@?) € M;, where the target set .#; is a closed subset of [ty,tf] X
(Rnixni)ki > (Rni)ki x Rki_

Now, the decision optimization residing at incumbent agent i is to minimize the risk-

value aware performance index (6.36) over admissible feedback strategies composed
— Xi J—

by K, =K, (1) e A . K, =K,(-) € l: S o Py = Py (1) €

.4 9 2w
i and p;, = p;, (- ) € P wh1le subject to interconnection

1. G 7] 10, 9] 2] i
links from all immediate neighbors w1th corresponding feedback Nash policies u”* ;.
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Definition 6 Optimization of Mayer Problem.
Given the sequence of scalars p; = { . > O}Ir‘l:] with uf > 0, the decision optimiza-
tion over [t,tf| at agent i and i € I is given by

min ¢10 (Ky;, Kz Dy P23 ) (6.39)
Ky; Kz \Px; Pz

subject to the dynamical equations (16.33)-(6.33) on [to,1/].

Notice that the optimization considered here is in Mayer form and can be solved by
applying an adaptation of the Mayer form verification results as given in [[T1]]. To
embed this optimization facing agent i into a larger problem, the terminal time and
states (tf,%f,@f,@f) are parameterized as (&, %, Z;, %), whereby % £ J(e),
Zi 2 P,(e) and Z; £ Z;(¢). Thus, the value function for this optimization problem
is now depending on the parameterization of terminal-value conditions.

Definition 7 Value Function.
Suppose (,%,%;,27) € [to,t7] x (R>*M)ki x (R")ki x RN s given and fixed for
agent i and i € I. Then, the value function ¥i(e, %, %, %) is defined by

%(87%’%,%) £ inf ¢iO(KxiaKziapxmpzi;uii)'

Kxi 7Kzi sPxjsDz;

For convention, ¥(e,%;, %, %) £ oo when % Farop XA X
tp KD D tp KD D

N g x4 . is empty. Next, some candidates for the value
10 S5 D M 109\ S5 D] M

function are constructed with the help of the concept of reachable set.

Definition 8 Reachable Sets.
Associate with agent i and i € I a reachable set defined by 2; = {(8 Y, %, %) €

1 1 i 1 i kl
[to,t7] x (RM>miyki (R ki x RY such that the Cartesian product% el A #l

L P P #0}.
O i A AR T N E TR T N X A

Moreover, it can be shown that the value function associated with agent i is satisfy-
ing a partial differential equation at interior points of 2;, at which it is differentiable.

Theorem 3 Hamilton-Jacobi-Bellman (HJB) Equation-Mayer Problem.
Let (e,%;, %, %7) be any interior point of the reachable set 2;, at which the value
Sunction ¥i(e,%;, %, %) is differentiable. If there exists a feedback Nash strategy
: o * i *
which is supported by K (-) € l: A K () € Jf:f I A py. () €
i and p(-) € @Z’ , then the dzﬁ”erentzal equation

15,65 95 2] g 1A G 9
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" Ky 5Kxi7Kzi€1§g%1I71xief“’i,pziePli { 888 Vile. %, 2, Z)
+ 8ve§(@i) Yie, %, Zi, Zi)vee(Fi(e, %, Ky, K,))

- avef(,,%;,-) Yie, %, Zi, Zi)vec((e, %, %1, Ky, Ko, Py P2i)

’ avef(%)%(e’%55"%>Vec<%<e,%,f;,px,.,pzi>} (6.40)

is satisfied whereby ¥i(to, % (1), Zi(10), Zi(10)) = ¢° (1), Zi(to), Zi(t0)).

Proof. By what have been shown in the recent results by the first author [7], the
proof for the result herein is readily proven.

Finally, the following result gives the sufficient condition used to verify a feedback
Nash strategy for incumbent agenti and i € 1.

Theorem 4 Verification Theorem.
Let Wi(e,%;, %, %;) be continuously differentiable solution of the HIB equation
(6.40) for agent i and i € I, which satisfies the boundary condition

Wilto, (o), Zi(t0), Zi(t0)) = 87 (t0, 7 (t0), Zi(t0), Zi(t0)) - (6.41)

f f gf : .
Let (t7, 77 ,9; ,2]) be a 4-tuple point in 2;; let K, € l/f A A , K, €

Ifs ﬁ”f Jf jf ;P € yz %’f Jf Jf P € gﬁfv%ff-,@ﬁ%f:uiy and let %( ) ( )
and @ (- ) be the correspondmg solunons of the equations of motion (6.33)-([6.33).
Then, #i(s, 76(s), Zi(s), Zi(s)) is time-backward increasing function of s.

* Xi * Xi *
Ky ‘%/ﬂfjfjquG‘%?ﬂfjfjf » P € ‘@zﬂf)fjfuandpz'e
@’f ey deﬁnmg a person-by-person equilibrium or feedback Nash strategy

for agent i andl € I with the corresponding solutions 7*(-), 7 (-) and Z}(-) of
the dynamical equations (16.33)-(6.33) such that, for s € [to,tf]

d * Sk * d * 75 *
0= &8%(&% (S)v@i (S)v@i (S))+ 8vec(%) %(S,jﬁ (S)v@i (S)v@i (S))
* . : J (5, 767(5), D7 (5), D (s
T () KL KL)% M), 570 5 0)

'Vec(%\;(sv‘%*(s)v@i*(s)v *(S)sz,( ) px,( ),PZ(S))

Wils, H5°(5). 7 (5), D (s))vee(Fi(s, A7 (5), 7 (5), P, (5), P (5))
(6.42)

. d
dvec(%)
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then (K* K. py, pz) results in a feedback Nash strategy or person-by-person

equilibrium for agent i in Ji’ x K5 x P . X
I for ag I R R R T R e LR TR AR AT

tf-,J”?ﬁf-,@;fﬁ;f:ui' F urthermore it follows that
Vile. %, 2, Z) = Vi(e, %, £, %), (6.43)

whereby V;(&, %, Z, %) is the value function associated with incumbent agent i.

Proof. With the aid of the recent development [7], the proof then follows for the
verification theorem herein.

6.4 Distributed Person-by-Person Equilibrium Strategies

Reflecting on the Mayer-form optimization problem of the person-by-person equi-
librium strategy concerned by incumbent agent i/ and i € /, the technical approach
is to apply an adaptation of the Mayer-form verification theorem of dynamic pro-
gramming as given in [L1]]. In the framework of dynamic programming, it is often
required to denote the terminal time and states of a family of optimization problems
as (e,%, Z, %) rather than (tf,%’jf, @lf, @lf) Stating precisely, for € € [fo, 7] and
1 < r < k;, the states of the performance robustness (6.33)-(G.33) defined on the
interval [fo, €] have the terminal values denoted by .#/(e) = %, Z;(e) = Z; and
@i(s) =Z.

Since the performance index (©.36)) is quadratic affine in terms of arbitrarily fixed
x?, the resulting insight suggests a solution to the adapted HIB equation (6.40) is of
the form as follows. It is assumed that (&,%;, .3:;,-, %) is any interior point of the
reachable set 2; at which the real-valued function

ki )
Wile. %, 2, %) = () 3 1 + & (e))x]
r=1
ki . . ki )
+200)" Y H(Z + T (€)) + X (2 + T (e))  (6.44)
r=1 r=1

is differentiable. The parametric functions of time & € € (to,t7; R"*"), I €
€ (to,t;RY) and T € €' (tg,17;R) are yet to be determined. Furthermore, the
time derivative of #;(e, %, Z, %) can be shown to be

d r
dEW(e g/lv‘%vff T z.ur 8 gvix,aKZ;)—i_ g ( ))

+ Z(X?)T 2 Il;'(féir(g, %, Q%,Kx,-,szPx,-,Pzi) +

r=1

7i'(€))

k:
i . o d
+ 2 (G (&, Zpop) + T (€)). (645)

r=1
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The substitution of this hypothesized solution (6.44) into the HIB equation (6.40)
and making use of (6.43) results in

0= ~ min { Tzurd & (e)x) +2(x] TZurdST()

Ky, €K' K, €K py,€P" p..€PY

+Zurd yr( )+2 Tzurg,r 8 %a%ale Kz,apx,apzl)

+ (x?)T Z H;l;%r(ga @iaKxiaKZi ))C? + Z u;{gir(gv gia Qéiapxiapzi)} . (646)

r=1 r=1

Differentiating the expression within the bracket of (6.46) with respect to Ky, K,,
pyx; and p;, yields the necessary conditions for an extremum of (6.40) on [t €],

ki )

0=—2[B(e) 2 W+ ! Ri(€) Koy 112 ()T
2 1 27+l Rii(e) py ] ()T
Z W+ 1 Rei(8) Ko, 130 ()"

Cl{ leff”rll, Ry(e )pzz](x?)T

r=1

0= —2[Bl(e) Z W+ ! Ris(€) K xf
r=1

ki .
i (€)Y, uf Z7 + i Ri(€) py,]

r=1

ki
0=—2(Cl(e) S W% + ) Ru()K, 1)

r=1

2 W 27+ i Rai(e)ps,]

Because all x9 (x))7, (x9)7 and x? have arbitrary ranks of one, it must be true that

k.
Ky, = (1 Rii(e)) "' Bji(e) X, w{ %", (6.47)

r=1
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ki
K., =—(u/Ri(e))'Ch(e) Y wi ", (6.48)
r=1
ki .
Py = (! Ri(e) Bl (e) Y w27, (6.49)
r=1
ki
= —(u/ Rai(e))"'Ci(e) Y uf 2. (6.50)
r=1

Replacing these results (6.47)-(6.50) into the right member of the HJB equation
(16.40) yields the value of the minimum

ki ki ki
: d : d . i d
ONT r 7V +2(6NT r g r % gr
SUDWRHOERECHDWINEACED AT

ki
+ (X?)T{ — [Aii(e) — Bii(e) (1 Ra(e)) "' Bj; (e) Y, u} %*

—u ZHSWBU Ri(€))"'Rii(e) (1 Ru(e)) ' Bli(e) X b

‘
=
X

—,LL, Zlf@s il Rzl( ))_lei(e)(:uilRZl'(g))_ICg(g)

F,

‘
Il
_

& iri] 2r! @\)G WGT @r—v
72:“721}!(’__‘})! i ,'(8) i i(g) i
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ki ki
Cile) (1! Ra(e)"'Ch(e) Y " S w27
s=1 r=1
ki ki o
=3 W[~ Bile) (i Ra(e)) "Bl (e) Y uf 2
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For each agent i, it is necessary to exhibit {éal’()}];’zl {F()} k ", and { T (- )} -]
which render the left side of the HIB equation (6.40) equal to zero for € € [t 7],

when {%/" } LA } ", and {Z } !, are evaluated along the solution trajectories
of the dynamical equations (©.33)- m With a careful examination of the expres-
sion (6.31), it reveals that
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will work. Furthermore, the boundary condition associated with the verification the-
orem requires that
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Thus, matching the boundary condition yields the initial value conditions & (fp) =
0, 77 (ty) = 0 and J;" (ty) = O for the forward-in-time differential equations (6.52)-

Applying the 4-tuple (Ky;,Kz;, px;, P7;) in ©47)-(6.30) that is defining the person-
by-person equilibrium for each agent i and i 6 I along the solution trajectories of the
backward-in-time differential equations (& , these equations become the
backward-in-time Riccati-type dlfferentlal equatlons
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where the terminal-value conditions /¢ 1 (tr) = Q{ , A (ty) =0 for 2 < r < ki
IF(p) = =Qf Gilty). FF(t7) = 0for2 < r < kiz and ] (1) = Li(t7) Q] Gilty), T (1)
for 2 < r < k;. Thus, whenever the coupled backward-in-time differential equa-
tions (6.38)-(6.63) admit the matrix-valued solutions {7 (- )} " ,, vector-valued
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solutions {Z/(-)} ", and scalar-valued solutions {2r()}%_,, then the existence
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of the matrix-valued solutions {&7 (- )M vector-valued solutions {Zr()} ", and
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scalar-valued solutions {.7;" ()}I;’=1 satisfying the coupled forward-in-time differ-
ential equations (6.32)-(6.37) are assured. By comparing the time-forward dif-
ferential equations (6.32)-(6.37) to those of time-backward differential equations
(&38)-([@.63), one may recognize that these sets of differential equations are related
to one another by
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Enforcing the initial-value conditions of & (to) = 0, 7" (to) = 0 and J;" () = 0
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& (&)= (1)~ (e); T/ (e) = D] (10) = [ ():  Ti'(€) = F](10) — Z} ()
for all € € [y, 7] and yields a value function
- kl
Wi(e. %, 2, %) = ()T 3 ui A (10) ) +2(x))" Zu{@[ fo) + Zuf@f fo)
r=1 r=1

for which the sufficient condition (6.42) of the verification theorem is satisfied.
Therefore, the extremal person-by-person equilibrium policy (6.47)-([©.30) minimiz-
ing (6.36) become optimal
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whereby [/ = Z |

The goals in this research investigation have been methodological. A noncooper-
ative game-theoretic methodology for coordination control of distributed stochastic
systems is successfully sought for theory building in contexts in which signaling
effects are issued by a coordinator and distributed person-by-person equilibrium
strategies by autonomous agents i and i € [ are placed toward performance robust-
ness. At this point, it makes sense to integrate all of the contending results into the
following unified theorem.
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Theorem 5 Person-by-Person Equilibrium Strategies.

Consider a distributed stochastic system governed by (63)-6.2) whose
pairs (A;i,Bii) and (A;;,Cij) are uniformly stabilizable on [ty,tf]. A N-tuple
{(uf,2y),...,(uy,2y)} of control policies constitutes a feedback Nash equilibrium
for the class of distributed stochastic system considered here. Furthermore, 2-tuple
(uf,z}) imposing a person-by-person equilibrium strategy for the corresponding
agent i and i € I is implemented forwardly in time by

ui (1) = K3 (1)xi(1) + py, (1) (6.68)
7 (t) = K (0)xi(t) + p;,(t), t=tr+to—¢€, &€ lto,ty], (6.69)

which strives to optimize the risk-value aware performance index (6.36) composed
by a preferential set of mathematical statistics of the chi-squared cost random vari-
able (6.7). The construction of the person-by-person equilibrium for each agent i is
determined backwardly in time; e.g.,
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wherein the normalized preferences [I] = ul'/ ul-l ’s are mutually chosen by each

incumbent agent i for risk-averse coordinations toward co-design of individual
performance robustness. The optimal set of supporting solutions {5 (8)}5’: P

(A ()Y, (AT ()Y, (A2 (€)Y, and {T](e)}Y, satisfy the

time-backward and matrix-valued differential equations
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in addition with the backward-in-time and vector-valued differential equations
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whereby the terminal-value conditions 7} (t7) = Qf J(tr) =0 for 2 <r <k
A5 (1) = 0 for 1 §r<k,, %2"“( t5) =0 for 1 <r <ky A5 (t5) = 0 for
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1 <r<kyand G} (1) = fQi Gilty), DL(ty) =0for2 <r<k.

6.5 Conclusions

The noncooperative game-theoretic framework presented here offers a contribution
to coordination control science’s existing portfolio of methodologies. This portfolio
contains a coordinator which directs two or more interconnected stochastic systems.
Thinking about risk-averse attitudes toward performance uncertainty and distribu-
tion suggests new ideas for extending existing theories of distributed control and
multiperson decision analysis. In this sense, the present research article offers a the-
oretic lens and a novel approach that direct attention towards mathematical statistics
of the chi-squared random performance measures concerned by incumbent agents
of the class of distributed stochastic systems herein and thus provide new insights
into complex dynamics of performance robustness and reliability. To account for
mutual influence from immediate neighbors that give rise to interaction complex-
ity such as potential noncooperation, each incumbent system or self-directed agent
autonomously focuses on the search for a person-by-person equilibrium which is
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in turn locally supported by perfect state observations. Further discussions show
that the person-by-person equilibrium is equivalent to the concept of feedback Nash
strategy. Research issues discussed include adjusting the risk-averse attitudes against
which performance statistics are measured is now termed as risk-value aware per-
formance indices. The process of adjustment for performance risk aversion imposes
some computational requirements as needed by the construction of the states of the
person-by-person equilibrium.

Future work will be another attainments of distributed control with explicit com-
munications and partial information patterns, wherein research issues are: (i) when
is periodic communication the optimal communication policy for the considered
cost function? (ii) in what control and decision architectures, are partial local state
information shared? and (iii) how to distribute global objectives of distributed and/or
hierarchical stochastic systems over constituent systems and/or different layers?
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